1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_log.h" 24 #include "xfs_inum.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_dinode.h" 35 #include "xfs_inode.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_btree.h" 39 #include "xfs_alloc.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_utils.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_vnodeops.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 51 kmem_zone_t *xfs_ifork_zone; 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 64 65 /* 66 * helper function to extract extent size hint from inode 67 */ 68 xfs_extlen_t 69 xfs_get_extsz_hint( 70 struct xfs_inode *ip) 71 { 72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 73 return ip->i_d.di_extsize; 74 if (XFS_IS_REALTIME_INODE(ip)) 75 return ip->i_mount->m_sb.sb_rextsize; 76 return 0; 77 } 78 79 /* 80 * This is a wrapper routine around the xfs_ilock() routine used to centralize 81 * some grungy code. It is used in places that wish to lock the inode solely 82 * for reading the extents. The reason these places can't just call 83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the 84 * extents from disk for a file in b-tree format. If the inode is in b-tree 85 * format, then we need to lock the inode exclusively until the extents are read 86 * in. Locking it exclusively all the time would limit our parallelism 87 * unnecessarily, though. What we do instead is check to see if the extents 88 * have been read in yet, and only lock the inode exclusively if they have not. 89 * 90 * The function returns a value which should be given to the corresponding 91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was 92 * actually taken. 93 */ 94 uint 95 xfs_ilock_map_shared( 96 xfs_inode_t *ip) 97 { 98 uint lock_mode; 99 100 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && 101 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { 102 lock_mode = XFS_ILOCK_EXCL; 103 } else { 104 lock_mode = XFS_ILOCK_SHARED; 105 } 106 107 xfs_ilock(ip, lock_mode); 108 109 return lock_mode; 110 } 111 112 /* 113 * This is simply the unlock routine to go with xfs_ilock_map_shared(). 114 * All it does is call xfs_iunlock() with the given lock_mode. 115 */ 116 void 117 xfs_iunlock_map_shared( 118 xfs_inode_t *ip, 119 unsigned int lock_mode) 120 { 121 xfs_iunlock(ip, lock_mode); 122 } 123 124 /* 125 * The xfs inode contains 2 locks: a multi-reader lock called the 126 * i_iolock and a multi-reader lock called the i_lock. This routine 127 * allows either or both of the locks to be obtained. 128 * 129 * The 2 locks should always be ordered so that the IO lock is 130 * obtained first in order to prevent deadlock. 131 * 132 * ip -- the inode being locked 133 * lock_flags -- this parameter indicates the inode's locks 134 * to be locked. It can be: 135 * XFS_IOLOCK_SHARED, 136 * XFS_IOLOCK_EXCL, 137 * XFS_ILOCK_SHARED, 138 * XFS_ILOCK_EXCL, 139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 143 */ 144 void 145 xfs_ilock( 146 xfs_inode_t *ip, 147 uint lock_flags) 148 { 149 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 150 151 /* 152 * You can't set both SHARED and EXCL for the same lock, 153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 155 */ 156 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 157 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 158 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 159 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 160 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 161 162 if (lock_flags & XFS_IOLOCK_EXCL) 163 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 164 else if (lock_flags & XFS_IOLOCK_SHARED) 165 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 166 167 if (lock_flags & XFS_ILOCK_EXCL) 168 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 169 else if (lock_flags & XFS_ILOCK_SHARED) 170 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 171 } 172 173 /* 174 * This is just like xfs_ilock(), except that the caller 175 * is guaranteed not to sleep. It returns 1 if it gets 176 * the requested locks and 0 otherwise. If the IO lock is 177 * obtained but the inode lock cannot be, then the IO lock 178 * is dropped before returning. 179 * 180 * ip -- the inode being locked 181 * lock_flags -- this parameter indicates the inode's locks to be 182 * to be locked. See the comment for xfs_ilock() for a list 183 * of valid values. 184 */ 185 int 186 xfs_ilock_nowait( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 191 192 /* 193 * You can't set both SHARED and EXCL for the same lock, 194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 196 */ 197 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 198 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 199 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 200 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 201 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 202 203 if (lock_flags & XFS_IOLOCK_EXCL) { 204 if (!mrtryupdate(&ip->i_iolock)) 205 goto out; 206 } else if (lock_flags & XFS_IOLOCK_SHARED) { 207 if (!mrtryaccess(&ip->i_iolock)) 208 goto out; 209 } 210 if (lock_flags & XFS_ILOCK_EXCL) { 211 if (!mrtryupdate(&ip->i_lock)) 212 goto out_undo_iolock; 213 } else if (lock_flags & XFS_ILOCK_SHARED) { 214 if (!mrtryaccess(&ip->i_lock)) 215 goto out_undo_iolock; 216 } 217 return 1; 218 219 out_undo_iolock: 220 if (lock_flags & XFS_IOLOCK_EXCL) 221 mrunlock_excl(&ip->i_iolock); 222 else if (lock_flags & XFS_IOLOCK_SHARED) 223 mrunlock_shared(&ip->i_iolock); 224 out: 225 return 0; 226 } 227 228 /* 229 * xfs_iunlock() is used to drop the inode locks acquired with 230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 232 * that we know which locks to drop. 233 * 234 * ip -- the inode being unlocked 235 * lock_flags -- this parameter indicates the inode's locks to be 236 * to be unlocked. See the comment for xfs_ilock() for a list 237 * of valid values for this parameter. 238 * 239 */ 240 void 241 xfs_iunlock( 242 xfs_inode_t *ip, 243 uint lock_flags) 244 { 245 /* 246 * You can't set both SHARED and EXCL for the same lock, 247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 249 */ 250 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 251 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 252 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 253 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 254 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 255 ASSERT(lock_flags != 0); 256 257 if (lock_flags & XFS_IOLOCK_EXCL) 258 mrunlock_excl(&ip->i_iolock); 259 else if (lock_flags & XFS_IOLOCK_SHARED) 260 mrunlock_shared(&ip->i_iolock); 261 262 if (lock_flags & XFS_ILOCK_EXCL) 263 mrunlock_excl(&ip->i_lock); 264 else if (lock_flags & XFS_ILOCK_SHARED) 265 mrunlock_shared(&ip->i_lock); 266 267 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 268 } 269 270 /* 271 * give up write locks. the i/o lock cannot be held nested 272 * if it is being demoted. 273 */ 274 void 275 xfs_ilock_demote( 276 xfs_inode_t *ip, 277 uint lock_flags) 278 { 279 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 280 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 281 282 if (lock_flags & XFS_ILOCK_EXCL) 283 mrdemote(&ip->i_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 mrdemote(&ip->i_iolock); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 #if defined(DEBUG) || defined(XFS_WARN) 291 int 292 xfs_isilocked( 293 xfs_inode_t *ip, 294 uint lock_flags) 295 { 296 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 297 if (!(lock_flags & XFS_ILOCK_SHARED)) 298 return !!ip->i_lock.mr_writer; 299 return rwsem_is_locked(&ip->i_lock.mr_lock); 300 } 301 302 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 303 if (!(lock_flags & XFS_IOLOCK_SHARED)) 304 return !!ip->i_iolock.mr_writer; 305 return rwsem_is_locked(&ip->i_iolock.mr_lock); 306 } 307 308 ASSERT(0); 309 return 0; 310 } 311 #endif 312 313 void 314 __xfs_iflock( 315 struct xfs_inode *ip) 316 { 317 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 318 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 319 320 do { 321 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 322 if (xfs_isiflocked(ip)) 323 io_schedule(); 324 } while (!xfs_iflock_nowait(ip)); 325 326 finish_wait(wq, &wait.wait); 327 } 328 329 #ifdef DEBUG 330 /* 331 * Make sure that the extents in the given memory buffer 332 * are valid. 333 */ 334 STATIC void 335 xfs_validate_extents( 336 xfs_ifork_t *ifp, 337 int nrecs, 338 xfs_exntfmt_t fmt) 339 { 340 xfs_bmbt_irec_t irec; 341 xfs_bmbt_rec_host_t rec; 342 int i; 343 344 for (i = 0; i < nrecs; i++) { 345 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 346 rec.l0 = get_unaligned(&ep->l0); 347 rec.l1 = get_unaligned(&ep->l1); 348 xfs_bmbt_get_all(&rec, &irec); 349 if (fmt == XFS_EXTFMT_NOSTATE) 350 ASSERT(irec.br_state == XFS_EXT_NORM); 351 } 352 } 353 #else /* DEBUG */ 354 #define xfs_validate_extents(ifp, nrecs, fmt) 355 #endif /* DEBUG */ 356 357 /* 358 * Check that none of the inode's in the buffer have a next 359 * unlinked field of 0. 360 */ 361 #if defined(DEBUG) 362 void 363 xfs_inobp_check( 364 xfs_mount_t *mp, 365 xfs_buf_t *bp) 366 { 367 int i; 368 int j; 369 xfs_dinode_t *dip; 370 371 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 372 373 for (i = 0; i < j; i++) { 374 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 375 i * mp->m_sb.sb_inodesize); 376 if (!dip->di_next_unlinked) { 377 xfs_alert(mp, 378 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", 379 bp); 380 ASSERT(dip->di_next_unlinked); 381 } 382 } 383 } 384 #endif 385 386 static void 387 xfs_inode_buf_verify( 388 struct xfs_buf *bp) 389 { 390 struct xfs_mount *mp = bp->b_target->bt_mount; 391 int i; 392 int ni; 393 394 /* 395 * Validate the magic number and version of every inode in the buffer 396 */ 397 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock; 398 for (i = 0; i < ni; i++) { 399 int di_ok; 400 xfs_dinode_t *dip; 401 402 dip = (struct xfs_dinode *)xfs_buf_offset(bp, 403 (i << mp->m_sb.sb_inodelog)); 404 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 405 XFS_DINODE_GOOD_VERSION(dip->di_version); 406 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 407 XFS_ERRTAG_ITOBP_INOTOBP, 408 XFS_RANDOM_ITOBP_INOTOBP))) { 409 xfs_buf_ioerror(bp, EFSCORRUPTED); 410 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH, 411 mp, dip); 412 #ifdef DEBUG 413 xfs_emerg(mp, 414 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 415 (unsigned long long)bp->b_bn, i, 416 be16_to_cpu(dip->di_magic)); 417 ASSERT(0); 418 #endif 419 } 420 } 421 xfs_inobp_check(mp, bp); 422 } 423 424 425 static void 426 xfs_inode_buf_read_verify( 427 struct xfs_buf *bp) 428 { 429 xfs_inode_buf_verify(bp); 430 } 431 432 static void 433 xfs_inode_buf_write_verify( 434 struct xfs_buf *bp) 435 { 436 xfs_inode_buf_verify(bp); 437 } 438 439 const struct xfs_buf_ops xfs_inode_buf_ops = { 440 .verify_read = xfs_inode_buf_read_verify, 441 .verify_write = xfs_inode_buf_write_verify, 442 }; 443 444 445 /* 446 * This routine is called to map an inode to the buffer containing the on-disk 447 * version of the inode. It returns a pointer to the buffer containing the 448 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a 449 * pointer to the on-disk inode within that buffer. 450 * 451 * If a non-zero error is returned, then the contents of bpp and dipp are 452 * undefined. 453 */ 454 int 455 xfs_imap_to_bp( 456 struct xfs_mount *mp, 457 struct xfs_trans *tp, 458 struct xfs_imap *imap, 459 struct xfs_dinode **dipp, 460 struct xfs_buf **bpp, 461 uint buf_flags, 462 uint iget_flags) 463 { 464 struct xfs_buf *bp; 465 int error; 466 467 buf_flags |= XBF_UNMAPPED; 468 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 469 (int)imap->im_len, buf_flags, &bp, 470 &xfs_inode_buf_ops); 471 if (error) { 472 if (error == EAGAIN) { 473 ASSERT(buf_flags & XBF_TRYLOCK); 474 return error; 475 } 476 477 if (error == EFSCORRUPTED && 478 (iget_flags & XFS_IGET_UNTRUSTED)) 479 return XFS_ERROR(EINVAL); 480 481 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.", 482 __func__, error); 483 return error; 484 } 485 486 *bpp = bp; 487 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset); 488 return 0; 489 } 490 491 /* 492 * Move inode type and inode format specific information from the 493 * on-disk inode to the in-core inode. For fifos, devs, and sockets 494 * this means set if_rdev to the proper value. For files, directories, 495 * and symlinks this means to bring in the in-line data or extent 496 * pointers. For a file in B-tree format, only the root is immediately 497 * brought in-core. The rest will be in-lined in if_extents when it 498 * is first referenced (see xfs_iread_extents()). 499 */ 500 STATIC int 501 xfs_iformat( 502 xfs_inode_t *ip, 503 xfs_dinode_t *dip) 504 { 505 xfs_attr_shortform_t *atp; 506 int size; 507 int error = 0; 508 xfs_fsize_t di_size; 509 510 if (unlikely(be32_to_cpu(dip->di_nextents) + 511 be16_to_cpu(dip->di_anextents) > 512 be64_to_cpu(dip->di_nblocks))) { 513 xfs_warn(ip->i_mount, 514 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 515 (unsigned long long)ip->i_ino, 516 (int)(be32_to_cpu(dip->di_nextents) + 517 be16_to_cpu(dip->di_anextents)), 518 (unsigned long long) 519 be64_to_cpu(dip->di_nblocks)); 520 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 521 ip->i_mount, dip); 522 return XFS_ERROR(EFSCORRUPTED); 523 } 524 525 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 526 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", 527 (unsigned long long)ip->i_ino, 528 dip->di_forkoff); 529 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 530 ip->i_mount, dip); 531 return XFS_ERROR(EFSCORRUPTED); 532 } 533 534 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 535 !ip->i_mount->m_rtdev_targp)) { 536 xfs_warn(ip->i_mount, 537 "corrupt dinode %Lu, has realtime flag set.", 538 ip->i_ino); 539 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 540 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 541 return XFS_ERROR(EFSCORRUPTED); 542 } 543 544 switch (ip->i_d.di_mode & S_IFMT) { 545 case S_IFIFO: 546 case S_IFCHR: 547 case S_IFBLK: 548 case S_IFSOCK: 549 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 550 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 551 ip->i_mount, dip); 552 return XFS_ERROR(EFSCORRUPTED); 553 } 554 ip->i_d.di_size = 0; 555 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 556 break; 557 558 case S_IFREG: 559 case S_IFLNK: 560 case S_IFDIR: 561 switch (dip->di_format) { 562 case XFS_DINODE_FMT_LOCAL: 563 /* 564 * no local regular files yet 565 */ 566 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { 567 xfs_warn(ip->i_mount, 568 "corrupt inode %Lu (local format for regular file).", 569 (unsigned long long) ip->i_ino); 570 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 571 XFS_ERRLEVEL_LOW, 572 ip->i_mount, dip); 573 return XFS_ERROR(EFSCORRUPTED); 574 } 575 576 di_size = be64_to_cpu(dip->di_size); 577 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 578 xfs_warn(ip->i_mount, 579 "corrupt inode %Lu (bad size %Ld for local inode).", 580 (unsigned long long) ip->i_ino, 581 (long long) di_size); 582 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 583 XFS_ERRLEVEL_LOW, 584 ip->i_mount, dip); 585 return XFS_ERROR(EFSCORRUPTED); 586 } 587 588 size = (int)di_size; 589 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 590 break; 591 case XFS_DINODE_FMT_EXTENTS: 592 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 593 break; 594 case XFS_DINODE_FMT_BTREE: 595 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 596 break; 597 default: 598 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 599 ip->i_mount); 600 return XFS_ERROR(EFSCORRUPTED); 601 } 602 break; 603 604 default: 605 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 606 return XFS_ERROR(EFSCORRUPTED); 607 } 608 if (error) { 609 return error; 610 } 611 if (!XFS_DFORK_Q(dip)) 612 return 0; 613 614 ASSERT(ip->i_afp == NULL); 615 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 616 617 switch (dip->di_aformat) { 618 case XFS_DINODE_FMT_LOCAL: 619 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 620 size = be16_to_cpu(atp->hdr.totsize); 621 622 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 623 xfs_warn(ip->i_mount, 624 "corrupt inode %Lu (bad attr fork size %Ld).", 625 (unsigned long long) ip->i_ino, 626 (long long) size); 627 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 628 XFS_ERRLEVEL_LOW, 629 ip->i_mount, dip); 630 return XFS_ERROR(EFSCORRUPTED); 631 } 632 633 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 634 break; 635 case XFS_DINODE_FMT_EXTENTS: 636 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 637 break; 638 case XFS_DINODE_FMT_BTREE: 639 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 640 break; 641 default: 642 error = XFS_ERROR(EFSCORRUPTED); 643 break; 644 } 645 if (error) { 646 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 647 ip->i_afp = NULL; 648 xfs_idestroy_fork(ip, XFS_DATA_FORK); 649 } 650 return error; 651 } 652 653 /* 654 * The file is in-lined in the on-disk inode. 