xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 
54 kmem_zone_t *xfs_inode_zone;
55 
56 /*
57  * Used in xfs_itruncate_extents().  This is the maximum number of extents
58  * freed from a file in a single transaction.
59  */
60 #define	XFS_ITRUNC_MAX_EXTENTS	2
61 
62 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
63 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
64 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
65 
66 /*
67  * helper function to extract extent size hint from inode
68  */
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 	struct xfs_inode	*ip)
72 {
73 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 		return ip->i_d.di_extsize;
75 	if (XFS_IS_REALTIME_INODE(ip))
76 		return ip->i_mount->m_sb.sb_rextsize;
77 	return 0;
78 }
79 
80 /*
81  * Helper function to extract CoW extent size hint from inode.
82  * Between the extent size hint and the CoW extent size hint, we
83  * return the greater of the two.  If the value is zero (automatic),
84  * use the default size.
85  */
86 xfs_extlen_t
87 xfs_get_cowextsz_hint(
88 	struct xfs_inode	*ip)
89 {
90 	xfs_extlen_t		a, b;
91 
92 	a = 0;
93 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
94 		a = ip->i_d.di_cowextsize;
95 	b = xfs_get_extsz_hint(ip);
96 
97 	a = max(a, b);
98 	if (a == 0)
99 		return XFS_DEFAULT_COWEXTSZ_HINT;
100 	return a;
101 }
102 
103 /*
104  * These two are wrapper routines around the xfs_ilock() routine used to
105  * centralize some grungy code.  They are used in places that wish to lock the
106  * inode solely for reading the extents.  The reason these places can't just
107  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
108  * bringing in of the extents from disk for a file in b-tree format.  If the
109  * inode is in b-tree format, then we need to lock the inode exclusively until
110  * the extents are read in.  Locking it exclusively all the time would limit
111  * our parallelism unnecessarily, though.  What we do instead is check to see
112  * if the extents have been read in yet, and only lock the inode exclusively
113  * if they have not.
114  *
115  * The functions return a value which should be given to the corresponding
116  * xfs_iunlock() call.
117  */
118 uint
119 xfs_ilock_data_map_shared(
120 	struct xfs_inode	*ip)
121 {
122 	uint			lock_mode = XFS_ILOCK_SHARED;
123 
124 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
125 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
126 		lock_mode = XFS_ILOCK_EXCL;
127 	xfs_ilock(ip, lock_mode);
128 	return lock_mode;
129 }
130 
131 uint
132 xfs_ilock_attr_map_shared(
133 	struct xfs_inode	*ip)
134 {
135 	uint			lock_mode = XFS_ILOCK_SHARED;
136 
137 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
138 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
139 		lock_mode = XFS_ILOCK_EXCL;
140 	xfs_ilock(ip, lock_mode);
141 	return lock_mode;
142 }
143 
144 /*
145  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
146  * the i_lock.  This routine allows various combinations of the locks to be
147  * obtained.
148  *
149  * The 3 locks should always be ordered so that the IO lock is obtained first,
150  * the mmap lock second and the ilock last in order to prevent deadlock.
151  *
152  * Basic locking order:
153  *
154  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
155  *
156  * mmap_sem locking order:
157  *
158  * i_iolock -> page lock -> mmap_sem
159  * mmap_sem -> i_mmap_lock -> page_lock
160  *
161  * The difference in mmap_sem locking order mean that we cannot hold the
162  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
163  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
164  * in get_user_pages() to map the user pages into the kernel address space for
165  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
166  * page faults already hold the mmap_sem.
167  *
168  * Hence to serialise fully against both syscall and mmap based IO, we need to
169  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
170  * taken in places where we need to invalidate the page cache in a race
171  * free manner (e.g. truncate, hole punch and other extent manipulation
172  * functions).
173  */
174 void
175 xfs_ilock(
176 	xfs_inode_t		*ip,
177 	uint			lock_flags)
178 {
179 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
180 
181 	/*
182 	 * You can't set both SHARED and EXCL for the same lock,
183 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
184 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
185 	 */
186 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
187 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
188 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
189 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
190 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
191 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
192 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
193 
194 	if (lock_flags & XFS_IOLOCK_EXCL)
195 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
196 	else if (lock_flags & XFS_IOLOCK_SHARED)
197 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
198 
199 	if (lock_flags & XFS_MMAPLOCK_EXCL)
200 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
201 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
202 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
203 
204 	if (lock_flags & XFS_ILOCK_EXCL)
205 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
206 	else if (lock_flags & XFS_ILOCK_SHARED)
207 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
208 }
209 
210 /*
211  * This is just like xfs_ilock(), except that the caller
212  * is guaranteed not to sleep.  It returns 1 if it gets
213  * the requested locks and 0 otherwise.  If the IO lock is
214  * obtained but the inode lock cannot be, then the IO lock
215  * is dropped before returning.
216  *
217  * ip -- the inode being locked
218  * lock_flags -- this parameter indicates the inode's locks to be
219  *       to be locked.  See the comment for xfs_ilock() for a list
220  *	 of valid values.
221  */
222 int
223 xfs_ilock_nowait(
224 	xfs_inode_t		*ip,
225 	uint			lock_flags)
226 {
227 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
228 
229 	/*
230 	 * You can't set both SHARED and EXCL for the same lock,
231 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
232 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
233 	 */
234 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
235 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
236 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
237 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
238 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
239 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
240 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
241 
242 	if (lock_flags & XFS_IOLOCK_EXCL) {
243 		if (!mrtryupdate(&ip->i_iolock))
244 			goto out;
245 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
246 		if (!mrtryaccess(&ip->i_iolock))
247 			goto out;
248 	}
249 
250 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
251 		if (!mrtryupdate(&ip->i_mmaplock))
252 			goto out_undo_iolock;
253 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
254 		if (!mrtryaccess(&ip->i_mmaplock))
255 			goto out_undo_iolock;
256 	}
257 
258 	if (lock_flags & XFS_ILOCK_EXCL) {
259 		if (!mrtryupdate(&ip->i_lock))
260 			goto out_undo_mmaplock;
261 	} else if (lock_flags & XFS_ILOCK_SHARED) {
262 		if (!mrtryaccess(&ip->i_lock))
263 			goto out_undo_mmaplock;
264 	}
265 	return 1;
266 
267 out_undo_mmaplock:
268 	if (lock_flags & XFS_MMAPLOCK_EXCL)
269 		mrunlock_excl(&ip->i_mmaplock);
270 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
271 		mrunlock_shared(&ip->i_mmaplock);
272 out_undo_iolock:
273 	if (lock_flags & XFS_IOLOCK_EXCL)
274 		mrunlock_excl(&ip->i_iolock);
275 	else if (lock_flags & XFS_IOLOCK_SHARED)
276 		mrunlock_shared(&ip->i_iolock);
277 out:
278 	return 0;
279 }
280 
281 /*
282  * xfs_iunlock() is used to drop the inode locks acquired with
283  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
284  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
285  * that we know which locks to drop.
286  *
287  * ip -- the inode being unlocked
288  * lock_flags -- this parameter indicates the inode's locks to be
289  *       to be unlocked.  See the comment for xfs_ilock() for a list
290  *	 of valid values for this parameter.
291  *
292  */
293 void
294 xfs_iunlock(
295 	xfs_inode_t		*ip,
296 	uint			lock_flags)
297 {
298 	/*
299 	 * You can't set both SHARED and EXCL for the same lock,
300 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
301 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
302 	 */
303 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
304 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
305 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
306 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
307 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
308 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
309 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
310 	ASSERT(lock_flags != 0);
311 
312 	if (lock_flags & XFS_IOLOCK_EXCL)
313 		mrunlock_excl(&ip->i_iolock);
314 	else if (lock_flags & XFS_IOLOCK_SHARED)
315 		mrunlock_shared(&ip->i_iolock);
316 
317 	if (lock_flags & XFS_MMAPLOCK_EXCL)
318 		mrunlock_excl(&ip->i_mmaplock);
319 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
320 		mrunlock_shared(&ip->i_mmaplock);
321 
322 	if (lock_flags & XFS_ILOCK_EXCL)
323 		mrunlock_excl(&ip->i_lock);
324 	else if (lock_flags & XFS_ILOCK_SHARED)
325 		mrunlock_shared(&ip->i_lock);
326 
327 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
328 }
329 
330 /*
331  * give up write locks.  the i/o lock cannot be held nested
332  * if it is being demoted.
333  */
334 void
335 xfs_ilock_demote(
336 	xfs_inode_t		*ip,
337 	uint			lock_flags)
338 {
339 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
340 	ASSERT((lock_flags &
341 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
342 
343 	if (lock_flags & XFS_ILOCK_EXCL)
344 		mrdemote(&ip->i_lock);
345 	if (lock_flags & XFS_MMAPLOCK_EXCL)
346 		mrdemote(&ip->i_mmaplock);
347 	if (lock_flags & XFS_IOLOCK_EXCL)
348 		mrdemote(&ip->i_iolock);
349 
350 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
351 }
352 
353 #if defined(DEBUG) || defined(XFS_WARN)
354 int
355 xfs_isilocked(
356 	xfs_inode_t		*ip,
357 	uint			lock_flags)
358 {
359 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
360 		if (!(lock_flags & XFS_ILOCK_SHARED))
361 			return !!ip->i_lock.mr_writer;
362 		return rwsem_is_locked(&ip->i_lock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
367 			return !!ip->i_mmaplock.mr_writer;
368 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
369 	}
370 
371 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
372 		if (!(lock_flags & XFS_IOLOCK_SHARED))
373 			return !!ip->i_iolock.mr_writer;
374 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
375 	}
376 
377 	ASSERT(0);
378 	return 0;
379 }
380 #endif
381 
382 #ifdef DEBUG
383 int xfs_locked_n;
384 int xfs_small_retries;
385 int xfs_middle_retries;
386 int xfs_lots_retries;
387 int xfs_lock_delays;
388 #endif
389 
390 /*
391  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
392  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
393  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
394  * errors and warnings.
