xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision f47a3ca2)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 /*
66  * helper function to extract extent size hint from inode
67  */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 	struct xfs_inode	*ip)
71 {
72 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 		return ip->i_d.di_extsize;
74 	if (XFS_IS_REALTIME_INODE(ip))
75 		return ip->i_mount->m_sb.sb_rextsize;
76 	return 0;
77 }
78 
79 /*
80  * This is a wrapper routine around the xfs_ilock() routine used to centralize
81  * some grungy code.  It is used in places that wish to lock the inode solely
82  * for reading the extents.  The reason these places can't just call
83  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84  * extents from disk for a file in b-tree format.  If the inode is in b-tree
85  * format, then we need to lock the inode exclusively until the extents are read
86  * in.  Locking it exclusively all the time would limit our parallelism
87  * unnecessarily, though.  What we do instead is check to see if the extents
88  * have been read in yet, and only lock the inode exclusively if they have not.
89  *
90  * The function returns a value which should be given to the corresponding
91  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
92  * actually taken.
93  */
94 uint
95 xfs_ilock_map_shared(
96 	xfs_inode_t	*ip)
97 {
98 	uint	lock_mode;
99 
100 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
101 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
102 		lock_mode = XFS_ILOCK_EXCL;
103 	} else {
104 		lock_mode = XFS_ILOCK_SHARED;
105 	}
106 
107 	xfs_ilock(ip, lock_mode);
108 
109 	return lock_mode;
110 }
111 
112 /*
113  * This is simply the unlock routine to go with xfs_ilock_map_shared().
114  * All it does is call xfs_iunlock() with the given lock_mode.
115  */
116 void
117 xfs_iunlock_map_shared(
118 	xfs_inode_t	*ip,
119 	unsigned int	lock_mode)
120 {
121 	xfs_iunlock(ip, lock_mode);
122 }
123 
124 /*
125  * The xfs inode contains 2 locks: a multi-reader lock called the
126  * i_iolock and a multi-reader lock called the i_lock.  This routine
127  * allows either or both of the locks to be obtained.
128  *
129  * The 2 locks should always be ordered so that the IO lock is
130  * obtained first in order to prevent deadlock.
131  *
132  * ip -- the inode being locked
133  * lock_flags -- this parameter indicates the inode's locks
134  *       to be locked.  It can be:
135  *		XFS_IOLOCK_SHARED,
136  *		XFS_IOLOCK_EXCL,
137  *		XFS_ILOCK_SHARED,
138  *		XFS_ILOCK_EXCL,
139  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
143  */
144 void
145 xfs_ilock(
146 	xfs_inode_t		*ip,
147 	uint			lock_flags)
148 {
149 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
150 
151 	/*
152 	 * You can't set both SHARED and EXCL for the same lock,
153 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
155 	 */
156 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
157 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
158 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
159 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
160 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
161 
162 	if (lock_flags & XFS_IOLOCK_EXCL)
163 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 	else if (lock_flags & XFS_IOLOCK_SHARED)
165 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166 
167 	if (lock_flags & XFS_ILOCK_EXCL)
168 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
169 	else if (lock_flags & XFS_ILOCK_SHARED)
170 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 }
172 
173 /*
174  * This is just like xfs_ilock(), except that the caller
175  * is guaranteed not to sleep.  It returns 1 if it gets
176  * the requested locks and 0 otherwise.  If the IO lock is
177  * obtained but the inode lock cannot be, then the IO lock
178  * is dropped before returning.
179  *
180  * ip -- the inode being locked
181  * lock_flags -- this parameter indicates the inode's locks to be
182  *       to be locked.  See the comment for xfs_ilock() for a list
183  *	 of valid values.
184  */
185 int
186 xfs_ilock_nowait(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
191 
192 	/*
193 	 * You can't set both SHARED and EXCL for the same lock,
194 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
196 	 */
197 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
198 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
199 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
200 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
201 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
202 
203 	if (lock_flags & XFS_IOLOCK_EXCL) {
204 		if (!mrtryupdate(&ip->i_iolock))
205 			goto out;
206 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
207 		if (!mrtryaccess(&ip->i_iolock))
208 			goto out;
209 	}
210 	if (lock_flags & XFS_ILOCK_EXCL) {
211 		if (!mrtryupdate(&ip->i_lock))
212 			goto out_undo_iolock;
213 	} else if (lock_flags & XFS_ILOCK_SHARED) {
214 		if (!mrtryaccess(&ip->i_lock))
215 			goto out_undo_iolock;
216 	}
217 	return 1;
218 
219  out_undo_iolock:
220 	if (lock_flags & XFS_IOLOCK_EXCL)
221 		mrunlock_excl(&ip->i_iolock);
222 	else if (lock_flags & XFS_IOLOCK_SHARED)
223 		mrunlock_shared(&ip->i_iolock);
224  out:
225 	return 0;
226 }
227 
228 /*
229  * xfs_iunlock() is used to drop the inode locks acquired with
230  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
231  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232  * that we know which locks to drop.
233  *
234  * ip -- the inode being unlocked
235  * lock_flags -- this parameter indicates the inode's locks to be
236  *       to be unlocked.  See the comment for xfs_ilock() for a list
237  *	 of valid values for this parameter.
238  *
239  */
240 void
241 xfs_iunlock(
242 	xfs_inode_t		*ip,
243 	uint			lock_flags)
244 {
245 	/*
246 	 * You can't set both SHARED and EXCL for the same lock,
247 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
249 	 */
250 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
251 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
252 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
253 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
254 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
255 	ASSERT(lock_flags != 0);
256 
257 	if (lock_flags & XFS_IOLOCK_EXCL)
258 		mrunlock_excl(&ip->i_iolock);
259 	else if (lock_flags & XFS_IOLOCK_SHARED)
260 		mrunlock_shared(&ip->i_iolock);
261 
262 	if (lock_flags & XFS_ILOCK_EXCL)
263 		mrunlock_excl(&ip->i_lock);
264 	else if (lock_flags & XFS_ILOCK_SHARED)
265 		mrunlock_shared(&ip->i_lock);
266 
267 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 }
269 
270 /*
271  * give up write locks.  the i/o lock cannot be held nested
272  * if it is being demoted.
273  */
274 void
275 xfs_ilock_demote(
276 	xfs_inode_t		*ip,
277 	uint			lock_flags)
278 {
279 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
280 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
281 
282 	if (lock_flags & XFS_ILOCK_EXCL)
283 		mrdemote(&ip->i_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		mrdemote(&ip->i_iolock);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 #if defined(DEBUG) || defined(XFS_WARN)
291 int
292 xfs_isilocked(
293 	xfs_inode_t		*ip,
294 	uint			lock_flags)
295 {
296 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
297 		if (!(lock_flags & XFS_ILOCK_SHARED))
298 			return !!ip->i_lock.mr_writer;
299 		return rwsem_is_locked(&ip->i_lock.mr_lock);
300 	}
301 
302 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
303 		if (!(lock_flags & XFS_IOLOCK_SHARED))
304 			return !!ip->i_iolock.mr_writer;
305 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
306 	}
307 
308 	ASSERT(0);
309 	return 0;
310 }
311 #endif
312 
313 void
314 __xfs_iflock(
315 	struct xfs_inode	*ip)
316 {
317 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
318 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
319 
320 	do {
321 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
322 		if (xfs_isiflocked(ip))
323 			io_schedule();
324 	} while (!xfs_iflock_nowait(ip));
325 
326 	finish_wait(wq, &wait.wait);
327 }
328 
329 #ifdef DEBUG
330 /*
331  * Make sure that the extents in the given memory buffer
332  * are valid.
333  */
334 STATIC void
335 xfs_validate_extents(
336 	xfs_ifork_t		*ifp,
337 	int			nrecs,
338 	xfs_exntfmt_t		fmt)
339 {
340 	xfs_bmbt_irec_t		irec;
341 	xfs_bmbt_rec_host_t	rec;
342 	int			i;
343 
344 	for (i = 0; i < nrecs; i++) {
345 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
346 		rec.l0 = get_unaligned(&ep->l0);
347 		rec.l1 = get_unaligned(&ep->l1);
348 		xfs_bmbt_get_all(&rec, &irec);
349 		if (fmt == XFS_EXTFMT_NOSTATE)
350 			ASSERT(irec.br_state == XFS_EXT_NORM);
351 	}
352 }
353 #else /* DEBUG */
354 #define xfs_validate_extents(ifp, nrecs, fmt)
355 #endif /* DEBUG */
356 
357 /*
358  * Check that none of the inode's in the buffer have a next
359  * unlinked field of 0.
360  */
361 #if defined(DEBUG)
362 void
363 xfs_inobp_check(
364 	xfs_mount_t	*mp,
365 	xfs_buf_t	*bp)
366 {
367 	int		i;
368 	int		j;
369 	xfs_dinode_t	*dip;
370 
371 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
372 
373 	for (i = 0; i < j; i++) {
374 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
375 					i * mp->m_sb.sb_inodesize);
376 		if (!dip->di_next_unlinked)  {
377 			xfs_alert(mp,
378 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
379 				bp);
380 			ASSERT(dip->di_next_unlinked);
381 		}
382 	}
383 }
384 #endif
385 
386 static void
387 xfs_inode_buf_verify(
388 	struct xfs_buf	*bp)
389 {
390 	struct xfs_mount *mp = bp->b_target->bt_mount;
391 	int		i;
392 	int		ni;
393 
394 	/*
395 	 * Validate the magic number and version of every inode in the buffer
396 	 */
397 	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
398 	for (i = 0; i < ni; i++) {
399 		int		di_ok;
400 		xfs_dinode_t	*dip;
401 
402 		dip = (struct xfs_dinode *)xfs_buf_offset(bp,
403 					(i << mp->m_sb.sb_inodelog));
404 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
405 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
406 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
407 						XFS_ERRTAG_ITOBP_INOTOBP,
408 						XFS_RANDOM_ITOBP_INOTOBP))) {
409 			xfs_buf_ioerror(bp, EFSCORRUPTED);
410 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
411 					     mp, dip);
412 #ifdef DEBUG
413 			xfs_emerg(mp,
414 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
415 				(unsigned long long)bp->b_bn, i,
416 				be16_to_cpu(dip->di_magic));
417 			ASSERT(0);
418 #endif
419 		}
420 	}
421 	xfs_inobp_check(mp, bp);
422 }
423 
424 
425 static void
426 xfs_inode_buf_read_verify(
427 	struct xfs_buf	*bp)
428 {
429 	xfs_inode_buf_verify(bp);
430 }
431 
432 static void
433 xfs_inode_buf_write_verify(
434 	struct xfs_buf	*bp)
435 {
436 	xfs_inode_buf_verify(bp);
437 }
438 
439 const struct xfs_buf_ops xfs_inode_buf_ops = {
440 	.verify_read = xfs_inode_buf_read_verify,
441 	.verify_write = xfs_inode_buf_write_verify,
442 };
443 
444 
445 /*
446  * This routine is called to map an inode to the buffer containing the on-disk
447  * version of the inode.  It returns a pointer to the buffer containing the
448  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
449  * pointer to the on-disk inode within that buffer.
450  *
451  * If a non-zero error is returned, then the contents of bpp and dipp are
452  * undefined.
453  */
454 int
455 xfs_imap_to_bp(
456 	struct xfs_mount	*mp,
457 	struct xfs_trans	*tp,
458 	struct xfs_imap		*imap,
459 	struct xfs_dinode       **dipp,
460 	struct xfs_buf		**bpp,
461 	uint			buf_flags,
462 	uint			iget_flags)
463 {
464 	struct xfs_buf		*bp;
465 	int			error;
466 
467 	buf_flags |= XBF_UNMAPPED;
468 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
469 				   (int)imap->im_len, buf_flags, &bp,
470 				   &xfs_inode_buf_ops);
471 	if (error) {
472 		if (error == EAGAIN) {
473 			ASSERT(buf_flags & XBF_TRYLOCK);
474 			return error;
475 		}
476 
477 		if (error == EFSCORRUPTED &&
478 		    (iget_flags & XFS_IGET_UNTRUSTED))
479 			return XFS_ERROR(EINVAL);
480 
481 		xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
482 			__func__, error);
483 		return error;
484 	}
485 
486 	*bpp = bp;
487 	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
488 	return 0;
489 }
490 
491 /*
492  * Move inode type and inode format specific information from the
493  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
494  * this means set if_rdev to the proper value.  For files, directories,
495  * and symlinks this means to bring in the in-line data or extent
496  * pointers.  For a file in B-tree format, only the root is immediately
497  * brought in-core.  The rest will be in-lined in if_extents when it
498  * is first referenced (see xfs_iread_extents()).
499  */
500 STATIC int
501 xfs_iformat(
502 	xfs_inode_t		*ip,
503 	xfs_dinode_t		*dip)
504 {
505 	xfs_attr_shortform_t	*atp;
506 	int			size;
507 	int			error = 0;
508 	xfs_fsize_t             di_size;
509 
510 	if (unlikely(be32_to_cpu(dip->di_nextents) +
511 		     be16_to_cpu(dip->di_anextents) >
512 		     be64_to_cpu(dip->di_nblocks))) {
513 		xfs_warn(ip->i_mount,
514 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
515 			(unsigned long long)ip->i_ino,
516 			(int)(be32_to_cpu(dip->di_nextents) +
517 			      be16_to_cpu(dip->di_anextents)),
518 			(unsigned long long)
519 				be64_to_cpu(dip->di_nblocks));
520 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
521 				     ip->i_mount, dip);
522 		return XFS_ERROR(EFSCORRUPTED);
523 	}
524 
525 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
526 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
527 			(unsigned long long)ip->i_ino,
528 			dip->di_forkoff);
529 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
530 				     ip->i_mount, dip);
531 		return XFS_ERROR(EFSCORRUPTED);
532 	}
533 
534 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
535 		     !ip->i_mount->m_rtdev_targp)) {
536 		xfs_warn(ip->i_mount,
537 			"corrupt dinode %Lu, has realtime flag set.",
538 			ip->i_ino);
539 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
540 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
541 		return XFS_ERROR(EFSCORRUPTED);
542 	}
543 
544 	switch (ip->i_d.di_mode & S_IFMT) {
545 	case S_IFIFO:
546 	case S_IFCHR:
547 	case S_IFBLK:
548 	case S_IFSOCK:
549 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
550 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
551 					      ip->i_mount, dip);
552 			return XFS_ERROR(EFSCORRUPTED);
553 		}
554 		ip->i_d.di_size = 0;
555 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
556 		break;
557 
558 	case S_IFREG:
559 	case S_IFLNK:
560 	case S_IFDIR:
561 		switch (dip->di_format) {
562 		case XFS_DINODE_FMT_LOCAL:
563 			/*
564 			 * no local regular files yet
565 			 */
566 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
567 				xfs_warn(ip->i_mount,
568 			"corrupt inode %Lu (local format for regular file).",
569 					(unsigned long long) ip->i_ino);
570 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
571 						     XFS_ERRLEVEL_LOW,
572 						     ip->i_mount, dip);
573 				return XFS_ERROR(EFSCORRUPTED);
574 			}
575 
576 			di_size = be64_to_cpu(dip->di_size);
577 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
578 				xfs_warn(ip->i_mount,
579 			"corrupt inode %Lu (bad size %Ld for local inode).",
580 					(unsigned long long) ip->i_ino,
581 					(long long) di_size);
582 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
583 						     XFS_ERRLEVEL_LOW,
584 						     ip->i_mount, dip);
585 				return XFS_ERROR(EFSCORRUPTED);
586 			}
587 
588 			size = (int)di_size;
589 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
590 			break;
591 		case XFS_DINODE_FMT_EXTENTS:
592 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
593 			break;
594 		case XFS_DINODE_FMT_BTREE:
595 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
596 			break;
597 		default:
598 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
599 					 ip->i_mount);
600 			return XFS_ERROR(EFSCORRUPTED);
601 		}
602 		break;
603 
604 	default:
605 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
606 		return XFS_ERROR(EFSCORRUPTED);
607 	}
608 	if (error) {
609 		return error;
610 	}
611 	if (!XFS_DFORK_Q(dip))
612 		return 0;
613 
614 	ASSERT(ip->i_afp == NULL);
615 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
616 
617 	switch (dip->di_aformat) {
618 	case XFS_DINODE_FMT_LOCAL:
619 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
620 		size = be16_to_cpu(atp->hdr.totsize);
621 
622 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
623 			xfs_warn(ip->i_mount,
624 				"corrupt inode %Lu (bad attr fork size %Ld).",
625 				(unsigned long long) ip->i_ino,
626 				(long long) size);
627 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
628 					     XFS_ERRLEVEL_LOW,
629 					     ip->i_mount, dip);
630 			return XFS_ERROR(EFSCORRUPTED);
631 		}
632 
633 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
634 		break;
635 	case XFS_DINODE_FMT_EXTENTS:
636 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
637 		break;
638 	case XFS_DINODE_FMT_BTREE:
639 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
640 		break;
641 	default:
642 		error = XFS_ERROR(EFSCORRUPTED);
643 		break;
644 	}
645 	if (error) {
646 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
647 		ip->i_afp = NULL;
648 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
649 	}
650 	return error;
651 }
652 
653 /*
654  * The file is in-lined in the on-disk inode.
