xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision ee8a99bd)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 /*
66  * helper function to extract extent size hint from inode
67  */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 	struct xfs_inode	*ip)
71 {
72 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 		return ip->i_d.di_extsize;
74 	if (XFS_IS_REALTIME_INODE(ip))
75 		return ip->i_mount->m_sb.sb_rextsize;
76 	return 0;
77 }
78 
79 /*
80  * This is a wrapper routine around the xfs_ilock() routine used to centralize
81  * some grungy code.  It is used in places that wish to lock the inode solely
82  * for reading the extents.  The reason these places can't just call
83  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84  * extents from disk for a file in b-tree format.  If the inode is in b-tree
85  * format, then we need to lock the inode exclusively until the extents are read
86  * in.  Locking it exclusively all the time would limit our parallelism
87  * unnecessarily, though.  What we do instead is check to see if the extents
88  * have been read in yet, and only lock the inode exclusively if they have not.
89  *
90  * The function returns a value which should be given to the corresponding
91  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
92  * actually taken.
93  */
94 uint
95 xfs_ilock_map_shared(
96 	xfs_inode_t	*ip)
97 {
98 	uint	lock_mode;
99 
100 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
101 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
102 		lock_mode = XFS_ILOCK_EXCL;
103 	} else {
104 		lock_mode = XFS_ILOCK_SHARED;
105 	}
106 
107 	xfs_ilock(ip, lock_mode);
108 
109 	return lock_mode;
110 }
111 
112 /*
113  * This is simply the unlock routine to go with xfs_ilock_map_shared().
114  * All it does is call xfs_iunlock() with the given lock_mode.
115  */
116 void
117 xfs_iunlock_map_shared(
118 	xfs_inode_t	*ip,
119 	unsigned int	lock_mode)
120 {
121 	xfs_iunlock(ip, lock_mode);
122 }
123 
124 /*
125  * The xfs inode contains 2 locks: a multi-reader lock called the
126  * i_iolock and a multi-reader lock called the i_lock.  This routine
127  * allows either or both of the locks to be obtained.
128  *
129  * The 2 locks should always be ordered so that the IO lock is
130  * obtained first in order to prevent deadlock.
131  *
132  * ip -- the inode being locked
133  * lock_flags -- this parameter indicates the inode's locks
134  *       to be locked.  It can be:
135  *		XFS_IOLOCK_SHARED,
136  *		XFS_IOLOCK_EXCL,
137  *		XFS_ILOCK_SHARED,
138  *		XFS_ILOCK_EXCL,
139  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
143  */
144 void
145 xfs_ilock(
146 	xfs_inode_t		*ip,
147 	uint			lock_flags)
148 {
149 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
150 
151 	/*
152 	 * You can't set both SHARED and EXCL for the same lock,
153 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
155 	 */
156 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
157 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
158 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
159 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
160 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
161 
162 	if (lock_flags & XFS_IOLOCK_EXCL)
163 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 	else if (lock_flags & XFS_IOLOCK_SHARED)
165 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166 
167 	if (lock_flags & XFS_ILOCK_EXCL)
168 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
169 	else if (lock_flags & XFS_ILOCK_SHARED)
170 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 }
172 
173 /*
174  * This is just like xfs_ilock(), except that the caller
175  * is guaranteed not to sleep.  It returns 1 if it gets
176  * the requested locks and 0 otherwise.  If the IO lock is
177  * obtained but the inode lock cannot be, then the IO lock
178  * is dropped before returning.
179  *
180  * ip -- the inode being locked
181  * lock_flags -- this parameter indicates the inode's locks to be
182  *       to be locked.  See the comment for xfs_ilock() for a list
183  *	 of valid values.
184  */
185 int
186 xfs_ilock_nowait(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
191 
192 	/*
193 	 * You can't set both SHARED and EXCL for the same lock,
194 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
196 	 */
197 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
198 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
199 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
200 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
201 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
202 
203 	if (lock_flags & XFS_IOLOCK_EXCL) {
204 		if (!mrtryupdate(&ip->i_iolock))
205 			goto out;
206 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
207 		if (!mrtryaccess(&ip->i_iolock))
208 			goto out;
209 	}
210 	if (lock_flags & XFS_ILOCK_EXCL) {
211 		if (!mrtryupdate(&ip->i_lock))
212 			goto out_undo_iolock;
213 	} else if (lock_flags & XFS_ILOCK_SHARED) {
214 		if (!mrtryaccess(&ip->i_lock))
215 			goto out_undo_iolock;
216 	}
217 	return 1;
218 
219  out_undo_iolock:
220 	if (lock_flags & XFS_IOLOCK_EXCL)
221 		mrunlock_excl(&ip->i_iolock);
222 	else if (lock_flags & XFS_IOLOCK_SHARED)
223 		mrunlock_shared(&ip->i_iolock);
224  out:
225 	return 0;
226 }
227 
228 /*
229  * xfs_iunlock() is used to drop the inode locks acquired with
230  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
231  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232  * that we know which locks to drop.
233  *
234  * ip -- the inode being unlocked
235  * lock_flags -- this parameter indicates the inode's locks to be
236  *       to be unlocked.  See the comment for xfs_ilock() for a list
237  *	 of valid values for this parameter.
238  *
239  */
240 void
241 xfs_iunlock(
242 	xfs_inode_t		*ip,
243 	uint			lock_flags)
244 {
245 	/*
246 	 * You can't set both SHARED and EXCL for the same lock,
247 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
249 	 */
250 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
251 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
252 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
253 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
254 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
255 	ASSERT(lock_flags != 0);
256 
257 	if (lock_flags & XFS_IOLOCK_EXCL)
258 		mrunlock_excl(&ip->i_iolock);
259 	else if (lock_flags & XFS_IOLOCK_SHARED)
260 		mrunlock_shared(&ip->i_iolock);
261 
262 	if (lock_flags & XFS_ILOCK_EXCL)
263 		mrunlock_excl(&ip->i_lock);
264 	else if (lock_flags & XFS_ILOCK_SHARED)
265 		mrunlock_shared(&ip->i_lock);
266 
267 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 }
269 
270 /*
271  * give up write locks.  the i/o lock cannot be held nested
272  * if it is being demoted.
273  */
274 void
275 xfs_ilock_demote(
276 	xfs_inode_t		*ip,
277 	uint			lock_flags)
278 {
279 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
280 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
281 
282 	if (lock_flags & XFS_ILOCK_EXCL)
283 		mrdemote(&ip->i_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		mrdemote(&ip->i_iolock);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 #if defined(DEBUG) || defined(XFS_WARN)
291 int
292 xfs_isilocked(
293 	xfs_inode_t		*ip,
294 	uint			lock_flags)
295 {
296 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
297 		if (!(lock_flags & XFS_ILOCK_SHARED))
298 			return !!ip->i_lock.mr_writer;
299 		return rwsem_is_locked(&ip->i_lock.mr_lock);
300 	}
301 
302 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
303 		if (!(lock_flags & XFS_IOLOCK_SHARED))
304 			return !!ip->i_iolock.mr_writer;
305 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
306 	}
307 
308 	ASSERT(0);
309 	return 0;
310 }
311 #endif
312 
313 void
314 __xfs_iflock(
315 	struct xfs_inode	*ip)
316 {
317 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
318 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
319 
320 	do {
321 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
322 		if (xfs_isiflocked(ip))
323 			io_schedule();
324 	} while (!xfs_iflock_nowait(ip));
325 
326 	finish_wait(wq, &wait.wait);
327 }
328 
329 #ifdef DEBUG
330 /*
331  * Make sure that the extents in the given memory buffer
332  * are valid.
333  */
334 STATIC void
335 xfs_validate_extents(
336 	xfs_ifork_t		*ifp,
337 	int			nrecs,
338 	xfs_exntfmt_t		fmt)
339 {
340 	xfs_bmbt_irec_t		irec;
341 	xfs_bmbt_rec_host_t	rec;
342 	int			i;
343 
344 	for (i = 0; i < nrecs; i++) {
345 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
346 		rec.l0 = get_unaligned(&ep->l0);
347 		rec.l1 = get_unaligned(&ep->l1);
348 		xfs_bmbt_get_all(&rec, &irec);
349 		if (fmt == XFS_EXTFMT_NOSTATE)
350 			ASSERT(irec.br_state == XFS_EXT_NORM);
351 	}
352 }
353 #else /* DEBUG */
354 #define xfs_validate_extents(ifp, nrecs, fmt)
355 #endif /* DEBUG */
356 
357 /*
358  * Check that none of the inode's in the buffer have a next
359  * unlinked field of 0.
360  */
361 #if defined(DEBUG)
362 void
363 xfs_inobp_check(
364 	xfs_mount_t	*mp,
365 	xfs_buf_t	*bp)
366 {
367 	int		i;
368 	int		j;
369 	xfs_dinode_t	*dip;
370 
371 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
372 
373 	for (i = 0; i < j; i++) {
374 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
375 					i * mp->m_sb.sb_inodesize);
376 		if (!dip->di_next_unlinked)  {
377 			xfs_alert(mp,
378 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
379 				bp);
380 			ASSERT(dip->di_next_unlinked);
381 		}
382 	}
383 }
384 #endif
385 
386 static void
387 xfs_inode_buf_verify(
388 	struct xfs_buf	*bp)
389 {
390 	struct xfs_mount *mp = bp->b_target->bt_mount;
391 	int		i;
392 	int		ni;
393 
394 	/*
395 	 * Validate the magic number and version of every inode in the buffer
396 	 */
397 	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
398 	for (i = 0; i < ni; i++) {
399 		int		di_ok;
400 		xfs_dinode_t	*dip;
401 
402 		dip = (struct xfs_dinode *)xfs_buf_offset(bp,
403 					(i << mp->m_sb.sb_inodelog));
404 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
405 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
406 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
407 						XFS_ERRTAG_ITOBP_INOTOBP,
408 						XFS_RANDOM_ITOBP_INOTOBP))) {
409 			xfs_buf_ioerror(bp, EFSCORRUPTED);
410 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
411 					     mp, dip);
412 #ifdef DEBUG
413 			xfs_emerg(mp,
414 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
415 				(unsigned long long)bp->b_bn, i,
416 				be16_to_cpu(dip->di_magic));
417 			ASSERT(0);
418 #endif
419 		}
420 	}
421 	xfs_inobp_check(mp, bp);
422 }
423 
424 
425 static void
426 xfs_inode_buf_read_verify(
427 	struct xfs_buf	*bp)
428 {
429 	xfs_inode_buf_verify(bp);
430 }
431 
432 static void
433 xfs_inode_buf_write_verify(
434 	struct xfs_buf	*bp)
435 {
436 	xfs_inode_buf_verify(bp);
437 }
438 
439 const struct xfs_buf_ops xfs_inode_buf_ops = {
440 	.verify_read = xfs_inode_buf_read_verify,
441 	.verify_write = xfs_inode_buf_write_verify,
442 };
443 
444 
445 /*
446  * This routine is called to map an inode to the buffer containing the on-disk
447  * version of the inode.  It returns a pointer to the buffer containing the
448  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
449  * pointer to the on-disk inode within that buffer.
450  *
451  * If a non-zero error is returned, then the contents of bpp and dipp are
452  * undefined.
453  */
454 int
455 xfs_imap_to_bp(
456 	struct xfs_mount	*mp,
457 	struct xfs_trans	*tp,
458 	struct xfs_imap		*imap,
459 	struct xfs_dinode       **dipp,
460 	struct xfs_buf		**bpp,
461 	uint			buf_flags,
462 	uint			iget_flags)
463 {
464 	struct xfs_buf		*bp;
465 	int			error;
466 
467 	buf_flags |= XBF_UNMAPPED;
468 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
469 				   (int)imap->im_len, buf_flags, &bp,
470 				   &xfs_inode_buf_ops);
471 	if (error) {
472 		if (error == EAGAIN) {
473 			ASSERT(buf_flags & XBF_TRYLOCK);
474 			return error;
475 		}
476 
477 		if (error == EFSCORRUPTED &&
478 		    (iget_flags & XFS_IGET_UNTRUSTED))
479 			return XFS_ERROR(EINVAL);
480 
481 		xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
482 			__func__, error);
483 		return error;
484 	}
485 
486 	*bpp = bp;
487 	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
488 	return 0;
489 }
490 
491 /*
492  * Move inode type and inode format specific information from the
493  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
494  * this means set if_rdev to the proper value.  For files, directories,
495  * and symlinks this means to bring in the in-line data or extent
496  * pointers.  For a file in B-tree format, only the root is immediately
497  * brought in-core.  The rest will be in-lined in if_extents when it
498  * is first referenced (see xfs_iread_extents()).
499  */
500 STATIC int
501 xfs_iformat(
502 	xfs_inode_t		*ip,
503 	xfs_dinode_t		*dip)
504 {
505 	xfs_attr_shortform_t	*atp;
506 	int			size;
507 	int			error = 0;
508 	xfs_fsize_t             di_size;
509 
510 	if (unlikely(be32_to_cpu(dip->di_nextents) +
511 		     be16_to_cpu(dip->di_anextents) >
512 		     be64_to_cpu(dip->di_nblocks))) {
513 		xfs_warn(ip->i_mount,
514 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
515 			(unsigned long long)ip->i_ino,
516 			(int)(be32_to_cpu(dip->di_nextents) +
517 			      be16_to_cpu(dip->di_anextents)),
518 			(unsigned long long)
519 				be64_to_cpu(dip->di_nblocks));
520 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
521 				     ip->i_mount, dip);
522 		return XFS_ERROR(EFSCORRUPTED);
523 	}
524 
525 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
526 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
527 			(unsigned long long)ip->i_ino,
528 			dip->di_forkoff);
529 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
530 				     ip->i_mount, dip);
531 		return XFS_ERROR(EFSCORRUPTED);
532 	}
533 
534 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
535 		     !ip->i_mount->m_rtdev_targp)) {
536 		xfs_warn(ip->i_mount,
537 			"corrupt dinode %Lu, has realtime flag set.",
538 			ip->i_ino);
539 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
540 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
541 		return XFS_ERROR(EFSCORRUPTED);
542 	}
543 
544 	switch (ip->i_d.di_mode & S_IFMT) {
545 	case S_IFIFO:
546 	case S_IFCHR:
547 	case S_IFBLK:
548 	case S_IFSOCK:
549 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
550 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
551 					      ip->i_mount, dip);
552 			return XFS_ERROR(EFSCORRUPTED);
553 		}
554 		ip->i_d.di_size = 0;
555 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
556 		break;
557 
558 	case S_IFREG:
559 	case S_IFLNK:
560 	case S_IFDIR:
561 		switch (dip->di_format) {
562 		case XFS_DINODE_FMT_LOCAL:
563 			/*
564 			 * no local regular files yet
565 			 */
566 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
567 				xfs_warn(ip->i_mount,
568 			"corrupt inode %Lu (local format for regular file).",
569 					(unsigned long long) ip->i_ino);
570 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
571 						     XFS_ERRLEVEL_LOW,
572 						     ip->i_mount, dip);
573 				return XFS_ERROR(EFSCORRUPTED);
574 			}
575 
576 			di_size = be64_to_cpu(dip->di_size);
577 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
578 				xfs_warn(ip->i_mount,
579 			"corrupt inode %Lu (bad size %Ld for local inode).",
580 					(unsigned long long) ip->i_ino,
581 					(long long) di_size);
582 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
583 						     XFS_ERRLEVEL_LOW,
584 						     ip->i_mount, dip);
585 				return XFS_ERROR(EFSCORRUPTED);
586 			}
587 
588 			size = (int)di_size;
589 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
590 			break;
591 		case XFS_DINODE_FMT_EXTENTS:
592 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
593 			break;
594 		case XFS_DINODE_FMT_BTREE:
595 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
596 			break;
597 		default:
598 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
599 					 ip->i_mount);
600 			return XFS_ERROR(EFSCORRUPTED);
601 		}
602 		break;
603 
604 	default:
605 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
606 		return XFS_ERROR(EFSCORRUPTED);
607 	}
608 	if (error) {
609 		return error;
610 	}
611 	if (!XFS_DFORK_Q(dip))
612 		return 0;
613 
614 	ASSERT(ip->i_afp == NULL);
615 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
616 
617 	switch (dip->di_aformat) {
618 	case XFS_DINODE_FMT_LOCAL:
619 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
620 		size = be16_to_cpu(atp->hdr.totsize);
621 
622 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
623 			xfs_warn(ip->i_mount,
624 				"corrupt inode %Lu (bad attr fork size %Ld).",
625 				(unsigned long long) ip->i_ino,
626 				(long long) size);
627 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
628 					     XFS_ERRLEVEL_LOW,
629 					     ip->i_mount, dip);
630 			return XFS_ERROR(EFSCORRUPTED);
631 		}
632 
633 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
634 		break;
635 	case XFS_DINODE_FMT_EXTENTS:
636 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
637 		break;
638 	case XFS_DINODE_FMT_BTREE:
639 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
640 		break;
641 	default:
642 		error = XFS_ERROR(EFSCORRUPTED);
643 		break;
644 	}
645 	if (error) {
646 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
647 		ip->i_afp = NULL;
648 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
649 	}
650 	return error;
651 }
652 
653 /*
654  * The file is in-lined in the on-disk inode.
