1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_log.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_btree.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_utils.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_vnodeops.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 51 kmem_zone_t *xfs_ifork_zone; 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 64 65 /* 66 * helper function to extract extent size hint from inode 67 */ 68 xfs_extlen_t 69 xfs_get_extsz_hint( 70 struct xfs_inode *ip) 71 { 72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 73 return ip->i_d.di_extsize; 74 if (XFS_IS_REALTIME_INODE(ip)) 75 return ip->i_mount->m_sb.sb_rextsize; 76 return 0; 77 } 78 79 /* 80 * This is a wrapper routine around the xfs_ilock() routine used to centralize 81 * some grungy code. It is used in places that wish to lock the inode solely 82 * for reading the extents. The reason these places can't just call 83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the 84 * extents from disk for a file in b-tree format. If the inode is in b-tree 85 * format, then we need to lock the inode exclusively until the extents are read 86 * in. Locking it exclusively all the time would limit our parallelism 87 * unnecessarily, though. What we do instead is check to see if the extents 88 * have been read in yet, and only lock the inode exclusively if they have not. 89 * 90 * The function returns a value which should be given to the corresponding 91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was 92 * actually taken. 93 */ 94 uint 95 xfs_ilock_map_shared( 96 xfs_inode_t *ip) 97 { 98 uint lock_mode; 99 100 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && 101 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { 102 lock_mode = XFS_ILOCK_EXCL; 103 } else { 104 lock_mode = XFS_ILOCK_SHARED; 105 } 106 107 xfs_ilock(ip, lock_mode); 108 109 return lock_mode; 110 } 111 112 /* 113 * This is simply the unlock routine to go with xfs_ilock_map_shared(). 114 * All it does is call xfs_iunlock() with the given lock_mode. 115 */ 116 void 117 xfs_iunlock_map_shared( 118 xfs_inode_t *ip, 119 unsigned int lock_mode) 120 { 121 xfs_iunlock(ip, lock_mode); 122 } 123 124 /* 125 * The xfs inode contains 2 locks: a multi-reader lock called the 126 * i_iolock and a multi-reader lock called the i_lock. This routine 127 * allows either or both of the locks to be obtained. 128 * 129 * The 2 locks should always be ordered so that the IO lock is 130 * obtained first in order to prevent deadlock. 131 * 132 * ip -- the inode being locked 133 * lock_flags -- this parameter indicates the inode's locks 134 * to be locked. It can be: 135 * XFS_IOLOCK_SHARED, 136 * XFS_IOLOCK_EXCL, 137 * XFS_ILOCK_SHARED, 138 * XFS_ILOCK_EXCL, 139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 143 */ 144 void 145 xfs_ilock( 146 xfs_inode_t *ip, 147 uint lock_flags) 148 { 149 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 150 151 /* 152 * You can't set both SHARED and EXCL for the same lock, 153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 155 */ 156 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 157 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 158 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 159 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 160 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 161 162 if (lock_flags & XFS_IOLOCK_EXCL) 163 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 164 else if (lock_flags & XFS_IOLOCK_SHARED) 165 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 166 167 if (lock_flags & XFS_ILOCK_EXCL) 168 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 169 else if (lock_flags & XFS_ILOCK_SHARED) 170 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 171 } 172 173 /* 174 * This is just like xfs_ilock(), except that the caller 175 * is guaranteed not to sleep. It returns 1 if it gets 176 * the requested locks and 0 otherwise. If the IO lock is 177 * obtained but the inode lock cannot be, then the IO lock 178 * is dropped before returning. 179 * 180 * ip -- the inode being locked 181 * lock_flags -- this parameter indicates the inode's locks to be 182 * to be locked. See the comment for xfs_ilock() for a list 183 * of valid values. 184 */ 185 int 186 xfs_ilock_nowait( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 191 192 /* 193 * You can't set both SHARED and EXCL for the same lock, 194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 196 */ 197 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 198 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 199 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 200 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 201 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 202 203 if (lock_flags & XFS_IOLOCK_EXCL) { 204 if (!mrtryupdate(&ip->i_iolock)) 205 goto out; 206 } else if (lock_flags & XFS_IOLOCK_SHARED) { 207 if (!mrtryaccess(&ip->i_iolock)) 208 goto out; 209 } 210 if (lock_flags & XFS_ILOCK_EXCL) { 211 if (!mrtryupdate(&ip->i_lock)) 212 goto out_undo_iolock; 213 } else if (lock_flags & XFS_ILOCK_SHARED) { 214 if (!mrtryaccess(&ip->i_lock)) 215 goto out_undo_iolock; 216 } 217 return 1; 218 219 out_undo_iolock: 220 if (lock_flags & XFS_IOLOCK_EXCL) 221 mrunlock_excl(&ip->i_iolock); 222 else if (lock_flags & XFS_IOLOCK_SHARED) 223 mrunlock_shared(&ip->i_iolock); 224 out: 225 return 0; 226 } 227 228 /* 229 * xfs_iunlock() is used to drop the inode locks acquired with 230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 232 * that we know which locks to drop. 233 * 234 * ip -- the inode being unlocked 235 * lock_flags -- this parameter indicates the inode's locks to be 236 * to be unlocked. See the comment for xfs_ilock() for a list 237 * of valid values for this parameter. 238 * 239 */ 240 void 241 xfs_iunlock( 242 xfs_inode_t *ip, 243 uint lock_flags) 244 { 245 /* 246 * You can't set both SHARED and EXCL for the same lock, 247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 249 */ 250 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 251 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 252 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 253 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 254 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 255 ASSERT(lock_flags != 0); 256 257 if (lock_flags & XFS_IOLOCK_EXCL) 258 mrunlock_excl(&ip->i_iolock); 259 else if (lock_flags & XFS_IOLOCK_SHARED) 260 mrunlock_shared(&ip->i_iolock); 261 262 if (lock_flags & XFS_ILOCK_EXCL) 263 mrunlock_excl(&ip->i_lock); 264 else if (lock_flags & XFS_ILOCK_SHARED) 265 mrunlock_shared(&ip->i_lock); 266 267 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 268 } 269 270 /* 271 * give up write locks. the i/o lock cannot be held nested 272 * if it is being demoted. 273 */ 274 void 275 xfs_ilock_demote( 276 xfs_inode_t *ip, 277 uint lock_flags) 278 { 279 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 280 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 281 282 if (lock_flags & XFS_ILOCK_EXCL) 283 mrdemote(&ip->i_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 mrdemote(&ip->i_iolock); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 #if defined(DEBUG) || defined(XFS_WARN) 291 int 292 xfs_isilocked( 293 xfs_inode_t *ip, 294 uint lock_flags) 295 { 296 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 297 if (!(lock_flags & XFS_ILOCK_SHARED)) 298 return !!ip->i_lock.mr_writer; 299 return rwsem_is_locked(&ip->i_lock.mr_lock); 300 } 301 302 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 303 if (!(lock_flags & XFS_IOLOCK_SHARED)) 304 return !!ip->i_iolock.mr_writer; 305 return rwsem_is_locked(&ip->i_iolock.mr_lock); 306 } 307 308 ASSERT(0); 309 return 0; 310 } 311 #endif 312 313 void 314 __xfs_iflock( 315 struct xfs_inode *ip) 316 { 317 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 318 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 319 320 do { 321 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 322 if (xfs_isiflocked(ip)) 323 io_schedule(); 324 } while (!xfs_iflock_nowait(ip)); 325 326 finish_wait(wq, &wait.wait); 327 } 328 329 #ifdef DEBUG 330 /* 331 * Make sure that the extents in the given memory buffer 332 * are valid. 333 */ 334 STATIC void 335 xfs_validate_extents( 336 xfs_ifork_t *ifp, 337 int nrecs, 338 xfs_exntfmt_t fmt) 339 { 340 xfs_bmbt_irec_t irec; 341 xfs_bmbt_rec_host_t rec; 342 int i; 343 344 for (i = 0; i < nrecs; i++) { 345 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 346 rec.l0 = get_unaligned(&ep->l0); 347 rec.l1 = get_unaligned(&ep->l1); 348 xfs_bmbt_get_all(&rec, &irec); 349 if (fmt == XFS_EXTFMT_NOSTATE) 350 ASSERT(irec.br_state == XFS_EXT_NORM); 351 } 352 } 353 #else /* DEBUG */ 354 #define xfs_validate_extents(ifp, nrecs, fmt) 355 #endif /* DEBUG */ 356 357 /* 358 * Check that none of the inode's in the buffer have a next 359 * unlinked field of 0. 360 */ 361 #if defined(DEBUG) 362 void 363 xfs_inobp_check( 364 xfs_mount_t *mp, 365 xfs_buf_t *bp) 366 { 367 int i; 368 int j; 369 xfs_dinode_t *dip; 370 371 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 372 373 for (i = 0; i < j; i++) { 374 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 375 i * mp->m_sb.sb_inodesize); 376 if (!dip->di_next_unlinked) { 377 xfs_alert(mp, 378 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", 379 bp); 380 ASSERT(dip->di_next_unlinked); 381 } 382 } 383 } 384 #endif 385 386 static void 387 xfs_inode_buf_verify( 388 struct xfs_buf *bp) 389 { 390 struct xfs_mount *mp = bp->b_target->bt_mount; 391 int i; 392 int ni; 393 394 /* 395 * Validate the magic number and version of every inode in the buffer 396 */ 397 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; 398 for (i = 0; i < ni; i++) { 399 int di_ok; 400 xfs_dinode_t *dip; 401 402 dip = (struct xfs_dinode *)xfs_buf_offset(bp, 403 (i << mp->m_sb.sb_inodelog)); 404 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 405 XFS_DINODE_GOOD_VERSION(dip->di_version); 406 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 407 XFS_ERRTAG_ITOBP_INOTOBP, 408 XFS_RANDOM_ITOBP_INOTOBP))) { 409 xfs_buf_ioerror(bp, EFSCORRUPTED); 410 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH, 411 mp, dip); 412 #ifdef DEBUG 413 xfs_emerg(mp, 414 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 415 (unsigned long long)bp->b_bn, i, 416 be16_to_cpu(dip->di_magic)); 417 ASSERT(0); 418 #endif 419 } 420 } 421 xfs_inobp_check(mp, bp); 422 } 423 424 425 static void 426 xfs_inode_buf_read_verify( 427 struct xfs_buf *bp) 428 { 429 xfs_inode_buf_verify(bp); 430 } 431 432 static void 433 xfs_inode_buf_write_verify( 434 struct xfs_buf *bp) 435 { 436 xfs_inode_buf_verify(bp); 437 } 438 439 const struct xfs_buf_ops xfs_inode_buf_ops = { 440 .verify_read = xfs_inode_buf_read_verify, 441 .verify_write = xfs_inode_buf_write_verify, 442 }; 443 444 445 /* 446 * This routine is called to map an inode to the buffer containing the on-disk 447 * version of the inode. It returns a pointer to the buffer containing the 448 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a 449 * pointer to the on-disk inode within that buffer. 450 * 451 * If a non-zero error is returned, then the contents of bpp and dipp are 452 * undefined. 453 */ 454 int 455 xfs_imap_to_bp( 456 struct xfs_mount *mp, 457 struct xfs_trans *tp, 458 struct xfs_imap *imap, 459 struct xfs_dinode **dipp, 460 struct xfs_buf **bpp, 461 uint buf_flags, 462 uint iget_flags) 463 { 464 struct xfs_buf *bp; 465 int error; 466 467 buf_flags |= XBF_UNMAPPED; 468 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 469 (int)imap->im_len, buf_flags, &bp, 470 &xfs_inode_buf_ops); 471 if (error) { 472 if (error == EAGAIN) { 473 ASSERT(buf_flags & XBF_TRYLOCK); 474 return error; 475 } 476 477 if (error == EFSCORRUPTED && 478 (iget_flags & XFS_IGET_UNTRUSTED)) 479 return XFS_ERROR(EINVAL); 480 481 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.", 482 __func__, error); 483 return error; 484 } 485 486 *bpp = bp; 487 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset); 488 return 0; 489 } 490 491 /* 492 * Move inode type and inode format specific information from the 493 * on-disk inode to the in-core inode. For fifos, devs, and sockets 494 * this means set if_rdev to the proper value. For files, directories, 495 * and symlinks this means to bring in the in-line data or extent 496 * pointers. For a file in B-tree format, only the root is immediately 497 * brought in-core. The rest will be in-lined in if_extents when it 498 * is first referenced (see xfs_iread_extents()). 499 */ 500 STATIC int 501 xfs_iformat( 502 xfs_inode_t *ip, 503 xfs_dinode_t *dip) 504 { 505 xfs_attr_shortform_t *atp; 506 int size; 507 int error = 0; 508 xfs_fsize_t di_size; 509 510 if (unlikely(be32_to_cpu(dip->di_nextents) + 511 be16_to_cpu(dip->di_anextents) > 512 be64_to_cpu(dip->di_nblocks))) { 513 xfs_warn(ip->i_mount, 514 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 515 (unsigned long long)ip->i_ino, 516 (int)(be32_to_cpu(dip->di_nextents) + 517 be16_to_cpu(dip->di_anextents)), 518 (unsigned long long) 519 be64_to_cpu(dip->di_nblocks)); 520 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 521 ip->i_mount, dip); 522 return XFS_ERROR(EFSCORRUPTED); 523 } 524 525 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 526 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", 527 (unsigned long long)ip->i_ino, 528 dip->di_forkoff); 529 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 530 ip->i_mount, dip); 531 return XFS_ERROR(EFSCORRUPTED); 532 } 533 534 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 535 !ip->i_mount->m_rtdev_targp)) { 536 xfs_warn(ip->i_mount, 537 "corrupt dinode %Lu, has realtime flag set.", 538 ip->i_ino); 539 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 540 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 541 return XFS_ERROR(EFSCORRUPTED); 542 } 543 544 switch (ip->i_d.di_mode & S_IFMT) { 545 case S_IFIFO: 546 case S_IFCHR: 547 case S_IFBLK: 548 case S_IFSOCK: 549 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 550 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 551 ip->i_mount, dip); 552 return XFS_ERROR(EFSCORRUPTED); 553 } 554 ip->i_d.di_size = 0; 555 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 556 break; 557 558 case S_IFREG: 559 case S_IFLNK: 560 case S_IFDIR: 561 switch (dip->di_format) { 562 case XFS_DINODE_FMT_LOCAL: 563 /* 564 * no local regular files yet 565 */ 566 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { 567 xfs_warn(ip->i_mount, 568 "corrupt inode %Lu (local format for regular file).", 569 (unsigned long long) ip->i_ino); 570 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 571 XFS_ERRLEVEL_LOW, 572 ip->i_mount, dip); 573 return XFS_ERROR(EFSCORRUPTED); 574 } 575 576 di_size = be64_to_cpu(dip->di_size); 577 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 578 xfs_warn(ip->i_mount, 579 "corrupt inode %Lu (bad size %Ld for local inode).", 580 (unsigned long long) ip->i_ino, 581 (long long) di_size); 582 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 583 XFS_ERRLEVEL_LOW, 584 ip->i_mount, dip); 585 return XFS_ERROR(EFSCORRUPTED); 586 } 587 588 size = (int)di_size; 589 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 590 break; 591 case XFS_DINODE_FMT_EXTENTS: 592 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 593 break; 594 case XFS_DINODE_FMT_BTREE: 595 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 596 break; 597 default: 598 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 599 ip->i_mount); 600 return XFS_ERROR(EFSCORRUPTED); 601 } 602 break; 603 604 default: 605 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 606 return XFS_ERROR(EFSCORRUPTED); 607 } 608 if (error) { 609 return error; 610 } 611 if (!XFS_DFORK_Q(dip)) 612 return 0; 613 614 ASSERT(ip->i_afp == NULL); 615 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 616 617 switch (dip->di_aformat) { 618 case XFS_DINODE_FMT_LOCAL: 619 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 620 size = be16_to_cpu(atp->hdr.totsize); 621 622 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 623 xfs_warn(ip->i_mount, 624 "corrupt inode %Lu (bad attr fork size %Ld).", 625 (unsigned long long) ip->i_ino, 626 (long long) size); 627 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 628 XFS_ERRLEVEL_LOW, 629 ip->i_mount, dip); 630 return XFS_ERROR(EFSCORRUPTED); 631 } 632 633 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 634 break; 635 case XFS_DINODE_FMT_EXTENTS: 636 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 637 break; 638 case XFS_DINODE_FMT_BTREE: 639 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 640 break; 641 default: 642 error = XFS_ERROR(EFSCORRUPTED); 643 break; 644 } 645 if (error) { 646 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 647 ip->i_afp = NULL; 648 xfs_idestroy_fork(ip, XFS_DATA_FORK); 649 } 650 return error; 651 } 652 653 /* 654 * The file is in-lined in the on-disk inode. 