655  * If it fits into if_inline_data, then copy
656  * it there, otherwise allocate a buffer for it
657  * and copy the data there.  Either way, set
658  * if_data to point at the data.
659  * If we allocate a buffer for the data, make
660  * sure that its size is a multiple of 4 and
661  * record the real size in i_real_bytes.
662  */
663 STATIC int
664 xfs_iformat_local(
665 	xfs_inode_t	*ip,
666 	xfs_dinode_t	*dip,
667 	int		whichfork,
668 	int		size)
669 {
670 	xfs_ifork_t	*ifp;
671 	int		real_size;
672 
673 	/*
674 	 * If the size is unreasonable, then something
675 	 * is wrong and we just bail out rather than crash in
676 	 * kmem_alloc() or memcpy() below.
677 	 */
678 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
679 		xfs_warn(ip->i_mount,
680 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
681 			(unsigned long long) ip->i_ino, size,
682 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
683 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
684 				     ip->i_mount, dip);
685 		return XFS_ERROR(EFSCORRUPTED);
686 	}
687 	ifp = XFS_IFORK_PTR(ip, whichfork);
688 	real_size = 0;
689 	if (size == 0)
690 		ifp->if_u1.if_data = NULL;
691 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
692 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
693 	else {
694 		real_size = roundup(size, 4);
695 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
696 	}
697 	ifp->if_bytes = size;
698 	ifp->if_real_bytes = real_size;
699 	if (size)
700 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
701 	ifp->if_flags &= ~XFS_IFEXTENTS;
702 	ifp->if_flags |= XFS_IFINLINE;
703 	return 0;
704 }
705 
706 /*
707  * The file consists of a set of extents all
708  * of which fit into the on-disk inode.
709  * If there are few enough extents to fit into
710  * the if_inline_ext, then copy them there.
711  * Otherwise allocate a buffer for them and copy
712  * them into it.  Either way, set if_extents
713  * to point at the extents.
714  */
715 STATIC int
716 xfs_iformat_extents(
717 	xfs_inode_t	*ip,
718 	xfs_dinode_t	*dip,
719 	int		whichfork)
720 {
721 	xfs_bmbt_rec_t	*dp;
722 	xfs_ifork_t	*ifp;
723 	int		nex;
724 	int		size;
725 	int		i;
726 
727 	ifp = XFS_IFORK_PTR(ip, whichfork);
728 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
729 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
730 
731 	/*
732 	 * If the number of extents is unreasonable, then something
733 	 * is wrong and we just bail out rather than crash in
734 	 * kmem_alloc() or memcpy() below.
735 	 */
736 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
737 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
738 			(unsigned long long) ip->i_ino, nex);
739 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
740 				     ip->i_mount, dip);
741 		return XFS_ERROR(EFSCORRUPTED);
742 	}
743 
744 	ifp->if_real_bytes = 0;
745 	if (nex == 0)
746 		ifp->if_u1.if_extents = NULL;
747 	else if (nex <= XFS_INLINE_EXTS)
748 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
749 	else
750 		xfs_iext_add(ifp, 0, nex);
751 
752 	ifp->if_bytes = size;
753 	if (size) {
754 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
755 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
756 		for (i = 0; i < nex; i++, dp++) {
757 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
758 			ep->l0 = get_unaligned_be64(&dp->l0);
759 			ep->l1 = get_unaligned_be64(&dp->l1);
760 		}
761 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
762 		if (whichfork != XFS_DATA_FORK ||
763 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
764 				if (unlikely(xfs_check_nostate_extents(
765 				    ifp, 0, nex))) {
766 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
767 							 XFS_ERRLEVEL_LOW,
768 							 ip->i_mount);
769 					return XFS_ERROR(EFSCORRUPTED);
770 				}
771 	}
772 	ifp->if_flags |= XFS_IFEXTENTS;
773 	return 0;
774 }
775 
776 /*
777  * The file has too many extents to fit into
778  * the inode, so they are in B-tree format.
779  * Allocate a buffer for the root of the B-tree
780  * and copy the root into it.  The i_extents
781  * field will remain NULL until all of the
782  * extents are read in (when they are needed).
783  */
784 STATIC int
785 xfs_iformat_btree(
786 	xfs_inode_t		*ip,
787 	xfs_dinode_t		*dip,
788 	int			whichfork)
789 {
790 	struct xfs_mount	*mp = ip->i_mount;
791 	xfs_bmdr_block_t	*dfp;
792 	xfs_ifork_t		*ifp;
793 	/* REFERENCED */
794 	int			nrecs;
795 	int			size;
796 
797 	ifp = XFS_IFORK_PTR(ip, whichfork);
798 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
799 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
800 	nrecs = be16_to_cpu(dfp->bb_numrecs);
801 
802 	/*
803 	 * blow out if -- fork has less extents than can fit in
804 	 * fork (fork shouldn't be a btree format), root btree
805 	 * block has more records than can fit into the fork,
806 	 * or the number of extents is greater than the number of
807 	 * blocks.
808 	 */
809 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
810 					XFS_IFORK_MAXEXT(ip, whichfork) ||
811 		     XFS_BMDR_SPACE_CALC(nrecs) >
812 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
813 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
814 		xfs_warn(mp, "corrupt inode %Lu (btree).",
815 					(unsigned long long) ip->i_ino);
816 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
817 					 mp, dip);
818 		return XFS_ERROR(EFSCORRUPTED);
819 	}
820 
821 	ifp->if_broot_bytes = size;
822 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
823 	ASSERT(ifp->if_broot != NULL);
824 	/*
825 	 * Copy and convert from the on-disk structure
826 	 * to the in-memory structure.
827 	 */
828 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
829 			 ifp->if_broot, size);
830 	ifp->if_flags &= ~XFS_IFEXTENTS;
831 	ifp->if_flags |= XFS_IFBROOT;
832 
833 	return 0;
834 }
835 
836 STATIC void
837 xfs_dinode_from_disk(
838 	xfs_icdinode_t		*to,
839 	xfs_dinode_t		*from)
840 {
841 	to->di_magic = be16_to_cpu(from->di_magic);
842 	to->di_mode = be16_to_cpu(from->di_mode);
843 	to->di_version = from ->di_version;
844 	to->di_format = from->di_format;
845 	to->di_onlink = be16_to_cpu(from->di_onlink);
846 	to->di_uid = be32_to_cpu(from->di_uid);
847 	to->di_gid = be32_to_cpu(from->di_gid);
848 	to->di_nlink = be32_to_cpu(from->di_nlink);
849 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
850 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
851 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
852 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
853 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
854 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
855 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
856 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
857 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
858 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
859 	to->di_size = be64_to_cpu(from->di_size);
860 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
861 	to->di_extsize = be32_to_cpu(from->di_extsize);
862 	to->di_nextents = be32_to_cpu(from->di_nextents);
863 	to->di_anextents = be16_to_cpu(from->di_anextents);
864 	to->di_forkoff = from->di_forkoff;
865 	to->di_aformat	= from->di_aformat;
866 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
867 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
868 	to->di_flags	= be16_to_cpu(from->di_flags);
869 	to->di_gen	= be32_to_cpu(from->di_gen);
870 
871 	if (to->di_version == 3) {
872 		to->di_changecount = be64_to_cpu(from->di_changecount);
873 		to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
874 		to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
875 		to->di_flags2 = be64_to_cpu(from->di_flags2);
876 		to->di_ino = be64_to_cpu(from->di_ino);
877 		to->di_lsn = be64_to_cpu(from->di_lsn);
878 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
879 		uuid_copy(&to->di_uuid, &from->di_uuid);
880 	}
881 }
882 
883 void
884 xfs_dinode_to_disk(
885 	xfs_dinode_t		*to,
886 	xfs_icdinode_t		*from)
887 {
888 	to->di_magic = cpu_to_be16(from->di_magic);
889 	to->di_mode = cpu_to_be16(from->di_mode);
890 	to->di_version = from ->di_version;
891 	to->di_format = from->di_format;
892 	to->di_onlink = cpu_to_be16(from->di_onlink);
893 	to->di_uid = cpu_to_be32(from->di_uid);
894 	to->di_gid = cpu_to_be32(from->di_gid);
895 	to->di_nlink = cpu_to_be32(from->di_nlink);
896 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
897 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
898 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
899 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
900 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
901 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
902 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
903 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
904 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
905 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
906 	to->di_size = cpu_to_be64(from->di_size);
907 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
908 	to->di_extsize = cpu_to_be32(from->di_extsize);
909 	to->di_nextents = cpu_to_be32(from->di_nextents);
910 	to->di_anextents = cpu_to_be16(from->di_anextents);
911 	to->di_forkoff = from->di_forkoff;
912 	to->di_aformat = from->di_aformat;
913 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
914 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
915 	to->di_flags = cpu_to_be16(from->di_flags);
916 	to->di_gen = cpu_to_be32(from->di_gen);
917 
918 	if (from->di_version == 3) {
919 		to->di_changecount = cpu_to_be64(from->di_changecount);
920 		to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
921 		to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
922 		to->di_flags2 = cpu_to_be64(from->di_flags2);
923 		to->di_ino = cpu_to_be64(from->di_ino);
924 		to->di_lsn = cpu_to_be64(from->di_lsn);
925 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
926 		uuid_copy(&to->di_uuid, &from->di_uuid);
927 	}
928 }
929 
930 STATIC uint
931 _xfs_dic2xflags(
932 	__uint16_t		di_flags)
933 {
934 	uint			flags = 0;
935 
936 	if (di_flags & XFS_DIFLAG_ANY) {
937 		if (di_flags & XFS_DIFLAG_REALTIME)
938 			flags |= XFS_XFLAG_REALTIME;
939 		if (di_flags & XFS_DIFLAG_PREALLOC)
940 			flags |= XFS_XFLAG_PREALLOC;
941 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
942 			flags |= XFS_XFLAG_IMMUTABLE;
943 		if (di_flags & XFS_DIFLAG_APPEND)
944 			flags |= XFS_XFLAG_APPEND;
945 		if (di_flags & XFS_DIFLAG_SYNC)
946 			flags |= XFS_XFLAG_SYNC;
947 		if (di_flags & XFS_DIFLAG_NOATIME)
948 			flags |= XFS_XFLAG_NOATIME;
949 		if (di_flags & XFS_DIFLAG_NODUMP)
950 			flags |= XFS_XFLAG_NODUMP;
951 		if (di_flags & XFS_DIFLAG_RTINHERIT)
952 			flags |= XFS_XFLAG_RTINHERIT;
953 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
954 			flags |= XFS_XFLAG_PROJINHERIT;
955 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
956 			flags |= XFS_XFLAG_NOSYMLINKS;
957 		if (di_flags & XFS_DIFLAG_EXTSIZE)
958 			flags |= XFS_XFLAG_EXTSIZE;
959 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
960 			flags |= XFS_XFLAG_EXTSZINHERIT;
961 		if (di_flags & XFS_DIFLAG_NODEFRAG)
962 			flags |= XFS_XFLAG_NODEFRAG;
963 		if (di_flags & XFS_DIFLAG_FILESTREAM)
964 			flags |= XFS_XFLAG_FILESTREAM;
965 	}
966 
967 	return flags;
968 }
969 
970 uint
971 xfs_ip2xflags(
972 	xfs_inode_t		*ip)
973 {
974 	xfs_icdinode_t		*dic = &ip->i_d;
975 
976 	return _xfs_dic2xflags(dic->di_flags) |
977 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
978 }
979 
980 uint
981 xfs_dic2xflags(
982 	xfs_dinode_t		*dip)
983 {
984 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
985 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
986 }
987 
988 static bool
989 xfs_dinode_verify(
990 	struct xfs_mount	*mp,
991 	struct xfs_inode	*ip,
992 	struct xfs_dinode	*dip)
993 {
994 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
995 		return false;
996 
997 	/* only version 3 or greater inodes are extensively verified here */
998 	if (dip->di_version < 3)
999 		return true;
1000 
1001 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1002 		return false;
1003 	if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
1004 			      offsetof(struct xfs_dinode, di_crc)))
1005 		return false;
1006 	if (be64_to_cpu(dip->di_ino) != ip->i_ino)
1007 		return false;
1008 	if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
1009 		return false;
1010 	return true;
1011 }
1012 
1013 void
1014 xfs_dinode_calc_crc(
1015 	struct xfs_mount	*mp,
1016 	struct xfs_dinode	*dip)
1017 {
1018 	__uint32_t		crc;
1019 
1020 	if (dip->di_version < 3)
1021 		return;
1022 
1023 	ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
1024 	crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
1025 			      offsetof(struct xfs_dinode, di_crc));
1026 	dip->di_crc = xfs_end_cksum(crc);
1027 }
1028 
1029 /*
1030  * Read the disk inode attributes into the in-core inode structure.
1031  */
1032 int
1033 xfs_iread(
1034 	xfs_mount_t	*mp,
1035 	xfs_trans_t	*tp,
1036 	xfs_inode_t	*ip,
1037 	uint		iget_flags)
1038 {
1039 	xfs_buf_t	*bp;
1040 	xfs_dinode_t	*dip;
1041 	int		error;
1042 
1043 	/*
1044 	 * Fill in the location information in the in-core inode.
1045 	 */
1046 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
1047 	if (error)
1048 		return error;
1049 
1050 	/*
1051 	 * Get pointers to the on-disk inode and the buffer containing it.
1052 	 */
1053 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
1054 	if (error)
1055 		return error;
1056 
1057 	/* even unallocated inodes are verified */
1058 	if (!xfs_dinode_verify(mp, ip, dip)) {
1059 		xfs_alert(mp, "%s: validation failed for inode %lld failed",
1060 				__func__, ip->i_ino);
1061 
1062 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
1063 		error = XFS_ERROR(EFSCORRUPTED);
1064 		goto out_brelse;
1065 	}
1066 
1067 	/*
1068 	 * If the on-disk inode is already linked to a directory
1069 	 * entry, copy all of the inode into the in-core inode.
1070 	 * xfs_iformat() handles copying in the inode format
1071 	 * specific information.
1072 	 * Otherwise, just get the truly permanent information.
1073 	 */
1074 	if (dip->di_mode) {
1075 		xfs_dinode_from_disk(&ip->i_d, dip);
1076 		error = xfs_iformat(ip, dip);
1077 		if (error)  {
1078 #ifdef DEBUG
1079 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1080 				__func__, error);
1081 #endif /* DEBUG */
1082 			goto out_brelse;
1083 		}
1084 	} else {
1085 		/*
1086 		 * Partial initialisation of the in-core inode. Just the bits
1087 		 * that xfs_ialloc won't overwrite or relies on being correct.
1088 		 */
1089 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1090 		ip->i_d.di_version = dip->di_version;
1091 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1092 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1093 
1094 		if (dip->di_version == 3) {
1095 			ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
1096 			uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
1097 		}
1098 
1099 		/*
1100 		 * Make sure to pull in the mode here as well in
1101 		 * case the inode is released without being used.
1102 		 * This ensures that xfs_inactive() will see that
1103 		 * the inode is already free and not try to mess
1104 		 * with the uninitialized part of it.