655 * If it fits into if_inline_data, then copy 656 * it there, otherwise allocate a buffer for it 657 * and copy the data there. Either way, set 658 * if_data to point at the data. 659 * If we allocate a buffer for the data, make 660 * sure that its size is a multiple of 4 and 661 * record the real size in i_real_bytes. 662 */ 663 STATIC int 664 xfs_iformat_local( 665 xfs_inode_t *ip, 666 xfs_dinode_t *dip, 667 int whichfork, 668 int size) 669 { 670 xfs_ifork_t *ifp; 671 int real_size; 672 673 /* 674 * If the size is unreasonable, then something 675 * is wrong and we just bail out rather than crash in 676 * kmem_alloc() or memcpy() below. 677 */ 678 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 679 xfs_warn(ip->i_mount, 680 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 681 (unsigned long long) ip->i_ino, size, 682 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 683 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 684 ip->i_mount, dip); 685 return XFS_ERROR(EFSCORRUPTED); 686 } 687 ifp = XFS_IFORK_PTR(ip, whichfork); 688 real_size = 0; 689 if (size == 0) 690 ifp->if_u1.if_data = NULL; 691 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 692 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 693 else { 694 real_size = roundup(size, 4); 695 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 696 } 697 ifp->if_bytes = size; 698 ifp->if_real_bytes = real_size; 699 if (size) 700 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 701 ifp->if_flags &= ~XFS_IFEXTENTS; 702 ifp->if_flags |= XFS_IFINLINE; 703 return 0; 704 } 705 706 /* 707 * The file consists of a set of extents all 708 * of which fit into the on-disk inode. 709 * If there are few enough extents to fit into 710 * the if_inline_ext, then copy them there. 711 * Otherwise allocate a buffer for them and copy 712 * them into it. Either way, set if_extents 713 * to point at the extents. 714 */ 715 STATIC int 716 xfs_iformat_extents( 717 xfs_inode_t *ip, 718 xfs_dinode_t *dip, 719 int whichfork) 720 { 721 xfs_bmbt_rec_t *dp; 722 xfs_ifork_t *ifp; 723 int nex; 724 int size; 725 int i; 726 727 ifp = XFS_IFORK_PTR(ip, whichfork); 728 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 729 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 730 731 /* 732 * If the number of extents is unreasonable, then something 733 * is wrong and we just bail out rather than crash in 734 * kmem_alloc() or memcpy() below. 735 */ 736 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 737 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 738 (unsigned long long) ip->i_ino, nex); 739 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 740 ip->i_mount, dip); 741 return XFS_ERROR(EFSCORRUPTED); 742 } 743 744 ifp->if_real_bytes = 0; 745 if (nex == 0) 746 ifp->if_u1.if_extents = NULL; 747 else if (nex <= XFS_INLINE_EXTS) 748 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 749 else 750 xfs_iext_add(ifp, 0, nex); 751 752 ifp->if_bytes = size; 753 if (size) { 754 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 755 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 756 for (i = 0; i < nex; i++, dp++) { 757 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 758 ep->l0 = get_unaligned_be64(&dp->l0); 759 ep->l1 = get_unaligned_be64(&dp->l1); 760 } 761 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 762 if (whichfork != XFS_DATA_FORK || 763 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 764 if (unlikely(xfs_check_nostate_extents( 765 ifp, 0, nex))) { 766 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 767 XFS_ERRLEVEL_LOW, 768 ip->i_mount); 769 return XFS_ERROR(EFSCORRUPTED); 770 } 771 } 772 ifp->if_flags |= XFS_IFEXTENTS; 773 return 0; 774 } 775 776 /* 777 * The file has too many extents to fit into 778 * the inode, so they are in B-tree format. 779 * Allocate a buffer for the root of the B-tree 780 * and copy the root into it. The i_extents 781 * field will remain NULL until all of the 782 * extents are read in (when they are needed). 783 */ 784 STATIC int 785 xfs_iformat_btree( 786 xfs_inode_t *ip, 787 xfs_dinode_t *dip, 788 int whichfork) 789 { 790 struct xfs_mount *mp = ip->i_mount; 791 xfs_bmdr_block_t *dfp; 792 xfs_ifork_t *ifp; 793 /* REFERENCED */ 794 int nrecs; 795 int size; 796 797 ifp = XFS_IFORK_PTR(ip, whichfork); 798 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 799 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 800 nrecs = be16_to_cpu(dfp->bb_numrecs); 801 802 /* 803 * blow out if -- fork has less extents than can fit in 804 * fork (fork shouldn't be a btree format), root btree 805 * block has more records than can fit into the fork, 806 * or the number of extents is greater than the number of 807 * blocks. 808 */ 809 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 810 XFS_IFORK_MAXEXT(ip, whichfork) || 811 XFS_BMDR_SPACE_CALC(nrecs) > 812 XFS_DFORK_SIZE(dip, mp, whichfork) || 813 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 814 xfs_warn(mp, "corrupt inode %Lu (btree).", 815 (unsigned long long) ip->i_ino); 816 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 817 mp, dip); 818 return XFS_ERROR(EFSCORRUPTED); 819 } 820 821 ifp->if_broot_bytes = size; 822 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 823 ASSERT(ifp->if_broot != NULL); 824 /* 825 * Copy and convert from the on-disk structure 826 * to the in-memory structure. 827 */ 828 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 829 ifp->if_broot, size); 830 ifp->if_flags &= ~XFS_IFEXTENTS; 831 ifp->if_flags |= XFS_IFBROOT; 832 833 return 0; 834 } 835 836 STATIC void 837 xfs_dinode_from_disk( 838 xfs_icdinode_t *to, 839 xfs_dinode_t *from) 840 { 841 to->di_magic = be16_to_cpu(from->di_magic); 842 to->di_mode = be16_to_cpu(from->di_mode); 843 to->di_version = from ->di_version; 844 to->di_format = from->di_format; 845 to->di_onlink = be16_to_cpu(from->di_onlink); 846 to->di_uid = be32_to_cpu(from->di_uid); 847 to->di_gid = be32_to_cpu(from->di_gid); 848 to->di_nlink = be32_to_cpu(from->di_nlink); 849 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 850 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 851 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 852 to->di_flushiter = be16_to_cpu(from->di_flushiter); 853 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 854 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 855 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 856 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 857 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 858 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 859 to->di_size = be64_to_cpu(from->di_size); 860 to->di_nblocks = be64_to_cpu(from->di_nblocks); 861 to->di_extsize = be32_to_cpu(from->di_extsize); 862 to->di_nextents = be32_to_cpu(from->di_nextents); 863 to->di_anextents = be16_to_cpu(from->di_anextents); 864 to->di_forkoff = from->di_forkoff; 865 to->di_aformat = from->di_aformat; 866 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 867 to->di_dmstate = be16_to_cpu(from->di_dmstate); 868 to->di_flags = be16_to_cpu(from->di_flags); 869 to->di_gen = be32_to_cpu(from->di_gen); 870 871 if (to->di_version == 3) { 872 to->di_changecount = be64_to_cpu(from->di_changecount); 873 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec); 874 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec); 875 to->di_flags2 = be64_to_cpu(from->di_flags2); 876 to->di_ino = be64_to_cpu(from->di_ino); 877 to->di_lsn = be64_to_cpu(from->di_lsn); 878 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 879 uuid_copy(&to->di_uuid, &from->di_uuid); 880 } 881 } 882 883 void 884 xfs_dinode_to_disk( 885 xfs_dinode_t *to, 886 xfs_icdinode_t *from) 887 { 888 to->di_magic = cpu_to_be16(from->di_magic); 889 to->di_mode = cpu_to_be16(from->di_mode); 890 to->di_version = from ->di_version; 891 to->di_format = from->di_format; 892 to->di_onlink = cpu_to_be16(from->di_onlink); 893 to->di_uid = cpu_to_be32(from->di_uid); 894 to->di_gid = cpu_to_be32(from->di_gid); 895 to->di_nlink = cpu_to_be32(from->di_nlink); 896 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 897 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 898 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 899 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 900 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 901 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 902 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 903 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 904 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 905 to->di_size = cpu_to_be64(from->di_size); 906 to->di_nblocks = cpu_to_be64(from->di_nblocks); 907 to->di_extsize = cpu_to_be32(from->di_extsize); 908 to->di_nextents = cpu_to_be32(from->di_nextents); 909 to->di_anextents = cpu_to_be16(from->di_anextents); 910 to->di_forkoff = from->di_forkoff; 911 to->di_aformat = from->di_aformat; 912 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 913 to->di_dmstate = cpu_to_be16(from->di_dmstate); 914 to->di_flags = cpu_to_be16(from->di_flags); 915 to->di_gen = cpu_to_be32(from->di_gen); 916 917 if (from->di_version == 3) { 918 to->di_changecount = cpu_to_be64(from->di_changecount); 919 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec); 920 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec); 921 to->di_flags2 = cpu_to_be64(from->di_flags2); 922 to->di_ino = cpu_to_be64(from->di_ino); 923 to->di_lsn = cpu_to_be64(from->di_lsn); 924 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2)); 925 uuid_copy(&to->di_uuid, &from->di_uuid); 926 to->di_flushiter = 0; 927 } else { 928 to->di_flushiter = cpu_to_be16(from->di_flushiter); 929 } 930 } 931 932 STATIC uint 933 _xfs_dic2xflags( 934 __uint16_t di_flags) 935 { 936 uint flags = 0; 937 938 if (di_flags & XFS_DIFLAG_ANY) { 939 if (di_flags & XFS_DIFLAG_REALTIME) 940 flags |= XFS_XFLAG_REALTIME; 941 if (di_flags & XFS_DIFLAG_PREALLOC) 942 flags |= XFS_XFLAG_PREALLOC; 943 if (di_flags & XFS_DIFLAG_IMMUTABLE) 944 flags |= XFS_XFLAG_IMMUTABLE; 945 if (di_flags & XFS_DIFLAG_APPEND) 946 flags |= XFS_XFLAG_APPEND; 947 if (di_flags & XFS_DIFLAG_SYNC) 948 flags |= XFS_XFLAG_SYNC; 949 if (di_flags & XFS_DIFLAG_NOATIME) 950 flags |= XFS_XFLAG_NOATIME; 951 if (di_flags & XFS_DIFLAG_NODUMP) 952 flags |= XFS_XFLAG_NODUMP; 953 if (di_flags & XFS_DIFLAG_RTINHERIT) 954 flags |= XFS_XFLAG_RTINHERIT; 955 if (di_flags & XFS_DIFLAG_PROJINHERIT) 956 flags |= XFS_XFLAG_PROJINHERIT; 957 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 958 flags |= XFS_XFLAG_NOSYMLINKS; 959 if (di_flags & XFS_DIFLAG_EXTSIZE) 960 flags |= XFS_XFLAG_EXTSIZE; 961 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 962 flags |= XFS_XFLAG_EXTSZINHERIT; 963 if (di_flags & XFS_DIFLAG_NODEFRAG) 964 flags |= XFS_XFLAG_NODEFRAG; 965 if (di_flags & XFS_DIFLAG_FILESTREAM) 966 flags |= XFS_XFLAG_FILESTREAM; 967 } 968 969 return flags; 970 } 971 972 uint 973 xfs_ip2xflags( 974 xfs_inode_t *ip) 975 { 976 xfs_icdinode_t *dic = &ip->i_d; 977 978 return _xfs_dic2xflags(dic->di_flags) | 979 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 980 } 981 982 uint 983 xfs_dic2xflags( 984 xfs_dinode_t *dip) 985 { 986 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 987 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 988 } 989 990 static bool 991 xfs_dinode_verify( 992 struct xfs_mount *mp, 993 struct xfs_inode *ip, 994 struct xfs_dinode *dip) 995 { 996 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) 997 return false; 998 999 /* only version 3 or greater inodes are extensively verified here */ 1000 if (dip->di_version < 3) 1001 return true; 1002 1003 if (!xfs_sb_version_hascrc(&mp->m_sb)) 1004 return false; 1005 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize, 1006 offsetof(struct xfs_dinode, di_crc))) 1007 return false; 1008 if (be64_to_cpu(dip->di_ino) != ip->i_ino) 1009 return false; 1010 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid)) 1011 return false; 1012 return true; 1013 } 1014 1015 void 1016 xfs_dinode_calc_crc( 1017 struct xfs_mount *mp, 1018 struct xfs_dinode *dip) 1019 { 1020 __uint32_t crc; 1021 1022 if (dip->di_version < 3) 1023 return; 1024 1025 ASSERT(xfs_sb_version_hascrc(&mp->m_sb)); 1026 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize, 1027 offsetof(struct xfs_dinode, di_crc)); 1028 dip->di_crc = xfs_end_cksum(crc); 1029 } 1030 1031 /* 1032 * Read the disk inode attributes into the in-core inode structure. 1033 * 1034 * For version 5 superblocks, if we are initialising a new inode and we are not 1035 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new 1036 * inode core with a random generation number. If we are keeping inodes around, 1037 * we need to read the inode cluster to get the existing generation number off 1038 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode 1039 * format) then log recovery is dependent on the di_flushiter field being 1040 * initialised from the current on-disk value and hence we must also read the 1041 * inode off disk. 1042 */ 1043 int 1044 xfs_iread( 1045 xfs_mount_t *mp, 1046 xfs_trans_t *tp, 1047 xfs_inode_t *ip, 1048 uint iget_flags) 1049 { 1050 xfs_buf_t *bp; 1051 xfs_dinode_t *dip; 1052 int error; 1053 1054 /* 1055 * Fill in the location information in the in-core inode. 1056 */ 1057 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 1058 if (error) 1059 return error; 1060 1061 /* shortcut IO on inode allocation if possible */ 1062 if ((iget_flags & XFS_IGET_CREATE) && 1063 xfs_sb_version_hascrc(&mp->m_sb) && 1064 !(mp->m_flags & XFS_MOUNT_IKEEP)) { 1065 /* initialise the on-disk inode core */ 1066 memset(&ip->i_d, 0, sizeof(ip->i_d)); 1067 ip->i_d.di_magic = XFS_DINODE_MAGIC; 1068 ip->i_d.di_gen = prandom_u32(); 1069 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1070 ip->i_d.di_version = 3; 1071 ip->i_d.di_ino = ip->i_ino; 1072 uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid); 1073 } else 1074 ip->i_d.di_version = 2; 1075 return 0; 1076 } 1077 1078 /* 1079 * Get pointers to the on-disk inode and the buffer containing it. 1080 */ 1081 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags); 1082 if (error) 1083 return error; 1084 1085 /* even unallocated inodes are verified */ 1086 if (!xfs_dinode_verify(mp, ip, dip)) { 1087 xfs_alert(mp, "%s: validation failed for inode %lld failed", 1088 __func__, ip->i_ino); 1089 1090 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip); 1091 error = XFS_ERROR(EFSCORRUPTED); 1092 goto out_brelse; 1093 } 1094 1095 /* 1096 * If the on-disk inode is already linked to a directory 1097 * entry, copy all of the inode into the in-core inode. 1098 * xfs_iformat() handles copying in the inode format 1099 * specific information. 1100 * Otherwise, just get the truly permanent information. 1101 */ 1102 if (dip->di_mode) { 1103 xfs_dinode_from_disk(&ip->i_d, dip); 1104 error = xfs_iformat(ip, dip); 1105 if (error) { 1106 #ifdef DEBUG 1107 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 1108 __func__, error); 1109 #endif /* DEBUG */ 1110 goto out_brelse; 1111 } 1112 } else { 1113 /* 1114 * Partial initialisation of the in-core inode. Just the bits 1115 * that xfs_ialloc won't overwrite or relies on being correct. 