655 * If it fits into if_inline_data, then copy 656 * it there, otherwise allocate a buffer for it 657 * and copy the data there. Either way, set 658 * if_data to point at the data. 659 * If we allocate a buffer for the data, make 660 * sure that its size is a multiple of 4 and 661 * record the real size in i_real_bytes. 662 */ 663 STATIC int 664 xfs_iformat_local( 665 xfs_inode_t *ip, 666 xfs_dinode_t *dip, 667 int whichfork, 668 int size) 669 { 670 xfs_ifork_t *ifp; 671 int real_size; 672 673 /* 674 * If the size is unreasonable, then something 675 * is wrong and we just bail out rather than crash in 676 * kmem_alloc() or memcpy() below. 677 */ 678 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 679 xfs_warn(ip->i_mount, 680 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 681 (unsigned long long) ip->i_ino, size, 682 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 683 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 684 ip->i_mount, dip); 685 return XFS_ERROR(EFSCORRUPTED); 686 } 687 ifp = XFS_IFORK_PTR(ip, whichfork); 688 real_size = 0; 689 if (size == 0) 690 ifp->if_u1.if_data = NULL; 691 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 692 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 693 else { 694 real_size = roundup(size, 4); 695 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 696 } 697 ifp->if_bytes = size; 698 ifp->if_real_bytes = real_size; 699 if (size) 700 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 701 ifp->if_flags &= ~XFS_IFEXTENTS; 702 ifp->if_flags |= XFS_IFINLINE; 703 return 0; 704 } 705 706 /* 707 * The file consists of a set of extents all 708 * of which fit into the on-disk inode. 709 * If there are few enough extents to fit into 710 * the if_inline_ext, then copy them there. 711 * Otherwise allocate a buffer for them and copy 712 * them into it. Either way, set if_extents 713 * to point at the extents. 714 */ 715 STATIC int 716 xfs_iformat_extents( 717 xfs_inode_t *ip, 718 xfs_dinode_t *dip, 719 int whichfork) 720 { 721 xfs_bmbt_rec_t *dp; 722 xfs_ifork_t *ifp; 723 int nex; 724 int size; 725 int i; 726 727 ifp = XFS_IFORK_PTR(ip, whichfork); 728 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 729 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 730 731 /* 732 * If the number of extents is unreasonable, then something 733 * is wrong and we just bail out rather than crash in 734 * kmem_alloc() or memcpy() below. 735 */ 736 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 737 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 738 (unsigned long long) ip->i_ino, nex); 739 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 740 ip->i_mount, dip); 741 return XFS_ERROR(EFSCORRUPTED); 742 } 743 744 ifp->if_real_bytes = 0; 745 if (nex == 0) 746 ifp->if_u1.if_extents = NULL; 747 else if (nex <= XFS_INLINE_EXTS) 748 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 749 else 750 xfs_iext_add(ifp, 0, nex); 751 752 ifp->if_bytes = size; 753 if (size) { 754 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 755 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 756 for (i = 0; i < nex; i++, dp++) { 757 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 758 ep->l0 = get_unaligned_be64(&dp->l0); 759 ep->l1 = get_unaligned_be64(&dp->l1); 760 } 761 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 762 if (whichfork != XFS_DATA_FORK || 763 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 764 if (unlikely(xfs_check_nostate_extents( 765 ifp, 0, nex))) { 766 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 767 XFS_ERRLEVEL_LOW, 768 ip->i_mount); 769 return XFS_ERROR(EFSCORRUPTED); 770 } 771 } 772 ifp->if_flags |= XFS_IFEXTENTS; 773 return 0; 774 } 775 776 /* 777 * The file has too many extents to fit into 778 * the inode, so they are in B-tree format. 779 * Allocate a buffer for the root of the B-tree 780 * and copy the root into it. The i_extents 781 * field will remain NULL until all of the 782 * extents are read in (when they are needed). 783 */ 784 STATIC int 785 xfs_iformat_btree( 786 xfs_inode_t *ip, 787 xfs_dinode_t *dip, 788 int whichfork) 789 { 790 struct xfs_mount *mp = ip->i_mount; 791 xfs_bmdr_block_t *dfp; 792 xfs_ifork_t *ifp; 793 /* REFERENCED */ 794 int nrecs; 795 int size; 796 797 ifp = XFS_IFORK_PTR(ip, whichfork); 798 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 799 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 800 nrecs = be16_to_cpu(dfp->bb_numrecs); 801 802 /* 803 * blow out if -- fork has less extents than can fit in 804 * fork (fork shouldn't be a btree format), root btree 805 * block has more records than can fit into the fork, 806 * or the number of extents is greater than the number of 807 * blocks. 808 */ 809 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 810 XFS_IFORK_MAXEXT(ip, whichfork) || 811 XFS_BMDR_SPACE_CALC(nrecs) > 812 XFS_DFORK_SIZE(dip, mp, whichfork) || 813 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 814 xfs_warn(mp, "corrupt inode %Lu (btree).", 815 (unsigned long long) ip->i_ino); 816 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 817 mp, dip); 818 return XFS_ERROR(EFSCORRUPTED); 819 } 820 821 ifp->if_broot_bytes = size; 822 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 823 ASSERT(ifp->if_broot != NULL); 824 /* 825 * Copy and convert from the on-disk structure 826 * to the in-memory structure. 827 */ 828 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 829 ifp->if_broot, size); 830 ifp->if_flags &= ~XFS_IFEXTENTS; 831 ifp->if_flags |= XFS_IFBROOT; 832 833 return 0; 834 } 835 836 STATIC void 837 xfs_dinode_from_disk( 838 xfs_icdinode_t *to, 839 xfs_dinode_t *from) 840 { 841 to->di_magic = be16_to_cpu(from->di_magic); 842 to->di_mode = be16_to_cpu(from->di_mode); 843 to->di_version = from ->di_version; 844 to->di_format = from->di_format; 845 to->di_onlink = be16_to_cpu(from->di_onlink); 846 to->di_uid = be32_to_cpu(from->di_uid); 847 to->di_gid = be32_to_cpu(from->di_gid); 848 to->di_nlink = be32_to_cpu(from->di_nlink); 849 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 850 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 851 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 852 to->di_flushiter = be16_to_cpu(from->di_flushiter); 853 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 854 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 855 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 856 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 857 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 858 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 859 to->di_size = be64_to_cpu(from->di_size); 860 to->di_nblocks = be64_to_cpu(from->di_nblocks); 861 to->di_extsize = be32_to_cpu(from->di_extsize); 862 to->di_nextents = be32_to_cpu(from->di_nextents); 863 to->di_anextents = be16_to_cpu(from->di_anextents); 864 to->di_forkoff = from->di_forkoff; 865 to->di_aformat = from->di_aformat; 866 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 867 to->di_dmstate = be16_to_cpu(from->di_dmstate); 868 to->di_flags = be16_to_cpu(from->di_flags); 869 to->di_gen = be32_to_cpu(from->di_gen); 870 871 if (to->di_version == 3) { 872 to->di_changecount = be64_to_cpu(from->di_changecount); 873 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec); 874 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec); 875 to->di_flags2 = be64_to_cpu(from->di_flags2); 876 to->di_ino = be64_to_cpu(from->di_ino); 877 to->di_lsn = be64_to_cpu(from->di_lsn); 878 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 879 uuid_copy(&to->di_uuid, &from->di_uuid); 880 } 881 } 882 883 void 884 xfs_dinode_to_disk( 885 xfs_dinode_t *to, 886 xfs_icdinode_t *from) 887 { 888 to->di_magic = cpu_to_be16(from->di_magic); 889 to->di_mode = cpu_to_be16(from->di_mode); 890 to->di_version = from ->di_version; 891 to->di_format = from->di_format; 892 to->di_onlink = cpu_to_be16(from->di_onlink); 893 to->di_uid = cpu_to_be32(from->di_uid); 894 to->di_gid = cpu_to_be32(from->di_gid); 895 to->di_nlink = cpu_to_be32(from->di_nlink); 896 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 897 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 898 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 899 to->di_flushiter = cpu_to_be16(from->di_flushiter); 900 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 901 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 902 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 903 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 904 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 905 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 906 to->di_size = cpu_to_be64(from->di_size); 907 to->di_nblocks = cpu_to_be64(from->di_nblocks); 908 to->di_extsize = cpu_to_be32(from->di_extsize); 909 to->di_nextents = cpu_to_be32(from->di_nextents); 910 to->di_anextents = cpu_to_be16(from->di_anextents); 911 to->di_forkoff = from->di_forkoff; 912 to->di_aformat = from->di_aformat; 913 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 914 to->di_dmstate = cpu_to_be16(from->di_dmstate); 915 to->di_flags = cpu_to_be16(from->di_flags); 916 to->di_gen = cpu_to_be32(from->di_gen); 917 918 if (from->di_version == 3) { 919 to->di_changecount = cpu_to_be64(from->di_changecount); 920 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 921 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 922 to->di_flags2 = cpu_to_be64(from->di_flags2); 923 to->di_ino = cpu_to_be64(from->di_ino); 924 to->di_lsn = cpu_to_be64(from->di_lsn); 925 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 926 uuid_copy(&to->di_uuid, &from->di_uuid); 927 } 928 } 929 930 STATIC uint 931 _xfs_dic2xflags( 932 __uint16_t di_flags) 933 { 934 uint flags = 0; 935 936 if (di_flags & XFS_DIFLAG_ANY) { 937 if (di_flags & XFS_DIFLAG_REALTIME) 938 flags |= XFS_XFLAG_REALTIME; 939 if (di_flags & XFS_DIFLAG_PREALLOC) 940 flags |= XFS_XFLAG_PREALLOC; 941 if (di_flags & XFS_DIFLAG_IMMUTABLE) 942 flags |= XFS_XFLAG_IMMUTABLE; 943 if (di_flags & XFS_DIFLAG_APPEND) 944 flags |= XFS_XFLAG_APPEND; 945 if (di_flags & XFS_DIFLAG_SYNC) 946 flags |= XFS_XFLAG_SYNC; 947 if (di_flags & XFS_DIFLAG_NOATIME) 948 flags |= XFS_XFLAG_NOATIME; 949 if (di_flags & XFS_DIFLAG_NODUMP) 950 flags |= XFS_XFLAG_NODUMP; 951 if (di_flags & XFS_DIFLAG_RTINHERIT) 952 flags |= XFS_XFLAG_RTINHERIT; 953 if (di_flags & XFS_DIFLAG_PROJINHERIT) 954 flags |= XFS_XFLAG_PROJINHERIT; 955 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 956 flags |= XFS_XFLAG_NOSYMLINKS; 957 if (di_flags & XFS_DIFLAG_EXTSIZE) 958 flags |= XFS_XFLAG_EXTSIZE; 959 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 960 flags |= XFS_XFLAG_EXTSZINHERIT; 961 if (di_flags & XFS_DIFLAG_NODEFRAG) 962 flags |= XFS_XFLAG_NODEFRAG; 963 if (di_flags & XFS_DIFLAG_FILESTREAM) 964 flags |= XFS_XFLAG_FILESTREAM; 965 } 966 967 return flags; 968 } 969 970 uint 971 xfs_ip2xflags( 972 xfs_inode_t *ip) 973 { 974 xfs_icdinode_t *dic = &ip->i_d; 975 976 return _xfs_dic2xflags(dic->di_flags) | 977 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 978 } 979 980 uint 981 xfs_dic2xflags( 982 xfs_dinode_t *dip) 983 { 984 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 985 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 986 } 987 988 static bool 989 xfs_dinode_verify( 990 struct xfs_mount *mp, 991 struct xfs_inode *ip, 992 struct xfs_dinode *dip) 993 { 994 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) 995 return false; 996 997 /* only version 3 or greater inodes are extensively verified here */ 998 if (dip->di_version < 3) 999 return true; 1000 1001 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1002 return false; 1003 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, 1004 offsetof(struct xfs_dinode, di_crc))) 1005 return false; 1006 if (be64_to_cpu(dip->di_ino) != ip->i_ino) 1007 return false; 1008 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid)) 1009 return false; 1010 return true; 1011 } 1012 1013 void 1014 xfs_dinode_calc_crc( 1015 struct xfs_mount *mp, 1016 struct xfs_dinode *dip) 1017 { 1018 __uint32_t crc; 1019 1020 if (dip->di_version < 3) 1021 return; 1022 1023 ASSERT(xfs_sb_version_hascrc(&mp->m_sb)); 1024 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize, 1025 offsetof(struct xfs_dinode, di_crc)); 1026 dip->di_crc = xfs_end_cksum(crc); 1027 } 1028 1029 /* 1030 * Read the disk inode attributes into the in-core inode structure. 1031 */ 1032 int 1033 xfs_iread( 1034 xfs_mount_t *mp, 1035 xfs_trans_t *tp, 1036 xfs_inode_t *ip, 1037 uint iget_flags) 1038 { 1039 xfs_buf_t *bp; 1040 xfs_dinode_t *dip; 1041 int error; 1042 1043 /* 1044 * Fill in the location information in the in-core inode. 1045 */ 1046 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 1047 if (error) 1048 return error; 1049 1050 /* 1051 * Get pointers to the on-disk inode and the buffer containing it. 1052 */ 1053 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); 1054 if (error) 1055 return error; 1056 1057 /* even unallocated inodes are verified */ 1058 if (!xfs_dinode_verify(mp, ip, dip)) { 1059 xfs_alert(mp, "%s: validation failed for inode %lld failed", 1060 __func__, ip->i_ino); 1061 1062 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip); 1063 error = XFS_ERROR(EFSCORRUPTED); 1064 goto out_brelse; 1065 } 1066 1067 /* 1068 * If the on-disk inode is already linked to a directory 1069 * entry, copy all of the inode into the in-core inode. 1070 * xfs_iformat() handles copying in the inode format 1071 * specific information. 1072 * Otherwise, just get the truly permanent information. 1073 */ 1074 if (dip->di_mode) { 1075 xfs_dinode_from_disk(&ip->i_d, dip); 1076 error = xfs_iformat(ip, dip); 1077 if (error) { 1078 #ifdef DEBUG 1079 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 1080 __func__, error); 1081 #endif /* DEBUG */ 1082 goto out_brelse; 1083 } 1084 } else { 1085 /* 1086 * Partial initialisation of the in-core inode. Just the bits 1087 * that xfs_ialloc won't overwrite or relies on being correct. 1088 */ 1089 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 1090 ip->i_d.di_version = dip->di_version; 1091 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 1092 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 1093 1094 if (dip->di_version == 3) { 1095 ip->i_d.di_ino = be64_to_cpu(dip->di_ino); 1096 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid); 1097 } 1098 1099 /* 1100 * Make sure to pull in the mode here as well in 1101 * case the inode is released without being used. 1102 * This ensures that xfs_inactive() will see that 1103 * the inode is already free and not try to mess 1104 * with the uninitialized part of it. 1105 */ 1106 ip->i_d.di_mode = 0; 1107 } 1108 1109 /* 1110 * The inode format changed when we moved the link count and 1111 * made it 32 bits long. If this is an old format inode, 1112 * convert it in memory to look like a new one. If it gets 1113 * flushed to disk we will convert back before flushing or 1114 * logging it. We zero out the new projid field and the old link 1115 * count field. We'll handle clearing the pad field (the remains 1116 * of the old uuid field) when we actually convert the inode to 1117 * the new format. We don't change the version number so that we 1118 * can distinguish this from a real new format inode. 