1105 		 */
1106 		ip->i_d.di_mode = 0;
1107 	}
1108 
1109 	/*
1110 	 * The inode format changed when we moved the link count and
1111 	 * made it 32 bits long.  If this is an old format inode,
1112 	 * convert it in memory to look like a new one.  If it gets
1113 	 * flushed to disk we will convert back before flushing or
1114 	 * logging it.  We zero out the new projid field and the old link
1115 	 * count field.  We'll handle clearing the pad field (the remains
1116 	 * of the old uuid field) when we actually convert the inode to
1117 	 * the new format. We don't change the version number so that we
1118 	 * can distinguish this from a real new format inode.
1119 	 */
1120 	if (ip->i_d.di_version == 1) {
1121 		ip->i_d.di_nlink = ip->i_d.di_onlink;
1122 		ip->i_d.di_onlink = 0;
1123 		xfs_set_projid(ip, 0);
1124 	}
1125 
1126 	ip->i_delayed_blks = 0;
1127 
1128 	/*
1129 	 * Mark the buffer containing the inode as something to keep
1130 	 * around for a while.  This helps to keep recently accessed
1131 	 * meta-data in-core longer.
1132 	 */
1133 	xfs_buf_set_ref(bp, XFS_INO_REF);
1134 
1135 	/*
1136 	 * Use xfs_trans_brelse() to release the buffer containing the
1137 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1138 	 * in xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
1139 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1140 	 * will only release the buffer if it is not dirty within the
1141 	 * transaction.  It will be OK to release the buffer in this case,
1142 	 * because inodes on disk are never destroyed and we will be
1143 	 * locking the new in-core inode before putting it in the hash
1144 	 * table where other processes can find it.  Thus we don't have
1145 	 * to worry about the inode being changed just because we released
1146 	 * the buffer.
1147 	 */
1148  out_brelse:
1149 	xfs_trans_brelse(tp, bp);
1150 	return error;
1151 }
1152 
1153 /*
1154  * Read in extents from a btree-format inode.
1155  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1156  */
1157 int
1158 xfs_iread_extents(
1159 	xfs_trans_t	*tp,
1160 	xfs_inode_t	*ip,
1161 	int		whichfork)
1162 {
1163 	int		error;
1164 	xfs_ifork_t	*ifp;
1165 	xfs_extnum_t	nextents;
1166 
1167 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1168 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1169 				 ip->i_mount);
1170 		return XFS_ERROR(EFSCORRUPTED);
1171 	}
1172 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1173 	ifp = XFS_IFORK_PTR(ip, whichfork);
1174 
1175 	/*
1176 	 * We know that the size is valid (it's checked in iformat_btree)
1177 	 */
1178 	ifp->if_bytes = ifp->if_real_bytes = 0;
1179 	ifp->if_flags |= XFS_IFEXTENTS;
1180 	xfs_iext_add(ifp, 0, nextents);
1181 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1182 	if (error) {
1183 		xfs_iext_destroy(ifp);
1184 		ifp->if_flags &= ~XFS_IFEXTENTS;
1185 		return error;
1186 	}
1187 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Allocate an inode on disk and return a copy of its in-core version.
1193  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1194  * appropriately within the inode.  The uid and gid for the inode are
1195  * set according to the contents of the given cred structure.
1196  *
1197  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1198  * has a free inode available, call xfs_iget() to obtain the in-core
1199  * version of the allocated inode.  Finally, fill in the inode and
1200  * log its initial contents.  In this case, ialloc_context would be
1201  * set to NULL.
1202  *
1203  * If xfs_dialloc() does not have an available inode, it will replenish
1204  * its supply by doing an allocation. Since we can only do one
1205  * allocation within a transaction without deadlocks, we must commit
1206  * the current transaction before returning the inode itself.
1207  * In this case, therefore, we will set ialloc_context and return.
1208  * The caller should then commit the current transaction, start a new
1209  * transaction, and call xfs_ialloc() again to actually get the inode.
1210  *
1211  * To ensure that some other process does not grab the inode that
1212  * was allocated during the first call to xfs_ialloc(), this routine
1213  * also returns the [locked] bp pointing to the head of the freelist
1214  * as ialloc_context.  The caller should hold this buffer across
1215  * the commit and pass it back into this routine on the second call.
1216  *
1217  * If we are allocating quota inodes, we do not have a parent inode
1218  * to attach to or associate with (i.e. pip == NULL) because they
1219  * are not linked into the directory structure - they are attached
1220  * directly to the superblock - and so have no parent.
1221  */
1222 int
1223 xfs_ialloc(
1224 	xfs_trans_t	*tp,
1225 	xfs_inode_t	*pip,
1226 	umode_t		mode,
1227 	xfs_nlink_t	nlink,
1228 	xfs_dev_t	rdev,
1229 	prid_t		prid,
1230 	int		okalloc,
1231 	xfs_buf_t	**ialloc_context,
1232 	xfs_inode_t	**ipp)
1233 {
1234 	struct xfs_mount *mp = tp->t_mountp;
1235 	xfs_ino_t	ino;
1236 	xfs_inode_t	*ip;
1237 	uint		flags;
1238 	int		error;
1239 	timespec_t	tv;
1240 	int		filestreams = 0;
1241 
1242 	/*
1243 	 * Call the space management code to pick
1244 	 * the on-disk inode to be allocated.
1245 	 */
1246 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1247 			    ialloc_context, &ino);
1248 	if (error)
1249 		return error;
1250 	if (*ialloc_context || ino == NULLFSINO) {
1251 		*ipp = NULL;
1252 		return 0;
1253 	}
1254 	ASSERT(*ialloc_context == NULL);
1255 
1256 	/*
1257 	 * Get the in-core inode with the lock held exclusively.
1258 	 * This is because we're setting fields here we need
1259 	 * to prevent others from looking at until we're done.
1260 	 */
1261 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
1262 			 XFS_ILOCK_EXCL, &ip);
1263 	if (error)
1264 		return error;
1265 	ASSERT(ip != NULL);
1266 
1267 	ip->i_d.di_mode = mode;
1268 	ip->i_d.di_onlink = 0;
1269 	ip->i_d.di_nlink = nlink;
1270 	ASSERT(ip->i_d.di_nlink == nlink);
1271 	ip->i_d.di_uid = current_fsuid();
1272 	ip->i_d.di_gid = current_fsgid();
1273 	xfs_set_projid(ip, prid);
1274 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1275 
1276 	/*
1277 	 * If the superblock version is up to where we support new format
1278 	 * inodes and this is currently an old format inode, then change
1279 	 * the inode version number now.  This way we only do the conversion
1280 	 * here rather than here and in the flush/logging code.
1281 	 */
1282 	if (xfs_sb_version_hasnlink(&mp->m_sb) &&
1283 	    ip->i_d.di_version == 1) {
1284 		ip->i_d.di_version = 2;
1285 		/*
1286 		 * We've already zeroed the old link count, the projid field,
1287 		 * and the pad field.
1288 		 */
1289 	}
1290 
1291 	/*
1292 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1293 	 */
1294 	if ((prid != 0) && (ip->i_d.di_version == 1))
1295 		xfs_bump_ino_vers2(tp, ip);
1296 
1297 	if (pip && XFS_INHERIT_GID(pip)) {
1298 		ip->i_d.di_gid = pip->i_d.di_gid;
1299 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1300 			ip->i_d.di_mode |= S_ISGID;
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * If the group ID of the new file does not match the effective group
1306 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1307 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1308 	 */
1309 	if ((irix_sgid_inherit) &&
1310 	    (ip->i_d.di_mode & S_ISGID) &&
1311 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1312 		ip->i_d.di_mode &= ~S_ISGID;
1313 	}
1314 
1315 	ip->i_d.di_size = 0;
1316 	ip->i_d.di_nextents = 0;
1317 	ASSERT(ip->i_d.di_nblocks == 0);
1318 
1319 	nanotime(&tv);
1320 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1321 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1322 	ip->i_d.di_atime = ip->i_d.di_mtime;
1323 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1324 
1325 	/*
1326 	 * di_gen will have been taken care of in xfs_iread.
1327 	 */
1328 	ip->i_d.di_extsize = 0;
1329 	ip->i_d.di_dmevmask = 0;
1330 	ip->i_d.di_dmstate = 0;
1331 	ip->i_d.di_flags = 0;
1332 
1333 	if (ip->i_d.di_version == 3) {
1334 		ASSERT(ip->i_d.di_ino == ino);
1335 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
1336 		ip->i_d.di_crc = 0;
1337 		ip->i_d.di_changecount = 1;
1338 		ip->i_d.di_lsn = 0;
1339 		ip->i_d.di_flags2 = 0;
1340 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
1341 		ip->i_d.di_crtime = ip->i_d.di_mtime;
1342 	}
1343 
1344 
1345 	flags = XFS_ILOG_CORE;
1346 	switch (mode & S_IFMT) {
1347 	case S_IFIFO:
1348 	case S_IFCHR:
1349 	case S_IFBLK:
1350 	case S_IFSOCK:
1351 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1352 		ip->i_df.if_u2.if_rdev = rdev;
1353 		ip->i_df.if_flags = 0;
1354 		flags |= XFS_ILOG_DEV;
1355 		break;
1356 	case S_IFREG:
1357 		/*
1358 		 * we can't set up filestreams until after the VFS inode
1359 		 * is set up properly.
1360 		 */
1361 		if (pip && xfs_inode_is_filestream(pip))
1362 			filestreams = 1;
1363 		/* fall through */
1364 	case S_IFDIR:
1365 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1366 			uint	di_flags = 0;
1367 
1368 			if (S_ISDIR(mode)) {
1369 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1370 					di_flags |= XFS_DIFLAG_RTINHERIT;
1371 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1372 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1373 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1374 				}
1375 			} else if (S_ISREG(mode)) {
1376 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1377 					di_flags |= XFS_DIFLAG_REALTIME;
1378 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1379 					di_flags |= XFS_DIFLAG_EXTSIZE;
1380 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1381 				}
1382 			}
1383 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1384 			    xfs_inherit_noatime)
1385 				di_flags |= XFS_DIFLAG_NOATIME;
1386 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1387 			    xfs_inherit_nodump)
1388 				di_flags |= XFS_DIFLAG_NODUMP;
1389 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1390 			    xfs_inherit_sync)
1391 				di_flags |= XFS_DIFLAG_SYNC;
1392 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1393 			    xfs_inherit_nosymlinks)
1394 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1395 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1396 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1397 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1398 			    xfs_inherit_nodefrag)
1399 				di_flags |= XFS_DIFLAG_NODEFRAG;
1400 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1401 				di_flags |= XFS_DIFLAG_FILESTREAM;
1402 			ip->i_d.di_flags |= di_flags;
1403 		}
1404 		/* FALLTHROUGH */
1405 	case S_IFLNK:
1406 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1407 		ip->i_df.if_flags = XFS_IFEXTENTS;
1408 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1409 		ip->i_df.if_u1.if_extents = NULL;
1410 		break;
1411 	default:
1412 		ASSERT(0);
1413 	}
1414 	/*
1415 	 * Attribute fork settings for new inode.
1416 	 */
1417 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1418 	ip->i_d.di_anextents = 0;
1419 
1420 	/*
1421 	 * Log the new values stuffed into the inode.
1422 	 */
1423 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1424 	xfs_trans_log_inode(tp, ip, flags);
1425 
1426 	/* now that we have an i_mode we can setup inode ops and unlock */
1427 	xfs_setup_inode(ip);
1428 
1429 	/* now we have set up the vfs inode we can associate the filestream */
1430 	if (filestreams) {
1431 		error = xfs_filestream_associate(pip, ip);
1432 		if (error < 0)
1433 			return -error;
1434 		if (!error)
1435 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1436 	}
1437 
1438 	*ipp = ip;
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Free up the underlying blocks past new_size.  The new size must be smaller
1444  * than the current size.  This routine can be used both for the attribute and
1445  * data fork, and does not modify the inode size, which is left to the caller.
1446  *
1447  * The transaction passed to this routine must have made a permanent log
1448  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1449  * given transaction and start new ones, so make sure everything involved in
1450  * the transaction is tidy before calling here.  Some transaction will be
1451  * returned to the caller to be committed.  The incoming transaction must
1452  * already include the inode, and both inode locks must be held exclusively.
1453  * The inode must also be "held" within the transaction.  On return the inode
1454  * will be "held" within the returned transaction.  This routine does NOT
1455  * require any disk space to be reserved for it within the transaction.
1456  *
1457  * If we get an error, we must return with the inode locked and linked into the
1458  * current transaction. This keeps things simple for the higher level code,
1459  * because it always knows that the inode is locked and held in the transaction
1460  * that returns to it whether errors occur or not.  We don't mark the inode
1461  * dirty on error so that transactions can be easily aborted if possible.
1462  */
1463 int
1464 xfs_itruncate_extents(
1465 	struct xfs_trans	**tpp,
1466 	struct xfs_inode	*ip,
1467 	int			whichfork,
1468 	xfs_fsize_t		new_size)
1469 {
1470 	struct xfs_mount	*mp = ip->i_mount;
1471 	struct xfs_trans	*tp = *tpp;
1472 	struct xfs_trans	*ntp;
1473 	xfs_bmap_free_t		free_list;
1474 	xfs_fsblock_t		first_block;
1475 	xfs_fileoff_t		first_unmap_block;
1476 	xfs_fileoff_t		last_block;
1477 	xfs_filblks_t		unmap_len;
1478 	int			committed;
1479 	int			error = 0;
1480 	int			done = 0;
1481 
1482 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1483 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1484 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1485 	ASSERT(new_size <= XFS_ISIZE(ip));
1486 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1487 	ASSERT(ip->i_itemp != NULL);
1488 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1489 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1490 
1491 	trace_xfs_itruncate_extents_start(ip, new_size);
1492 
1493 	/*
1494 	 * Since it is possible for space to become allocated beyond
1495 	 * the end of the file (in a crash where the space is allocated
1496 	 * but the inode size is not yet updated), simply remove any
1497 	 * blocks which show up between the new EOF and the maximum
1498 	 * possible file size.  If the first block to be removed is
1499 	 * beyond the maximum file size (ie it is the same as last_block),
1500 	 * then there is nothing to do.
1501 	 */
1502 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1503 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1504 	if (first_unmap_block == last_block)
1505 		return 0;
1506 
1507 	ASSERT(first_unmap_block < last_block);
1508 	unmap_len = last_block - first_unmap_block + 1;
1509 	while (!done) {
1510 		xfs_bmap_init(&free_list, &first_block);
1511 		error = xfs_bunmapi(tp, ip,
1512 				    first_unmap_block, unmap_len,
1513 				    xfs_bmapi_aflag(whichfork),
1514 				    XFS_ITRUNC_MAX_EXTENTS,
1515 				    &first_block, &free_list,
1516 				    &done);
1517 		if (error)
1518 			goto out_bmap_cancel;
1519 
1520 		/*
1521 		 * Duplicate the transaction that has the permanent
1522 		 * reservation and commit the old transaction.
1523 		 */
1524 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1525 		if (committed)
1526 			xfs_trans_ijoin(tp, ip, 0);
1527 		if (error)
1528 			goto out_bmap_cancel;
1529 
1530 		if (committed) {
1531 			/*
1532 			 * Mark the inode dirty so it will be logged and
1533 			 * moved forward in the log as part of every commit.
1534 			 */
1535 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1536 		}
1537 
1538 		ntp = xfs_trans_dup(tp);
1539 		error = xfs_trans_commit(tp, 0);
1540 		tp = ntp;
1541 
1542 		xfs_trans_ijoin(tp, ip, 0);
1543 
1544 		if (error)
1545 			goto out;
1546 
1547 		/*
1548 		 * Transaction commit worked ok so we can drop the extra ticket
1549 		 * reference that we gained in xfs_trans_dup()
1550 		 */
1551 		xfs_log_ticket_put(tp->t_ticket);
1552 		error = xfs_trans_reserve(tp, 0,
1553 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1554 					XFS_TRANS_PERM_LOG_RES,
1555 					XFS_ITRUNCATE_LOG_COUNT);
1556 		if (error)
1557 			goto out;
1558 	}
1559 
1560 	/*
1561 	 * Always re-log the inode so that our permanent transaction can keep
1562 	 * on rolling it forward in the log.