655  * If it fits into if_inline_data, then copy
656  * it there, otherwise allocate a buffer for it
657  * and copy the data there.  Either way, set
658  * if_data to point at the data.
659  * If we allocate a buffer for the data, make
660  * sure that its size is a multiple of 4 and
661  * record the real size in i_real_bytes.
662  */
663 STATIC int
664 xfs_iformat_local(
665 	xfs_inode_t	*ip,
666 	xfs_dinode_t	*dip,
667 	int		whichfork,
668 	int		size)
669 {
670 	xfs_ifork_t	*ifp;
671 	int		real_size;
672 
673 	/*
674 	 * If the size is unreasonable, then something
675 	 * is wrong and we just bail out rather than crash in
676 	 * kmem_alloc() or memcpy() below.
677 	 */
678 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
679 		xfs_warn(ip->i_mount,
680 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
681 			(unsigned long long) ip->i_ino, size,
682 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
683 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
684 				     ip->i_mount, dip);
685 		return XFS_ERROR(EFSCORRUPTED);
686 	}
687 	ifp = XFS_IFORK_PTR(ip, whichfork);
688 	real_size = 0;
689 	if (size == 0)
690 		ifp->if_u1.if_data = NULL;
691 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
692 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
693 	else {
694 		real_size = roundup(size, 4);
695 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
696 	}
697 	ifp->if_bytes = size;
698 	ifp->if_real_bytes = real_size;
699 	if (size)
700 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
701 	ifp->if_flags &= ~XFS_IFEXTENTS;
702 	ifp->if_flags |= XFS_IFINLINE;
703 	return 0;
704 }
705 
706 /*
707  * The file consists of a set of extents all
708  * of which fit into the on-disk inode.
709  * If there are few enough extents to fit into
710  * the if_inline_ext, then copy them there.
711  * Otherwise allocate a buffer for them and copy
712  * them into it.  Either way, set if_extents
713  * to point at the extents.
714  */
715 STATIC int
716 xfs_iformat_extents(
717 	xfs_inode_t	*ip,
718 	xfs_dinode_t	*dip,
719 	int		whichfork)
720 {
721 	xfs_bmbt_rec_t	*dp;
722 	xfs_ifork_t	*ifp;
723 	int		nex;
724 	int		size;
725 	int		i;
726 
727 	ifp = XFS_IFORK_PTR(ip, whichfork);
728 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
729 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
730 
731 	/*
732 	 * If the number of extents is unreasonable, then something
733 	 * is wrong and we just bail out rather than crash in
734 	 * kmem_alloc() or memcpy() below.
735 	 */
736 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
737 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
738 			(unsigned long long) ip->i_ino, nex);
739 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
740 				     ip->i_mount, dip);
741 		return XFS_ERROR(EFSCORRUPTED);
742 	}
743 
744 	ifp->if_real_bytes = 0;
745 	if (nex == 0)
746 		ifp->if_u1.if_extents = NULL;
747 	else if (nex <= XFS_INLINE_EXTS)
748 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
749 	else
750 		xfs_iext_add(ifp, 0, nex);
751 
752 	ifp->if_bytes = size;
753 	if (size) {
754 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
755 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
756 		for (i = 0; i < nex; i++, dp++) {
757 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
758 			ep->l0 = get_unaligned_be64(&dp->l0);
759 			ep->l1 = get_unaligned_be64(&dp->l1);
760 		}
761 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
762 		if (whichfork != XFS_DATA_FORK ||
763 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
764 				if (unlikely(xfs_check_nostate_extents(
765 				    ifp, 0, nex))) {
766 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
767 							 XFS_ERRLEVEL_LOW,
768 							 ip->i_mount);
769 					return XFS_ERROR(EFSCORRUPTED);
770 				}
771 	}
772 	ifp->if_flags |= XFS_IFEXTENTS;
773 	return 0;
774 }
775 
776 /*
777  * The file has too many extents to fit into
778  * the inode, so they are in B-tree format.
779  * Allocate a buffer for the root of the B-tree
780  * and copy the root into it.  The i_extents
781  * field will remain NULL until all of the
782  * extents are read in (when they are needed).
783  */
784 STATIC int
785 xfs_iformat_btree(
786 	xfs_inode_t		*ip,
787 	xfs_dinode_t		*dip,
788 	int			whichfork)
789 {
790 	struct xfs_mount	*mp = ip->i_mount;
791 	xfs_bmdr_block_t	*dfp;
792 	xfs_ifork_t		*ifp;
793 	/* REFERENCED */
794 	int			nrecs;
795 	int			size;
796 
797 	ifp = XFS_IFORK_PTR(ip, whichfork);
798 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
799 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
800 	nrecs = be16_to_cpu(dfp->bb_numrecs);
801 
802 	/*
803 	 * blow out if -- fork has less extents than can fit in
804 	 * fork (fork shouldn't be a btree format), root btree
805 	 * block has more records than can fit into the fork,
806 	 * or the number of extents is greater than the number of
807 	 * blocks.
808 	 */
809 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
810 					XFS_IFORK_MAXEXT(ip, whichfork) ||
811 		     XFS_BMDR_SPACE_CALC(nrecs) >
812 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
813 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
814 		xfs_warn(mp, "corrupt inode %Lu (btree).",
815 					(unsigned long long) ip->i_ino);
816 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
817 					 mp, dip);
818 		return XFS_ERROR(EFSCORRUPTED);
819 	}
820 
821 	ifp->if_broot_bytes = size;
822 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
823 	ASSERT(ifp->if_broot != NULL);
824 	/*
825 	 * Copy and convert from the on-disk structure
826 	 * to the in-memory structure.
827 	 */
828 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
829 			 ifp->if_broot, size);
830 	ifp->if_flags &= ~XFS_IFEXTENTS;
831 	ifp->if_flags |= XFS_IFBROOT;
832 
833 	return 0;
834 }
835 
836 STATIC void
837 xfs_dinode_from_disk(
838 	xfs_icdinode_t		*to,
839 	xfs_dinode_t		*from)
840 {
841 	to->di_magic = be16_to_cpu(from->di_magic);
842 	to->di_mode = be16_to_cpu(from->di_mode);
843 	to->di_version = from ->di_version;
844 	to->di_format = from->di_format;
845 	to->di_onlink = be16_to_cpu(from->di_onlink);
846 	to->di_uid = be32_to_cpu(from->di_uid);
847 	to->di_gid = be32_to_cpu(from->di_gid);
848 	to->di_nlink = be32_to_cpu(from->di_nlink);
849 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
850 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
851 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
852 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
853 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
854 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
855 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
856 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
857 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
858 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
859 	to->di_size = be64_to_cpu(from->di_size);
860 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
861 	to->di_extsize = be32_to_cpu(from->di_extsize);
862 	to->di_nextents = be32_to_cpu(from->di_nextents);
863 	to->di_anextents = be16_to_cpu(from->di_anextents);
864 	to->di_forkoff = from->di_forkoff;
865 	to->di_aformat	= from->di_aformat;
866 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
867 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
868 	to->di_flags	= be16_to_cpu(from->di_flags);
869 	to->di_gen	= be32_to_cpu(from->di_gen);
870 
871 	if (to->di_version == 3) {
872 		to->di_changecount = be64_to_cpu(from->di_changecount);
873 		to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
874 		to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
875 		to->di_flags2 = be64_to_cpu(from->di_flags2);
876 		to->di_ino = be64_to_cpu(from->di_ino);
877 		to->di_lsn = be64_to_cpu(from->di_lsn);
878 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
879 		uuid_copy(&to->di_uuid, &from->di_uuid);
880 	}
881 }
882 
883 void
884 xfs_dinode_to_disk(
885 	xfs_dinode_t		*to,
886 	xfs_icdinode_t		*from)
887 {
888 	to->di_magic = cpu_to_be16(from->di_magic);
889 	to->di_mode = cpu_to_be16(from->di_mode);
890 	to->di_version = from ->di_version;
891 	to->di_format = from->di_format;
892 	to->di_onlink = cpu_to_be16(from->di_onlink);
893 	to->di_uid = cpu_to_be32(from->di_uid);
894 	to->di_gid = cpu_to_be32(from->di_gid);
895 	to->di_nlink = cpu_to_be32(from->di_nlink);
896 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
897 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
898 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
899 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
900 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
901 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
902 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
903 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
904 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
905 	to->di_size = cpu_to_be64(from->di_size);
906 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
907 	to->di_extsize = cpu_to_be32(from->di_extsize);
908 	to->di_nextents = cpu_to_be32(from->di_nextents);
909 	to->di_anextents = cpu_to_be16(from->di_anextents);
910 	to->di_forkoff = from->di_forkoff;
911 	to->di_aformat = from->di_aformat;
912 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
913 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
914 	to->di_flags = cpu_to_be16(from->di_flags);
915 	to->di_gen = cpu_to_be32(from->di_gen);
916 
917 	if (from->di_version == 3) {
918 		to->di_changecount = cpu_to_be64(from->di_changecount);
919 		to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
920 		to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
921 		to->di_flags2 = cpu_to_be64(from->di_flags2);
922 		to->di_ino = cpu_to_be64(from->di_ino);
923 		to->di_lsn = cpu_to_be64(from->di_lsn);
924 		memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
925 		uuid_copy(&to->di_uuid, &from->di_uuid);
926 		to->di_flushiter = 0;
927 	} else {
928 		to->di_flushiter = cpu_to_be16(from->di_flushiter);
929 	}
930 }
931 
932 STATIC uint
933 _xfs_dic2xflags(
934 	__uint16_t		di_flags)
935 {
936 	uint			flags = 0;
937 
938 	if (di_flags & XFS_DIFLAG_ANY) {
939 		if (di_flags & XFS_DIFLAG_REALTIME)
940 			flags |= XFS_XFLAG_REALTIME;
941 		if (di_flags & XFS_DIFLAG_PREALLOC)
942 			flags |= XFS_XFLAG_PREALLOC;
943 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
944 			flags |= XFS_XFLAG_IMMUTABLE;
945 		if (di_flags & XFS_DIFLAG_APPEND)
946 			flags |= XFS_XFLAG_APPEND;
947 		if (di_flags & XFS_DIFLAG_SYNC)
948 			flags |= XFS_XFLAG_SYNC;
949 		if (di_flags & XFS_DIFLAG_NOATIME)
950 			flags |= XFS_XFLAG_NOATIME;
951 		if (di_flags & XFS_DIFLAG_NODUMP)
952 			flags |= XFS_XFLAG_NODUMP;
953 		if (di_flags & XFS_DIFLAG_RTINHERIT)
954 			flags |= XFS_XFLAG_RTINHERIT;
955 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
956 			flags |= XFS_XFLAG_PROJINHERIT;
957 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
958 			flags |= XFS_XFLAG_NOSYMLINKS;
959 		if (di_flags & XFS_DIFLAG_EXTSIZE)
960 			flags |= XFS_XFLAG_EXTSIZE;
961 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
962 			flags |= XFS_XFLAG_EXTSZINHERIT;
963 		if (di_flags & XFS_DIFLAG_NODEFRAG)
964 			flags |= XFS_XFLAG_NODEFRAG;
965 		if (di_flags & XFS_DIFLAG_FILESTREAM)
966 			flags |= XFS_XFLAG_FILESTREAM;
967 	}
968 
969 	return flags;
970 }
971 
972 uint
973 xfs_ip2xflags(
974 	xfs_inode_t		*ip)
975 {
976 	xfs_icdinode_t		*dic = &ip->i_d;
977 
978 	return _xfs_dic2xflags(dic->di_flags) |
979 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
980 }
981 
982 uint
983 xfs_dic2xflags(
984 	xfs_dinode_t		*dip)
985 {
986 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
987 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
988 }
989 
990 static bool
991 xfs_dinode_verify(
992 	struct xfs_mount	*mp,
993 	struct xfs_inode	*ip,
994 	struct xfs_dinode	*dip)
995 {
996 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
997 		return false;
998 
999 	/* only version 3 or greater inodes are extensively verified here */
1000 	if (dip->di_version < 3)
1001 		return true;
1002 
1003 	if (!xfs_sb_version_hascrc(&mp->m_sb))
1004 		return false;
1005 	if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
1006 			      offsetof(struct xfs_dinode, di_crc)))
1007 		return false;
1008 	if (be64_to_cpu(dip->di_ino) != ip->i_ino)
1009 		return false;
1010 	if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
1011 		return false;
1012 	return true;
1013 }
1014 
1015 void
1016 xfs_dinode_calc_crc(
1017 	struct xfs_mount	*mp,
1018 	struct xfs_dinode	*dip)
1019 {
1020 	__uint32_t		crc;
1021 
1022 	if (dip->di_version < 3)
1023 		return;
1024 
1025 	ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
1026 	crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
1027 			      offsetof(struct xfs_dinode, di_crc));
1028 	dip->di_crc = xfs_end_cksum(crc);
1029 }
1030 
1031 /*
1032  * Read the disk inode attributes into the in-core inode structure.
1033  *
1034  * For version 5 superblocks, if we are initialising a new inode and we are not
1035  * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
1036  * inode core with a random generation number. If we are keeping inodes around,
1037  * we need to read the inode cluster to get the existing generation number off
1038  * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
1039  * format) then log recovery is dependent on the di_flushiter field being
1040  * initialised from the current on-disk value and hence we must also read the
1041  * inode off disk.
1042  */
1043 int
1044 xfs_iread(
1045 	xfs_mount_t	*mp,
1046 	xfs_trans_t	*tp,
1047 	xfs_inode_t	*ip,
1048 	uint		iget_flags)
1049 {
1050 	xfs_buf_t	*bp;
1051 	xfs_dinode_t	*dip;
1052 	int		error;
1053 
1054 	/*
1055 	 * Fill in the location information in the in-core inode.
1056 	 */
1057 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
1058 	if (error)
1059 		return error;
1060 
1061 	/* shortcut IO on inode allocation if possible */
1062 	if ((iget_flags & XFS_IGET_CREATE) &&
1063 	    xfs_sb_version_hascrc(&mp->m_sb) &&
1064 	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1065 		/* initialise the on-disk inode core */
1066 		memset(&ip->i_d, 0, sizeof(ip->i_d));
1067 		ip->i_d.di_magic = XFS_DINODE_MAGIC;
1068 		ip->i_d.di_gen = prandom_u32();
1069 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
1070 			ip->i_d.di_version = 3;
1071 			ip->i_d.di_ino = ip->i_ino;
1072 			uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
1073 		} else
1074 			ip->i_d.di_version = 2;
1075 		return 0;
1076 	}
1077 
1078 	/*
1079 	 * Get pointers to the on-disk inode and the buffer containing it.
1080 	 */
1081 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
1082 	if (error)
1083 		return error;
1084 
1085 	/* even unallocated inodes are verified */
1086 	if (!xfs_dinode_verify(mp, ip, dip)) {
1087 		xfs_alert(mp, "%s: validation failed for inode %lld failed",
1088 				__func__, ip->i_ino);
1089 
1090 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
1091 		error = XFS_ERROR(EFSCORRUPTED);
1092 		goto out_brelse;
1093 	}
1094 
1095 	/*
1096 	 * If the on-disk inode is already linked to a directory
1097 	 * entry, copy all of the inode into the in-core inode.
1098 	 * xfs_iformat() handles copying in the inode format
1099 	 * specific information.
1100 	 * Otherwise, just get the truly permanent information.