1119 */ 1120 if (ip->i_d.di_version == 1) { 1121 ip->i_d.di_nlink = ip->i_d.di_onlink; 1122 ip->i_d.di_onlink = 0; 1123 xfs_set_projid(ip, 0); 1124 } 1125 1126 ip->i_delayed_blks = 0; 1127 1128 /* 1129 * Mark the buffer containing the inode as something to keep 1130 * around for a while. This helps to keep recently accessed 1131 * meta-data in-core longer. 1132 */ 1133 xfs_buf_set_ref(bp, XFS_INO_REF); 1134 1135 /* 1136 * Use xfs_trans_brelse() to release the buffer containing the 1137 * on-disk inode, because it was acquired with xfs_trans_read_buf() 1138 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal 1139 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1140 * will only release the buffer if it is not dirty within the 1141 * transaction. It will be OK to release the buffer in this case, 1142 * because inodes on disk are never destroyed and we will be 1143 * locking the new in-core inode before putting it in the hash 1144 * table where other processes can find it. Thus we don't have 1145 * to worry about the inode being changed just because we released 1146 * the buffer. 1147 */ 1148 out_brelse: 1149 xfs_trans_brelse(tp, bp); 1150 return error; 1151 } 1152 1153 /* 1154 * Read in extents from a btree-format inode. 1155 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1156 */ 1157 int 1158 xfs_iread_extents( 1159 xfs_trans_t *tp, 1160 xfs_inode_t *ip, 1161 int whichfork) 1162 { 1163 int error; 1164 xfs_ifork_t *ifp; 1165 xfs_extnum_t nextents; 1166 1167 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1168 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1169 ip->i_mount); 1170 return XFS_ERROR(EFSCORRUPTED); 1171 } 1172 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1173 ifp = XFS_IFORK_PTR(ip, whichfork); 1174 1175 /* 1176 * We know that the size is valid (it's checked in iformat_btree) 1177 */ 1178 ifp->if_bytes = ifp->if_real_bytes = 0; 1179 ifp->if_flags |= XFS_IFEXTENTS; 1180 xfs_iext_add(ifp, 0, nextents); 1181 error = xfs_bmap_read_extents(tp, ip, whichfork); 1182 if (error) { 1183 xfs_iext_destroy(ifp); 1184 ifp->if_flags &= ~XFS_IFEXTENTS; 1185 return error; 1186 } 1187 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1188 return 0; 1189 } 1190 1191 /* 1192 * Allocate an inode on disk and return a copy of its in-core version. 1193 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1194 * appropriately within the inode. The uid and gid for the inode are 1195 * set according to the contents of the given cred structure. 1196 * 1197 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1198 * has a free inode available, call xfs_iget() to obtain the in-core 1199 * version of the allocated inode. Finally, fill in the inode and 1200 * log its initial contents. In this case, ialloc_context would be 1201 * set to NULL. 1202 * 1203 * If xfs_dialloc() does not have an available inode, it will replenish 1204 * its supply by doing an allocation. Since we can only do one 1205 * allocation within a transaction without deadlocks, we must commit 1206 * the current transaction before returning the inode itself. 1207 * In this case, therefore, we will set ialloc_context and return. 1208 * The caller should then commit the current transaction, start a new 1209 * transaction, and call xfs_ialloc() again to actually get the inode. 1210 * 1211 * To ensure that some other process does not grab the inode that 1212 * was allocated during the first call to xfs_ialloc(), this routine 1213 * also returns the [locked] bp pointing to the head of the freelist 1214 * as ialloc_context. The caller should hold this buffer across 1215 * the commit and pass it back into this routine on the second call. 1216 * 1217 * If we are allocating quota inodes, we do not have a parent inode 1218 * to attach to or associate with (i.e. pip == NULL) because they 1219 * are not linked into the directory structure - they are attached 1220 * directly to the superblock - and so have no parent. 1221 */ 1222 int 1223 xfs_ialloc( 1224 xfs_trans_t *tp, 1225 xfs_inode_t *pip, 1226 umode_t mode, 1227 xfs_nlink_t nlink, 1228 xfs_dev_t rdev, 1229 prid_t prid, 1230 int okalloc, 1231 xfs_buf_t **ialloc_context, 1232 xfs_inode_t **ipp) 1233 { 1234 struct xfs_mount *mp = tp->t_mountp; 1235 xfs_ino_t ino; 1236 xfs_inode_t *ip; 1237 uint flags; 1238 int error; 1239 timespec_t tv; 1240 int filestreams = 0; 1241 1242 /* 1243 * Call the space management code to pick 1244 * the on-disk inode to be allocated. 1245 */ 1246 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1247 ialloc_context, &ino); 1248 if (error) 1249 return error; 1250 if (*ialloc_context || ino == NULLFSINO) { 1251 *ipp = NULL; 1252 return 0; 1253 } 1254 ASSERT(*ialloc_context == NULL); 1255 1256 /* 1257 * Get the in-core inode with the lock held exclusively. 1258 * This is because we're setting fields here we need 1259 * to prevent others from looking at until we're done. 1260 */ 1261 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 1262 XFS_ILOCK_EXCL, &ip); 1263 if (error) 1264 return error; 1265 ASSERT(ip != NULL); 1266 1267 ip->i_d.di_mode = mode; 1268 ip->i_d.di_onlink = 0; 1269 ip->i_d.di_nlink = nlink; 1270 ASSERT(ip->i_d.di_nlink == nlink); 1271 ip->i_d.di_uid = current_fsuid(); 1272 ip->i_d.di_gid = current_fsgid(); 1273 xfs_set_projid(ip, prid); 1274 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1275 1276 /* 1277 * If the superblock version is up to where we support new format 1278 * inodes and this is currently an old format inode, then change 1279 * the inode version number now. This way we only do the conversion 1280 * here rather than here and in the flush/logging code. 1281 */ 1282 if (xfs_sb_version_hasnlink(&mp->m_sb) && 1283 ip->i_d.di_version == 1) { 1284 ip->i_d.di_version = 2; 1285 /* 1286 * We've already zeroed the old link count, the projid field, 1287 * and the pad field. 1288 */ 1289 } 1290 1291 /* 1292 * Project ids won't be stored on disk if we are using a version 1 inode. 1293 */ 1294 if ((prid != 0) && (ip->i_d.di_version == 1)) 1295 xfs_bump_ino_vers2(tp, ip); 1296 1297 if (pip && XFS_INHERIT_GID(pip)) { 1298 ip->i_d.di_gid = pip->i_d.di_gid; 1299 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 1300 ip->i_d.di_mode |= S_ISGID; 1301 } 1302 } 1303 1304 /* 1305 * If the group ID of the new file does not match the effective group 1306 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1307 * (and only if the irix_sgid_inherit compatibility variable is set). 1308 */ 1309 if ((irix_sgid_inherit) && 1310 (ip->i_d.di_mode & S_ISGID) && 1311 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1312 ip->i_d.di_mode &= ~S_ISGID; 1313 } 1314 1315 ip->i_d.di_size = 0; 1316 ip->i_d.di_nextents = 0; 1317 ASSERT(ip->i_d.di_nblocks == 0); 1318 1319 nanotime(&tv); 1320 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1321 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1322 ip->i_d.di_atime = ip->i_d.di_mtime; 1323 ip->i_d.di_ctime = ip->i_d.di_mtime; 1324 1325 /* 1326 * di_gen will have been taken care of in xfs_iread. 1327 */ 1328 ip->i_d.di_extsize = 0; 1329 ip->i_d.di_dmevmask = 0; 1330 ip->i_d.di_dmstate = 0; 1331 ip->i_d.di_flags = 0; 1332 1333 if (ip->i_d.di_version == 3) { 1334 ASSERT(ip->i_d.di_ino == ino); 1335 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 1336 ip->i_d.di_crc = 0; 1337 ip->i_d.di_changecount = 1; 1338 ip->i_d.di_lsn = 0; 1339 ip->i_d.di_flags2 = 0; 1340 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 1341 ip->i_d.di_crtime = ip->i_d.di_mtime; 1342 } 1343 1344 1345 flags = XFS_ILOG_CORE; 1346 switch (mode & S_IFMT) { 1347 case S_IFIFO: 1348 case S_IFCHR: 1349 case S_IFBLK: 1350 case S_IFSOCK: 1351 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1352 ip->i_df.if_u2.if_rdev = rdev; 1353 ip->i_df.if_flags = 0; 1354 flags |= XFS_ILOG_DEV; 1355 break; 1356 case S_IFREG: 1357 /* 1358 * we can't set up filestreams until after the VFS inode 1359 * is set up properly. 1360 */ 1361 if (pip && xfs_inode_is_filestream(pip)) 1362 filestreams = 1; 1363 /* fall through */ 1364 case S_IFDIR: 1365 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1366 uint di_flags = 0; 1367 1368 if (S_ISDIR(mode)) { 1369 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1370 di_flags |= XFS_DIFLAG_RTINHERIT; 1371 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1372 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1373 ip->i_d.di_extsize = pip->i_d.di_extsize; 1374 } 1375 } else if (S_ISREG(mode)) { 1376 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1377 di_flags |= XFS_DIFLAG_REALTIME; 1378 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1379 di_flags |= XFS_DIFLAG_EXTSIZE; 1380 ip->i_d.di_extsize = pip->i_d.di_extsize; 1381 } 1382 } 1383 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1384 xfs_inherit_noatime) 1385 di_flags |= XFS_DIFLAG_NOATIME; 1386 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1387 xfs_inherit_nodump) 1388 di_flags |= XFS_DIFLAG_NODUMP; 1389 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1390 xfs_inherit_sync) 1391 di_flags |= XFS_DIFLAG_SYNC; 1392 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1393 xfs_inherit_nosymlinks) 1394 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1395 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1396 di_flags |= XFS_DIFLAG_PROJINHERIT; 1397 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1398 xfs_inherit_nodefrag) 1399 di_flags |= XFS_DIFLAG_NODEFRAG; 1400 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1401 di_flags |= XFS_DIFLAG_FILESTREAM; 1402 ip->i_d.di_flags |= di_flags; 1403 } 1404 /* FALLTHROUGH */ 1405 case S_IFLNK: 1406 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1407 ip->i_df.if_flags = XFS_IFEXTENTS; 1408 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1409 ip->i_df.if_u1.if_extents = NULL; 1410 break; 1411 default: 1412 ASSERT(0); 1413 } 1414 /* 1415 * Attribute fork settings for new inode. 1416 */ 1417 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1418 ip->i_d.di_anextents = 0; 1419 1420 /* 1421 * Log the new values stuffed into the inode. 1422 */ 1423 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1424 xfs_trans_log_inode(tp, ip, flags); 1425 1426 /* now that we have an i_mode we can setup inode ops and unlock */ 1427 xfs_setup_inode(ip); 1428 1429 /* now we have set up the vfs inode we can associate the filestream */ 1430 if (filestreams) { 1431 error = xfs_filestream_associate(pip, ip); 1432 if (error < 0) 1433 return -error; 1434 if (!error) 1435 xfs_iflags_set(ip, XFS_IFILESTREAM); 1436 } 1437 1438 *ipp = ip; 1439 return 0; 1440 } 1441 1442 /* 1443 * Free up the underlying blocks past new_size. The new size must be smaller 1444 * than the current size. This routine can be used both for the attribute and 1445 * data fork, and does not modify the inode size, which is left to the caller. 1446 * 1447 * The transaction passed to this routine must have made a permanent log 1448 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1449 * given transaction and start new ones, so make sure everything involved in 1450 * the transaction is tidy before calling here. Some transaction will be 1451 * returned to the caller to be committed. The incoming transaction must 1452 * already include the inode, and both inode locks must be held exclusively. 1453 * The inode must also be "held" within the transaction. On return the inode 1454 * will be "held" within the returned transaction. This routine does NOT 1455 * require any disk space to be reserved for it within the transaction. 1456 * 1457 * If we get an error, we must return with the inode locked and linked into the 1458 * current transaction. This keeps things simple for the higher level code, 1459 * because it always knows that the inode is locked and held in the transaction 1460 * that returns to it whether errors occur or not. We don't mark the inode 1461 * dirty on error so that transactions can be easily aborted if possible. 1462 */ 1463 int 1464 xfs_itruncate_extents( 1465 struct xfs_trans **tpp, 1466 struct xfs_inode *ip, 1467 int whichfork, 1468 xfs_fsize_t new_size) 1469 { 1470 struct xfs_mount *mp = ip->i_mount; 1471 struct xfs_trans *tp = *tpp; 1472 struct xfs_trans *ntp; 1473 xfs_bmap_free_t free_list; 1474 xfs_fsblock_t first_block; 1475 xfs_fileoff_t first_unmap_block; 1476 xfs_fileoff_t last_block; 1477 xfs_filblks_t unmap_len; 1478 int committed; 1479 int error = 0; 1480 int done = 0; 1481 1482 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1483 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1484 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1485 ASSERT(new_size <= XFS_ISIZE(ip)); 1486 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1487 ASSERT(ip->i_itemp != NULL); 1488 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1489 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1490 1491 trace_xfs_itruncate_extents_start(ip, new_size); 1492 1493 /* 1494 * Since it is possible for space to become allocated beyond 1495 * the end of the file (in a crash where the space is allocated 1496 * but the inode size is not yet updated), simply remove any 1497 * blocks which show up between the new EOF and the maximum 1498 * possible file size. If the first block to be removed is 1499 * beyond the maximum file size (ie it is the same as last_block), 1500 * then there is nothing to do. 1501 */ 1502 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1503 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1504 if (first_unmap_block == last_block) 1505 return 0; 1506 1507 ASSERT(first_unmap_block < last_block); 1508 unmap_len = last_block - first_unmap_block + 1; 1509 while (!done) { 1510 xfs_bmap_init(&free_list, &first_block); 1511 error = xfs_bunmapi(tp, ip, 1512 first_unmap_block, unmap_len, 1513 xfs_bmapi_aflag(whichfork), 1514 XFS_ITRUNC_MAX_EXTENTS, 1515 &first_block, &free_list, 1516 &done); 1517 if (error) 1518 goto out_bmap_cancel; 1519 1520 /* 1521 * Duplicate the transaction that has the permanent 1522 * reservation and commit the old transaction. 1523 */ 1524 error = xfs_bmap_finish(&tp, &free_list, &committed); 1525 if (committed) 1526 xfs_trans_ijoin(tp, ip, 0); 1527 if (error) 1528 goto out_bmap_cancel; 1529 1530 if (committed) { 1531 /* 1532 * Mark the inode dirty so it will be logged and 1533 * moved forward in the log as part of every commit. 1534 */ 1535 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1536 } 1537 1538 ntp = xfs_trans_dup(tp); 1539 error = xfs_trans_commit(tp, 0); 1540 tp = ntp; 1541 1542 xfs_trans_ijoin(tp, ip, 0); 1543 1544 if (error) 1545 goto out; 1546 1547 /* 1548 * Transaction commit worked ok so we can drop the extra ticket 1549 * reference that we gained in xfs_trans_dup() 1550 */ 1551 xfs_log_ticket_put(tp->t_ticket); 1552 error = xfs_trans_reserve(tp, 0, 1553 XFS_ITRUNCATE_LOG_RES(mp), 0, 1554 XFS_TRANS_PERM_LOG_RES, 1555 XFS_ITRUNCATE_LOG_COUNT); 1556 if (error) 1557 goto out; 1558 } 1559 1560 /* 1561 * Always re-log the inode so that our permanent transaction can keep 1562 * on rolling it forward in the log. 1563 */ 1564 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1565 1566 trace_xfs_itruncate_extents_end(ip, new_size); 1567 1568 out: 1569 *tpp = tp; 1570 return error; 1571 out_bmap_cancel: 1572 /* 1573 * If the bunmapi call encounters an error, return to the caller where 1574 * the transaction can be properly aborted. We just need to make sure 1575 * we're not holding any resources that we were not when we came in. 1576 */ 1577 xfs_bmap_cancel(&free_list); 1578 goto out; 1579 } 1580 1581 /* 1582 * This is called when the inode's link count goes to 0. 1583 * We place the on-disk inode on a list in the AGI. It 1584 * will be pulled from this list when the inode is freed. 