1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 41 struct kmem_cache *xfs_inode_cache; 42 43 /* 44 * Used in xfs_itruncate_extents(). This is the maximum number of extents 45 * freed from a file in a single transaction. 46 */ 47 #define XFS_ITRUNC_MAX_EXTENTS 2 48 49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 51 struct xfs_inode *); 52 53 /* 54 * helper function to extract extent size hint from inode 55 */ 56 xfs_extlen_t 57 xfs_get_extsz_hint( 58 struct xfs_inode *ip) 59 { 60 /* 61 * No point in aligning allocations if we need to COW to actually 62 * write to them. 63 */ 64 if (xfs_is_always_cow_inode(ip)) 65 return 0; 66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 67 return ip->i_extsize; 68 if (XFS_IS_REALTIME_INODE(ip)) 69 return ip->i_mount->m_sb.sb_rextsize; 70 return 0; 71 } 72 73 /* 74 * Helper function to extract CoW extent size hint from inode. 75 * Between the extent size hint and the CoW extent size hint, we 76 * return the greater of the two. If the value is zero (automatic), 77 * use the default size. 78 */ 79 xfs_extlen_t 80 xfs_get_cowextsz_hint( 81 struct xfs_inode *ip) 82 { 83 xfs_extlen_t a, b; 84 85 a = 0; 86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 87 a = ip->i_cowextsize; 88 b = xfs_get_extsz_hint(ip); 89 90 a = max(a, b); 91 if (a == 0) 92 return XFS_DEFAULT_COWEXTSZ_HINT; 93 return a; 94 } 95 96 /* 97 * These two are wrapper routines around the xfs_ilock() routine used to 98 * centralize some grungy code. They are used in places that wish to lock the 99 * inode solely for reading the extents. The reason these places can't just 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 101 * bringing in of the extents from disk for a file in b-tree format. If the 102 * inode is in b-tree format, then we need to lock the inode exclusively until 103 * the extents are read in. Locking it exclusively all the time would limit 104 * our parallelism unnecessarily, though. What we do instead is check to see 105 * if the extents have been read in yet, and only lock the inode exclusively 106 * if they have not. 107 * 108 * The functions return a value which should be given to the corresponding 109 * xfs_iunlock() call. 110 */ 111 uint 112 xfs_ilock_data_map_shared( 113 struct xfs_inode *ip) 114 { 115 uint lock_mode = XFS_ILOCK_SHARED; 116 117 if (xfs_need_iread_extents(&ip->i_df)) 118 lock_mode = XFS_ILOCK_EXCL; 119 xfs_ilock(ip, lock_mode); 120 return lock_mode; 121 } 122 123 uint 124 xfs_ilock_attr_map_shared( 125 struct xfs_inode *ip) 126 { 127 uint lock_mode = XFS_ILOCK_SHARED; 128 129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * You can't set both SHARED and EXCL for the same lock, 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 139 * to set in lock_flags. 140 */ 141 static inline void 142 xfs_lock_flags_assert( 143 uint lock_flags) 144 { 145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 152 ASSERT(lock_flags != 0); 153 } 154 155 /* 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 158 * various combinations of the locks to be obtained. 159 * 160 * The 3 locks should always be ordered so that the IO lock is obtained first, 161 * the mmap lock second and the ilock last in order to prevent deadlock. 162 * 163 * Basic locking order: 164 * 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 166 * 167 * mmap_lock locking order: 168 * 169 * i_rwsem -> page lock -> mmap_lock 170 * mmap_lock -> invalidate_lock -> page_lock 171 * 172 * The difference in mmap_lock locking order mean that we cannot hold the 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 174 * can fault in pages during copy in/out (for buffered IO) or require the 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 177 * fault because page faults already hold the mmap_lock. 178 * 179 * Hence to serialise fully against both syscall and mmap based IO, we need to 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 181 * both taken in places where we need to invalidate the page cache in a race 182 * free manner (e.g. truncate, hole punch and other extent manipulation 183 * functions). 184 */ 185 void 186 xfs_ilock( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 191 192 xfs_lock_flags_assert(lock_flags); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) { 195 down_write_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } else if (lock_flags & XFS_IOLOCK_SHARED) { 198 down_read_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } 201 202 if (lock_flags & XFS_MMAPLOCK_EXCL) { 203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 204 XFS_MMAPLOCK_DEP(lock_flags)); 205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 207 XFS_MMAPLOCK_DEP(lock_flags)); 208 } 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 xfs_lock_flags_assert(lock_flags); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 xfs_lock_flags_assert(lock_flags); 294 295 if (lock_flags & XFS_IOLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_rwsem); 297 else if (lock_flags & XFS_IOLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_rwsem); 299 300 if (lock_flags & XFS_MMAPLOCK_EXCL) 301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 302 else if (lock_flags & XFS_MMAPLOCK_SHARED) 303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 304 305 if (lock_flags & XFS_ILOCK_EXCL) 306 mrunlock_excl(&ip->i_lock); 307 else if (lock_flags & XFS_ILOCK_SHARED) 308 mrunlock_shared(&ip->i_lock); 309 310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 311 } 312 313 /* 314 * give up write locks. the i/o lock cannot be held nested 315 * if it is being demoted. 316 */ 317 void 318 xfs_ilock_demote( 319 xfs_inode_t *ip, 320 uint lock_flags) 321 { 322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 323 ASSERT((lock_flags & 324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrdemote(&ip->i_lock); 328 if (lock_flags & XFS_MMAPLOCK_EXCL) 329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 330 if (lock_flags & XFS_IOLOCK_EXCL) 331 downgrade_write(&VFS_I(ip)->i_rwsem); 332 333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 334 } 335 336 #if defined(DEBUG) || defined(XFS_WARN) 337 static inline bool 338 __xfs_rwsem_islocked( 339 struct rw_semaphore *rwsem, 340 bool shared) 341 { 342 if (!debug_locks) 343 return rwsem_is_locked(rwsem); 344 345 if (!shared) 346 return lockdep_is_held_type(rwsem, 0); 347 348 /* 349 * We are checking that the lock is held at least in shared 350 * mode but don't care that it might be held exclusively 351 * (i.e. shared | excl). Hence we check if the lock is held 352 * in any mode rather than an explicit shared mode. 353 */ 354 return lockdep_is_held_type(rwsem, -1); 355 } 356 357 bool 358 xfs_isilocked( 359 struct xfs_inode *ip, 360 uint lock_flags) 361 { 362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 363 if (!(lock_flags & XFS_ILOCK_SHARED)) 364 return !!ip->i_lock.mr_writer; 365 return rwsem_is_locked(&ip->i_lock.mr_lock); 366 } 367 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 370 (lock_flags & XFS_MMAPLOCK_SHARED)); 371 } 372 373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 375 (lock_flags & XFS_IOLOCK_SHARED)); 376 } 377 378 ASSERT(0); 379 return false; 380 } 381 #endif 382 383 /* 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 387 * errors and warnings. 388 */ 389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 390 static bool 391 xfs_lockdep_subclass_ok( 392 int subclass) 393 { 394 return subclass < MAX_LOCKDEP_SUBCLASSES; 395 } 396 #else 397 #define xfs_lockdep_subclass_ok(subclass) (true) 398 #endif 399 400 /* 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 402 * value. This can be called for any type of inode lock combination, including 403 * parent locking. Care must be taken to ensure we don't overrun the subclass 404 * storage fields in the class mask we build. 405 */ 406 static inline uint 407 xfs_lock_inumorder( 408 uint lock_mode, 409 uint subclass) 410 { 411 uint class = 0; 412 413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 414 XFS_ILOCK_RTSUM))); 415 ASSERT(xfs_lockdep_subclass_ok(subclass)); 416 417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 419 class += subclass << XFS_IOLOCK_SHIFT; 420 } 421 422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 424 class += subclass << XFS_MMAPLOCK_SHIFT; 425 } 426 427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 429 class += subclass << XFS_ILOCK_SHIFT; 430 } 431 432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 433 } 434 435 /* 436 * The following routine will lock n inodes in exclusive mode. We assume the 437 * caller calls us with the inodes in i_ino order. 438 * 439 * We need to detect deadlock where an inode that we lock is in the AIL and we 440 * start waiting for another inode that is locked by a thread in a long running 441 * transaction (such as truncate). This can result in deadlock since the long 442 * running trans might need to wait for the inode we just locked in order to 443 * push the tail and free space in the log. 444 * 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 447 * lock more than one at a time, lockdep will report false positives saying we 448 * have violated locking orders. 449 */ 450 static void 451 xfs_lock_inodes( 452 struct xfs_inode **ips, 453 int inodes, 454 uint lock_mode) 455 { 456 int attempts = 0; 457 uint i; 458 int j; 459 bool try_lock; 460 struct xfs_log_item *lp; 461 462 /* 463 * Currently supports between 2 and 5 inodes with exclusive locking. We 464 * support an arbitrary depth of locking here, but absolute limits on 465 * inodes depend on the type of locking and the limits placed by 466 * lockdep annotations in xfs_lock_inumorder. These are all checked by 467 * the asserts. 468 */ 469 ASSERT(ips && inodes >= 2 && inodes <= 5); 470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 471 XFS_ILOCK_EXCL)); 472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 473 XFS_ILOCK_SHARED))); 474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 478 479 if (lock_mode & XFS_IOLOCK_EXCL) { 480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 481 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 483 484 again: 485 try_lock = false; 486 i = 0; 487 for (; i < inodes; i++) { 488 ASSERT(ips[i]); 489 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 491 continue; 492 493 /* 494 * If try_lock is not set yet, make sure all locked inodes are 495 * not in the AIL. If any are, set try_lock to be used later. 496 */ 497 if (!try_lock) { 498 for (j = (i - 1); j >= 0 && !try_lock; j--) { 499 lp = &ips[j]->i_itemp->ili_item; 500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 501 try_lock = true; 502 } 503 } 504 505 /* 506 * If any of the previous locks we have locked is in the AIL, 507 * we must TRY to get the second and subsequent locks. If 508 * we can't get any, we must release all we have 509 * and try again. 510 */ 511 if (!try_lock) { 512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 513 continue; 514 } 515 516 /* try_lock means we have an inode locked that is in the AIL. */ 517 ASSERT(i != 0); 518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 519 continue; 520 521 /* 522 * Unlock all previous guys and try again. xfs_iunlock will try 523 * to push the tail if the inode is in the AIL. 524 */ 525 attempts++; 526 for (j = i - 1; j >= 0; j--) { 527 /* 528 * Check to see if we've already unlocked this one. Not 529 * the first one going back, and the inode ptr is the 530 * same. 531 */ 532 if (j != (i - 1) && ips[j] == ips[j + 1]) 533 continue; 534 535 xfs_iunlock(ips[j], lock_mode); 536 } 537 538 if ((attempts % 5) == 0) { 539 delay(1); /* Don't just spin the CPU */ 540 } 541 goto again; 542 } 543 } 544 545 /* 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 547 * mmaplock must be double-locked separately since we use i_rwsem and 548 * invalidate_lock for that. We now support taking one lock EXCL and the 549 * other SHARED. 550 */ 551 void 552 xfs_lock_two_inodes( 553 struct xfs_inode *ip0, 554 uint ip0_mode, 555 struct xfs_inode *ip1, 556 uint ip1_mode) 557 { 558 int attempts = 0; 559 struct xfs_log_item *lp; 560 561 ASSERT(hweight32(ip0_mode) == 1); 562 ASSERT(hweight32(ip1_mode) == 1); 563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 567 ASSERT(ip0->i_ino != ip1->i_ino); 568 569 if (ip0->i_ino > ip1->i_ino) { 570 swap(ip0, ip1); 571 swap(ip0_mode, ip1_mode); 572 } 573 574 again: 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 576 577 /* 578 * If the first lock we have locked is in the AIL, we must TRY to get 579 * the second lock. If we can't get it, we must release the first one 580 * and try again. 581 */ 582 lp = &ip0->i_itemp->ili_item; 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 585 xfs_iunlock(ip0, ip0_mode); 586 if ((++attempts % 5) == 0) 587 delay(1); /* Don't just spin the CPU */ 588 goto again; 589 } 590 } else { 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 592 } 593 } 594 595 uint 596 xfs_ip2xflags( 597 struct xfs_inode *ip) 598 { 599 uint flags = 0; 600 601 if (ip->i_diflags & XFS_DIFLAG_ANY) { 602 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 603 flags |= FS_XFLAG_REALTIME; 604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 605 flags |= FS_XFLAG_PREALLOC; 606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 607 flags |= FS_XFLAG_IMMUTABLE; 608 if (ip->i_diflags & XFS_DIFLAG_APPEND) 609 flags |= FS_XFLAG_APPEND; 610 if (ip->i_diflags & XFS_DIFLAG_SYNC) 611 flags |= FS_XFLAG_SYNC; 612 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 613 flags |= FS_XFLAG_NOATIME; 614 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 615 flags |= FS_XFLAG_NODUMP; 616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 617 flags |= FS_XFLAG_RTINHERIT; 618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 619 flags |= FS_XFLAG_PROJINHERIT; 620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 621 flags |= FS_XFLAG_NOSYMLINKS; 622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 623 flags |= FS_XFLAG_EXTSIZE; 624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 625 flags |= FS_XFLAG_EXTSZINHERIT; 626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 627 flags |= FS_XFLAG_NODEFRAG; 628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 629 flags |= FS_XFLAG_FILESTREAM; 630 } 631 632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 634 flags |= FS_XFLAG_DAX; 635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 636 flags |= FS_XFLAG_COWEXTSIZE; 637 } 638 639 if (xfs_inode_has_attr_fork(ip)) 640 flags |= FS_XFLAG_HASATTR; 641 return flags; 642 } 643 644 /* 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 646 * is allowed, otherwise it has to be an exact match. If a CI match is found, 647 * ci_name->name will point to a the actual name (caller must free) or 648 * will be set to NULL if an exact match is found. 