1101 	 */
1102 	if (dip->di_mode) {
1103 		xfs_dinode_from_disk(&ip->i_d, dip);
1104 		error = xfs_iformat(ip, dip);
1105 		if (error)  {
1106 #ifdef DEBUG
1107 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1108 				__func__, error);
1109 #endif /* DEBUG */
1110 			goto out_brelse;
1111 		}
1112 	} else {
1113 		/*
1114 		 * Partial initialisation of the in-core inode. Just the bits
1115 		 * that xfs_ialloc won't overwrite or relies on being correct.
1116 		 */
1117 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1118 		ip->i_d.di_version = dip->di_version;
1119 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1120 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1121 
1122 		if (dip->di_version == 3) {
1123 			ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
1124 			uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
1125 		}
1126 
1127 		/*
1128 		 * Make sure to pull in the mode here as well in
1129 		 * case the inode is released without being used.
1130 		 * This ensures that xfs_inactive() will see that
1131 		 * the inode is already free and not try to mess
1132 		 * with the uninitialized part of it.
1133 		 */
1134 		ip->i_d.di_mode = 0;
1135 	}
1136 
1137 	/*
1138 	 * The inode format changed when we moved the link count and
1139 	 * made it 32 bits long.  If this is an old format inode,
1140 	 * convert it in memory to look like a new one.  If it gets
1141 	 * flushed to disk we will convert back before flushing or
1142 	 * logging it.  We zero out the new projid field and the old link
1143 	 * count field.  We'll handle clearing the pad field (the remains
1144 	 * of the old uuid field) when we actually convert the inode to
1145 	 * the new format. We don't change the version number so that we
1146 	 * can distinguish this from a real new format inode.
1147 	 */
1148 	if (ip->i_d.di_version == 1) {
1149 		ip->i_d.di_nlink = ip->i_d.di_onlink;
1150 		ip->i_d.di_onlink = 0;
1151 		xfs_set_projid(ip, 0);
1152 	}
1153 
1154 	ip->i_delayed_blks = 0;
1155 
1156 	/*
1157 	 * Mark the buffer containing the inode as something to keep
1158 	 * around for a while.  This helps to keep recently accessed
1159 	 * meta-data in-core longer.
1160 	 */
1161 	xfs_buf_set_ref(bp, XFS_INO_REF);
1162 
1163 	/*
1164 	 * Use xfs_trans_brelse() to release the buffer containing the on-disk
1165 	 * inode, because it was acquired with xfs_trans_read_buf() in
1166 	 * xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
1167 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1168 	 * will only release the buffer if it is not dirty within the
1169 	 * transaction.  It will be OK to release the buffer in this case,
1170 	 * because inodes on disk are never destroyed and we will be locking the
1171 	 * new in-core inode before putting it in the cache where other
1172 	 * processes can find it.  Thus we don't have to worry about the inode
1173 	 * being changed just because we released the buffer.
1174 	 */
1175  out_brelse:
1176 	xfs_trans_brelse(tp, bp);
1177 	return error;
1178 }
1179 
1180 /*
1181  * Read in extents from a btree-format inode.
1182  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1183  */
1184 int
1185 xfs_iread_extents(
1186 	xfs_trans_t	*tp,
1187 	xfs_inode_t	*ip,
1188 	int		whichfork)
1189 {
1190 	int		error;
1191 	xfs_ifork_t	*ifp;
1192 	xfs_extnum_t	nextents;
1193 
1194 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1195 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1196 				 ip->i_mount);
1197 		return XFS_ERROR(EFSCORRUPTED);
1198 	}
1199 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1200 	ifp = XFS_IFORK_PTR(ip, whichfork);
1201 
1202 	/*
1203 	 * We know that the size is valid (it's checked in iformat_btree)
1204 	 */
1205 	ifp->if_bytes = ifp->if_real_bytes = 0;
1206 	ifp->if_flags |= XFS_IFEXTENTS;
1207 	xfs_iext_add(ifp, 0, nextents);
1208 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1209 	if (error) {
1210 		xfs_iext_destroy(ifp);
1211 		ifp->if_flags &= ~XFS_IFEXTENTS;
1212 		return error;
1213 	}
1214 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Allocate an inode on disk and return a copy of its in-core version.
1220  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1221  * appropriately within the inode.  The uid and gid for the inode are
1222  * set according to the contents of the given cred structure.
1223  *
1224  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1225  * has a free inode available, call xfs_iget() to obtain the in-core
1226  * version of the allocated inode.  Finally, fill in the inode and
1227  * log its initial contents.  In this case, ialloc_context would be
1228  * set to NULL.
1229  *
1230  * If xfs_dialloc() does not have an available inode, it will replenish
1231  * its supply by doing an allocation. Since we can only do one
1232  * allocation within a transaction without deadlocks, we must commit
1233  * the current transaction before returning the inode itself.
1234  * In this case, therefore, we will set ialloc_context and return.
1235  * The caller should then commit the current transaction, start a new
1236  * transaction, and call xfs_ialloc() again to actually get the inode.
1237  *
1238  * To ensure that some other process does not grab the inode that
1239  * was allocated during the first call to xfs_ialloc(), this routine
1240  * also returns the [locked] bp pointing to the head of the freelist
1241  * as ialloc_context.  The caller should hold this buffer across
1242  * the commit and pass it back into this routine on the second call.
1243  *
1244  * If we are allocating quota inodes, we do not have a parent inode
1245  * to attach to or associate with (i.e. pip == NULL) because they
1246  * are not linked into the directory structure - they are attached
1247  * directly to the superblock - and so have no parent.
1248  */
1249 int
1250 xfs_ialloc(
1251 	xfs_trans_t	*tp,
1252 	xfs_inode_t	*pip,
1253 	umode_t		mode,
1254 	xfs_nlink_t	nlink,
1255 	xfs_dev_t	rdev,
1256 	prid_t		prid,
1257 	int		okalloc,
1258 	xfs_buf_t	**ialloc_context,
1259 	xfs_inode_t	**ipp)
1260 {
1261 	struct xfs_mount *mp = tp->t_mountp;
1262 	xfs_ino_t	ino;
1263 	xfs_inode_t	*ip;
1264 	uint		flags;
1265 	int		error;
1266 	timespec_t	tv;
1267 	int		filestreams = 0;
1268 
1269 	/*
1270 	 * Call the space management code to pick
1271 	 * the on-disk inode to be allocated.
1272 	 */
1273 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1274 			    ialloc_context, &ino);
1275 	if (error)
1276 		return error;
1277 	if (*ialloc_context || ino == NULLFSINO) {
1278 		*ipp = NULL;
1279 		return 0;
1280 	}
1281 	ASSERT(*ialloc_context == NULL);
1282 
1283 	/*
1284 	 * Get the in-core inode with the lock held exclusively.
1285 	 * This is because we're setting fields here we need
1286 	 * to prevent others from looking at until we're done.
1287 	 */
1288 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
1289 			 XFS_ILOCK_EXCL, &ip);
1290 	if (error)
1291 		return error;
1292 	ASSERT(ip != NULL);
1293 
1294 	ip->i_d.di_mode = mode;
1295 	ip->i_d.di_onlink = 0;
1296 	ip->i_d.di_nlink = nlink;
1297 	ASSERT(ip->i_d.di_nlink == nlink);
1298 	ip->i_d.di_uid = current_fsuid();
1299 	ip->i_d.di_gid = current_fsgid();
1300 	xfs_set_projid(ip, prid);
1301 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1302 
1303 	/*
1304 	 * If the superblock version is up to where we support new format
1305 	 * inodes and this is currently an old format inode, then change
1306 	 * the inode version number now.  This way we only do the conversion
1307 	 * here rather than here and in the flush/logging code.
1308 	 */
1309 	if (xfs_sb_version_hasnlink(&mp->m_sb) &&
1310 	    ip->i_d.di_version == 1) {
1311 		ip->i_d.di_version = 2;
1312 		/*
1313 		 * We've already zeroed the old link count, the projid field,
1314 		 * and the pad field.
1315 		 */
1316 	}
1317 
1318 	/*
1319 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1320 	 */
1321 	if ((prid != 0) && (ip->i_d.di_version == 1))
1322 		xfs_bump_ino_vers2(tp, ip);
1323 
1324 	if (pip && XFS_INHERIT_GID(pip)) {
1325 		ip->i_d.di_gid = pip->i_d.di_gid;
1326 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1327 			ip->i_d.di_mode |= S_ISGID;
1328 		}
1329 	}
1330 
1331 	/*
1332 	 * If the group ID of the new file does not match the effective group
1333 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1334 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1335 	 */
1336 	if ((irix_sgid_inherit) &&
1337 	    (ip->i_d.di_mode & S_ISGID) &&
1338 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1339 		ip->i_d.di_mode &= ~S_ISGID;
1340 	}
1341 
1342 	ip->i_d.di_size = 0;
1343 	ip->i_d.di_nextents = 0;
1344 	ASSERT(ip->i_d.di_nblocks == 0);
1345 
1346 	nanotime(&tv);
1347 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1348 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1349 	ip->i_d.di_atime = ip->i_d.di_mtime;
1350 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1351 
1352 	/*
1353 	 * di_gen will have been taken care of in xfs_iread.
1354 	 */
1355 	ip->i_d.di_extsize = 0;
1356 	ip->i_d.di_dmevmask = 0;
1357 	ip->i_d.di_dmstate = 0;
1358 	ip->i_d.di_flags = 0;
1359 
1360 	if (ip->i_d.di_version == 3) {
1361 		ASSERT(ip->i_d.di_ino == ino);
1362 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
1363 		ip->i_d.di_crc = 0;
1364 		ip->i_d.di_changecount = 1;
1365 		ip->i_d.di_lsn = 0;
1366 		ip->i_d.di_flags2 = 0;
1367 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
1368 		ip->i_d.di_crtime = ip->i_d.di_mtime;
1369 	}
1370 
1371 
1372 	flags = XFS_ILOG_CORE;
1373 	switch (mode & S_IFMT) {
1374 	case S_IFIFO:
1375 	case S_IFCHR:
1376 	case S_IFBLK:
1377 	case S_IFSOCK:
1378 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1379 		ip->i_df.if_u2.if_rdev = rdev;
1380 		ip->i_df.if_flags = 0;
1381 		flags |= XFS_ILOG_DEV;
1382 		break;
1383 	case S_IFREG:
1384 		/*
1385 		 * we can't set up filestreams until after the VFS inode
1386 		 * is set up properly.
1387 		 */
1388 		if (pip && xfs_inode_is_filestream(pip))
1389 			filestreams = 1;
1390 		/* fall through */
1391 	case S_IFDIR:
1392 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1393 			uint	di_flags = 0;
1394 
1395 			if (S_ISDIR(mode)) {
1396 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1397 					di_flags |= XFS_DIFLAG_RTINHERIT;
1398 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1399 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1400 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1401 				}
1402 			} else if (S_ISREG(mode)) {
1403 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1404 					di_flags |= XFS_DIFLAG_REALTIME;
1405 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1406 					di_flags |= XFS_DIFLAG_EXTSIZE;
1407 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1408 				}
1409 			}
1410 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1411 			    xfs_inherit_noatime)
1412 				di_flags |= XFS_DIFLAG_NOATIME;
1413 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1414 			    xfs_inherit_nodump)
1415 				di_flags |= XFS_DIFLAG_NODUMP;
1416 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1417 			    xfs_inherit_sync)
1418 				di_flags |= XFS_DIFLAG_SYNC;
1419 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1420 			    xfs_inherit_nosymlinks)
1421 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1422 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1423 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1424 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1425 			    xfs_inherit_nodefrag)
1426 				di_flags |= XFS_DIFLAG_NODEFRAG;
1427 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1428 				di_flags |= XFS_DIFLAG_FILESTREAM;
1429 			ip->i_d.di_flags |= di_flags;
1430 		}
1431 		/* FALLTHROUGH */
1432 	case S_IFLNK:
1433 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1434 		ip->i_df.if_flags = XFS_IFEXTENTS;
1435 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1436 		ip->i_df.if_u1.if_extents = NULL;
1437 		break;
1438 	default:
1439 		ASSERT(0);
1440 	}
1441 	/*
1442 	 * Attribute fork settings for new inode.
1443 	 */
1444 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1445 	ip->i_d.di_anextents = 0;
1446 
1447 	/*
1448 	 * Log the new values stuffed into the inode.
1449 	 */
1450 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1451 	xfs_trans_log_inode(tp, ip, flags);
1452 
1453 	/* now that we have an i_mode we can setup inode ops and unlock */
1454 	xfs_setup_inode(ip);
1455 
1456 	/* now we have set up the vfs inode we can associate the filestream */
1457 	if (filestreams) {
1458 		error = xfs_filestream_associate(pip, ip);
1459 		if (error < 0)
1460 			return -error;
1461 		if (!error)
1462 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1463 	}
1464 
1465 	*ipp = ip;
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Free up the underlying blocks past new_size.  The new size must be smaller
1471  * than the current size.  This routine can be used both for the attribute and
1472  * data fork, and does not modify the inode size, which is left to the caller.
1473  *
1474  * The transaction passed to this routine must have made a permanent log
1475  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1476  * given transaction and start new ones, so make sure everything involved in
1477  * the transaction is tidy before calling here.  Some transaction will be
1478  * returned to the caller to be committed.  The incoming transaction must
1479  * already include the inode, and both inode locks must be held exclusively.
1480  * The inode must also be "held" within the transaction.  On return the inode
1481  * will be "held" within the returned transaction.  This routine does NOT
1482  * require any disk space to be reserved for it within the transaction.
1483  *
1484  * If we get an error, we must return with the inode locked and linked into the
1485  * current transaction. This keeps things simple for the higher level code,
1486  * because it always knows that the inode is locked and held in the transaction
1487  * that returns to it whether errors occur or not.  We don't mark the inode
1488  * dirty on error so that transactions can be easily aborted if possible.
1489  */
1490 int
1491 xfs_itruncate_extents(
1492 	struct xfs_trans	**tpp,
1493 	struct xfs_inode	*ip,
1494 	int			whichfork,
1495 	xfs_fsize_t		new_size)
1496 {
1497 	struct xfs_mount	*mp = ip->i_mount;
1498 	struct xfs_trans	*tp = *tpp;
1499 	struct xfs_trans	*ntp;
1500 	xfs_bmap_free_t		free_list;
1501 	xfs_fsblock_t		first_block;
1502 	xfs_fileoff_t		first_unmap_block;
1503 	xfs_fileoff_t		last_block;
1504 	xfs_filblks_t		unmap_len;
1505 	int			committed;
1506 	int			error = 0;
1507 	int			done = 0;
1508 
1509 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1510 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1511 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1512 	ASSERT(new_size <= XFS_ISIZE(ip));
1513 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1514 	ASSERT(ip->i_itemp != NULL);
1515 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1516 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1517 
1518 	trace_xfs_itruncate_extents_start(ip, new_size);
1519 
1520 	/*
1521 	 * Since it is possible for space to become allocated beyond
1522 	 * the end of the file (in a crash where the space is allocated
1523 	 * but the inode size is not yet updated), simply remove any
1524 	 * blocks which show up between the new EOF and the maximum
1525 	 * possible file size.  If the first block to be removed is
1526 	 * beyond the maximum file size (ie it is the same as last_block),
1527 	 * then there is nothing to do.
1528 	 */
1529 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1530 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1531 	if (first_unmap_block == last_block)
1532 		return 0;
1533 
1534 	ASSERT(first_unmap_block < last_block);
1535 	unmap_len = last_block - first_unmap_block + 1;
1536 	while (!done) {
1537 		xfs_bmap_init(&free_list, &first_block);
1538 		error = xfs_bunmapi(tp, ip,
1539 				    first_unmap_block, unmap_len,
1540 				    xfs_bmapi_aflag(whichfork),
1541 				    XFS_ITRUNC_MAX_EXTENTS,
1542 				    &first_block, &free_list,
1543 				    &done);
1544 		if (error)
1545 			goto out_bmap_cancel;
1546 
1547 		/*
1548 		 * Duplicate the transaction that has the permanent
1549 		 * reservation and commit the old transaction.
1550 		 */
1551 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1552 		if (committed)
1553 			xfs_trans_ijoin(tp, ip, 0);
1554 		if (error)
1555 			goto out_bmap_cancel;
1556 
1557 		if (committed) {
1558 			/*
1559 			 * Mark the inode dirty so it will be logged and
1560 			 * moved forward in the log as part of every commit.