1116 */ 1117 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 1118 ip->i_d.di_version = dip->di_version; 1119 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 1120 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 1121 1122 if (dip->di_version == 3) { 1123 ip->i_d.di_ino = be64_to_cpu(dip->di_ino); 1124 uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid); 1125 } 1126 1127 /* 1128 * Make sure to pull in the mode here as well in 1129 * case the inode is released without being used. 1130 * This ensures that xfs_inactive() will see that 1131 * the inode is already free and not try to mess 1132 * with the uninitialized part of it. 1133 */ 1134 ip->i_d.di_mode = 0; 1135 } 1136 1137 /* 1138 * The inode format changed when we moved the link count and 1139 * made it 32 bits long. If this is an old format inode, 1140 * convert it in memory to look like a new one. If it gets 1141 * flushed to disk we will convert back before flushing or 1142 * logging it. We zero out the new projid field and the old link 1143 * count field. We'll handle clearing the pad field (the remains 1144 * of the old uuid field) when we actually convert the inode to 1145 * the new format. We don't change the version number so that we 1146 * can distinguish this from a real new format inode. 1147 */ 1148 if (ip->i_d.di_version == 1) { 1149 ip->i_d.di_nlink = ip->i_d.di_onlink; 1150 ip->i_d.di_onlink = 0; 1151 xfs_set_projid(ip, 0); 1152 } 1153 1154 ip->i_delayed_blks = 0; 1155 1156 /* 1157 * Mark the buffer containing the inode as something to keep 1158 * around for a while. This helps to keep recently accessed 1159 * meta-data in-core longer. 1160 */ 1161 xfs_buf_set_ref(bp, XFS_INO_REF); 1162 1163 /* 1164 * Use xfs_trans_brelse() to release the buffer containing the on-disk 1165 * inode, because it was acquired with xfs_trans_read_buf() in 1166 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal 1167 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1168 * will only release the buffer if it is not dirty within the 1169 * transaction. It will be OK to release the buffer in this case, 1170 * because inodes on disk are never destroyed and we will be locking the 1171 * new in-core inode before putting it in the cache where other 1172 * processes can find it. Thus we don't have to worry about the inode 1173 * being changed just because we released the buffer. 1174 */ 1175 out_brelse: 1176 xfs_trans_brelse(tp, bp); 1177 return error; 1178 } 1179 1180 /* 1181 * Read in extents from a btree-format inode. 1182 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1183 */ 1184 int 1185 xfs_iread_extents( 1186 xfs_trans_t *tp, 1187 xfs_inode_t *ip, 1188 int whichfork) 1189 { 1190 int error; 1191 xfs_ifork_t *ifp; 1192 xfs_extnum_t nextents; 1193 1194 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1195 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1196 ip->i_mount); 1197 return XFS_ERROR(EFSCORRUPTED); 1198 } 1199 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1200 ifp = XFS_IFORK_PTR(ip, whichfork); 1201 1202 /* 1203 * We know that the size is valid (it's checked in iformat_btree) 1204 */ 1205 ifp->if_bytes = ifp->if_real_bytes = 0; 1206 ifp->if_flags |= XFS_IFEXTENTS; 1207 xfs_iext_add(ifp, 0, nextents); 1208 error = xfs_bmap_read_extents(tp, ip, whichfork); 1209 if (error) { 1210 xfs_iext_destroy(ifp); 1211 ifp->if_flags &= ~XFS_IFEXTENTS; 1212 return error; 1213 } 1214 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 1215 return 0; 1216 } 1217 1218 /* 1219 * Allocate an inode on disk and return a copy of its in-core version. 1220 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1221 * appropriately within the inode. The uid and gid for the inode are 1222 * set according to the contents of the given cred structure. 1223 * 1224 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1225 * has a free inode available, call xfs_iget() to obtain the in-core 1226 * version of the allocated inode. Finally, fill in the inode and 1227 * log its initial contents. In this case, ialloc_context would be 1228 * set to NULL. 1229 * 1230 * If xfs_dialloc() does not have an available inode, it will replenish 1231 * its supply by doing an allocation. Since we can only do one 1232 * allocation within a transaction without deadlocks, we must commit 1233 * the current transaction before returning the inode itself. 1234 * In this case, therefore, we will set ialloc_context and return. 1235 * The caller should then commit the current transaction, start a new 1236 * transaction, and call xfs_ialloc() again to actually get the inode. 1237 * 1238 * To ensure that some other process does not grab the inode that 1239 * was allocated during the first call to xfs_ialloc(), this routine 1240 * also returns the [locked] bp pointing to the head of the freelist 1241 * as ialloc_context. The caller should hold this buffer across 1242 * the commit and pass it back into this routine on the second call. 1243 * 1244 * If we are allocating quota inodes, we do not have a parent inode 1245 * to attach to or associate with (i.e. pip == NULL) because they 1246 * are not linked into the directory structure - they are attached 1247 * directly to the superblock - and so have no parent. 1248 */ 1249 int 1250 xfs_ialloc( 1251 xfs_trans_t *tp, 1252 xfs_inode_t *pip, 1253 umode_t mode, 1254 xfs_nlink_t nlink, 1255 xfs_dev_t rdev, 1256 prid_t prid, 1257 int okalloc, 1258 xfs_buf_t **ialloc_context, 1259 xfs_inode_t **ipp) 1260 { 1261 struct xfs_mount *mp = tp->t_mountp; 1262 xfs_ino_t ino; 1263 xfs_inode_t *ip; 1264 uint flags; 1265 int error; 1266 timespec_t tv; 1267 int filestreams = 0; 1268 1269 /* 1270 * Call the space management code to pick 1271 * the on-disk inode to be allocated. 1272 */ 1273 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1274 ialloc_context, &ino); 1275 if (error) 1276 return error; 1277 if (*ialloc_context || ino == NULLFSINO) { 1278 *ipp = NULL; 1279 return 0; 1280 } 1281 ASSERT(*ialloc_context == NULL); 1282 1283 /* 1284 * Get the in-core inode with the lock held exclusively. 1285 * This is because we're setting fields here we need 1286 * to prevent others from looking at until we're done. 1287 */ 1288 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 1289 XFS_ILOCK_EXCL, &ip); 1290 if (error) 1291 return error; 1292 ASSERT(ip != NULL); 1293 1294 ip->i_d.di_mode = mode; 1295 ip->i_d.di_onlink = 0; 1296 ip->i_d.di_nlink = nlink; 1297 ASSERT(ip->i_d.di_nlink == nlink); 1298 ip->i_d.di_uid = current_fsuid(); 1299 ip->i_d.di_gid = current_fsgid(); 1300 xfs_set_projid(ip, prid); 1301 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1302 1303 /* 1304 * If the superblock version is up to where we support new format 1305 * inodes and this is currently an old format inode, then change 1306 * the inode version number now. This way we only do the conversion 1307 * here rather than here and in the flush/logging code. 1308 */ 1309 if (xfs_sb_version_hasnlink(&mp->m_sb) && 1310 ip->i_d.di_version == 1) { 1311 ip->i_d.di_version = 2; 1312 /* 1313 * We've already zeroed the old link count, the projid field, 1314 * and the pad field. 1315 */ 1316 } 1317 1318 /* 1319 * Project ids won't be stored on disk if we are using a version 1 inode. 1320 */ 1321 if ((prid != 0) && (ip->i_d.di_version == 1)) 1322 xfs_bump_ino_vers2(tp, ip); 1323 1324 if (pip && XFS_INHERIT_GID(pip)) { 1325 ip->i_d.di_gid = pip->i_d.di_gid; 1326 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 1327 ip->i_d.di_mode |= S_ISGID; 1328 } 1329 } 1330 1331 /* 1332 * If the group ID of the new file does not match the effective group 1333 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1334 * (and only if the irix_sgid_inherit compatibility variable is set). 1335 */ 1336 if ((irix_sgid_inherit) && 1337 (ip->i_d.di_mode & S_ISGID) && 1338 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1339 ip->i_d.di_mode &= ~S_ISGID; 1340 } 1341 1342 ip->i_d.di_size = 0; 1343 ip->i_d.di_nextents = 0; 1344 ASSERT(ip->i_d.di_nblocks == 0); 1345 1346 nanotime(&tv); 1347 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1348 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1349 ip->i_d.di_atime = ip->i_d.di_mtime; 1350 ip->i_d.di_ctime = ip->i_d.di_mtime; 1351 1352 /* 1353 * di_gen will have been taken care of in xfs_iread. 1354 */ 1355 ip->i_d.di_extsize = 0; 1356 ip->i_d.di_dmevmask = 0; 1357 ip->i_d.di_dmstate = 0; 1358 ip->i_d.di_flags = 0; 1359 1360 if (ip->i_d.di_version == 3) { 1361 ASSERT(ip->i_d.di_ino == ino); 1362 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 1363 ip->i_d.di_crc = 0; 1364 ip->i_d.di_changecount = 1; 1365 ip->i_d.di_lsn = 0; 1366 ip->i_d.di_flags2 = 0; 1367 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 1368 ip->i_d.di_crtime = ip->i_d.di_mtime; 1369 } 1370 1371 1372 flags = XFS_ILOG_CORE; 1373 switch (mode & S_IFMT) { 1374 case S_IFIFO: 1375 case S_IFCHR: 1376 case S_IFBLK: 1377 case S_IFSOCK: 1378 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1379 ip->i_df.if_u2.if_rdev = rdev; 1380 ip->i_df.if_flags = 0; 1381 flags |= XFS_ILOG_DEV; 1382 break; 1383 case S_IFREG: 1384 /* 1385 * we can't set up filestreams until after the VFS inode 1386 * is set up properly. 1387 */ 1388 if (pip && xfs_inode_is_filestream(pip)) 1389 filestreams = 1; 1390 /* fall through */ 1391 case S_IFDIR: 1392 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1393 uint di_flags = 0; 1394 1395 if (S_ISDIR(mode)) { 1396 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1397 di_flags |= XFS_DIFLAG_RTINHERIT; 1398 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1399 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1400 ip->i_d.di_extsize = pip->i_d.di_extsize; 1401 } 1402 } else if (S_ISREG(mode)) { 1403 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1404 di_flags |= XFS_DIFLAG_REALTIME; 1405 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1406 di_flags |= XFS_DIFLAG_EXTSIZE; 1407 ip->i_d.di_extsize = pip->i_d.di_extsize; 1408 } 1409 } 1410 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1411 xfs_inherit_noatime) 1412 di_flags |= XFS_DIFLAG_NOATIME; 1413 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1414 xfs_inherit_nodump) 1415 di_flags |= XFS_DIFLAG_NODUMP; 1416 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1417 xfs_inherit_sync) 1418 di_flags |= XFS_DIFLAG_SYNC; 1419 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1420 xfs_inherit_nosymlinks) 1421 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1422 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1423 di_flags |= XFS_DIFLAG_PROJINHERIT; 1424 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1425 xfs_inherit_nodefrag) 1426 di_flags |= XFS_DIFLAG_NODEFRAG; 1427 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1428 di_flags |= XFS_DIFLAG_FILESTREAM; 1429 ip->i_d.di_flags |= di_flags; 1430 } 1431 /* FALLTHROUGH */ 1432 case S_IFLNK: 1433 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1434 ip->i_df.if_flags = XFS_IFEXTENTS; 1435 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1436 ip->i_df.if_u1.if_extents = NULL; 1437 break; 1438 default: 1439 ASSERT(0); 1440 } 1441 /* 1442 * Attribute fork settings for new inode. 1443 */ 1444 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1445 ip->i_d.di_anextents = 0; 1446 1447 /* 1448 * Log the new values stuffed into the inode. 1449 */ 1450 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1451 xfs_trans_log_inode(tp, ip, flags); 1452 1453 /* now that we have an i_mode we can setup inode ops and unlock */ 1454 xfs_setup_inode(ip); 1455 1456 /* now we have set up the vfs inode we can associate the filestream */ 1457 if (filestreams) { 1458 error = xfs_filestream_associate(pip, ip); 1459 if (error < 0) 1460 return -error; 1461 if (!error) 1462 xfs_iflags_set(ip, XFS_IFILESTREAM); 1463 } 1464 1465 *ipp = ip; 1466 return 0; 1467 } 1468 1469 /* 1470 * Free up the underlying blocks past new_size. The new size must be smaller 1471 * than the current size. This routine can be used both for the attribute and 1472 * data fork, and does not modify the inode size, which is left to the caller. 1473 * 1474 * The transaction passed to this routine must have made a permanent log 1475 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1476 * given transaction and start new ones, so make sure everything involved in 1477 * the transaction is tidy before calling here. Some transaction will be 1478 * returned to the caller to be committed. The incoming transaction must 1479 * already include the inode, and both inode locks must be held exclusively. 1480 * The inode must also be "held" within the transaction. On return the inode 1481 * will be "held" within the returned transaction. This routine does NOT 1482 * require any disk space to be reserved for it within the transaction. 1483 * 1484 * If we get an error, we must return with the inode locked and linked into the 1485 * current transaction. This keeps things simple for the higher level code, 1486 * because it always knows that the inode is locked and held in the transaction 1487 * that returns to it whether errors occur or not. We don't mark the inode 1488 * dirty on error so that transactions can be easily aborted if possible. 1489 */ 1490 int 1491 xfs_itruncate_extents( 1492 struct xfs_trans **tpp, 1493 struct xfs_inode *ip, 1494 int whichfork, 1495 xfs_fsize_t new_size) 1496 { 1497 struct xfs_mount *mp = ip->i_mount; 1498 struct xfs_trans *tp = *tpp; 1499 struct xfs_trans *ntp; 1500 xfs_bmap_free_t free_list; 1501 xfs_fsblock_t first_block; 1502 xfs_fileoff_t first_unmap_block; 1503 xfs_fileoff_t last_block; 1504 xfs_filblks_t unmap_len; 1505 int committed; 1506 int error = 0; 1507 int done = 0; 1508 1509 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1510 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1511 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1512 ASSERT(new_size <= XFS_ISIZE(ip)); 1513 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1514 ASSERT(ip->i_itemp != NULL); 1515 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1516 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1517 1518 trace_xfs_itruncate_extents_start(ip, new_size); 1519 1520 /* 1521 * Since it is possible for space to become allocated beyond 1522 * the end of the file (in a crash where the space is allocated 1523 * but the inode size is not yet updated), simply remove any 1524 * blocks which show up between the new EOF and the maximum 1525 * possible file size. If the first block to be removed is 1526 * beyond the maximum file size (ie it is the same as last_block), 1527 * then there is nothing to do. 1528 */ 1529 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1530 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1531 if (first_unmap_block == last_block) 1532 return 0; 1533 1534 ASSERT(first_unmap_block < last_block); 1535 unmap_len = last_block - first_unmap_block + 1; 1536 while (!done) { 1537 xfs_bmap_init(&free_list, &first_block); 1538 error = xfs_bunmapi(tp, ip, 1539 first_unmap_block, unmap_len, 1540 xfs_bmapi_aflag(whichfork), 1541 XFS_ITRUNC_MAX_EXTENTS, 1542 &first_block, &free_list, 1543 &done); 1544 if (error) 1545 goto out_bmap_cancel; 1546 1547 /* 1548 * Duplicate the transaction that has the permanent 1549 * reservation and commit the old transaction. 1550 */ 1551 error = xfs_bmap_finish(&tp, &free_list, &committed); 1552 if (committed) 1553 xfs_trans_ijoin(tp, ip, 0); 1554 if (error) 1555 goto out_bmap_cancel; 1556 1557 if (committed) { 1558 /* 1559 * Mark the inode dirty so it will be logged and 1560 * moved forward in the log as part of every commit. 