1585 */ 1586 int 1587 xfs_iunlink( 1588 xfs_trans_t *tp, 1589 xfs_inode_t *ip) 1590 { 1591 xfs_mount_t *mp; 1592 xfs_agi_t *agi; 1593 xfs_dinode_t *dip; 1594 xfs_buf_t *agibp; 1595 xfs_buf_t *ibp; 1596 xfs_agino_t agino; 1597 short bucket_index; 1598 int offset; 1599 int error; 1600 1601 ASSERT(ip->i_d.di_nlink == 0); 1602 ASSERT(ip->i_d.di_mode != 0); 1603 1604 mp = tp->t_mountp; 1605 1606 /* 1607 * Get the agi buffer first. It ensures lock ordering 1608 * on the list. 1609 */ 1610 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1611 if (error) 1612 return error; 1613 agi = XFS_BUF_TO_AGI(agibp); 1614 1615 /* 1616 * Get the index into the agi hash table for the 1617 * list this inode will go on. 1618 */ 1619 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1620 ASSERT(agino != 0); 1621 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1622 ASSERT(agi->agi_unlinked[bucket_index]); 1623 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1624 1625 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1626 /* 1627 * There is already another inode in the bucket we need 1628 * to add ourselves to. Add us at the front of the list. 1629 * Here we put the head pointer into our next pointer, 1630 * and then we fall through to point the head at us. 1631 */ 1632 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1633 0, 0); 1634 if (error) 1635 return error; 1636 1637 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1638 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1639 offset = ip->i_imap.im_boffset + 1640 offsetof(xfs_dinode_t, di_next_unlinked); 1641 xfs_trans_inode_buf(tp, ibp); 1642 xfs_trans_log_buf(tp, ibp, offset, 1643 (offset + sizeof(xfs_agino_t) - 1)); 1644 xfs_inobp_check(mp, ibp); 1645 } 1646 1647 /* 1648 * Point the bucket head pointer at the inode being inserted. 1649 */ 1650 ASSERT(agino != 0); 1651 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1652 offset = offsetof(xfs_agi_t, agi_unlinked) + 1653 (sizeof(xfs_agino_t) * bucket_index); 1654 xfs_trans_log_buf(tp, agibp, offset, 1655 (offset + sizeof(xfs_agino_t) - 1)); 1656 return 0; 1657 } 1658 1659 /* 1660 * Pull the on-disk inode from the AGI unlinked list. 1661 */ 1662 STATIC int 1663 xfs_iunlink_remove( 1664 xfs_trans_t *tp, 1665 xfs_inode_t *ip) 1666 { 1667 xfs_ino_t next_ino; 1668 xfs_mount_t *mp; 1669 xfs_agi_t *agi; 1670 xfs_dinode_t *dip; 1671 xfs_buf_t *agibp; 1672 xfs_buf_t *ibp; 1673 xfs_agnumber_t agno; 1674 xfs_agino_t agino; 1675 xfs_agino_t next_agino; 1676 xfs_buf_t *last_ibp; 1677 xfs_dinode_t *last_dip = NULL; 1678 short bucket_index; 1679 int offset, last_offset = 0; 1680 int error; 1681 1682 mp = tp->t_mountp; 1683 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1684 1685 /* 1686 * Get the agi buffer first. It ensures lock ordering 1687 * on the list. 1688 */ 1689 error = xfs_read_agi(mp, tp, agno, &agibp); 1690 if (error) 1691 return error; 1692 1693 agi = XFS_BUF_TO_AGI(agibp); 1694 1695 /* 1696 * Get the index into the agi hash table for the 1697 * list this inode will go on. 1698 */ 1699 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1700 ASSERT(agino != 0); 1701 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1702 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 1703 ASSERT(agi->agi_unlinked[bucket_index]); 1704 1705 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1706 /* 1707 * We're at the head of the list. Get the inode's on-disk 1708 * buffer to see if there is anyone after us on the list. 1709 * Only modify our next pointer if it is not already NULLAGINO. 1710 * This saves us the overhead of dealing with the buffer when 1711 * there is no need to change it. 1712 */ 1713 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1714 0, 0); 1715 if (error) { 1716 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 1717 __func__, error); 1718 return error; 1719 } 1720 next_agino = be32_to_cpu(dip->di_next_unlinked); 1721 ASSERT(next_agino != 0); 1722 if (next_agino != NULLAGINO) { 1723 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1724 offset = ip->i_imap.im_boffset + 1725 offsetof(xfs_dinode_t, di_next_unlinked); 1726 xfs_trans_inode_buf(tp, ibp); 1727 xfs_trans_log_buf(tp, ibp, offset, 1728 (offset + sizeof(xfs_agino_t) - 1)); 1729 xfs_inobp_check(mp, ibp); 1730 } else { 1731 xfs_trans_brelse(tp, ibp); 1732 } 1733 /* 1734 * Point the bucket head pointer at the next inode. 1735 */ 1736 ASSERT(next_agino != 0); 1737 ASSERT(next_agino != agino); 1738 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1739 offset = offsetof(xfs_agi_t, agi_unlinked) + 1740 (sizeof(xfs_agino_t) * bucket_index); 1741 xfs_trans_log_buf(tp, agibp, offset, 1742 (offset + sizeof(xfs_agino_t) - 1)); 1743 } else { 1744 /* 1745 * We need to search the list for the inode being freed. 1746 */ 1747 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1748 last_ibp = NULL; 1749 while (next_agino != agino) { 1750 struct xfs_imap imap; 1751 1752 if (last_ibp) 1753 xfs_trans_brelse(tp, last_ibp); 1754 1755 imap.im_blkno = 0; 1756 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1757 1758 error = xfs_imap(mp, tp, next_ino, &imap, 0); 1759 if (error) { 1760 xfs_warn(mp, 1761 "%s: xfs_imap returned error %d.", 1762 __func__, error); 1763 return error; 1764 } 1765 1766 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 1767 &last_ibp, 0, 0); 1768 if (error) { 1769 xfs_warn(mp, 1770 "%s: xfs_imap_to_bp returned error %d.", 1771 __func__, error); 1772 return error; 1773 } 1774 1775 last_offset = imap.im_boffset; 1776 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1777 ASSERT(next_agino != NULLAGINO); 1778 ASSERT(next_agino != 0); 1779 } 1780 1781 /* 1782 * Now last_ibp points to the buffer previous to us on the 1783 * unlinked list. Pull us from the list. 1784 */ 1785 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1786 0, 0); 1787 if (error) { 1788 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 1789 __func__, error); 1790 return error; 1791 } 1792 next_agino = be32_to_cpu(dip->di_next_unlinked); 1793 ASSERT(next_agino != 0); 1794 ASSERT(next_agino != agino); 1795 if (next_agino != NULLAGINO) { 1796 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1797 offset = ip->i_imap.im_boffset + 1798 offsetof(xfs_dinode_t, di_next_unlinked); 1799 xfs_trans_inode_buf(tp, ibp); 1800 xfs_trans_log_buf(tp, ibp, offset, 1801 (offset + sizeof(xfs_agino_t) - 1)); 1802 xfs_inobp_check(mp, ibp); 1803 } else { 1804 xfs_trans_brelse(tp, ibp); 1805 } 1806 /* 1807 * Point the previous inode on the list to the next inode. 1808 */ 1809 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1810 ASSERT(next_agino != 0); 1811 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1812 xfs_trans_inode_buf(tp, last_ibp); 1813 xfs_trans_log_buf(tp, last_ibp, offset, 1814 (offset + sizeof(xfs_agino_t) - 1)); 1815 xfs_inobp_check(mp, last_ibp); 1816 } 1817 return 0; 1818 } 1819 1820 /* 1821 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1822 * inodes that are in memory - they all must be marked stale and attached to 1823 * the cluster buffer. 1824 */ 1825 STATIC int 1826 xfs_ifree_cluster( 1827 xfs_inode_t *free_ip, 1828 xfs_trans_t *tp, 1829 xfs_ino_t inum) 1830 { 1831 xfs_mount_t *mp = free_ip->i_mount; 1832 int blks_per_cluster; 1833 int nbufs; 1834 int ninodes; 1835 int i, j; 1836 xfs_daddr_t blkno; 1837 xfs_buf_t *bp; 1838 xfs_inode_t *ip; 1839 xfs_inode_log_item_t *iip; 1840 xfs_log_item_t *lip; 1841 struct xfs_perag *pag; 1842 1843 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1844 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1845 blks_per_cluster = 1; 1846 ninodes = mp->m_sb.sb_inopblock; 1847 nbufs = XFS_IALLOC_BLOCKS(mp); 1848 } else { 1849 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1850 mp->m_sb.sb_blocksize; 1851 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1852 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1853 } 1854 1855 for (j = 0; j < nbufs; j++, inum += ninodes) { 1856 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1857 XFS_INO_TO_AGBNO(mp, inum)); 1858 1859 /* 1860 * We obtain and lock the backing buffer first in the process 1861 * here, as we have to ensure that any dirty inode that we 1862 * can't get the flush lock on is attached to the buffer. 1863 * If we scan the in-memory inodes first, then buffer IO can 1864 * complete before we get a lock on it, and hence we may fail 1865 * to mark all the active inodes on the buffer stale. 1866 */ 1867 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1868 mp->m_bsize * blks_per_cluster, 1869 XBF_UNMAPPED); 1870 1871 if (!bp) 1872 return ENOMEM; 1873 1874 /* 1875 * This buffer may not have been correctly initialised as we 1876 * didn't read it from disk. That's not important because we are 1877 * only using to mark the buffer as stale in the log, and to 1878 * attach stale cached inodes on it. That means it will never be 1879 * dispatched for IO. If it is, we want to know about it, and we 1880 * want it to fail. We can acheive this by adding a write 1881 * verifier to the buffer. 1882 */ 1883 bp->b_ops = &xfs_inode_buf_ops; 1884 1885 /* 1886 * Walk the inodes already attached to the buffer and mark them 1887 * stale. These will all have the flush locks held, so an 1888 * in-memory inode walk can't lock them. By marking them all 1889 * stale first, we will not attempt to lock them in the loop 1890 * below as the XFS_ISTALE flag will be set. 1891 */ 1892 lip = bp->b_fspriv; 1893 while (lip) { 1894 if (lip->li_type == XFS_LI_INODE) { 1895 iip = (xfs_inode_log_item_t *)lip; 1896 ASSERT(iip->ili_logged == 1); 1897 lip->li_cb = xfs_istale_done; 1898 xfs_trans_ail_copy_lsn(mp->m_ail, 1899 &iip->ili_flush_lsn, 1900 &iip->ili_item.li_lsn); 1901 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1902 } 1903 lip = lip->li_bio_list; 1904 } 1905 1906 1907 /* 1908 * For each inode in memory attempt to add it to the inode 1909 * buffer and set it up for being staled on buffer IO 1910 * completion. This is safe as we've locked out tail pushing 1911 * and flushing by locking the buffer. 1912 * 1913 * We have already marked every inode that was part of a 1914 * transaction stale above, which means there is no point in 1915 * even trying to lock them. 1916 */ 1917 for (i = 0; i < ninodes; i++) { 1918 retry: 1919 rcu_read_lock(); 1920 ip = radix_tree_lookup(&pag->pag_ici_root, 1921 XFS_INO_TO_AGINO(mp, (inum + i))); 1922 1923 /* Inode not in memory, nothing to do */ 1924 if (!ip) { 1925 rcu_read_unlock(); 1926 continue; 1927 } 1928 1929 /* 1930 * because this is an RCU protected lookup, we could 1931 * find a recently freed or even reallocated inode 1932 * during the lookup. We need to check under the 1933 * i_flags_lock for a valid inode here. Skip it if it 1934 * is not valid, the wrong inode or stale. 1935 */ 1936 spin_lock(&ip->i_flags_lock); 1937 if (ip->i_ino != inum + i || 1938 __xfs_iflags_test(ip, XFS_ISTALE)) { 1939 spin_unlock(&ip->i_flags_lock); 1940 rcu_read_unlock(); 1941 continue; 1942 } 1943 spin_unlock(&ip->i_flags_lock); 1944 1945 /* 1946 * Don't try to lock/unlock the current inode, but we 1947 * _cannot_ skip the other inodes that we did not find 1948 * in the list attached to the buffer and are not 1949 * already marked stale. If we can't lock it, back off 1950 * and retry. 1951 */ 1952 if (ip != free_ip && 1953 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1954 rcu_read_unlock(); 1955 delay(1); 1956 goto retry; 1957 } 1958 rcu_read_unlock(); 1959 1960 xfs_iflock(ip); 1961 xfs_iflags_set(ip, XFS_ISTALE); 1962 1963 /* 1964 * we don't need to attach clean inodes or those only 1965 * with unlogged changes (which we throw away, anyway). 1966 */ 1967 iip = ip->i_itemp; 1968 if (!iip || xfs_inode_clean(ip)) { 1969 ASSERT(ip != free_ip); 1970 xfs_ifunlock(ip); 1971 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1972 continue; 1973 } 1974 1975 iip->ili_last_fields = iip->ili_fields; 1976 iip->ili_fields = 0; 1977 iip->ili_logged = 1; 1978 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 1979 &iip->ili_item.li_lsn); 1980 1981 xfs_buf_attach_iodone(bp, xfs_istale_done, 1982 &iip->ili_item); 1983 1984 if (ip != free_ip) 1985 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1986 } 1987 1988 xfs_trans_stale_inode_buf(tp, bp); 1989 xfs_trans_binval(tp, bp); 1990 } 1991 1992 xfs_perag_put(pag); 1993 return 0; 1994 } 1995 1996 /* 1997 * This is called to return an inode to the inode free list. 1998 * The inode should already be truncated to 0 length and have 1999 * no pages associated with it. This routine also assumes that 2000 * the inode is already a part of the transaction. 2001 * 2002 * The on-disk copy of the inode will have been added to the list 2003 * of unlinked inodes in the AGI. We need to remove the inode from 2004 * that list atomically with respect to freeing it here. 2005 */ 2006 int 2007 xfs_ifree( 2008 xfs_trans_t *tp, 2009 xfs_inode_t *ip, 2010 xfs_bmap_free_t *flist) 2011 { 2012 int error; 2013 int delete; 2014 xfs_ino_t first_ino; 2015 xfs_dinode_t *dip; 2016 xfs_buf_t *ibp; 2017 2018 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2019 ASSERT(ip->i_d.di_nlink == 0); 2020 ASSERT(ip->i_d.di_nextents == 0); 2021 ASSERT(ip->i_d.di_anextents == 0); 2022 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2023 ASSERT(ip->i_d.di_nblocks == 0); 2024 2025 /* 2026 * Pull the on-disk inode from the AGI unlinked list. 2027 */ 2028 error = xfs_iunlink_remove(tp, ip); 2029 if (error != 0) { 2030 return error; 2031 } 2032 2033 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2034 if (error != 0) { 2035 return error; 2036 } 2037 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2038 ip->i_d.di_flags = 0; 2039 ip->i_d.di_dmevmask = 0; 2040 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2041 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2042 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2043 /* 2044 * Bump the generation count so no one will be confused 2045 * by reincarnations of this inode. 2046 */ 2047 ip->i_d.di_gen++; 2048 2049 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2050 2051 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp, 2052 0, 0); 2053 if (error) 2054 return error; 2055 2056 /* 2057 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2058 * from picking up this inode when it is reclaimed (its incore state 2059 * initialzed but not flushed to disk yet). The in-core di_mode is 2060 * already cleared and a corresponding transaction logged. 2061 * The hack here just synchronizes the in-core to on-disk 2062 * di_mode value in advance before the actual inode sync to disk. 2063 * This is OK because the inode is already unlinked and would never 2064 * change its di_mode again for this inode generation. 2065 * This is a temporary hack that would require a proper fix 2066 * in the future. 2067 */ 2068 dip->di_mode = 0; 2069 2070 if (delete) { 2071 error = xfs_ifree_cluster(ip, tp, first_ino); 2072 } 2073 2074 return error; 2075 } 2076 2077 /* 2078 * Reallocate the space for if_broot based on the number of records 2079 * being added or deleted as indicated in rec_diff. Move the records 2080 * and pointers in if_broot to fit the new size. When shrinking this 2081 * will eliminate holes between the records and pointers created by 2082 * the caller. When growing this will create holes to be filled in 2083 * by the caller. 2084 * 2085 * The caller must not request to add more records than would fit in 2086 * the on-disk inode root. If the if_broot is currently NULL, then 2087 * if we adding records one will be allocated. The caller must also 2088 * not request that the number of records go below zero, although 2089 * it can go to zero. 2090 * 2091 * ip -- the inode whose if_broot area is changing 2092 * ext_diff -- the change in the number of records, positive or negative, 2093 * requested for the if_broot array. 2094 */ 2095 void 2096 xfs_iroot_realloc( 2097 xfs_inode_t *ip, 2098 int rec_diff, 2099 int whichfork) 2100 { 2101 struct xfs_mount *mp = ip->i_mount; 2102 int cur_max; 2103 xfs_ifork_t *ifp; 2104 struct xfs_btree_block *new_broot; 2105 int new_max; 2106 size_t new_size; 2107 char *np; 2108 char *op; 2109 2110 /* 2111 * Handle the degenerate case quietly. 