395  */
396 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
397 static bool
398 xfs_lockdep_subclass_ok(
399 	int subclass)
400 {
401 	return subclass < MAX_LOCKDEP_SUBCLASSES;
402 }
403 #else
404 #define xfs_lockdep_subclass_ok(subclass)	(true)
405 #endif
406 
407 /*
408  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
409  * value. This can be called for any type of inode lock combination, including
410  * parent locking. Care must be taken to ensure we don't overrun the subclass
411  * storage fields in the class mask we build.
412  */
413 static inline int
414 xfs_lock_inumorder(int lock_mode, int subclass)
415 {
416 	int	class = 0;
417 
418 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
419 			      XFS_ILOCK_RTSUM)));
420 	ASSERT(xfs_lockdep_subclass_ok(subclass));
421 
422 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
423 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
424 		ASSERT(xfs_lockdep_subclass_ok(subclass +
425 						XFS_IOLOCK_PARENT_VAL));
426 		class += subclass << XFS_IOLOCK_SHIFT;
427 		if (lock_mode & XFS_IOLOCK_PARENT)
428 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
429 	}
430 
431 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
432 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
433 		class += subclass << XFS_MMAPLOCK_SHIFT;
434 	}
435 
436 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
437 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
438 		class += subclass << XFS_ILOCK_SHIFT;
439 	}
440 
441 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
442 }
443 
444 /*
445  * The following routine will lock n inodes in exclusive mode.  We assume the
446  * caller calls us with the inodes in i_ino order.
447  *
448  * We need to detect deadlock where an inode that we lock is in the AIL and we
449  * start waiting for another inode that is locked by a thread in a long running
450  * transaction (such as truncate). This can result in deadlock since the long
451  * running trans might need to wait for the inode we just locked in order to
452  * push the tail and free space in the log.
453  *
454  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
455  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
456  * lock more than one at a time, lockdep will report false positives saying we
457  * have violated locking orders.
458  */
459 static void
460 xfs_lock_inodes(
461 	xfs_inode_t	**ips,
462 	int		inodes,
463 	uint		lock_mode)
464 {
465 	int		attempts = 0, i, j, try_lock;
466 	xfs_log_item_t	*lp;
467 
468 	/*
469 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
470 	 * support an arbitrary depth of locking here, but absolute limits on
471 	 * inodes depend on the the type of locking and the limits placed by
472 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
473 	 * the asserts.
474 	 */
475 	ASSERT(ips && inodes >= 2 && inodes <= 5);
476 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
477 			    XFS_ILOCK_EXCL));
478 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
479 			      XFS_ILOCK_SHARED)));
480 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
481 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
482 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
483 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
484 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
485 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
486 
487 	if (lock_mode & XFS_IOLOCK_EXCL) {
488 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
489 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
490 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
491 
492 	try_lock = 0;
493 	i = 0;
494 again:
495 	for (; i < inodes; i++) {
496 		ASSERT(ips[i]);
497 
498 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
499 			continue;
500 
501 		/*
502 		 * If try_lock is not set yet, make sure all locked inodes are
503 		 * not in the AIL.  If any are, set try_lock to be used later.
504 		 */
505 		if (!try_lock) {
506 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
507 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
508 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
509 					try_lock++;
510 			}
511 		}
512 
513 		/*
514 		 * If any of the previous locks we have locked is in the AIL,
515 		 * we must TRY to get the second and subsequent locks. If
516 		 * we can't get any, we must release all we have
517 		 * and try again.
518 		 */
519 		if (!try_lock) {
520 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
521 			continue;
522 		}
523 
524 		/* try_lock means we have an inode locked that is in the AIL. */
525 		ASSERT(i != 0);
526 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
527 			continue;
528 
529 		/*
530 		 * Unlock all previous guys and try again.  xfs_iunlock will try
531 		 * to push the tail if the inode is in the AIL.
532 		 */
533 		attempts++;
534 		for (j = i - 1; j >= 0; j--) {
535 			/*
536 			 * Check to see if we've already unlocked this one.  Not
537 			 * the first one going back, and the inode ptr is the
538 			 * same.
539 			 */
540 			if (j != (i - 1) && ips[j] == ips[j + 1])
541 				continue;
542 
543 			xfs_iunlock(ips[j], lock_mode);
544 		}
545 
546 		if ((attempts % 5) == 0) {
547 			delay(1); /* Don't just spin the CPU */
548 #ifdef DEBUG
549 			xfs_lock_delays++;
550 #endif
551 		}
552 		i = 0;
553 		try_lock = 0;
554 		goto again;
555 	}
556 
557 #ifdef DEBUG
558 	if (attempts) {
559 		if (attempts < 5) xfs_small_retries++;
560 		else if (attempts < 100) xfs_middle_retries++;
561 		else xfs_lots_retries++;
562 	} else {
563 		xfs_locked_n++;
564 	}
565 #endif
566 }
567 
568 /*
569  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
570  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
571  * lock more than one at a time, lockdep will report false positives saying we
572  * have violated locking orders.
573  */
574 void
575 xfs_lock_two_inodes(
576 	xfs_inode_t		*ip0,
577 	xfs_inode_t		*ip1,
578 	uint			lock_mode)
579 {
580 	xfs_inode_t		*temp;
581 	int			attempts = 0;
582 	xfs_log_item_t		*lp;
583 
584 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
585 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
586 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
587 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
588 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
589 
590 	ASSERT(ip0->i_ino != ip1->i_ino);
591 
592 	if (ip0->i_ino > ip1->i_ino) {
593 		temp = ip0;
594 		ip0 = ip1;
595 		ip1 = temp;
596 	}
597 
598  again:
599 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
600 
601 	/*
602 	 * If the first lock we have locked is in the AIL, we must TRY to get
603 	 * the second lock. If we can't get it, we must release the first one
604 	 * and try again.
605 	 */
606 	lp = (xfs_log_item_t *)ip0->i_itemp;
607 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
608 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
609 			xfs_iunlock(ip0, lock_mode);
610 			if ((++attempts % 5) == 0)
611 				delay(1); /* Don't just spin the CPU */
612 			goto again;
613 		}
614 	} else {
615 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
616 	}
617 }
618 
619 
620 void
621 __xfs_iflock(
622 	struct xfs_inode	*ip)
623 {
624 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
625 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
626 
627 	do {
628 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
629 		if (xfs_isiflocked(ip))
630 			io_schedule();
631 	} while (!xfs_iflock_nowait(ip));
632 
633 	finish_wait(wq, &wait.wait);
634 }
635 
636 STATIC uint
637 _xfs_dic2xflags(
638 	__uint16_t		di_flags,
639 	uint64_t		di_flags2,
640 	bool			has_attr)
641 {
642 	uint			flags = 0;
643 
644 	if (di_flags & XFS_DIFLAG_ANY) {
645 		if (di_flags & XFS_DIFLAG_REALTIME)
646 			flags |= FS_XFLAG_REALTIME;
647 		if (di_flags & XFS_DIFLAG_PREALLOC)
648 			flags |= FS_XFLAG_PREALLOC;
649 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
650 			flags |= FS_XFLAG_IMMUTABLE;
651 		if (di_flags & XFS_DIFLAG_APPEND)
652 			flags |= FS_XFLAG_APPEND;
653 		if (di_flags & XFS_DIFLAG_SYNC)
654 			flags |= FS_XFLAG_SYNC;
655 		if (di_flags & XFS_DIFLAG_NOATIME)
656 			flags |= FS_XFLAG_NOATIME;
657 		if (di_flags & XFS_DIFLAG_NODUMP)
658 			flags |= FS_XFLAG_NODUMP;
659 		if (di_flags & XFS_DIFLAG_RTINHERIT)
660 			flags |= FS_XFLAG_RTINHERIT;
661 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
662 			flags |= FS_XFLAG_PROJINHERIT;
663 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
664 			flags |= FS_XFLAG_NOSYMLINKS;
665 		if (di_flags & XFS_DIFLAG_EXTSIZE)
666 			flags |= FS_XFLAG_EXTSIZE;
667 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
668 			flags |= FS_XFLAG_EXTSZINHERIT;
669 		if (di_flags & XFS_DIFLAG_NODEFRAG)
670 			flags |= FS_XFLAG_NODEFRAG;
671 		if (di_flags & XFS_DIFLAG_FILESTREAM)
672 			flags |= FS_XFLAG_FILESTREAM;
673 	}
674 
675 	if (di_flags2 & XFS_DIFLAG2_ANY) {
676 		if (di_flags2 & XFS_DIFLAG2_DAX)
677 			flags |= FS_XFLAG_DAX;
678 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
679 			flags |= FS_XFLAG_COWEXTSIZE;
680 	}
681 
682 	if (has_attr)
683 		flags |= FS_XFLAG_HASATTR;
684 
685 	return flags;
686 }
687 
688 uint
689 xfs_ip2xflags(
690 	struct xfs_inode	*ip)
691 {
692 	struct xfs_icdinode	*dic = &ip->i_d;
693 
694 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
695 }
696 
697 /*
698  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
699  * is allowed, otherwise it has to be an exact match. If a CI match is found,
700  * ci_name->name will point to a the actual name (caller must free) or
701  * will be set to NULL if an exact match is found.
702  */
703 int
704 xfs_lookup(
705 	xfs_inode_t		*dp,
706 	struct xfs_name		*name,
707 	xfs_inode_t		**ipp,
708 	struct xfs_name		*ci_name)
709 {
710 	xfs_ino_t		inum;
711 	int			error;
712 
713 	trace_xfs_lookup(dp, name);
714 
715 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
716 		return -EIO;
717 
718 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
719 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
720 	if (error)
721 		goto out_unlock;
722 
723 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
724 	if (error)
725 		goto out_free_name;
726 
727 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
728 	return 0;
729 
730 out_free_name:
731 	if (ci_name)
732 		kmem_free(ci_name->name);
733 out_unlock:
734 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
735 	*ipp = NULL;
736 	return error;
737 }
738 
739 /*
740  * Allocate an inode on disk and return a copy of its in-core version.