649 */ 650 int 651 xfs_lookup( 652 struct xfs_inode *dp, 653 const struct xfs_name *name, 654 struct xfs_inode **ipp, 655 struct xfs_name *ci_name) 656 { 657 xfs_ino_t inum; 658 int error; 659 660 trace_xfs_lookup(dp, name); 661 662 if (xfs_is_shutdown(dp->i_mount)) 663 return -EIO; 664 665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 666 if (error) 667 goto out_unlock; 668 669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 670 if (error) 671 goto out_free_name; 672 673 return 0; 674 675 out_free_name: 676 if (ci_name) 677 kmem_free(ci_name->name); 678 out_unlock: 679 *ipp = NULL; 680 return error; 681 } 682 683 /* Propagate di_flags from a parent inode to a child inode. */ 684 static void 685 xfs_inode_inherit_flags( 686 struct xfs_inode *ip, 687 const struct xfs_inode *pip) 688 { 689 unsigned int di_flags = 0; 690 xfs_failaddr_t failaddr; 691 umode_t mode = VFS_I(ip)->i_mode; 692 693 if (S_ISDIR(mode)) { 694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 695 di_flags |= XFS_DIFLAG_RTINHERIT; 696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 697 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 698 ip->i_extsize = pip->i_extsize; 699 } 700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 701 di_flags |= XFS_DIFLAG_PROJINHERIT; 702 } else if (S_ISREG(mode)) { 703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 704 xfs_has_realtime(ip->i_mount)) 705 di_flags |= XFS_DIFLAG_REALTIME; 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 707 di_flags |= XFS_DIFLAG_EXTSIZE; 708 ip->i_extsize = pip->i_extsize; 709 } 710 } 711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 712 xfs_inherit_noatime) 713 di_flags |= XFS_DIFLAG_NOATIME; 714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 715 xfs_inherit_nodump) 716 di_flags |= XFS_DIFLAG_NODUMP; 717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 718 xfs_inherit_sync) 719 di_flags |= XFS_DIFLAG_SYNC; 720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 721 xfs_inherit_nosymlinks) 722 di_flags |= XFS_DIFLAG_NOSYMLINKS; 723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 724 xfs_inherit_nodefrag) 725 di_flags |= XFS_DIFLAG_NODEFRAG; 726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 727 di_flags |= XFS_DIFLAG_FILESTREAM; 728 729 ip->i_diflags |= di_flags; 730 731 /* 732 * Inode verifiers on older kernels only check that the extent size 733 * hint is an integer multiple of the rt extent size on realtime files. 734 * They did not check the hint alignment on a directory with both 735 * rtinherit and extszinherit flags set. If the misaligned hint is 736 * propagated from a directory into a new realtime file, new file 737 * allocations will fail due to math errors in the rt allocator and/or 738 * trip the verifiers. Validate the hint settings in the new file so 739 * that we don't let broken hints propagate. 740 */ 741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 742 VFS_I(ip)->i_mode, ip->i_diflags); 743 if (failaddr) { 744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 745 XFS_DIFLAG_EXTSZINHERIT); 746 ip->i_extsize = 0; 747 } 748 } 749 750 /* Propagate di_flags2 from a parent inode to a child inode. */ 751 static void 752 xfs_inode_inherit_flags2( 753 struct xfs_inode *ip, 754 const struct xfs_inode *pip) 755 { 756 xfs_failaddr_t failaddr; 757 758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 760 ip->i_cowextsize = pip->i_cowextsize; 761 } 762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 763 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 764 765 /* Don't let invalid cowextsize hints propagate. */ 766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 768 if (failaddr) { 769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 770 ip->i_cowextsize = 0; 771 } 772 } 773 774 /* 775 * Initialise a newly allocated inode and return the in-core inode to the 776 * caller locked exclusively. 777 */ 778 int 779 xfs_init_new_inode( 780 struct mnt_idmap *idmap, 781 struct xfs_trans *tp, 782 struct xfs_inode *pip, 783 xfs_ino_t ino, 784 umode_t mode, 785 xfs_nlink_t nlink, 786 dev_t rdev, 787 prid_t prid, 788 bool init_xattrs, 789 struct xfs_inode **ipp) 790 { 791 struct inode *dir = pip ? VFS_I(pip) : NULL; 792 struct xfs_mount *mp = tp->t_mountp; 793 struct xfs_inode *ip; 794 unsigned int flags; 795 int error; 796 struct timespec64 tv; 797 struct inode *inode; 798 799 /* 800 * Protect against obviously corrupt allocation btree records. Later 801 * xfs_iget checks will catch re-allocation of other active in-memory 802 * and on-disk inodes. If we don't catch reallocating the parent inode 803 * here we will deadlock in xfs_iget() so we have to do these checks 804 * first. 805 */ 806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 808 return -EFSCORRUPTED; 809 } 810 811 /* 812 * Get the in-core inode with the lock held exclusively to prevent 813 * others from looking at until we're done. 814 */ 815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 816 if (error) 817 return error; 818 819 ASSERT(ip != NULL); 820 inode = VFS_I(ip); 821 set_nlink(inode, nlink); 822 inode->i_rdev = rdev; 823 ip->i_projid = prid; 824 825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 826 inode_fsuid_set(inode, idmap); 827 inode->i_gid = dir->i_gid; 828 inode->i_mode = mode; 829 } else { 830 inode_init_owner(idmap, inode, dir, mode); 831 } 832 833 /* 834 * If the group ID of the new file does not match the effective group 835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 836 * (and only if the irix_sgid_inherit compatibility variable is set). 837 */ 838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) && 839 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode))) 840 inode->i_mode &= ~S_ISGID; 841 842 ip->i_disk_size = 0; 843 ip->i_df.if_nextents = 0; 844 ASSERT(ip->i_nblocks == 0); 845 846 tv = inode_set_ctime_current(inode); 847 inode->i_mtime = tv; 848 inode->i_atime = tv; 849 850 ip->i_extsize = 0; 851 ip->i_diflags = 0; 852 853 if (xfs_has_v3inodes(mp)) { 854 inode_set_iversion(inode, 1); 855 ip->i_cowextsize = 0; 856 ip->i_crtime = tv; 857 } 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 866 flags |= XFS_ILOG_DEV; 867 break; 868 case S_IFREG: 869 case S_IFDIR: 870 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 871 xfs_inode_inherit_flags(ip, pip); 872 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 873 xfs_inode_inherit_flags2(ip, pip); 874 fallthrough; 875 case S_IFLNK: 876 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 877 ip->i_df.if_bytes = 0; 878 ip->i_df.if_u1.if_root = NULL; 879 break; 880 default: 881 ASSERT(0); 882 } 883 884 /* 885 * If we need to create attributes immediately after allocating the 886 * inode, initialise an empty attribute fork right now. We use the 887 * default fork offset for attributes here as we don't know exactly what 888 * size or how many attributes we might be adding. We can do this 889 * safely here because we know the data fork is completely empty and 890 * this saves us from needing to run a separate transaction to set the 891 * fork offset in the immediate future. 892 */ 893 if (init_xattrs && xfs_has_attr(mp)) { 894 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 895 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 896 } 897 898 /* 899 * Log the new values stuffed into the inode. 900 */ 901 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 902 xfs_trans_log_inode(tp, ip, flags); 903 904 /* now that we have an i_mode we can setup the inode structure */ 905 xfs_setup_inode(ip); 906 907 *ipp = ip; 908 return 0; 909 } 910 911 /* 912 * Decrement the link count on an inode & log the change. If this causes the 913 * link count to go to zero, move the inode to AGI unlinked list so that it can 914 * be freed when the last active reference goes away via xfs_inactive(). 915 */ 916 static int /* error */ 917 xfs_droplink( 918 xfs_trans_t *tp, 919 xfs_inode_t *ip) 920 { 921 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 922 923 drop_nlink(VFS_I(ip)); 924 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 925 926 if (VFS_I(ip)->i_nlink) 927 return 0; 928 929 return xfs_iunlink(tp, ip); 930 } 931 932 /* 933 * Increment the link count on an inode & log the change. 934 */ 935 static void 936 xfs_bumplink( 937 xfs_trans_t *tp, 938 xfs_inode_t *ip) 939 { 940 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 941 942 inc_nlink(VFS_I(ip)); 943 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 944 } 945 946 int 947 xfs_create( 948 struct mnt_idmap *idmap, 949 xfs_inode_t *dp, 950 struct xfs_name *name, 951 umode_t mode, 952 dev_t rdev, 953 bool init_xattrs, 954 xfs_inode_t **ipp) 955 { 956 int is_dir = S_ISDIR(mode); 957 struct xfs_mount *mp = dp->i_mount; 958 struct xfs_inode *ip = NULL; 959 struct xfs_trans *tp = NULL; 960 int error; 961 bool unlock_dp_on_error = false; 962 prid_t prid; 963 struct xfs_dquot *udqp = NULL; 964 struct xfs_dquot *gdqp = NULL; 965 struct xfs_dquot *pdqp = NULL; 966 struct xfs_trans_res *tres; 967 uint resblks; 968 xfs_ino_t ino; 969 970 trace_xfs_create(dp, name); 971 972 if (xfs_is_shutdown(mp)) 973 return -EIO; 974 975 prid = xfs_get_initial_prid(dp); 976 977 /* 978 * Make sure that we have allocated dquot(s) on disk. 979 */ 980 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 981 mapped_fsgid(idmap, &init_user_ns), prid, 982 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 983 &udqp, &gdqp, &pdqp); 984 if (error) 985 return error; 986 987 if (is_dir) { 988 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 989 tres = &M_RES(mp)->tr_mkdir; 990 } else { 991 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 992 tres = &M_RES(mp)->tr_create; 993 } 994 995 /* 996 * Initially assume that the file does not exist and 997 * reserve the resources for that case. If that is not 998 * the case we'll drop the one we have and get a more 999 * appropriate transaction later. 1000 */ 1001 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1002 &tp); 1003 if (error == -ENOSPC) { 1004 /* flush outstanding delalloc blocks and retry */ 1005 xfs_flush_inodes(mp); 1006 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1007 resblks, &tp); 1008 } 1009 if (error) 1010 goto out_release_dquots; 1011 1012 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1013 unlock_dp_on_error = true; 1014 1015 /* 1016 * A newly created regular or special file just has one directory 1017 * entry pointing to them, but a directory also the "." entry 1018 * pointing to itself. 1019 */ 1020 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1021 if (!error) 1022 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1023 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1024 if (error) 1025 goto out_trans_cancel; 1026 1027 /* 1028 * Now we join the directory inode to the transaction. We do not do it 1029 * earlier because xfs_dialloc might commit the previous transaction 1030 * (and release all the locks). An error from here on will result in 1031 * the transaction cancel unlocking dp so don't do it explicitly in the 1032 * error path. 1033 */ 1034 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1035 unlock_dp_on_error = false; 1036 1037 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1038 resblks - XFS_IALLOC_SPACE_RES(mp)); 1039 if (error) { 1040 ASSERT(error != -ENOSPC); 1041 goto out_trans_cancel; 1042 } 1043 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1044 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1045 1046 if (is_dir) { 1047 error = xfs_dir_init(tp, ip, dp); 1048 if (error) 1049 goto out_trans_cancel; 1050 1051 xfs_bumplink(tp, dp); 1052 } 1053 1054 /* 1055 * If this is a synchronous mount, make sure that the 1056 * create transaction goes to disk before returning to 1057 * the user. 1058 */ 1059 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1060 xfs_trans_set_sync(tp); 1061 1062 /* 1063 * Attach the dquot(s) to the inodes and modify them incore. 1064 * These ids of the inode couldn't have changed since the new 1065 * inode has been locked ever since it was created. 1066 */ 1067 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1068 1069 error = xfs_trans_commit(tp); 1070 if (error) 1071 goto out_release_inode; 1072 1073 xfs_qm_dqrele(udqp); 1074 xfs_qm_dqrele(gdqp); 1075 xfs_qm_dqrele(pdqp); 1076 1077 *ipp = ip; 1078 return 0; 1079 1080 out_trans_cancel: 1081 xfs_trans_cancel(tp); 1082 out_release_inode: 1083 /* 1084 * Wait until after the current transaction is aborted to finish the 1085 * setup of the inode and release the inode. This prevents recursive 1086 * transactions and deadlocks from xfs_inactive. 