1563 	 */
1564 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1565 
1566 	trace_xfs_itruncate_extents_end(ip, new_size);
1567 
1568 out:
1569 	*tpp = tp;
1570 	return error;
1571 out_bmap_cancel:
1572 	/*
1573 	 * If the bunmapi call encounters an error, return to the caller where
1574 	 * the transaction can be properly aborted.  We just need to make sure
1575 	 * we're not holding any resources that we were not when we came in.
1576 	 */
1577 	xfs_bmap_cancel(&free_list);
1578 	goto out;
1579 }
1580 
1581 /*
1582  * This is called when the inode's link count goes to 0.
1583  * We place the on-disk inode on a list in the AGI.  It
1584  * will be pulled from this list when the inode is freed.
1585  */
1586 int
1587 xfs_iunlink(
1588 	xfs_trans_t	*tp,
1589 	xfs_inode_t	*ip)
1590 {
1591 	xfs_mount_t	*mp;
1592 	xfs_agi_t	*agi;
1593 	xfs_dinode_t	*dip;
1594 	xfs_buf_t	*agibp;
1595 	xfs_buf_t	*ibp;
1596 	xfs_agino_t	agino;
1597 	short		bucket_index;
1598 	int		offset;
1599 	int		error;
1600 
1601 	ASSERT(ip->i_d.di_nlink == 0);
1602 	ASSERT(ip->i_d.di_mode != 0);
1603 
1604 	mp = tp->t_mountp;
1605 
1606 	/*
1607 	 * Get the agi buffer first.  It ensures lock ordering
1608 	 * on the list.
1609 	 */
1610 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1611 	if (error)
1612 		return error;
1613 	agi = XFS_BUF_TO_AGI(agibp);
1614 
1615 	/*
1616 	 * Get the index into the agi hash table for the
1617 	 * list this inode will go on.
1618 	 */
1619 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1620 	ASSERT(agino != 0);
1621 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1622 	ASSERT(agi->agi_unlinked[bucket_index]);
1623 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1624 
1625 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1626 		/*
1627 		 * There is already another inode in the bucket we need
1628 		 * to add ourselves to.  Add us at the front of the list.
1629 		 * Here we put the head pointer into our next pointer,
1630 		 * and then we fall through to point the head at us.
1631 		 */
1632 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1633 				       0, 0);
1634 		if (error)
1635 			return error;
1636 
1637 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1638 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1639 		offset = ip->i_imap.im_boffset +
1640 			offsetof(xfs_dinode_t, di_next_unlinked);
1641 
1642 		/* need to recalc the inode CRC if appropriate */
1643 		xfs_dinode_calc_crc(mp, dip);
1644 
1645 		xfs_trans_inode_buf(tp, ibp);
1646 		xfs_trans_log_buf(tp, ibp, offset,
1647 				  (offset + sizeof(xfs_agino_t) - 1));
1648 		xfs_inobp_check(mp, ibp);
1649 	}
1650 
1651 	/*
1652 	 * Point the bucket head pointer at the inode being inserted.
1653 	 */
1654 	ASSERT(agino != 0);
1655 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1656 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1657 		(sizeof(xfs_agino_t) * bucket_index);
1658 	xfs_trans_log_buf(tp, agibp, offset,
1659 			  (offset + sizeof(xfs_agino_t) - 1));
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Pull the on-disk inode from the AGI unlinked list.
1665  */
1666 STATIC int
1667 xfs_iunlink_remove(
1668 	xfs_trans_t	*tp,
1669 	xfs_inode_t	*ip)
1670 {
1671 	xfs_ino_t	next_ino;
1672 	xfs_mount_t	*mp;
1673 	xfs_agi_t	*agi;
1674 	xfs_dinode_t	*dip;
1675 	xfs_buf_t	*agibp;
1676 	xfs_buf_t	*ibp;
1677 	xfs_agnumber_t	agno;
1678 	xfs_agino_t	agino;
1679 	xfs_agino_t	next_agino;
1680 	xfs_buf_t	*last_ibp;
1681 	xfs_dinode_t	*last_dip = NULL;
1682 	short		bucket_index;
1683 	int		offset, last_offset = 0;
1684 	int		error;
1685 
1686 	mp = tp->t_mountp;
1687 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1688 
1689 	/*
1690 	 * Get the agi buffer first.  It ensures lock ordering
1691 	 * on the list.
1692 	 */
1693 	error = xfs_read_agi(mp, tp, agno, &agibp);
1694 	if (error)
1695 		return error;
1696 
1697 	agi = XFS_BUF_TO_AGI(agibp);
1698 
1699 	/*
1700 	 * Get the index into the agi hash table for the
1701 	 * list this inode will go on.
1702 	 */
1703 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1704 	ASSERT(agino != 0);
1705 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1706 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1707 	ASSERT(agi->agi_unlinked[bucket_index]);
1708 
1709 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1710 		/*
1711 		 * We're at the head of the list.  Get the inode's on-disk
1712 		 * buffer to see if there is anyone after us on the list.
1713 		 * Only modify our next pointer if it is not already NULLAGINO.
1714 		 * This saves us the overhead of dealing with the buffer when
1715 		 * there is no need to change it.
1716 		 */
1717 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1718 				       0, 0);
1719 		if (error) {
1720 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1721 				__func__, error);
1722 			return error;
1723 		}
1724 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1725 		ASSERT(next_agino != 0);
1726 		if (next_agino != NULLAGINO) {
1727 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1728 			offset = ip->i_imap.im_boffset +
1729 				offsetof(xfs_dinode_t, di_next_unlinked);
1730 
1731 			/* need to recalc the inode CRC if appropriate */
1732 			xfs_dinode_calc_crc(mp, dip);
1733 
1734 			xfs_trans_inode_buf(tp, ibp);
1735 			xfs_trans_log_buf(tp, ibp, offset,
1736 					  (offset + sizeof(xfs_agino_t) - 1));
1737 			xfs_inobp_check(mp, ibp);
1738 		} else {
1739 			xfs_trans_brelse(tp, ibp);
1740 		}
1741 		/*
1742 		 * Point the bucket head pointer at the next inode.
1743 		 */
1744 		ASSERT(next_agino != 0);
1745 		ASSERT(next_agino != agino);
1746 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1747 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1748 			(sizeof(xfs_agino_t) * bucket_index);
1749 		xfs_trans_log_buf(tp, agibp, offset,
1750 				  (offset + sizeof(xfs_agino_t) - 1));
1751 	} else {
1752 		/*
1753 		 * We need to search the list for the inode being freed.
1754 		 */
1755 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1756 		last_ibp = NULL;
1757 		while (next_agino != agino) {
1758 			struct xfs_imap	imap;
1759 
1760 			if (last_ibp)
1761 				xfs_trans_brelse(tp, last_ibp);
1762 
1763 			imap.im_blkno = 0;
1764 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1765 
1766 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
1767 			if (error) {
1768 				xfs_warn(mp,
1769 	"%s: xfs_imap returned error %d.",
1770 					 __func__, error);
1771 				return error;
1772 			}
1773 
1774 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1775 					       &last_ibp, 0, 0);
1776 			if (error) {
1777 				xfs_warn(mp,
1778 	"%s: xfs_imap_to_bp returned error %d.",
1779 					__func__, error);
1780 				return error;
1781 			}
1782 
1783 			last_offset = imap.im_boffset;
1784 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1785 			ASSERT(next_agino != NULLAGINO);
1786 			ASSERT(next_agino != 0);
1787 		}
1788 
1789 		/*
1790 		 * Now last_ibp points to the buffer previous to us on the
1791 		 * unlinked list.  Pull us from the list.
1792 		 */
1793 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1794 				       0, 0);
1795 		if (error) {
1796 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1797 				__func__, error);
1798 			return error;
1799 		}
1800 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1801 		ASSERT(next_agino != 0);
1802 		ASSERT(next_agino != agino);
1803 		if (next_agino != NULLAGINO) {
1804 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1805 			offset = ip->i_imap.im_boffset +
1806 				offsetof(xfs_dinode_t, di_next_unlinked);
1807 
1808 			/* need to recalc the inode CRC if appropriate */
1809 			xfs_dinode_calc_crc(mp, dip);
1810 
1811 			xfs_trans_inode_buf(tp, ibp);
1812 			xfs_trans_log_buf(tp, ibp, offset,
1813 					  (offset + sizeof(xfs_agino_t) - 1));
1814 			xfs_inobp_check(mp, ibp);
1815 		} else {
1816 			xfs_trans_brelse(tp, ibp);
1817 		}
1818 		/*
1819 		 * Point the previous inode on the list to the next inode.
1820 		 */
1821 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1822 		ASSERT(next_agino != 0);
1823 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1824 
1825 		/* need to recalc the inode CRC if appropriate */
1826 		xfs_dinode_calc_crc(mp, last_dip);
1827 
1828 		xfs_trans_inode_buf(tp, last_ibp);
1829 		xfs_trans_log_buf(tp, last_ibp, offset,
1830 				  (offset + sizeof(xfs_agino_t) - 1));
1831 		xfs_inobp_check(mp, last_ibp);
1832 	}
1833 	return 0;
1834 }
1835 
1836 /*
1837  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1838  * inodes that are in memory - they all must be marked stale and attached to
1839  * the cluster buffer.
1840  */
1841 STATIC int
1842 xfs_ifree_cluster(
1843 	xfs_inode_t	*free_ip,
1844 	xfs_trans_t	*tp,
1845 	xfs_ino_t	inum)
1846 {
1847 	xfs_mount_t		*mp = free_ip->i_mount;
1848 	int			blks_per_cluster;
1849 	int			nbufs;
1850 	int			ninodes;
1851 	int			i, j;
1852 	xfs_daddr_t		blkno;
1853 	xfs_buf_t		*bp;
1854 	xfs_inode_t		*ip;
1855 	xfs_inode_log_item_t	*iip;
1856 	xfs_log_item_t		*lip;
1857 	struct xfs_perag	*pag;
1858 
1859 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1860 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1861 		blks_per_cluster = 1;
1862 		ninodes = mp->m_sb.sb_inopblock;
1863 		nbufs = XFS_IALLOC_BLOCKS(mp);
1864 	} else {
1865 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1866 					mp->m_sb.sb_blocksize;
1867 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1868 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1869 	}
1870 
1871 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1872 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1873 					 XFS_INO_TO_AGBNO(mp, inum));
1874 
1875 		/*
1876 		 * We obtain and lock the backing buffer first in the process
1877 		 * here, as we have to ensure that any dirty inode that we
1878 		 * can't get the flush lock on is attached to the buffer.
1879 		 * If we scan the in-memory inodes first, then buffer IO can
1880 		 * complete before we get a lock on it, and hence we may fail
1881 		 * to mark all the active inodes on the buffer stale.
1882 		 */
1883 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1884 					mp->m_bsize * blks_per_cluster,
1885 					XBF_UNMAPPED);
1886 
1887 		if (!bp)
1888 			return ENOMEM;
1889 
1890 		/*
1891 		 * This buffer may not have been correctly initialised as we
1892 		 * didn't read it from disk. That's not important because we are
1893 		 * only using to mark the buffer as stale in the log, and to
1894 		 * attach stale cached inodes on it. That means it will never be
1895 		 * dispatched for IO. If it is, we want to know about it, and we
1896 		 * want it to fail. We can acheive this by adding a write
1897 		 * verifier to the buffer.
1898 		 */
1899 		 bp->b_ops = &xfs_inode_buf_ops;
1900 
1901 		/*
1902 		 * Walk the inodes already attached to the buffer and mark them
1903 		 * stale. These will all have the flush locks held, so an
1904 		 * in-memory inode walk can't lock them. By marking them all
1905 		 * stale first, we will not attempt to lock them in the loop
1906 		 * below as the XFS_ISTALE flag will be set.
1907 		 */
1908 		lip = bp->b_fspriv;
1909 		while (lip) {
1910 			if (lip->li_type == XFS_LI_INODE) {
1911 				iip = (xfs_inode_log_item_t *)lip;
1912 				ASSERT(iip->ili_logged == 1);
1913 				lip->li_cb = xfs_istale_done;
1914 				xfs_trans_ail_copy_lsn(mp->m_ail,
1915 							&iip->ili_flush_lsn,
1916 							&iip->ili_item.li_lsn);
1917 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1918 			}
1919 			lip = lip->li_bio_list;
1920 		}
1921 
1922 
1923 		/*
1924 		 * For each inode in memory attempt to add it to the inode
1925 		 * buffer and set it up for being staled on buffer IO
1926 		 * completion.  This is safe as we've locked out tail pushing
1927 		 * and flushing by locking the buffer.
1928 		 *
1929 		 * We have already marked every inode that was part of a
1930 		 * transaction stale above, which means there is no point in
1931 		 * even trying to lock them.
1932 		 */
1933 		for (i = 0; i < ninodes; i++) {
1934 retry:
1935 			rcu_read_lock();
1936 			ip = radix_tree_lookup(&pag->pag_ici_root,
1937 					XFS_INO_TO_AGINO(mp, (inum + i)));
1938 
1939 			/* Inode not in memory, nothing to do */
1940 			if (!ip) {
1941 				rcu_read_unlock();
1942 				continue;
1943 			}
1944 
1945 			/*
1946 			 * because this is an RCU protected lookup, we could
1947 			 * find a recently freed or even reallocated inode
1948 			 * during the lookup. We need to check under the
1949 			 * i_flags_lock for a valid inode here. Skip it if it
1950 			 * is not valid, the wrong inode or stale.
1951 			 */
1952 			spin_lock(&ip->i_flags_lock);
1953 			if (ip->i_ino != inum + i ||
1954 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1955 				spin_unlock(&ip->i_flags_lock);
1956 				rcu_read_unlock();
1957 				continue;
1958 			}
1959 			spin_unlock(&ip->i_flags_lock);
1960 
1961 			/*
1962 			 * Don't try to lock/unlock the current inode, but we
1963 			 * _cannot_ skip the other inodes that we did not find
1964 			 * in the list attached to the buffer and are not
1965 			 * already marked stale. If we can't lock it, back off
1966 			 * and retry.
1967 			 */
1968 			if (ip != free_ip &&
1969 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1970 				rcu_read_unlock();
1971 				delay(1);
1972 				goto retry;
1973 			}
1974 			rcu_read_unlock();
1975 
1976 			xfs_iflock(ip);
1977 			xfs_iflags_set(ip, XFS_ISTALE);
1978 
1979 			/*
1980 			 * we don't need to attach clean inodes or those only
1981 			 * with unlogged changes (which we throw away, anyway).
1982 			 */
1983 			iip = ip->i_itemp;
1984 			if (!iip || xfs_inode_clean(ip)) {
1985 				ASSERT(ip != free_ip);
1986 				xfs_ifunlock(ip);
1987 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1988 				continue;
1989 			}
1990 
1991 			iip->ili_last_fields = iip->ili_fields;
1992 			iip->ili_fields = 0;
1993 			iip->ili_logged = 1;
1994 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1995 						&iip->ili_item.li_lsn);
1996 
1997 			xfs_buf_attach_iodone(bp, xfs_istale_done,
1998 						  &iip->ili_item);
1999 
2000 			if (ip != free_ip)
2001 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2002 		}
2003 
2004 		xfs_trans_stale_inode_buf(tp, bp);
2005 		xfs_trans_binval(tp, bp);
2006 	}
2007 
2008 	xfs_perag_put(pag);
2009 	return 0;
2010 }
2011 
2012 /*
2013  * This is called to return an inode to the inode free list.
2014  * The inode should already be truncated to 0 length and have
2015  * no pages associated with it.  This routine also assumes that
2016  * the inode is already a part of the transaction.
2017  *
2018  * The on-disk copy of the inode will have been added to the list
2019  * of unlinked inodes in the AGI. We need to remove the inode from
2020  * that list atomically with respect to freeing it here.
2021  */
2022 int
2023 xfs_ifree(
2024 	xfs_trans_t	*tp,
2025 	xfs_inode_t	*ip,
2026 	xfs_bmap_free_t	*flist)
2027 {
2028 	int			error;
2029 	int			delete;
2030 	xfs_ino_t		first_ino;
2031 	xfs_dinode_t    	*dip;
2032 	xfs_buf_t       	*ibp;
2033 
2034 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2035 	ASSERT(ip->i_d.di_nlink == 0);
2036 	ASSERT(ip->i_d.di_nextents == 0);
2037 	ASSERT(ip->i_d.di_anextents == 0);
2038 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2039 	ASSERT(ip->i_d.di_nblocks == 0);
2040 
2041 	/*
2042 	 * Pull the on-disk inode from the AGI unlinked list.