741  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
742  * appropriately within the inode.  The uid and gid for the inode are
743  * set according to the contents of the given cred structure.
744  *
745  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
746  * has a free inode available, call xfs_iget() to obtain the in-core
747  * version of the allocated inode.  Finally, fill in the inode and
748  * log its initial contents.  In this case, ialloc_context would be
749  * set to NULL.
750  *
751  * If xfs_dialloc() does not have an available inode, it will replenish
752  * its supply by doing an allocation. Since we can only do one
753  * allocation within a transaction without deadlocks, we must commit
754  * the current transaction before returning the inode itself.
755  * In this case, therefore, we will set ialloc_context and return.
756  * The caller should then commit the current transaction, start a new
757  * transaction, and call xfs_ialloc() again to actually get the inode.
758  *
759  * To ensure that some other process does not grab the inode that
760  * was allocated during the first call to xfs_ialloc(), this routine
761  * also returns the [locked] bp pointing to the head of the freelist
762  * as ialloc_context.  The caller should hold this buffer across
763  * the commit and pass it back into this routine on the second call.
764  *
765  * If we are allocating quota inodes, we do not have a parent inode
766  * to attach to or associate with (i.e. pip == NULL) because they
767  * are not linked into the directory structure - they are attached
768  * directly to the superblock - and so have no parent.
769  */
770 static int
771 xfs_ialloc(
772 	xfs_trans_t	*tp,
773 	xfs_inode_t	*pip,
774 	umode_t		mode,
775 	xfs_nlink_t	nlink,
776 	xfs_dev_t	rdev,
777 	prid_t		prid,
778 	int		okalloc,
779 	xfs_buf_t	**ialloc_context,
780 	xfs_inode_t	**ipp)
781 {
782 	struct xfs_mount *mp = tp->t_mountp;
783 	xfs_ino_t	ino;
784 	xfs_inode_t	*ip;
785 	uint		flags;
786 	int		error;
787 	struct timespec	tv;
788 	struct inode	*inode;
789 
790 	/*
791 	 * Call the space management code to pick
792 	 * the on-disk inode to be allocated.
793 	 */
794 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
795 			    ialloc_context, &ino);
796 	if (error)
797 		return error;
798 	if (*ialloc_context || ino == NULLFSINO) {
799 		*ipp = NULL;
800 		return 0;
801 	}
802 	ASSERT(*ialloc_context == NULL);
803 
804 	/*
805 	 * Get the in-core inode with the lock held exclusively.
806 	 * This is because we're setting fields here we need
807 	 * to prevent others from looking at until we're done.
808 	 */
809 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
810 			 XFS_ILOCK_EXCL, &ip);
811 	if (error)
812 		return error;
813 	ASSERT(ip != NULL);
814 	inode = VFS_I(ip);
815 
816 	/*
817 	 * We always convert v1 inodes to v2 now - we only support filesystems
818 	 * with >= v2 inode capability, so there is no reason for ever leaving
819 	 * an inode in v1 format.
820 	 */
821 	if (ip->i_d.di_version == 1)
822 		ip->i_d.di_version = 2;
823 
824 	inode->i_mode = mode;
825 	set_nlink(inode, nlink);
826 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
827 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
828 	xfs_set_projid(ip, prid);
829 
830 	if (pip && XFS_INHERIT_GID(pip)) {
831 		ip->i_d.di_gid = pip->i_d.di_gid;
832 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
833 			inode->i_mode |= S_ISGID;
834 	}
835 
836 	/*
837 	 * If the group ID of the new file does not match the effective group
838 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
839 	 * (and only if the irix_sgid_inherit compatibility variable is set).
840 	 */
841 	if ((irix_sgid_inherit) &&
842 	    (inode->i_mode & S_ISGID) &&
843 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
844 		inode->i_mode &= ~S_ISGID;
845 
846 	ip->i_d.di_size = 0;
847 	ip->i_d.di_nextents = 0;
848 	ASSERT(ip->i_d.di_nblocks == 0);
849 
850 	tv = current_time(inode);
851 	inode->i_mtime = tv;
852 	inode->i_atime = tv;
853 	inode->i_ctime = tv;
854 
855 	ip->i_d.di_extsize = 0;
856 	ip->i_d.di_dmevmask = 0;
857 	ip->i_d.di_dmstate = 0;
858 	ip->i_d.di_flags = 0;
859 
860 	if (ip->i_d.di_version == 3) {
861 		inode->i_version = 1;
862 		ip->i_d.di_flags2 = 0;
863 		ip->i_d.di_cowextsize = 0;
864 		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
865 		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
866 	}
867 
868 
869 	flags = XFS_ILOG_CORE;
870 	switch (mode & S_IFMT) {
871 	case S_IFIFO:
872 	case S_IFCHR:
873 	case S_IFBLK:
874 	case S_IFSOCK:
875 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
876 		ip->i_df.if_u2.if_rdev = rdev;
877 		ip->i_df.if_flags = 0;
878 		flags |= XFS_ILOG_DEV;
879 		break;
880 	case S_IFREG:
881 	case S_IFDIR:
882 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
883 			uint64_t	di_flags2 = 0;
884 			uint		di_flags = 0;
885 
886 			if (S_ISDIR(mode)) {
887 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 					di_flags |= XFS_DIFLAG_RTINHERIT;
889 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
891 					ip->i_d.di_extsize = pip->i_d.di_extsize;
892 				}
893 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
894 					di_flags |= XFS_DIFLAG_PROJINHERIT;
895 			} else if (S_ISREG(mode)) {
896 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
897 					di_flags |= XFS_DIFLAG_REALTIME;
898 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
899 					di_flags |= XFS_DIFLAG_EXTSIZE;
900 					ip->i_d.di_extsize = pip->i_d.di_extsize;
901 				}
902 			}
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
904 			    xfs_inherit_noatime)
905 				di_flags |= XFS_DIFLAG_NOATIME;
906 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
907 			    xfs_inherit_nodump)
908 				di_flags |= XFS_DIFLAG_NODUMP;
909 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
910 			    xfs_inherit_sync)
911 				di_flags |= XFS_DIFLAG_SYNC;
912 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
913 			    xfs_inherit_nosymlinks)
914 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
915 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
916 			    xfs_inherit_nodefrag)
917 				di_flags |= XFS_DIFLAG_NODEFRAG;
918 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
919 				di_flags |= XFS_DIFLAG_FILESTREAM;
920 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
921 				di_flags2 |= XFS_DIFLAG2_DAX;
922 
923 			ip->i_d.di_flags |= di_flags;
924 			ip->i_d.di_flags2 |= di_flags2;
925 		}
926 		if (pip &&
927 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
928 		    pip->i_d.di_version == 3 &&
929 		    ip->i_d.di_version == 3) {
930 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
931 				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
932 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
933 			}
934 		}
935 		/* FALLTHROUGH */
936 	case S_IFLNK:
937 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
938 		ip->i_df.if_flags = XFS_IFEXTENTS;
939 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
940 		ip->i_df.if_u1.if_extents = NULL;
941 		break;
942 	default:
943 		ASSERT(0);
944 	}
945 	/*
946 	 * Attribute fork settings for new inode.
947 	 */
948 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
949 	ip->i_d.di_anextents = 0;
950 
951 	/*
952 	 * Log the new values stuffed into the inode.
953 	 */
954 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
955 	xfs_trans_log_inode(tp, ip, flags);
956 
957 	/* now that we have an i_mode we can setup the inode structure */
958 	xfs_setup_inode(ip);
959 
960 	*ipp = ip;
961 	return 0;
962 }
963 
964 /*
965  * Allocates a new inode from disk and return a pointer to the
966  * incore copy. This routine will internally commit the current
967  * transaction and allocate a new one if the Space Manager needed
968  * to do an allocation to replenish the inode free-list.
969  *
970  * This routine is designed to be called from xfs_create and
971  * xfs_create_dir.
972  *
973  */
974 int
975 xfs_dir_ialloc(
976 	xfs_trans_t	**tpp,		/* input: current transaction;
977 					   output: may be a new transaction. */
978 	xfs_inode_t	*dp,		/* directory within whose allocate
979 					   the inode. */
980 	umode_t		mode,
981 	xfs_nlink_t	nlink,
982 	xfs_dev_t	rdev,
983 	prid_t		prid,		/* project id */
984 	int		okalloc,	/* ok to allocate new space */
985 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
986 					   locked. */
987 	int		*committed)
988 
989 {
990 	xfs_trans_t	*tp;
991 	xfs_inode_t	*ip;
992 	xfs_buf_t	*ialloc_context = NULL;
993 	int		code;
994 	void		*dqinfo;
995 	uint		tflags;
996 
997 	tp = *tpp;
998 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
999 
1000 	/*
1001 	 * xfs_ialloc will return a pointer to an incore inode if
1002 	 * the Space Manager has an available inode on the free
1003 	 * list. Otherwise, it will do an allocation and replenish
1004 	 * the freelist.  Since we can only do one allocation per
1005 	 * transaction without deadlocks, we will need to commit the
1006 	 * current transaction and start a new one.  We will then
1007 	 * need to call xfs_ialloc again to get the inode.
1008 	 *
1009 	 * If xfs_ialloc did an allocation to replenish the freelist,
1010 	 * it returns the bp containing the head of the freelist as
1011 	 * ialloc_context. We will hold a lock on it across the
1012 	 * transaction commit so that no other process can steal
1013 	 * the inode(s) that we've just allocated.
1014 	 */
1015 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1016 			  &ialloc_context, &ip);
1017 
1018 	/*
1019 	 * Return an error if we were unable to allocate a new inode.
1020 	 * This should only happen if we run out of space on disk or
1021 	 * encounter a disk error.