1087 */ 1088 if (ip) { 1089 xfs_finish_inode_setup(ip); 1090 xfs_irele(ip); 1091 } 1092 out_release_dquots: 1093 xfs_qm_dqrele(udqp); 1094 xfs_qm_dqrele(gdqp); 1095 xfs_qm_dqrele(pdqp); 1096 1097 if (unlock_dp_on_error) 1098 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1099 return error; 1100 } 1101 1102 int 1103 xfs_create_tmpfile( 1104 struct mnt_idmap *idmap, 1105 struct xfs_inode *dp, 1106 umode_t mode, 1107 struct xfs_inode **ipp) 1108 { 1109 struct xfs_mount *mp = dp->i_mount; 1110 struct xfs_inode *ip = NULL; 1111 struct xfs_trans *tp = NULL; 1112 int error; 1113 prid_t prid; 1114 struct xfs_dquot *udqp = NULL; 1115 struct xfs_dquot *gdqp = NULL; 1116 struct xfs_dquot *pdqp = NULL; 1117 struct xfs_trans_res *tres; 1118 uint resblks; 1119 xfs_ino_t ino; 1120 1121 if (xfs_is_shutdown(mp)) 1122 return -EIO; 1123 1124 prid = xfs_get_initial_prid(dp); 1125 1126 /* 1127 * Make sure that we have allocated dquot(s) on disk. 1128 */ 1129 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns), 1130 mapped_fsgid(idmap, &init_user_ns), prid, 1131 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1132 &udqp, &gdqp, &pdqp); 1133 if (error) 1134 return error; 1135 1136 resblks = XFS_IALLOC_SPACE_RES(mp); 1137 tres = &M_RES(mp)->tr_create_tmpfile; 1138 1139 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1140 &tp); 1141 if (error) 1142 goto out_release_dquots; 1143 1144 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1145 if (!error) 1146 error = xfs_init_new_inode(idmap, tp, dp, ino, mode, 1147 0, 0, prid, false, &ip); 1148 if (error) 1149 goto out_trans_cancel; 1150 1151 if (xfs_has_wsync(mp)) 1152 xfs_trans_set_sync(tp); 1153 1154 /* 1155 * Attach the dquot(s) to the inodes and modify them incore. 1156 * These ids of the inode couldn't have changed since the new 1157 * inode has been locked ever since it was created. 1158 */ 1159 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1160 1161 error = xfs_iunlink(tp, ip); 1162 if (error) 1163 goto out_trans_cancel; 1164 1165 error = xfs_trans_commit(tp); 1166 if (error) 1167 goto out_release_inode; 1168 1169 xfs_qm_dqrele(udqp); 1170 xfs_qm_dqrele(gdqp); 1171 xfs_qm_dqrele(pdqp); 1172 1173 *ipp = ip; 1174 return 0; 1175 1176 out_trans_cancel: 1177 xfs_trans_cancel(tp); 1178 out_release_inode: 1179 /* 1180 * Wait until after the current transaction is aborted to finish the 1181 * setup of the inode and release the inode. This prevents recursive 1182 * transactions and deadlocks from xfs_inactive. 1183 */ 1184 if (ip) { 1185 xfs_finish_inode_setup(ip); 1186 xfs_irele(ip); 1187 } 1188 out_release_dquots: 1189 xfs_qm_dqrele(udqp); 1190 xfs_qm_dqrele(gdqp); 1191 xfs_qm_dqrele(pdqp); 1192 1193 return error; 1194 } 1195 1196 int 1197 xfs_link( 1198 xfs_inode_t *tdp, 1199 xfs_inode_t *sip, 1200 struct xfs_name *target_name) 1201 { 1202 xfs_mount_t *mp = tdp->i_mount; 1203 xfs_trans_t *tp; 1204 int error, nospace_error = 0; 1205 int resblks; 1206 1207 trace_xfs_link(tdp, target_name); 1208 1209 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1210 1211 if (xfs_is_shutdown(mp)) 1212 return -EIO; 1213 1214 error = xfs_qm_dqattach(sip); 1215 if (error) 1216 goto std_return; 1217 1218 error = xfs_qm_dqattach(tdp); 1219 if (error) 1220 goto std_return; 1221 1222 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1223 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1224 &tp, &nospace_error); 1225 if (error) 1226 goto std_return; 1227 1228 /* 1229 * If we are using project inheritance, we only allow hard link 1230 * creation in our tree when the project IDs are the same; else 1231 * the tree quota mechanism could be circumvented. 1232 */ 1233 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1234 tdp->i_projid != sip->i_projid)) { 1235 error = -EXDEV; 1236 goto error_return; 1237 } 1238 1239 if (!resblks) { 1240 error = xfs_dir_canenter(tp, tdp, target_name); 1241 if (error) 1242 goto error_return; 1243 } 1244 1245 /* 1246 * Handle initial link state of O_TMPFILE inode 1247 */ 1248 if (VFS_I(sip)->i_nlink == 0) { 1249 struct xfs_perag *pag; 1250 1251 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1252 error = xfs_iunlink_remove(tp, pag, sip); 1253 xfs_perag_put(pag); 1254 if (error) 1255 goto error_return; 1256 } 1257 1258 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1259 resblks); 1260 if (error) 1261 goto error_return; 1262 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1263 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1264 1265 xfs_bumplink(tp, sip); 1266 1267 /* 1268 * If this is a synchronous mount, make sure that the 1269 * link transaction goes to disk before returning to 1270 * the user. 1271 */ 1272 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1273 xfs_trans_set_sync(tp); 1274 1275 return xfs_trans_commit(tp); 1276 1277 error_return: 1278 xfs_trans_cancel(tp); 1279 std_return: 1280 if (error == -ENOSPC && nospace_error) 1281 error = nospace_error; 1282 return error; 1283 } 1284 1285 /* Clear the reflink flag and the cowblocks tag if possible. */ 1286 static void 1287 xfs_itruncate_clear_reflink_flags( 1288 struct xfs_inode *ip) 1289 { 1290 struct xfs_ifork *dfork; 1291 struct xfs_ifork *cfork; 1292 1293 if (!xfs_is_reflink_inode(ip)) 1294 return; 1295 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1296 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1297 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1298 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1299 if (cfork->if_bytes == 0) 1300 xfs_inode_clear_cowblocks_tag(ip); 1301 } 1302 1303 /* 1304 * Free up the underlying blocks past new_size. The new size must be smaller 1305 * than the current size. This routine can be used both for the attribute and 1306 * data fork, and does not modify the inode size, which is left to the caller. 1307 * 1308 * The transaction passed to this routine must have made a permanent log 1309 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1310 * given transaction and start new ones, so make sure everything involved in 1311 * the transaction is tidy before calling here. Some transaction will be 1312 * returned to the caller to be committed. The incoming transaction must 1313 * already include the inode, and both inode locks must be held exclusively. 1314 * The inode must also be "held" within the transaction. On return the inode 1315 * will be "held" within the returned transaction. This routine does NOT 1316 * require any disk space to be reserved for it within the transaction. 1317 * 1318 * If we get an error, we must return with the inode locked and linked into the 1319 * current transaction. This keeps things simple for the higher level code, 1320 * because it always knows that the inode is locked and held in the transaction 1321 * that returns to it whether errors occur or not. We don't mark the inode 1322 * dirty on error so that transactions can be easily aborted if possible. 1323 */ 1324 int 1325 xfs_itruncate_extents_flags( 1326 struct xfs_trans **tpp, 1327 struct xfs_inode *ip, 1328 int whichfork, 1329 xfs_fsize_t new_size, 1330 int flags) 1331 { 1332 struct xfs_mount *mp = ip->i_mount; 1333 struct xfs_trans *tp = *tpp; 1334 xfs_fileoff_t first_unmap_block; 1335 xfs_filblks_t unmap_len; 1336 int error = 0; 1337 1338 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1339 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1340 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1341 ASSERT(new_size <= XFS_ISIZE(ip)); 1342 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1343 ASSERT(ip->i_itemp != NULL); 1344 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1345 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1346 1347 trace_xfs_itruncate_extents_start(ip, new_size); 1348 1349 flags |= xfs_bmapi_aflag(whichfork); 1350 1351 /* 1352 * Since it is possible for space to become allocated beyond 1353 * the end of the file (in a crash where the space is allocated 1354 * but the inode size is not yet updated), simply remove any 1355 * blocks which show up between the new EOF and the maximum 1356 * possible file size. 1357 * 1358 * We have to free all the blocks to the bmbt maximum offset, even if 1359 * the page cache can't scale that far. 1360 */ 1361 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1362 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1363 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1364 return 0; 1365 } 1366 1367 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1368 while (unmap_len > 0) { 1369 ASSERT(tp->t_highest_agno == NULLAGNUMBER); 1370 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1371 flags, XFS_ITRUNC_MAX_EXTENTS); 1372 if (error) 1373 goto out; 1374 1375 /* free the just unmapped extents */ 1376 error = xfs_defer_finish(&tp); 1377 if (error) 1378 goto out; 1379 } 1380 1381 if (whichfork == XFS_DATA_FORK) { 1382 /* Remove all pending CoW reservations. */ 1383 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1384 first_unmap_block, XFS_MAX_FILEOFF, true); 1385 if (error) 1386 goto out; 1387 1388 xfs_itruncate_clear_reflink_flags(ip); 1389 } 1390 1391 /* 1392 * Always re-log the inode so that our permanent transaction can keep 1393 * on rolling it forward in the log. 1394 */ 1395 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1396 1397 trace_xfs_itruncate_extents_end(ip, new_size); 1398 1399 out: 1400 *tpp = tp; 1401 return error; 1402 } 1403 1404 int 1405 xfs_release( 1406 xfs_inode_t *ip) 1407 { 1408 xfs_mount_t *mp = ip->i_mount; 1409 int error = 0; 1410 1411 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1412 return 0; 1413 1414 /* If this is a read-only mount, don't do this (would generate I/O) */ 1415 if (xfs_is_readonly(mp)) 1416 return 0; 1417 1418 if (!xfs_is_shutdown(mp)) { 1419 int truncated; 1420 1421 /* 1422 * If we previously truncated this file and removed old data 1423 * in the process, we want to initiate "early" writeout on 1424 * the last close. This is an attempt to combat the notorious 1425 * NULL files problem which is particularly noticeable from a 1426 * truncate down, buffered (re-)write (delalloc), followed by 1427 * a crash. What we are effectively doing here is 1428 * significantly reducing the time window where we'd otherwise 1429 * be exposed to that problem. 1430 */ 1431 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1432 if (truncated) { 1433 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1434 if (ip->i_delayed_blks > 0) { 1435 error = filemap_flush(VFS_I(ip)->i_mapping); 1436 if (error) 1437 return error; 1438 } 1439 } 1440 } 1441 1442 if (VFS_I(ip)->i_nlink == 0) 1443 return 0; 1444 1445 /* 1446 * If we can't get the iolock just skip truncating the blocks past EOF 1447 * because we could deadlock with the mmap_lock otherwise. We'll get 1448 * another chance to drop them once the last reference to the inode is 1449 * dropped, so we'll never leak blocks permanently. 1450 */ 1451 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1452 return 0; 1453 1454 if (xfs_can_free_eofblocks(ip, false)) { 1455 /* 1456 * Check if the inode is being opened, written and closed 1457 * frequently and we have delayed allocation blocks outstanding 1458 * (e.g. streaming writes from the NFS server), truncating the 1459 * blocks past EOF will cause fragmentation to occur. 1460 * 1461 * In this case don't do the truncation, but we have to be 1462 * careful how we detect this case. Blocks beyond EOF show up as 1463 * i_delayed_blks even when the inode is clean, so we need to 1464 * truncate them away first before checking for a dirty release. 1465 * Hence on the first dirty close we will still remove the 1466 * speculative allocation, but after that we will leave it in 1467 * place. 1468 */ 1469 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1470 goto out_unlock; 1471 1472 error = xfs_free_eofblocks(ip); 1473 if (error) 1474 goto out_unlock; 1475 1476 /* delalloc blocks after truncation means it really is dirty */ 1477 if (ip->i_delayed_blks) 1478 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1479 } 1480 1481 out_unlock: 1482 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1483 return error; 1484 } 1485 1486 /* 1487 * xfs_inactive_truncate 1488 * 1489 * Called to perform a truncate when an inode becomes unlinked. 1490 */ 1491 STATIC int 1492 xfs_inactive_truncate( 1493 struct xfs_inode *ip) 1494 { 1495 struct xfs_mount *mp = ip->i_mount; 1496 struct xfs_trans *tp; 1497 int error; 1498 1499 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1500 if (error) { 1501 ASSERT(xfs_is_shutdown(mp)); 1502 return error; 1503 } 1504 xfs_ilock(ip, XFS_ILOCK_EXCL); 1505 xfs_trans_ijoin(tp, ip, 0); 1506 1507 /* 1508 * Log the inode size first to prevent stale data exposure in the event 1509 * of a system crash before the truncate completes. See the related 1510 * comment in xfs_vn_setattr_size() for details. 1511 */ 1512 ip->i_disk_size = 0; 1513 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1514 1515 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1516 if (error) 1517 goto error_trans_cancel; 1518 1519 ASSERT(ip->i_df.if_nextents == 0); 1520 1521 error = xfs_trans_commit(tp); 1522 if (error) 1523 goto error_unlock; 1524 1525 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1526 return 0; 1527 1528 error_trans_cancel: 1529 xfs_trans_cancel(tp); 1530 error_unlock: 1531 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1532 return error; 1533 } 1534 1535 /* 1536 * xfs_inactive_ifree() 1537 * 1538 * Perform the inode free when an inode is unlinked. 