1561 */ 1562 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1563 } 1564 1565 ntp = xfs_trans_dup(tp); 1566 error = xfs_trans_commit(tp, 0); 1567 tp = ntp; 1568 1569 xfs_trans_ijoin(tp, ip, 0); 1570 1571 if (error) 1572 goto out; 1573 1574 /* 1575 * Transaction commit worked ok so we can drop the extra ticket 1576 * reference that we gained in xfs_trans_dup() 1577 */ 1578 xfs_log_ticket_put(tp->t_ticket); 1579 error = xfs_trans_reserve(tp, 0, 1580 XFS_ITRUNCATE_LOG_RES(mp), 0, 1581 XFS_TRANS_PERM_LOG_RES, 1582 XFS_ITRUNCATE_LOG_COUNT); 1583 if (error) 1584 goto out; 1585 } 1586 1587 /* 1588 * Always re-log the inode so that our permanent transaction can keep 1589 * on rolling it forward in the log. 1590 */ 1591 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1592 1593 trace_xfs_itruncate_extents_end(ip, new_size); 1594 1595 out: 1596 *tpp = tp; 1597 return error; 1598 out_bmap_cancel: 1599 /* 1600 * If the bunmapi call encounters an error, return to the caller where 1601 * the transaction can be properly aborted. We just need to make sure 1602 * we're not holding any resources that we were not when we came in. 1603 */ 1604 xfs_bmap_cancel(&free_list); 1605 goto out; 1606 } 1607 1608 /* 1609 * This is called when the inode's link count goes to 0. 1610 * We place the on-disk inode on a list in the AGI. It 1611 * will be pulled from this list when the inode is freed. 1612 */ 1613 int 1614 xfs_iunlink( 1615 xfs_trans_t *tp, 1616 xfs_inode_t *ip) 1617 { 1618 xfs_mount_t *mp; 1619 xfs_agi_t *agi; 1620 xfs_dinode_t *dip; 1621 xfs_buf_t *agibp; 1622 xfs_buf_t *ibp; 1623 xfs_agino_t agino; 1624 short bucket_index; 1625 int offset; 1626 int error; 1627 1628 ASSERT(ip->i_d.di_nlink == 0); 1629 ASSERT(ip->i_d.di_mode != 0); 1630 1631 mp = tp->t_mountp; 1632 1633 /* 1634 * Get the agi buffer first. It ensures lock ordering 1635 * on the list. 1636 */ 1637 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1638 if (error) 1639 return error; 1640 agi = XFS_BUF_TO_AGI(agibp); 1641 1642 /* 1643 * Get the index into the agi hash table for the 1644 * list this inode will go on. 1645 */ 1646 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1647 ASSERT(agino != 0); 1648 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1649 ASSERT(agi->agi_unlinked[bucket_index]); 1650 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1651 1652 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1653 /* 1654 * There is already another inode in the bucket we need 1655 * to add ourselves to. Add us at the front of the list. 1656 * Here we put the head pointer into our next pointer, 1657 * and then we fall through to point the head at us. 1658 */ 1659 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1660 0, 0); 1661 if (error) 1662 return error; 1663 1664 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1665 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1666 offset = ip->i_imap.im_boffset + 1667 offsetof(xfs_dinode_t, di_next_unlinked); 1668 1669 /* need to recalc the inode CRC if appropriate */ 1670 xfs_dinode_calc_crc(mp, dip); 1671 1672 xfs_trans_inode_buf(tp, ibp); 1673 xfs_trans_log_buf(tp, ibp, offset, 1674 (offset + sizeof(xfs_agino_t) - 1)); 1675 xfs_inobp_check(mp, ibp); 1676 } 1677 1678 /* 1679 * Point the bucket head pointer at the inode being inserted. 1680 */ 1681 ASSERT(agino != 0); 1682 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1683 offset = offsetof(xfs_agi_t, agi_unlinked) + 1684 (sizeof(xfs_agino_t) * bucket_index); 1685 xfs_trans_log_buf(tp, agibp, offset, 1686 (offset + sizeof(xfs_agino_t) - 1)); 1687 return 0; 1688 } 1689 1690 /* 1691 * Pull the on-disk inode from the AGI unlinked list. 1692 */ 1693 STATIC int 1694 xfs_iunlink_remove( 1695 xfs_trans_t *tp, 1696 xfs_inode_t *ip) 1697 { 1698 xfs_ino_t next_ino; 1699 xfs_mount_t *mp; 1700 xfs_agi_t *agi; 1701 xfs_dinode_t *dip; 1702 xfs_buf_t *agibp; 1703 xfs_buf_t *ibp; 1704 xfs_agnumber_t agno; 1705 xfs_agino_t agino; 1706 xfs_agino_t next_agino; 1707 xfs_buf_t *last_ibp; 1708 xfs_dinode_t *last_dip = NULL; 1709 short bucket_index; 1710 int offset, last_offset = 0; 1711 int error; 1712 1713 mp = tp->t_mountp; 1714 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1715 1716 /* 1717 * Get the agi buffer first. It ensures lock ordering 1718 * on the list. 1719 */ 1720 error = xfs_read_agi(mp, tp, agno, &agibp); 1721 if (error) 1722 return error; 1723 1724 agi = XFS_BUF_TO_AGI(agibp); 1725 1726 /* 1727 * Get the index into the agi hash table for the 1728 * list this inode will go on. 1729 */ 1730 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1731 ASSERT(agino != 0); 1732 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1733 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 1734 ASSERT(agi->agi_unlinked[bucket_index]); 1735 1736 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1737 /* 1738 * We're at the head of the list. Get the inode's on-disk 1739 * buffer to see if there is anyone after us on the list. 1740 * Only modify our next pointer if it is not already NULLAGINO. 1741 * This saves us the overhead of dealing with the buffer when 1742 * there is no need to change it. 1743 */ 1744 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1745 0, 0); 1746 if (error) { 1747 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 1748 __func__, error); 1749 return error; 1750 } 1751 next_agino = be32_to_cpu(dip->di_next_unlinked); 1752 ASSERT(next_agino != 0); 1753 if (next_agino != NULLAGINO) { 1754 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1755 offset = ip->i_imap.im_boffset + 1756 offsetof(xfs_dinode_t, di_next_unlinked); 1757 1758 /* need to recalc the inode CRC if appropriate */ 1759 xfs_dinode_calc_crc(mp, dip); 1760 1761 xfs_trans_inode_buf(tp, ibp); 1762 xfs_trans_log_buf(tp, ibp, offset, 1763 (offset + sizeof(xfs_agino_t) - 1)); 1764 xfs_inobp_check(mp, ibp); 1765 } else { 1766 xfs_trans_brelse(tp, ibp); 1767 } 1768 /* 1769 * Point the bucket head pointer at the next inode. 1770 */ 1771 ASSERT(next_agino != 0); 1772 ASSERT(next_agino != agino); 1773 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1774 offset = offsetof(xfs_agi_t, agi_unlinked) + 1775 (sizeof(xfs_agino_t) * bucket_index); 1776 xfs_trans_log_buf(tp, agibp, offset, 1777 (offset + sizeof(xfs_agino_t) - 1)); 1778 } else { 1779 /* 1780 * We need to search the list for the inode being freed. 1781 */ 1782 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1783 last_ibp = NULL; 1784 while (next_agino != agino) { 1785 struct xfs_imap imap; 1786 1787 if (last_ibp) 1788 xfs_trans_brelse(tp, last_ibp); 1789 1790 imap.im_blkno = 0; 1791 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1792 1793 error = xfs_imap(mp, tp, next_ino, &imap, 0); 1794 if (error) { 1795 xfs_warn(mp, 1796 "%s: xfs_imap returned error %d.", 1797 __func__, error); 1798 return error; 1799 } 1800 1801 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 1802 &last_ibp, 0, 0); 1803 if (error) { 1804 xfs_warn(mp, 1805 "%s: xfs_imap_to_bp returned error %d.", 1806 __func__, error); 1807 return error; 1808 } 1809 1810 last_offset = imap.im_boffset; 1811 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1812 ASSERT(next_agino != NULLAGINO); 1813 ASSERT(next_agino != 0); 1814 } 1815 1816 /* 1817 * Now last_ibp points to the buffer previous to us on the 1818 * unlinked list. Pull us from the list. 1819 */ 1820 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1821 0, 0); 1822 if (error) { 1823 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 1824 __func__, error); 1825 return error; 1826 } 1827 next_agino = be32_to_cpu(dip->di_next_unlinked); 1828 ASSERT(next_agino != 0); 1829 ASSERT(next_agino != agino); 1830 if (next_agino != NULLAGINO) { 1831 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1832 offset = ip->i_imap.im_boffset + 1833 offsetof(xfs_dinode_t, di_next_unlinked); 1834 1835 /* need to recalc the inode CRC if appropriate */ 1836 xfs_dinode_calc_crc(mp, dip); 1837 1838 xfs_trans_inode_buf(tp, ibp); 1839 xfs_trans_log_buf(tp, ibp, offset, 1840 (offset + sizeof(xfs_agino_t) - 1)); 1841 xfs_inobp_check(mp, ibp); 1842 } else { 1843 xfs_trans_brelse(tp, ibp); 1844 } 1845 /* 1846 * Point the previous inode on the list to the next inode. 1847 */ 1848 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1849 ASSERT(next_agino != 0); 1850 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1851 1852 /* need to recalc the inode CRC if appropriate */ 1853 xfs_dinode_calc_crc(mp, last_dip); 1854 1855 xfs_trans_inode_buf(tp, last_ibp); 1856 xfs_trans_log_buf(tp, last_ibp, offset, 1857 (offset + sizeof(xfs_agino_t) - 1)); 1858 xfs_inobp_check(mp, last_ibp); 1859 } 1860 return 0; 1861 } 1862 1863 /* 1864 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1865 * inodes that are in memory - they all must be marked stale and attached to 1866 * the cluster buffer. 1867 */ 1868 STATIC int 1869 xfs_ifree_cluster( 1870 xfs_inode_t *free_ip, 1871 xfs_trans_t *tp, 1872 xfs_ino_t inum) 1873 { 1874 xfs_mount_t *mp = free_ip->i_mount; 1875 int blks_per_cluster; 1876 int nbufs; 1877 int ninodes; 1878 int i, j; 1879 xfs_daddr_t blkno; 1880 xfs_buf_t *bp; 1881 xfs_inode_t *ip; 1882 xfs_inode_log_item_t *iip; 1883 xfs_log_item_t *lip; 1884 struct xfs_perag *pag; 1885 1886 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1887 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1888 blks_per_cluster = 1; 1889 ninodes = mp->m_sb.sb_inopblock; 1890 nbufs = XFS_IALLOC_BLOCKS(mp); 1891 } else { 1892 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1893 mp->m_sb.sb_blocksize; 1894 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1895 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1896 } 1897 1898 for (j = 0; j < nbufs; j++, inum += ninodes) { 1899 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1900 XFS_INO_TO_AGBNO(mp, inum)); 1901 1902 /* 1903 * We obtain and lock the backing buffer first in the process 1904 * here, as we have to ensure that any dirty inode that we 1905 * can't get the flush lock on is attached to the buffer. 1906 * If we scan the in-memory inodes first, then buffer IO can 1907 * complete before we get a lock on it, and hence we may fail 1908 * to mark all the active inodes on the buffer stale. 1909 */ 1910 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1911 mp->m_bsize * blks_per_cluster, 1912 XBF_UNMAPPED); 1913 1914 if (!bp) 1915 return ENOMEM; 1916 1917 /* 1918 * This buffer may not have been correctly initialised as we 1919 * didn't read it from disk. That's not important because we are 1920 * only using to mark the buffer as stale in the log, and to 1921 * attach stale cached inodes on it. That means it will never be 1922 * dispatched for IO. If it is, we want to know about it, and we 1923 * want it to fail. We can acheive this by adding a write 1924 * verifier to the buffer. 1925 */ 1926 bp->b_ops = &xfs_inode_buf_ops; 1927 1928 /* 1929 * Walk the inodes already attached to the buffer and mark them 1930 * stale. These will all have the flush locks held, so an 1931 * in-memory inode walk can't lock them. By marking them all 1932 * stale first, we will not attempt to lock them in the loop 1933 * below as the XFS_ISTALE flag will be set. 1934 */ 1935 lip = bp->b_fspriv; 1936 while (lip) { 1937 if (lip->li_type == XFS_LI_INODE) { 1938 iip = (xfs_inode_log_item_t *)lip; 1939 ASSERT(iip->ili_logged == 1); 1940 lip->li_cb = xfs_istale_done; 1941 xfs_trans_ail_copy_lsn(mp->m_ail, 1942 &iip->ili_flush_lsn, 1943 &iip->ili_item.li_lsn); 1944 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1945 } 1946 lip = lip->li_bio_list; 1947 } 1948 1949 1950 /* 1951 * For each inode in memory attempt to add it to the inode 1952 * buffer and set it up for being staled on buffer IO 1953 * completion. This is safe as we've locked out tail pushing 1954 * and flushing by locking the buffer. 1955 * 1956 * We have already marked every inode that was part of a 1957 * transaction stale above, which means there is no point in 1958 * even trying to lock them. 1959 */ 1960 for (i = 0; i < ninodes; i++) { 1961 retry: 1962 rcu_read_lock(); 1963 ip = radix_tree_lookup(&pag->pag_ici_root, 1964 XFS_INO_TO_AGINO(mp, (inum + i))); 1965 1966 /* Inode not in memory, nothing to do */ 1967 if (!ip) { 1968 rcu_read_unlock(); 1969 continue; 1970 } 1971 1972 /* 1973 * because this is an RCU protected lookup, we could 1974 * find a recently freed or even reallocated inode 1975 * during the lookup. We need to check under the 1976 * i_flags_lock for a valid inode here. Skip it if it 1977 * is not valid, the wrong inode or stale. 1978 */ 1979 spin_lock(&ip->i_flags_lock); 1980 if (ip->i_ino != inum + i || 1981 __xfs_iflags_test(ip, XFS_ISTALE)) { 1982 spin_unlock(&ip->i_flags_lock); 1983 rcu_read_unlock(); 1984 continue; 1985 } 1986 spin_unlock(&ip->i_flags_lock); 1987 1988 /* 1989 * Don't try to lock/unlock the current inode, but we 1990 * _cannot_ skip the other inodes that we did not find 1991 * in the list attached to the buffer and are not 1992 * already marked stale. If we can't lock it, back off 1993 * and retry. 1994 */ 1995 if (ip != free_ip && 1996 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1997 rcu_read_unlock(); 1998 delay(1); 1999 goto retry; 2000 } 2001 rcu_read_unlock(); 2002 2003 xfs_iflock(ip); 2004 xfs_iflags_set(ip, XFS_ISTALE); 2005 2006 /* 2007 * we don't need to attach clean inodes or those only 2008 * with unlogged changes (which we throw away, anyway). 2009 */ 2010 iip = ip->i_itemp; 2011 if (!iip || xfs_inode_clean(ip)) { 2012 ASSERT(ip != free_ip); 2013 xfs_ifunlock(ip); 2014 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2015 continue; 2016 } 2017 2018 iip->ili_last_fields = iip->ili_fields; 2019 iip->ili_fields = 0; 2020 iip->ili_logged = 1; 2021 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2022 &iip->ili_item.li_lsn); 2023 2024 xfs_buf_attach_iodone(bp, xfs_istale_done, 2025 &iip->ili_item); 2026 2027 if (ip != free_ip) 2028 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2029 } 2030 2031 xfs_trans_stale_inode_buf(tp, bp); 2032 xfs_trans_binval(tp, bp); 2033 } 2034 2035 xfs_perag_put(pag); 2036 return 0; 2037 } 2038 2039 /* 2040 * This is called to return an inode to the inode free list. 2041 * The inode should already be truncated to 0 length and have 2042 * no pages associated with it. This routine also assumes that 2043 * the inode is already a part of the transaction. 2044 * 2045 * The on-disk copy of the inode will have been added to the list 2046 * of unlinked inodes in the AGI. We need to remove the inode from 2047 * that list atomically with respect to freeing it here. 2048 */ 2049 int 2050 xfs_ifree( 2051 xfs_trans_t *tp, 2052 xfs_inode_t *ip, 2053 xfs_bmap_free_t *flist) 2054 { 2055 int error; 2056 int delete; 2057 xfs_ino_t first_ino; 2058 2059 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2060 ASSERT(ip->i_d.di_nlink == 0); 2061 ASSERT(ip->i_d.di_nextents == 0); 2062 ASSERT(ip->i_d.di_anextents == 0); 2063 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2064 ASSERT(ip->i_d.di_nblocks == 0); 2065 2066 /* 2067 * Pull the on-disk inode from the AGI unlinked list. 2068 */ 2069 error = xfs_iunlink_remove(tp, ip); 2070 if (error) 2071 return error; 2072 2073 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2074 if (error) 2075 return error; 2076 2077 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2078 ip->i_d.di_flags = 0; 2079 ip->i_d.di_dmevmask = 0; 2080 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2081 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2082 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2083 /* 2084 * Bump the generation count so no one will be confused 2085 * by reincarnations of this inode. 2086 */ 2087 ip->i_d.di_gen++; 2088 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2089 2090 if (delete) 2091 error = xfs_ifree_cluster(ip, tp, first_ino); 2092 2093 return error; 2094 } 2095 2096 /* 2097 * Reallocate the space for if_broot based on the number of records 2098 * being added or deleted as indicated in rec_diff. Move the records 2099 * and pointers in if_broot to fit the new size. When shrinking this 2100 * will eliminate holes between the records and pointers created by 2101 * the caller. When growing this will create holes to be filled in 2102 * by the caller. 2103 * 2104 * The caller must not request to add more records than would fit in 2105 * the on-disk inode root. If the if_broot is currently NULL, then 2106 * if we adding records one will be allocated. The caller must also 2107 * not request that the number of records go below zero, although 2108 * it can go to zero. 2109 * 2110 * ip -- the inode whose if_broot area is changing 2111 * ext_diff -- the change in the number of records, positive or negative, 2112 * requested for the if_broot array. 