2112 */ 2113 if (rec_diff == 0) { 2114 return; 2115 } 2116 2117 ifp = XFS_IFORK_PTR(ip, whichfork); 2118 if (rec_diff > 0) { 2119 /* 2120 * If there wasn't any memory allocated before, just 2121 * allocate it now and get out. 2122 */ 2123 if (ifp->if_broot_bytes == 0) { 2124 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 2125 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2126 ifp->if_broot_bytes = (int)new_size; 2127 return; 2128 } 2129 2130 /* 2131 * If there is already an existing if_broot, then we need 2132 * to realloc() it and shift the pointers to their new 2133 * location. The records don't change location because 2134 * they are kept butted up against the btree block header. 2135 */ 2136 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2137 new_max = cur_max + rec_diff; 2138 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2139 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2140 XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max), 2141 KM_SLEEP | KM_NOFS); 2142 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2143 ifp->if_broot_bytes); 2144 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2145 (int)new_size); 2146 ifp->if_broot_bytes = (int)new_size; 2147 ASSERT(ifp->if_broot_bytes <= 2148 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip)); 2149 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2150 return; 2151 } 2152 2153 /* 2154 * rec_diff is less than 0. In this case, we are shrinking the 2155 * if_broot buffer. It must already exist. If we go to zero 2156 * records, just get rid of the root and clear the status bit. 2157 */ 2158 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2159 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2160 new_max = cur_max + rec_diff; 2161 ASSERT(new_max >= 0); 2162 if (new_max > 0) 2163 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2164 else 2165 new_size = 0; 2166 if (new_size > 0) { 2167 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2168 /* 2169 * First copy over the btree block header. 2170 */ 2171 memcpy(new_broot, ifp->if_broot, 2172 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 2173 } else { 2174 new_broot = NULL; 2175 ifp->if_flags &= ~XFS_IFBROOT; 2176 } 2177 2178 /* 2179 * Only copy the records and pointers if there are any. 2180 */ 2181 if (new_max > 0) { 2182 /* 2183 * First copy the records. 2184 */ 2185 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2186 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2187 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2188 2189 /* 2190 * Then copy the pointers. 2191 */ 2192 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2193 ifp->if_broot_bytes); 2194 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2195 (int)new_size); 2196 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2197 } 2198 kmem_free(ifp->if_broot); 2199 ifp->if_broot = new_broot; 2200 ifp->if_broot_bytes = (int)new_size; 2201 ASSERT(ifp->if_broot_bytes <= 2202 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip)); 2203 return; 2204 } 2205 2206 2207 /* 2208 * This is called when the amount of space needed for if_data 2209 * is increased or decreased. The change in size is indicated by 2210 * the number of bytes that need to be added or deleted in the 2211 * byte_diff parameter. 2212 * 2213 * If the amount of space needed has decreased below the size of the 2214 * inline buffer, then switch to using the inline buffer. Otherwise, 2215 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2216 * to what is needed. 2217 * 2218 * ip -- the inode whose if_data area is changing 2219 * byte_diff -- the change in the number of bytes, positive or negative, 2220 * requested for the if_data array. 2221 */ 2222 void 2223 xfs_idata_realloc( 2224 xfs_inode_t *ip, 2225 int byte_diff, 2226 int whichfork) 2227 { 2228 xfs_ifork_t *ifp; 2229 int new_size; 2230 int real_size; 2231 2232 if (byte_diff == 0) { 2233 return; 2234 } 2235 2236 ifp = XFS_IFORK_PTR(ip, whichfork); 2237 new_size = (int)ifp->if_bytes + byte_diff; 2238 ASSERT(new_size >= 0); 2239 2240 if (new_size == 0) { 2241 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2242 kmem_free(ifp->if_u1.if_data); 2243 } 2244 ifp->if_u1.if_data = NULL; 2245 real_size = 0; 2246 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2247 /* 2248 * If the valid extents/data can fit in if_inline_ext/data, 2249 * copy them from the malloc'd vector and free it. 2250 */ 2251 if (ifp->if_u1.if_data == NULL) { 2252 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2253 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2254 ASSERT(ifp->if_real_bytes != 0); 2255 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2256 new_size); 2257 kmem_free(ifp->if_u1.if_data); 2258 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2259 } 2260 real_size = 0; 2261 } else { 2262 /* 2263 * Stuck with malloc/realloc. 2264 * For inline data, the underlying buffer must be 2265 * a multiple of 4 bytes in size so that it can be 2266 * logged and stay on word boundaries. We enforce 2267 * that here. 2268 */ 2269 real_size = roundup(new_size, 4); 2270 if (ifp->if_u1.if_data == NULL) { 2271 ASSERT(ifp->if_real_bytes == 0); 2272 ifp->if_u1.if_data = kmem_alloc(real_size, 2273 KM_SLEEP | KM_NOFS); 2274 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2275 /* 2276 * Only do the realloc if the underlying size 2277 * is really changing. 2278 */ 2279 if (ifp->if_real_bytes != real_size) { 2280 ifp->if_u1.if_data = 2281 kmem_realloc(ifp->if_u1.if_data, 2282 real_size, 2283 ifp->if_real_bytes, 2284 KM_SLEEP | KM_NOFS); 2285 } 2286 } else { 2287 ASSERT(ifp->if_real_bytes == 0); 2288 ifp->if_u1.if_data = kmem_alloc(real_size, 2289 KM_SLEEP | KM_NOFS); 2290 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2291 ifp->if_bytes); 2292 } 2293 } 2294 ifp->if_real_bytes = real_size; 2295 ifp->if_bytes = new_size; 2296 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2297 } 2298 2299 void 2300 xfs_idestroy_fork( 2301 xfs_inode_t *ip, 2302 int whichfork) 2303 { 2304 xfs_ifork_t *ifp; 2305 2306 ifp = XFS_IFORK_PTR(ip, whichfork); 2307 if (ifp->if_broot != NULL) { 2308 kmem_free(ifp->if_broot); 2309 ifp->if_broot = NULL; 2310 } 2311 2312 /* 2313 * If the format is local, then we can't have an extents 2314 * array so just look for an inline data array. If we're 2315 * not local then we may or may not have an extents list, 2316 * so check and free it up if we do. 2317 */ 2318 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2319 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2320 (ifp->if_u1.if_data != NULL)) { 2321 ASSERT(ifp->if_real_bytes != 0); 2322 kmem_free(ifp->if_u1.if_data); 2323 ifp->if_u1.if_data = NULL; 2324 ifp->if_real_bytes = 0; 2325 } 2326 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2327 ((ifp->if_flags & XFS_IFEXTIREC) || 2328 ((ifp->if_u1.if_extents != NULL) && 2329 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2330 ASSERT(ifp->if_real_bytes != 0); 2331 xfs_iext_destroy(ifp); 2332 } 2333 ASSERT(ifp->if_u1.if_extents == NULL || 2334 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2335 ASSERT(ifp->if_real_bytes == 0); 2336 if (whichfork == XFS_ATTR_FORK) { 2337 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2338 ip->i_afp = NULL; 2339 } 2340 } 2341 2342 /* 2343 * This is called to unpin an inode. The caller must have the inode locked 2344 * in at least shared mode so that the buffer cannot be subsequently pinned 2345 * once someone is waiting for it to be unpinned. 2346 */ 2347 static void 2348 xfs_iunpin( 2349 struct xfs_inode *ip) 2350 { 2351 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2352 2353 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2354 2355 /* Give the log a push to start the unpinning I/O */ 2356 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2357 2358 } 2359 2360 static void 2361 __xfs_iunpin_wait( 2362 struct xfs_inode *ip) 2363 { 2364 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2365 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2366 2367 xfs_iunpin(ip); 2368 2369 do { 2370 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2371 if (xfs_ipincount(ip)) 2372 io_schedule(); 2373 } while (xfs_ipincount(ip)); 2374 finish_wait(wq, &wait.wait); 2375 } 2376 2377 void 2378 xfs_iunpin_wait( 2379 struct xfs_inode *ip) 2380 { 2381 if (xfs_ipincount(ip)) 2382 __xfs_iunpin_wait(ip); 2383 } 2384 2385 /* 2386 * xfs_iextents_copy() 2387 * 2388 * This is called to copy the REAL extents (as opposed to the delayed 2389 * allocation extents) from the inode into the given buffer. It 2390 * returns the number of bytes copied into the buffer. 2391 * 2392 * If there are no delayed allocation extents, then we can just 2393 * memcpy() the extents into the buffer. Otherwise, we need to 2394 * examine each extent in turn and skip those which are delayed. 2395 */ 2396 int 2397 xfs_iextents_copy( 2398 xfs_inode_t *ip, 2399 xfs_bmbt_rec_t *dp, 2400 int whichfork) 2401 { 2402 int copied; 2403 int i; 2404 xfs_ifork_t *ifp; 2405 int nrecs; 2406 xfs_fsblock_t start_block; 2407 2408 ifp = XFS_IFORK_PTR(ip, whichfork); 2409 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2410 ASSERT(ifp->if_bytes > 0); 2411 2412 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2413 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2414 ASSERT(nrecs > 0); 2415 2416 /* 2417 * There are some delayed allocation extents in the 2418 * inode, so copy the extents one at a time and skip 2419 * the delayed ones. There must be at least one 2420 * non-delayed extent. 2421 */ 2422 copied = 0; 2423 for (i = 0; i < nrecs; i++) { 2424 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2425 start_block = xfs_bmbt_get_startblock(ep); 2426 if (isnullstartblock(start_block)) { 2427 /* 2428 * It's a delayed allocation extent, so skip it. 2429 */ 2430 continue; 2431 } 2432 2433 /* Translate to on disk format */ 2434 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2435 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2436 dp++; 2437 copied++; 2438 } 2439 ASSERT(copied != 0); 2440 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2441 2442 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2443 } 2444 2445 /* 2446 * Each of the following cases stores data into the same region 2447 * of the on-disk inode, so only one of them can be valid at 2448 * any given time. While it is possible to have conflicting formats 2449 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2450 * in EXTENTS format, this can only happen when the fork has 2451 * changed formats after being modified but before being flushed. 2452 * In these cases, the format always takes precedence, because the 2453 * format indicates the current state of the fork. 2454 */ 2455 /*ARGSUSED*/ 2456 STATIC void 2457 xfs_iflush_fork( 2458 xfs_inode_t *ip, 2459 xfs_dinode_t *dip, 2460 xfs_inode_log_item_t *iip, 2461 int whichfork, 2462 xfs_buf_t *bp) 2463 { 2464 char *cp; 2465 xfs_ifork_t *ifp; 2466 xfs_mount_t *mp; 2467 static const short brootflag[2] = 2468 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2469 static const short dataflag[2] = 2470 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2471 static const short extflag[2] = 2472 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2473 2474 if (!iip) 2475 return; 2476 ifp = XFS_IFORK_PTR(ip, whichfork); 2477 /* 2478 * This can happen if we gave up in iformat in an error path, 2479 * for the attribute fork. 2480 */ 2481 if (!ifp) { 2482 ASSERT(whichfork == XFS_ATTR_FORK); 2483 return; 2484 } 2485 cp = XFS_DFORK_PTR(dip, whichfork); 2486 mp = ip->i_mount; 2487 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2488 case XFS_DINODE_FMT_LOCAL: 2489 if ((iip->ili_fields & dataflag[whichfork]) && 2490 (ifp->if_bytes > 0)) { 2491 ASSERT(ifp->if_u1.if_data != NULL); 2492 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2493 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2494 } 2495 break; 2496 2497 case XFS_DINODE_FMT_EXTENTS: 2498 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2499 !(iip->ili_fields & extflag[whichfork])); 2500 if ((iip->ili_fields & extflag[whichfork]) && 2501 (ifp->if_bytes > 0)) { 2502 ASSERT(xfs_iext_get_ext(ifp, 0)); 2503 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2504 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2505 whichfork); 2506 } 2507 break; 2508 2509 case XFS_DINODE_FMT_BTREE: 2510 if ((iip->ili_fields & brootflag[whichfork]) && 2511 (ifp->if_broot_bytes > 0)) { 2512 ASSERT(ifp->if_broot != NULL); 2513 ASSERT(ifp->if_broot_bytes <= 2514 (XFS_IFORK_SIZE(ip, whichfork) + 2515 XFS_BROOT_SIZE_ADJ(ip))); 2516 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2517 (xfs_bmdr_block_t *)cp, 2518 XFS_DFORK_SIZE(dip, mp, whichfork)); 2519 } 2520 break; 2521 2522 case XFS_DINODE_FMT_DEV: 2523 if (iip->ili_fields & XFS_ILOG_DEV) { 2524 ASSERT(whichfork == XFS_DATA_FORK); 2525 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2526 } 2527 break; 2528 2529 case XFS_DINODE_FMT_UUID: 2530 if (iip->ili_fields & XFS_ILOG_UUID) { 2531 ASSERT(whichfork == XFS_DATA_FORK); 2532 memcpy(XFS_DFORK_DPTR(dip), 2533 &ip->i_df.if_u2.if_uuid, 2534 sizeof(uuid_t)); 2535 } 2536 break; 2537 2538 default: 2539 ASSERT(0); 2540 break; 2541 } 2542 } 2543 2544 STATIC int 2545 xfs_iflush_cluster( 2546 xfs_inode_t *ip, 2547 xfs_buf_t *bp) 2548 { 2549 xfs_mount_t *mp = ip->i_mount; 2550 struct xfs_perag *pag; 2551 unsigned long first_index, mask; 2552 unsigned long inodes_per_cluster; 2553 int ilist_size; 2554 xfs_inode_t **ilist; 2555 xfs_inode_t *iq; 2556 int nr_found; 2557 int clcount = 0; 2558 int bufwasdelwri; 2559 int i; 2560 2561 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2562 2563 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2564 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2565 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2566 if (!ilist) 2567 goto out_put; 2568 2569 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2570 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2571 rcu_read_lock(); 2572 /* really need a gang lookup range call here */ 2573 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2574 first_index, inodes_per_cluster); 2575 if (nr_found == 0) 2576 goto out_free; 2577 2578 for (i = 0; i < nr_found; i++) { 2579 iq = ilist[i]; 2580 if (iq == ip) 2581 continue; 2582 2583 /* 2584 * because this is an RCU protected lookup, we could find a 2585 * recently freed or even reallocated inode during the lookup. 2586 * We need to check under the i_flags_lock for a valid inode 2587 * here. Skip it if it is not valid or the wrong inode. 2588 */ 2589 spin_lock(&ip->i_flags_lock); 2590 if (!ip->i_ino || 2591 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2592 spin_unlock(&ip->i_flags_lock); 2593 continue; 2594 } 2595 spin_unlock(&ip->i_flags_lock); 2596 2597 /* 2598 * Do an un-protected check to see if the inode is dirty and 2599 * is a candidate for flushing. These checks will be repeated 2600 * later after the appropriate locks are acquired. 2601 */ 2602 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2603 continue; 2604 2605 /* 2606 * Try to get locks. If any are unavailable or it is pinned, 2607 * then this inode cannot be flushed and is skipped. 2608 */ 2609 2610 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2611 continue; 2612 if (!xfs_iflock_nowait(iq)) { 2613 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2614 continue; 2615 } 2616 if (xfs_ipincount(iq)) { 2617 xfs_ifunlock(iq); 2618 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2619 continue; 2620 } 2621 2622 /* 2623 * arriving here means that this inode can be flushed. First 2624 * re-check that it's dirty before flushing. 