1539 */ 1540 STATIC int 1541 xfs_inactive_ifree( 1542 struct xfs_inode *ip) 1543 { 1544 struct xfs_mount *mp = ip->i_mount; 1545 struct xfs_trans *tp; 1546 int error; 1547 1548 /* 1549 * We try to use a per-AG reservation for any block needed by the finobt 1550 * tree, but as the finobt feature predates the per-AG reservation 1551 * support a degraded file system might not have enough space for the 1552 * reservation at mount time. In that case try to dip into the reserved 1553 * pool and pray. 1554 * 1555 * Send a warning if the reservation does happen to fail, as the inode 1556 * now remains allocated and sits on the unlinked list until the fs is 1557 * repaired. 1558 */ 1559 if (unlikely(mp->m_finobt_nores)) { 1560 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1561 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1562 &tp); 1563 } else { 1564 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1565 } 1566 if (error) { 1567 if (error == -ENOSPC) { 1568 xfs_warn_ratelimited(mp, 1569 "Failed to remove inode(s) from unlinked list. " 1570 "Please free space, unmount and run xfs_repair."); 1571 } else { 1572 ASSERT(xfs_is_shutdown(mp)); 1573 } 1574 return error; 1575 } 1576 1577 /* 1578 * We do not hold the inode locked across the entire rolling transaction 1579 * here. We only need to hold it for the first transaction that 1580 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1581 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1582 * here breaks the relationship between cluster buffer invalidation and 1583 * stale inode invalidation on cluster buffer item journal commit 1584 * completion, and can result in leaving dirty stale inodes hanging 1585 * around in memory. 1586 * 1587 * We have no need for serialising this inode operation against other 1588 * operations - we freed the inode and hence reallocation is required 1589 * and that will serialise on reallocating the space the deferops need 1590 * to free. Hence we can unlock the inode on the first commit of 1591 * the transaction rather than roll it right through the deferops. This 1592 * avoids relogging the XFS_ISTALE inode. 1593 * 1594 * We check that xfs_ifree() hasn't grown an internal transaction roll 1595 * by asserting that the inode is still locked when it returns. 1596 */ 1597 xfs_ilock(ip, XFS_ILOCK_EXCL); 1598 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1599 1600 error = xfs_ifree(tp, ip); 1601 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1602 if (error) { 1603 /* 1604 * If we fail to free the inode, shut down. The cancel 1605 * might do that, we need to make sure. Otherwise the 1606 * inode might be lost for a long time or forever. 1607 */ 1608 if (!xfs_is_shutdown(mp)) { 1609 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1610 __func__, error); 1611 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1612 } 1613 xfs_trans_cancel(tp); 1614 return error; 1615 } 1616 1617 /* 1618 * Credit the quota account(s). The inode is gone. 1619 */ 1620 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1621 1622 return xfs_trans_commit(tp); 1623 } 1624 1625 /* 1626 * Returns true if we need to update the on-disk metadata before we can free 1627 * the memory used by this inode. Updates include freeing post-eof 1628 * preallocations; freeing COW staging extents; and marking the inode free in 1629 * the inobt if it is on the unlinked list. 1630 */ 1631 bool 1632 xfs_inode_needs_inactive( 1633 struct xfs_inode *ip) 1634 { 1635 struct xfs_mount *mp = ip->i_mount; 1636 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1637 1638 /* 1639 * If the inode is already free, then there can be nothing 1640 * to clean up here. 1641 */ 1642 if (VFS_I(ip)->i_mode == 0) 1643 return false; 1644 1645 /* 1646 * If this is a read-only mount, don't do this (would generate I/O) 1647 * unless we're in log recovery and cleaning the iunlinked list. 1648 */ 1649 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1650 return false; 1651 1652 /* If the log isn't running, push inodes straight to reclaim. */ 1653 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1654 return false; 1655 1656 /* Metadata inodes require explicit resource cleanup. */ 1657 if (xfs_is_metadata_inode(ip)) 1658 return false; 1659 1660 /* Want to clean out the cow blocks if there are any. */ 1661 if (cow_ifp && cow_ifp->if_bytes > 0) 1662 return true; 1663 1664 /* Unlinked files must be freed. */ 1665 if (VFS_I(ip)->i_nlink == 0) 1666 return true; 1667 1668 /* 1669 * This file isn't being freed, so check if there are post-eof blocks 1670 * to free. @force is true because we are evicting an inode from the 1671 * cache. Post-eof blocks must be freed, lest we end up with broken 1672 * free space accounting. 1673 * 1674 * Note: don't bother with iolock here since lockdep complains about 1675 * acquiring it in reclaim context. We have the only reference to the 1676 * inode at this point anyways. 1677 */ 1678 return xfs_can_free_eofblocks(ip, true); 1679 } 1680 1681 /* 1682 * xfs_inactive 1683 * 1684 * This is called when the vnode reference count for the vnode 1685 * goes to zero. If the file has been unlinked, then it must 1686 * now be truncated. Also, we clear all of the read-ahead state 1687 * kept for the inode here since the file is now closed. 1688 */ 1689 int 1690 xfs_inactive( 1691 xfs_inode_t *ip) 1692 { 1693 struct xfs_mount *mp; 1694 int error = 0; 1695 int truncate = 0; 1696 1697 /* 1698 * If the inode is already free, then there can be nothing 1699 * to clean up here. 1700 */ 1701 if (VFS_I(ip)->i_mode == 0) { 1702 ASSERT(ip->i_df.if_broot_bytes == 0); 1703 goto out; 1704 } 1705 1706 mp = ip->i_mount; 1707 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1708 1709 /* 1710 * If this is a read-only mount, don't do this (would generate I/O) 1711 * unless we're in log recovery and cleaning the iunlinked list. 1712 */ 1713 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log)) 1714 goto out; 1715 1716 /* Metadata inodes require explicit resource cleanup. */ 1717 if (xfs_is_metadata_inode(ip)) 1718 goto out; 1719 1720 /* Try to clean out the cow blocks if there are any. */ 1721 if (xfs_inode_has_cow_data(ip)) 1722 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1723 1724 if (VFS_I(ip)->i_nlink != 0) { 1725 /* 1726 * force is true because we are evicting an inode from the 1727 * cache. Post-eof blocks must be freed, lest we end up with 1728 * broken free space accounting. 1729 * 1730 * Note: don't bother with iolock here since lockdep complains 1731 * about acquiring it in reclaim context. We have the only 1732 * reference to the inode at this point anyways. 1733 */ 1734 if (xfs_can_free_eofblocks(ip, true)) 1735 error = xfs_free_eofblocks(ip); 1736 1737 goto out; 1738 } 1739 1740 if (S_ISREG(VFS_I(ip)->i_mode) && 1741 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1742 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1743 truncate = 1; 1744 1745 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) { 1746 /* 1747 * If this inode is being inactivated during a quotacheck and 1748 * has not yet been scanned by quotacheck, we /must/ remove 1749 * the dquots from the inode before inactivation changes the 1750 * block and inode counts. Most probably this is a result of 1751 * reloading the incore iunlinked list to purge unrecovered 1752 * unlinked inodes. 1753 */ 1754 xfs_qm_dqdetach(ip); 1755 } else { 1756 error = xfs_qm_dqattach(ip); 1757 if (error) 1758 goto out; 1759 } 1760 1761 if (S_ISLNK(VFS_I(ip)->i_mode)) 1762 error = xfs_inactive_symlink(ip); 1763 else if (truncate) 1764 error = xfs_inactive_truncate(ip); 1765 if (error) 1766 goto out; 1767 1768 /* 1769 * If there are attributes associated with the file then blow them away 1770 * now. The code calls a routine that recursively deconstructs the 1771 * attribute fork. If also blows away the in-core attribute fork. 1772 */ 1773 if (xfs_inode_has_attr_fork(ip)) { 1774 error = xfs_attr_inactive(ip); 1775 if (error) 1776 goto out; 1777 } 1778 1779 ASSERT(ip->i_forkoff == 0); 1780 1781 /* 1782 * Free the inode. 1783 */ 1784 error = xfs_inactive_ifree(ip); 1785 1786 out: 1787 /* 1788 * We're done making metadata updates for this inode, so we can release 1789 * the attached dquots. 1790 */ 1791 xfs_qm_dqdetach(ip); 1792 return error; 1793 } 1794 1795 /* 1796 * In-Core Unlinked List Lookups 1797 * ============================= 1798 * 1799 * Every inode is supposed to be reachable from some other piece of metadata 1800 * with the exception of the root directory. Inodes with a connection to a 1801 * file descriptor but not linked from anywhere in the on-disk directory tree 1802 * are collectively known as unlinked inodes, though the filesystem itself 1803 * maintains links to these inodes so that on-disk metadata are consistent. 1804 * 1805 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1806 * header contains a number of buckets that point to an inode, and each inode 1807 * record has a pointer to the next inode in the hash chain. This 1808 * singly-linked list causes scaling problems in the iunlink remove function 1809 * because we must walk that list to find the inode that points to the inode 1810 * being removed from the unlinked hash bucket list. 1811 * 1812 * Hence we keep an in-memory double linked list to link each inode on an 1813 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1814 * based lists would require having 64 list heads in the perag, one for each 1815 * list. This is expensive in terms of memory (think millions of AGs) and cache 1816 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1817 * must be referenced at the VFS level to keep them on the list and hence we 1818 * have an existence guarantee for inodes on the unlinked list. 1819 * 1820 * Given we have an existence guarantee, we can use lockless inode cache lookups 1821 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1822 * for the double linked unlinked list, and we don't need any extra locking to 1823 * keep the list safe as all manipulations are done under the AGI buffer lock. 1824 * Keeping the list up to date does not require memory allocation, just finding 1825 * the XFS inode and updating the next/prev unlinked list aginos. 1826 */ 1827 1828 /* 1829 * Find an inode on the unlinked list. This does not take references to the 1830 * inode as we have existence guarantees by holding the AGI buffer lock and that 1831 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1832 * don't find the inode in cache, then let the caller handle the situation. 1833 */ 1834 static struct xfs_inode * 1835 xfs_iunlink_lookup( 1836 struct xfs_perag *pag, 1837 xfs_agino_t agino) 1838 { 1839 struct xfs_inode *ip; 1840 1841 rcu_read_lock(); 1842 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1843 if (!ip) { 1844 /* Caller can handle inode not being in memory. */ 1845 rcu_read_unlock(); 1846 return NULL; 1847 } 1848 1849 /* 1850 * Inode in RCU freeing limbo should not happen. Warn about this and 1851 * let the caller handle the failure. 1852 */ 1853 if (WARN_ON_ONCE(!ip->i_ino)) { 1854 rcu_read_unlock(); 1855 return NULL; 1856 } 1857 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1858 rcu_read_unlock(); 1859 return ip; 1860 } 1861 1862 /* 1863 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode 1864 * is not in cache. 1865 */ 1866 static int 1867 xfs_iunlink_update_backref( 1868 struct xfs_perag *pag, 1869 xfs_agino_t prev_agino, 1870 xfs_agino_t next_agino) 1871 { 1872 struct xfs_inode *ip; 1873 1874 /* No update necessary if we are at the end of the list. */ 1875 if (next_agino == NULLAGINO) 1876 return 0; 1877 1878 ip = xfs_iunlink_lookup(pag, next_agino); 1879 if (!ip) 1880 return -ENOLINK; 1881 1882 ip->i_prev_unlinked = prev_agino; 1883 return 0; 1884 } 1885 1886 /* 1887 * Point the AGI unlinked bucket at an inode and log the results. The caller 1888 * is responsible for validating the old value. 1889 */ 1890 STATIC int 1891 xfs_iunlink_update_bucket( 1892 struct xfs_trans *tp, 1893 struct xfs_perag *pag, 1894 struct xfs_buf *agibp, 1895 unsigned int bucket_index, 1896 xfs_agino_t new_agino) 1897 { 1898 struct xfs_agi *agi = agibp->b_addr; 1899 xfs_agino_t old_value; 1900 int offset; 1901 1902 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 1903 1904 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1905 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1906 old_value, new_agino); 1907 1908 /* 1909 * We should never find the head of the list already set to the value 1910 * passed in because either we're adding or removing ourselves from the 1911 * head of the list. 1912 */ 1913 if (old_value == new_agino) { 1914 xfs_buf_mark_corrupt(agibp); 1915 return -EFSCORRUPTED; 1916 } 1917 1918 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1919 offset = offsetof(struct xfs_agi, agi_unlinked) + 1920 (sizeof(xfs_agino_t) * bucket_index); 1921 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1922 return 0; 1923 } 1924 1925 /* 1926 * Load the inode @next_agino into the cache and set its prev_unlinked pointer 1927 * to @prev_agino. Caller must hold the AGI to synchronize with other changes 1928 * to the unlinked list. 1929 */ 1930 STATIC int 1931 xfs_iunlink_reload_next( 1932 struct xfs_trans *tp, 1933 struct xfs_buf *agibp, 1934 xfs_agino_t prev_agino, 1935 xfs_agino_t next_agino) 1936 { 1937 struct xfs_perag *pag = agibp->b_pag; 1938 struct xfs_mount *mp = pag->pag_mount; 1939 struct xfs_inode *next_ip = NULL; 1940 xfs_ino_t ino; 1941 int error; 1942 1943 ASSERT(next_agino != NULLAGINO); 1944 1945 #ifdef DEBUG 1946 rcu_read_lock(); 1947 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino); 1948 ASSERT(next_ip == NULL); 1949 rcu_read_unlock(); 1950 #endif 1951 1952 xfs_info_ratelimited(mp, 1953 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.", 1954 next_agino, pag->pag_agno); 1955 1956 /* 1957 * Use an untrusted lookup just to be cautious in case the AGI has been 1958 * corrupted and now points at a free inode. That shouldn't happen, 1959 * but we'd rather shut down now since we're already running in a weird 1960 * situation. 