2113 */ 2114 void 2115 xfs_iroot_realloc( 2116 xfs_inode_t *ip, 2117 int rec_diff, 2118 int whichfork) 2119 { 2120 struct xfs_mount *mp = ip->i_mount; 2121 int cur_max; 2122 xfs_ifork_t *ifp; 2123 struct xfs_btree_block *new_broot; 2124 int new_max; 2125 size_t new_size; 2126 char *np; 2127 char *op; 2128 2129 /* 2130 * Handle the degenerate case quietly. 2131 */ 2132 if (rec_diff == 0) { 2133 return; 2134 } 2135 2136 ifp = XFS_IFORK_PTR(ip, whichfork); 2137 if (rec_diff > 0) { 2138 /* 2139 * If there wasn't any memory allocated before, just 2140 * allocate it now and get out. 2141 */ 2142 if (ifp->if_broot_bytes == 0) { 2143 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 2144 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2145 ifp->if_broot_bytes = (int)new_size; 2146 return; 2147 } 2148 2149 /* 2150 * If there is already an existing if_broot, then we need 2151 * to realloc() it and shift the pointers to their new 2152 * location. The records don't change location because 2153 * they are kept butted up against the btree block header. 2154 */ 2155 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2156 new_max = cur_max + rec_diff; 2157 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2158 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2159 XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max), 2160 KM_SLEEP | KM_NOFS); 2161 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2162 ifp->if_broot_bytes); 2163 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2164 (int)new_size); 2165 ifp->if_broot_bytes = (int)new_size; 2166 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 2167 XFS_IFORK_SIZE(ip, whichfork)); 2168 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2169 return; 2170 } 2171 2172 /* 2173 * rec_diff is less than 0. In this case, we are shrinking the 2174 * if_broot buffer. It must already exist. If we go to zero 2175 * records, just get rid of the root and clear the status bit. 2176 */ 2177 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2178 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2179 new_max = cur_max + rec_diff; 2180 ASSERT(new_max >= 0); 2181 if (new_max > 0) 2182 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 2183 else 2184 new_size = 0; 2185 if (new_size > 0) { 2186 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2187 /* 2188 * First copy over the btree block header. 2189 */ 2190 memcpy(new_broot, ifp->if_broot, 2191 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 2192 } else { 2193 new_broot = NULL; 2194 ifp->if_flags &= ~XFS_IFBROOT; 2195 } 2196 2197 /* 2198 * Only copy the records and pointers if there are any. 2199 */ 2200 if (new_max > 0) { 2201 /* 2202 * First copy the records. 2203 */ 2204 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2205 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2206 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2207 2208 /* 2209 * Then copy the pointers. 2210 */ 2211 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2212 ifp->if_broot_bytes); 2213 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2214 (int)new_size); 2215 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2216 } 2217 kmem_free(ifp->if_broot); 2218 ifp->if_broot = new_broot; 2219 ifp->if_broot_bytes = (int)new_size; 2220 if (ifp->if_broot) 2221 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 2222 XFS_IFORK_SIZE(ip, whichfork)); 2223 return; 2224 } 2225 2226 2227 /* 2228 * This is called when the amount of space needed for if_data 2229 * is increased or decreased. The change in size is indicated by 2230 * the number of bytes that need to be added or deleted in the 2231 * byte_diff parameter. 2232 * 2233 * If the amount of space needed has decreased below the size of the 2234 * inline buffer, then switch to using the inline buffer. Otherwise, 2235 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2236 * to what is needed. 2237 * 2238 * ip -- the inode whose if_data area is changing 2239 * byte_diff -- the change in the number of bytes, positive or negative, 2240 * requested for the if_data array. 2241 */ 2242 void 2243 xfs_idata_realloc( 2244 xfs_inode_t *ip, 2245 int byte_diff, 2246 int whichfork) 2247 { 2248 xfs_ifork_t *ifp; 2249 int new_size; 2250 int real_size; 2251 2252 if (byte_diff == 0) { 2253 return; 2254 } 2255 2256 ifp = XFS_IFORK_PTR(ip, whichfork); 2257 new_size = (int)ifp->if_bytes + byte_diff; 2258 ASSERT(new_size >= 0); 2259 2260 if (new_size == 0) { 2261 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2262 kmem_free(ifp->if_u1.if_data); 2263 } 2264 ifp->if_u1.if_data = NULL; 2265 real_size = 0; 2266 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2267 /* 2268 * If the valid extents/data can fit in if_inline_ext/data, 2269 * copy them from the malloc'd vector and free it. 2270 */ 2271 if (ifp->if_u1.if_data == NULL) { 2272 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2273 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2274 ASSERT(ifp->if_real_bytes != 0); 2275 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2276 new_size); 2277 kmem_free(ifp->if_u1.if_data); 2278 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2279 } 2280 real_size = 0; 2281 } else { 2282 /* 2283 * Stuck with malloc/realloc. 2284 * For inline data, the underlying buffer must be 2285 * a multiple of 4 bytes in size so that it can be 2286 * logged and stay on word boundaries. We enforce 2287 * that here. 2288 */ 2289 real_size = roundup(new_size, 4); 2290 if (ifp->if_u1.if_data == NULL) { 2291 ASSERT(ifp->if_real_bytes == 0); 2292 ifp->if_u1.if_data = kmem_alloc(real_size, 2293 KM_SLEEP | KM_NOFS); 2294 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2295 /* 2296 * Only do the realloc if the underlying size 2297 * is really changing. 2298 */ 2299 if (ifp->if_real_bytes != real_size) { 2300 ifp->if_u1.if_data = 2301 kmem_realloc(ifp->if_u1.if_data, 2302 real_size, 2303 ifp->if_real_bytes, 2304 KM_SLEEP | KM_NOFS); 2305 } 2306 } else { 2307 ASSERT(ifp->if_real_bytes == 0); 2308 ifp->if_u1.if_data = kmem_alloc(real_size, 2309 KM_SLEEP | KM_NOFS); 2310 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2311 ifp->if_bytes); 2312 } 2313 } 2314 ifp->if_real_bytes = real_size; 2315 ifp->if_bytes = new_size; 2316 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2317 } 2318 2319 void 2320 xfs_idestroy_fork( 2321 xfs_inode_t *ip, 2322 int whichfork) 2323 { 2324 xfs_ifork_t *ifp; 2325 2326 ifp = XFS_IFORK_PTR(ip, whichfork); 2327 if (ifp->if_broot != NULL) { 2328 kmem_free(ifp->if_broot); 2329 ifp->if_broot = NULL; 2330 } 2331 2332 /* 2333 * If the format is local, then we can't have an extents 2334 * array so just look for an inline data array. If we're 2335 * not local then we may or may not have an extents list, 2336 * so check and free it up if we do. 2337 */ 2338 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2339 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2340 (ifp->if_u1.if_data != NULL)) { 2341 ASSERT(ifp->if_real_bytes != 0); 2342 kmem_free(ifp->if_u1.if_data); 2343 ifp->if_u1.if_data = NULL; 2344 ifp->if_real_bytes = 0; 2345 } 2346 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2347 ((ifp->if_flags & XFS_IFEXTIREC) || 2348 ((ifp->if_u1.if_extents != NULL) && 2349 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2350 ASSERT(ifp->if_real_bytes != 0); 2351 xfs_iext_destroy(ifp); 2352 } 2353 ASSERT(ifp->if_u1.if_extents == NULL || 2354 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2355 ASSERT(ifp->if_real_bytes == 0); 2356 if (whichfork == XFS_ATTR_FORK) { 2357 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2358 ip->i_afp = NULL; 2359 } 2360 } 2361 2362 /* 2363 * This is called to unpin an inode. The caller must have the inode locked 2364 * in at least shared mode so that the buffer cannot be subsequently pinned 2365 * once someone is waiting for it to be unpinned. 2366 */ 2367 static void 2368 xfs_iunpin( 2369 struct xfs_inode *ip) 2370 { 2371 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2372 2373 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2374 2375 /* Give the log a push to start the unpinning I/O */ 2376 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2377 2378 } 2379 2380 static void 2381 __xfs_iunpin_wait( 2382 struct xfs_inode *ip) 2383 { 2384 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2385 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2386 2387 xfs_iunpin(ip); 2388 2389 do { 2390 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2391 if (xfs_ipincount(ip)) 2392 io_schedule(); 2393 } while (xfs_ipincount(ip)); 2394 finish_wait(wq, &wait.wait); 2395 } 2396 2397 void 2398 xfs_iunpin_wait( 2399 struct xfs_inode *ip) 2400 { 2401 if (xfs_ipincount(ip)) 2402 __xfs_iunpin_wait(ip); 2403 } 2404 2405 /* 2406 * xfs_iextents_copy() 2407 * 2408 * This is called to copy the REAL extents (as opposed to the delayed 2409 * allocation extents) from the inode into the given buffer. It 2410 * returns the number of bytes copied into the buffer. 2411 * 2412 * If there are no delayed allocation extents, then we can just 2413 * memcpy() the extents into the buffer. Otherwise, we need to 2414 * examine each extent in turn and skip those which are delayed. 2415 */ 2416 int 2417 xfs_iextents_copy( 2418 xfs_inode_t *ip, 2419 xfs_bmbt_rec_t *dp, 2420 int whichfork) 2421 { 2422 int copied; 2423 int i; 2424 xfs_ifork_t *ifp; 2425 int nrecs; 2426 xfs_fsblock_t start_block; 2427 2428 ifp = XFS_IFORK_PTR(ip, whichfork); 2429 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2430 ASSERT(ifp->if_bytes > 0); 2431 2432 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2433 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2434 ASSERT(nrecs > 0); 2435 2436 /* 2437 * There are some delayed allocation extents in the 2438 * inode, so copy the extents one at a time and skip 2439 * the delayed ones. There must be at least one 2440 * non-delayed extent. 2441 */ 2442 copied = 0; 2443 for (i = 0; i < nrecs; i++) { 2444 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2445 start_block = xfs_bmbt_get_startblock(ep); 2446 if (isnullstartblock(start_block)) { 2447 /* 2448 * It's a delayed allocation extent, so skip it. 2449 */ 2450 continue; 2451 } 2452 2453 /* Translate to on disk format */ 2454 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2455 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2456 dp++; 2457 copied++; 2458 } 2459 ASSERT(copied != 0); 2460 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2461 2462 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2463 } 2464 2465 /* 2466 * Each of the following cases stores data into the same region 2467 * of the on-disk inode, so only one of them can be valid at 2468 * any given time. While it is possible to have conflicting formats 2469 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2470 * in EXTENTS format, this can only happen when the fork has 2471 * changed formats after being modified but before being flushed. 2472 * In these cases, the format always takes precedence, because the 2473 * format indicates the current state of the fork. 2474 */ 2475 /*ARGSUSED*/ 2476 STATIC void 2477 xfs_iflush_fork( 2478 xfs_inode_t *ip, 2479 xfs_dinode_t *dip, 2480 xfs_inode_log_item_t *iip, 2481 int whichfork, 2482 xfs_buf_t *bp) 2483 { 2484 char *cp; 2485 xfs_ifork_t *ifp; 2486 xfs_mount_t *mp; 2487 static const short brootflag[2] = 2488 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2489 static const short dataflag[2] = 2490 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2491 static const short extflag[2] = 2492 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2493 2494 if (!iip) 2495 return; 2496 ifp = XFS_IFORK_PTR(ip, whichfork); 2497 /* 2498 * This can happen if we gave up in iformat in an error path, 2499 * for the attribute fork. 2500 */ 2501 if (!ifp) { 2502 ASSERT(whichfork == XFS_ATTR_FORK); 2503 return; 2504 } 2505 cp = XFS_DFORK_PTR(dip, whichfork); 2506 mp = ip->i_mount; 2507 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2508 case XFS_DINODE_FMT_LOCAL: 2509 if ((iip->ili_fields & dataflag[whichfork]) && 2510 (ifp->if_bytes > 0)) { 2511 ASSERT(ifp->if_u1.if_data != NULL); 2512 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2513 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2514 } 2515 break; 2516 2517 case XFS_DINODE_FMT_EXTENTS: 2518 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2519 !(iip->ili_fields & extflag[whichfork])); 2520 if ((iip->ili_fields & extflag[whichfork]) && 2521 (ifp->if_bytes > 0)) { 2522 ASSERT(xfs_iext_get_ext(ifp, 0)); 2523 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2524 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2525 whichfork); 2526 } 2527 break; 2528 2529 case XFS_DINODE_FMT_BTREE: 2530 if ((iip->ili_fields & brootflag[whichfork]) && 2531 (ifp->if_broot_bytes > 0)) { 2532 ASSERT(ifp->if_broot != NULL); 2533 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 2534 XFS_IFORK_SIZE(ip, whichfork)); 2535 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2536 (xfs_bmdr_block_t *)cp, 2537 XFS_DFORK_SIZE(dip, mp, whichfork)); 2538 } 2539 break; 2540 2541 case XFS_DINODE_FMT_DEV: 2542 if (iip->ili_fields & XFS_ILOG_DEV) { 2543 ASSERT(whichfork == XFS_DATA_FORK); 2544 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2545 } 2546 break; 2547 2548 case XFS_DINODE_FMT_UUID: 2549 if (iip->ili_fields & XFS_ILOG_UUID) { 2550 ASSERT(whichfork == XFS_DATA_FORK); 2551 memcpy(XFS_DFORK_DPTR(dip), 2552 &ip->i_df.if_u2.if_uuid, 2553 sizeof(uuid_t)); 2554 } 2555 break; 2556 2557 default: 2558 ASSERT(0); 2559 break; 2560 } 2561 } 2562 2563 STATIC int 2564 xfs_iflush_cluster( 2565 xfs_inode_t *ip, 2566 xfs_buf_t *bp) 2567 { 2568 xfs_mount_t *mp = ip->i_mount; 2569 struct xfs_perag *pag; 2570 unsigned long first_index, mask; 2571 unsigned long inodes_per_cluster; 2572 int ilist_size; 2573 xfs_inode_t **ilist; 2574 xfs_inode_t *iq; 2575 int nr_found; 2576 int clcount = 0; 2577 int bufwasdelwri; 2578 int i; 2579 2580 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2581 2582 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2583 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2584 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2585 if (!ilist) 2586 goto out_put; 2587 2588 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2589 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2590 rcu_read_lock(); 2591 /* really need a gang lookup range call here */ 2592 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2593 first_index, inodes_per_cluster); 2594 if (nr_found == 0) 2595 goto out_free; 2596 2597 for (i = 0; i < nr_found; i++) { 2598 iq = ilist[i]; 2599 if (iq == ip) 2600 continue; 2601 2602 /* 2603 * because this is an RCU protected lookup, we could find a 2604 * recently freed or even reallocated inode during the lookup. 2605 * We need to check under the i_flags_lock for a valid inode 2606 * here. Skip it if it is not valid or the wrong inode. 2607 */ 2608 spin_lock(&ip->i_flags_lock); 2609 if (!ip->i_ino || 2610 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2611 spin_unlock(&ip->i_flags_lock); 2612 continue; 2613 } 2614 spin_unlock(&ip->i_flags_lock); 2615 2616 /* 2617 * Do an un-protected check to see if the inode is dirty and 2618 * is a candidate for flushing. These checks will be repeated 2619 * later after the appropriate locks are acquired. 2620 */ 2621 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2622 continue; 2623 2624 /* 2625 * Try to get locks. If any are unavailable or it is pinned, 2626 * then this inode cannot be flushed and is skipped. 2627 */ 2628 2629 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2630 continue; 2631 if (!xfs_iflock_nowait(iq)) { 2632 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2633 continue; 2634 } 2635 if (xfs_ipincount(iq)) { 2636 xfs_ifunlock(iq); 2637 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2638 continue; 2639 } 2640 2641 /* 2642 * arriving here means that this inode can be flushed. First 2643 * re-check that it's dirty before flushing. 