1022 	 */
1023 	if (code) {
1024 		*ipp = NULL;
1025 		return code;
1026 	}
1027 	if (!ialloc_context && !ip) {
1028 		*ipp = NULL;
1029 		return -ENOSPC;
1030 	}
1031 
1032 	/*
1033 	 * If the AGI buffer is non-NULL, then we were unable to get an
1034 	 * inode in one operation.  We need to commit the current
1035 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1036 	 * to succeed the second time.
1037 	 */
1038 	if (ialloc_context) {
1039 		/*
1040 		 * Normally, xfs_trans_commit releases all the locks.
1041 		 * We call bhold to hang on to the ialloc_context across
1042 		 * the commit.  Holding this buffer prevents any other
1043 		 * processes from doing any allocations in this
1044 		 * allocation group.
1045 		 */
1046 		xfs_trans_bhold(tp, ialloc_context);
1047 
1048 		/*
1049 		 * We want the quota changes to be associated with the next
1050 		 * transaction, NOT this one. So, detach the dqinfo from this
1051 		 * and attach it to the next transaction.
1052 		 */
1053 		dqinfo = NULL;
1054 		tflags = 0;
1055 		if (tp->t_dqinfo) {
1056 			dqinfo = (void *)tp->t_dqinfo;
1057 			tp->t_dqinfo = NULL;
1058 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1059 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1060 		}
1061 
1062 		code = xfs_trans_roll(&tp, NULL);
1063 		if (committed != NULL)
1064 			*committed = 1;
1065 
1066 		/*
1067 		 * Re-attach the quota info that we detached from prev trx.
1068 		 */
1069 		if (dqinfo) {
1070 			tp->t_dqinfo = dqinfo;
1071 			tp->t_flags |= tflags;
1072 		}
1073 
1074 		if (code) {
1075 			xfs_buf_relse(ialloc_context);
1076 			*tpp = tp;
1077 			*ipp = NULL;
1078 			return code;
1079 		}
1080 		xfs_trans_bjoin(tp, ialloc_context);
1081 
1082 		/*
1083 		 * Call ialloc again. Since we've locked out all
1084 		 * other allocations in this allocation group,
1085 		 * this call should always succeed.
1086 		 */
1087 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1088 				  okalloc, &ialloc_context, &ip);
1089 
1090 		/*
1091 		 * If we get an error at this point, return to the caller
1092 		 * so that the current transaction can be aborted.
1093 		 */
1094 		if (code) {
1095 			*tpp = tp;
1096 			*ipp = NULL;
1097 			return code;
1098 		}
1099 		ASSERT(!ialloc_context && ip);
1100 
1101 	} else {
1102 		if (committed != NULL)
1103 			*committed = 0;
1104 	}
1105 
1106 	*ipp = ip;
1107 	*tpp = tp;
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Decrement the link count on an inode & log the change.  If this causes the
1114  * link count to go to zero, move the inode to AGI unlinked list so that it can
1115  * be freed when the last active reference goes away via xfs_inactive().
1116  */
1117 static int			/* error */
1118 xfs_droplink(
1119 	xfs_trans_t *tp,
1120 	xfs_inode_t *ip)
1121 {
1122 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1123 
1124 	drop_nlink(VFS_I(ip));
1125 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1126 
1127 	if (VFS_I(ip)->i_nlink)
1128 		return 0;
1129 
1130 	return xfs_iunlink(tp, ip);
1131 }
1132 
1133 /*
1134  * Increment the link count on an inode & log the change.
1135  */
1136 static int
1137 xfs_bumplink(
1138 	xfs_trans_t *tp,
1139 	xfs_inode_t *ip)
1140 {
1141 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1142 
1143 	ASSERT(ip->i_d.di_version > 1);
1144 	inc_nlink(VFS_I(ip));
1145 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1146 	return 0;
1147 }
1148 
1149 int
1150 xfs_create(
1151 	xfs_inode_t		*dp,
1152 	struct xfs_name		*name,
1153 	umode_t			mode,
1154 	xfs_dev_t		rdev,
1155 	xfs_inode_t		**ipp)
1156 {
1157 	int			is_dir = S_ISDIR(mode);
1158 	struct xfs_mount	*mp = dp->i_mount;
1159 	struct xfs_inode	*ip = NULL;
1160 	struct xfs_trans	*tp = NULL;
1161 	int			error;
1162 	struct xfs_defer_ops	dfops;
1163 	xfs_fsblock_t		first_block;
1164 	bool                    unlock_dp_on_error = false;
1165 	prid_t			prid;
1166 	struct xfs_dquot	*udqp = NULL;
1167 	struct xfs_dquot	*gdqp = NULL;
1168 	struct xfs_dquot	*pdqp = NULL;
1169 	struct xfs_trans_res	*tres;
1170 	uint			resblks;
1171 
1172 	trace_xfs_create(dp, name);
1173 
1174 	if (XFS_FORCED_SHUTDOWN(mp))
1175 		return -EIO;
1176 
1177 	prid = xfs_get_initial_prid(dp);
1178 
1179 	/*
1180 	 * Make sure that we have allocated dquot(s) on disk.
1181 	 */
1182 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1183 					xfs_kgid_to_gid(current_fsgid()), prid,
1184 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1185 					&udqp, &gdqp, &pdqp);
1186 	if (error)
1187 		return error;
1188 
1189 	if (is_dir) {
1190 		rdev = 0;
1191 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1192 		tres = &M_RES(mp)->tr_mkdir;
1193 	} else {
1194 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1195 		tres = &M_RES(mp)->tr_create;
1196 	}
1197 
1198 	/*
1199 	 * Initially assume that the file does not exist and
1200 	 * reserve the resources for that case.  If that is not
1201 	 * the case we'll drop the one we have and get a more
1202 	 * appropriate transaction later.
1203 	 */
1204 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1205 	if (error == -ENOSPC) {
1206 		/* flush outstanding delalloc blocks and retry */
1207 		xfs_flush_inodes(mp);
1208 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1209 	}
1210 	if (error == -ENOSPC) {
1211 		/* No space at all so try a "no-allocation" reservation */
1212 		resblks = 0;
1213 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1214 	}
1215 	if (error)
1216 		goto out_release_inode;
1217 
1218 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1219 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1220 	unlock_dp_on_error = true;
1221 
1222 	xfs_defer_init(&dfops, &first_block);
1223 
1224 	/*
1225 	 * Reserve disk quota and the inode.
1226 	 */
1227 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1228 						pdqp, resblks, 1, 0);
1229 	if (error)
1230 		goto out_trans_cancel;
1231 
1232 	if (!resblks) {
1233 		error = xfs_dir_canenter(tp, dp, name);
1234 		if (error)
1235 			goto out_trans_cancel;
1236 	}
1237 
1238 	/*
1239 	 * A newly created regular or special file just has one directory
1240 	 * entry pointing to them, but a directory also the "." entry
1241 	 * pointing to itself.
1242 	 */
1243 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1244 			       prid, resblks > 0, &ip, NULL);
1245 	if (error)
1246 		goto out_trans_cancel;
1247 
1248 	/*
1249 	 * Now we join the directory inode to the transaction.  We do not do it
1250 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1251 	 * (and release all the locks).  An error from here on will result in
1252 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1253 	 * error path.
1254 	 */
1255 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1256 	unlock_dp_on_error = false;
1257 
1258 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1259 					&first_block, &dfops, resblks ?
1260 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1261 	if (error) {
1262 		ASSERT(error != -ENOSPC);
1263 		goto out_trans_cancel;
1264 	}
1265 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1266 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1267 
1268 	if (is_dir) {
1269 		error = xfs_dir_init(tp, ip, dp);
1270 		if (error)
1271 			goto out_bmap_cancel;
1272 
1273 		error = xfs_bumplink(tp, dp);
1274 		if (error)
1275 			goto out_bmap_cancel;
1276 	}
1277 
1278 	/*
1279 	 * If this is a synchronous mount, make sure that the
1280 	 * create transaction goes to disk before returning to
1281 	 * the user.
1282 	 */
1283 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1284 		xfs_trans_set_sync(tp);
1285 
1286 	/*
1287 	 * Attach the dquot(s) to the inodes and modify them incore.
1288 	 * These ids of the inode couldn't have changed since the new
1289 	 * inode has been locked ever since it was created.
1290 	 */
1291 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1292 
1293 	error = xfs_defer_finish(&tp, &dfops, NULL);
1294 	if (error)
1295 		goto out_bmap_cancel;
1296 
1297 	error = xfs_trans_commit(tp);
1298 	if (error)
1299 		goto out_release_inode;
1300 
1301 	xfs_qm_dqrele(udqp);
1302 	xfs_qm_dqrele(gdqp);
1303 	xfs_qm_dqrele(pdqp);
1304 
1305 	*ipp = ip;
1306 	return 0;
1307 
1308  out_bmap_cancel:
1309 	xfs_defer_cancel(&dfops);
1310  out_trans_cancel:
1311 	xfs_trans_cancel(tp);
1312  out_release_inode:
1313 	/*
1314 	 * Wait until after the current transaction is aborted to finish the
1315 	 * setup of the inode and release the inode.  This prevents recursive
1316 	 * transactions and deadlocks from xfs_inactive.
1317 	 */
1318 	if (ip) {
1319 		xfs_finish_inode_setup(ip);
1320 		IRELE(ip);
1321 	}
1322 
1323 	xfs_qm_dqrele(udqp);
1324 	xfs_qm_dqrele(gdqp);
1325 	xfs_qm_dqrele(pdqp);
1326 
1327 	if (unlock_dp_on_error)
1328 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1329 	return error;
1330 }
1331 
1332 int
1333 xfs_create_tmpfile(
1334 	struct xfs_inode	*dp,
1335 	struct dentry		*dentry,
1336 	umode_t			mode,
1337 	struct xfs_inode	**ipp)
1338 {
1339 	struct xfs_mount	*mp = dp->i_mount;
1340 	struct xfs_inode	*ip = NULL;
1341 	struct xfs_trans	*tp = NULL;
1342 	int			error;
1343 	prid_t                  prid;
1344 	struct xfs_dquot	*udqp = NULL;
1345 	struct xfs_dquot	*gdqp = NULL;
1346 	struct xfs_dquot	*pdqp = NULL;
1347 	struct xfs_trans_res	*tres;
1348 	uint			resblks;
1349 
1350 	if (XFS_FORCED_SHUTDOWN(mp))
1351 		return -EIO;
1352 
1353 	prid = xfs_get_initial_prid(dp);
1354 
1355 	/*
1356 	 * Make sure that we have allocated dquot(s) on disk.