1961 */ 1962 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino); 1963 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip); 1964 if (error) 1965 return error; 1966 1967 /* If this is not an unlinked inode, something is very wrong. */ 1968 if (VFS_I(next_ip)->i_nlink != 0) { 1969 error = -EFSCORRUPTED; 1970 goto rele; 1971 } 1972 1973 next_ip->i_prev_unlinked = prev_agino; 1974 trace_xfs_iunlink_reload_next(next_ip); 1975 rele: 1976 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE)); 1977 if (xfs_is_quotacheck_running(mp) && next_ip) 1978 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED); 1979 xfs_irele(next_ip); 1980 return error; 1981 } 1982 1983 static int 1984 xfs_iunlink_insert_inode( 1985 struct xfs_trans *tp, 1986 struct xfs_perag *pag, 1987 struct xfs_buf *agibp, 1988 struct xfs_inode *ip) 1989 { 1990 struct xfs_mount *mp = tp->t_mountp; 1991 struct xfs_agi *agi = agibp->b_addr; 1992 xfs_agino_t next_agino; 1993 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1994 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1995 int error; 1996 1997 /* 1998 * Get the index into the agi hash table for the list this inode will 1999 * go on. Make sure the pointer isn't garbage and that this inode 2000 * isn't already on the list. 2001 */ 2002 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2003 if (next_agino == agino || 2004 !xfs_verify_agino_or_null(pag, next_agino)) { 2005 xfs_buf_mark_corrupt(agibp); 2006 return -EFSCORRUPTED; 2007 } 2008 2009 /* 2010 * Update the prev pointer in the next inode to point back to this 2011 * inode. 2012 */ 2013 error = xfs_iunlink_update_backref(pag, agino, next_agino); 2014 if (error == -ENOLINK) 2015 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino); 2016 if (error) 2017 return error; 2018 2019 if (next_agino != NULLAGINO) { 2020 /* 2021 * There is already another inode in the bucket, so point this 2022 * inode to the current head of the list. 2023 */ 2024 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 2025 if (error) 2026 return error; 2027 ip->i_next_unlinked = next_agino; 2028 } 2029 2030 /* Point the head of the list to point to this inode. */ 2031 ip->i_prev_unlinked = NULLAGINO; 2032 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2033 } 2034 2035 /* 2036 * This is called when the inode's link count has gone to 0 or we are creating 2037 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2038 * 2039 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2040 * list when the inode is freed. 2041 */ 2042 STATIC int 2043 xfs_iunlink( 2044 struct xfs_trans *tp, 2045 struct xfs_inode *ip) 2046 { 2047 struct xfs_mount *mp = tp->t_mountp; 2048 struct xfs_perag *pag; 2049 struct xfs_buf *agibp; 2050 int error; 2051 2052 ASSERT(VFS_I(ip)->i_nlink == 0); 2053 ASSERT(VFS_I(ip)->i_mode != 0); 2054 trace_xfs_iunlink(ip); 2055 2056 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2057 2058 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2059 error = xfs_read_agi(pag, tp, &agibp); 2060 if (error) 2061 goto out; 2062 2063 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 2064 out: 2065 xfs_perag_put(pag); 2066 return error; 2067 } 2068 2069 static int 2070 xfs_iunlink_remove_inode( 2071 struct xfs_trans *tp, 2072 struct xfs_perag *pag, 2073 struct xfs_buf *agibp, 2074 struct xfs_inode *ip) 2075 { 2076 struct xfs_mount *mp = tp->t_mountp; 2077 struct xfs_agi *agi = agibp->b_addr; 2078 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2079 xfs_agino_t head_agino; 2080 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2081 int error; 2082 2083 trace_xfs_iunlink_remove(ip); 2084 2085 /* 2086 * Get the index into the agi hash table for the list this inode will 2087 * go on. Make sure the head pointer isn't garbage. 2088 */ 2089 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2090 if (!xfs_verify_agino(pag, head_agino)) { 2091 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2092 agi, sizeof(*agi)); 2093 return -EFSCORRUPTED; 2094 } 2095 2096 /* 2097 * Set our inode's next_unlinked pointer to NULL and then return 2098 * the old pointer value so that we can update whatever was previous 2099 * to us in the list to point to whatever was next in the list. 2100 */ 2101 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2102 if (error) 2103 return error; 2104 2105 /* 2106 * Update the prev pointer in the next inode to point back to previous 2107 * inode in the chain. 2108 */ 2109 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2110 ip->i_next_unlinked); 2111 if (error == -ENOLINK) 2112 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked, 2113 ip->i_next_unlinked); 2114 if (error) 2115 return error; 2116 2117 if (head_agino != agino) { 2118 struct xfs_inode *prev_ip; 2119 2120 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2121 if (!prev_ip) 2122 return -EFSCORRUPTED; 2123 2124 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2125 ip->i_next_unlinked); 2126 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2127 } else { 2128 /* Point the head of the list to the next unlinked inode. */ 2129 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2130 ip->i_next_unlinked); 2131 } 2132 2133 ip->i_next_unlinked = NULLAGINO; 2134 ip->i_prev_unlinked = 0; 2135 return error; 2136 } 2137 2138 /* 2139 * Pull the on-disk inode from the AGI unlinked list. 2140 */ 2141 STATIC int 2142 xfs_iunlink_remove( 2143 struct xfs_trans *tp, 2144 struct xfs_perag *pag, 2145 struct xfs_inode *ip) 2146 { 2147 struct xfs_buf *agibp; 2148 int error; 2149 2150 trace_xfs_iunlink_remove(ip); 2151 2152 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2153 error = xfs_read_agi(pag, tp, &agibp); 2154 if (error) 2155 return error; 2156 2157 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2158 } 2159 2160 /* 2161 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2162 * mark it stale. We should only find clean inodes in this lookup that aren't 2163 * already stale. 2164 */ 2165 static void 2166 xfs_ifree_mark_inode_stale( 2167 struct xfs_perag *pag, 2168 struct xfs_inode *free_ip, 2169 xfs_ino_t inum) 2170 { 2171 struct xfs_mount *mp = pag->pag_mount; 2172 struct xfs_inode_log_item *iip; 2173 struct xfs_inode *ip; 2174 2175 retry: 2176 rcu_read_lock(); 2177 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2178 2179 /* Inode not in memory, nothing to do */ 2180 if (!ip) { 2181 rcu_read_unlock(); 2182 return; 2183 } 2184 2185 /* 2186 * because this is an RCU protected lookup, we could find a recently 2187 * freed or even reallocated inode during the lookup. We need to check 2188 * under the i_flags_lock for a valid inode here. Skip it if it is not 2189 * valid, the wrong inode or stale. 2190 */ 2191 spin_lock(&ip->i_flags_lock); 2192 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2193 goto out_iflags_unlock; 2194 2195 /* 2196 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2197 * other inodes that we did not find in the list attached to the buffer 2198 * and are not already marked stale. If we can't lock it, back off and 2199 * retry. 2200 */ 2201 if (ip != free_ip) { 2202 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2203 spin_unlock(&ip->i_flags_lock); 2204 rcu_read_unlock(); 2205 delay(1); 2206 goto retry; 2207 } 2208 } 2209 ip->i_flags |= XFS_ISTALE; 2210 2211 /* 2212 * If the inode is flushing, it is already attached to the buffer. All 2213 * we needed to do here is mark the inode stale so buffer IO completion 2214 * will remove it from the AIL. 2215 */ 2216 iip = ip->i_itemp; 2217 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2218 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2219 ASSERT(iip->ili_last_fields); 2220 goto out_iunlock; 2221 } 2222 2223 /* 2224 * Inodes not attached to the buffer can be released immediately. 2225 * Everything else has to go through xfs_iflush_abort() on journal 2226 * commit as the flock synchronises removal of the inode from the 2227 * cluster buffer against inode reclaim. 2228 */ 2229 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2230 goto out_iunlock; 2231 2232 __xfs_iflags_set(ip, XFS_IFLUSHING); 2233 spin_unlock(&ip->i_flags_lock); 2234 rcu_read_unlock(); 2235 2236 /* we have a dirty inode in memory that has not yet been flushed. */ 2237 spin_lock(&iip->ili_lock); 2238 iip->ili_last_fields = iip->ili_fields; 2239 iip->ili_fields = 0; 2240 iip->ili_fsync_fields = 0; 2241 spin_unlock(&iip->ili_lock); 2242 ASSERT(iip->ili_last_fields); 2243 2244 if (ip != free_ip) 2245 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2246 return; 2247 2248 out_iunlock: 2249 if (ip != free_ip) 2250 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2251 out_iflags_unlock: 2252 spin_unlock(&ip->i_flags_lock); 2253 rcu_read_unlock(); 2254 } 2255 2256 /* 2257 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2258 * inodes that are in memory - they all must be marked stale and attached to 2259 * the cluster buffer. 2260 */ 2261 static int 2262 xfs_ifree_cluster( 2263 struct xfs_trans *tp, 2264 struct xfs_perag *pag, 2265 struct xfs_inode *free_ip, 2266 struct xfs_icluster *xic) 2267 { 2268 struct xfs_mount *mp = free_ip->i_mount; 2269 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2270 struct xfs_buf *bp; 2271 xfs_daddr_t blkno; 2272 xfs_ino_t inum = xic->first_ino; 2273 int nbufs; 2274 int i, j; 2275 int ioffset; 2276 int error; 2277 2278 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2279 2280 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2281 /* 2282 * The allocation bitmap tells us which inodes of the chunk were 2283 * physically allocated. Skip the cluster if an inode falls into 2284 * a sparse region. 2285 */ 2286 ioffset = inum - xic->first_ino; 2287 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2288 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2289 continue; 2290 } 2291 2292 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2293 XFS_INO_TO_AGBNO(mp, inum)); 2294 2295 /* 2296 * We obtain and lock the backing buffer first in the process 2297 * here to ensure dirty inodes attached to the buffer remain in 2298 * the flushing state while we mark them stale. 2299 * 2300 * If we scan the in-memory inodes first, then buffer IO can 2301 * complete before we get a lock on it, and hence we may fail 2302 * to mark all the active inodes on the buffer stale. 2303 */ 2304 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2305 mp->m_bsize * igeo->blocks_per_cluster, 2306 XBF_UNMAPPED, &bp); 2307 if (error) 2308 return error; 2309 2310 /* 2311 * This buffer may not have been correctly initialised as we 2312 * didn't read it from disk. That's not important because we are 2313 * only using to mark the buffer as stale in the log, and to 2314 * attach stale cached inodes on it. That means it will never be 2315 * dispatched for IO. If it is, we want to know about it, and we 2316 * want it to fail. We can acheive this by adding a write 2317 * verifier to the buffer. 2318 */ 2319 bp->b_ops = &xfs_inode_buf_ops; 2320 2321 /* 2322 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2323 * too. This requires lookups, and will skip inodes that we've 2324 * already marked XFS_ISTALE. 2325 */ 2326 for (i = 0; i < igeo->inodes_per_cluster; i++) 2327 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2328 2329 xfs_trans_stale_inode_buf(tp, bp); 2330 xfs_trans_binval(tp, bp); 2331 } 2332 return 0; 2333 } 2334 2335 /* 2336 * This is called to return an inode to the inode free list. The inode should 2337 * already be truncated to 0 length and have no pages associated with it. This 2338 * routine also assumes that the inode is already a part of the transaction. 2339 * 2340 * The on-disk copy of the inode will have been added to the list of unlinked 2341 * inodes in the AGI. We need to remove the inode from that list atomically with 2342 * respect to freeing it here. 2343 */ 2344 int 2345 xfs_ifree( 2346 struct xfs_trans *tp, 2347 struct xfs_inode *ip) 2348 { 2349 struct xfs_mount *mp = ip->i_mount; 2350 struct xfs_perag *pag; 2351 struct xfs_icluster xic = { 0 }; 2352 struct xfs_inode_log_item *iip = ip->i_itemp; 2353 int error; 2354 2355 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2356 ASSERT(VFS_I(ip)->i_nlink == 0); 2357 ASSERT(ip->i_df.if_nextents == 0); 2358 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2359 ASSERT(ip->i_nblocks == 0); 2360 2361 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2362 2363 /* 2364 * Free the inode first so that we guarantee that the AGI lock is going 2365 * to be taken before we remove the inode from the unlinked list. This 2366 * makes the AGI lock -> unlinked list modification order the same as 2367 * used in O_TMPFILE creation. 2368 */ 2369 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2370 if (error) 2371 goto out; 2372 2373 error = xfs_iunlink_remove(tp, pag, ip); 2374 if (error) 2375 goto out; 2376 2377 /* 2378 * Free any local-format data sitting around before we reset the 2379 * data fork to extents format. Note that the attr fork data has 2380 * already been freed by xfs_attr_inactive. 2381 */ 2382 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2383 kmem_free(ip->i_df.if_u1.if_data); 2384 ip->i_df.if_u1.if_data = NULL; 2385 ip->i_df.if_bytes = 0; 2386 } 2387 2388 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2389 ip->i_diflags = 0; 2390 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2391 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2392 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2393 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2394 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2395 2396 /* Don't attempt to replay owner changes for a deleted inode */ 2397 spin_lock(&iip->ili_lock); 2398 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2399 spin_unlock(&iip->ili_lock); 2400 2401 /* 2402 * Bump the generation count so no one will be confused 2403 * by reincarnations of this inode. 