2644 */ 2645 if (!xfs_inode_clean(iq)) { 2646 int error; 2647 error = xfs_iflush_int(iq, bp); 2648 if (error) { 2649 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2650 goto cluster_corrupt_out; 2651 } 2652 clcount++; 2653 } else { 2654 xfs_ifunlock(iq); 2655 } 2656 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2657 } 2658 2659 if (clcount) { 2660 XFS_STATS_INC(xs_icluster_flushcnt); 2661 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2662 } 2663 2664 out_free: 2665 rcu_read_unlock(); 2666 kmem_free(ilist); 2667 out_put: 2668 xfs_perag_put(pag); 2669 return 0; 2670 2671 2672 cluster_corrupt_out: 2673 /* 2674 * Corruption detected in the clustering loop. Invalidate the 2675 * inode buffer and shut down the filesystem. 2676 */ 2677 rcu_read_unlock(); 2678 /* 2679 * Clean up the buffer. If it was delwri, just release it -- 2680 * brelse can handle it with no problems. If not, shut down the 2681 * filesystem before releasing the buffer. 2682 */ 2683 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 2684 if (bufwasdelwri) 2685 xfs_buf_relse(bp); 2686 2687 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2688 2689 if (!bufwasdelwri) { 2690 /* 2691 * Just like incore_relse: if we have b_iodone functions, 2692 * mark the buffer as an error and call them. Otherwise 2693 * mark it as stale and brelse. 2694 */ 2695 if (bp->b_iodone) { 2696 XFS_BUF_UNDONE(bp); 2697 xfs_buf_stale(bp); 2698 xfs_buf_ioerror(bp, EIO); 2699 xfs_buf_ioend(bp, 0); 2700 } else { 2701 xfs_buf_stale(bp); 2702 xfs_buf_relse(bp); 2703 } 2704 } 2705 2706 /* 2707 * Unlocks the flush lock 2708 */ 2709 xfs_iflush_abort(iq, false); 2710 kmem_free(ilist); 2711 xfs_perag_put(pag); 2712 return XFS_ERROR(EFSCORRUPTED); 2713 } 2714 2715 /* 2716 * Flush dirty inode metadata into the backing buffer. 2717 * 2718 * The caller must have the inode lock and the inode flush lock held. The 2719 * inode lock will still be held upon return to the caller, and the inode 2720 * flush lock will be released after the inode has reached the disk. 2721 * 2722 * The caller must write out the buffer returned in *bpp and release it. 2723 */ 2724 int 2725 xfs_iflush( 2726 struct xfs_inode *ip, 2727 struct xfs_buf **bpp) 2728 { 2729 struct xfs_mount *mp = ip->i_mount; 2730 struct xfs_buf *bp; 2731 struct xfs_dinode *dip; 2732 int error; 2733 2734 XFS_STATS_INC(xs_iflush_count); 2735 2736 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2737 ASSERT(xfs_isiflocked(ip)); 2738 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2739 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2740 2741 *bpp = NULL; 2742 2743 xfs_iunpin_wait(ip); 2744 2745 /* 2746 * For stale inodes we cannot rely on the backing buffer remaining 2747 * stale in cache for the remaining life of the stale inode and so 2748 * xfs_imap_to_bp() below may give us a buffer that no longer contains 2749 * inodes below. We have to check this after ensuring the inode is 2750 * unpinned so that it is safe to reclaim the stale inode after the 2751 * flush call. 2752 */ 2753 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2754 xfs_ifunlock(ip); 2755 return 0; 2756 } 2757 2758 /* 2759 * This may have been unpinned because the filesystem is shutting 2760 * down forcibly. If that's the case we must not write this inode 2761 * to disk, because the log record didn't make it to disk. 2762 * 2763 * We also have to remove the log item from the AIL in this case, 2764 * as we wait for an empty AIL as part of the unmount process. 2765 */ 2766 if (XFS_FORCED_SHUTDOWN(mp)) { 2767 error = XFS_ERROR(EIO); 2768 goto abort_out; 2769 } 2770 2771 /* 2772 * Get the buffer containing the on-disk inode. 2773 */ 2774 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 2775 0); 2776 if (error || !bp) { 2777 xfs_ifunlock(ip); 2778 return error; 2779 } 2780 2781 /* 2782 * First flush out the inode that xfs_iflush was called with. 2783 */ 2784 error = xfs_iflush_int(ip, bp); 2785 if (error) 2786 goto corrupt_out; 2787 2788 /* 2789 * If the buffer is pinned then push on the log now so we won't 2790 * get stuck waiting in the write for too long. 2791 */ 2792 if (xfs_buf_ispinned(bp)) 2793 xfs_log_force(mp, 0); 2794 2795 /* 2796 * inode clustering: 2797 * see if other inodes can be gathered into this write 2798 */ 2799 error = xfs_iflush_cluster(ip, bp); 2800 if (error) 2801 goto cluster_corrupt_out; 2802 2803 *bpp = bp; 2804 return 0; 2805 2806 corrupt_out: 2807 xfs_buf_relse(bp); 2808 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2809 cluster_corrupt_out: 2810 error = XFS_ERROR(EFSCORRUPTED); 2811 abort_out: 2812 /* 2813 * Unlocks the flush lock 2814 */ 2815 xfs_iflush_abort(ip, false); 2816 return error; 2817 } 2818 2819 2820 STATIC int 2821 xfs_iflush_int( 2822 struct xfs_inode *ip, 2823 struct xfs_buf *bp) 2824 { 2825 struct xfs_inode_log_item *iip = ip->i_itemp; 2826 struct xfs_dinode *dip; 2827 struct xfs_mount *mp = ip->i_mount; 2828 2829 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2830 ASSERT(xfs_isiflocked(ip)); 2831 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2832 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2833 ASSERT(iip != NULL && iip->ili_fields != 0); 2834 2835 /* set *dip = inode's place in the buffer */ 2836 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2837 2838 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2839 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2840 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2841 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2842 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2843 goto corrupt_out; 2844 } 2845 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2846 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2847 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2848 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2849 __func__, ip->i_ino, ip, ip->i_d.di_magic); 2850 goto corrupt_out; 2851 } 2852 if (S_ISREG(ip->i_d.di_mode)) { 2853 if (XFS_TEST_ERROR( 2854 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2855 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2856 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2857 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2858 "%s: Bad regular inode %Lu, ptr 0x%p", 2859 __func__, ip->i_ino, ip); 2860 goto corrupt_out; 2861 } 2862 } else if (S_ISDIR(ip->i_d.di_mode)) { 2863 if (XFS_TEST_ERROR( 2864 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2865 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2866 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2867 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2868 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2869 "%s: Bad directory inode %Lu, ptr 0x%p", 2870 __func__, ip->i_ino, ip); 2871 goto corrupt_out; 2872 } 2873 } 2874 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2875 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2876 XFS_RANDOM_IFLUSH_5)) { 2877 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2878 "%s: detected corrupt incore inode %Lu, " 2879 "total extents = %d, nblocks = %Ld, ptr 0x%p", 2880 __func__, ip->i_ino, 2881 ip->i_d.di_nextents + ip->i_d.di_anextents, 2882 ip->i_d.di_nblocks, ip); 2883 goto corrupt_out; 2884 } 2885 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2886 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2887 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2888 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2889 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 2890 goto corrupt_out; 2891 } 2892 2893 /* 2894 * Inode item log recovery for v1/v2 inodes are dependent on the 2895 * di_flushiter count for correct sequencing. We bump the flush 2896 * iteration count so we can detect flushes which postdate a log record 2897 * during recovery. This is redundant as we now log every change and 2898 * hence this can't happen but we need to still do it to ensure 2899 * backwards compatibility with old kernels that predate logging all 2900 * inode changes. 2901 */ 2902 if (ip->i_d.di_version < 3) 2903 ip->i_d.di_flushiter++; 2904 2905 /* 2906 * Copy the dirty parts of the inode into the on-disk 2907 * inode. We always copy out the core of the inode, 2908 * because if the inode is dirty at all the core must 2909 * be. 2910 */ 2911 xfs_dinode_to_disk(dip, &ip->i_d); 2912 2913 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2914 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2915 ip->i_d.di_flushiter = 0; 2916 2917 /* 2918 * If this is really an old format inode and the superblock version 2919 * has not been updated to support only new format inodes, then 2920 * convert back to the old inode format. If the superblock version 2921 * has been updated, then make the conversion permanent. 2922 */ 2923 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2924 if (ip->i_d.di_version == 1) { 2925 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2926 /* 2927 * Convert it back. 2928 */ 2929 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2930 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2931 } else { 2932 /* 2933 * The superblock version has already been bumped, 2934 * so just make the conversion to the new inode 2935 * format permanent. 2936 */ 2937 ip->i_d.di_version = 2; 2938 dip->di_version = 2; 2939 ip->i_d.di_onlink = 0; 2940 dip->di_onlink = 0; 2941 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 2942 memset(&(dip->di_pad[0]), 0, 2943 sizeof(dip->di_pad)); 2944 ASSERT(xfs_get_projid(ip) == 0); 2945 } 2946 } 2947 2948 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 2949 if (XFS_IFORK_Q(ip)) 2950 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 2951 xfs_inobp_check(mp, bp); 2952 2953 /* 2954 * We've recorded everything logged in the inode, so we'd like to clear 2955 * the ili_fields bits so we don't log and flush things unnecessarily. 2956 * However, we can't stop logging all this information until the data 2957 * we've copied into the disk buffer is written to disk. If we did we 2958 * might overwrite the copy of the inode in the log with all the data 2959 * after re-logging only part of it, and in the face of a crash we 2960 * wouldn't have all the data we need to recover. 2961 * 2962 * What we do is move the bits to the ili_last_fields field. When 2963 * logging the inode, these bits are moved back to the ili_fields field. 2964 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 2965 * know that the information those bits represent is permanently on 2966 * disk. As long as the flush completes before the inode is logged 2967 * again, then both ili_fields and ili_last_fields will be cleared. 2968 * 2969 * We can play with the ili_fields bits here, because the inode lock 2970 * must be held exclusively in order to set bits there and the flush 2971 * lock protects the ili_last_fields bits. Set ili_logged so the flush 2972 * done routine can tell whether or not to look in the AIL. Also, store 2973 * the current LSN of the inode so that we can tell whether the item has 2974 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 2975 * need the AIL lock, because it is a 64 bit value that cannot be read 2976 * atomically. 2977 */ 2978 iip->ili_last_fields = iip->ili_fields; 2979 iip->ili_fields = 0; 2980 iip->ili_logged = 1; 2981 2982 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2983 &iip->ili_item.li_lsn); 2984 2985 /* 2986 * Attach the function xfs_iflush_done to the inode's 2987 * buffer. This will remove the inode from the AIL 2988 * and unlock the inode's flush lock when the inode is 2989 * completely written to disk. 2990 */ 2991 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 2992 2993 /* update the lsn in the on disk inode if required */ 2994 if (ip->i_d.di_version == 3) 2995 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 2996 2997 /* generate the checksum. */ 2998 xfs_dinode_calc_crc(mp, dip); 2999 3000 ASSERT(bp->b_fspriv != NULL); 3001 ASSERT(bp->b_iodone != NULL); 3002 return 0; 3003 3004 corrupt_out: 3005 return XFS_ERROR(EFSCORRUPTED); 3006 } 3007 3008 /* 3009 * Return a pointer to the extent record at file index idx. 3010 */ 3011 xfs_bmbt_rec_host_t * 3012 xfs_iext_get_ext( 3013 xfs_ifork_t *ifp, /* inode fork pointer */ 3014 xfs_extnum_t idx) /* index of target extent */ 3015 { 3016 ASSERT(idx >= 0); 3017 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3018 3019 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3020 return ifp->if_u1.if_ext_irec->er_extbuf; 3021 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3022 xfs_ext_irec_t *erp; /* irec pointer */ 3023 int erp_idx = 0; /* irec index */ 3024 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3025 3026 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3027 return &erp->er_extbuf[page_idx]; 3028 } else if (ifp->if_bytes) { 3029 return &ifp->if_u1.if_extents[idx]; 3030 } else { 3031 return NULL; 3032 } 3033 } 3034 3035 /* 3036 * Insert new item(s) into the extent records for incore inode 3037 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3038 */ 3039 void 3040 xfs_iext_insert( 3041 xfs_inode_t *ip, /* incore inode pointer */ 3042 xfs_extnum_t idx, /* starting index of new items */ 3043 xfs_extnum_t count, /* number of inserted items */ 3044 xfs_bmbt_irec_t *new, /* items to insert */ 3045 int state) /* type of extent conversion */ 3046 { 3047 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3048 xfs_extnum_t i; /* extent record index */ 3049 3050 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 3051 3052 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3053 xfs_iext_add(ifp, idx, count); 3054 for (i = idx; i < idx + count; i++, new++) 3055 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3056 } 3057 3058 /* 3059 * This is called when the amount of space required for incore file 3060 * extents needs to be increased. The ext_diff parameter stores the 3061 * number of new extents being added and the idx parameter contains 3062 * the extent index where the new extents will be added. If the new 3063 * extents are being appended, then we just need to (re)allocate and 3064 * initialize the space. Otherwise, if the new extents are being 3065 * inserted into the middle of the existing entries, a bit more work 3066 * is required to make room for the new extents to be inserted. The 3067 * caller is responsible for filling in the new extent entries upon 3068 * return. 3069 */ 3070 void 3071 xfs_iext_add( 3072 xfs_ifork_t *ifp, /* inode fork pointer */ 3073 xfs_extnum_t idx, /* index to begin adding exts */ 3074 int ext_diff) /* number of extents to add */ 3075 { 3076 int byte_diff; /* new bytes being added */ 3077 int new_size; /* size of extents after adding */ 3078 xfs_extnum_t nextents; /* number of extents in file */ 3079 3080 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3081 ASSERT((idx >= 0) && (idx <= nextents)); 3082 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3083 new_size = ifp->if_bytes + byte_diff; 3084 /* 3085 * If the new number of extents (nextents + ext_diff) 3086 * fits inside the inode, then continue to use the inline 3087 * extent buffer. 3088 */ 3089 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3090 if (idx < nextents) { 3091 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3092 &ifp->if_u2.if_inline_ext[idx], 3093 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3094 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3095 } 3096 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3097 ifp->if_real_bytes = 0; 3098 } 3099 /* 3100 * Otherwise use a linear (direct) extent list. 3101 * If the extents are currently inside the inode, 3102 * xfs_iext_realloc_direct will switch us from 3103 * inline to direct extent allocation mode. 3104 */ 3105 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3106 xfs_iext_realloc_direct(ifp, new_size); 3107 if (idx < nextents) { 3108 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3109 &ifp->if_u1.if_extents[idx], 3110 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3111 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3112 } 3113 } 3114 /* Indirection array */ 3115 else { 3116 xfs_ext_irec_t *erp; 3117 int erp_idx = 0; 3118 int page_idx = idx; 3119 3120 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3121 if (ifp->if_flags & XFS_IFEXTIREC) { 3122 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3123 } else { 3124 xfs_iext_irec_init(ifp); 3125 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3126 erp = ifp->if_u1.if_ext_irec; 3127 } 3128 /* Extents fit in target extent page */ 3129 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3130 if (page_idx < erp->er_extcount) { 3131 memmove(&erp->er_extbuf[page_idx + ext_diff], 3132 &erp->er_extbuf[page_idx], 3133 (erp->er_extcount - page_idx) * 3134 sizeof(xfs_bmbt_rec_t)); 3135 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3136 } 3137 erp->er_extcount += ext_diff; 3138 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3139 } 3140 /* Insert a new extent page */ 3141 else if (erp) { 3142 xfs_iext_add_indirect_multi(ifp, 3143 erp_idx, page_idx, ext_diff); 3144 } 3145 /* 3146 * If extent(s) are being appended to the last page in 3147 * the indirection array and the new extent(s) don't fit 3148 * in the page, then erp is NULL and erp_idx is set to 3149 * the next index needed in the indirection array. 