2043 	 */
2044 	error = xfs_iunlink_remove(tp, ip);
2045 	if (error != 0) {
2046 		return error;
2047 	}
2048 
2049 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2050 	if (error != 0) {
2051 		return error;
2052 	}
2053 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2054 	ip->i_d.di_flags = 0;
2055 	ip->i_d.di_dmevmask = 0;
2056 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2057 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2058 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2059 	/*
2060 	 * Bump the generation count so no one will be confused
2061 	 * by reincarnations of this inode.
2062 	 */
2063 	ip->i_d.di_gen++;
2064 
2065 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2066 
2067 	error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
2068 			       0, 0);
2069 	if (error)
2070 		return error;
2071 
2072         /*
2073 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2074 	* from picking up this inode when it is reclaimed (its incore state
2075 	* initialzed but not flushed to disk yet). The in-core di_mode is
2076 	* already cleared  and a corresponding transaction logged.
2077 	* The hack here just synchronizes the in-core to on-disk
2078 	* di_mode value in advance before the actual inode sync to disk.
2079 	* This is OK because the inode is already unlinked and would never
2080 	* change its di_mode again for this inode generation.
2081 	* This is a temporary hack that would require a proper fix
2082 	* in the future.
2083 	*/
2084 	dip->di_mode = 0;
2085 
2086 	if (delete) {
2087 		error = xfs_ifree_cluster(ip, tp, first_ino);
2088 	}
2089 
2090 	return error;
2091 }
2092 
2093 /*
2094  * Reallocate the space for if_broot based on the number of records
2095  * being added or deleted as indicated in rec_diff.  Move the records
2096  * and pointers in if_broot to fit the new size.  When shrinking this
2097  * will eliminate holes between the records and pointers created by
2098  * the caller.  When growing this will create holes to be filled in
2099  * by the caller.
2100  *
2101  * The caller must not request to add more records than would fit in
2102  * the on-disk inode root.  If the if_broot is currently NULL, then
2103  * if we adding records one will be allocated.  The caller must also
2104  * not request that the number of records go below zero, although
2105  * it can go to zero.
2106  *
2107  * ip -- the inode whose if_broot area is changing
2108  * ext_diff -- the change in the number of records, positive or negative,
2109  *	 requested for the if_broot array.
2110  */
2111 void
2112 xfs_iroot_realloc(
2113 	xfs_inode_t		*ip,
2114 	int			rec_diff,
2115 	int			whichfork)
2116 {
2117 	struct xfs_mount	*mp = ip->i_mount;
2118 	int			cur_max;
2119 	xfs_ifork_t		*ifp;
2120 	struct xfs_btree_block	*new_broot;
2121 	int			new_max;
2122 	size_t			new_size;
2123 	char			*np;
2124 	char			*op;
2125 
2126 	/*
2127 	 * Handle the degenerate case quietly.
2128 	 */
2129 	if (rec_diff == 0) {
2130 		return;
2131 	}
2132 
2133 	ifp = XFS_IFORK_PTR(ip, whichfork);
2134 	if (rec_diff > 0) {
2135 		/*
2136 		 * If there wasn't any memory allocated before, just
2137 		 * allocate it now and get out.
2138 		 */
2139 		if (ifp->if_broot_bytes == 0) {
2140 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
2141 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2142 			ifp->if_broot_bytes = (int)new_size;
2143 			return;
2144 		}
2145 
2146 		/*
2147 		 * If there is already an existing if_broot, then we need
2148 		 * to realloc() it and shift the pointers to their new
2149 		 * location.  The records don't change location because
2150 		 * they are kept butted up against the btree block header.
2151 		 */
2152 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2153 		new_max = cur_max + rec_diff;
2154 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2155 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2156 				XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
2157 				KM_SLEEP | KM_NOFS);
2158 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2159 						     ifp->if_broot_bytes);
2160 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2161 						     (int)new_size);
2162 		ifp->if_broot_bytes = (int)new_size;
2163 		ASSERT(ifp->if_broot_bytes <=
2164 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
2165 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2166 		return;
2167 	}
2168 
2169 	/*
2170 	 * rec_diff is less than 0.  In this case, we are shrinking the
2171 	 * if_broot buffer.  It must already exist.  If we go to zero
2172 	 * records, just get rid of the root and clear the status bit.
2173 	 */
2174 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2175 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2176 	new_max = cur_max + rec_diff;
2177 	ASSERT(new_max >= 0);
2178 	if (new_max > 0)
2179 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2180 	else
2181 		new_size = 0;
2182 	if (new_size > 0) {
2183 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2184 		/*
2185 		 * First copy over the btree block header.
2186 		 */
2187 		memcpy(new_broot, ifp->if_broot,
2188 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
2189 	} else {
2190 		new_broot = NULL;
2191 		ifp->if_flags &= ~XFS_IFBROOT;
2192 	}
2193 
2194 	/*
2195 	 * Only copy the records and pointers if there are any.
2196 	 */
2197 	if (new_max > 0) {
2198 		/*
2199 		 * First copy the records.
2200 		 */
2201 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2202 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2203 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2204 
2205 		/*
2206 		 * Then copy the pointers.
2207 		 */
2208 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2209 						     ifp->if_broot_bytes);
2210 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2211 						     (int)new_size);
2212 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2213 	}
2214 	kmem_free(ifp->if_broot);
2215 	ifp->if_broot = new_broot;
2216 	ifp->if_broot_bytes = (int)new_size;
2217 	ASSERT(ifp->if_broot_bytes <=
2218 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
2219 	return;
2220 }
2221 
2222 
2223 /*
2224  * This is called when the amount of space needed for if_data
2225  * is increased or decreased.  The change in size is indicated by
2226  * the number of bytes that need to be added or deleted in the
2227  * byte_diff parameter.
2228  *
2229  * If the amount of space needed has decreased below the size of the
2230  * inline buffer, then switch to using the inline buffer.  Otherwise,
2231  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2232  * to what is needed.
2233  *
2234  * ip -- the inode whose if_data area is changing
2235  * byte_diff -- the change in the number of bytes, positive or negative,
2236  *	 requested for the if_data array.
2237  */
2238 void
2239 xfs_idata_realloc(
2240 	xfs_inode_t	*ip,
2241 	int		byte_diff,
2242 	int		whichfork)
2243 {
2244 	xfs_ifork_t	*ifp;
2245 	int		new_size;
2246 	int		real_size;
2247 
2248 	if (byte_diff == 0) {
2249 		return;
2250 	}
2251 
2252 	ifp = XFS_IFORK_PTR(ip, whichfork);
2253 	new_size = (int)ifp->if_bytes + byte_diff;
2254 	ASSERT(new_size >= 0);
2255 
2256 	if (new_size == 0) {
2257 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2258 			kmem_free(ifp->if_u1.if_data);
2259 		}
2260 		ifp->if_u1.if_data = NULL;
2261 		real_size = 0;
2262 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2263 		/*
2264 		 * If the valid extents/data can fit in if_inline_ext/data,
2265 		 * copy them from the malloc'd vector and free it.
2266 		 */
2267 		if (ifp->if_u1.if_data == NULL) {
2268 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2269 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2270 			ASSERT(ifp->if_real_bytes != 0);
2271 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2272 			      new_size);
2273 			kmem_free(ifp->if_u1.if_data);
2274 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2275 		}
2276 		real_size = 0;
2277 	} else {
2278 		/*
2279 		 * Stuck with malloc/realloc.
2280 		 * For inline data, the underlying buffer must be
2281 		 * a multiple of 4 bytes in size so that it can be
2282 		 * logged and stay on word boundaries.  We enforce
2283 		 * that here.
2284 		 */
2285 		real_size = roundup(new_size, 4);
2286 		if (ifp->if_u1.if_data == NULL) {
2287 			ASSERT(ifp->if_real_bytes == 0);
2288 			ifp->if_u1.if_data = kmem_alloc(real_size,
2289 							KM_SLEEP | KM_NOFS);
2290 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2291 			/*
2292 			 * Only do the realloc if the underlying size
2293 			 * is really changing.
2294 			 */
2295 			if (ifp->if_real_bytes != real_size) {
2296 				ifp->if_u1.if_data =
2297 					kmem_realloc(ifp->if_u1.if_data,
2298 							real_size,
2299 							ifp->if_real_bytes,
2300 							KM_SLEEP | KM_NOFS);
2301 			}
2302 		} else {
2303 			ASSERT(ifp->if_real_bytes == 0);
2304 			ifp->if_u1.if_data = kmem_alloc(real_size,
2305 							KM_SLEEP | KM_NOFS);
2306 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2307 				ifp->if_bytes);
2308 		}
2309 	}
2310 	ifp->if_real_bytes = real_size;
2311 	ifp->if_bytes = new_size;
2312 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2313 }
2314 
2315 void
2316 xfs_idestroy_fork(
2317 	xfs_inode_t	*ip,
2318 	int		whichfork)
2319 {
2320 	xfs_ifork_t	*ifp;
2321 
2322 	ifp = XFS_IFORK_PTR(ip, whichfork);
2323 	if (ifp->if_broot != NULL) {
2324 		kmem_free(ifp->if_broot);
2325 		ifp->if_broot = NULL;
2326 	}
2327 
2328 	/*
2329 	 * If the format is local, then we can't have an extents
2330 	 * array so just look for an inline data array.  If we're
2331 	 * not local then we may or may not have an extents list,
2332 	 * so check and free it up if we do.
2333 	 */
2334 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2335 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2336 		    (ifp->if_u1.if_data != NULL)) {
2337 			ASSERT(ifp->if_real_bytes != 0);
2338 			kmem_free(ifp->if_u1.if_data);
2339 			ifp->if_u1.if_data = NULL;
2340 			ifp->if_real_bytes = 0;
2341 		}
2342 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2343 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2344 		    ((ifp->if_u1.if_extents != NULL) &&
2345 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2346 		ASSERT(ifp->if_real_bytes != 0);
2347 		xfs_iext_destroy(ifp);
2348 	}
2349 	ASSERT(ifp->if_u1.if_extents == NULL ||
2350 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2351 	ASSERT(ifp->if_real_bytes == 0);
2352 	if (whichfork == XFS_ATTR_FORK) {
2353 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2354 		ip->i_afp = NULL;
2355 	}
2356 }
2357 
2358 /*
2359  * This is called to unpin an inode.  The caller must have the inode locked
2360  * in at least shared mode so that the buffer cannot be subsequently pinned
2361  * once someone is waiting for it to be unpinned.
2362  */
2363 static void
2364 xfs_iunpin(
2365 	struct xfs_inode	*ip)
2366 {
2367 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2368 
2369 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2370 
2371 	/* Give the log a push to start the unpinning I/O */
2372 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2373 
2374 }
2375 
2376 static void
2377 __xfs_iunpin_wait(
2378 	struct xfs_inode	*ip)
2379 {
2380 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2381 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2382 
2383 	xfs_iunpin(ip);
2384 
2385 	do {
2386 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2387 		if (xfs_ipincount(ip))
2388 			io_schedule();
2389 	} while (xfs_ipincount(ip));
2390 	finish_wait(wq, &wait.wait);
2391 }
2392 
2393 void
2394 xfs_iunpin_wait(
2395 	struct xfs_inode	*ip)
2396 {
2397 	if (xfs_ipincount(ip))
2398 		__xfs_iunpin_wait(ip);
2399 }
2400 
2401 /*
2402  * xfs_iextents_copy()
2403  *
2404  * This is called to copy the REAL extents (as opposed to the delayed
2405  * allocation extents) from the inode into the given buffer.  It
2406  * returns the number of bytes copied into the buffer.
2407  *
2408  * If there are no delayed allocation extents, then we can just
2409  * memcpy() the extents into the buffer.  Otherwise, we need to
2410  * examine each extent in turn and skip those which are delayed.
2411  */
2412 int
2413 xfs_iextents_copy(
2414 	xfs_inode_t		*ip,
2415 	xfs_bmbt_rec_t		*dp,
2416 	int			whichfork)
2417 {
2418 	int			copied;
2419 	int			i;
2420 	xfs_ifork_t		*ifp;
2421 	int			nrecs;
2422 	xfs_fsblock_t		start_block;
2423 
2424 	ifp = XFS_IFORK_PTR(ip, whichfork);
2425 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2426 	ASSERT(ifp->if_bytes > 0);
2427 
2428 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2429 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2430 	ASSERT(nrecs > 0);
2431 
2432 	/*
2433 	 * There are some delayed allocation extents in the
2434 	 * inode, so copy the extents one at a time and skip
2435 	 * the delayed ones.  There must be at least one
2436 	 * non-delayed extent.
2437 	 */
2438 	copied = 0;
2439 	for (i = 0; i < nrecs; i++) {
2440 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2441 		start_block = xfs_bmbt_get_startblock(ep);
2442 		if (isnullstartblock(start_block)) {
2443 			/*
2444 			 * It's a delayed allocation extent, so skip it.
2445 			 */
2446 			continue;
2447 		}
2448 
2449 		/* Translate to on disk format */
2450 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2451 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2452 		dp++;
2453 		copied++;
2454 	}
2455 	ASSERT(copied != 0);
2456 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2457 
2458 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2459 }
2460 
2461 /*
2462  * Each of the following cases stores data into the same region
2463  * of the on-disk inode, so only one of them can be valid at
2464  * any given time. While it is possible to have conflicting formats
2465  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2466  * in EXTENTS format, this can only happen when the fork has
2467  * changed formats after being modified but before being flushed.
2468  * In these cases, the format always takes precedence, because the
2469  * format indicates the current state of the fork.
2470  */
2471 /*ARGSUSED*/
2472 STATIC void
2473 xfs_iflush_fork(
2474 	xfs_inode_t		*ip,
2475 	xfs_dinode_t		*dip,
2476 	xfs_inode_log_item_t	*iip,
2477 	int			whichfork,
2478 	xfs_buf_t		*bp)
2479 {
2480 	char			*cp;
2481 	xfs_ifork_t		*ifp;
2482 	xfs_mount_t		*mp;
2483 	static const short	brootflag[2] =
2484 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2485 	static const short	dataflag[2] =
2486 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2487 	static const short	extflag[2] =
2488 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2489 
2490 	if (!iip)
2491 		return;
2492 	ifp = XFS_IFORK_PTR(ip, whichfork);
2493 	/*
2494 	 * This can happen if we gave up in iformat in an error path,
2495 	 * for the attribute fork.