1561 			 */
1562 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1563 		}
1564 
1565 		ntp = xfs_trans_dup(tp);
1566 		error = xfs_trans_commit(tp, 0);
1567 		tp = ntp;
1568 
1569 		xfs_trans_ijoin(tp, ip, 0);
1570 
1571 		if (error)
1572 			goto out;
1573 
1574 		/*
1575 		 * Transaction commit worked ok so we can drop the extra ticket
1576 		 * reference that we gained in xfs_trans_dup()
1577 		 */
1578 		xfs_log_ticket_put(tp->t_ticket);
1579 		error = xfs_trans_reserve(tp, 0,
1580 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1581 					XFS_TRANS_PERM_LOG_RES,
1582 					XFS_ITRUNCATE_LOG_COUNT);
1583 		if (error)
1584 			goto out;
1585 	}
1586 
1587 	/*
1588 	 * Always re-log the inode so that our permanent transaction can keep
1589 	 * on rolling it forward in the log.
1590 	 */
1591 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1592 
1593 	trace_xfs_itruncate_extents_end(ip, new_size);
1594 
1595 out:
1596 	*tpp = tp;
1597 	return error;
1598 out_bmap_cancel:
1599 	/*
1600 	 * If the bunmapi call encounters an error, return to the caller where
1601 	 * the transaction can be properly aborted.  We just need to make sure
1602 	 * we're not holding any resources that we were not when we came in.
1603 	 */
1604 	xfs_bmap_cancel(&free_list);
1605 	goto out;
1606 }
1607 
1608 /*
1609  * This is called when the inode's link count goes to 0.
1610  * We place the on-disk inode on a list in the AGI.  It
1611  * will be pulled from this list when the inode is freed.
1612  */
1613 int
1614 xfs_iunlink(
1615 	xfs_trans_t	*tp,
1616 	xfs_inode_t	*ip)
1617 {
1618 	xfs_mount_t	*mp;
1619 	xfs_agi_t	*agi;
1620 	xfs_dinode_t	*dip;
1621 	xfs_buf_t	*agibp;
1622 	xfs_buf_t	*ibp;
1623 	xfs_agino_t	agino;
1624 	short		bucket_index;
1625 	int		offset;
1626 	int		error;
1627 
1628 	ASSERT(ip->i_d.di_nlink == 0);
1629 	ASSERT(ip->i_d.di_mode != 0);
1630 
1631 	mp = tp->t_mountp;
1632 
1633 	/*
1634 	 * Get the agi buffer first.  It ensures lock ordering
1635 	 * on the list.
1636 	 */
1637 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1638 	if (error)
1639 		return error;
1640 	agi = XFS_BUF_TO_AGI(agibp);
1641 
1642 	/*
1643 	 * Get the index into the agi hash table for the
1644 	 * list this inode will go on.
1645 	 */
1646 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1647 	ASSERT(agino != 0);
1648 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1649 	ASSERT(agi->agi_unlinked[bucket_index]);
1650 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1651 
1652 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1653 		/*
1654 		 * There is already another inode in the bucket we need
1655 		 * to add ourselves to.  Add us at the front of the list.
1656 		 * Here we put the head pointer into our next pointer,
1657 		 * and then we fall through to point the head at us.
1658 		 */
1659 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1660 				       0, 0);
1661 		if (error)
1662 			return error;
1663 
1664 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1665 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1666 		offset = ip->i_imap.im_boffset +
1667 			offsetof(xfs_dinode_t, di_next_unlinked);
1668 
1669 		/* need to recalc the inode CRC if appropriate */
1670 		xfs_dinode_calc_crc(mp, dip);
1671 
1672 		xfs_trans_inode_buf(tp, ibp);
1673 		xfs_trans_log_buf(tp, ibp, offset,
1674 				  (offset + sizeof(xfs_agino_t) - 1));
1675 		xfs_inobp_check(mp, ibp);
1676 	}
1677 
1678 	/*
1679 	 * Point the bucket head pointer at the inode being inserted.
1680 	 */
1681 	ASSERT(agino != 0);
1682 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1683 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1684 		(sizeof(xfs_agino_t) * bucket_index);
1685 	xfs_trans_log_buf(tp, agibp, offset,
1686 			  (offset + sizeof(xfs_agino_t) - 1));
1687 	return 0;
1688 }
1689 
1690 /*
1691  * Pull the on-disk inode from the AGI unlinked list.
1692  */
1693 STATIC int
1694 xfs_iunlink_remove(
1695 	xfs_trans_t	*tp,
1696 	xfs_inode_t	*ip)
1697 {
1698 	xfs_ino_t	next_ino;
1699 	xfs_mount_t	*mp;
1700 	xfs_agi_t	*agi;
1701 	xfs_dinode_t	*dip;
1702 	xfs_buf_t	*agibp;
1703 	xfs_buf_t	*ibp;
1704 	xfs_agnumber_t	agno;
1705 	xfs_agino_t	agino;
1706 	xfs_agino_t	next_agino;
1707 	xfs_buf_t	*last_ibp;
1708 	xfs_dinode_t	*last_dip = NULL;
1709 	short		bucket_index;
1710 	int		offset, last_offset = 0;
1711 	int		error;
1712 
1713 	mp = tp->t_mountp;
1714 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1715 
1716 	/*
1717 	 * Get the agi buffer first.  It ensures lock ordering
1718 	 * on the list.
1719 	 */
1720 	error = xfs_read_agi(mp, tp, agno, &agibp);
1721 	if (error)
1722 		return error;
1723 
1724 	agi = XFS_BUF_TO_AGI(agibp);
1725 
1726 	/*
1727 	 * Get the index into the agi hash table for the
1728 	 * list this inode will go on.
1729 	 */
1730 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1731 	ASSERT(agino != 0);
1732 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1733 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1734 	ASSERT(agi->agi_unlinked[bucket_index]);
1735 
1736 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1737 		/*
1738 		 * We're at the head of the list.  Get the inode's on-disk
1739 		 * buffer to see if there is anyone after us on the list.
1740 		 * Only modify our next pointer if it is not already NULLAGINO.
1741 		 * This saves us the overhead of dealing with the buffer when
1742 		 * there is no need to change it.
1743 		 */
1744 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1745 				       0, 0);
1746 		if (error) {
1747 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1748 				__func__, error);
1749 			return error;
1750 		}
1751 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1752 		ASSERT(next_agino != 0);
1753 		if (next_agino != NULLAGINO) {
1754 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1755 			offset = ip->i_imap.im_boffset +
1756 				offsetof(xfs_dinode_t, di_next_unlinked);
1757 
1758 			/* need to recalc the inode CRC if appropriate */
1759 			xfs_dinode_calc_crc(mp, dip);
1760 
1761 			xfs_trans_inode_buf(tp, ibp);
1762 			xfs_trans_log_buf(tp, ibp, offset,
1763 					  (offset + sizeof(xfs_agino_t) - 1));
1764 			xfs_inobp_check(mp, ibp);
1765 		} else {
1766 			xfs_trans_brelse(tp, ibp);
1767 		}
1768 		/*
1769 		 * Point the bucket head pointer at the next inode.
1770 		 */
1771 		ASSERT(next_agino != 0);
1772 		ASSERT(next_agino != agino);
1773 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1774 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1775 			(sizeof(xfs_agino_t) * bucket_index);
1776 		xfs_trans_log_buf(tp, agibp, offset,
1777 				  (offset + sizeof(xfs_agino_t) - 1));
1778 	} else {
1779 		/*
1780 		 * We need to search the list for the inode being freed.
1781 		 */
1782 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1783 		last_ibp = NULL;
1784 		while (next_agino != agino) {
1785 			struct xfs_imap	imap;
1786 
1787 			if (last_ibp)
1788 				xfs_trans_brelse(tp, last_ibp);
1789 
1790 			imap.im_blkno = 0;
1791 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1792 
1793 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
1794 			if (error) {
1795 				xfs_warn(mp,
1796 	"%s: xfs_imap returned error %d.",
1797 					 __func__, error);
1798 				return error;
1799 			}
1800 
1801 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1802 					       &last_ibp, 0, 0);
1803 			if (error) {
1804 				xfs_warn(mp,
1805 	"%s: xfs_imap_to_bp returned error %d.",
1806 					__func__, error);
1807 				return error;
1808 			}
1809 
1810 			last_offset = imap.im_boffset;
1811 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1812 			ASSERT(next_agino != NULLAGINO);
1813 			ASSERT(next_agino != 0);
1814 		}
1815 
1816 		/*
1817 		 * Now last_ibp points to the buffer previous to us on the
1818 		 * unlinked list.  Pull us from the list.
1819 		 */
1820 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1821 				       0, 0);
1822 		if (error) {
1823 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1824 				__func__, error);
1825 			return error;
1826 		}
1827 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1828 		ASSERT(next_agino != 0);
1829 		ASSERT(next_agino != agino);
1830 		if (next_agino != NULLAGINO) {
1831 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1832 			offset = ip->i_imap.im_boffset +
1833 				offsetof(xfs_dinode_t, di_next_unlinked);
1834 
1835 			/* need to recalc the inode CRC if appropriate */
1836 			xfs_dinode_calc_crc(mp, dip);
1837 
1838 			xfs_trans_inode_buf(tp, ibp);
1839 			xfs_trans_log_buf(tp, ibp, offset,
1840 					  (offset + sizeof(xfs_agino_t) - 1));
1841 			xfs_inobp_check(mp, ibp);
1842 		} else {
1843 			xfs_trans_brelse(tp, ibp);
1844 		}
1845 		/*
1846 		 * Point the previous inode on the list to the next inode.
1847 		 */
1848 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1849 		ASSERT(next_agino != 0);
1850 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1851 
1852 		/* need to recalc the inode CRC if appropriate */
1853 		xfs_dinode_calc_crc(mp, last_dip);
1854 
1855 		xfs_trans_inode_buf(tp, last_ibp);
1856 		xfs_trans_log_buf(tp, last_ibp, offset,
1857 				  (offset + sizeof(xfs_agino_t) - 1));
1858 		xfs_inobp_check(mp, last_ibp);
1859 	}
1860 	return 0;
1861 }
1862 
1863 /*
1864  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1865  * inodes that are in memory - they all must be marked stale and attached to
1866  * the cluster buffer.
1867  */
1868 STATIC int
1869 xfs_ifree_cluster(
1870 	xfs_inode_t	*free_ip,
1871 	xfs_trans_t	*tp,
1872 	xfs_ino_t	inum)
1873 {
1874 	xfs_mount_t		*mp = free_ip->i_mount;
1875 	int			blks_per_cluster;
1876 	int			nbufs;
1877 	int			ninodes;
1878 	int			i, j;
1879 	xfs_daddr_t		blkno;
1880 	xfs_buf_t		*bp;
1881 	xfs_inode_t		*ip;
1882 	xfs_inode_log_item_t	*iip;
1883 	xfs_log_item_t		*lip;
1884 	struct xfs_perag	*pag;
1885 
1886 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1887 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1888 		blks_per_cluster = 1;
1889 		ninodes = mp->m_sb.sb_inopblock;
1890 		nbufs = XFS_IALLOC_BLOCKS(mp);
1891 	} else {
1892 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1893 					mp->m_sb.sb_blocksize;
1894 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1895 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1896 	}
1897 
1898 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1899 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1900 					 XFS_INO_TO_AGBNO(mp, inum));
1901 
1902 		/*
1903 		 * We obtain and lock the backing buffer first in the process
1904 		 * here, as we have to ensure that any dirty inode that we
1905 		 * can't get the flush lock on is attached to the buffer.
1906 		 * If we scan the in-memory inodes first, then buffer IO can
1907 		 * complete before we get a lock on it, and hence we may fail
1908 		 * to mark all the active inodes on the buffer stale.
1909 		 */
1910 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1911 					mp->m_bsize * blks_per_cluster,
1912 					XBF_UNMAPPED);
1913 
1914 		if (!bp)
1915 			return ENOMEM;
1916 
1917 		/*
1918 		 * This buffer may not have been correctly initialised as we
1919 		 * didn't read it from disk. That's not important because we are
1920 		 * only using to mark the buffer as stale in the log, and to
1921 		 * attach stale cached inodes on it. That means it will never be
1922 		 * dispatched for IO. If it is, we want to know about it, and we
1923 		 * want it to fail. We can acheive this by adding a write
1924 		 * verifier to the buffer.
1925 		 */
1926 		 bp->b_ops = &xfs_inode_buf_ops;
1927 
1928 		/*
1929 		 * Walk the inodes already attached to the buffer and mark them
1930 		 * stale. These will all have the flush locks held, so an
1931 		 * in-memory inode walk can't lock them. By marking them all
1932 		 * stale first, we will not attempt to lock them in the loop
1933 		 * below as the XFS_ISTALE flag will be set.
1934 		 */
1935 		lip = bp->b_fspriv;
1936 		while (lip) {
1937 			if (lip->li_type == XFS_LI_INODE) {
1938 				iip = (xfs_inode_log_item_t *)lip;
1939 				ASSERT(iip->ili_logged == 1);
1940 				lip->li_cb = xfs_istale_done;
1941 				xfs_trans_ail_copy_lsn(mp->m_ail,
1942 							&iip->ili_flush_lsn,
1943 							&iip->ili_item.li_lsn);
1944 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1945 			}
1946 			lip = lip->li_bio_list;
1947 		}
1948 
1949 
1950 		/*
1951 		 * For each inode in memory attempt to add it to the inode
1952 		 * buffer and set it up for being staled on buffer IO
1953 		 * completion.  This is safe as we've locked out tail pushing
1954 		 * and flushing by locking the buffer.
1955 		 *
1956 		 * We have already marked every inode that was part of a
1957 		 * transaction stale above, which means there is no point in
1958 		 * even trying to lock them.
1959 		 */
1960 		for (i = 0; i < ninodes; i++) {
1961 retry:
1962 			rcu_read_lock();
1963 			ip = radix_tree_lookup(&pag->pag_ici_root,
1964 					XFS_INO_TO_AGINO(mp, (inum + i)));
1965 
1966 			/* Inode not in memory, nothing to do */
1967 			if (!ip) {
1968 				rcu_read_unlock();
1969 				continue;
1970 			}
1971 
1972 			/*
1973 			 * because this is an RCU protected lookup, we could
1974 			 * find a recently freed or even reallocated inode
1975 			 * during the lookup. We need to check under the
1976 			 * i_flags_lock for a valid inode here. Skip it if it
1977 			 * is not valid, the wrong inode or stale.
1978 			 */
1979 			spin_lock(&ip->i_flags_lock);
1980 			if (ip->i_ino != inum + i ||
1981 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1982 				spin_unlock(&ip->i_flags_lock);
1983 				rcu_read_unlock();
1984 				continue;
1985 			}
1986 			spin_unlock(&ip->i_flags_lock);
1987 
1988 			/*
1989 			 * Don't try to lock/unlock the current inode, but we
1990 			 * _cannot_ skip the other inodes that we did not find
1991 			 * in the list attached to the buffer and are not
1992 			 * already marked stale. If we can't lock it, back off
1993 			 * and retry.
1994 			 */
1995 			if (ip != free_ip &&
1996 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1997 				rcu_read_unlock();
1998 				delay(1);
1999 				goto retry;
2000 			}
2001 			rcu_read_unlock();
2002 
2003 			xfs_iflock(ip);
2004 			xfs_iflags_set(ip, XFS_ISTALE);
2005 
2006 			/*
2007 			 * we don't need to attach clean inodes or those only
2008 			 * with unlogged changes (which we throw away, anyway).
2009 			 */
2010 			iip = ip->i_itemp;
2011 			if (!iip || xfs_inode_clean(ip)) {
2012 				ASSERT(ip != free_ip);
2013 				xfs_ifunlock(ip);
2014 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2015 				continue;
2016 			}
2017 
2018 			iip->ili_last_fields = iip->ili_fields;
2019 			iip->ili_fields = 0;
2020 			iip->ili_logged = 1;
2021 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2022 						&iip->ili_item.li_lsn);
2023 
2024 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2025 						  &iip->ili_item);
2026 
2027 			if (ip != free_ip)
2028 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2029 		}
2030 
2031 		xfs_trans_stale_inode_buf(tp, bp);
2032 		xfs_trans_binval(tp, bp);
2033 	}
2034 
2035 	xfs_perag_put(pag);
2036 	return 0;
2037 }
2038 
2039 /*
2040  * This is called to return an inode to the inode free list.