3150 */ 3151 else { 3152 int count = ext_diff; 3153 3154 while (count) { 3155 erp = xfs_iext_irec_new(ifp, erp_idx); 3156 erp->er_extcount = count; 3157 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3158 if (count) { 3159 erp_idx++; 3160 } 3161 } 3162 } 3163 } 3164 ifp->if_bytes = new_size; 3165 } 3166 3167 /* 3168 * This is called when incore extents are being added to the indirection 3169 * array and the new extents do not fit in the target extent list. The 3170 * erp_idx parameter contains the irec index for the target extent list 3171 * in the indirection array, and the idx parameter contains the extent 3172 * index within the list. The number of extents being added is stored 3173 * in the count parameter. 3174 * 3175 * |-------| |-------| 3176 * | | | | idx - number of extents before idx 3177 * | idx | | count | 3178 * | | | | count - number of extents being inserted at idx 3179 * |-------| |-------| 3180 * | count | | nex2 | nex2 - number of extents after idx + count 3181 * |-------| |-------| 3182 */ 3183 void 3184 xfs_iext_add_indirect_multi( 3185 xfs_ifork_t *ifp, /* inode fork pointer */ 3186 int erp_idx, /* target extent irec index */ 3187 xfs_extnum_t idx, /* index within target list */ 3188 int count) /* new extents being added */ 3189 { 3190 int byte_diff; /* new bytes being added */ 3191 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3192 xfs_extnum_t ext_diff; /* number of extents to add */ 3193 xfs_extnum_t ext_cnt; /* new extents still needed */ 3194 xfs_extnum_t nex2; /* extents after idx + count */ 3195 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3196 int nlists; /* number of irec's (lists) */ 3197 3198 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3199 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3200 nex2 = erp->er_extcount - idx; 3201 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3202 3203 /* 3204 * Save second part of target extent list 3205 * (all extents past */ 3206 if (nex2) { 3207 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3208 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3209 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3210 erp->er_extcount -= nex2; 3211 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3212 memset(&erp->er_extbuf[idx], 0, byte_diff); 3213 } 3214 3215 /* 3216 * Add the new extents to the end of the target 3217 * list, then allocate new irec record(s) and 3218 * extent buffer(s) as needed to store the rest 3219 * of the new extents. 3220 */ 3221 ext_cnt = count; 3222 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3223 if (ext_diff) { 3224 erp->er_extcount += ext_diff; 3225 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3226 ext_cnt -= ext_diff; 3227 } 3228 while (ext_cnt) { 3229 erp_idx++; 3230 erp = xfs_iext_irec_new(ifp, erp_idx); 3231 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3232 erp->er_extcount = ext_diff; 3233 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3234 ext_cnt -= ext_diff; 3235 } 3236 3237 /* Add nex2 extents back to indirection array */ 3238 if (nex2) { 3239 xfs_extnum_t ext_avail; 3240 int i; 3241 3242 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3243 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3244 i = 0; 3245 /* 3246 * If nex2 extents fit in the current page, append 3247 * nex2_ep after the new extents. 3248 */ 3249 if (nex2 <= ext_avail) { 3250 i = erp->er_extcount; 3251 } 3252 /* 3253 * Otherwise, check if space is available in the 3254 * next page. 3255 */ 3256 else if ((erp_idx < nlists - 1) && 3257 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3258 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3259 erp_idx++; 3260 erp++; 3261 /* Create a hole for nex2 extents */ 3262 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3263 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3264 } 3265 /* 3266 * Final choice, create a new extent page for 3267 * nex2 extents. 3268 */ 3269 else { 3270 erp_idx++; 3271 erp = xfs_iext_irec_new(ifp, erp_idx); 3272 } 3273 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3274 kmem_free(nex2_ep); 3275 erp->er_extcount += nex2; 3276 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3277 } 3278 } 3279 3280 /* 3281 * This is called when the amount of space required for incore file 3282 * extents needs to be decreased. The ext_diff parameter stores the 3283 * number of extents to be removed and the idx parameter contains 3284 * the extent index where the extents will be removed from. 3285 * 3286 * If the amount of space needed has decreased below the linear 3287 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3288 * extent array. Otherwise, use kmem_realloc() to adjust the 3289 * size to what is needed. 3290 */ 3291 void 3292 xfs_iext_remove( 3293 xfs_inode_t *ip, /* incore inode pointer */ 3294 xfs_extnum_t idx, /* index to begin removing exts */ 3295 int ext_diff, /* number of extents to remove */ 3296 int state) /* type of extent conversion */ 3297 { 3298 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3299 xfs_extnum_t nextents; /* number of extents in file */ 3300 int new_size; /* size of extents after removal */ 3301 3302 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3303 3304 ASSERT(ext_diff > 0); 3305 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3306 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3307 3308 if (new_size == 0) { 3309 xfs_iext_destroy(ifp); 3310 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3311 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3312 } else if (ifp->if_real_bytes) { 3313 xfs_iext_remove_direct(ifp, idx, ext_diff); 3314 } else { 3315 xfs_iext_remove_inline(ifp, idx, ext_diff); 3316 } 3317 ifp->if_bytes = new_size; 3318 } 3319 3320 /* 3321 * This removes ext_diff extents from the inline buffer, beginning 3322 * at extent index idx. 3323 */ 3324 void 3325 xfs_iext_remove_inline( 3326 xfs_ifork_t *ifp, /* inode fork pointer */ 3327 xfs_extnum_t idx, /* index to begin removing exts */ 3328 int ext_diff) /* number of extents to remove */ 3329 { 3330 int nextents; /* number of extents in file */ 3331 3332 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3333 ASSERT(idx < XFS_INLINE_EXTS); 3334 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3335 ASSERT(((nextents - ext_diff) > 0) && 3336 (nextents - ext_diff) < XFS_INLINE_EXTS); 3337 3338 if (idx + ext_diff < nextents) { 3339 memmove(&ifp->if_u2.if_inline_ext[idx], 3340 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3341 (nextents - (idx + ext_diff)) * 3342 sizeof(xfs_bmbt_rec_t)); 3343 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3344 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3345 } else { 3346 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3347 ext_diff * sizeof(xfs_bmbt_rec_t)); 3348 } 3349 } 3350 3351 /* 3352 * This removes ext_diff extents from a linear (direct) extent list, 3353 * beginning at extent index idx. If the extents are being removed 3354 * from the end of the list (ie. truncate) then we just need to re- 3355 * allocate the list to remove the extra space. Otherwise, if the 3356 * extents are being removed from the middle of the existing extent 3357 * entries, then we first need to move the extent records beginning 3358 * at idx + ext_diff up in the list to overwrite the records being 3359 * removed, then remove the extra space via kmem_realloc. 3360 */ 3361 void 3362 xfs_iext_remove_direct( 3363 xfs_ifork_t *ifp, /* inode fork pointer */ 3364 xfs_extnum_t idx, /* index to begin removing exts */ 3365 int ext_diff) /* number of extents to remove */ 3366 { 3367 xfs_extnum_t nextents; /* number of extents in file */ 3368 int new_size; /* size of extents after removal */ 3369 3370 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3371 new_size = ifp->if_bytes - 3372 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3373 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3374 3375 if (new_size == 0) { 3376 xfs_iext_destroy(ifp); 3377 return; 3378 } 3379 /* Move extents up in the list (if needed) */ 3380 if (idx + ext_diff < nextents) { 3381 memmove(&ifp->if_u1.if_extents[idx], 3382 &ifp->if_u1.if_extents[idx + ext_diff], 3383 (nextents - (idx + ext_diff)) * 3384 sizeof(xfs_bmbt_rec_t)); 3385 } 3386 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3387 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3388 /* 3389 * Reallocate the direct extent list. If the extents 3390 * will fit inside the inode then xfs_iext_realloc_direct 3391 * will switch from direct to inline extent allocation 3392 * mode for us. 3393 */ 3394 xfs_iext_realloc_direct(ifp, new_size); 3395 ifp->if_bytes = new_size; 3396 } 3397 3398 /* 3399 * This is called when incore extents are being removed from the 3400 * indirection array and the extents being removed span multiple extent 3401 * buffers. The idx parameter contains the file extent index where we 3402 * want to begin removing extents, and the count parameter contains 3403 * how many extents need to be removed. 3404 * 3405 * |-------| |-------| 3406 * | nex1 | | | nex1 - number of extents before idx 3407 * |-------| | count | 3408 * | | | | count - number of extents being removed at idx 3409 * | count | |-------| 3410 * | | | nex2 | nex2 - number of extents after idx + count 3411 * |-------| |-------| 3412 */ 3413 void 3414 xfs_iext_remove_indirect( 3415 xfs_ifork_t *ifp, /* inode fork pointer */ 3416 xfs_extnum_t idx, /* index to begin removing extents */ 3417 int count) /* number of extents to remove */ 3418 { 3419 xfs_ext_irec_t *erp; /* indirection array pointer */ 3420 int erp_idx = 0; /* indirection array index */ 3421 xfs_extnum_t ext_cnt; /* extents left to remove */ 3422 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3423 xfs_extnum_t nex1; /* number of extents before idx */ 3424 xfs_extnum_t nex2; /* extents after idx + count */ 3425 int page_idx = idx; /* index in target extent list */ 3426 3427 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3428 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3429 ASSERT(erp != NULL); 3430 nex1 = page_idx; 3431 ext_cnt = count; 3432 while (ext_cnt) { 3433 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3434 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3435 /* 3436 * Check for deletion of entire list; 3437 * xfs_iext_irec_remove() updates extent offsets. 3438 */ 3439 if (ext_diff == erp->er_extcount) { 3440 xfs_iext_irec_remove(ifp, erp_idx); 3441 ext_cnt -= ext_diff; 3442 nex1 = 0; 3443 if (ext_cnt) { 3444 ASSERT(erp_idx < ifp->if_real_bytes / 3445 XFS_IEXT_BUFSZ); 3446 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3447 nex1 = 0; 3448 continue; 3449 } else { 3450 break; 3451 } 3452 } 3453 /* Move extents up (if needed) */ 3454 if (nex2) { 3455 memmove(&erp->er_extbuf[nex1], 3456 &erp->er_extbuf[nex1 + ext_diff], 3457 nex2 * sizeof(xfs_bmbt_rec_t)); 3458 } 3459 /* Zero out rest of page */ 3460 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3461 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3462 /* Update remaining counters */ 3463 erp->er_extcount -= ext_diff; 3464 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3465 ext_cnt -= ext_diff; 3466 nex1 = 0; 3467 erp_idx++; 3468 erp++; 3469 } 3470 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3471 xfs_iext_irec_compact(ifp); 3472 } 3473 3474 /* 3475 * Create, destroy, or resize a linear (direct) block of extents. 3476 */ 3477 void 3478 xfs_iext_realloc_direct( 3479 xfs_ifork_t *ifp, /* inode fork pointer */ 3480 int new_size) /* new size of extents */ 3481 { 3482 int rnew_size; /* real new size of extents */ 3483 3484 rnew_size = new_size; 3485 3486 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3487 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3488 (new_size != ifp->if_real_bytes))); 3489 3490 /* Free extent records */ 3491 if (new_size == 0) { 3492 xfs_iext_destroy(ifp); 3493 } 3494 /* Resize direct extent list and zero any new bytes */ 3495 else if (ifp->if_real_bytes) { 3496 /* Check if extents will fit inside the inode */ 3497 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3498 xfs_iext_direct_to_inline(ifp, new_size / 3499 (uint)sizeof(xfs_bmbt_rec_t)); 3500 ifp->if_bytes = new_size; 3501 return; 3502 } 3503 if (!is_power_of_2(new_size)){ 3504 rnew_size = roundup_pow_of_two(new_size); 3505 } 3506 if (rnew_size != ifp->if_real_bytes) { 3507 ifp->if_u1.if_extents = 3508 kmem_realloc(ifp->if_u1.if_extents, 3509 rnew_size, 3510 ifp->if_real_bytes, KM_NOFS); 3511 } 3512 if (rnew_size > ifp->if_real_bytes) { 3513 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3514 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3515 rnew_size - ifp->if_real_bytes); 3516 } 3517 } 3518 /* 3519 * Switch from the inline extent buffer to a direct 3520 * extent list. Be sure to include the inline extent 3521 * bytes in new_size. 3522 */ 3523 else { 3524 new_size += ifp->if_bytes; 3525 if (!is_power_of_2(new_size)) { 3526 rnew_size = roundup_pow_of_two(new_size); 3527 } 3528 xfs_iext_inline_to_direct(ifp, rnew_size); 3529 } 3530 ifp->if_real_bytes = rnew_size; 3531 ifp->if_bytes = new_size; 3532 } 3533 3534 /* 3535 * Switch from linear (direct) extent records to inline buffer. 3536 */ 3537 void 3538 xfs_iext_direct_to_inline( 3539 xfs_ifork_t *ifp, /* inode fork pointer */ 3540 xfs_extnum_t nextents) /* number of extents in file */ 3541 { 3542 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3543 ASSERT(nextents <= XFS_INLINE_EXTS); 3544 /* 3545 * The inline buffer was zeroed when we switched 3546 * from inline to direct extent allocation mode, 3547 * so we don't need to clear it here. 3548 */ 3549 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3550 nextents * sizeof(xfs_bmbt_rec_t)); 3551 kmem_free(ifp->if_u1.if_extents); 3552 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3553 ifp->if_real_bytes = 0; 3554 } 3555 3556 /* 3557 * Switch from inline buffer to linear (direct) extent records. 3558 * new_size should already be rounded up to the next power of 2 3559 * by the caller (when appropriate), so use new_size as it is. 3560 * However, since new_size may be rounded up, we can't update 3561 * if_bytes here. It is the caller's responsibility to update 3562 * if_bytes upon return. 3563 */ 3564 void 3565 xfs_iext_inline_to_direct( 3566 xfs_ifork_t *ifp, /* inode fork pointer */ 3567 int new_size) /* number of extents in file */ 3568 { 3569 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3570 memset(ifp->if_u1.if_extents, 0, new_size); 3571 if (ifp->if_bytes) { 3572 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3573 ifp->if_bytes); 3574 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3575 sizeof(xfs_bmbt_rec_t)); 3576 } 3577 ifp->if_real_bytes = new_size; 3578 } 3579 3580 /* 3581 * Resize an extent indirection array to new_size bytes. 