2625 */ 2626 if (!xfs_inode_clean(iq)) { 2627 int error; 2628 error = xfs_iflush_int(iq, bp); 2629 if (error) { 2630 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2631 goto cluster_corrupt_out; 2632 } 2633 clcount++; 2634 } else { 2635 xfs_ifunlock(iq); 2636 } 2637 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2638 } 2639 2640 if (clcount) { 2641 XFS_STATS_INC(xs_icluster_flushcnt); 2642 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2643 } 2644 2645 out_free: 2646 rcu_read_unlock(); 2647 kmem_free(ilist); 2648 out_put: 2649 xfs_perag_put(pag); 2650 return 0; 2651 2652 2653 cluster_corrupt_out: 2654 /* 2655 * Corruption detected in the clustering loop. Invalidate the 2656 * inode buffer and shut down the filesystem. 2657 */ 2658 rcu_read_unlock(); 2659 /* 2660 * Clean up the buffer. If it was delwri, just release it -- 2661 * brelse can handle it with no problems. If not, shut down the 2662 * filesystem before releasing the buffer. 2663 */ 2664 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 2665 if (bufwasdelwri) 2666 xfs_buf_relse(bp); 2667 2668 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2669 2670 if (!bufwasdelwri) { 2671 /* 2672 * Just like incore_relse: if we have b_iodone functions, 2673 * mark the buffer as an error and call them. Otherwise 2674 * mark it as stale and brelse. 2675 */ 2676 if (bp->b_iodone) { 2677 XFS_BUF_UNDONE(bp); 2678 xfs_buf_stale(bp); 2679 xfs_buf_ioerror(bp, EIO); 2680 xfs_buf_ioend(bp, 0); 2681 } else { 2682 xfs_buf_stale(bp); 2683 xfs_buf_relse(bp); 2684 } 2685 } 2686 2687 /* 2688 * Unlocks the flush lock 2689 */ 2690 xfs_iflush_abort(iq, false); 2691 kmem_free(ilist); 2692 xfs_perag_put(pag); 2693 return XFS_ERROR(EFSCORRUPTED); 2694 } 2695 2696 /* 2697 * Flush dirty inode metadata into the backing buffer. 2698 * 2699 * The caller must have the inode lock and the inode flush lock held. The 2700 * inode lock will still be held upon return to the caller, and the inode 2701 * flush lock will be released after the inode has reached the disk. 2702 * 2703 * The caller must write out the buffer returned in *bpp and release it. 2704 */ 2705 int 2706 xfs_iflush( 2707 struct xfs_inode *ip, 2708 struct xfs_buf **bpp) 2709 { 2710 struct xfs_mount *mp = ip->i_mount; 2711 struct xfs_buf *bp; 2712 struct xfs_dinode *dip; 2713 int error; 2714 2715 XFS_STATS_INC(xs_iflush_count); 2716 2717 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2718 ASSERT(xfs_isiflocked(ip)); 2719 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2720 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2721 2722 *bpp = NULL; 2723 2724 xfs_iunpin_wait(ip); 2725 2726 /* 2727 * For stale inodes we cannot rely on the backing buffer remaining 2728 * stale in cache for the remaining life of the stale inode and so 2729 * xfs_imap_to_bp() below may give us a buffer that no longer contains 2730 * inodes below. We have to check this after ensuring the inode is 2731 * unpinned so that it is safe to reclaim the stale inode after the 2732 * flush call. 2733 */ 2734 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2735 xfs_ifunlock(ip); 2736 return 0; 2737 } 2738 2739 /* 2740 * This may have been unpinned because the filesystem is shutting 2741 * down forcibly. If that's the case we must not write this inode 2742 * to disk, because the log record didn't make it to disk. 2743 * 2744 * We also have to remove the log item from the AIL in this case, 2745 * as we wait for an empty AIL as part of the unmount process. 2746 */ 2747 if (XFS_FORCED_SHUTDOWN(mp)) { 2748 error = XFS_ERROR(EIO); 2749 goto abort_out; 2750 } 2751 2752 /* 2753 * Get the buffer containing the on-disk inode. 2754 */ 2755 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 2756 0); 2757 if (error || !bp) { 2758 xfs_ifunlock(ip); 2759 return error; 2760 } 2761 2762 /* 2763 * First flush out the inode that xfs_iflush was called with. 2764 */ 2765 error = xfs_iflush_int(ip, bp); 2766 if (error) 2767 goto corrupt_out; 2768 2769 /* 2770 * If the buffer is pinned then push on the log now so we won't 2771 * get stuck waiting in the write for too long. 2772 */ 2773 if (xfs_buf_ispinned(bp)) 2774 xfs_log_force(mp, 0); 2775 2776 /* 2777 * inode clustering: 2778 * see if other inodes can be gathered into this write 2779 */ 2780 error = xfs_iflush_cluster(ip, bp); 2781 if (error) 2782 goto cluster_corrupt_out; 2783 2784 *bpp = bp; 2785 return 0; 2786 2787 corrupt_out: 2788 xfs_buf_relse(bp); 2789 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2790 cluster_corrupt_out: 2791 error = XFS_ERROR(EFSCORRUPTED); 2792 abort_out: 2793 /* 2794 * Unlocks the flush lock 2795 */ 2796 xfs_iflush_abort(ip, false); 2797 return error; 2798 } 2799 2800 2801 STATIC int 2802 xfs_iflush_int( 2803 struct xfs_inode *ip, 2804 struct xfs_buf *bp) 2805 { 2806 struct xfs_inode_log_item *iip = ip->i_itemp; 2807 struct xfs_dinode *dip; 2808 struct xfs_mount *mp = ip->i_mount; 2809 2810 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2811 ASSERT(xfs_isiflocked(ip)); 2812 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2813 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2814 ASSERT(iip != NULL && iip->ili_fields != 0); 2815 2816 /* set *dip = inode's place in the buffer */ 2817 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2818 2819 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2820 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2821 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2822 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2823 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2824 goto corrupt_out; 2825 } 2826 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2827 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2828 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2829 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2830 __func__, ip->i_ino, ip, ip->i_d.di_magic); 2831 goto corrupt_out; 2832 } 2833 if (S_ISREG(ip->i_d.di_mode)) { 2834 if (XFS_TEST_ERROR( 2835 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2836 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2837 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2838 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2839 "%s: Bad regular inode %Lu, ptr 0x%p", 2840 __func__, ip->i_ino, ip); 2841 goto corrupt_out; 2842 } 2843 } else if (S_ISDIR(ip->i_d.di_mode)) { 2844 if (XFS_TEST_ERROR( 2845 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2846 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2847 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2848 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2849 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2850 "%s: Bad directory inode %Lu, ptr 0x%p", 2851 __func__, ip->i_ino, ip); 2852 goto corrupt_out; 2853 } 2854 } 2855 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2856 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2857 XFS_RANDOM_IFLUSH_5)) { 2858 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2859 "%s: detected corrupt incore inode %Lu, " 2860 "total extents = %d, nblocks = %Ld, ptr 0x%p", 2861 __func__, ip->i_ino, 2862 ip->i_d.di_nextents + ip->i_d.di_anextents, 2863 ip->i_d.di_nblocks, ip); 2864 goto corrupt_out; 2865 } 2866 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2867 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2868 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2869 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2870 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 2871 goto corrupt_out; 2872 } 2873 /* 2874 * bump the flush iteration count, used to detect flushes which 2875 * postdate a log record during recovery. This is redundant as we now 2876 * log every change and hence this can't happen. Still, it doesn't hurt. 2877 */ 2878 ip->i_d.di_flushiter++; 2879 2880 /* 2881 * Copy the dirty parts of the inode into the on-disk 2882 * inode. We always copy out the core of the inode, 2883 * because if the inode is dirty at all the core must 2884 * be. 2885 */ 2886 xfs_dinode_to_disk(dip, &ip->i_d); 2887 2888 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2889 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2890 ip->i_d.di_flushiter = 0; 2891 2892 /* 2893 * If this is really an old format inode and the superblock version 2894 * has not been updated to support only new format inodes, then 2895 * convert back to the old inode format. If the superblock version 2896 * has been updated, then make the conversion permanent. 2897 */ 2898 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2899 if (ip->i_d.di_version == 1) { 2900 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2901 /* 2902 * Convert it back. 2903 */ 2904 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2905 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2906 } else { 2907 /* 2908 * The superblock version has already been bumped, 2909 * so just make the conversion to the new inode 2910 * format permanent. 2911 */ 2912 ip->i_d.di_version = 2; 2913 dip->di_version = 2; 2914 ip->i_d.di_onlink = 0; 2915 dip->di_onlink = 0; 2916 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 2917 memset(&(dip->di_pad[0]), 0, 2918 sizeof(dip->di_pad)); 2919 ASSERT(xfs_get_projid(ip) == 0); 2920 } 2921 } 2922 2923 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 2924 if (XFS_IFORK_Q(ip)) 2925 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 2926 xfs_inobp_check(mp, bp); 2927 2928 /* 2929 * We've recorded everything logged in the inode, so we'd like to clear 2930 * the ili_fields bits so we don't log and flush things unnecessarily. 2931 * However, we can't stop logging all this information until the data 2932 * we've copied into the disk buffer is written to disk. If we did we 2933 * might overwrite the copy of the inode in the log with all the data 2934 * after re-logging only part of it, and in the face of a crash we 2935 * wouldn't have all the data we need to recover. 2936 * 2937 * What we do is move the bits to the ili_last_fields field. When 2938 * logging the inode, these bits are moved back to the ili_fields field. 2939 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 2940 * know that the information those bits represent is permanently on 2941 * disk. As long as the flush completes before the inode is logged 2942 * again, then both ili_fields and ili_last_fields will be cleared. 2943 * 2944 * We can play with the ili_fields bits here, because the inode lock 2945 * must be held exclusively in order to set bits there and the flush 2946 * lock protects the ili_last_fields bits. Set ili_logged so the flush 2947 * done routine can tell whether or not to look in the AIL. Also, store 2948 * the current LSN of the inode so that we can tell whether the item has 2949 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 2950 * need the AIL lock, because it is a 64 bit value that cannot be read 2951 * atomically. 2952 */ 2953 iip->ili_last_fields = iip->ili_fields; 2954 iip->ili_fields = 0; 2955 iip->ili_logged = 1; 2956 2957 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2958 &iip->ili_item.li_lsn); 2959 2960 /* 2961 * Attach the function xfs_iflush_done to the inode's 2962 * buffer. This will remove the inode from the AIL 2963 * and unlock the inode's flush lock when the inode is 2964 * completely written to disk. 2965 */ 2966 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 2967 2968 /* update the lsn in the on disk inode if required */ 2969 if (ip->i_d.di_version == 3) 2970 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 2971 2972 /* generate the checksum. */ 2973 xfs_dinode_calc_crc(mp, dip); 2974 2975 ASSERT(bp->b_fspriv != NULL); 2976 ASSERT(bp->b_iodone != NULL); 2977 return 0; 2978 2979 corrupt_out: 2980 return XFS_ERROR(EFSCORRUPTED); 2981 } 2982 2983 /* 2984 * Return a pointer to the extent record at file index idx. 2985 */ 2986 xfs_bmbt_rec_host_t * 2987 xfs_iext_get_ext( 2988 xfs_ifork_t *ifp, /* inode fork pointer */ 2989 xfs_extnum_t idx) /* index of target extent */ 2990 { 2991 ASSERT(idx >= 0); 2992 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 2993 2994 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 2995 return ifp->if_u1.if_ext_irec->er_extbuf; 2996 } else if (ifp->if_flags & XFS_IFEXTIREC) { 2997 xfs_ext_irec_t *erp; /* irec pointer */ 2998 int erp_idx = 0; /* irec index */ 2999 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3000 3001 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3002 return &erp->er_extbuf[page_idx]; 3003 } else if (ifp->if_bytes) { 3004 return &ifp->if_u1.if_extents[idx]; 3005 } else { 3006 return NULL; 3007 } 3008 } 3009 3010 /* 3011 * Insert new item(s) into the extent records for incore inode 3012 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3013 */ 3014 void 3015 xfs_iext_insert( 3016 xfs_inode_t *ip, /* incore inode pointer */ 3017 xfs_extnum_t idx, /* starting index of new items */ 3018 xfs_extnum_t count, /* number of inserted items */ 3019 xfs_bmbt_irec_t *new, /* items to insert */ 3020 int state) /* type of extent conversion */ 3021 { 3022 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3023 xfs_extnum_t i; /* extent record index */ 3024 3025 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 3026 3027 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3028 xfs_iext_add(ifp, idx, count); 3029 for (i = idx; i < idx + count; i++, new++) 3030 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3031 } 3032 3033 /* 3034 * This is called when the amount of space required for incore file 3035 * extents needs to be increased. The ext_diff parameter stores the 3036 * number of new extents being added and the idx parameter contains 3037 * the extent index where the new extents will be added. If the new 3038 * extents are being appended, then we just need to (re)allocate and 3039 * initialize the space. Otherwise, if the new extents are being 3040 * inserted into the middle of the existing entries, a bit more work 3041 * is required to make room for the new extents to be inserted. The 3042 * caller is responsible for filling in the new extent entries upon 3043 * return. 3044 */ 3045 void 3046 xfs_iext_add( 3047 xfs_ifork_t *ifp, /* inode fork pointer */ 3048 xfs_extnum_t idx, /* index to begin adding exts */ 3049 int ext_diff) /* number of extents to add */ 3050 { 3051 int byte_diff; /* new bytes being added */ 3052 int new_size; /* size of extents after adding */ 3053 xfs_extnum_t nextents; /* number of extents in file */ 3054 3055 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3056 ASSERT((idx >= 0) && (idx <= nextents)); 3057 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3058 new_size = ifp->if_bytes + byte_diff; 3059 /* 3060 * If the new number of extents (nextents + ext_diff) 3061 * fits inside the inode, then continue to use the inline 3062 * extent buffer. 3063 */ 3064 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3065 if (idx < nextents) { 3066 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3067 &ifp->if_u2.if_inline_ext[idx], 3068 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3069 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3070 } 3071 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3072 ifp->if_real_bytes = 0; 3073 } 3074 /* 3075 * Otherwise use a linear (direct) extent list. 3076 * If the extents are currently inside the inode, 3077 * xfs_iext_realloc_direct will switch us from 3078 * inline to direct extent allocation mode. 3079 */ 3080 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3081 xfs_iext_realloc_direct(ifp, new_size); 3082 if (idx < nextents) { 3083 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3084 &ifp->if_u1.if_extents[idx], 3085 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3086 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3087 } 3088 } 3089 /* Indirection array */ 3090 else { 3091 xfs_ext_irec_t *erp; 3092 int erp_idx = 0; 3093 int page_idx = idx; 3094 3095 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3096 if (ifp->if_flags & XFS_IFEXTIREC) { 3097 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3098 } else { 3099 xfs_iext_irec_init(ifp); 3100 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3101 erp = ifp->if_u1.if_ext_irec; 3102 } 3103 /* Extents fit in target extent page */ 3104 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3105 if (page_idx < erp->er_extcount) { 3106 memmove(&erp->er_extbuf[page_idx + ext_diff], 3107 &erp->er_extbuf[page_idx], 3108 (erp->er_extcount - page_idx) * 3109 sizeof(xfs_bmbt_rec_t)); 3110 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3111 } 3112 erp->er_extcount += ext_diff; 3113 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3114 } 3115 /* Insert a new extent page */ 3116 else if (erp) { 3117 xfs_iext_add_indirect_multi(ifp, 3118 erp_idx, page_idx, ext_diff); 3119 } 3120 /* 3121 * If extent(s) are being appended to the last page in 3122 * the indirection array and the new extent(s) don't fit 3123 * in the page, then erp is NULL and erp_idx is set to 3124 * the next index needed in the indirection array. 