2041  * The inode should already be truncated to 0 length and have
2042  * no pages associated with it.  This routine also assumes that
2043  * the inode is already a part of the transaction.
2044  *
2045  * The on-disk copy of the inode will have been added to the list
2046  * of unlinked inodes in the AGI. We need to remove the inode from
2047  * that list atomically with respect to freeing it here.
2048  */
2049 int
2050 xfs_ifree(
2051 	xfs_trans_t	*tp,
2052 	xfs_inode_t	*ip,
2053 	xfs_bmap_free_t	*flist)
2054 {
2055 	int			error;
2056 	int			delete;
2057 	xfs_ino_t		first_ino;
2058 
2059 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2060 	ASSERT(ip->i_d.di_nlink == 0);
2061 	ASSERT(ip->i_d.di_nextents == 0);
2062 	ASSERT(ip->i_d.di_anextents == 0);
2063 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2064 	ASSERT(ip->i_d.di_nblocks == 0);
2065 
2066 	/*
2067 	 * Pull the on-disk inode from the AGI unlinked list.
2068 	 */
2069 	error = xfs_iunlink_remove(tp, ip);
2070 	if (error)
2071 		return error;
2072 
2073 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2074 	if (error)
2075 		return error;
2076 
2077 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2078 	ip->i_d.di_flags = 0;
2079 	ip->i_d.di_dmevmask = 0;
2080 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2081 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2082 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2083 	/*
2084 	 * Bump the generation count so no one will be confused
2085 	 * by reincarnations of this inode.
2086 	 */
2087 	ip->i_d.di_gen++;
2088 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2089 
2090 	if (delete)
2091 		error = xfs_ifree_cluster(ip, tp, first_ino);
2092 
2093 	return error;
2094 }
2095 
2096 /*
2097  * Reallocate the space for if_broot based on the number of records
2098  * being added or deleted as indicated in rec_diff.  Move the records
2099  * and pointers in if_broot to fit the new size.  When shrinking this
2100  * will eliminate holes between the records and pointers created by
2101  * the caller.  When growing this will create holes to be filled in
2102  * by the caller.
2103  *
2104  * The caller must not request to add more records than would fit in
2105  * the on-disk inode root.  If the if_broot is currently NULL, then
2106  * if we adding records one will be allocated.  The caller must also
2107  * not request that the number of records go below zero, although
2108  * it can go to zero.
2109  *
2110  * ip -- the inode whose if_broot area is changing
2111  * ext_diff -- the change in the number of records, positive or negative,
2112  *	 requested for the if_broot array.
2113  */
2114 void
2115 xfs_iroot_realloc(
2116 	xfs_inode_t		*ip,
2117 	int			rec_diff,
2118 	int			whichfork)
2119 {
2120 	struct xfs_mount	*mp = ip->i_mount;
2121 	int			cur_max;
2122 	xfs_ifork_t		*ifp;
2123 	struct xfs_btree_block	*new_broot;
2124 	int			new_max;
2125 	size_t			new_size;
2126 	char			*np;
2127 	char			*op;
2128 
2129 	/*
2130 	 * Handle the degenerate case quietly.
2131 	 */
2132 	if (rec_diff == 0) {
2133 		return;
2134 	}
2135 
2136 	ifp = XFS_IFORK_PTR(ip, whichfork);
2137 	if (rec_diff > 0) {
2138 		/*
2139 		 * If there wasn't any memory allocated before, just
2140 		 * allocate it now and get out.
2141 		 */
2142 		if (ifp->if_broot_bytes == 0) {
2143 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
2144 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2145 			ifp->if_broot_bytes = (int)new_size;
2146 			return;
2147 		}
2148 
2149 		/*
2150 		 * If there is already an existing if_broot, then we need
2151 		 * to realloc() it and shift the pointers to their new
2152 		 * location.  The records don't change location because
2153 		 * they are kept butted up against the btree block header.
2154 		 */
2155 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2156 		new_max = cur_max + rec_diff;
2157 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2158 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2159 				XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
2160 				KM_SLEEP | KM_NOFS);
2161 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2162 						     ifp->if_broot_bytes);
2163 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2164 						     (int)new_size);
2165 		ifp->if_broot_bytes = (int)new_size;
2166 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
2167 			XFS_IFORK_SIZE(ip, whichfork));
2168 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2169 		return;
2170 	}
2171 
2172 	/*
2173 	 * rec_diff is less than 0.  In this case, we are shrinking the
2174 	 * if_broot buffer.  It must already exist.  If we go to zero
2175 	 * records, just get rid of the root and clear the status bit.
2176 	 */
2177 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2178 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2179 	new_max = cur_max + rec_diff;
2180 	ASSERT(new_max >= 0);
2181 	if (new_max > 0)
2182 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
2183 	else
2184 		new_size = 0;
2185 	if (new_size > 0) {
2186 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2187 		/*
2188 		 * First copy over the btree block header.
2189 		 */
2190 		memcpy(new_broot, ifp->if_broot,
2191 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
2192 	} else {
2193 		new_broot = NULL;
2194 		ifp->if_flags &= ~XFS_IFBROOT;
2195 	}
2196 
2197 	/*
2198 	 * Only copy the records and pointers if there are any.
2199 	 */
2200 	if (new_max > 0) {
2201 		/*
2202 		 * First copy the records.
2203 		 */
2204 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2205 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2206 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2207 
2208 		/*
2209 		 * Then copy the pointers.
2210 		 */
2211 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2212 						     ifp->if_broot_bytes);
2213 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2214 						     (int)new_size);
2215 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2216 	}
2217 	kmem_free(ifp->if_broot);
2218 	ifp->if_broot = new_broot;
2219 	ifp->if_broot_bytes = (int)new_size;
2220 	if (ifp->if_broot)
2221 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
2222 			XFS_IFORK_SIZE(ip, whichfork));
2223 	return;
2224 }
2225 
2226 
2227 /*
2228  * This is called when the amount of space needed for if_data
2229  * is increased or decreased.  The change in size is indicated by
2230  * the number of bytes that need to be added or deleted in the
2231  * byte_diff parameter.
2232  *
2233  * If the amount of space needed has decreased below the size of the
2234  * inline buffer, then switch to using the inline buffer.  Otherwise,
2235  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2236  * to what is needed.
2237  *
2238  * ip -- the inode whose if_data area is changing
2239  * byte_diff -- the change in the number of bytes, positive or negative,
2240  *	 requested for the if_data array.
2241  */
2242 void
2243 xfs_idata_realloc(
2244 	xfs_inode_t	*ip,
2245 	int		byte_diff,
2246 	int		whichfork)
2247 {
2248 	xfs_ifork_t	*ifp;
2249 	int		new_size;
2250 	int		real_size;
2251 
2252 	if (byte_diff == 0) {
2253 		return;
2254 	}
2255 
2256 	ifp = XFS_IFORK_PTR(ip, whichfork);
2257 	new_size = (int)ifp->if_bytes + byte_diff;
2258 	ASSERT(new_size >= 0);
2259 
2260 	if (new_size == 0) {
2261 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2262 			kmem_free(ifp->if_u1.if_data);
2263 		}
2264 		ifp->if_u1.if_data = NULL;
2265 		real_size = 0;
2266 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2267 		/*
2268 		 * If the valid extents/data can fit in if_inline_ext/data,
2269 		 * copy them from the malloc'd vector and free it.
2270 		 */
2271 		if (ifp->if_u1.if_data == NULL) {
2272 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2273 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2274 			ASSERT(ifp->if_real_bytes != 0);
2275 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2276 			      new_size);
2277 			kmem_free(ifp->if_u1.if_data);
2278 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2279 		}
2280 		real_size = 0;
2281 	} else {
2282 		/*
2283 		 * Stuck with malloc/realloc.
2284 		 * For inline data, the underlying buffer must be
2285 		 * a multiple of 4 bytes in size so that it can be
2286 		 * logged and stay on word boundaries.  We enforce
2287 		 * that here.
2288 		 */
2289 		real_size = roundup(new_size, 4);
2290 		if (ifp->if_u1.if_data == NULL) {
2291 			ASSERT(ifp->if_real_bytes == 0);
2292 			ifp->if_u1.if_data = kmem_alloc(real_size,
2293 							KM_SLEEP | KM_NOFS);
2294 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2295 			/*
2296 			 * Only do the realloc if the underlying size
2297 			 * is really changing.
2298 			 */
2299 			if (ifp->if_real_bytes != real_size) {
2300 				ifp->if_u1.if_data =
2301 					kmem_realloc(ifp->if_u1.if_data,
2302 							real_size,
2303 							ifp->if_real_bytes,
2304 							KM_SLEEP | KM_NOFS);
2305 			}
2306 		} else {
2307 			ASSERT(ifp->if_real_bytes == 0);
2308 			ifp->if_u1.if_data = kmem_alloc(real_size,
2309 							KM_SLEEP | KM_NOFS);
2310 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2311 				ifp->if_bytes);
2312 		}
2313 	}
2314 	ifp->if_real_bytes = real_size;
2315 	ifp->if_bytes = new_size;
2316 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2317 }
2318 
2319 void
2320 xfs_idestroy_fork(
2321 	xfs_inode_t	*ip,
2322 	int		whichfork)
2323 {
2324 	xfs_ifork_t	*ifp;
2325 
2326 	ifp = XFS_IFORK_PTR(ip, whichfork);
2327 	if (ifp->if_broot != NULL) {
2328 		kmem_free(ifp->if_broot);
2329 		ifp->if_broot = NULL;
2330 	}
2331 
2332 	/*
2333 	 * If the format is local, then we can't have an extents
2334 	 * array so just look for an inline data array.  If we're
2335 	 * not local then we may or may not have an extents list,
2336 	 * so check and free it up if we do.
2337 	 */
2338 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2339 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2340 		    (ifp->if_u1.if_data != NULL)) {
2341 			ASSERT(ifp->if_real_bytes != 0);
2342 			kmem_free(ifp->if_u1.if_data);
2343 			ifp->if_u1.if_data = NULL;
2344 			ifp->if_real_bytes = 0;
2345 		}
2346 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2347 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2348 		    ((ifp->if_u1.if_extents != NULL) &&
2349 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2350 		ASSERT(ifp->if_real_bytes != 0);
2351 		xfs_iext_destroy(ifp);
2352 	}
2353 	ASSERT(ifp->if_u1.if_extents == NULL ||
2354 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2355 	ASSERT(ifp->if_real_bytes == 0);
2356 	if (whichfork == XFS_ATTR_FORK) {
2357 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2358 		ip->i_afp = NULL;
2359 	}
2360 }
2361 
2362 /*
2363  * This is called to unpin an inode.  The caller must have the inode locked
2364  * in at least shared mode so that the buffer cannot be subsequently pinned
2365  * once someone is waiting for it to be unpinned.
2366  */
2367 static void
2368 xfs_iunpin(
2369 	struct xfs_inode	*ip)
2370 {
2371 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2372 
2373 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2374 
2375 	/* Give the log a push to start the unpinning I/O */
2376 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2377 
2378 }
2379 
2380 static void
2381 __xfs_iunpin_wait(
2382 	struct xfs_inode	*ip)
2383 {
2384 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2385 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2386 
2387 	xfs_iunpin(ip);
2388 
2389 	do {
2390 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2391 		if (xfs_ipincount(ip))
2392 			io_schedule();
2393 	} while (xfs_ipincount(ip));
2394 	finish_wait(wq, &wait.wait);
2395 }
2396 
2397 void
2398 xfs_iunpin_wait(
2399 	struct xfs_inode	*ip)
2400 {
2401 	if (xfs_ipincount(ip))
2402 		__xfs_iunpin_wait(ip);
2403 }
2404 
2405 /*
2406  * xfs_iextents_copy()
2407  *
2408  * This is called to copy the REAL extents (as opposed to the delayed
2409  * allocation extents) from the inode into the given buffer.  It
2410  * returns the number of bytes copied into the buffer.
2411  *
2412  * If there are no delayed allocation extents, then we can just
2413  * memcpy() the extents into the buffer.  Otherwise, we need to
2414  * examine each extent in turn and skip those which are delayed.
2415  */
2416 int
2417 xfs_iextents_copy(
2418 	xfs_inode_t		*ip,
2419 	xfs_bmbt_rec_t		*dp,
2420 	int			whichfork)
2421 {
2422 	int			copied;
2423 	int			i;
2424 	xfs_ifork_t		*ifp;
2425 	int			nrecs;
2426 	xfs_fsblock_t		start_block;
2427 
2428 	ifp = XFS_IFORK_PTR(ip, whichfork);
2429 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2430 	ASSERT(ifp->if_bytes > 0);
2431 
2432 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2433 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2434 	ASSERT(nrecs > 0);
2435 
2436 	/*
2437 	 * There are some delayed allocation extents in the
2438 	 * inode, so copy the extents one at a time and skip
2439 	 * the delayed ones.  There must be at least one
2440 	 * non-delayed extent.
2441 	 */
2442 	copied = 0;
2443 	for (i = 0; i < nrecs; i++) {
2444 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2445 		start_block = xfs_bmbt_get_startblock(ep);
2446 		if (isnullstartblock(start_block)) {
2447 			/*
2448 			 * It's a delayed allocation extent, so skip it.
2449 			 */
2450 			continue;
2451 		}
2452 
2453 		/* Translate to on disk format */
2454 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2455 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2456 		dp++;
2457 		copied++;
2458 	}
2459 	ASSERT(copied != 0);
2460 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2461 
2462 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2463 }
2464 
2465 /*
2466  * Each of the following cases stores data into the same region
2467  * of the on-disk inode, so only one of them can be valid at
2468  * any given time. While it is possible to have conflicting formats
2469  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2470  * in EXTENTS format, this can only happen when the fork has
2471  * changed formats after being modified but before being flushed.
2472  * In these cases, the format always takes precedence, because the
2473  * format indicates the current state of the fork.
2474  */
2475 /*ARGSUSED*/
2476 STATIC void
2477 xfs_iflush_fork(
2478 	xfs_inode_t		*ip,
2479 	xfs_dinode_t		*dip,
2480 	xfs_inode_log_item_t	*iip,
2481 	int			whichfork,
2482 	xfs_buf_t		*bp)
2483 {
2484 	char			*cp;
2485 	xfs_ifork_t		*ifp;
2486 	xfs_mount_t		*mp;
2487 	static const short	brootflag[2] =
2488 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2489 	static const short	dataflag[2] =
2490 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2491 	static const short	extflag[2] =
2492 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2493 
2494 	if (!iip)
2495 		return;
2496 	ifp = XFS_IFORK_PTR(ip, whichfork);
2497 	/*
2498 	 * This can happen if we gave up in iformat in an error path,
2499 	 * for the attribute fork.