2496 	 */
2497 	if (!ifp) {
2498 		ASSERT(whichfork == XFS_ATTR_FORK);
2499 		return;
2500 	}
2501 	cp = XFS_DFORK_PTR(dip, whichfork);
2502 	mp = ip->i_mount;
2503 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2504 	case XFS_DINODE_FMT_LOCAL:
2505 		if ((iip->ili_fields & dataflag[whichfork]) &&
2506 		    (ifp->if_bytes > 0)) {
2507 			ASSERT(ifp->if_u1.if_data != NULL);
2508 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2509 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2510 		}
2511 		break;
2512 
2513 	case XFS_DINODE_FMT_EXTENTS:
2514 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2515 		       !(iip->ili_fields & extflag[whichfork]));
2516 		if ((iip->ili_fields & extflag[whichfork]) &&
2517 		    (ifp->if_bytes > 0)) {
2518 			ASSERT(xfs_iext_get_ext(ifp, 0));
2519 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2520 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2521 				whichfork);
2522 		}
2523 		break;
2524 
2525 	case XFS_DINODE_FMT_BTREE:
2526 		if ((iip->ili_fields & brootflag[whichfork]) &&
2527 		    (ifp->if_broot_bytes > 0)) {
2528 			ASSERT(ifp->if_broot != NULL);
2529 			ASSERT(ifp->if_broot_bytes <=
2530 			       (XFS_IFORK_SIZE(ip, whichfork) +
2531 				XFS_BROOT_SIZE_ADJ(ip)));
2532 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2533 				(xfs_bmdr_block_t *)cp,
2534 				XFS_DFORK_SIZE(dip, mp, whichfork));
2535 		}
2536 		break;
2537 
2538 	case XFS_DINODE_FMT_DEV:
2539 		if (iip->ili_fields & XFS_ILOG_DEV) {
2540 			ASSERT(whichfork == XFS_DATA_FORK);
2541 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2542 		}
2543 		break;
2544 
2545 	case XFS_DINODE_FMT_UUID:
2546 		if (iip->ili_fields & XFS_ILOG_UUID) {
2547 			ASSERT(whichfork == XFS_DATA_FORK);
2548 			memcpy(XFS_DFORK_DPTR(dip),
2549 			       &ip->i_df.if_u2.if_uuid,
2550 			       sizeof(uuid_t));
2551 		}
2552 		break;
2553 
2554 	default:
2555 		ASSERT(0);
2556 		break;
2557 	}
2558 }
2559 
2560 STATIC int
2561 xfs_iflush_cluster(
2562 	xfs_inode_t	*ip,
2563 	xfs_buf_t	*bp)
2564 {
2565 	xfs_mount_t		*mp = ip->i_mount;
2566 	struct xfs_perag	*pag;
2567 	unsigned long		first_index, mask;
2568 	unsigned long		inodes_per_cluster;
2569 	int			ilist_size;
2570 	xfs_inode_t		**ilist;
2571 	xfs_inode_t		*iq;
2572 	int			nr_found;
2573 	int			clcount = 0;
2574 	int			bufwasdelwri;
2575 	int			i;
2576 
2577 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2578 
2579 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2580 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2581 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2582 	if (!ilist)
2583 		goto out_put;
2584 
2585 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2586 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2587 	rcu_read_lock();
2588 	/* really need a gang lookup range call here */
2589 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2590 					first_index, inodes_per_cluster);
2591 	if (nr_found == 0)
2592 		goto out_free;
2593 
2594 	for (i = 0; i < nr_found; i++) {
2595 		iq = ilist[i];
2596 		if (iq == ip)
2597 			continue;
2598 
2599 		/*
2600 		 * because this is an RCU protected lookup, we could find a
2601 		 * recently freed or even reallocated inode during the lookup.
2602 		 * We need to check under the i_flags_lock for a valid inode
2603 		 * here. Skip it if it is not valid or the wrong inode.
2604 		 */
2605 		spin_lock(&ip->i_flags_lock);
2606 		if (!ip->i_ino ||
2607 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2608 			spin_unlock(&ip->i_flags_lock);
2609 			continue;
2610 		}
2611 		spin_unlock(&ip->i_flags_lock);
2612 
2613 		/*
2614 		 * Do an un-protected check to see if the inode is dirty and
2615 		 * is a candidate for flushing.  These checks will be repeated
2616 		 * later after the appropriate locks are acquired.
2617 		 */
2618 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2619 			continue;
2620 
2621 		/*
2622 		 * Try to get locks.  If any are unavailable or it is pinned,
2623 		 * then this inode cannot be flushed and is skipped.
2624 		 */
2625 
2626 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2627 			continue;
2628 		if (!xfs_iflock_nowait(iq)) {
2629 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2630 			continue;
2631 		}
2632 		if (xfs_ipincount(iq)) {
2633 			xfs_ifunlock(iq);
2634 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2635 			continue;
2636 		}
2637 
2638 		/*
2639 		 * arriving here means that this inode can be flushed.  First
2640 		 * re-check that it's dirty before flushing.
2641 		 */
2642 		if (!xfs_inode_clean(iq)) {
2643 			int	error;
2644 			error = xfs_iflush_int(iq, bp);
2645 			if (error) {
2646 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2647 				goto cluster_corrupt_out;
2648 			}
2649 			clcount++;
2650 		} else {
2651 			xfs_ifunlock(iq);
2652 		}
2653 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2654 	}
2655 
2656 	if (clcount) {
2657 		XFS_STATS_INC(xs_icluster_flushcnt);
2658 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2659 	}
2660 
2661 out_free:
2662 	rcu_read_unlock();
2663 	kmem_free(ilist);
2664 out_put:
2665 	xfs_perag_put(pag);
2666 	return 0;
2667 
2668 
2669 cluster_corrupt_out:
2670 	/*
2671 	 * Corruption detected in the clustering loop.  Invalidate the
2672 	 * inode buffer and shut down the filesystem.
2673 	 */
2674 	rcu_read_unlock();
2675 	/*
2676 	 * Clean up the buffer.  If it was delwri, just release it --
2677 	 * brelse can handle it with no problems.  If not, shut down the
2678 	 * filesystem before releasing the buffer.
2679 	 */
2680 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2681 	if (bufwasdelwri)
2682 		xfs_buf_relse(bp);
2683 
2684 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2685 
2686 	if (!bufwasdelwri) {
2687 		/*
2688 		 * Just like incore_relse: if we have b_iodone functions,
2689 		 * mark the buffer as an error and call them.  Otherwise
2690 		 * mark it as stale and brelse.
2691 		 */
2692 		if (bp->b_iodone) {
2693 			XFS_BUF_UNDONE(bp);
2694 			xfs_buf_stale(bp);
2695 			xfs_buf_ioerror(bp, EIO);
2696 			xfs_buf_ioend(bp, 0);
2697 		} else {
2698 			xfs_buf_stale(bp);
2699 			xfs_buf_relse(bp);
2700 		}
2701 	}
2702 
2703 	/*
2704 	 * Unlocks the flush lock
2705 	 */
2706 	xfs_iflush_abort(iq, false);
2707 	kmem_free(ilist);
2708 	xfs_perag_put(pag);
2709 	return XFS_ERROR(EFSCORRUPTED);
2710 }
2711 
2712 /*
2713  * Flush dirty inode metadata into the backing buffer.
2714  *
2715  * The caller must have the inode lock and the inode flush lock held.  The
2716  * inode lock will still be held upon return to the caller, and the inode
2717  * flush lock will be released after the inode has reached the disk.
2718  *
2719  * The caller must write out the buffer returned in *bpp and release it.
2720  */
2721 int
2722 xfs_iflush(
2723 	struct xfs_inode	*ip,
2724 	struct xfs_buf		**bpp)
2725 {
2726 	struct xfs_mount	*mp = ip->i_mount;
2727 	struct xfs_buf		*bp;
2728 	struct xfs_dinode	*dip;
2729 	int			error;
2730 
2731 	XFS_STATS_INC(xs_iflush_count);
2732 
2733 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2734 	ASSERT(xfs_isiflocked(ip));
2735 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2736 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2737 
2738 	*bpp = NULL;
2739 
2740 	xfs_iunpin_wait(ip);
2741 
2742 	/*
2743 	 * For stale inodes we cannot rely on the backing buffer remaining
2744 	 * stale in cache for the remaining life of the stale inode and so
2745 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2746 	 * inodes below. We have to check this after ensuring the inode is
2747 	 * unpinned so that it is safe to reclaim the stale inode after the
2748 	 * flush call.
2749 	 */
2750 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2751 		xfs_ifunlock(ip);
2752 		return 0;
2753 	}
2754 
2755 	/*
2756 	 * This may have been unpinned because the filesystem is shutting
2757 	 * down forcibly. If that's the case we must not write this inode
2758 	 * to disk, because the log record didn't make it to disk.
2759 	 *
2760 	 * We also have to remove the log item from the AIL in this case,
2761 	 * as we wait for an empty AIL as part of the unmount process.
2762 	 */
2763 	if (XFS_FORCED_SHUTDOWN(mp)) {
2764 		error = XFS_ERROR(EIO);
2765 		goto abort_out;
2766 	}
2767 
2768 	/*
2769 	 * Get the buffer containing the on-disk inode.
2770 	 */
2771 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2772 			       0);
2773 	if (error || !bp) {
2774 		xfs_ifunlock(ip);
2775 		return error;
2776 	}
2777 
2778 	/*
2779 	 * First flush out the inode that xfs_iflush was called with.
2780 	 */
2781 	error = xfs_iflush_int(ip, bp);
2782 	if (error)
2783 		goto corrupt_out;
2784 
2785 	/*
2786 	 * If the buffer is pinned then push on the log now so we won't
2787 	 * get stuck waiting in the write for too long.
2788 	 */
2789 	if (xfs_buf_ispinned(bp))
2790 		xfs_log_force(mp, 0);
2791 
2792 	/*
2793 	 * inode clustering:
2794 	 * see if other inodes can be gathered into this write
2795 	 */
2796 	error = xfs_iflush_cluster(ip, bp);
2797 	if (error)
2798 		goto cluster_corrupt_out;
2799 
2800 	*bpp = bp;
2801 	return 0;
2802 
2803 corrupt_out:
2804 	xfs_buf_relse(bp);
2805 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2806 cluster_corrupt_out:
2807 	error = XFS_ERROR(EFSCORRUPTED);
2808 abort_out:
2809 	/*
2810 	 * Unlocks the flush lock
2811 	 */
2812 	xfs_iflush_abort(ip, false);
2813 	return error;
2814 }
2815 
2816 
2817 STATIC int
2818 xfs_iflush_int(
2819 	struct xfs_inode	*ip,
2820 	struct xfs_buf		*bp)
2821 {
2822 	struct xfs_inode_log_item *iip = ip->i_itemp;
2823 	struct xfs_dinode	*dip;
2824 	struct xfs_mount	*mp = ip->i_mount;
2825 
2826 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2827 	ASSERT(xfs_isiflocked(ip));
2828 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2829 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2830 	ASSERT(iip != NULL && iip->ili_fields != 0);
2831 
2832 	/* set *dip = inode's place in the buffer */
2833 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2834 
2835 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2836 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2837 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2838 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2839 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2840 		goto corrupt_out;
2841 	}
2842 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2843 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2844 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2845 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2846 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2847 		goto corrupt_out;
2848 	}
2849 	if (S_ISREG(ip->i_d.di_mode)) {
2850 		if (XFS_TEST_ERROR(
2851 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2852 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2853 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2854 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2855 				"%s: Bad regular inode %Lu, ptr 0x%p",
2856 				__func__, ip->i_ino, ip);
2857 			goto corrupt_out;
2858 		}
2859 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2860 		if (XFS_TEST_ERROR(
2861 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2862 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2863 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2864 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2865 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2866 				"%s: Bad directory inode %Lu, ptr 0x%p",
2867 				__func__, ip->i_ino, ip);
2868 			goto corrupt_out;
2869 		}
2870 	}
2871 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2872 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2873 				XFS_RANDOM_IFLUSH_5)) {
2874 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2875 			"%s: detected corrupt incore inode %Lu, "
2876 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2877 			__func__, ip->i_ino,
2878 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2879 			ip->i_d.di_nblocks, ip);
2880 		goto corrupt_out;
2881 	}
2882 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2883 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2884 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2885 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2886 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2887 		goto corrupt_out;
2888 	}
2889 	/*
2890 	 * bump the flush iteration count, used to detect flushes which
2891 	 * postdate a log record during recovery. This is redundant as we now
2892 	 * log every change and hence this can't happen. Still, it doesn't hurt.
2893 	 */
2894 	ip->i_d.di_flushiter++;
2895 
2896 	/*
2897 	 * Copy the dirty parts of the inode into the on-disk
2898 	 * inode.  We always copy out the core of the inode,
2899 	 * because if the inode is dirty at all the core must
2900 	 * be.
2901 	 */
2902 	xfs_dinode_to_disk(dip, &ip->i_d);
2903 
2904 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2905 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2906 		ip->i_d.di_flushiter = 0;
2907 
2908 	/*
2909 	 * If this is really an old format inode and the superblock version
2910 	 * has not been updated to support only new format inodes, then
2911 	 * convert back to the old inode format.  If the superblock version
2912 	 * has been updated, then make the conversion permanent.
2913 	 */
2914 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2915 	if (ip->i_d.di_version == 1) {
2916 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2917 			/*
2918 			 * Convert it back.
2919 			 */
2920 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2921 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2922 		} else {
2923 			/*
2924 			 * The superblock version has already been bumped,
2925 			 * so just make the conversion to the new inode
2926 			 * format permanent.
2927 			 */
2928 			ip->i_d.di_version = 2;
2929 			dip->di_version = 2;
2930 			ip->i_d.di_onlink = 0;
2931 			dip->di_onlink = 0;
2932 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2933 			memset(&(dip->di_pad[0]), 0,
2934 			      sizeof(dip->di_pad));
2935 			ASSERT(xfs_get_projid(ip) == 0);
2936 		}
2937 	}
2938 
2939 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2940 	if (XFS_IFORK_Q(ip))
2941 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2942 	xfs_inobp_check(mp, bp);
2943 
2944 	/*
2945 	 * We've recorded everything logged in the inode, so we'd like to clear
2946 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2947 	 * However, we can't stop logging all this information until the data
2948 	 * we've copied into the disk buffer is written to disk.  If we did we
2949 	 * might overwrite the copy of the inode in the log with all the data
2950 	 * after re-logging only part of it, and in the face of a crash we
2951 	 * wouldn't have all the data we need to recover.
2952 	 *
2953 	 * What we do is move the bits to the ili_last_fields field.  When
2954 	 * logging the inode, these bits are moved back to the ili_fields field.
2955 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2956 	 * know that the information those bits represent is permanently on
2957 	 * disk.  As long as the flush completes before the inode is logged
2958 	 * again, then both ili_fields and ili_last_fields will be cleared.
2959 	 *
2960 	 * We can play with the ili_fields bits here, because the inode lock
2961 	 * must be held exclusively in order to set bits there and the flush
2962 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2963 	 * done routine can tell whether or not to look in the AIL.  Also, store
2964 	 * the current LSN of the inode so that we can tell whether the item has
2965 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2966 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2967 	 * atomically.
2968 	 */
2969 	iip->ili_last_fields = iip->ili_fields;
2970 	iip->ili_fields = 0;
2971 	iip->ili_logged = 1;
2972 
2973 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2974 				&iip->ili_item.li_lsn);
2975 
2976 	/*
2977 	 * Attach the function xfs_iflush_done to the inode's
2978 	 * buffer.  This will remove the inode from the AIL
2979 	 * and unlock the inode's flush lock when the inode is
2980 	 * completely written to disk.
2981 	 */
2982 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2983 
2984 	/* update the lsn in the on disk inode if required */
2985 	if (ip->i_d.di_version == 3)
2986 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
2987 
2988 	/* generate the checksum. */
2989 	xfs_dinode_calc_crc(mp, dip);
2990 
2991 	ASSERT(bp->b_fspriv != NULL);
2992 	ASSERT(bp->b_iodone != NULL);
2993 	return 0;
2994 
2995 corrupt_out:
2996 	return XFS_ERROR(EFSCORRUPTED);
2997 }
2998 
2999 /*
3000  * Return a pointer to the extent record at file index idx.
3001  */
3002 xfs_bmbt_rec_host_t *
3003 xfs_iext_get_ext(
3004 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3005 	xfs_extnum_t	idx)		/* index of target extent */
3006 {
3007 	ASSERT(idx >= 0);
3008 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3009 
3010 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3011 		return ifp->if_u1.if_ext_irec->er_extbuf;
3012 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3013 		xfs_ext_irec_t	*erp;		/* irec pointer */
3014 		int		erp_idx = 0;	/* irec index */
3015 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3016 
3017 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3018 		return &erp->er_extbuf[page_idx];
3019 	} else if (ifp->if_bytes) {
3020 		return &ifp->if_u1.if_extents[idx];
3021 	} else {
3022 		return NULL;
3023 	}
3024 }
3025 
3026 /*
3027  * Insert new item(s) into the extent records for incore inode
3028  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3029  */
3030 void
3031 xfs_iext_insert(
3032 	xfs_inode_t	*ip,		/* incore inode pointer */
3033 	xfs_extnum_t	idx,		/* starting index of new items */
3034 	xfs_extnum_t	count,		/* number of inserted items */
3035 	xfs_bmbt_irec_t	*new,		/* items to insert */
3036 	int		state)		/* type of extent conversion */
3037 {
3038 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3039 	xfs_extnum_t	i;		/* extent record index */
3040 
3041 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3042 
3043 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3044 	xfs_iext_add(ifp, idx, count);
3045 	for (i = idx; i < idx + count; i++, new++)
3046 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3047 }
3048 
3049 /*
3050  * This is called when the amount of space required for incore file
3051  * extents needs to be increased. The ext_diff parameter stores the
3052  * number of new extents being added and the idx parameter contains
3053  * the extent index where the new extents will be added. If the new
3054  * extents are being appended, then we just need to (re)allocate and
3055  * initialize the space. Otherwise, if the new extents are being
3056  * inserted into the middle of the existing entries, a bit more work
3057  * is required to make room for the new extents to be inserted. The
3058  * caller is responsible for filling in the new extent entries upon
3059  * return.