1357 	 */
1358 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1359 				xfs_kgid_to_gid(current_fsgid()), prid,
1360 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1361 				&udqp, &gdqp, &pdqp);
1362 	if (error)
1363 		return error;
1364 
1365 	resblks = XFS_IALLOC_SPACE_RES(mp);
1366 	tres = &M_RES(mp)->tr_create_tmpfile;
1367 
1368 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1369 	if (error == -ENOSPC) {
1370 		/* No space at all so try a "no-allocation" reservation */
1371 		resblks = 0;
1372 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1373 	}
1374 	if (error)
1375 		goto out_release_inode;
1376 
1377 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1378 						pdqp, resblks, 1, 0);
1379 	if (error)
1380 		goto out_trans_cancel;
1381 
1382 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1383 				prid, resblks > 0, &ip, NULL);
1384 	if (error)
1385 		goto out_trans_cancel;
1386 
1387 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1388 		xfs_trans_set_sync(tp);
1389 
1390 	/*
1391 	 * Attach the dquot(s) to the inodes and modify them incore.
1392 	 * These ids of the inode couldn't have changed since the new
1393 	 * inode has been locked ever since it was created.
1394 	 */
1395 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1396 
1397 	error = xfs_iunlink(tp, ip);
1398 	if (error)
1399 		goto out_trans_cancel;
1400 
1401 	error = xfs_trans_commit(tp);
1402 	if (error)
1403 		goto out_release_inode;
1404 
1405 	xfs_qm_dqrele(udqp);
1406 	xfs_qm_dqrele(gdqp);
1407 	xfs_qm_dqrele(pdqp);
1408 
1409 	*ipp = ip;
1410 	return 0;
1411 
1412  out_trans_cancel:
1413 	xfs_trans_cancel(tp);
1414  out_release_inode:
1415 	/*
1416 	 * Wait until after the current transaction is aborted to finish the
1417 	 * setup of the inode and release the inode.  This prevents recursive
1418 	 * transactions and deadlocks from xfs_inactive.
1419 	 */
1420 	if (ip) {
1421 		xfs_finish_inode_setup(ip);
1422 		IRELE(ip);
1423 	}
1424 
1425 	xfs_qm_dqrele(udqp);
1426 	xfs_qm_dqrele(gdqp);
1427 	xfs_qm_dqrele(pdqp);
1428 
1429 	return error;
1430 }
1431 
1432 int
1433 xfs_link(
1434 	xfs_inode_t		*tdp,
1435 	xfs_inode_t		*sip,
1436 	struct xfs_name		*target_name)
1437 {
1438 	xfs_mount_t		*mp = tdp->i_mount;
1439 	xfs_trans_t		*tp;
1440 	int			error;
1441 	struct xfs_defer_ops	dfops;
1442 	xfs_fsblock_t           first_block;
1443 	int			resblks;
1444 
1445 	trace_xfs_link(tdp, target_name);
1446 
1447 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1448 
1449 	if (XFS_FORCED_SHUTDOWN(mp))
1450 		return -EIO;
1451 
1452 	error = xfs_qm_dqattach(sip, 0);
1453 	if (error)
1454 		goto std_return;
1455 
1456 	error = xfs_qm_dqattach(tdp, 0);
1457 	if (error)
1458 		goto std_return;
1459 
1460 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1461 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1462 	if (error == -ENOSPC) {
1463 		resblks = 0;
1464 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1465 	}
1466 	if (error)
1467 		goto std_return;
1468 
1469 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1470 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1471 
1472 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1473 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1474 
1475 	/*
1476 	 * If we are using project inheritance, we only allow hard link
1477 	 * creation in our tree when the project IDs are the same; else
1478 	 * the tree quota mechanism could be circumvented.
1479 	 */
1480 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1481 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1482 		error = -EXDEV;
1483 		goto error_return;
1484 	}
1485 
1486 	if (!resblks) {
1487 		error = xfs_dir_canenter(tp, tdp, target_name);
1488 		if (error)
1489 			goto error_return;
1490 	}
1491 
1492 	xfs_defer_init(&dfops, &first_block);
1493 
1494 	/*
1495 	 * Handle initial link state of O_TMPFILE inode
1496 	 */
1497 	if (VFS_I(sip)->i_nlink == 0) {
1498 		error = xfs_iunlink_remove(tp, sip);
1499 		if (error)
1500 			goto error_return;
1501 	}
1502 
1503 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1504 					&first_block, &dfops, resblks);
1505 	if (error)
1506 		goto error_return;
1507 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1508 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1509 
1510 	error = xfs_bumplink(tp, sip);
1511 	if (error)
1512 		goto error_return;
1513 
1514 	/*
1515 	 * If this is a synchronous mount, make sure that the
1516 	 * link transaction goes to disk before returning to
1517 	 * the user.
1518 	 */
1519 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1520 		xfs_trans_set_sync(tp);
1521 
1522 	error = xfs_defer_finish(&tp, &dfops, NULL);
1523 	if (error) {
1524 		xfs_defer_cancel(&dfops);
1525 		goto error_return;
1526 	}
1527 
1528 	return xfs_trans_commit(tp);
1529 
1530  error_return:
1531 	xfs_trans_cancel(tp);
1532  std_return:
1533 	return error;
1534 }
1535 
1536 /*
1537  * Free up the underlying blocks past new_size.  The new size must be smaller
1538  * than the current size.  This routine can be used both for the attribute and
1539  * data fork, and does not modify the inode size, which is left to the caller.
1540  *
1541  * The transaction passed to this routine must have made a permanent log
1542  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1543  * given transaction and start new ones, so make sure everything involved in
1544  * the transaction is tidy before calling here.  Some transaction will be
1545  * returned to the caller to be committed.  The incoming transaction must
1546  * already include the inode, and both inode locks must be held exclusively.
1547  * The inode must also be "held" within the transaction.  On return the inode
1548  * will be "held" within the returned transaction.  This routine does NOT
1549  * require any disk space to be reserved for it within the transaction.
1550  *
1551  * If we get an error, we must return with the inode locked and linked into the
1552  * current transaction. This keeps things simple for the higher level code,
1553  * because it always knows that the inode is locked and held in the transaction
1554  * that returns to it whether errors occur or not.  We don't mark the inode
1555  * dirty on error so that transactions can be easily aborted if possible.
1556  */
1557 int
1558 xfs_itruncate_extents(
1559 	struct xfs_trans	**tpp,
1560 	struct xfs_inode	*ip,
1561 	int			whichfork,
1562 	xfs_fsize_t		new_size)
1563 {
1564 	struct xfs_mount	*mp = ip->i_mount;
1565 	struct xfs_trans	*tp = *tpp;
1566 	struct xfs_defer_ops	dfops;
1567 	xfs_fsblock_t		first_block;
1568 	xfs_fileoff_t		first_unmap_block;
1569 	xfs_fileoff_t		last_block;
1570 	xfs_filblks_t		unmap_len;
1571 	int			error = 0;
1572 	int			done = 0;
1573 
1574 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1575 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1576 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1577 	ASSERT(new_size <= XFS_ISIZE(ip));
1578 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1579 	ASSERT(ip->i_itemp != NULL);
1580 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1581 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1582 
1583 	trace_xfs_itruncate_extents_start(ip, new_size);
1584 
1585 	/*
1586 	 * Since it is possible for space to become allocated beyond
1587 	 * the end of the file (in a crash where the space is allocated
1588 	 * but the inode size is not yet updated), simply remove any
1589 	 * blocks which show up between the new EOF and the maximum
1590 	 * possible file size.  If the first block to be removed is
1591 	 * beyond the maximum file size (ie it is the same as last_block),
1592 	 * then there is nothing to do.
1593 	 */
1594 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1595 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1596 	if (first_unmap_block == last_block)
1597 		return 0;
1598 
1599 	ASSERT(first_unmap_block < last_block);
1600 	unmap_len = last_block - first_unmap_block + 1;
1601 	while (!done) {
1602 		xfs_defer_init(&dfops, &first_block);
1603 		error = xfs_bunmapi(tp, ip,
1604 				    first_unmap_block, unmap_len,
1605 				    xfs_bmapi_aflag(whichfork),
1606 				    XFS_ITRUNC_MAX_EXTENTS,
1607 				    &first_block, &dfops,
1608 				    &done);
1609 		if (error)
1610 			goto out_bmap_cancel;
1611 
1612 		/*
1613 		 * Duplicate the transaction that has the permanent
1614 		 * reservation and commit the old transaction.
1615 		 */
1616 		error = xfs_defer_finish(&tp, &dfops, ip);
1617 		if (error)
1618 			goto out_bmap_cancel;
1619 
1620 		error = xfs_trans_roll(&tp, ip);
1621 		if (error)
1622 			goto out;
1623 	}
1624 
1625 	/* Remove all pending CoW reservations. */
1626 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1627 			last_block);
1628 	if (error)
1629 		goto out;
1630 
1631 	/*
1632 	 * Clear the reflink flag if we truncated everything.
1633 	 */
1634 	if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
1635 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1636 		xfs_inode_clear_cowblocks_tag(ip);
1637 	}
1638 
1639 	/*
1640 	 * Always re-log the inode so that our permanent transaction can keep
1641 	 * on rolling it forward in the log.