2500 	 */
2501 	if (!ifp) {
2502 		ASSERT(whichfork == XFS_ATTR_FORK);
2503 		return;
2504 	}
2505 	cp = XFS_DFORK_PTR(dip, whichfork);
2506 	mp = ip->i_mount;
2507 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2508 	case XFS_DINODE_FMT_LOCAL:
2509 		if ((iip->ili_fields & dataflag[whichfork]) &&
2510 		    (ifp->if_bytes > 0)) {
2511 			ASSERT(ifp->if_u1.if_data != NULL);
2512 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2513 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2514 		}
2515 		break;
2516 
2517 	case XFS_DINODE_FMT_EXTENTS:
2518 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2519 		       !(iip->ili_fields & extflag[whichfork]));
2520 		if ((iip->ili_fields & extflag[whichfork]) &&
2521 		    (ifp->if_bytes > 0)) {
2522 			ASSERT(xfs_iext_get_ext(ifp, 0));
2523 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2524 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2525 				whichfork);
2526 		}
2527 		break;
2528 
2529 	case XFS_DINODE_FMT_BTREE:
2530 		if ((iip->ili_fields & brootflag[whichfork]) &&
2531 		    (ifp->if_broot_bytes > 0)) {
2532 			ASSERT(ifp->if_broot != NULL);
2533 			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
2534 			        XFS_IFORK_SIZE(ip, whichfork));
2535 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2536 				(xfs_bmdr_block_t *)cp,
2537 				XFS_DFORK_SIZE(dip, mp, whichfork));
2538 		}
2539 		break;
2540 
2541 	case XFS_DINODE_FMT_DEV:
2542 		if (iip->ili_fields & XFS_ILOG_DEV) {
2543 			ASSERT(whichfork == XFS_DATA_FORK);
2544 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2545 		}
2546 		break;
2547 
2548 	case XFS_DINODE_FMT_UUID:
2549 		if (iip->ili_fields & XFS_ILOG_UUID) {
2550 			ASSERT(whichfork == XFS_DATA_FORK);
2551 			memcpy(XFS_DFORK_DPTR(dip),
2552 			       &ip->i_df.if_u2.if_uuid,
2553 			       sizeof(uuid_t));
2554 		}
2555 		break;
2556 
2557 	default:
2558 		ASSERT(0);
2559 		break;
2560 	}
2561 }
2562 
2563 STATIC int
2564 xfs_iflush_cluster(
2565 	xfs_inode_t	*ip,
2566 	xfs_buf_t	*bp)
2567 {
2568 	xfs_mount_t		*mp = ip->i_mount;
2569 	struct xfs_perag	*pag;
2570 	unsigned long		first_index, mask;
2571 	unsigned long		inodes_per_cluster;
2572 	int			ilist_size;
2573 	xfs_inode_t		**ilist;
2574 	xfs_inode_t		*iq;
2575 	int			nr_found;
2576 	int			clcount = 0;
2577 	int			bufwasdelwri;
2578 	int			i;
2579 
2580 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2581 
2582 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2583 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2584 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2585 	if (!ilist)
2586 		goto out_put;
2587 
2588 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2589 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2590 	rcu_read_lock();
2591 	/* really need a gang lookup range call here */
2592 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2593 					first_index, inodes_per_cluster);
2594 	if (nr_found == 0)
2595 		goto out_free;
2596 
2597 	for (i = 0; i < nr_found; i++) {
2598 		iq = ilist[i];
2599 		if (iq == ip)
2600 			continue;
2601 
2602 		/*
2603 		 * because this is an RCU protected lookup, we could find a
2604 		 * recently freed or even reallocated inode during the lookup.
2605 		 * We need to check under the i_flags_lock for a valid inode
2606 		 * here. Skip it if it is not valid or the wrong inode.
2607 		 */
2608 		spin_lock(&ip->i_flags_lock);
2609 		if (!ip->i_ino ||
2610 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2611 			spin_unlock(&ip->i_flags_lock);
2612 			continue;
2613 		}
2614 		spin_unlock(&ip->i_flags_lock);
2615 
2616 		/*
2617 		 * Do an un-protected check to see if the inode is dirty and
2618 		 * is a candidate for flushing.  These checks will be repeated
2619 		 * later after the appropriate locks are acquired.
2620 		 */
2621 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2622 			continue;
2623 
2624 		/*
2625 		 * Try to get locks.  If any are unavailable or it is pinned,
2626 		 * then this inode cannot be flushed and is skipped.
2627 		 */
2628 
2629 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2630 			continue;
2631 		if (!xfs_iflock_nowait(iq)) {
2632 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2633 			continue;
2634 		}
2635 		if (xfs_ipincount(iq)) {
2636 			xfs_ifunlock(iq);
2637 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2638 			continue;
2639 		}
2640 
2641 		/*
2642 		 * arriving here means that this inode can be flushed.  First
2643 		 * re-check that it's dirty before flushing.
2644 		 */
2645 		if (!xfs_inode_clean(iq)) {
2646 			int	error;
2647 			error = xfs_iflush_int(iq, bp);
2648 			if (error) {
2649 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2650 				goto cluster_corrupt_out;
2651 			}
2652 			clcount++;
2653 		} else {
2654 			xfs_ifunlock(iq);
2655 		}
2656 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2657 	}
2658 
2659 	if (clcount) {
2660 		XFS_STATS_INC(xs_icluster_flushcnt);
2661 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2662 	}
2663 
2664 out_free:
2665 	rcu_read_unlock();
2666 	kmem_free(ilist);
2667 out_put:
2668 	xfs_perag_put(pag);
2669 	return 0;
2670 
2671 
2672 cluster_corrupt_out:
2673 	/*
2674 	 * Corruption detected in the clustering loop.  Invalidate the
2675 	 * inode buffer and shut down the filesystem.
2676 	 */
2677 	rcu_read_unlock();
2678 	/*
2679 	 * Clean up the buffer.  If it was delwri, just release it --
2680 	 * brelse can handle it with no problems.  If not, shut down the
2681 	 * filesystem before releasing the buffer.
2682 	 */
2683 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2684 	if (bufwasdelwri)
2685 		xfs_buf_relse(bp);
2686 
2687 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2688 
2689 	if (!bufwasdelwri) {
2690 		/*
2691 		 * Just like incore_relse: if we have b_iodone functions,
2692 		 * mark the buffer as an error and call them.  Otherwise
2693 		 * mark it as stale and brelse.
2694 		 */
2695 		if (bp->b_iodone) {
2696 			XFS_BUF_UNDONE(bp);
2697 			xfs_buf_stale(bp);
2698 			xfs_buf_ioerror(bp, EIO);
2699 			xfs_buf_ioend(bp, 0);
2700 		} else {
2701 			xfs_buf_stale(bp);
2702 			xfs_buf_relse(bp);
2703 		}
2704 	}
2705 
2706 	/*
2707 	 * Unlocks the flush lock
2708 	 */
2709 	xfs_iflush_abort(iq, false);
2710 	kmem_free(ilist);
2711 	xfs_perag_put(pag);
2712 	return XFS_ERROR(EFSCORRUPTED);
2713 }
2714 
2715 /*
2716  * Flush dirty inode metadata into the backing buffer.
2717  *
2718  * The caller must have the inode lock and the inode flush lock held.  The
2719  * inode lock will still be held upon return to the caller, and the inode
2720  * flush lock will be released after the inode has reached the disk.
2721  *
2722  * The caller must write out the buffer returned in *bpp and release it.
2723  */
2724 int
2725 xfs_iflush(
2726 	struct xfs_inode	*ip,
2727 	struct xfs_buf		**bpp)
2728 {
2729 	struct xfs_mount	*mp = ip->i_mount;
2730 	struct xfs_buf		*bp;
2731 	struct xfs_dinode	*dip;
2732 	int			error;
2733 
2734 	XFS_STATS_INC(xs_iflush_count);
2735 
2736 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2737 	ASSERT(xfs_isiflocked(ip));
2738 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2739 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2740 
2741 	*bpp = NULL;
2742 
2743 	xfs_iunpin_wait(ip);
2744 
2745 	/*
2746 	 * For stale inodes we cannot rely on the backing buffer remaining
2747 	 * stale in cache for the remaining life of the stale inode and so
2748 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2749 	 * inodes below. We have to check this after ensuring the inode is
2750 	 * unpinned so that it is safe to reclaim the stale inode after the
2751 	 * flush call.
2752 	 */
2753 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2754 		xfs_ifunlock(ip);
2755 		return 0;
2756 	}
2757 
2758 	/*
2759 	 * This may have been unpinned because the filesystem is shutting
2760 	 * down forcibly. If that's the case we must not write this inode
2761 	 * to disk, because the log record didn't make it to disk.
2762 	 *
2763 	 * We also have to remove the log item from the AIL in this case,
2764 	 * as we wait for an empty AIL as part of the unmount process.
2765 	 */
2766 	if (XFS_FORCED_SHUTDOWN(mp)) {
2767 		error = XFS_ERROR(EIO);
2768 		goto abort_out;
2769 	}
2770 
2771 	/*
2772 	 * Get the buffer containing the on-disk inode.
2773 	 */
2774 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2775 			       0);
2776 	if (error || !bp) {
2777 		xfs_ifunlock(ip);
2778 		return error;
2779 	}
2780 
2781 	/*
2782 	 * First flush out the inode that xfs_iflush was called with.
2783 	 */
2784 	error = xfs_iflush_int(ip, bp);
2785 	if (error)
2786 		goto corrupt_out;
2787 
2788 	/*
2789 	 * If the buffer is pinned then push on the log now so we won't
2790 	 * get stuck waiting in the write for too long.
2791 	 */
2792 	if (xfs_buf_ispinned(bp))
2793 		xfs_log_force(mp, 0);
2794 
2795 	/*
2796 	 * inode clustering:
2797 	 * see if other inodes can be gathered into this write
2798 	 */
2799 	error = xfs_iflush_cluster(ip, bp);
2800 	if (error)
2801 		goto cluster_corrupt_out;
2802 
2803 	*bpp = bp;
2804 	return 0;
2805 
2806 corrupt_out:
2807 	xfs_buf_relse(bp);
2808 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2809 cluster_corrupt_out:
2810 	error = XFS_ERROR(EFSCORRUPTED);
2811 abort_out:
2812 	/*
2813 	 * Unlocks the flush lock
2814 	 */
2815 	xfs_iflush_abort(ip, false);
2816 	return error;
2817 }
2818 
2819 
2820 STATIC int
2821 xfs_iflush_int(
2822 	struct xfs_inode	*ip,
2823 	struct xfs_buf		*bp)
2824 {
2825 	struct xfs_inode_log_item *iip = ip->i_itemp;
2826 	struct xfs_dinode	*dip;
2827 	struct xfs_mount	*mp = ip->i_mount;
2828 
2829 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2830 	ASSERT(xfs_isiflocked(ip));
2831 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2832 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2833 	ASSERT(iip != NULL && iip->ili_fields != 0);
2834 
2835 	/* set *dip = inode's place in the buffer */
2836 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2837 
2838 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2839 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2840 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2841 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2842 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2843 		goto corrupt_out;
2844 	}
2845 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2846 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2847 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2848 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2849 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2850 		goto corrupt_out;
2851 	}
2852 	if (S_ISREG(ip->i_d.di_mode)) {
2853 		if (XFS_TEST_ERROR(
2854 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2855 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2856 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2857 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2858 				"%s: Bad regular inode %Lu, ptr 0x%p",
2859 				__func__, ip->i_ino, ip);
2860 			goto corrupt_out;
2861 		}
2862 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2863 		if (XFS_TEST_ERROR(
2864 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2865 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2866 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2867 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2868 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2869 				"%s: Bad directory inode %Lu, ptr 0x%p",
2870 				__func__, ip->i_ino, ip);
2871 			goto corrupt_out;
2872 		}
2873 	}
2874 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2875 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2876 				XFS_RANDOM_IFLUSH_5)) {
2877 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2878 			"%s: detected corrupt incore inode %Lu, "
2879 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2880 			__func__, ip->i_ino,
2881 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2882 			ip->i_d.di_nblocks, ip);
2883 		goto corrupt_out;
2884 	}
2885 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2886 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2887 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2888 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2889 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2890 		goto corrupt_out;
2891 	}
2892 
2893 	/*
2894 	 * Inode item log recovery for v1/v2 inodes are dependent on the
2895 	 * di_flushiter count for correct sequencing. We bump the flush
2896 	 * iteration count so we can detect flushes which postdate a log record
2897 	 * during recovery. This is redundant as we now log every change and
2898 	 * hence this can't happen but we need to still do it to ensure
2899 	 * backwards compatibility with old kernels that predate logging all
2900 	 * inode changes.
2901 	 */
2902 	if (ip->i_d.di_version < 3)
2903 		ip->i_d.di_flushiter++;
2904 
2905 	/*
2906 	 * Copy the dirty parts of the inode into the on-disk
2907 	 * inode.  We always copy out the core of the inode,
2908 	 * because if the inode is dirty at all the core must
2909 	 * be.
2910 	 */
2911 	xfs_dinode_to_disk(dip, &ip->i_d);
2912 
2913 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2914 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2915 		ip->i_d.di_flushiter = 0;
2916 
2917 	/*
2918 	 * If this is really an old format inode and the superblock version
2919 	 * has not been updated to support only new format inodes, then
2920 	 * convert back to the old inode format.  If the superblock version
2921 	 * has been updated, then make the conversion permanent.
2922 	 */
2923 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2924 	if (ip->i_d.di_version == 1) {
2925 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2926 			/*
2927 			 * Convert it back.
2928 			 */
2929 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2930 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2931 		} else {
2932 			/*
2933 			 * The superblock version has already been bumped,
2934 			 * so just make the conversion to the new inode
2935 			 * format permanent.
2936 			 */
2937 			ip->i_d.di_version = 2;
2938 			dip->di_version = 2;
2939 			ip->i_d.di_onlink = 0;
2940 			dip->di_onlink = 0;
2941 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2942 			memset(&(dip->di_pad[0]), 0,
2943 			      sizeof(dip->di_pad));
2944 			ASSERT(xfs_get_projid(ip) == 0);
2945 		}
2946 	}
2947 
2948 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2949 	if (XFS_IFORK_Q(ip))
2950 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2951 	xfs_inobp_check(mp, bp);
2952 
2953 	/*
2954 	 * We've recorded everything logged in the inode, so we'd like to clear
2955 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2956 	 * However, we can't stop logging all this information until the data
2957 	 * we've copied into the disk buffer is written to disk.  If we did we
2958 	 * might overwrite the copy of the inode in the log with all the data
2959 	 * after re-logging only part of it, and in the face of a crash we
2960 	 * wouldn't have all the data we need to recover.
2961 	 *
2962 	 * What we do is move the bits to the ili_last_fields field.  When
2963 	 * logging the inode, these bits are moved back to the ili_fields field.
2964 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2965 	 * know that the information those bits represent is permanently on
2966 	 * disk.  As long as the flush completes before the inode is logged
2967 	 * again, then both ili_fields and ili_last_fields will be cleared.
2968 	 *
2969 	 * We can play with the ili_fields bits here, because the inode lock
2970 	 * must be held exclusively in order to set bits there and the flush
2971 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2972 	 * done routine can tell whether or not to look in the AIL.  Also, store
2973 	 * the current LSN of the inode so that we can tell whether the item has
2974 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2975 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2976 	 * atomically.
2977 	 */
2978 	iip->ili_last_fields = iip->ili_fields;
2979 	iip->ili_fields = 0;
2980 	iip->ili_logged = 1;
2981 
2982 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2983 				&iip->ili_item.li_lsn);
2984 
2985 	/*
2986 	 * Attach the function xfs_iflush_done to the inode's
2987 	 * buffer.  This will remove the inode from the AIL
2988 	 * and unlock the inode's flush lock when the inode is
2989 	 * completely written to disk.
2990 	 */
2991 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2992 
2993 	/* update the lsn in the on disk inode if required */
2994 	if (ip->i_d.di_version == 3)
2995 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
2996 
2997 	/* generate the checksum. */
2998 	xfs_dinode_calc_crc(mp, dip);
2999 
3000 	ASSERT(bp->b_fspriv != NULL);
3001 	ASSERT(bp->b_iodone != NULL);
3002 	return 0;
3003 
3004 corrupt_out:
3005 	return XFS_ERROR(EFSCORRUPTED);
3006 }
3007 
3008 /*
3009  * Return a pointer to the extent record at file index idx.
3010  */
3011 xfs_bmbt_rec_host_t *
3012 xfs_iext_get_ext(
3013 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3014 	xfs_extnum_t	idx)		/* index of target extent */
3015 {
3016 	ASSERT(idx >= 0);
3017 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3018 
3019 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3020 		return ifp->if_u1.if_ext_irec->er_extbuf;
3021 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3022 		xfs_ext_irec_t	*erp;		/* irec pointer */
3023 		int		erp_idx = 0;	/* irec index */
3024 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3025 
3026 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3027 		return &erp->er_extbuf[page_idx];
3028 	} else if (ifp->if_bytes) {
3029 		return &ifp->if_u1.if_extents[idx];
3030 	} else {
3031 		return NULL;
3032 	}
3033 }
3034 
3035 /*
3036  * Insert new item(s) into the extent records for incore inode
3037  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3038  */
3039 void
3040 xfs_iext_insert(
3041 	xfs_inode_t	*ip,		/* incore inode pointer */
3042 	xfs_extnum_t	idx,		/* starting index of new items */
3043 	xfs_extnum_t	count,		/* number of inserted items */
3044 	xfs_bmbt_irec_t	*new,		/* items to insert */
3045 	int		state)		/* type of extent conversion */
3046 {
3047 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3048 	xfs_extnum_t	i;		/* extent record index */
3049 
3050 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3051 
3052 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3053 	xfs_iext_add(ifp, idx, count);
3054 	for (i = idx; i < idx + count; i++, new++)
3055 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3056 }
3057 
3058 /*
3059  * This is called when the amount of space required for incore file
3060  * extents needs to be increased. The ext_diff parameter stores the
3061  * number of new extents being added and the idx parameter contains
3062  * the extent index where the new extents will be added. If the new
3063  * extents are being appended, then we just need to (re)allocate and
3064  * initialize the space. Otherwise, if the new extents are being
3065  * inserted into the middle of the existing entries, a bit more work
3066  * is required to make room for the new extents to be inserted. The
3067  * caller is responsible for filling in the new extent entries upon
3068  * return.