3060  */
3061 void
3062 xfs_iext_add(
3063 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3064 	xfs_extnum_t	idx,		/* index to begin adding exts */
3065 	int		ext_diff)	/* number of extents to add */
3066 {
3067 	int		byte_diff;	/* new bytes being added */
3068 	int		new_size;	/* size of extents after adding */
3069 	xfs_extnum_t	nextents;	/* number of extents in file */
3070 
3071 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3072 	ASSERT((idx >= 0) && (idx <= nextents));
3073 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3074 	new_size = ifp->if_bytes + byte_diff;
3075 	/*
3076 	 * If the new number of extents (nextents + ext_diff)
3077 	 * fits inside the inode, then continue to use the inline
3078 	 * extent buffer.
3079 	 */
3080 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3081 		if (idx < nextents) {
3082 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3083 				&ifp->if_u2.if_inline_ext[idx],
3084 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3085 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3086 		}
3087 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3088 		ifp->if_real_bytes = 0;
3089 	}
3090 	/*
3091 	 * Otherwise use a linear (direct) extent list.
3092 	 * If the extents are currently inside the inode,
3093 	 * xfs_iext_realloc_direct will switch us from
3094 	 * inline to direct extent allocation mode.
3095 	 */
3096 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3097 		xfs_iext_realloc_direct(ifp, new_size);
3098 		if (idx < nextents) {
3099 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3100 				&ifp->if_u1.if_extents[idx],
3101 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3102 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3103 		}
3104 	}
3105 	/* Indirection array */
3106 	else {
3107 		xfs_ext_irec_t	*erp;
3108 		int		erp_idx = 0;
3109 		int		page_idx = idx;
3110 
3111 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3112 		if (ifp->if_flags & XFS_IFEXTIREC) {
3113 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3114 		} else {
3115 			xfs_iext_irec_init(ifp);
3116 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3117 			erp = ifp->if_u1.if_ext_irec;
3118 		}
3119 		/* Extents fit in target extent page */
3120 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3121 			if (page_idx < erp->er_extcount) {
3122 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3123 					&erp->er_extbuf[page_idx],
3124 					(erp->er_extcount - page_idx) *
3125 					sizeof(xfs_bmbt_rec_t));
3126 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3127 			}
3128 			erp->er_extcount += ext_diff;
3129 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3130 		}
3131 		/* Insert a new extent page */
3132 		else if (erp) {
3133 			xfs_iext_add_indirect_multi(ifp,
3134 				erp_idx, page_idx, ext_diff);
3135 		}
3136 		/*
3137 		 * If extent(s) are being appended to the last page in
3138 		 * the indirection array and the new extent(s) don't fit
3139 		 * in the page, then erp is NULL and erp_idx is set to
3140 		 * the next index needed in the indirection array.
3141 		 */
3142 		else {
3143 			int	count = ext_diff;
3144 
3145 			while (count) {
3146 				erp = xfs_iext_irec_new(ifp, erp_idx);
3147 				erp->er_extcount = count;
3148 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3149 				if (count) {
3150 					erp_idx++;
3151 				}
3152 			}
3153 		}
3154 	}
3155 	ifp->if_bytes = new_size;
3156 }
3157 
3158 /*
3159  * This is called when incore extents are being added to the indirection
3160  * array and the new extents do not fit in the target extent list. The
3161  * erp_idx parameter contains the irec index for the target extent list
3162  * in the indirection array, and the idx parameter contains the extent
3163  * index within the list. The number of extents being added is stored
3164  * in the count parameter.
3165  *
3166  *    |-------|   |-------|
3167  *    |       |   |       |    idx - number of extents before idx
3168  *    |  idx  |   | count |
3169  *    |       |   |       |    count - number of extents being inserted at idx
3170  *    |-------|   |-------|
3171  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3172  *    |-------|   |-------|
3173  */
3174 void
3175 xfs_iext_add_indirect_multi(
3176 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3177 	int		erp_idx,		/* target extent irec index */
3178 	xfs_extnum_t	idx,			/* index within target list */
3179 	int		count)			/* new extents being added */
3180 {
3181 	int		byte_diff;		/* new bytes being added */
3182 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3183 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3184 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3185 	xfs_extnum_t	nex2;			/* extents after idx + count */
3186 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3187 	int		nlists;			/* number of irec's (lists) */
3188 
3189 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3190 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3191 	nex2 = erp->er_extcount - idx;
3192 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3193 
3194 	/*
3195 	 * Save second part of target extent list
3196 	 * (all extents past */
3197 	if (nex2) {
3198 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3199 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3200 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3201 		erp->er_extcount -= nex2;
3202 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3203 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3204 	}
3205 
3206 	/*
3207 	 * Add the new extents to the end of the target
3208 	 * list, then allocate new irec record(s) and
3209 	 * extent buffer(s) as needed to store the rest
3210 	 * of the new extents.
3211 	 */
3212 	ext_cnt = count;
3213 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3214 	if (ext_diff) {
3215 		erp->er_extcount += ext_diff;
3216 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3217 		ext_cnt -= ext_diff;
3218 	}
3219 	while (ext_cnt) {
3220 		erp_idx++;
3221 		erp = xfs_iext_irec_new(ifp, erp_idx);
3222 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3223 		erp->er_extcount = ext_diff;
3224 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3225 		ext_cnt -= ext_diff;
3226 	}
3227 
3228 	/* Add nex2 extents back to indirection array */
3229 	if (nex2) {
3230 		xfs_extnum_t	ext_avail;
3231 		int		i;
3232 
3233 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3234 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3235 		i = 0;
3236 		/*
3237 		 * If nex2 extents fit in the current page, append
3238 		 * nex2_ep after the new extents.
3239 		 */
3240 		if (nex2 <= ext_avail) {
3241 			i = erp->er_extcount;
3242 		}
3243 		/*
3244 		 * Otherwise, check if space is available in the
3245 		 * next page.
3246 		 */
3247 		else if ((erp_idx < nlists - 1) &&
3248 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3249 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3250 			erp_idx++;
3251 			erp++;
3252 			/* Create a hole for nex2 extents */
3253 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3254 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3255 		}
3256 		/*
3257 		 * Final choice, create a new extent page for
3258 		 * nex2 extents.
3259 		 */
3260 		else {
3261 			erp_idx++;
3262 			erp = xfs_iext_irec_new(ifp, erp_idx);
3263 		}
3264 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3265 		kmem_free(nex2_ep);
3266 		erp->er_extcount += nex2;
3267 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3268 	}
3269 }
3270 
3271 /*
3272  * This is called when the amount of space required for incore file
3273  * extents needs to be decreased. The ext_diff parameter stores the
3274  * number of extents to be removed and the idx parameter contains
3275  * the extent index where the extents will be removed from.
3276  *
3277  * If the amount of space needed has decreased below the linear
3278  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3279  * extent array.  Otherwise, use kmem_realloc() to adjust the
3280  * size to what is needed.
3281  */
3282 void
3283 xfs_iext_remove(
3284 	xfs_inode_t	*ip,		/* incore inode pointer */
3285 	xfs_extnum_t	idx,		/* index to begin removing exts */
3286 	int		ext_diff,	/* number of extents to remove */
3287 	int		state)		/* type of extent conversion */
3288 {
3289 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3290 	xfs_extnum_t	nextents;	/* number of extents in file */
3291 	int		new_size;	/* size of extents after removal */
3292 
3293 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3294 
3295 	ASSERT(ext_diff > 0);
3296 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3297 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3298 
3299 	if (new_size == 0) {
3300 		xfs_iext_destroy(ifp);
3301 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3302 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3303 	} else if (ifp->if_real_bytes) {
3304 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3305 	} else {
3306 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3307 	}
3308 	ifp->if_bytes = new_size;
3309 }
3310 
3311 /*
3312  * This removes ext_diff extents from the inline buffer, beginning
3313  * at extent index idx.
3314  */
3315 void
3316 xfs_iext_remove_inline(
3317 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3318 	xfs_extnum_t	idx,		/* index to begin removing exts */
3319 	int		ext_diff)	/* number of extents to remove */
3320 {
3321 	int		nextents;	/* number of extents in file */
3322 
3323 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3324 	ASSERT(idx < XFS_INLINE_EXTS);
3325 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3326 	ASSERT(((nextents - ext_diff) > 0) &&
3327 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3328 
3329 	if (idx + ext_diff < nextents) {
3330 		memmove(&ifp->if_u2.if_inline_ext[idx],
3331 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3332 			(nextents - (idx + ext_diff)) *
3333 			 sizeof(xfs_bmbt_rec_t));
3334 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3335 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3336 	} else {
3337 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3338 			ext_diff * sizeof(xfs_bmbt_rec_t));
3339 	}
3340 }
3341 
3342 /*
3343  * This removes ext_diff extents from a linear (direct) extent list,
3344  * beginning at extent index idx. If the extents are being removed
3345  * from the end of the list (ie. truncate) then we just need to re-
3346  * allocate the list to remove the extra space. Otherwise, if the
3347  * extents are being removed from the middle of the existing extent
3348  * entries, then we first need to move the extent records beginning
3349  * at idx + ext_diff up in the list to overwrite the records being
3350  * removed, then remove the extra space via kmem_realloc.
3351  */
3352 void
3353 xfs_iext_remove_direct(
3354 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3355 	xfs_extnum_t	idx,		/* index to begin removing exts */
3356 	int		ext_diff)	/* number of extents to remove */
3357 {
3358 	xfs_extnum_t	nextents;	/* number of extents in file */
3359 	int		new_size;	/* size of extents after removal */
3360 
3361 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3362 	new_size = ifp->if_bytes -
3363 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3364 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3365 
3366 	if (new_size == 0) {
3367 		xfs_iext_destroy(ifp);
3368 		return;
3369 	}
3370 	/* Move extents up in the list (if needed) */
3371 	if (idx + ext_diff < nextents) {
3372 		memmove(&ifp->if_u1.if_extents[idx],
3373 			&ifp->if_u1.if_extents[idx + ext_diff],
3374 			(nextents - (idx + ext_diff)) *
3375 			 sizeof(xfs_bmbt_rec_t));
3376 	}
3377 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3378 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3379 	/*
3380 	 * Reallocate the direct extent list. If the extents
3381 	 * will fit inside the inode then xfs_iext_realloc_direct
3382 	 * will switch from direct to inline extent allocation
3383 	 * mode for us.
3384 	 */
3385 	xfs_iext_realloc_direct(ifp, new_size);
3386 	ifp->if_bytes = new_size;
3387 }
3388 
3389 /*
3390  * This is called when incore extents are being removed from the
3391  * indirection array and the extents being removed span multiple extent
3392  * buffers. The idx parameter contains the file extent index where we
3393  * want to begin removing extents, and the count parameter contains
3394  * how many extents need to be removed.
3395  *
3396  *    |-------|   |-------|
3397  *    | nex1  |   |       |    nex1 - number of extents before idx
3398  *    |-------|   | count |
3399  *    |       |   |       |    count - number of extents being removed at idx
3400  *    | count |   |-------|
3401  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3402  *    |-------|   |-------|
3403  */
3404 void
3405 xfs_iext_remove_indirect(
3406 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3407 	xfs_extnum_t	idx,		/* index to begin removing extents */
3408 	int		count)		/* number of extents to remove */
3409 {
3410 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3411 	int		erp_idx = 0;	/* indirection array index */
3412 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3413 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3414 	xfs_extnum_t	nex1;		/* number of extents before idx */
3415 	xfs_extnum_t	nex2;		/* extents after idx + count */
3416 	int		page_idx = idx;	/* index in target extent list */
3417 
3418 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3419 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3420 	ASSERT(erp != NULL);
3421 	nex1 = page_idx;
3422 	ext_cnt = count;
3423 	while (ext_cnt) {
3424 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3425 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3426 		/*
3427 		 * Check for deletion of entire list;
3428 		 * xfs_iext_irec_remove() updates extent offsets.
3429 		 */
3430 		if (ext_diff == erp->er_extcount) {
3431 			xfs_iext_irec_remove(ifp, erp_idx);
3432 			ext_cnt -= ext_diff;
3433 			nex1 = 0;
3434 			if (ext_cnt) {
3435 				ASSERT(erp_idx < ifp->if_real_bytes /
3436 					XFS_IEXT_BUFSZ);
3437 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3438 				nex1 = 0;
3439 				continue;
3440 			} else {
3441 				break;
3442 			}
3443 		}
3444 		/* Move extents up (if needed) */
3445 		if (nex2) {
3446 			memmove(&erp->er_extbuf[nex1],
3447 				&erp->er_extbuf[nex1 + ext_diff],
3448 				nex2 * sizeof(xfs_bmbt_rec_t));
3449 		}
3450 		/* Zero out rest of page */
3451 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3452 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3453 		/* Update remaining counters */
3454 		erp->er_extcount -= ext_diff;
3455 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3456 		ext_cnt -= ext_diff;
3457 		nex1 = 0;
3458 		erp_idx++;
3459 		erp++;
3460 	}
3461 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3462 	xfs_iext_irec_compact(ifp);
3463 }
3464 
3465 /*
3466  * Create, destroy, or resize a linear (direct) block of extents.
3467  */
3468 void
3469 xfs_iext_realloc_direct(
3470 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3471 	int		new_size)	/* new size of extents */
3472 {
3473 	int		rnew_size;	/* real new size of extents */
3474 
3475 	rnew_size = new_size;
3476 
3477 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3478 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3479 		 (new_size != ifp->if_real_bytes)));
3480 
3481 	/* Free extent records */
3482 	if (new_size == 0) {
3483 		xfs_iext_destroy(ifp);
3484 	}
3485 	/* Resize direct extent list and zero any new bytes */
3486 	else if (ifp->if_real_bytes) {
3487 		/* Check if extents will fit inside the inode */
3488 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3489 			xfs_iext_direct_to_inline(ifp, new_size /
3490 				(uint)sizeof(xfs_bmbt_rec_t));
3491 			ifp->if_bytes = new_size;
3492 			return;
3493 		}
3494 		if (!is_power_of_2(new_size)){
3495 			rnew_size = roundup_pow_of_two(new_size);
3496 		}
3497 		if (rnew_size != ifp->if_real_bytes) {
3498 			ifp->if_u1.if_extents =
3499 				kmem_realloc(ifp->if_u1.if_extents,
3500 						rnew_size,
3501 						ifp->if_real_bytes, KM_NOFS);
3502 		}
3503 		if (rnew_size > ifp->if_real_bytes) {
3504 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3505 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3506 				rnew_size - ifp->if_real_bytes);
3507 		}
3508 	}
3509 	/*
3510 	 * Switch from the inline extent buffer to a direct
3511 	 * extent list. Be sure to include the inline extent
3512 	 * bytes in new_size.
3513 	 */
3514 	else {
3515 		new_size += ifp->if_bytes;
3516 		if (!is_power_of_2(new_size)) {
3517 			rnew_size = roundup_pow_of_two(new_size);
3518 		}
3519 		xfs_iext_inline_to_direct(ifp, rnew_size);
3520 	}
3521 	ifp->if_real_bytes = rnew_size;
3522 	ifp->if_bytes = new_size;
3523 }
3524 
3525 /*
3526  * Switch from linear (direct) extent records to inline buffer.
3527  */
3528 void
3529 xfs_iext_direct_to_inline(
3530 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3531 	xfs_extnum_t	nextents)	/* number of extents in file */
3532 {
3533 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3534 	ASSERT(nextents <= XFS_INLINE_EXTS);
3535 	/*
3536 	 * The inline buffer was zeroed when we switched
3537 	 * from inline to direct extent allocation mode,
3538 	 * so we don't need to clear it here.
3539 	 */
3540 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3541 		nextents * sizeof(xfs_bmbt_rec_t));
3542 	kmem_free(ifp->if_u1.if_extents);
3543 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3544 	ifp->if_real_bytes = 0;
3545 }
3546 
3547 /*
3548  * Switch from inline buffer to linear (direct) extent records.