3125 */ 3126 else { 3127 int count = ext_diff; 3128 3129 while (count) { 3130 erp = xfs_iext_irec_new(ifp, erp_idx); 3131 erp->er_extcount = count; 3132 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3133 if (count) { 3134 erp_idx++; 3135 } 3136 } 3137 } 3138 } 3139 ifp->if_bytes = new_size; 3140 } 3141 3142 /* 3143 * This is called when incore extents are being added to the indirection 3144 * array and the new extents do not fit in the target extent list. The 3145 * erp_idx parameter contains the irec index for the target extent list 3146 * in the indirection array, and the idx parameter contains the extent 3147 * index within the list. The number of extents being added is stored 3148 * in the count parameter. 3149 * 3150 * |-------| |-------| 3151 * | | | | idx - number of extents before idx 3152 * | idx | | count | 3153 * | | | | count - number of extents being inserted at idx 3154 * |-------| |-------| 3155 * | count | | nex2 | nex2 - number of extents after idx + count 3156 * |-------| |-------| 3157 */ 3158 void 3159 xfs_iext_add_indirect_multi( 3160 xfs_ifork_t *ifp, /* inode fork pointer */ 3161 int erp_idx, /* target extent irec index */ 3162 xfs_extnum_t idx, /* index within target list */ 3163 int count) /* new extents being added */ 3164 { 3165 int byte_diff; /* new bytes being added */ 3166 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3167 xfs_extnum_t ext_diff; /* number of extents to add */ 3168 xfs_extnum_t ext_cnt; /* new extents still needed */ 3169 xfs_extnum_t nex2; /* extents after idx + count */ 3170 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3171 int nlists; /* number of irec's (lists) */ 3172 3173 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3174 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3175 nex2 = erp->er_extcount - idx; 3176 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3177 3178 /* 3179 * Save second part of target extent list 3180 * (all extents past */ 3181 if (nex2) { 3182 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3183 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3184 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3185 erp->er_extcount -= nex2; 3186 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3187 memset(&erp->er_extbuf[idx], 0, byte_diff); 3188 } 3189 3190 /* 3191 * Add the new extents to the end of the target 3192 * list, then allocate new irec record(s) and 3193 * extent buffer(s) as needed to store the rest 3194 * of the new extents. 3195 */ 3196 ext_cnt = count; 3197 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3198 if (ext_diff) { 3199 erp->er_extcount += ext_diff; 3200 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3201 ext_cnt -= ext_diff; 3202 } 3203 while (ext_cnt) { 3204 erp_idx++; 3205 erp = xfs_iext_irec_new(ifp, erp_idx); 3206 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3207 erp->er_extcount = ext_diff; 3208 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3209 ext_cnt -= ext_diff; 3210 } 3211 3212 /* Add nex2 extents back to indirection array */ 3213 if (nex2) { 3214 xfs_extnum_t ext_avail; 3215 int i; 3216 3217 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3218 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3219 i = 0; 3220 /* 3221 * If nex2 extents fit in the current page, append 3222 * nex2_ep after the new extents. 3223 */ 3224 if (nex2 <= ext_avail) { 3225 i = erp->er_extcount; 3226 } 3227 /* 3228 * Otherwise, check if space is available in the 3229 * next page. 3230 */ 3231 else if ((erp_idx < nlists - 1) && 3232 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3233 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3234 erp_idx++; 3235 erp++; 3236 /* Create a hole for nex2 extents */ 3237 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3238 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3239 } 3240 /* 3241 * Final choice, create a new extent page for 3242 * nex2 extents. 3243 */ 3244 else { 3245 erp_idx++; 3246 erp = xfs_iext_irec_new(ifp, erp_idx); 3247 } 3248 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3249 kmem_free(nex2_ep); 3250 erp->er_extcount += nex2; 3251 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3252 } 3253 } 3254 3255 /* 3256 * This is called when the amount of space required for incore file 3257 * extents needs to be decreased. The ext_diff parameter stores the 3258 * number of extents to be removed and the idx parameter contains 3259 * the extent index where the extents will be removed from. 3260 * 3261 * If the amount of space needed has decreased below the linear 3262 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3263 * extent array. Otherwise, use kmem_realloc() to adjust the 3264 * size to what is needed. 3265 */ 3266 void 3267 xfs_iext_remove( 3268 xfs_inode_t *ip, /* incore inode pointer */ 3269 xfs_extnum_t idx, /* index to begin removing exts */ 3270 int ext_diff, /* number of extents to remove */ 3271 int state) /* type of extent conversion */ 3272 { 3273 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3274 xfs_extnum_t nextents; /* number of extents in file */ 3275 int new_size; /* size of extents after removal */ 3276 3277 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3278 3279 ASSERT(ext_diff > 0); 3280 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3281 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3282 3283 if (new_size == 0) { 3284 xfs_iext_destroy(ifp); 3285 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3286 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3287 } else if (ifp->if_real_bytes) { 3288 xfs_iext_remove_direct(ifp, idx, ext_diff); 3289 } else { 3290 xfs_iext_remove_inline(ifp, idx, ext_diff); 3291 } 3292 ifp->if_bytes = new_size; 3293 } 3294 3295 /* 3296 * This removes ext_diff extents from the inline buffer, beginning 3297 * at extent index idx. 3298 */ 3299 void 3300 xfs_iext_remove_inline( 3301 xfs_ifork_t *ifp, /* inode fork pointer */ 3302 xfs_extnum_t idx, /* index to begin removing exts */ 3303 int ext_diff) /* number of extents to remove */ 3304 { 3305 int nextents; /* number of extents in file */ 3306 3307 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3308 ASSERT(idx < XFS_INLINE_EXTS); 3309 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3310 ASSERT(((nextents - ext_diff) > 0) && 3311 (nextents - ext_diff) < XFS_INLINE_EXTS); 3312 3313 if (idx + ext_diff < nextents) { 3314 memmove(&ifp->if_u2.if_inline_ext[idx], 3315 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3316 (nextents - (idx + ext_diff)) * 3317 sizeof(xfs_bmbt_rec_t)); 3318 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3319 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3320 } else { 3321 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3322 ext_diff * sizeof(xfs_bmbt_rec_t)); 3323 } 3324 } 3325 3326 /* 3327 * This removes ext_diff extents from a linear (direct) extent list, 3328 * beginning at extent index idx. If the extents are being removed 3329 * from the end of the list (ie. truncate) then we just need to re- 3330 * allocate the list to remove the extra space. Otherwise, if the 3331 * extents are being removed from the middle of the existing extent 3332 * entries, then we first need to move the extent records beginning 3333 * at idx + ext_diff up in the list to overwrite the records being 3334 * removed, then remove the extra space via kmem_realloc. 3335 */ 3336 void 3337 xfs_iext_remove_direct( 3338 xfs_ifork_t *ifp, /* inode fork pointer */ 3339 xfs_extnum_t idx, /* index to begin removing exts */ 3340 int ext_diff) /* number of extents to remove */ 3341 { 3342 xfs_extnum_t nextents; /* number of extents in file */ 3343 int new_size; /* size of extents after removal */ 3344 3345 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3346 new_size = ifp->if_bytes - 3347 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3348 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3349 3350 if (new_size == 0) { 3351 xfs_iext_destroy(ifp); 3352 return; 3353 } 3354 /* Move extents up in the list (if needed) */ 3355 if (idx + ext_diff < nextents) { 3356 memmove(&ifp->if_u1.if_extents[idx], 3357 &ifp->if_u1.if_extents[idx + ext_diff], 3358 (nextents - (idx + ext_diff)) * 3359 sizeof(xfs_bmbt_rec_t)); 3360 } 3361 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3362 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3363 /* 3364 * Reallocate the direct extent list. If the extents 3365 * will fit inside the inode then xfs_iext_realloc_direct 3366 * will switch from direct to inline extent allocation 3367 * mode for us. 3368 */ 3369 xfs_iext_realloc_direct(ifp, new_size); 3370 ifp->if_bytes = new_size; 3371 } 3372 3373 /* 3374 * This is called when incore extents are being removed from the 3375 * indirection array and the extents being removed span multiple extent 3376 * buffers. The idx parameter contains the file extent index where we 3377 * want to begin removing extents, and the count parameter contains 3378 * how many extents need to be removed. 3379 * 3380 * |-------| |-------| 3381 * | nex1 | | | nex1 - number of extents before idx 3382 * |-------| | count | 3383 * | | | | count - number of extents being removed at idx 3384 * | count | |-------| 3385 * | | | nex2 | nex2 - number of extents after idx + count 3386 * |-------| |-------| 3387 */ 3388 void 3389 xfs_iext_remove_indirect( 3390 xfs_ifork_t *ifp, /* inode fork pointer */ 3391 xfs_extnum_t idx, /* index to begin removing extents */ 3392 int count) /* number of extents to remove */ 3393 { 3394 xfs_ext_irec_t *erp; /* indirection array pointer */ 3395 int erp_idx = 0; /* indirection array index */ 3396 xfs_extnum_t ext_cnt; /* extents left to remove */ 3397 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3398 xfs_extnum_t nex1; /* number of extents before idx */ 3399 xfs_extnum_t nex2; /* extents after idx + count */ 3400 int page_idx = idx; /* index in target extent list */ 3401 3402 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3403 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3404 ASSERT(erp != NULL); 3405 nex1 = page_idx; 3406 ext_cnt = count; 3407 while (ext_cnt) { 3408 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3409 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3410 /* 3411 * Check for deletion of entire list; 3412 * xfs_iext_irec_remove() updates extent offsets. 3413 */ 3414 if (ext_diff == erp->er_extcount) { 3415 xfs_iext_irec_remove(ifp, erp_idx); 3416 ext_cnt -= ext_diff; 3417 nex1 = 0; 3418 if (ext_cnt) { 3419 ASSERT(erp_idx < ifp->if_real_bytes / 3420 XFS_IEXT_BUFSZ); 3421 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3422 nex1 = 0; 3423 continue; 3424 } else { 3425 break; 3426 } 3427 } 3428 /* Move extents up (if needed) */ 3429 if (nex2) { 3430 memmove(&erp->er_extbuf[nex1], 3431 &erp->er_extbuf[nex1 + ext_diff], 3432 nex2 * sizeof(xfs_bmbt_rec_t)); 3433 } 3434 /* Zero out rest of page */ 3435 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3436 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3437 /* Update remaining counters */ 3438 erp->er_extcount -= ext_diff; 3439 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3440 ext_cnt -= ext_diff; 3441 nex1 = 0; 3442 erp_idx++; 3443 erp++; 3444 } 3445 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3446 xfs_iext_irec_compact(ifp); 3447 } 3448 3449 /* 3450 * Create, destroy, or resize a linear (direct) block of extents. 3451 */ 3452 void 3453 xfs_iext_realloc_direct( 3454 xfs_ifork_t *ifp, /* inode fork pointer */ 3455 int new_size) /* new size of extents */ 3456 { 3457 int rnew_size; /* real new size of extents */ 3458 3459 rnew_size = new_size; 3460 3461 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3462 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3463 (new_size != ifp->if_real_bytes))); 3464 3465 /* Free extent records */ 3466 if (new_size == 0) { 3467 xfs_iext_destroy(ifp); 3468 } 3469 /* Resize direct extent list and zero any new bytes */ 3470 else if (ifp->if_real_bytes) { 3471 /* Check if extents will fit inside the inode */ 3472 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3473 xfs_iext_direct_to_inline(ifp, new_size / 3474 (uint)sizeof(xfs_bmbt_rec_t)); 3475 ifp->if_bytes = new_size; 3476 return; 3477 } 3478 if (!is_power_of_2(new_size)){ 3479 rnew_size = roundup_pow_of_two(new_size); 3480 } 3481 if (rnew_size != ifp->if_real_bytes) { 3482 ifp->if_u1.if_extents = 3483 kmem_realloc(ifp->if_u1.if_extents, 3484 rnew_size, 3485 ifp->if_real_bytes, KM_NOFS); 3486 } 3487 if (rnew_size > ifp->if_real_bytes) { 3488 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3489 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3490 rnew_size - ifp->if_real_bytes); 3491 } 3492 } 3493 /* 3494 * Switch from the inline extent buffer to a direct 3495 * extent list. Be sure to include the inline extent 3496 * bytes in new_size. 3497 */ 3498 else { 3499 new_size += ifp->if_bytes; 3500 if (!is_power_of_2(new_size)) { 3501 rnew_size = roundup_pow_of_two(new_size); 3502 } 3503 xfs_iext_inline_to_direct(ifp, rnew_size); 3504 } 3505 ifp->if_real_bytes = rnew_size; 3506 ifp->if_bytes = new_size; 3507 } 3508 3509 /* 3510 * Switch from linear (direct) extent records to inline buffer. 3511 */ 3512 void 3513 xfs_iext_direct_to_inline( 3514 xfs_ifork_t *ifp, /* inode fork pointer */ 3515 xfs_extnum_t nextents) /* number of extents in file */ 3516 { 3517 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3518 ASSERT(nextents <= XFS_INLINE_EXTS); 3519 /* 3520 * The inline buffer was zeroed when we switched 3521 * from inline to direct extent allocation mode, 3522 * so we don't need to clear it here. 3523 */ 3524 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3525 nextents * sizeof(xfs_bmbt_rec_t)); 3526 kmem_free(ifp->if_u1.if_extents); 3527 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3528 ifp->if_real_bytes = 0; 3529 } 3530 3531 /* 3532 * Switch from inline buffer to linear (direct) extent records. 3533 * new_size should already be rounded up to the next power of 2 3534 * by the caller (when appropriate), so use new_size as it is. 3535 * However, since new_size may be rounded up, we can't update 3536 * if_bytes here. It is the caller's responsibility to update 3537 * if_bytes upon return. 3538 */ 3539 void 3540 xfs_iext_inline_to_direct( 3541 xfs_ifork_t *ifp, /* inode fork pointer */ 3542 int new_size) /* number of extents in file */ 3543 { 3544 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3545 memset(ifp->if_u1.if_extents, 0, new_size); 3546 if (ifp->if_bytes) { 3547 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3548 ifp->if_bytes); 3549 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3550 sizeof(xfs_bmbt_rec_t)); 3551 } 3552 ifp->if_real_bytes = new_size; 3553 } 3554 3555 /* 3556 * Resize an extent indirection array to new_size bytes. 3557 */ 3558 STATIC void 3559 xfs_iext_realloc_indirect( 3560 xfs_ifork_t *ifp, /* inode fork pointer */ 3561 int new_size) /* new indirection array size */ 3562 { 3563 int nlists; /* number of irec's (ex lists) */ 3564 int size; /* current indirection array size */ 3565 3566 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3567 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3568 size = nlists * sizeof(xfs_ext_irec_t); 3569 ASSERT(ifp->if_real_bytes); 3570 ASSERT((new_size >= 0) && (new_size != size)); 3571 if (new_size == 0) { 3572 xfs_iext_destroy(ifp); 3573 } else { 3574 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3575 kmem_realloc(ifp->if_u1.if_ext_irec, 3576 new_size, size, KM_NOFS); 3577 } 3578 } 3579 3580 /* 3581 * Switch from indirection array to linear (direct) extent allocations. 