2404 */ 2405 VFS_I(ip)->i_generation++; 2406 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2407 2408 if (xic.deleted) 2409 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2410 out: 2411 xfs_perag_put(pag); 2412 return error; 2413 } 2414 2415 /* 2416 * This is called to unpin an inode. The caller must have the inode locked 2417 * in at least shared mode so that the buffer cannot be subsequently pinned 2418 * once someone is waiting for it to be unpinned. 2419 */ 2420 static void 2421 xfs_iunpin( 2422 struct xfs_inode *ip) 2423 { 2424 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2425 2426 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2427 2428 /* Give the log a push to start the unpinning I/O */ 2429 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2430 2431 } 2432 2433 static void 2434 __xfs_iunpin_wait( 2435 struct xfs_inode *ip) 2436 { 2437 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2438 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2439 2440 xfs_iunpin(ip); 2441 2442 do { 2443 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2444 if (xfs_ipincount(ip)) 2445 io_schedule(); 2446 } while (xfs_ipincount(ip)); 2447 finish_wait(wq, &wait.wq_entry); 2448 } 2449 2450 void 2451 xfs_iunpin_wait( 2452 struct xfs_inode *ip) 2453 { 2454 if (xfs_ipincount(ip)) 2455 __xfs_iunpin_wait(ip); 2456 } 2457 2458 /* 2459 * Removing an inode from the namespace involves removing the directory entry 2460 * and dropping the link count on the inode. Removing the directory entry can 2461 * result in locking an AGF (directory blocks were freed) and removing a link 2462 * count can result in placing the inode on an unlinked list which results in 2463 * locking an AGI. 2464 * 2465 * The big problem here is that we have an ordering constraint on AGF and AGI 2466 * locking - inode allocation locks the AGI, then can allocate a new extent for 2467 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2468 * removes the inode from the unlinked list, requiring that we lock the AGI 2469 * first, and then freeing the inode can result in an inode chunk being freed 2470 * and hence freeing disk space requiring that we lock an AGF. 2471 * 2472 * Hence the ordering that is imposed by other parts of the code is AGI before 2473 * AGF. This means we cannot remove the directory entry before we drop the inode 2474 * reference count and put it on the unlinked list as this results in a lock 2475 * order of AGF then AGI, and this can deadlock against inode allocation and 2476 * freeing. Therefore we must drop the link counts before we remove the 2477 * directory entry. 2478 * 2479 * This is still safe from a transactional point of view - it is not until we 2480 * get to xfs_defer_finish() that we have the possibility of multiple 2481 * transactions in this operation. Hence as long as we remove the directory 2482 * entry and drop the link count in the first transaction of the remove 2483 * operation, there are no transactional constraints on the ordering here. 2484 */ 2485 int 2486 xfs_remove( 2487 xfs_inode_t *dp, 2488 struct xfs_name *name, 2489 xfs_inode_t *ip) 2490 { 2491 xfs_mount_t *mp = dp->i_mount; 2492 xfs_trans_t *tp = NULL; 2493 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2494 int dontcare; 2495 int error = 0; 2496 uint resblks; 2497 2498 trace_xfs_remove(dp, name); 2499 2500 if (xfs_is_shutdown(mp)) 2501 return -EIO; 2502 2503 error = xfs_qm_dqattach(dp); 2504 if (error) 2505 goto std_return; 2506 2507 error = xfs_qm_dqattach(ip); 2508 if (error) 2509 goto std_return; 2510 2511 /* 2512 * We try to get the real space reservation first, allowing for 2513 * directory btree deletion(s) implying possible bmap insert(s). If we 2514 * can't get the space reservation then we use 0 instead, and avoid the 2515 * bmap btree insert(s) in the directory code by, if the bmap insert 2516 * tries to happen, instead trimming the LAST block from the directory. 2517 * 2518 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2519 * the directory code can handle a reservationless update and we don't 2520 * want to prevent a user from trying to free space by deleting things. 2521 */ 2522 resblks = XFS_REMOVE_SPACE_RES(mp); 2523 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2524 &tp, &dontcare); 2525 if (error) { 2526 ASSERT(error != -ENOSPC); 2527 goto std_return; 2528 } 2529 2530 /* 2531 * If we're removing a directory perform some additional validation. 2532 */ 2533 if (is_dir) { 2534 ASSERT(VFS_I(ip)->i_nlink >= 2); 2535 if (VFS_I(ip)->i_nlink != 2) { 2536 error = -ENOTEMPTY; 2537 goto out_trans_cancel; 2538 } 2539 if (!xfs_dir_isempty(ip)) { 2540 error = -ENOTEMPTY; 2541 goto out_trans_cancel; 2542 } 2543 2544 /* Drop the link from ip's "..". */ 2545 error = xfs_droplink(tp, dp); 2546 if (error) 2547 goto out_trans_cancel; 2548 2549 /* Drop the "." link from ip to self. */ 2550 error = xfs_droplink(tp, ip); 2551 if (error) 2552 goto out_trans_cancel; 2553 2554 /* 2555 * Point the unlinked child directory's ".." entry to the root 2556 * directory to eliminate back-references to inodes that may 2557 * get freed before the child directory is closed. If the fs 2558 * gets shrunk, this can lead to dirent inode validation errors. 2559 */ 2560 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2561 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2562 tp->t_mountp->m_sb.sb_rootino, 0); 2563 if (error) 2564 goto out_trans_cancel; 2565 } 2566 } else { 2567 /* 2568 * When removing a non-directory we need to log the parent 2569 * inode here. For a directory this is done implicitly 2570 * by the xfs_droplink call for the ".." entry. 2571 */ 2572 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2573 } 2574 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2575 2576 /* Drop the link from dp to ip. */ 2577 error = xfs_droplink(tp, ip); 2578 if (error) 2579 goto out_trans_cancel; 2580 2581 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2582 if (error) { 2583 ASSERT(error != -ENOENT); 2584 goto out_trans_cancel; 2585 } 2586 2587 /* 2588 * If this is a synchronous mount, make sure that the 2589 * remove transaction goes to disk before returning to 2590 * the user. 2591 */ 2592 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2593 xfs_trans_set_sync(tp); 2594 2595 error = xfs_trans_commit(tp); 2596 if (error) 2597 goto std_return; 2598 2599 if (is_dir && xfs_inode_is_filestream(ip)) 2600 xfs_filestream_deassociate(ip); 2601 2602 return 0; 2603 2604 out_trans_cancel: 2605 xfs_trans_cancel(tp); 2606 std_return: 2607 return error; 2608 } 2609 2610 /* 2611 * Enter all inodes for a rename transaction into a sorted array. 2612 */ 2613 #define __XFS_SORT_INODES 5 2614 STATIC void 2615 xfs_sort_for_rename( 2616 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2617 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2618 struct xfs_inode *ip1, /* in: inode of old entry */ 2619 struct xfs_inode *ip2, /* in: inode of new entry */ 2620 struct xfs_inode *wip, /* in: whiteout inode */ 2621 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2622 int *num_inodes) /* in/out: inodes in array */ 2623 { 2624 int i, j; 2625 2626 ASSERT(*num_inodes == __XFS_SORT_INODES); 2627 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2628 2629 /* 2630 * i_tab contains a list of pointers to inodes. We initialize 2631 * the table here & we'll sort it. We will then use it to 2632 * order the acquisition of the inode locks. 2633 * 2634 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2635 */ 2636 i = 0; 2637 i_tab[i++] = dp1; 2638 i_tab[i++] = dp2; 2639 i_tab[i++] = ip1; 2640 if (ip2) 2641 i_tab[i++] = ip2; 2642 if (wip) 2643 i_tab[i++] = wip; 2644 *num_inodes = i; 2645 2646 /* 2647 * Sort the elements via bubble sort. (Remember, there are at 2648 * most 5 elements to sort, so this is adequate.) 2649 */ 2650 for (i = 0; i < *num_inodes; i++) { 2651 for (j = 1; j < *num_inodes; j++) { 2652 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2653 struct xfs_inode *temp = i_tab[j]; 2654 i_tab[j] = i_tab[j-1]; 2655 i_tab[j-1] = temp; 2656 } 2657 } 2658 } 2659 } 2660 2661 static int 2662 xfs_finish_rename( 2663 struct xfs_trans *tp) 2664 { 2665 /* 2666 * If this is a synchronous mount, make sure that the rename transaction 2667 * goes to disk before returning to the user. 2668 */ 2669 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2670 xfs_trans_set_sync(tp); 2671 2672 return xfs_trans_commit(tp); 2673 } 2674 2675 /* 2676 * xfs_cross_rename() 2677 * 2678 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2679 */ 2680 STATIC int 2681 xfs_cross_rename( 2682 struct xfs_trans *tp, 2683 struct xfs_inode *dp1, 2684 struct xfs_name *name1, 2685 struct xfs_inode *ip1, 2686 struct xfs_inode *dp2, 2687 struct xfs_name *name2, 2688 struct xfs_inode *ip2, 2689 int spaceres) 2690 { 2691 int error = 0; 2692 int ip1_flags = 0; 2693 int ip2_flags = 0; 2694 int dp2_flags = 0; 2695 2696 /* Swap inode number for dirent in first parent */ 2697 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2698 if (error) 2699 goto out_trans_abort; 2700 2701 /* Swap inode number for dirent in second parent */ 2702 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2703 if (error) 2704 goto out_trans_abort; 2705 2706 /* 2707 * If we're renaming one or more directories across different parents, 2708 * update the respective ".." entries (and link counts) to match the new 2709 * parents. 2710 */ 2711 if (dp1 != dp2) { 2712 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2713 2714 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2715 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2716 dp1->i_ino, spaceres); 2717 if (error) 2718 goto out_trans_abort; 2719 2720 /* transfer ip2 ".." reference to dp1 */ 2721 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2722 error = xfs_droplink(tp, dp2); 2723 if (error) 2724 goto out_trans_abort; 2725 xfs_bumplink(tp, dp1); 2726 } 2727 2728 /* 2729 * Although ip1 isn't changed here, userspace needs 2730 * to be warned about the change, so that applications 2731 * relying on it (like backup ones), will properly 2732 * notify the change 2733 */ 2734 ip1_flags |= XFS_ICHGTIME_CHG; 2735 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2736 } 2737 2738 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2739 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2740 dp2->i_ino, spaceres); 2741 if (error) 2742 goto out_trans_abort; 2743 2744 /* transfer ip1 ".." reference to dp2 */ 2745 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2746 error = xfs_droplink(tp, dp1); 2747 if (error) 2748 goto out_trans_abort; 2749 xfs_bumplink(tp, dp2); 2750 } 2751 2752 /* 2753 * Although ip2 isn't changed here, userspace needs 2754 * to be warned about the change, so that applications 2755 * relying on it (like backup ones), will properly 2756 * notify the change 2757 */ 2758 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2759 ip2_flags |= XFS_ICHGTIME_CHG; 2760 } 2761 } 2762 2763 if (ip1_flags) { 2764 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2765 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2766 } 2767 if (ip2_flags) { 2768 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2769 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2770 } 2771 if (dp2_flags) { 2772 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2773 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2774 } 2775 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2776 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2777 return xfs_finish_rename(tp); 2778 2779 out_trans_abort: 2780 xfs_trans_cancel(tp); 2781 return error; 2782 } 2783 2784 /* 2785 * xfs_rename_alloc_whiteout() 2786 * 2787 * Return a referenced, unlinked, unlocked inode that can be used as a 2788 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2789 * crash between allocating the inode and linking it into the rename transaction 2790 * recovery will free the inode and we won't leak it. 2791 */ 2792 static int 2793 xfs_rename_alloc_whiteout( 2794 struct mnt_idmap *idmap, 2795 struct xfs_name *src_name, 2796 struct xfs_inode *dp, 2797 struct xfs_inode **wip) 2798 { 2799 struct xfs_inode *tmpfile; 2800 struct qstr name; 2801 int error; 2802 2803 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE, 2804 &tmpfile); 2805 if (error) 2806 return error; 2807 2808 name.name = src_name->name; 2809 name.len = src_name->len; 2810 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2811 if (error) { 2812 xfs_finish_inode_setup(tmpfile); 2813 xfs_irele(tmpfile); 2814 return error; 2815 } 2816 2817 /* 2818 * Prepare the tmpfile inode as if it were created through the VFS. 2819 * Complete the inode setup and flag it as linkable. nlink is already 2820 * zero, so we can skip the drop_nlink. 2821 */ 2822 xfs_setup_iops(tmpfile); 2823 xfs_finish_inode_setup(tmpfile); 2824 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2825 2826 *wip = tmpfile; 2827 return 0; 2828 } 2829 2830 /* 2831 * xfs_rename 2832 */ 2833 int 2834 xfs_rename( 2835 struct mnt_idmap *idmap, 2836 struct xfs_inode *src_dp, 2837 struct xfs_name *src_name, 2838 struct xfs_inode *src_ip, 2839 struct xfs_inode *target_dp, 2840 struct xfs_name *target_name, 2841 struct xfs_inode *target_ip, 2842 unsigned int flags) 2843 { 2844 struct xfs_mount *mp = src_dp->i_mount; 2845 struct xfs_trans *tp; 2846 struct xfs_inode *wip = NULL; /* whiteout inode */ 2847 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2848 int i; 2849 int num_inodes = __XFS_SORT_INODES; 2850 bool new_parent = (src_dp != target_dp); 2851 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2852 int spaceres; 2853 bool retried = false; 2854 int error, nospace_error = 0; 2855 2856 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2857 2858 if ((flags & RENAME_EXCHANGE) && !target_ip) 2859 return -EINVAL; 2860 2861 /* 2862 * If we are doing a whiteout operation, allocate the whiteout inode 2863 * we will be placing at the target and ensure the type is set 2864 * appropriately. 