1642 	 */
1643 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1644 
1645 	trace_xfs_itruncate_extents_end(ip, new_size);
1646 
1647 out:
1648 	*tpp = tp;
1649 	return error;
1650 out_bmap_cancel:
1651 	/*
1652 	 * If the bunmapi call encounters an error, return to the caller where
1653 	 * the transaction can be properly aborted.  We just need to make sure
1654 	 * we're not holding any resources that we were not when we came in.
1655 	 */
1656 	xfs_defer_cancel(&dfops);
1657 	goto out;
1658 }
1659 
1660 int
1661 xfs_release(
1662 	xfs_inode_t	*ip)
1663 {
1664 	xfs_mount_t	*mp = ip->i_mount;
1665 	int		error;
1666 
1667 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1668 		return 0;
1669 
1670 	/* If this is a read-only mount, don't do this (would generate I/O) */
1671 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1672 		return 0;
1673 
1674 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1675 		int truncated;
1676 
1677 		/*
1678 		 * If we previously truncated this file and removed old data
1679 		 * in the process, we want to initiate "early" writeout on
1680 		 * the last close.  This is an attempt to combat the notorious
1681 		 * NULL files problem which is particularly noticeable from a
1682 		 * truncate down, buffered (re-)write (delalloc), followed by
1683 		 * a crash.  What we are effectively doing here is
1684 		 * significantly reducing the time window where we'd otherwise
1685 		 * be exposed to that problem.
1686 		 */
1687 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1688 		if (truncated) {
1689 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1690 			if (ip->i_delayed_blks > 0) {
1691 				error = filemap_flush(VFS_I(ip)->i_mapping);
1692 				if (error)
1693 					return error;
1694 			}
1695 		}
1696 	}
1697 
1698 	if (VFS_I(ip)->i_nlink == 0)
1699 		return 0;
1700 
1701 	if (xfs_can_free_eofblocks(ip, false)) {
1702 
1703 		/*
1704 		 * If we can't get the iolock just skip truncating the blocks
1705 		 * past EOF because we could deadlock with the mmap_sem
1706 		 * otherwise.  We'll get another chance to drop them once the
1707 		 * last reference to the inode is dropped, so we'll never leak
1708 		 * blocks permanently.
1709 		 *
1710 		 * Further, check if the inode is being opened, written and
1711 		 * closed frequently and we have delayed allocation blocks
1712 		 * outstanding (e.g. streaming writes from the NFS server),
1713 		 * truncating the blocks past EOF will cause fragmentation to
1714 		 * occur.
1715 		 *
1716 		 * In this case don't do the truncation, either, but we have to
1717 		 * be careful how we detect this case. Blocks beyond EOF show
1718 		 * up as i_delayed_blks even when the inode is clean, so we
1719 		 * need to truncate them away first before checking for a dirty
1720 		 * release. Hence on the first dirty close we will still remove
1721 		 * the speculative allocation, but after that we will leave it
1722 		 * in place.
1723 		 */
1724 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1725 			return 0;
1726 
1727 		error = xfs_free_eofblocks(mp, ip, true);
1728 		if (error && error != -EAGAIN)
1729 			return error;
1730 
1731 		/* delalloc blocks after truncation means it really is dirty */
1732 		if (ip->i_delayed_blks)
1733 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1734 	}
1735 	return 0;
1736 }
1737 
1738 /*
1739  * xfs_inactive_truncate
1740  *
1741  * Called to perform a truncate when an inode becomes unlinked.
1742  */
1743 STATIC int
1744 xfs_inactive_truncate(
1745 	struct xfs_inode *ip)
1746 {
1747 	struct xfs_mount	*mp = ip->i_mount;
1748 	struct xfs_trans	*tp;
1749 	int			error;
1750 
1751 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1752 	if (error) {
1753 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1754 		return error;
1755 	}
1756 
1757 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1758 	xfs_trans_ijoin(tp, ip, 0);
1759 
1760 	/*
1761 	 * Log the inode size first to prevent stale data exposure in the event
1762 	 * of a system crash before the truncate completes. See the related
1763 	 * comment in xfs_vn_setattr_size() for details.
1764 	 */
1765 	ip->i_d.di_size = 0;
1766 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1767 
1768 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1769 	if (error)
1770 		goto error_trans_cancel;
1771 
1772 	ASSERT(ip->i_d.di_nextents == 0);
1773 
1774 	error = xfs_trans_commit(tp);
1775 	if (error)
1776 		goto error_unlock;
1777 
1778 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1779 	return 0;
1780 
1781 error_trans_cancel:
1782 	xfs_trans_cancel(tp);
1783 error_unlock:
1784 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 	return error;
1786 }
1787 
1788 /*
1789  * xfs_inactive_ifree()
1790  *
1791  * Perform the inode free when an inode is unlinked.
1792  */
1793 STATIC int
1794 xfs_inactive_ifree(
1795 	struct xfs_inode *ip)
1796 {
1797 	struct xfs_defer_ops	dfops;
1798 	xfs_fsblock_t		first_block;
1799 	struct xfs_mount	*mp = ip->i_mount;
1800 	struct xfs_trans	*tp;
1801 	int			error;
1802 
1803 	/*
1804 	 * The ifree transaction might need to allocate blocks for record
1805 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1806 	 * allow ifree to dip into the reserved block pool if necessary.
1807 	 *
1808 	 * Freeing large sets of inodes generally means freeing inode chunks,
1809 	 * directory and file data blocks, so this should be relatively safe.
1810 	 * Only under severe circumstances should it be possible to free enough
1811 	 * inodes to exhaust the reserve block pool via finobt expansion while
1812 	 * at the same time not creating free space in the filesystem.
1813 	 *
1814 	 * Send a warning if the reservation does happen to fail, as the inode
1815 	 * now remains allocated and sits on the unlinked list until the fs is
1816 	 * repaired.
1817 	 */
1818 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1819 			XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1820 	if (error) {
1821 		if (error == -ENOSPC) {
1822 			xfs_warn_ratelimited(mp,
1823 			"Failed to remove inode(s) from unlinked list. "
1824 			"Please free space, unmount and run xfs_repair.");
1825 		} else {
1826 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1827 		}
1828 		return error;
1829 	}
1830 
1831 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1832 	xfs_trans_ijoin(tp, ip, 0);
1833 
1834 	xfs_defer_init(&dfops, &first_block);
1835 	error = xfs_ifree(tp, ip, &dfops);
1836 	if (error) {
1837 		/*
1838 		 * If we fail to free the inode, shut down.  The cancel
1839 		 * might do that, we need to make sure.  Otherwise the
1840 		 * inode might be lost for a long time or forever.
1841 		 */
1842 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1843 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1844 				__func__, error);
1845 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1846 		}
1847 		xfs_trans_cancel(tp);
1848 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1849 		return error;
1850 	}
1851 
1852 	/*
1853 	 * Credit the quota account(s). The inode is gone.
1854 	 */
1855 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1856 
1857 	/*
1858 	 * Just ignore errors at this point.  There is nothing we can do except
1859 	 * to try to keep going. Make sure it's not a silent error.
1860 	 */
1861 	error = xfs_defer_finish(&tp, &dfops, NULL);
1862 	if (error) {
1863 		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1864 			__func__, error);
1865 		xfs_defer_cancel(&dfops);
1866 	}
1867 	error = xfs_trans_commit(tp);
1868 	if (error)
1869 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1870 			__func__, error);
1871 
1872 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1873 	return 0;
1874 }
1875 
1876 /*
1877  * xfs_inactive
1878  *
1879  * This is called when the vnode reference count for the vnode
1880  * goes to zero.  If the file has been unlinked, then it must
1881  * now be truncated.  Also, we clear all of the read-ahead state
1882  * kept for the inode here since the file is now closed.
1883  */
1884 void
1885 xfs_inactive(
1886 	xfs_inode_t	*ip)
1887 {
1888 	struct xfs_mount	*mp;
1889 	int			error;
1890 	int			truncate = 0;
1891 
1892 	/*
1893 	 * If the inode is already free, then there can be nothing
1894 	 * to clean up here.
1895 	 */
1896 	if (VFS_I(ip)->i_mode == 0) {
1897 		ASSERT(ip->i_df.if_real_bytes == 0);
1898 		ASSERT(ip->i_df.if_broot_bytes == 0);
1899 		return;
1900 	}
1901 
1902 	mp = ip->i_mount;
1903 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1904 
1905 	/* If this is a read-only mount, don't do this (would generate I/O) */
1906 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1907 		return;
1908 
1909 	if (VFS_I(ip)->i_nlink != 0) {
1910 		/*
1911 		 * force is true because we are evicting an inode from the
1912 		 * cache. Post-eof blocks must be freed, lest we end up with
1913 		 * broken free space accounting.
1914 		 */
1915 		if (xfs_can_free_eofblocks(ip, true))
1916 			xfs_free_eofblocks(mp, ip, false);
1917 
1918 		return;
1919 	}
1920 
1921 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1922 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1923 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1924 		truncate = 1;
1925 
1926 	error = xfs_qm_dqattach(ip, 0);
1927 	if (error)
1928 		return;
1929 
1930 	if (S_ISLNK(VFS_I(ip)->i_mode))
1931 		error = xfs_inactive_symlink(ip);
1932 	else if (truncate)
1933 		error = xfs_inactive_truncate(ip);
1934 	if (error)
1935 		return;
1936 
1937 	/*
1938 	 * If there are attributes associated with the file then blow them away
1939 	 * now.  The code calls a routine that recursively deconstructs the
1940 	 * attribute fork. If also blows away the in-core attribute fork.
1941 	 */
1942 	if (XFS_IFORK_Q(ip)) {
1943 		error = xfs_attr_inactive(ip);
1944 		if (error)
1945 			return;
1946 	}
1947 
1948 	ASSERT(!ip->i_afp);
1949 	ASSERT(ip->i_d.di_anextents == 0);
1950 	ASSERT(ip->i_d.di_forkoff == 0);
1951 
1952 	/*
1953 	 * Free the inode.