3582 */ 3583 STATIC void 3584 xfs_iext_realloc_indirect( 3585 xfs_ifork_t *ifp, /* inode fork pointer */ 3586 int new_size) /* new indirection array size */ 3587 { 3588 int nlists; /* number of irec's (ex lists) */ 3589 int size; /* current indirection array size */ 3590 3591 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3592 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3593 size = nlists * sizeof(xfs_ext_irec_t); 3594 ASSERT(ifp->if_real_bytes); 3595 ASSERT((new_size >= 0) && (new_size != size)); 3596 if (new_size == 0) { 3597 xfs_iext_destroy(ifp); 3598 } else { 3599 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3600 kmem_realloc(ifp->if_u1.if_ext_irec, 3601 new_size, size, KM_NOFS); 3602 } 3603 } 3604 3605 /* 3606 * Switch from indirection array to linear (direct) extent allocations. 3607 */ 3608 STATIC void 3609 xfs_iext_indirect_to_direct( 3610 xfs_ifork_t *ifp) /* inode fork pointer */ 3611 { 3612 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3613 xfs_extnum_t nextents; /* number of extents in file */ 3614 int size; /* size of file extents */ 3615 3616 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3617 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3618 ASSERT(nextents <= XFS_LINEAR_EXTS); 3619 size = nextents * sizeof(xfs_bmbt_rec_t); 3620 3621 xfs_iext_irec_compact_pages(ifp); 3622 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3623 3624 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3625 kmem_free(ifp->if_u1.if_ext_irec); 3626 ifp->if_flags &= ~XFS_IFEXTIREC; 3627 ifp->if_u1.if_extents = ep; 3628 ifp->if_bytes = size; 3629 if (nextents < XFS_LINEAR_EXTS) { 3630 xfs_iext_realloc_direct(ifp, size); 3631 } 3632 } 3633 3634 /* 3635 * Free incore file extents. 3636 */ 3637 void 3638 xfs_iext_destroy( 3639 xfs_ifork_t *ifp) /* inode fork pointer */ 3640 { 3641 if (ifp->if_flags & XFS_IFEXTIREC) { 3642 int erp_idx; 3643 int nlists; 3644 3645 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3646 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3647 xfs_iext_irec_remove(ifp, erp_idx); 3648 } 3649 ifp->if_flags &= ~XFS_IFEXTIREC; 3650 } else if (ifp->if_real_bytes) { 3651 kmem_free(ifp->if_u1.if_extents); 3652 } else if (ifp->if_bytes) { 3653 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3654 sizeof(xfs_bmbt_rec_t)); 3655 } 3656 ifp->if_u1.if_extents = NULL; 3657 ifp->if_real_bytes = 0; 3658 ifp->if_bytes = 0; 3659 } 3660 3661 /* 3662 * Return a pointer to the extent record for file system block bno. 3663 */ 3664 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3665 xfs_iext_bno_to_ext( 3666 xfs_ifork_t *ifp, /* inode fork pointer */ 3667 xfs_fileoff_t bno, /* block number to search for */ 3668 xfs_extnum_t *idxp) /* index of target extent */ 3669 { 3670 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3671 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3672 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3673 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3674 int high; /* upper boundary in search */ 3675 xfs_extnum_t idx = 0; /* index of target extent */ 3676 int low; /* lower boundary in search */ 3677 xfs_extnum_t nextents; /* number of file extents */ 3678 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3679 3680 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3681 if (nextents == 0) { 3682 *idxp = 0; 3683 return NULL; 3684 } 3685 low = 0; 3686 if (ifp->if_flags & XFS_IFEXTIREC) { 3687 /* Find target extent list */ 3688 int erp_idx = 0; 3689 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3690 base = erp->er_extbuf; 3691 high = erp->er_extcount - 1; 3692 } else { 3693 base = ifp->if_u1.if_extents; 3694 high = nextents - 1; 3695 } 3696 /* Binary search extent records */ 3697 while (low <= high) { 3698 idx = (low + high) >> 1; 3699 ep = base + idx; 3700 startoff = xfs_bmbt_get_startoff(ep); 3701 blockcount = xfs_bmbt_get_blockcount(ep); 3702 if (bno < startoff) { 3703 high = idx - 1; 3704 } else if (bno >= startoff + blockcount) { 3705 low = idx + 1; 3706 } else { 3707 /* Convert back to file-based extent index */ 3708 if (ifp->if_flags & XFS_IFEXTIREC) { 3709 idx += erp->er_extoff; 3710 } 3711 *idxp = idx; 3712 return ep; 3713 } 3714 } 3715 /* Convert back to file-based extent index */ 3716 if (ifp->if_flags & XFS_IFEXTIREC) { 3717 idx += erp->er_extoff; 3718 } 3719 if (bno >= startoff + blockcount) { 3720 if (++idx == nextents) { 3721 ep = NULL; 3722 } else { 3723 ep = xfs_iext_get_ext(ifp, idx); 3724 } 3725 } 3726 *idxp = idx; 3727 return ep; 3728 } 3729 3730 /* 3731 * Return a pointer to the indirection array entry containing the 3732 * extent record for filesystem block bno. Store the index of the 3733 * target irec in *erp_idxp. 3734 */ 3735 xfs_ext_irec_t * /* pointer to found extent record */ 3736 xfs_iext_bno_to_irec( 3737 xfs_ifork_t *ifp, /* inode fork pointer */ 3738 xfs_fileoff_t bno, /* block number to search for */ 3739 int *erp_idxp) /* irec index of target ext list */ 3740 { 3741 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3742 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3743 int erp_idx; /* indirection array index */ 3744 int nlists; /* number of extent irec's (lists) */ 3745 int high; /* binary search upper limit */ 3746 int low; /* binary search lower limit */ 3747 3748 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3749 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3750 erp_idx = 0; 3751 low = 0; 3752 high = nlists - 1; 3753 while (low <= high) { 3754 erp_idx = (low + high) >> 1; 3755 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3756 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3757 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3758 high = erp_idx - 1; 3759 } else if (erp_next && bno >= 3760 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3761 low = erp_idx + 1; 3762 } else { 3763 break; 3764 } 3765 } 3766 *erp_idxp = erp_idx; 3767 return erp; 3768 } 3769 3770 /* 3771 * Return a pointer to the indirection array entry containing the 3772 * extent record at file extent index *idxp. Store the index of the 3773 * target irec in *erp_idxp and store the page index of the target 3774 * extent record in *idxp. 3775 */ 3776 xfs_ext_irec_t * 3777 xfs_iext_idx_to_irec( 3778 xfs_ifork_t *ifp, /* inode fork pointer */ 3779 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3780 int *erp_idxp, /* pointer to target irec */ 3781 int realloc) /* new bytes were just added */ 3782 { 3783 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3784 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3785 int erp_idx; /* indirection array index */ 3786 int nlists; /* number of irec's (ex lists) */ 3787 int high; /* binary search upper limit */ 3788 int low; /* binary search lower limit */ 3789 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3790 3791 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3792 ASSERT(page_idx >= 0); 3793 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3794 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); 3795 3796 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3797 erp_idx = 0; 3798 low = 0; 3799 high = nlists - 1; 3800 3801 /* Binary search extent irec's */ 3802 while (low <= high) { 3803 erp_idx = (low + high) >> 1; 3804 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3805 prev = erp_idx > 0 ? erp - 1 : NULL; 3806 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3807 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3808 high = erp_idx - 1; 3809 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3810 (page_idx == erp->er_extoff + erp->er_extcount && 3811 !realloc)) { 3812 low = erp_idx + 1; 3813 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3814 erp->er_extcount == XFS_LINEAR_EXTS) { 3815 ASSERT(realloc); 3816 page_idx = 0; 3817 erp_idx++; 3818 erp = erp_idx < nlists ? erp + 1 : NULL; 3819 break; 3820 } else { 3821 page_idx -= erp->er_extoff; 3822 break; 3823 } 3824 } 3825 *idxp = page_idx; 3826 *erp_idxp = erp_idx; 3827 return(erp); 3828 } 3829 3830 /* 3831 * Allocate and initialize an indirection array once the space needed 3832 * for incore extents increases above XFS_IEXT_BUFSZ. 3833 */ 3834 void 3835 xfs_iext_irec_init( 3836 xfs_ifork_t *ifp) /* inode fork pointer */ 3837 { 3838 xfs_ext_irec_t *erp; /* indirection array pointer */ 3839 xfs_extnum_t nextents; /* number of extents in file */ 3840 3841 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3842 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3843 ASSERT(nextents <= XFS_LINEAR_EXTS); 3844 3845 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3846 3847 if (nextents == 0) { 3848 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3849 } else if (!ifp->if_real_bytes) { 3850 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3851 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3852 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3853 } 3854 erp->er_extbuf = ifp->if_u1.if_extents; 3855 erp->er_extcount = nextents; 3856 erp->er_extoff = 0; 3857 3858 ifp->if_flags |= XFS_IFEXTIREC; 3859 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3860 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3861 ifp->if_u1.if_ext_irec = erp; 3862 3863 return; 3864 } 3865 3866 /* 3867 * Allocate and initialize a new entry in the indirection array. 3868 */ 3869 xfs_ext_irec_t * 3870 xfs_iext_irec_new( 3871 xfs_ifork_t *ifp, /* inode fork pointer */ 3872 int erp_idx) /* index for new irec */ 3873 { 3874 xfs_ext_irec_t *erp; /* indirection array pointer */ 3875 int i; /* loop counter */ 3876 int nlists; /* number of irec's (ex lists) */ 3877 3878 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3879 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3880 3881 /* Resize indirection array */ 3882 xfs_iext_realloc_indirect(ifp, ++nlists * 3883 sizeof(xfs_ext_irec_t)); 3884 /* 3885 * Move records down in the array so the 3886 * new page can use erp_idx. 3887 */ 3888 erp = ifp->if_u1.if_ext_irec; 3889 for (i = nlists - 1; i > erp_idx; i--) { 3890 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3891 } 3892 ASSERT(i == erp_idx); 3893 3894 /* Initialize new extent record */ 3895 erp = ifp->if_u1.if_ext_irec; 3896 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3897 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3898 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3899 erp[erp_idx].er_extcount = 0; 3900 erp[erp_idx].er_extoff = erp_idx > 0 ? 3901 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3902 return (&erp[erp_idx]); 3903 } 3904 3905 /* 3906 * Remove a record from the indirection array. 3907 */ 3908 void 3909 xfs_iext_irec_remove( 3910 xfs_ifork_t *ifp, /* inode fork pointer */ 3911 int erp_idx) /* irec index to remove */ 3912 { 3913 xfs_ext_irec_t *erp; /* indirection array pointer */ 3914 int i; /* loop counter */ 3915 int nlists; /* number of irec's (ex lists) */ 3916 3917 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3918 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3919 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3920 if (erp->er_extbuf) { 3921 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 3922 -erp->er_extcount); 3923 kmem_free(erp->er_extbuf); 3924 } 3925 /* Compact extent records */ 3926 erp = ifp->if_u1.if_ext_irec; 3927 for (i = erp_idx; i < nlists - 1; i++) { 3928 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 3929 } 3930 /* 3931 * Manually free the last extent record from the indirection 3932 * array. A call to xfs_iext_realloc_indirect() with a size 3933 * of zero would result in a call to xfs_iext_destroy() which 3934 * would in turn call this function again, creating a nasty 3935 * infinite loop. 3936 */ 3937 if (--nlists) { 3938 xfs_iext_realloc_indirect(ifp, 3939 nlists * sizeof(xfs_ext_irec_t)); 3940 } else { 3941 kmem_free(ifp->if_u1.if_ext_irec); 3942 } 3943 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3944 } 3945 3946 /* 3947 * This is called to clean up large amounts of unused memory allocated 3948 * by the indirection array. Before compacting anything though, verify 3949 * that the indirection array is still needed and switch back to the 3950 * linear extent list (or even the inline buffer) if possible. The 3951 * compaction policy is as follows: 3952 * 3953 * Full Compaction: Extents fit into a single page (or inline buffer) 3954 * Partial Compaction: Extents occupy less than 50% of allocated space 3955 * No Compaction: Extents occupy at least 50% of allocated space 3956 */ 3957 void 3958 xfs_iext_irec_compact( 3959 xfs_ifork_t *ifp) /* inode fork pointer */ 3960 { 3961 xfs_extnum_t nextents; /* number of extents in file */ 3962 int nlists; /* number of irec's (ex lists) */ 3963 3964 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3965 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3966 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3967 3968 if (nextents == 0) { 3969 xfs_iext_destroy(ifp); 3970 } else if (nextents <= XFS_INLINE_EXTS) { 3971 xfs_iext_indirect_to_direct(ifp); 3972 xfs_iext_direct_to_inline(ifp, nextents); 3973 } else if (nextents <= XFS_LINEAR_EXTS) { 3974 xfs_iext_indirect_to_direct(ifp); 3975 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 3976 xfs_iext_irec_compact_pages(ifp); 3977 } 3978 } 3979 3980 /* 3981 * Combine extents from neighboring extent pages. 3982 */ 3983 void 3984 xfs_iext_irec_compact_pages( 3985 xfs_ifork_t *ifp) /* inode fork pointer */ 3986 { 3987 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 3988 int erp_idx = 0; /* indirection array index */ 3989 int nlists; /* number of irec's (ex lists) */ 3990 3991 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3992 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3993 while (erp_idx < nlists - 1) { 3994 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3995 erp_next = erp + 1; 3996 if (erp_next->er_extcount <= 3997 (XFS_LINEAR_EXTS - erp->er_extcount)) { 3998 memcpy(&erp->er_extbuf[erp->er_extcount], 3999 erp_next->er_extbuf, erp_next->er_extcount * 4000 sizeof(xfs_bmbt_rec_t)); 4001 erp->er_extcount += erp_next->er_extcount; 4002 /* 4003 * Free page before removing extent record 4004 * so er_extoffs don't get modified in 4005 * xfs_iext_irec_remove. 4006 */ 4007 kmem_free(erp_next->er_extbuf); 4008 erp_next->er_extbuf = NULL; 4009 xfs_iext_irec_remove(ifp, erp_idx + 1); 4010 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4011 } else { 4012 erp_idx++; 4013 } 4014 } 4015 } 4016 4017 /* 4018 * This is called to update the er_extoff field in the indirection 4019 * array when extents have been added or removed from one of the 4020 * extent lists. erp_idx contains the irec index to begin updating 4021 * at and ext_diff contains the number of extents that were added 4022 * or removed. 4023 */ 4024 void 4025 xfs_iext_irec_update_extoffs( 4026 xfs_ifork_t *ifp, /* inode fork pointer */ 4027 int erp_idx, /* irec index to update */ 4028 int ext_diff) /* number of new extents */ 4029 { 4030 int i; /* loop counter */ 4031 int nlists; /* number of irec's (ex lists */ 4032 4033 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4034 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4035 for (i = erp_idx; i < nlists; i++) { 4036 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4037 } 4038 } 4039 4040 /* 4041 * Test whether it is appropriate to check an inode for and free post EOF 4042 * blocks. The 'force' parameter determines whether we should also consider 4043 * regular files that are marked preallocated or append-only. 4044 */ 4045 bool 4046 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 4047 { 4048 /* prealloc/delalloc exists only on regular files */ 4049 if (!S_ISREG(ip->i_d.di_mode)) 4050 return false; 4051 4052 /* 4053 * Zero sized files with no cached pages and delalloc blocks will not 4054 * have speculative prealloc/delalloc blocks to remove. 4055 */ 4056 if (VFS_I(ip)->i_size == 0 && 4057 VN_CACHED(VFS_I(ip)) == 0 && 4058 ip->i_delayed_blks == 0) 4059 return false; 4060 4061 /* If we haven't read in the extent list, then don't do it now. */ 4062 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 4063 return false; 4064 4065 /* 4066 * Do not free real preallocated or append-only files unless the file 4067 * has delalloc blocks and we are forced to remove them. 4068 */ 4069 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 4070 if (!force || ip->i_delayed_blks == 0) 4071 return false; 4072 4073 return true; 4074 } 4075 4076