2865 */ 2866 if (flags & RENAME_WHITEOUT) { 2867 error = xfs_rename_alloc_whiteout(idmap, src_name, 2868 target_dp, &wip); 2869 if (error) 2870 return error; 2871 2872 /* setup target dirent info as whiteout */ 2873 src_name->type = XFS_DIR3_FT_CHRDEV; 2874 } 2875 2876 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2877 inodes, &num_inodes); 2878 2879 retry: 2880 nospace_error = 0; 2881 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2882 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2883 if (error == -ENOSPC) { 2884 nospace_error = error; 2885 spaceres = 0; 2886 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2887 &tp); 2888 } 2889 if (error) 2890 goto out_release_wip; 2891 2892 /* 2893 * Attach the dquots to the inodes 2894 */ 2895 error = xfs_qm_vop_rename_dqattach(inodes); 2896 if (error) 2897 goto out_trans_cancel; 2898 2899 /* 2900 * Lock all the participating inodes. Depending upon whether 2901 * the target_name exists in the target directory, and 2902 * whether the target directory is the same as the source 2903 * directory, we can lock from 2 to 5 inodes. 2904 */ 2905 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2906 2907 /* 2908 * Join all the inodes to the transaction. From this point on, 2909 * we can rely on either trans_commit or trans_cancel to unlock 2910 * them. 2911 */ 2912 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2913 if (new_parent) 2914 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2915 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2916 if (target_ip) 2917 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2918 if (wip) 2919 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2920 2921 /* 2922 * If we are using project inheritance, we only allow renames 2923 * into our tree when the project IDs are the same; else the 2924 * tree quota mechanism would be circumvented. 2925 */ 2926 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2927 target_dp->i_projid != src_ip->i_projid)) { 2928 error = -EXDEV; 2929 goto out_trans_cancel; 2930 } 2931 2932 /* RENAME_EXCHANGE is unique from here on. */ 2933 if (flags & RENAME_EXCHANGE) 2934 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2935 target_dp, target_name, target_ip, 2936 spaceres); 2937 2938 /* 2939 * Try to reserve quota to handle an expansion of the target directory. 2940 * We'll allow the rename to continue in reservationless mode if we hit 2941 * a space usage constraint. If we trigger reservationless mode, save 2942 * the errno if there isn't any free space in the target directory. 2943 */ 2944 if (spaceres != 0) { 2945 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2946 0, false); 2947 if (error == -EDQUOT || error == -ENOSPC) { 2948 if (!retried) { 2949 xfs_trans_cancel(tp); 2950 xfs_blockgc_free_quota(target_dp, 0); 2951 retried = true; 2952 goto retry; 2953 } 2954 2955 nospace_error = error; 2956 spaceres = 0; 2957 error = 0; 2958 } 2959 if (error) 2960 goto out_trans_cancel; 2961 } 2962 2963 /* 2964 * Check for expected errors before we dirty the transaction 2965 * so we can return an error without a transaction abort. 2966 */ 2967 if (target_ip == NULL) { 2968 /* 2969 * If there's no space reservation, check the entry will 2970 * fit before actually inserting it. 2971 */ 2972 if (!spaceres) { 2973 error = xfs_dir_canenter(tp, target_dp, target_name); 2974 if (error) 2975 goto out_trans_cancel; 2976 } 2977 } else { 2978 /* 2979 * If target exists and it's a directory, check that whether 2980 * it can be destroyed. 2981 */ 2982 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 2983 (!xfs_dir_isempty(target_ip) || 2984 (VFS_I(target_ip)->i_nlink > 2))) { 2985 error = -EEXIST; 2986 goto out_trans_cancel; 2987 } 2988 } 2989 2990 /* 2991 * Lock the AGI buffers we need to handle bumping the nlink of the 2992 * whiteout inode off the unlinked list and to handle dropping the 2993 * nlink of the target inode. Per locking order rules, do this in 2994 * increasing AG order and before directory block allocation tries to 2995 * grab AGFs because we grab AGIs before AGFs. 2996 * 2997 * The (vfs) caller must ensure that if src is a directory then 2998 * target_ip is either null or an empty directory. 2999 */ 3000 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3001 if (inodes[i] == wip || 3002 (inodes[i] == target_ip && 3003 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3004 struct xfs_perag *pag; 3005 struct xfs_buf *bp; 3006 3007 pag = xfs_perag_get(mp, 3008 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 3009 error = xfs_read_agi(pag, tp, &bp); 3010 xfs_perag_put(pag); 3011 if (error) 3012 goto out_trans_cancel; 3013 } 3014 } 3015 3016 /* 3017 * Directory entry creation below may acquire the AGF. Remove 3018 * the whiteout from the unlinked list first to preserve correct 3019 * AGI/AGF locking order. This dirties the transaction so failures 3020 * after this point will abort and log recovery will clean up the 3021 * mess. 3022 * 3023 * For whiteouts, we need to bump the link count on the whiteout 3024 * inode. After this point, we have a real link, clear the tmpfile 3025 * state flag from the inode so it doesn't accidentally get misused 3026 * in future. 3027 */ 3028 if (wip) { 3029 struct xfs_perag *pag; 3030 3031 ASSERT(VFS_I(wip)->i_nlink == 0); 3032 3033 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3034 error = xfs_iunlink_remove(tp, pag, wip); 3035 xfs_perag_put(pag); 3036 if (error) 3037 goto out_trans_cancel; 3038 3039 xfs_bumplink(tp, wip); 3040 VFS_I(wip)->i_state &= ~I_LINKABLE; 3041 } 3042 3043 /* 3044 * Set up the target. 3045 */ 3046 if (target_ip == NULL) { 3047 /* 3048 * If target does not exist and the rename crosses 3049 * directories, adjust the target directory link count 3050 * to account for the ".." reference from the new entry. 3051 */ 3052 error = xfs_dir_createname(tp, target_dp, target_name, 3053 src_ip->i_ino, spaceres); 3054 if (error) 3055 goto out_trans_cancel; 3056 3057 xfs_trans_ichgtime(tp, target_dp, 3058 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3059 3060 if (new_parent && src_is_directory) { 3061 xfs_bumplink(tp, target_dp); 3062 } 3063 } else { /* target_ip != NULL */ 3064 /* 3065 * Link the source inode under the target name. 3066 * If the source inode is a directory and we are moving 3067 * it across directories, its ".." entry will be 3068 * inconsistent until we replace that down below. 3069 * 3070 * In case there is already an entry with the same 3071 * name at the destination directory, remove it first. 3072 */ 3073 error = xfs_dir_replace(tp, target_dp, target_name, 3074 src_ip->i_ino, spaceres); 3075 if (error) 3076 goto out_trans_cancel; 3077 3078 xfs_trans_ichgtime(tp, target_dp, 3079 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3080 3081 /* 3082 * Decrement the link count on the target since the target 3083 * dir no longer points to it. 3084 */ 3085 error = xfs_droplink(tp, target_ip); 3086 if (error) 3087 goto out_trans_cancel; 3088 3089 if (src_is_directory) { 3090 /* 3091 * Drop the link from the old "." entry. 3092 */ 3093 error = xfs_droplink(tp, target_ip); 3094 if (error) 3095 goto out_trans_cancel; 3096 } 3097 } /* target_ip != NULL */ 3098 3099 /* 3100 * Remove the source. 3101 */ 3102 if (new_parent && src_is_directory) { 3103 /* 3104 * Rewrite the ".." entry to point to the new 3105 * directory. 3106 */ 3107 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3108 target_dp->i_ino, spaceres); 3109 ASSERT(error != -EEXIST); 3110 if (error) 3111 goto out_trans_cancel; 3112 } 3113 3114 /* 3115 * We always want to hit the ctime on the source inode. 3116 * 3117 * This isn't strictly required by the standards since the source 3118 * inode isn't really being changed, but old unix file systems did 3119 * it and some incremental backup programs won't work without it. 3120 */ 3121 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3122 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3123 3124 /* 3125 * Adjust the link count on src_dp. This is necessary when 3126 * renaming a directory, either within one parent when 3127 * the target existed, or across two parent directories. 3128 */ 3129 if (src_is_directory && (new_parent || target_ip != NULL)) { 3130 3131 /* 3132 * Decrement link count on src_directory since the 3133 * entry that's moved no longer points to it. 3134 */ 3135 error = xfs_droplink(tp, src_dp); 3136 if (error) 3137 goto out_trans_cancel; 3138 } 3139 3140 /* 3141 * For whiteouts, we only need to update the source dirent with the 3142 * inode number of the whiteout inode rather than removing it 3143 * altogether. 3144 */ 3145 if (wip) 3146 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3147 spaceres); 3148 else 3149 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3150 spaceres); 3151 3152 if (error) 3153 goto out_trans_cancel; 3154 3155 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3156 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3157 if (new_parent) 3158 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3159 3160 error = xfs_finish_rename(tp); 3161 if (wip) 3162 xfs_irele(wip); 3163 return error; 3164 3165 out_trans_cancel: 3166 xfs_trans_cancel(tp); 3167 out_release_wip: 3168 if (wip) 3169 xfs_irele(wip); 3170 if (error == -ENOSPC && nospace_error) 3171 error = nospace_error; 3172 return error; 3173 } 3174 3175 static int 3176 xfs_iflush( 3177 struct xfs_inode *ip, 3178 struct xfs_buf *bp) 3179 { 3180 struct xfs_inode_log_item *iip = ip->i_itemp; 3181 struct xfs_dinode *dip; 3182 struct xfs_mount *mp = ip->i_mount; 3183 int error; 3184 3185 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3186 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3187 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3188 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3189 ASSERT(iip->ili_item.li_buf == bp); 3190 3191 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3192 3193 /* 3194 * We don't flush the inode if any of the following checks fail, but we 3195 * do still update the log item and attach to the backing buffer as if 3196 * the flush happened. This is a formality to facilitate predictable 3197 * error handling as the caller will shutdown and fail the buffer. 3198 */ 3199 error = -EFSCORRUPTED; 3200 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3201 mp, XFS_ERRTAG_IFLUSH_1)) { 3202 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3203 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT, 3204 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3205 goto flush_out; 3206 } 3207 if (S_ISREG(VFS_I(ip)->i_mode)) { 3208 if (XFS_TEST_ERROR( 3209 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3210 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3211 mp, XFS_ERRTAG_IFLUSH_3)) { 3212 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3213 "%s: Bad regular inode %llu, ptr "PTR_FMT, 3214 __func__, ip->i_ino, ip); 3215 goto flush_out; 3216 } 3217 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3218 if (XFS_TEST_ERROR( 3219 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3220 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3221 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3222 mp, XFS_ERRTAG_IFLUSH_4)) { 3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3224 "%s: Bad directory inode %llu, ptr "PTR_FMT, 3225 __func__, ip->i_ino, ip); 3226 goto flush_out; 3227 } 3228 } 3229 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3230 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3231 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3232 "%s: detected corrupt incore inode %llu, " 3233 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3234 __func__, ip->i_ino, 3235 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3236 ip->i_nblocks, ip); 3237 goto flush_out; 3238 } 3239 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3240 mp, XFS_ERRTAG_IFLUSH_6)) { 3241 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3242 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT, 3243 __func__, ip->i_ino, ip->i_forkoff, ip); 3244 goto flush_out; 3245 } 3246 3247 /* 3248 * Inode item log recovery for v2 inodes are dependent on the flushiter 3249 * count for correct sequencing. We bump the flush iteration count so 3250 * we can detect flushes which postdate a log record during recovery. 3251 * This is redundant as we now log every change and hence this can't 3252 * happen but we need to still do it to ensure backwards compatibility 3253 * with old kernels that predate logging all inode changes. 3254 */ 3255 if (!xfs_has_v3inodes(mp)) 3256 ip->i_flushiter++; 3257 3258 /* 3259 * If there are inline format data / attr forks attached to this inode, 3260 * make sure they are not corrupt. 3261 */ 3262 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3263 xfs_ifork_verify_local_data(ip)) 3264 goto flush_out; 3265 if (xfs_inode_has_attr_fork(ip) && 3266 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3267 xfs_ifork_verify_local_attr(ip)) 3268 goto flush_out; 3269 3270 /* 3271 * Copy the dirty parts of the inode into the on-disk inode. We always 3272 * copy out the core of the inode, because if the inode is dirty at all 3273 * the core must be. 3274 */ 3275 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3276 3277 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3278 if (!xfs_has_v3inodes(mp)) { 3279 if (ip->i_flushiter == DI_MAX_FLUSH) 3280 ip->i_flushiter = 0; 3281 } 3282 3283 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3284 if (xfs_inode_has_attr_fork(ip)) 3285 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3286 3287 /* 3288 * We've recorded everything logged in the inode, so we'd like to clear 3289 * the ili_fields bits so we don't log and flush things unnecessarily. 