1954 	 */
1955 	error = xfs_inactive_ifree(ip);
1956 	if (error)
1957 		return;
1958 
1959 	/*
1960 	 * Release the dquots held by inode, if any.
1961 	 */
1962 	xfs_qm_dqdetach(ip);
1963 }
1964 
1965 /*
1966  * This is called when the inode's link count goes to 0 or we are creating a
1967  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1968  * set to true as the link count is dropped to zero by the VFS after we've
1969  * created the file successfully, so we have to add it to the unlinked list
1970  * while the link count is non-zero.
1971  *
1972  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1973  * list when the inode is freed.
1974  */
1975 STATIC int
1976 xfs_iunlink(
1977 	struct xfs_trans *tp,
1978 	struct xfs_inode *ip)
1979 {
1980 	xfs_mount_t	*mp = tp->t_mountp;
1981 	xfs_agi_t	*agi;
1982 	xfs_dinode_t	*dip;
1983 	xfs_buf_t	*agibp;
1984 	xfs_buf_t	*ibp;
1985 	xfs_agino_t	agino;
1986 	short		bucket_index;
1987 	int		offset;
1988 	int		error;
1989 
1990 	ASSERT(VFS_I(ip)->i_mode != 0);
1991 
1992 	/*
1993 	 * Get the agi buffer first.  It ensures lock ordering
1994 	 * on the list.
1995 	 */
1996 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1997 	if (error)
1998 		return error;
1999 	agi = XFS_BUF_TO_AGI(agibp);
2000 
2001 	/*
2002 	 * Get the index into the agi hash table for the
2003 	 * list this inode will go on.
2004 	 */
2005 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2006 	ASSERT(agino != 0);
2007 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2008 	ASSERT(agi->agi_unlinked[bucket_index]);
2009 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2010 
2011 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2012 		/*
2013 		 * There is already another inode in the bucket we need
2014 		 * to add ourselves to.  Add us at the front of the list.
2015 		 * Here we put the head pointer into our next pointer,
2016 		 * and then we fall through to point the head at us.
2017 		 */
2018 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2019 				       0, 0);
2020 		if (error)
2021 			return error;
2022 
2023 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2024 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2025 		offset = ip->i_imap.im_boffset +
2026 			offsetof(xfs_dinode_t, di_next_unlinked);
2027 
2028 		/* need to recalc the inode CRC if appropriate */
2029 		xfs_dinode_calc_crc(mp, dip);
2030 
2031 		xfs_trans_inode_buf(tp, ibp);
2032 		xfs_trans_log_buf(tp, ibp, offset,
2033 				  (offset + sizeof(xfs_agino_t) - 1));
2034 		xfs_inobp_check(mp, ibp);
2035 	}
2036 
2037 	/*
2038 	 * Point the bucket head pointer at the inode being inserted.
2039 	 */
2040 	ASSERT(agino != 0);
2041 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2042 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2043 		(sizeof(xfs_agino_t) * bucket_index);
2044 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2045 	xfs_trans_log_buf(tp, agibp, offset,
2046 			  (offset + sizeof(xfs_agino_t) - 1));
2047 	return 0;
2048 }
2049 
2050 /*
2051  * Pull the on-disk inode from the AGI unlinked list.
2052  */
2053 STATIC int
2054 xfs_iunlink_remove(
2055 	xfs_trans_t	*tp,
2056 	xfs_inode_t	*ip)
2057 {
2058 	xfs_ino_t	next_ino;
2059 	xfs_mount_t	*mp;
2060 	xfs_agi_t	*agi;
2061 	xfs_dinode_t	*dip;
2062 	xfs_buf_t	*agibp;
2063 	xfs_buf_t	*ibp;
2064 	xfs_agnumber_t	agno;
2065 	xfs_agino_t	agino;
2066 	xfs_agino_t	next_agino;
2067 	xfs_buf_t	*last_ibp;
2068 	xfs_dinode_t	*last_dip = NULL;
2069 	short		bucket_index;
2070 	int		offset, last_offset = 0;
2071 	int		error;
2072 
2073 	mp = tp->t_mountp;
2074 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2075 
2076 	/*
2077 	 * Get the agi buffer first.  It ensures lock ordering
2078 	 * on the list.
2079 	 */
2080 	error = xfs_read_agi(mp, tp, agno, &agibp);
2081 	if (error)
2082 		return error;
2083 
2084 	agi = XFS_BUF_TO_AGI(agibp);
2085 
2086 	/*
2087 	 * Get the index into the agi hash table for the
2088 	 * list this inode will go on.
2089 	 */
2090 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2091 	ASSERT(agino != 0);
2092 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2093 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2094 	ASSERT(agi->agi_unlinked[bucket_index]);
2095 
2096 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2097 		/*
2098 		 * We're at the head of the list.  Get the inode's on-disk
2099 		 * buffer to see if there is anyone after us on the list.
2100 		 * Only modify our next pointer if it is not already NULLAGINO.
2101 		 * This saves us the overhead of dealing with the buffer when
2102 		 * there is no need to change it.
2103 		 */
2104 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2105 				       0, 0);
2106 		if (error) {
2107 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2108 				__func__, error);
2109 			return error;
2110 		}
2111 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2112 		ASSERT(next_agino != 0);
2113 		if (next_agino != NULLAGINO) {
2114 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2115 			offset = ip->i_imap.im_boffset +
2116 				offsetof(xfs_dinode_t, di_next_unlinked);
2117 
2118 			/* need to recalc the inode CRC if appropriate */
2119 			xfs_dinode_calc_crc(mp, dip);
2120 
2121 			xfs_trans_inode_buf(tp, ibp);
2122 			xfs_trans_log_buf(tp, ibp, offset,
2123 					  (offset + sizeof(xfs_agino_t) - 1));
2124 			xfs_inobp_check(mp, ibp);
2125 		} else {
2126 			xfs_trans_brelse(tp, ibp);
2127 		}
2128 		/*
2129 		 * Point the bucket head pointer at the next inode.
2130 		 */
2131 		ASSERT(next_agino != 0);
2132 		ASSERT(next_agino != agino);
2133 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2134 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2135 			(sizeof(xfs_agino_t) * bucket_index);
2136 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2137 		xfs_trans_log_buf(tp, agibp, offset,
2138 				  (offset + sizeof(xfs_agino_t) - 1));
2139 	} else {
2140 		/*
2141 		 * We need to search the list for the inode being freed.
2142 		 */
2143 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2144 		last_ibp = NULL;
2145 		while (next_agino != agino) {
2146 			struct xfs_imap	imap;
2147 
2148 			if (last_ibp)
2149 				xfs_trans_brelse(tp, last_ibp);
2150 
2151 			imap.im_blkno = 0;
2152 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2153 
2154 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2155 			if (error) {
2156 				xfs_warn(mp,
2157 	"%s: xfs_imap returned error %d.",
2158 					 __func__, error);
2159 				return error;
2160 			}
2161 
2162 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2163 					       &last_ibp, 0, 0);
2164 			if (error) {
2165 				xfs_warn(mp,
2166 	"%s: xfs_imap_to_bp returned error %d.",
2167 					__func__, error);
2168 				return error;
2169 			}
2170 
2171 			last_offset = imap.im_boffset;
2172 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2173 			ASSERT(next_agino != NULLAGINO);
2174 			ASSERT(next_agino != 0);
2175 		}
2176 
2177 		/*
2178 		 * Now last_ibp points to the buffer previous to us on the
2179 		 * unlinked list.  Pull us from the list.
2180 		 */
2181 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2182 				       0, 0);
2183 		if (error) {
2184 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2185 				__func__, error);
2186 			return error;
2187 		}
2188 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2189 		ASSERT(next_agino != 0);
2190 		ASSERT(next_agino != agino);
2191 		if (next_agino != NULLAGINO) {
2192 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2193 			offset = ip->i_imap.im_boffset +
2194 				offsetof(xfs_dinode_t, di_next_unlinked);
2195 
2196 			/* need to recalc the inode CRC if appropriate */
2197 			xfs_dinode_calc_crc(mp, dip);
2198 
2199 			xfs_trans_inode_buf(tp, ibp);
2200 			xfs_trans_log_buf(tp, ibp, offset,
2201 					  (offset + sizeof(xfs_agino_t) - 1));
2202 			xfs_inobp_check(mp, ibp);
2203 		} else {
2204 			xfs_trans_brelse(tp, ibp);
2205 		}
2206 		/*
2207 		 * Point the previous inode on the list to the next inode.
2208 		 */
2209 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2210 		ASSERT(next_agino != 0);
2211 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2212 
2213 		/* need to recalc the inode CRC if appropriate */
2214 		xfs_dinode_calc_crc(mp, last_dip);
2215 
2216 		xfs_trans_inode_buf(tp, last_ibp);
2217 		xfs_trans_log_buf(tp, last_ibp, offset,
2218 				  (offset + sizeof(xfs_agino_t) - 1));
2219 		xfs_inobp_check(mp, last_ibp);
2220 	}
2221 	return 0;
2222 }
2223 
2224 /*
2225  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2226  * inodes that are in memory - they all must be marked stale and attached to
2227  * the cluster buffer.
2228  */
2229 STATIC int
2230 xfs_ifree_cluster(
2231 	xfs_inode_t		*free_ip,
2232 	xfs_trans_t		*tp,
2233 	struct xfs_icluster	*xic)
2234 {
2235 	xfs_mount_t		*mp = free_ip->i_mount;
2236 	int			blks_per_cluster;
2237 	int			inodes_per_cluster;
2238 	int			nbufs;
2239 	int			i, j;
2240 	int			ioffset;
2241 	xfs_daddr_t		blkno;
2242 	xfs_buf_t		*bp;
2243 	xfs_inode_t		*ip;
2244 	xfs_inode_log_item_t	*iip;
2245 	xfs_log_item_t		*lip;
2246 	struct xfs_perag	*pag;
2247 	xfs_ino_t		inum;
2248 
2249 	inum = xic->first_ino;
2250 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2251 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2252 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2253 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2254 
2255 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2256 		/*
2257 		 * The allocation bitmap tells us which inodes of the chunk were
2258 		 * physically allocated. Skip the cluster if an inode falls into
2259 		 * a sparse region.