3549  * new_size should already be rounded up to the next power of 2
3550  * by the caller (when appropriate), so use new_size as it is.
3551  * However, since new_size may be rounded up, we can't update
3552  * if_bytes here. It is the caller's responsibility to update
3553  * if_bytes upon return.
3554  */
3555 void
3556 xfs_iext_inline_to_direct(
3557 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3558 	int		new_size)	/* number of extents in file */
3559 {
3560 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3561 	memset(ifp->if_u1.if_extents, 0, new_size);
3562 	if (ifp->if_bytes) {
3563 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3564 			ifp->if_bytes);
3565 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3566 			sizeof(xfs_bmbt_rec_t));
3567 	}
3568 	ifp->if_real_bytes = new_size;
3569 }
3570 
3571 /*
3572  * Resize an extent indirection array to new_size bytes.
3573  */
3574 STATIC void
3575 xfs_iext_realloc_indirect(
3576 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3577 	int		new_size)	/* new indirection array size */
3578 {
3579 	int		nlists;		/* number of irec's (ex lists) */
3580 	int		size;		/* current indirection array size */
3581 
3582 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3583 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3584 	size = nlists * sizeof(xfs_ext_irec_t);
3585 	ASSERT(ifp->if_real_bytes);
3586 	ASSERT((new_size >= 0) && (new_size != size));
3587 	if (new_size == 0) {
3588 		xfs_iext_destroy(ifp);
3589 	} else {
3590 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3591 			kmem_realloc(ifp->if_u1.if_ext_irec,
3592 				new_size, size, KM_NOFS);
3593 	}
3594 }
3595 
3596 /*
3597  * Switch from indirection array to linear (direct) extent allocations.
3598  */
3599 STATIC void
3600 xfs_iext_indirect_to_direct(
3601 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3602 {
3603 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3604 	xfs_extnum_t	nextents;	/* number of extents in file */
3605 	int		size;		/* size of file extents */
3606 
3607 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3608 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3609 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3610 	size = nextents * sizeof(xfs_bmbt_rec_t);
3611 
3612 	xfs_iext_irec_compact_pages(ifp);
3613 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3614 
3615 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3616 	kmem_free(ifp->if_u1.if_ext_irec);
3617 	ifp->if_flags &= ~XFS_IFEXTIREC;
3618 	ifp->if_u1.if_extents = ep;
3619 	ifp->if_bytes = size;
3620 	if (nextents < XFS_LINEAR_EXTS) {
3621 		xfs_iext_realloc_direct(ifp, size);
3622 	}
3623 }
3624 
3625 /*
3626  * Free incore file extents.
3627  */
3628 void
3629 xfs_iext_destroy(
3630 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3631 {
3632 	if (ifp->if_flags & XFS_IFEXTIREC) {
3633 		int	erp_idx;
3634 		int	nlists;
3635 
3636 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3637 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3638 			xfs_iext_irec_remove(ifp, erp_idx);
3639 		}
3640 		ifp->if_flags &= ~XFS_IFEXTIREC;
3641 	} else if (ifp->if_real_bytes) {
3642 		kmem_free(ifp->if_u1.if_extents);
3643 	} else if (ifp->if_bytes) {
3644 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3645 			sizeof(xfs_bmbt_rec_t));
3646 	}
3647 	ifp->if_u1.if_extents = NULL;
3648 	ifp->if_real_bytes = 0;
3649 	ifp->if_bytes = 0;
3650 }
3651 
3652 /*
3653  * Return a pointer to the extent record for file system block bno.
3654  */
3655 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3656 xfs_iext_bno_to_ext(
3657 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3658 	xfs_fileoff_t	bno,		/* block number to search for */
3659 	xfs_extnum_t	*idxp)		/* index of target extent */
3660 {
3661 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3662 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3663 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3664 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3665 	int		high;		/* upper boundary in search */
3666 	xfs_extnum_t	idx = 0;	/* index of target extent */
3667 	int		low;		/* lower boundary in search */
3668 	xfs_extnum_t	nextents;	/* number of file extents */
3669 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3670 
3671 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3672 	if (nextents == 0) {
3673 		*idxp = 0;
3674 		return NULL;
3675 	}
3676 	low = 0;
3677 	if (ifp->if_flags & XFS_IFEXTIREC) {
3678 		/* Find target extent list */
3679 		int	erp_idx = 0;
3680 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3681 		base = erp->er_extbuf;
3682 		high = erp->er_extcount - 1;
3683 	} else {
3684 		base = ifp->if_u1.if_extents;
3685 		high = nextents - 1;
3686 	}
3687 	/* Binary search extent records */
3688 	while (low <= high) {
3689 		idx = (low + high) >> 1;
3690 		ep = base + idx;
3691 		startoff = xfs_bmbt_get_startoff(ep);
3692 		blockcount = xfs_bmbt_get_blockcount(ep);
3693 		if (bno < startoff) {
3694 			high = idx - 1;
3695 		} else if (bno >= startoff + blockcount) {
3696 			low = idx + 1;
3697 		} else {
3698 			/* Convert back to file-based extent index */
3699 			if (ifp->if_flags & XFS_IFEXTIREC) {
3700 				idx += erp->er_extoff;
3701 			}
3702 			*idxp = idx;
3703 			return ep;
3704 		}
3705 	}
3706 	/* Convert back to file-based extent index */
3707 	if (ifp->if_flags & XFS_IFEXTIREC) {
3708 		idx += erp->er_extoff;
3709 	}
3710 	if (bno >= startoff + blockcount) {
3711 		if (++idx == nextents) {
3712 			ep = NULL;
3713 		} else {
3714 			ep = xfs_iext_get_ext(ifp, idx);
3715 		}
3716 	}
3717 	*idxp = idx;
3718 	return ep;
3719 }
3720 
3721 /*
3722  * Return a pointer to the indirection array entry containing the
3723  * extent record for filesystem block bno. Store the index of the
3724  * target irec in *erp_idxp.
3725  */
3726 xfs_ext_irec_t *			/* pointer to found extent record */
3727 xfs_iext_bno_to_irec(
3728 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3729 	xfs_fileoff_t	bno,		/* block number to search for */
3730 	int		*erp_idxp)	/* irec index of target ext list */
3731 {
3732 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3733 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3734 	int		erp_idx;	/* indirection array index */
3735 	int		nlists;		/* number of extent irec's (lists) */
3736 	int		high;		/* binary search upper limit */
3737 	int		low;		/* binary search lower limit */
3738 
3739 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3740 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3741 	erp_idx = 0;
3742 	low = 0;
3743 	high = nlists - 1;
3744 	while (low <= high) {
3745 		erp_idx = (low + high) >> 1;
3746 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3747 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3748 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3749 			high = erp_idx - 1;
3750 		} else if (erp_next && bno >=
3751 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3752 			low = erp_idx + 1;
3753 		} else {
3754 			break;
3755 		}
3756 	}
3757 	*erp_idxp = erp_idx;
3758 	return erp;
3759 }
3760 
3761 /*
3762  * Return a pointer to the indirection array entry containing the
3763  * extent record at file extent index *idxp. Store the index of the
3764  * target irec in *erp_idxp and store the page index of the target
3765  * extent record in *idxp.
3766  */
3767 xfs_ext_irec_t *
3768 xfs_iext_idx_to_irec(
3769 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3770 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3771 	int		*erp_idxp,	/* pointer to target irec */
3772 	int		realloc)	/* new bytes were just added */
3773 {
3774 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3775 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3776 	int		erp_idx;	/* indirection array index */
3777 	int		nlists;		/* number of irec's (ex lists) */
3778 	int		high;		/* binary search upper limit */
3779 	int		low;		/* binary search lower limit */
3780 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3781 
3782 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3783 	ASSERT(page_idx >= 0);
3784 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3785 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3786 
3787 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3788 	erp_idx = 0;
3789 	low = 0;
3790 	high = nlists - 1;
3791 
3792 	/* Binary search extent irec's */
3793 	while (low <= high) {
3794 		erp_idx = (low + high) >> 1;
3795 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3796 		prev = erp_idx > 0 ? erp - 1 : NULL;
3797 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3798 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3799 			high = erp_idx - 1;
3800 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3801 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3802 			    !realloc)) {
3803 			low = erp_idx + 1;
3804 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3805 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3806 			ASSERT(realloc);
3807 			page_idx = 0;
3808 			erp_idx++;
3809 			erp = erp_idx < nlists ? erp + 1 : NULL;
3810 			break;
3811 		} else {
3812 			page_idx -= erp->er_extoff;
3813 			break;
3814 		}
3815 	}
3816 	*idxp = page_idx;
3817 	*erp_idxp = erp_idx;
3818 	return(erp);
3819 }
3820 
3821 /*
3822  * Allocate and initialize an indirection array once the space needed
3823  * for incore extents increases above XFS_IEXT_BUFSZ.
3824  */
3825 void
3826 xfs_iext_irec_init(
3827 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3828 {
3829 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3830 	xfs_extnum_t	nextents;	/* number of extents in file */
3831 
3832 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3833 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3834 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3835 
3836 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3837 
3838 	if (nextents == 0) {
3839 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3840 	} else if (!ifp->if_real_bytes) {
3841 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3842 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3843 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3844 	}
3845 	erp->er_extbuf = ifp->if_u1.if_extents;
3846 	erp->er_extcount = nextents;
3847 	erp->er_extoff = 0;
3848 
3849 	ifp->if_flags |= XFS_IFEXTIREC;
3850 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3851 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3852 	ifp->if_u1.if_ext_irec = erp;
3853 
3854 	return;
3855 }
3856 
3857 /*
3858  * Allocate and initialize a new entry in the indirection array.
3859  */
3860 xfs_ext_irec_t *
3861 xfs_iext_irec_new(
3862 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3863 	int		erp_idx)	/* index for new irec */
3864 {
3865 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3866 	int		i;		/* loop counter */
3867 	int		nlists;		/* number of irec's (ex lists) */
3868 
3869 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3870 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3871 
3872 	/* Resize indirection array */
3873 	xfs_iext_realloc_indirect(ifp, ++nlists *
3874 				  sizeof(xfs_ext_irec_t));
3875 	/*
3876 	 * Move records down in the array so the
3877 	 * new page can use erp_idx.
3878 	 */
3879 	erp = ifp->if_u1.if_ext_irec;
3880 	for (i = nlists - 1; i > erp_idx; i--) {
3881 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3882 	}
3883 	ASSERT(i == erp_idx);
3884 
3885 	/* Initialize new extent record */
3886 	erp = ifp->if_u1.if_ext_irec;
3887 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3888 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3889 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3890 	erp[erp_idx].er_extcount = 0;
3891 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3892 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3893 	return (&erp[erp_idx]);
3894 }
3895 
3896 /*
3897  * Remove a record from the indirection array.
3898  */
3899 void
3900 xfs_iext_irec_remove(
3901 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3902 	int		erp_idx)	/* irec index to remove */
3903 {
3904 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3905 	int		i;		/* loop counter */
3906 	int		nlists;		/* number of irec's (ex lists) */
3907 
3908 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3909 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3910 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3911 	if (erp->er_extbuf) {
3912 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3913 			-erp->er_extcount);
3914 		kmem_free(erp->er_extbuf);
3915 	}
3916 	/* Compact extent records */
3917 	erp = ifp->if_u1.if_ext_irec;
3918 	for (i = erp_idx; i < nlists - 1; i++) {
3919 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3920 	}
3921 	/*
3922 	 * Manually free the last extent record from the indirection
3923 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3924 	 * of zero would result in a call to xfs_iext_destroy() which
3925 	 * would in turn call this function again, creating a nasty
3926 	 * infinite loop.
3927 	 */
3928 	if (--nlists) {
3929 		xfs_iext_realloc_indirect(ifp,
3930 			nlists * sizeof(xfs_ext_irec_t));
3931 	} else {
3932 		kmem_free(ifp->if_u1.if_ext_irec);
3933 	}
3934 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3935 }
3936 
3937 /*
3938  * This is called to clean up large amounts of unused memory allocated
3939  * by the indirection array.  Before compacting anything though, verify
3940  * that the indirection array is still needed and switch back to the
3941  * linear extent list (or even the inline buffer) if possible.  The
3942  * compaction policy is as follows:
3943  *
3944  *    Full Compaction: Extents fit into a single page (or inline buffer)
3945  * Partial Compaction: Extents occupy less than 50% of allocated space
3946  *      No Compaction: Extents occupy at least 50% of allocated space
3947  */
3948 void
3949 xfs_iext_irec_compact(
3950 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3951 {
3952 	xfs_extnum_t	nextents;	/* number of extents in file */
3953 	int		nlists;		/* number of irec's (ex lists) */
3954 
3955 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3956 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3957 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3958 
3959 	if (nextents == 0) {
3960 		xfs_iext_destroy(ifp);
3961 	} else if (nextents <= XFS_INLINE_EXTS) {
3962 		xfs_iext_indirect_to_direct(ifp);
3963 		xfs_iext_direct_to_inline(ifp, nextents);
3964 	} else if (nextents <= XFS_LINEAR_EXTS) {
3965 		xfs_iext_indirect_to_direct(ifp);
3966 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3967 		xfs_iext_irec_compact_pages(ifp);
3968 	}
3969 }
3970 
3971 /*
3972  * Combine extents from neighboring extent pages.
3973  */
3974 void
3975 xfs_iext_irec_compact_pages(
3976 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3977 {
3978 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3979 	int		erp_idx = 0;	/* indirection array index */
3980 	int		nlists;		/* number of irec's (ex lists) */
3981 
3982 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3983 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3984 	while (erp_idx < nlists - 1) {
3985 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3986 		erp_next = erp + 1;
3987 		if (erp_next->er_extcount <=
3988 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3989 			memcpy(&erp->er_extbuf[erp->er_extcount],
3990 				erp_next->er_extbuf, erp_next->er_extcount *
3991 				sizeof(xfs_bmbt_rec_t));
3992 			erp->er_extcount += erp_next->er_extcount;
3993 			/*
3994 			 * Free page before removing extent record
3995 			 * so er_extoffs don't get modified in
3996 			 * xfs_iext_irec_remove.
3997 			 */
3998 			kmem_free(erp_next->er_extbuf);
3999 			erp_next->er_extbuf = NULL;
4000 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4001 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4002 		} else {
4003 			erp_idx++;
4004 		}
4005 	}
4006 }
4007 
4008 /*
4009  * This is called to update the er_extoff field in the indirection
4010  * array when extents have been added or removed from one of the
4011  * extent lists. erp_idx contains the irec index to begin updating
4012  * at and ext_diff contains the number of extents that were added
4013  * or removed.
4014  */
4015 void
4016 xfs_iext_irec_update_extoffs(
4017 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4018 	int		erp_idx,	/* irec index to update */
4019 	int		ext_diff)	/* number of new extents */
4020 {
4021 	int		i;		/* loop counter */
4022 	int		nlists;		/* number of irec's (ex lists */
4023 
4024 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4025 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4026 	for (i = erp_idx; i < nlists; i++) {
4027 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4028 	}
4029 }
4030 
4031 /*
4032  * Test whether it is appropriate to check an inode for and free post EOF
4033  * blocks. The 'force' parameter determines whether we should also consider
4034  * regular files that are marked preallocated or append-only.
4035  */
4036 bool
4037 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
4038 {
4039 	/* prealloc/delalloc exists only on regular files */
4040 	if (!S_ISREG(ip->i_d.di_mode))
4041 		return false;
4042 
4043 	/*
4044 	 * Zero sized files with no cached pages and delalloc blocks will not
4045 	 * have speculative prealloc/delalloc blocks to remove.
4046 	 */
4047 	if (VFS_I(ip)->i_size == 0 &&
4048 	    VN_CACHED(VFS_I(ip)) == 0 &&
4049 	    ip->i_delayed_blks == 0)
4050 		return false;
4051 
4052 	/* If we haven't read in the extent list, then don't do it now. */
4053 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
4054 		return false;
4055 
4056 	/*
4057 	 * Do not free real preallocated or append-only files unless the file
4058 	 * has delalloc blocks and we are forced to remove them.
4059 	 */
4060 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
4061 		if (!force || ip->i_delayed_blks == 0)
4062 			return false;
4063 
4064 	return true;
4065 }
4066 
4067