3069  */
3070 void
3071 xfs_iext_add(
3072 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3073 	xfs_extnum_t	idx,		/* index to begin adding exts */
3074 	int		ext_diff)	/* number of extents to add */
3075 {
3076 	int		byte_diff;	/* new bytes being added */
3077 	int		new_size;	/* size of extents after adding */
3078 	xfs_extnum_t	nextents;	/* number of extents in file */
3079 
3080 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3081 	ASSERT((idx >= 0) && (idx <= nextents));
3082 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3083 	new_size = ifp->if_bytes + byte_diff;
3084 	/*
3085 	 * If the new number of extents (nextents + ext_diff)
3086 	 * fits inside the inode, then continue to use the inline
3087 	 * extent buffer.
3088 	 */
3089 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3090 		if (idx < nextents) {
3091 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3092 				&ifp->if_u2.if_inline_ext[idx],
3093 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3094 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3095 		}
3096 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3097 		ifp->if_real_bytes = 0;
3098 	}
3099 	/*
3100 	 * Otherwise use a linear (direct) extent list.
3101 	 * If the extents are currently inside the inode,
3102 	 * xfs_iext_realloc_direct will switch us from
3103 	 * inline to direct extent allocation mode.
3104 	 */
3105 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3106 		xfs_iext_realloc_direct(ifp, new_size);
3107 		if (idx < nextents) {
3108 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3109 				&ifp->if_u1.if_extents[idx],
3110 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3111 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3112 		}
3113 	}
3114 	/* Indirection array */
3115 	else {
3116 		xfs_ext_irec_t	*erp;
3117 		int		erp_idx = 0;
3118 		int		page_idx = idx;
3119 
3120 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3121 		if (ifp->if_flags & XFS_IFEXTIREC) {
3122 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3123 		} else {
3124 			xfs_iext_irec_init(ifp);
3125 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3126 			erp = ifp->if_u1.if_ext_irec;
3127 		}
3128 		/* Extents fit in target extent page */
3129 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3130 			if (page_idx < erp->er_extcount) {
3131 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3132 					&erp->er_extbuf[page_idx],
3133 					(erp->er_extcount - page_idx) *
3134 					sizeof(xfs_bmbt_rec_t));
3135 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3136 			}
3137 			erp->er_extcount += ext_diff;
3138 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3139 		}
3140 		/* Insert a new extent page */
3141 		else if (erp) {
3142 			xfs_iext_add_indirect_multi(ifp,
3143 				erp_idx, page_idx, ext_diff);
3144 		}
3145 		/*
3146 		 * If extent(s) are being appended to the last page in
3147 		 * the indirection array and the new extent(s) don't fit
3148 		 * in the page, then erp is NULL and erp_idx is set to
3149 		 * the next index needed in the indirection array.
3150 		 */
3151 		else {
3152 			int	count = ext_diff;
3153 
3154 			while (count) {
3155 				erp = xfs_iext_irec_new(ifp, erp_idx);
3156 				erp->er_extcount = count;
3157 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3158 				if (count) {
3159 					erp_idx++;
3160 				}
3161 			}
3162 		}
3163 	}
3164 	ifp->if_bytes = new_size;
3165 }
3166 
3167 /*
3168  * This is called when incore extents are being added to the indirection
3169  * array and the new extents do not fit in the target extent list. The
3170  * erp_idx parameter contains the irec index for the target extent list
3171  * in the indirection array, and the idx parameter contains the extent
3172  * index within the list. The number of extents being added is stored
3173  * in the count parameter.
3174  *
3175  *    |-------|   |-------|
3176  *    |       |   |       |    idx - number of extents before idx
3177  *    |  idx  |   | count |
3178  *    |       |   |       |    count - number of extents being inserted at idx
3179  *    |-------|   |-------|
3180  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3181  *    |-------|   |-------|
3182  */
3183 void
3184 xfs_iext_add_indirect_multi(
3185 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3186 	int		erp_idx,		/* target extent irec index */
3187 	xfs_extnum_t	idx,			/* index within target list */
3188 	int		count)			/* new extents being added */
3189 {
3190 	int		byte_diff;		/* new bytes being added */
3191 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3192 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3193 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3194 	xfs_extnum_t	nex2;			/* extents after idx + count */
3195 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3196 	int		nlists;			/* number of irec's (lists) */
3197 
3198 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3199 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3200 	nex2 = erp->er_extcount - idx;
3201 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3202 
3203 	/*
3204 	 * Save second part of target extent list
3205 	 * (all extents past */
3206 	if (nex2) {
3207 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3208 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3209 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3210 		erp->er_extcount -= nex2;
3211 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3212 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3213 	}
3214 
3215 	/*
3216 	 * Add the new extents to the end of the target
3217 	 * list, then allocate new irec record(s) and
3218 	 * extent buffer(s) as needed to store the rest
3219 	 * of the new extents.
3220 	 */
3221 	ext_cnt = count;
3222 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3223 	if (ext_diff) {
3224 		erp->er_extcount += ext_diff;
3225 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3226 		ext_cnt -= ext_diff;
3227 	}
3228 	while (ext_cnt) {
3229 		erp_idx++;
3230 		erp = xfs_iext_irec_new(ifp, erp_idx);
3231 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3232 		erp->er_extcount = ext_diff;
3233 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3234 		ext_cnt -= ext_diff;
3235 	}
3236 
3237 	/* Add nex2 extents back to indirection array */
3238 	if (nex2) {
3239 		xfs_extnum_t	ext_avail;
3240 		int		i;
3241 
3242 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3243 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3244 		i = 0;
3245 		/*
3246 		 * If nex2 extents fit in the current page, append
3247 		 * nex2_ep after the new extents.
3248 		 */
3249 		if (nex2 <= ext_avail) {
3250 			i = erp->er_extcount;
3251 		}
3252 		/*
3253 		 * Otherwise, check if space is available in the
3254 		 * next page.
3255 		 */
3256 		else if ((erp_idx < nlists - 1) &&
3257 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3258 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3259 			erp_idx++;
3260 			erp++;
3261 			/* Create a hole for nex2 extents */
3262 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3263 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3264 		}
3265 		/*
3266 		 * Final choice, create a new extent page for
3267 		 * nex2 extents.
3268 		 */
3269 		else {
3270 			erp_idx++;
3271 			erp = xfs_iext_irec_new(ifp, erp_idx);
3272 		}
3273 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3274 		kmem_free(nex2_ep);
3275 		erp->er_extcount += nex2;
3276 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3277 	}
3278 }
3279 
3280 /*
3281  * This is called when the amount of space required for incore file
3282  * extents needs to be decreased. The ext_diff parameter stores the
3283  * number of extents to be removed and the idx parameter contains
3284  * the extent index where the extents will be removed from.
3285  *
3286  * If the amount of space needed has decreased below the linear
3287  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3288  * extent array.  Otherwise, use kmem_realloc() to adjust the
3289  * size to what is needed.
3290  */
3291 void
3292 xfs_iext_remove(
3293 	xfs_inode_t	*ip,		/* incore inode pointer */
3294 	xfs_extnum_t	idx,		/* index to begin removing exts */
3295 	int		ext_diff,	/* number of extents to remove */
3296 	int		state)		/* type of extent conversion */
3297 {
3298 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3299 	xfs_extnum_t	nextents;	/* number of extents in file */
3300 	int		new_size;	/* size of extents after removal */
3301 
3302 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3303 
3304 	ASSERT(ext_diff > 0);
3305 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3306 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3307 
3308 	if (new_size == 0) {
3309 		xfs_iext_destroy(ifp);
3310 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3311 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3312 	} else if (ifp->if_real_bytes) {
3313 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3314 	} else {
3315 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3316 	}
3317 	ifp->if_bytes = new_size;
3318 }
3319 
3320 /*
3321  * This removes ext_diff extents from the inline buffer, beginning
3322  * at extent index idx.
3323  */
3324 void
3325 xfs_iext_remove_inline(
3326 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3327 	xfs_extnum_t	idx,		/* index to begin removing exts */
3328 	int		ext_diff)	/* number of extents to remove */
3329 {
3330 	int		nextents;	/* number of extents in file */
3331 
3332 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3333 	ASSERT(idx < XFS_INLINE_EXTS);
3334 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3335 	ASSERT(((nextents - ext_diff) > 0) &&
3336 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3337 
3338 	if (idx + ext_diff < nextents) {
3339 		memmove(&ifp->if_u2.if_inline_ext[idx],
3340 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3341 			(nextents - (idx + ext_diff)) *
3342 			 sizeof(xfs_bmbt_rec_t));
3343 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3344 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3345 	} else {
3346 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3347 			ext_diff * sizeof(xfs_bmbt_rec_t));
3348 	}
3349 }
3350 
3351 /*
3352  * This removes ext_diff extents from a linear (direct) extent list,
3353  * beginning at extent index idx. If the extents are being removed
3354  * from the end of the list (ie. truncate) then we just need to re-
3355  * allocate the list to remove the extra space. Otherwise, if the
3356  * extents are being removed from the middle of the existing extent
3357  * entries, then we first need to move the extent records beginning
3358  * at idx + ext_diff up in the list to overwrite the records being
3359  * removed, then remove the extra space via kmem_realloc.
3360  */
3361 void
3362 xfs_iext_remove_direct(
3363 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3364 	xfs_extnum_t	idx,		/* index to begin removing exts */
3365 	int		ext_diff)	/* number of extents to remove */
3366 {
3367 	xfs_extnum_t	nextents;	/* number of extents in file */
3368 	int		new_size;	/* size of extents after removal */
3369 
3370 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3371 	new_size = ifp->if_bytes -
3372 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3373 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3374 
3375 	if (new_size == 0) {
3376 		xfs_iext_destroy(ifp);
3377 		return;
3378 	}
3379 	/* Move extents up in the list (if needed) */
3380 	if (idx + ext_diff < nextents) {
3381 		memmove(&ifp->if_u1.if_extents[idx],
3382 			&ifp->if_u1.if_extents[idx + ext_diff],
3383 			(nextents - (idx + ext_diff)) *
3384 			 sizeof(xfs_bmbt_rec_t));
3385 	}
3386 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3387 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3388 	/*
3389 	 * Reallocate the direct extent list. If the extents
3390 	 * will fit inside the inode then xfs_iext_realloc_direct
3391 	 * will switch from direct to inline extent allocation
3392 	 * mode for us.
3393 	 */
3394 	xfs_iext_realloc_direct(ifp, new_size);
3395 	ifp->if_bytes = new_size;
3396 }
3397 
3398 /*
3399  * This is called when incore extents are being removed from the
3400  * indirection array and the extents being removed span multiple extent
3401  * buffers. The idx parameter contains the file extent index where we
3402  * want to begin removing extents, and the count parameter contains
3403  * how many extents need to be removed.
3404  *
3405  *    |-------|   |-------|
3406  *    | nex1  |   |       |    nex1 - number of extents before idx
3407  *    |-------|   | count |
3408  *    |       |   |       |    count - number of extents being removed at idx
3409  *    | count |   |-------|
3410  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3411  *    |-------|   |-------|
3412  */
3413 void
3414 xfs_iext_remove_indirect(
3415 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3416 	xfs_extnum_t	idx,		/* index to begin removing extents */
3417 	int		count)		/* number of extents to remove */
3418 {
3419 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3420 	int		erp_idx = 0;	/* indirection array index */
3421 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3422 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3423 	xfs_extnum_t	nex1;		/* number of extents before idx */
3424 	xfs_extnum_t	nex2;		/* extents after idx + count */
3425 	int		page_idx = idx;	/* index in target extent list */
3426 
3427 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3428 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3429 	ASSERT(erp != NULL);
3430 	nex1 = page_idx;
3431 	ext_cnt = count;
3432 	while (ext_cnt) {
3433 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3434 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3435 		/*
3436 		 * Check for deletion of entire list;
3437 		 * xfs_iext_irec_remove() updates extent offsets.
3438 		 */
3439 		if (ext_diff == erp->er_extcount) {
3440 			xfs_iext_irec_remove(ifp, erp_idx);
3441 			ext_cnt -= ext_diff;
3442 			nex1 = 0;
3443 			if (ext_cnt) {
3444 				ASSERT(erp_idx < ifp->if_real_bytes /
3445 					XFS_IEXT_BUFSZ);
3446 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3447 				nex1 = 0;
3448 				continue;
3449 			} else {
3450 				break;
3451 			}
3452 		}
3453 		/* Move extents up (if needed) */
3454 		if (nex2) {
3455 			memmove(&erp->er_extbuf[nex1],
3456 				&erp->er_extbuf[nex1 + ext_diff],
3457 				nex2 * sizeof(xfs_bmbt_rec_t));
3458 		}
3459 		/* Zero out rest of page */
3460 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3461 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3462 		/* Update remaining counters */
3463 		erp->er_extcount -= ext_diff;
3464 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3465 		ext_cnt -= ext_diff;
3466 		nex1 = 0;
3467 		erp_idx++;
3468 		erp++;
3469 	}
3470 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3471 	xfs_iext_irec_compact(ifp);
3472 }
3473 
3474 /*
3475  * Create, destroy, or resize a linear (direct) block of extents.
3476  */
3477 void
3478 xfs_iext_realloc_direct(
3479 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3480 	int		new_size)	/* new size of extents */
3481 {
3482 	int		rnew_size;	/* real new size of extents */
3483 
3484 	rnew_size = new_size;
3485 
3486 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3487 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3488 		 (new_size != ifp->if_real_bytes)));
3489 
3490 	/* Free extent records */
3491 	if (new_size == 0) {
3492 		xfs_iext_destroy(ifp);
3493 	}
3494 	/* Resize direct extent list and zero any new bytes */
3495 	else if (ifp->if_real_bytes) {
3496 		/* Check if extents will fit inside the inode */
3497 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3498 			xfs_iext_direct_to_inline(ifp, new_size /
3499 				(uint)sizeof(xfs_bmbt_rec_t));
3500 			ifp->if_bytes = new_size;
3501 			return;
3502 		}
3503 		if (!is_power_of_2(new_size)){
3504 			rnew_size = roundup_pow_of_two(new_size);
3505 		}
3506 		if (rnew_size != ifp->if_real_bytes) {
3507 			ifp->if_u1.if_extents =
3508 				kmem_realloc(ifp->if_u1.if_extents,
3509 						rnew_size,
3510 						ifp->if_real_bytes, KM_NOFS);
3511 		}
3512 		if (rnew_size > ifp->if_real_bytes) {
3513 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3514 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3515 				rnew_size - ifp->if_real_bytes);
3516 		}
3517 	}
3518 	/*
3519 	 * Switch from the inline extent buffer to a direct
3520 	 * extent list. Be sure to include the inline extent
3521 	 * bytes in new_size.
3522 	 */
3523 	else {
3524 		new_size += ifp->if_bytes;
3525 		if (!is_power_of_2(new_size)) {
3526 			rnew_size = roundup_pow_of_two(new_size);
3527 		}
3528 		xfs_iext_inline_to_direct(ifp, rnew_size);
3529 	}
3530 	ifp->if_real_bytes = rnew_size;
3531 	ifp->if_bytes = new_size;
3532 }
3533 
3534 /*
3535  * Switch from linear (direct) extent records to inline buffer.
3536  */
3537 void
3538 xfs_iext_direct_to_inline(
3539 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3540 	xfs_extnum_t	nextents)	/* number of extents in file */
3541 {
3542 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3543 	ASSERT(nextents <= XFS_INLINE_EXTS);
3544 	/*
3545 	 * The inline buffer was zeroed when we switched
3546 	 * from inline to direct extent allocation mode,
3547 	 * so we don't need to clear it here.
3548 	 */
3549 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3550 		nextents * sizeof(xfs_bmbt_rec_t));
3551 	kmem_free(ifp->if_u1.if_extents);
3552 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3553 	ifp->if_real_bytes = 0;
3554 }
3555 
3556 /*
3557  * Switch from inline buffer to linear (direct) extent records.