3582 */ 3583 STATIC void 3584 xfs_iext_indirect_to_direct( 3585 xfs_ifork_t *ifp) /* inode fork pointer */ 3586 { 3587 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3588 xfs_extnum_t nextents; /* number of extents in file */ 3589 int size; /* size of file extents */ 3590 3591 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3592 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3593 ASSERT(nextents <= XFS_LINEAR_EXTS); 3594 size = nextents * sizeof(xfs_bmbt_rec_t); 3595 3596 xfs_iext_irec_compact_pages(ifp); 3597 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3598 3599 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3600 kmem_free(ifp->if_u1.if_ext_irec); 3601 ifp->if_flags &= ~XFS_IFEXTIREC; 3602 ifp->if_u1.if_extents = ep; 3603 ifp->if_bytes = size; 3604 if (nextents < XFS_LINEAR_EXTS) { 3605 xfs_iext_realloc_direct(ifp, size); 3606 } 3607 } 3608 3609 /* 3610 * Free incore file extents. 3611 */ 3612 void 3613 xfs_iext_destroy( 3614 xfs_ifork_t *ifp) /* inode fork pointer */ 3615 { 3616 if (ifp->if_flags & XFS_IFEXTIREC) { 3617 int erp_idx; 3618 int nlists; 3619 3620 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3621 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3622 xfs_iext_irec_remove(ifp, erp_idx); 3623 } 3624 ifp->if_flags &= ~XFS_IFEXTIREC; 3625 } else if (ifp->if_real_bytes) { 3626 kmem_free(ifp->if_u1.if_extents); 3627 } else if (ifp->if_bytes) { 3628 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3629 sizeof(xfs_bmbt_rec_t)); 3630 } 3631 ifp->if_u1.if_extents = NULL; 3632 ifp->if_real_bytes = 0; 3633 ifp->if_bytes = 0; 3634 } 3635 3636 /* 3637 * Return a pointer to the extent record for file system block bno. 3638 */ 3639 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3640 xfs_iext_bno_to_ext( 3641 xfs_ifork_t *ifp, /* inode fork pointer */ 3642 xfs_fileoff_t bno, /* block number to search for */ 3643 xfs_extnum_t *idxp) /* index of target extent */ 3644 { 3645 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3646 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3647 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3648 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3649 int high; /* upper boundary in search */ 3650 xfs_extnum_t idx = 0; /* index of target extent */ 3651 int low; /* lower boundary in search */ 3652 xfs_extnum_t nextents; /* number of file extents */ 3653 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3654 3655 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3656 if (nextents == 0) { 3657 *idxp = 0; 3658 return NULL; 3659 } 3660 low = 0; 3661 if (ifp->if_flags & XFS_IFEXTIREC) { 3662 /* Find target extent list */ 3663 int erp_idx = 0; 3664 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3665 base = erp->er_extbuf; 3666 high = erp->er_extcount - 1; 3667 } else { 3668 base = ifp->if_u1.if_extents; 3669 high = nextents - 1; 3670 } 3671 /* Binary search extent records */ 3672 while (low <= high) { 3673 idx = (low + high) >> 1; 3674 ep = base + idx; 3675 startoff = xfs_bmbt_get_startoff(ep); 3676 blockcount = xfs_bmbt_get_blockcount(ep); 3677 if (bno < startoff) { 3678 high = idx - 1; 3679 } else if (bno >= startoff + blockcount) { 3680 low = idx + 1; 3681 } else { 3682 /* Convert back to file-based extent index */ 3683 if (ifp->if_flags & XFS_IFEXTIREC) { 3684 idx += erp->er_extoff; 3685 } 3686 *idxp = idx; 3687 return ep; 3688 } 3689 } 3690 /* Convert back to file-based extent index */ 3691 if (ifp->if_flags & XFS_IFEXTIREC) { 3692 idx += erp->er_extoff; 3693 } 3694 if (bno >= startoff + blockcount) { 3695 if (++idx == nextents) { 3696 ep = NULL; 3697 } else { 3698 ep = xfs_iext_get_ext(ifp, idx); 3699 } 3700 } 3701 *idxp = idx; 3702 return ep; 3703 } 3704 3705 /* 3706 * Return a pointer to the indirection array entry containing the 3707 * extent record for filesystem block bno. Store the index of the 3708 * target irec in *erp_idxp. 3709 */ 3710 xfs_ext_irec_t * /* pointer to found extent record */ 3711 xfs_iext_bno_to_irec( 3712 xfs_ifork_t *ifp, /* inode fork pointer */ 3713 xfs_fileoff_t bno, /* block number to search for */ 3714 int *erp_idxp) /* irec index of target ext list */ 3715 { 3716 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3717 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3718 int erp_idx; /* indirection array index */ 3719 int nlists; /* number of extent irec's (lists) */ 3720 int high; /* binary search upper limit */ 3721 int low; /* binary search lower limit */ 3722 3723 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3724 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3725 erp_idx = 0; 3726 low = 0; 3727 high = nlists - 1; 3728 while (low <= high) { 3729 erp_idx = (low + high) >> 1; 3730 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3731 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3732 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3733 high = erp_idx - 1; 3734 } else if (erp_next && bno >= 3735 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3736 low = erp_idx + 1; 3737 } else { 3738 break; 3739 } 3740 } 3741 *erp_idxp = erp_idx; 3742 return erp; 3743 } 3744 3745 /* 3746 * Return a pointer to the indirection array entry containing the 3747 * extent record at file extent index *idxp. Store the index of the 3748 * target irec in *erp_idxp and store the page index of the target 3749 * extent record in *idxp. 3750 */ 3751 xfs_ext_irec_t * 3752 xfs_iext_idx_to_irec( 3753 xfs_ifork_t *ifp, /* inode fork pointer */ 3754 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3755 int *erp_idxp, /* pointer to target irec */ 3756 int realloc) /* new bytes were just added */ 3757 { 3758 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3759 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3760 int erp_idx; /* indirection array index */ 3761 int nlists; /* number of irec's (ex lists) */ 3762 int high; /* binary search upper limit */ 3763 int low; /* binary search lower limit */ 3764 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3765 3766 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3767 ASSERT(page_idx >= 0); 3768 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3769 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); 3770 3771 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3772 erp_idx = 0; 3773 low = 0; 3774 high = nlists - 1; 3775 3776 /* Binary search extent irec's */ 3777 while (low <= high) { 3778 erp_idx = (low + high) >> 1; 3779 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3780 prev = erp_idx > 0 ? erp - 1 : NULL; 3781 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3782 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3783 high = erp_idx - 1; 3784 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3785 (page_idx == erp->er_extoff + erp->er_extcount && 3786 !realloc)) { 3787 low = erp_idx + 1; 3788 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3789 erp->er_extcount == XFS_LINEAR_EXTS) { 3790 ASSERT(realloc); 3791 page_idx = 0; 3792 erp_idx++; 3793 erp = erp_idx < nlists ? erp + 1 : NULL; 3794 break; 3795 } else { 3796 page_idx -= erp->er_extoff; 3797 break; 3798 } 3799 } 3800 *idxp = page_idx; 3801 *erp_idxp = erp_idx; 3802 return(erp); 3803 } 3804 3805 /* 3806 * Allocate and initialize an indirection array once the space needed 3807 * for incore extents increases above XFS_IEXT_BUFSZ. 3808 */ 3809 void 3810 xfs_iext_irec_init( 3811 xfs_ifork_t *ifp) /* inode fork pointer */ 3812 { 3813 xfs_ext_irec_t *erp; /* indirection array pointer */ 3814 xfs_extnum_t nextents; /* number of extents in file */ 3815 3816 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3817 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3818 ASSERT(nextents <= XFS_LINEAR_EXTS); 3819 3820 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3821 3822 if (nextents == 0) { 3823 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3824 } else if (!ifp->if_real_bytes) { 3825 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3826 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3827 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3828 } 3829 erp->er_extbuf = ifp->if_u1.if_extents; 3830 erp->er_extcount = nextents; 3831 erp->er_extoff = 0; 3832 3833 ifp->if_flags |= XFS_IFEXTIREC; 3834 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3835 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3836 ifp->if_u1.if_ext_irec = erp; 3837 3838 return; 3839 } 3840 3841 /* 3842 * Allocate and initialize a new entry in the indirection array. 3843 */ 3844 xfs_ext_irec_t * 3845 xfs_iext_irec_new( 3846 xfs_ifork_t *ifp, /* inode fork pointer */ 3847 int erp_idx) /* index for new irec */ 3848 { 3849 xfs_ext_irec_t *erp; /* indirection array pointer */ 3850 int i; /* loop counter */ 3851 int nlists; /* number of irec's (ex lists) */ 3852 3853 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3854 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3855 3856 /* Resize indirection array */ 3857 xfs_iext_realloc_indirect(ifp, ++nlists * 3858 sizeof(xfs_ext_irec_t)); 3859 /* 3860 * Move records down in the array so the 3861 * new page can use erp_idx. 3862 */ 3863 erp = ifp->if_u1.if_ext_irec; 3864 for (i = nlists - 1; i > erp_idx; i--) { 3865 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3866 } 3867 ASSERT(i == erp_idx); 3868 3869 /* Initialize new extent record */ 3870 erp = ifp->if_u1.if_ext_irec; 3871 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3872 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3873 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3874 erp[erp_idx].er_extcount = 0; 3875 erp[erp_idx].er_extoff = erp_idx > 0 ? 3876 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3877 return (&erp[erp_idx]); 3878 } 3879 3880 /* 3881 * Remove a record from the indirection array. 3882 */ 3883 void 3884 xfs_iext_irec_remove( 3885 xfs_ifork_t *ifp, /* inode fork pointer */ 3886 int erp_idx) /* irec index to remove */ 3887 { 3888 xfs_ext_irec_t *erp; /* indirection array pointer */ 3889 int i; /* loop counter */ 3890 int nlists; /* number of irec's (ex lists) */ 3891 3892 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3893 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3894 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3895 if (erp->er_extbuf) { 3896 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 3897 -erp->er_extcount); 3898 kmem_free(erp->er_extbuf); 3899 } 3900 /* Compact extent records */ 3901 erp = ifp->if_u1.if_ext_irec; 3902 for (i = erp_idx; i < nlists - 1; i++) { 3903 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 3904 } 3905 /* 3906 * Manually free the last extent record from the indirection 3907 * array. A call to xfs_iext_realloc_indirect() with a size 3908 * of zero would result in a call to xfs_iext_destroy() which 3909 * would in turn call this function again, creating a nasty 3910 * infinite loop. 3911 */ 3912 if (--nlists) { 3913 xfs_iext_realloc_indirect(ifp, 3914 nlists * sizeof(xfs_ext_irec_t)); 3915 } else { 3916 kmem_free(ifp->if_u1.if_ext_irec); 3917 } 3918 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3919 } 3920 3921 /* 3922 * This is called to clean up large amounts of unused memory allocated 3923 * by the indirection array. Before compacting anything though, verify 3924 * that the indirection array is still needed and switch back to the 3925 * linear extent list (or even the inline buffer) if possible. The 3926 * compaction policy is as follows: 3927 * 3928 * Full Compaction: Extents fit into a single page (or inline buffer) 3929 * Partial Compaction: Extents occupy less than 50% of allocated space 3930 * No Compaction: Extents occupy at least 50% of allocated space 3931 */ 3932 void 3933 xfs_iext_irec_compact( 3934 xfs_ifork_t *ifp) /* inode fork pointer */ 3935 { 3936 xfs_extnum_t nextents; /* number of extents in file */ 3937 int nlists; /* number of irec's (ex lists) */ 3938 3939 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3940 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3941 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3942 3943 if (nextents == 0) { 3944 xfs_iext_destroy(ifp); 3945 } else if (nextents <= XFS_INLINE_EXTS) { 3946 xfs_iext_indirect_to_direct(ifp); 3947 xfs_iext_direct_to_inline(ifp, nextents); 3948 } else if (nextents <= XFS_LINEAR_EXTS) { 3949 xfs_iext_indirect_to_direct(ifp); 3950 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 3951 xfs_iext_irec_compact_pages(ifp); 3952 } 3953 } 3954 3955 /* 3956 * Combine extents from neighboring extent pages. 3957 */ 3958 void 3959 xfs_iext_irec_compact_pages( 3960 xfs_ifork_t *ifp) /* inode fork pointer */ 3961 { 3962 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 3963 int erp_idx = 0; /* indirection array index */ 3964 int nlists; /* number of irec's (ex lists) */ 3965 3966 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3967 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3968 while (erp_idx < nlists - 1) { 3969 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3970 erp_next = erp + 1; 3971 if (erp_next->er_extcount <= 3972 (XFS_LINEAR_EXTS - erp->er_extcount)) { 3973 memcpy(&erp->er_extbuf[erp->er_extcount], 3974 erp_next->er_extbuf, erp_next->er_extcount * 3975 sizeof(xfs_bmbt_rec_t)); 3976 erp->er_extcount += erp_next->er_extcount; 3977 /* 3978 * Free page before removing extent record 3979 * so er_extoffs don't get modified in 3980 * xfs_iext_irec_remove. 3981 */ 3982 kmem_free(erp_next->er_extbuf); 3983 erp_next->er_extbuf = NULL; 3984 xfs_iext_irec_remove(ifp, erp_idx + 1); 3985 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3986 } else { 3987 erp_idx++; 3988 } 3989 } 3990 } 3991 3992 /* 3993 * This is called to update the er_extoff field in the indirection 3994 * array when extents have been added or removed from one of the 3995 * extent lists. erp_idx contains the irec index to begin updating 3996 * at and ext_diff contains the number of extents that were added 3997 * or removed. 3998 */ 3999 void 4000 xfs_iext_irec_update_extoffs( 4001 xfs_ifork_t *ifp, /* inode fork pointer */ 4002 int erp_idx, /* irec index to update */ 4003 int ext_diff) /* number of new extents */ 4004 { 4005 int i; /* loop counter */ 4006 int nlists; /* number of irec's (ex lists */ 4007 4008 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4009 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4010 for (i = erp_idx; i < nlists; i++) { 4011 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4012 } 4013 } 4014 4015 /* 4016 * Test whether it is appropriate to check an inode for and free post EOF 4017 * blocks. The 'force' parameter determines whether we should also consider 4018 * regular files that are marked preallocated or append-only. 4019 */ 4020 bool 4021 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 4022 { 4023 /* prealloc/delalloc exists only on regular files */ 4024 if (!S_ISREG(ip->i_d.di_mode)) 4025 return false; 4026 4027 /* 4028 * Zero sized files with no cached pages and delalloc blocks will not 4029 * have speculative prealloc/delalloc blocks to remove. 4030 */ 4031 if (VFS_I(ip)->i_size == 0 && 4032 VN_CACHED(VFS_I(ip)) == 0 && 4033 ip->i_delayed_blks == 0) 4034 return false; 4035 4036 /* If we haven't read in the extent list, then don't do it now. */ 4037 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 4038 return false; 4039 4040 /* 4041 * Do not free real preallocated or append-only files unless the file 4042 * has delalloc blocks and we are forced to remove them. 4043 */ 4044 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 4045 if (!force || ip->i_delayed_blks == 0) 4046 return false; 4047 4048 return true; 4049 } 4050 4051