3290 * However, we can't stop logging all this information until the data 3291 * we've copied into the disk buffer is written to disk. If we did we 3292 * might overwrite the copy of the inode in the log with all the data 3293 * after re-logging only part of it, and in the face of a crash we 3294 * wouldn't have all the data we need to recover. 3295 * 3296 * What we do is move the bits to the ili_last_fields field. When 3297 * logging the inode, these bits are moved back to the ili_fields field. 3298 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3299 * we know that the information those bits represent is permanently on 3300 * disk. As long as the flush completes before the inode is logged 3301 * again, then both ili_fields and ili_last_fields will be cleared. 3302 */ 3303 error = 0; 3304 flush_out: 3305 spin_lock(&iip->ili_lock); 3306 iip->ili_last_fields = iip->ili_fields; 3307 iip->ili_fields = 0; 3308 iip->ili_fsync_fields = 0; 3309 spin_unlock(&iip->ili_lock); 3310 3311 /* 3312 * Store the current LSN of the inode so that we can tell whether the 3313 * item has moved in the AIL from xfs_buf_inode_iodone(). 3314 */ 3315 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3316 &iip->ili_item.li_lsn); 3317 3318 /* generate the checksum. */ 3319 xfs_dinode_calc_crc(mp, dip); 3320 return error; 3321 } 3322 3323 /* 3324 * Non-blocking flush of dirty inode metadata into the backing buffer. 3325 * 3326 * The caller must have a reference to the inode and hold the cluster buffer 3327 * locked. The function will walk across all the inodes on the cluster buffer it 3328 * can find and lock without blocking, and flush them to the cluster buffer. 3329 * 3330 * On successful flushing of at least one inode, the caller must write out the 3331 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3332 * the caller needs to release the buffer. On failure, the filesystem will be 3333 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3334 * will be returned. 3335 */ 3336 int 3337 xfs_iflush_cluster( 3338 struct xfs_buf *bp) 3339 { 3340 struct xfs_mount *mp = bp->b_mount; 3341 struct xfs_log_item *lip, *n; 3342 struct xfs_inode *ip; 3343 struct xfs_inode_log_item *iip; 3344 int clcount = 0; 3345 int error = 0; 3346 3347 /* 3348 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3349 * will remove itself from the list. 3350 */ 3351 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3352 iip = (struct xfs_inode_log_item *)lip; 3353 ip = iip->ili_inode; 3354 3355 /* 3356 * Quick and dirty check to avoid locks if possible. 3357 */ 3358 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3359 continue; 3360 if (xfs_ipincount(ip)) 3361 continue; 3362 3363 /* 3364 * The inode is still attached to the buffer, which means it is 3365 * dirty but reclaim might try to grab it. Check carefully for 3366 * that, and grab the ilock while still holding the i_flags_lock 3367 * to guarantee reclaim will not be able to reclaim this inode 3368 * once we drop the i_flags_lock. 3369 */ 3370 spin_lock(&ip->i_flags_lock); 3371 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3372 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3373 spin_unlock(&ip->i_flags_lock); 3374 continue; 3375 } 3376 3377 /* 3378 * ILOCK will pin the inode against reclaim and prevent 3379 * concurrent transactions modifying the inode while we are 3380 * flushing the inode. If we get the lock, set the flushing 3381 * state before we drop the i_flags_lock. 3382 */ 3383 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3384 spin_unlock(&ip->i_flags_lock); 3385 continue; 3386 } 3387 __xfs_iflags_set(ip, XFS_IFLUSHING); 3388 spin_unlock(&ip->i_flags_lock); 3389 3390 /* 3391 * Abort flushing this inode if we are shut down because the 3392 * inode may not currently be in the AIL. This can occur when 3393 * log I/O failure unpins the inode without inserting into the 3394 * AIL, leaving a dirty/unpinned inode attached to the buffer 3395 * that otherwise looks like it should be flushed. 3396 */ 3397 if (xlog_is_shutdown(mp->m_log)) { 3398 xfs_iunpin_wait(ip); 3399 xfs_iflush_abort(ip); 3400 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3401 error = -EIO; 3402 continue; 3403 } 3404 3405 /* don't block waiting on a log force to unpin dirty inodes */ 3406 if (xfs_ipincount(ip)) { 3407 xfs_iflags_clear(ip, XFS_IFLUSHING); 3408 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3409 continue; 3410 } 3411 3412 if (!xfs_inode_clean(ip)) 3413 error = xfs_iflush(ip, bp); 3414 else 3415 xfs_iflags_clear(ip, XFS_IFLUSHING); 3416 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3417 if (error) 3418 break; 3419 clcount++; 3420 } 3421 3422 if (error) { 3423 /* 3424 * Shutdown first so we kill the log before we release this 3425 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3426 * of the log, failing it before the _log_ is shut down can 3427 * result in the log tail being moved forward in the journal 3428 * on disk because log writes can still be taking place. Hence 3429 * unpinning the tail will allow the ICREATE intent to be 3430 * removed from the log an recovery will fail with uninitialised 3431 * inode cluster buffers. 3432 */ 3433 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3434 bp->b_flags |= XBF_ASYNC; 3435 xfs_buf_ioend_fail(bp); 3436 return error; 3437 } 3438 3439 if (!clcount) 3440 return -EAGAIN; 3441 3442 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3443 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3444 return 0; 3445 3446 } 3447 3448 /* Release an inode. */ 3449 void 3450 xfs_irele( 3451 struct xfs_inode *ip) 3452 { 3453 trace_xfs_irele(ip, _RET_IP_); 3454 iput(VFS_I(ip)); 3455 } 3456 3457 /* 3458 * Ensure all commited transactions touching the inode are written to the log. 3459 */ 3460 int 3461 xfs_log_force_inode( 3462 struct xfs_inode *ip) 3463 { 3464 xfs_csn_t seq = 0; 3465 3466 xfs_ilock(ip, XFS_ILOCK_SHARED); 3467 if (xfs_ipincount(ip)) 3468 seq = ip->i_itemp->ili_commit_seq; 3469 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3470 3471 if (!seq) 3472 return 0; 3473 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3474 } 3475 3476 /* 3477 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3478 * abide vfs locking order (lowest pointer value goes first) and breaking the 3479 * layout leases before proceeding. The loop is needed because we cannot call 3480 * the blocking break_layout() with the iolocks held, and therefore have to 3481 * back out both locks. 3482 */ 3483 static int 3484 xfs_iolock_two_inodes_and_break_layout( 3485 struct inode *src, 3486 struct inode *dest) 3487 { 3488 int error; 3489 3490 if (src > dest) 3491 swap(src, dest); 3492 3493 retry: 3494 /* Wait to break both inodes' layouts before we start locking. */ 3495 error = break_layout(src, true); 3496 if (error) 3497 return error; 3498 if (src != dest) { 3499 error = break_layout(dest, true); 3500 if (error) 3501 return error; 3502 } 3503 3504 /* Lock one inode and make sure nobody got in and leased it. */ 3505 inode_lock(src); 3506 error = break_layout(src, false); 3507 if (error) { 3508 inode_unlock(src); 3509 if (error == -EWOULDBLOCK) 3510 goto retry; 3511 return error; 3512 } 3513 3514 if (src == dest) 3515 return 0; 3516 3517 /* Lock the other inode and make sure nobody got in and leased it. */ 3518 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3519 error = break_layout(dest, false); 3520 if (error) { 3521 inode_unlock(src); 3522 inode_unlock(dest); 3523 if (error == -EWOULDBLOCK) 3524 goto retry; 3525 return error; 3526 } 3527 3528 return 0; 3529 } 3530 3531 static int 3532 xfs_mmaplock_two_inodes_and_break_dax_layout( 3533 struct xfs_inode *ip1, 3534 struct xfs_inode *ip2) 3535 { 3536 int error; 3537 bool retry; 3538 struct page *page; 3539 3540 if (ip1->i_ino > ip2->i_ino) 3541 swap(ip1, ip2); 3542 3543 again: 3544 retry = false; 3545 /* Lock the first inode */ 3546 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3547 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3548 if (error || retry) { 3549 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3550 if (error == 0 && retry) 3551 goto again; 3552 return error; 3553 } 3554 3555 if (ip1 == ip2) 3556 return 0; 3557 3558 /* Nested lock the second inode */ 3559 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3560 /* 3561 * We cannot use xfs_break_dax_layouts() directly here because it may 3562 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3563 * for this nested lock case. 3564 */ 3565 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3566 if (page && page_ref_count(page) != 1) { 3567 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3568 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3569 goto again; 3570 } 3571 3572 return 0; 3573 } 3574 3575 /* 3576 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3577 * mmap activity. 3578 */ 3579 int 3580 xfs_ilock2_io_mmap( 3581 struct xfs_inode *ip1, 3582 struct xfs_inode *ip2) 3583 { 3584 int ret; 3585 3586 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3587 if (ret) 3588 return ret; 3589 3590 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3591 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3592 if (ret) { 3593 inode_unlock(VFS_I(ip2)); 3594 if (ip1 != ip2) 3595 inode_unlock(VFS_I(ip1)); 3596 return ret; 3597 } 3598 } else 3599 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3600 VFS_I(ip2)->i_mapping); 3601 3602 return 0; 3603 } 3604 3605 /* Unlock both inodes to allow IO and mmap activity. */ 3606 void 3607 xfs_iunlock2_io_mmap( 3608 struct xfs_inode *ip1, 3609 struct xfs_inode *ip2) 3610 { 3611 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3612 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3613 if (ip1 != ip2) 3614 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3615 } else 3616 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3617 VFS_I(ip2)->i_mapping); 3618 3619 inode_unlock(VFS_I(ip2)); 3620 if (ip1 != ip2) 3621 inode_unlock(VFS_I(ip1)); 3622 } 3623 3624 /* 3625 * Reload the incore inode list for this inode. Caller should ensure that 3626 * the link count cannot change, either by taking ILOCK_SHARED or otherwise 3627 * preventing other threads from executing. 3628 */ 3629 int 3630 xfs_inode_reload_unlinked_bucket( 3631 struct xfs_trans *tp, 3632 struct xfs_inode *ip) 3633 { 3634 struct xfs_mount *mp = tp->t_mountp; 3635 struct xfs_buf *agibp; 3636 struct xfs_agi *agi; 3637 struct xfs_perag *pag; 3638 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 3639 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 3640 xfs_agino_t prev_agino, next_agino; 3641 unsigned int bucket; 3642 bool foundit = false; 3643 int error; 3644 3645 /* Grab the first inode in the list */ 3646 pag = xfs_perag_get(mp, agno); 3647 error = xfs_ialloc_read_agi(pag, tp, &agibp); 3648 xfs_perag_put(pag); 3649 if (error) 3650 return error; 3651 3652 /* 3653 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the 3654 * incore unlinked list pointers for this inode. Check once more to 3655 * see if we raced with anyone else to reload the unlinked list. 3656 */ 3657 if (!xfs_inode_unlinked_incomplete(ip)) { 3658 foundit = true; 3659 goto out_agibp; 3660 } 3661 3662 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 3663 agi = agibp->b_addr; 3664 3665 trace_xfs_inode_reload_unlinked_bucket(ip); 3666 3667 xfs_info_ratelimited(mp, 3668 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.", 3669 agino, agno); 3670 3671 prev_agino = NULLAGINO; 3672 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3673 while (next_agino != NULLAGINO) { 3674 struct xfs_inode *next_ip = NULL; 3675 3676 /* Found this caller's inode, set its backlink. */ 3677 if (next_agino == agino) { 3678 next_ip = ip; 3679 next_ip->i_prev_unlinked = prev_agino; 3680 foundit = true; 3681 goto next_inode; 3682 } 3683 3684 /* Try in-memory lookup first. */ 3685 next_ip = xfs_iunlink_lookup(pag, next_agino); 3686 if (next_ip) 3687 goto next_inode; 3688 3689 /* Inode not in memory, try reloading it. */ 3690 error = xfs_iunlink_reload_next(tp, agibp, prev_agino, 3691 next_agino); 3692 if (error) 3693 break; 3694 3695 /* Grab the reloaded inode. */ 3696 next_ip = xfs_iunlink_lookup(pag, next_agino); 3697 if (!next_ip) { 3698 /* No incore inode at all? We reloaded it... */ 3699 ASSERT(next_ip != NULL); 3700 error = -EFSCORRUPTED; 3701 break; 3702 } 3703 3704 next_inode: 3705 prev_agino = next_agino; 3706 next_agino = next_ip->i_next_unlinked; 3707 } 3708 3709 out_agibp: 3710 xfs_trans_brelse(tp, agibp); 3711 /* Should have found this inode somewhere in the iunlinked bucket. */ 3712 if (!error && !foundit) 3713 error = -EFSCORRUPTED; 3714 return error; 3715 } 3716 3717 /* Decide if this inode is missing its unlinked list and reload it. */ 3718 int 3719 xfs_inode_reload_unlinked( 3720 struct xfs_inode *ip) 3721 { 3722 struct xfs_trans *tp; 3723 int error; 3724 3725 error = xfs_trans_alloc_empty(ip->i_mount, &tp); 3726 if (error) 3727 return error; 3728 3729 xfs_ilock(ip, XFS_ILOCK_SHARED); 3730 if (xfs_inode_unlinked_incomplete(ip)) 3731 error = xfs_inode_reload_unlinked_bucket(tp, ip); 3732 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3733 xfs_trans_cancel(tp); 3734 3735 return error; 3736 } 3737