3558  * new_size should already be rounded up to the next power of 2
3559  * by the caller (when appropriate), so use new_size as it is.
3560  * However, since new_size may be rounded up, we can't update
3561  * if_bytes here. It is the caller's responsibility to update
3562  * if_bytes upon return.
3563  */
3564 void
3565 xfs_iext_inline_to_direct(
3566 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3567 	int		new_size)	/* number of extents in file */
3568 {
3569 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3570 	memset(ifp->if_u1.if_extents, 0, new_size);
3571 	if (ifp->if_bytes) {
3572 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3573 			ifp->if_bytes);
3574 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3575 			sizeof(xfs_bmbt_rec_t));
3576 	}
3577 	ifp->if_real_bytes = new_size;
3578 }
3579 
3580 /*
3581  * Resize an extent indirection array to new_size bytes.
3582  */
3583 STATIC void
3584 xfs_iext_realloc_indirect(
3585 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3586 	int		new_size)	/* new indirection array size */
3587 {
3588 	int		nlists;		/* number of irec's (ex lists) */
3589 	int		size;		/* current indirection array size */
3590 
3591 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3592 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3593 	size = nlists * sizeof(xfs_ext_irec_t);
3594 	ASSERT(ifp->if_real_bytes);
3595 	ASSERT((new_size >= 0) && (new_size != size));
3596 	if (new_size == 0) {
3597 		xfs_iext_destroy(ifp);
3598 	} else {
3599 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3600 			kmem_realloc(ifp->if_u1.if_ext_irec,
3601 				new_size, size, KM_NOFS);
3602 	}
3603 }
3604 
3605 /*
3606  * Switch from indirection array to linear (direct) extent allocations.
3607  */
3608 STATIC void
3609 xfs_iext_indirect_to_direct(
3610 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3611 {
3612 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3613 	xfs_extnum_t	nextents;	/* number of extents in file */
3614 	int		size;		/* size of file extents */
3615 
3616 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3617 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3618 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3619 	size = nextents * sizeof(xfs_bmbt_rec_t);
3620 
3621 	xfs_iext_irec_compact_pages(ifp);
3622 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3623 
3624 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3625 	kmem_free(ifp->if_u1.if_ext_irec);
3626 	ifp->if_flags &= ~XFS_IFEXTIREC;
3627 	ifp->if_u1.if_extents = ep;
3628 	ifp->if_bytes = size;
3629 	if (nextents < XFS_LINEAR_EXTS) {
3630 		xfs_iext_realloc_direct(ifp, size);
3631 	}
3632 }
3633 
3634 /*
3635  * Free incore file extents.
3636  */
3637 void
3638 xfs_iext_destroy(
3639 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3640 {
3641 	if (ifp->if_flags & XFS_IFEXTIREC) {
3642 		int	erp_idx;
3643 		int	nlists;
3644 
3645 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3646 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3647 			xfs_iext_irec_remove(ifp, erp_idx);
3648 		}
3649 		ifp->if_flags &= ~XFS_IFEXTIREC;
3650 	} else if (ifp->if_real_bytes) {
3651 		kmem_free(ifp->if_u1.if_extents);
3652 	} else if (ifp->if_bytes) {
3653 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3654 			sizeof(xfs_bmbt_rec_t));
3655 	}
3656 	ifp->if_u1.if_extents = NULL;
3657 	ifp->if_real_bytes = 0;
3658 	ifp->if_bytes = 0;
3659 }
3660 
3661 /*
3662  * Return a pointer to the extent record for file system block bno.
3663  */
3664 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3665 xfs_iext_bno_to_ext(
3666 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3667 	xfs_fileoff_t	bno,		/* block number to search for */
3668 	xfs_extnum_t	*idxp)		/* index of target extent */
3669 {
3670 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3671 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3672 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3673 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3674 	int		high;		/* upper boundary in search */
3675 	xfs_extnum_t	idx = 0;	/* index of target extent */
3676 	int		low;		/* lower boundary in search */
3677 	xfs_extnum_t	nextents;	/* number of file extents */
3678 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3679 
3680 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3681 	if (nextents == 0) {
3682 		*idxp = 0;
3683 		return NULL;
3684 	}
3685 	low = 0;
3686 	if (ifp->if_flags & XFS_IFEXTIREC) {
3687 		/* Find target extent list */
3688 		int	erp_idx = 0;
3689 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3690 		base = erp->er_extbuf;
3691 		high = erp->er_extcount - 1;
3692 	} else {
3693 		base = ifp->if_u1.if_extents;
3694 		high = nextents - 1;
3695 	}
3696 	/* Binary search extent records */
3697 	while (low <= high) {
3698 		idx = (low + high) >> 1;
3699 		ep = base + idx;
3700 		startoff = xfs_bmbt_get_startoff(ep);
3701 		blockcount = xfs_bmbt_get_blockcount(ep);
3702 		if (bno < startoff) {
3703 			high = idx - 1;
3704 		} else if (bno >= startoff + blockcount) {
3705 			low = idx + 1;
3706 		} else {
3707 			/* Convert back to file-based extent index */
3708 			if (ifp->if_flags & XFS_IFEXTIREC) {
3709 				idx += erp->er_extoff;
3710 			}
3711 			*idxp = idx;
3712 			return ep;
3713 		}
3714 	}
3715 	/* Convert back to file-based extent index */
3716 	if (ifp->if_flags & XFS_IFEXTIREC) {
3717 		idx += erp->er_extoff;
3718 	}
3719 	if (bno >= startoff + blockcount) {
3720 		if (++idx == nextents) {
3721 			ep = NULL;
3722 		} else {
3723 			ep = xfs_iext_get_ext(ifp, idx);
3724 		}
3725 	}
3726 	*idxp = idx;
3727 	return ep;
3728 }
3729 
3730 /*
3731  * Return a pointer to the indirection array entry containing the
3732  * extent record for filesystem block bno. Store the index of the
3733  * target irec in *erp_idxp.
3734  */
3735 xfs_ext_irec_t *			/* pointer to found extent record */
3736 xfs_iext_bno_to_irec(
3737 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3738 	xfs_fileoff_t	bno,		/* block number to search for */
3739 	int		*erp_idxp)	/* irec index of target ext list */
3740 {
3741 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3742 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3743 	int		erp_idx;	/* indirection array index */
3744 	int		nlists;		/* number of extent irec's (lists) */
3745 	int		high;		/* binary search upper limit */
3746 	int		low;		/* binary search lower limit */
3747 
3748 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3749 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3750 	erp_idx = 0;
3751 	low = 0;
3752 	high = nlists - 1;
3753 	while (low <= high) {
3754 		erp_idx = (low + high) >> 1;
3755 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3756 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3757 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3758 			high = erp_idx - 1;
3759 		} else if (erp_next && bno >=
3760 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3761 			low = erp_idx + 1;
3762 		} else {
3763 			break;
3764 		}
3765 	}
3766 	*erp_idxp = erp_idx;
3767 	return erp;
3768 }
3769 
3770 /*
3771  * Return a pointer to the indirection array entry containing the
3772  * extent record at file extent index *idxp. Store the index of the
3773  * target irec in *erp_idxp and store the page index of the target
3774  * extent record in *idxp.
3775  */
3776 xfs_ext_irec_t *
3777 xfs_iext_idx_to_irec(
3778 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3779 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3780 	int		*erp_idxp,	/* pointer to target irec */
3781 	int		realloc)	/* new bytes were just added */
3782 {
3783 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3784 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3785 	int		erp_idx;	/* indirection array index */
3786 	int		nlists;		/* number of irec's (ex lists) */
3787 	int		high;		/* binary search upper limit */
3788 	int		low;		/* binary search lower limit */
3789 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3790 
3791 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3792 	ASSERT(page_idx >= 0);
3793 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3794 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3795 
3796 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3797 	erp_idx = 0;
3798 	low = 0;
3799 	high = nlists - 1;
3800 
3801 	/* Binary search extent irec's */
3802 	while (low <= high) {
3803 		erp_idx = (low + high) >> 1;
3804 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3805 		prev = erp_idx > 0 ? erp - 1 : NULL;
3806 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3807 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3808 			high = erp_idx - 1;
3809 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3810 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3811 			    !realloc)) {
3812 			low = erp_idx + 1;
3813 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3814 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3815 			ASSERT(realloc);
3816 			page_idx = 0;
3817 			erp_idx++;
3818 			erp = erp_idx < nlists ? erp + 1 : NULL;
3819 			break;
3820 		} else {
3821 			page_idx -= erp->er_extoff;
3822 			break;
3823 		}
3824 	}
3825 	*idxp = page_idx;
3826 	*erp_idxp = erp_idx;
3827 	return(erp);
3828 }
3829 
3830 /*
3831  * Allocate and initialize an indirection array once the space needed
3832  * for incore extents increases above XFS_IEXT_BUFSZ.
3833  */
3834 void
3835 xfs_iext_irec_init(
3836 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3837 {
3838 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3839 	xfs_extnum_t	nextents;	/* number of extents in file */
3840 
3841 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3842 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3843 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3844 
3845 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3846 
3847 	if (nextents == 0) {
3848 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3849 	} else if (!ifp->if_real_bytes) {
3850 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3851 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3852 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3853 	}
3854 	erp->er_extbuf = ifp->if_u1.if_extents;
3855 	erp->er_extcount = nextents;
3856 	erp->er_extoff = 0;
3857 
3858 	ifp->if_flags |= XFS_IFEXTIREC;
3859 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3860 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3861 	ifp->if_u1.if_ext_irec = erp;
3862 
3863 	return;
3864 }
3865 
3866 /*
3867  * Allocate and initialize a new entry in the indirection array.
3868  */
3869 xfs_ext_irec_t *
3870 xfs_iext_irec_new(
3871 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3872 	int		erp_idx)	/* index for new irec */
3873 {
3874 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3875 	int		i;		/* loop counter */
3876 	int		nlists;		/* number of irec's (ex lists) */
3877 
3878 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3879 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3880 
3881 	/* Resize indirection array */
3882 	xfs_iext_realloc_indirect(ifp, ++nlists *
3883 				  sizeof(xfs_ext_irec_t));
3884 	/*
3885 	 * Move records down in the array so the
3886 	 * new page can use erp_idx.
3887 	 */
3888 	erp = ifp->if_u1.if_ext_irec;
3889 	for (i = nlists - 1; i > erp_idx; i--) {
3890 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3891 	}
3892 	ASSERT(i == erp_idx);
3893 
3894 	/* Initialize new extent record */
3895 	erp = ifp->if_u1.if_ext_irec;
3896 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3897 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3898 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3899 	erp[erp_idx].er_extcount = 0;
3900 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3901 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3902 	return (&erp[erp_idx]);
3903 }
3904 
3905 /*
3906  * Remove a record from the indirection array.
3907  */
3908 void
3909 xfs_iext_irec_remove(
3910 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3911 	int		erp_idx)	/* irec index to remove */
3912 {
3913 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3914 	int		i;		/* loop counter */
3915 	int		nlists;		/* number of irec's (ex lists) */
3916 
3917 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3918 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3919 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3920 	if (erp->er_extbuf) {
3921 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3922 			-erp->er_extcount);
3923 		kmem_free(erp->er_extbuf);
3924 	}
3925 	/* Compact extent records */
3926 	erp = ifp->if_u1.if_ext_irec;
3927 	for (i = erp_idx; i < nlists - 1; i++) {
3928 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3929 	}
3930 	/*
3931 	 * Manually free the last extent record from the indirection
3932 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3933 	 * of zero would result in a call to xfs_iext_destroy() which
3934 	 * would in turn call this function again, creating a nasty
3935 	 * infinite loop.
3936 	 */
3937 	if (--nlists) {
3938 		xfs_iext_realloc_indirect(ifp,
3939 			nlists * sizeof(xfs_ext_irec_t));
3940 	} else {
3941 		kmem_free(ifp->if_u1.if_ext_irec);
3942 	}
3943 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3944 }
3945 
3946 /*
3947  * This is called to clean up large amounts of unused memory allocated
3948  * by the indirection array.  Before compacting anything though, verify
3949  * that the indirection array is still needed and switch back to the
3950  * linear extent list (or even the inline buffer) if possible.  The
3951  * compaction policy is as follows:
3952  *
3953  *    Full Compaction: Extents fit into a single page (or inline buffer)
3954  * Partial Compaction: Extents occupy less than 50% of allocated space
3955  *      No Compaction: Extents occupy at least 50% of allocated space
3956  */
3957 void
3958 xfs_iext_irec_compact(
3959 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3960 {
3961 	xfs_extnum_t	nextents;	/* number of extents in file */
3962 	int		nlists;		/* number of irec's (ex lists) */
3963 
3964 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3965 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3966 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3967 
3968 	if (nextents == 0) {
3969 		xfs_iext_destroy(ifp);
3970 	} else if (nextents <= XFS_INLINE_EXTS) {
3971 		xfs_iext_indirect_to_direct(ifp);
3972 		xfs_iext_direct_to_inline(ifp, nextents);
3973 	} else if (nextents <= XFS_LINEAR_EXTS) {
3974 		xfs_iext_indirect_to_direct(ifp);
3975 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3976 		xfs_iext_irec_compact_pages(ifp);
3977 	}
3978 }
3979 
3980 /*
3981  * Combine extents from neighboring extent pages.
3982  */
3983 void
3984 xfs_iext_irec_compact_pages(
3985 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3986 {
3987 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3988 	int		erp_idx = 0;	/* indirection array index */
3989 	int		nlists;		/* number of irec's (ex lists) */
3990 
3991 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3992 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3993 	while (erp_idx < nlists - 1) {
3994 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3995 		erp_next = erp + 1;
3996 		if (erp_next->er_extcount <=
3997 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3998 			memcpy(&erp->er_extbuf[erp->er_extcount],
3999 				erp_next->er_extbuf, erp_next->er_extcount *
4000 				sizeof(xfs_bmbt_rec_t));
4001 			erp->er_extcount += erp_next->er_extcount;
4002 			/*
4003 			 * Free page before removing extent record
4004 			 * so er_extoffs don't get modified in
4005 			 * xfs_iext_irec_remove.
4006 			 */
4007 			kmem_free(erp_next->er_extbuf);
4008 			erp_next->er_extbuf = NULL;
4009 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4010 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4011 		} else {
4012 			erp_idx++;
4013 		}
4014 	}
4015 }
4016 
4017 /*
4018  * This is called to update the er_extoff field in the indirection
4019  * array when extents have been added or removed from one of the
4020  * extent lists. erp_idx contains the irec index to begin updating
4021  * at and ext_diff contains the number of extents that were added
4022  * or removed.
4023  */
4024 void
4025 xfs_iext_irec_update_extoffs(
4026 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4027 	int		erp_idx,	/* irec index to update */
4028 	int		ext_diff)	/* number of new extents */
4029 {
4030 	int		i;		/* loop counter */
4031 	int		nlists;		/* number of irec's (ex lists */
4032 
4033 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4034 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4035 	for (i = erp_idx; i < nlists; i++) {
4036 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4037 	}
4038 }
4039 
4040 /*
4041  * Test whether it is appropriate to check an inode for and free post EOF
4042  * blocks. The 'force' parameter determines whether we should also consider
4043  * regular files that are marked preallocated or append-only.
4044  */
4045 bool
4046 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
4047 {
4048 	/* prealloc/delalloc exists only on regular files */
4049 	if (!S_ISREG(ip->i_d.di_mode))
4050 		return false;
4051 
4052 	/*
4053 	 * Zero sized files with no cached pages and delalloc blocks will not
4054 	 * have speculative prealloc/delalloc blocks to remove.
4055 	 */
4056 	if (VFS_I(ip)->i_size == 0 &&
4057 	    VN_CACHED(VFS_I(ip)) == 0 &&
4058 	    ip->i_delayed_blks == 0)
4059 		return false;
4060 
4061 	/* If we haven't read in the extent list, then don't do it now. */
4062 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
4063 		return false;
4064 
4065 	/*
4066 	 * Do not free real preallocated or append-only files unless the file
4067 	 * has delalloc blocks and we are forced to remove them.
4068 	 */
4069 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
4070 		if (!force || ip->i_delayed_blks == 0)
4071 			return false;
4072 
4073 	return true;
4074 }
4075 
4076