2260 		 */
2261 		ioffset = inum - xic->first_ino;
2262 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2263 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2264 			continue;
2265 		}
2266 
2267 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2268 					 XFS_INO_TO_AGBNO(mp, inum));
2269 
2270 		/*
2271 		 * We obtain and lock the backing buffer first in the process
2272 		 * here, as we have to ensure that any dirty inode that we
2273 		 * can't get the flush lock on is attached to the buffer.
2274 		 * If we scan the in-memory inodes first, then buffer IO can
2275 		 * complete before we get a lock on it, and hence we may fail
2276 		 * to mark all the active inodes on the buffer stale.
2277 		 */
2278 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2279 					mp->m_bsize * blks_per_cluster,
2280 					XBF_UNMAPPED);
2281 
2282 		if (!bp)
2283 			return -ENOMEM;
2284 
2285 		/*
2286 		 * This buffer may not have been correctly initialised as we
2287 		 * didn't read it from disk. That's not important because we are
2288 		 * only using to mark the buffer as stale in the log, and to
2289 		 * attach stale cached inodes on it. That means it will never be
2290 		 * dispatched for IO. If it is, we want to know about it, and we
2291 		 * want it to fail. We can acheive this by adding a write
2292 		 * verifier to the buffer.
2293 		 */
2294 		 bp->b_ops = &xfs_inode_buf_ops;
2295 
2296 		/*
2297 		 * Walk the inodes already attached to the buffer and mark them
2298 		 * stale. These will all have the flush locks held, so an
2299 		 * in-memory inode walk can't lock them. By marking them all
2300 		 * stale first, we will not attempt to lock them in the loop
2301 		 * below as the XFS_ISTALE flag will be set.
2302 		 */
2303 		lip = bp->b_fspriv;
2304 		while (lip) {
2305 			if (lip->li_type == XFS_LI_INODE) {
2306 				iip = (xfs_inode_log_item_t *)lip;
2307 				ASSERT(iip->ili_logged == 1);
2308 				lip->li_cb = xfs_istale_done;
2309 				xfs_trans_ail_copy_lsn(mp->m_ail,
2310 							&iip->ili_flush_lsn,
2311 							&iip->ili_item.li_lsn);
2312 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2313 			}
2314 			lip = lip->li_bio_list;
2315 		}
2316 
2317 
2318 		/*
2319 		 * For each inode in memory attempt to add it to the inode
2320 		 * buffer and set it up for being staled on buffer IO
2321 		 * completion.  This is safe as we've locked out tail pushing
2322 		 * and flushing by locking the buffer.
2323 		 *
2324 		 * We have already marked every inode that was part of a
2325 		 * transaction stale above, which means there is no point in
2326 		 * even trying to lock them.
2327 		 */
2328 		for (i = 0; i < inodes_per_cluster; i++) {
2329 retry:
2330 			rcu_read_lock();
2331 			ip = radix_tree_lookup(&pag->pag_ici_root,
2332 					XFS_INO_TO_AGINO(mp, (inum + i)));
2333 
2334 			/* Inode not in memory, nothing to do */
2335 			if (!ip) {
2336 				rcu_read_unlock();
2337 				continue;
2338 			}
2339 
2340 			/*
2341 			 * because this is an RCU protected lookup, we could
2342 			 * find a recently freed or even reallocated inode
2343 			 * during the lookup. We need to check under the
2344 			 * i_flags_lock for a valid inode here. Skip it if it
2345 			 * is not valid, the wrong inode or stale.
2346 			 */
2347 			spin_lock(&ip->i_flags_lock);
2348 			if (ip->i_ino != inum + i ||
2349 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2350 				spin_unlock(&ip->i_flags_lock);
2351 				rcu_read_unlock();
2352 				continue;
2353 			}
2354 			spin_unlock(&ip->i_flags_lock);
2355 
2356 			/*
2357 			 * Don't try to lock/unlock the current inode, but we
2358 			 * _cannot_ skip the other inodes that we did not find
2359 			 * in the list attached to the buffer and are not
2360 			 * already marked stale. If we can't lock it, back off
2361 			 * and retry.
2362 			 */
2363 			if (ip != free_ip &&
2364 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2365 				rcu_read_unlock();
2366 				delay(1);
2367 				goto retry;
2368 			}
2369 			rcu_read_unlock();
2370 
2371 			xfs_iflock(ip);
2372 			xfs_iflags_set(ip, XFS_ISTALE);
2373 
2374 			/*
2375 			 * we don't need to attach clean inodes or those only
2376 			 * with unlogged changes (which we throw away, anyway).
2377 			 */
2378 			iip = ip->i_itemp;
2379 			if (!iip || xfs_inode_clean(ip)) {
2380 				ASSERT(ip != free_ip);
2381 				xfs_ifunlock(ip);
2382 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2383 				continue;
2384 			}
2385 
2386 			iip->ili_last_fields = iip->ili_fields;
2387 			iip->ili_fields = 0;
2388 			iip->ili_fsync_fields = 0;
2389 			iip->ili_logged = 1;
2390 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2391 						&iip->ili_item.li_lsn);
2392 
2393 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2394 						  &iip->ili_item);
2395 
2396 			if (ip != free_ip)
2397 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2398 		}
2399 
2400 		xfs_trans_stale_inode_buf(tp, bp);
2401 		xfs_trans_binval(tp, bp);
2402 	}
2403 
2404 	xfs_perag_put(pag);
2405 	return 0;
2406 }
2407 
2408 /*
2409  * This is called to return an inode to the inode free list.
2410  * The inode should already be truncated to 0 length and have
2411  * no pages associated with it.  This routine also assumes that
2412  * the inode is already a part of the transaction.
2413  *
2414  * The on-disk copy of the inode will have been added to the list
2415  * of unlinked inodes in the AGI. We need to remove the inode from
2416  * that list atomically with respect to freeing it here.
2417  */
2418 int
2419 xfs_ifree(
2420 	xfs_trans_t	*tp,
2421 	xfs_inode_t	*ip,
2422 	struct xfs_defer_ops	*dfops)
2423 {
2424 	int			error;
2425 	struct xfs_icluster	xic = { 0 };
2426 
2427 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2428 	ASSERT(VFS_I(ip)->i_nlink == 0);
2429 	ASSERT(ip->i_d.di_nextents == 0);
2430 	ASSERT(ip->i_d.di_anextents == 0);
2431 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2432 	ASSERT(ip->i_d.di_nblocks == 0);
2433 
2434 	/*
2435 	 * Pull the on-disk inode from the AGI unlinked list.
2436 	 */
2437 	error = xfs_iunlink_remove(tp, ip);
2438 	if (error)
2439 		return error;
2440 
2441 	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2442 	if (error)
2443 		return error;
2444 
2445 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2446 	ip->i_d.di_flags = 0;
2447 	ip->i_d.di_dmevmask = 0;
2448 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2449 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2450 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2451 	/*
2452 	 * Bump the generation count so no one will be confused
2453 	 * by reincarnations of this inode.
2454 	 */
2455 	VFS_I(ip)->i_generation++;
2456 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2457 
2458 	if (xic.deleted)
2459 		error = xfs_ifree_cluster(ip, tp, &xic);
2460 
2461 	return error;
2462 }
2463 
2464 /*
2465  * This is called to unpin an inode.  The caller must have the inode locked
2466  * in at least shared mode so that the buffer cannot be subsequently pinned
2467  * once someone is waiting for it to be unpinned.
2468  */
2469 static void
2470 xfs_iunpin(
2471 	struct xfs_inode	*ip)
2472 {
2473 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2474 
2475 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2476 
2477 	/* Give the log a push to start the unpinning I/O */
2478 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2479 
2480 }
2481 
2482 static void
2483 __xfs_iunpin_wait(
2484 	struct xfs_inode	*ip)
2485 {
2486 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2487 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2488 
2489 	xfs_iunpin(ip);
2490 
2491 	do {
2492 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2493 		if (xfs_ipincount(ip))
2494 			io_schedule();
2495 	} while (xfs_ipincount(ip));
2496 	finish_wait(wq, &wait.wait);
2497 }
2498 
2499 void
2500 xfs_iunpin_wait(
2501 	struct xfs_inode	*ip)
2502 {
2503 	if (xfs_ipincount(ip))
2504 		__xfs_iunpin_wait(ip);
2505 }
2506 
2507 /*
2508  * Removing an inode from the namespace involves removing the directory entry
2509  * and dropping the link count on the inode. Removing the directory entry can
2510  * result in locking an AGF (directory blocks were freed) and removing a link
2511  * count can result in placing the inode on an unlinked list which results in
2512  * locking an AGI.
2513  *
2514  * The big problem here is that we have an ordering constraint on AGF and AGI
2515  * locking - inode allocation locks the AGI, then can allocate a new extent for
2516  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2517  * removes the inode from the unlinked list, requiring that we lock the AGI
2518  * first, and then freeing the inode can result in an inode chunk being freed
2519  * and hence freeing disk space requiring that we lock an AGF.
2520  *
2521  * Hence the ordering that is imposed by other parts of the code is AGI before
2522  * AGF. This means we cannot remove the directory entry before we drop the inode
2523  * reference count and put it on the unlinked list as this results in a lock
2524  * order of AGF then AGI, and this can deadlock against inode allocation and
2525  * freeing. Therefore we must drop the link counts before we remove the
2526  * directory entry.
2527  *
2528  * This is still safe from a transactional point of view - it is not until we
2529  * get to xfs_defer_finish() that we have the possibility of multiple
2530  * transactions in this operation. Hence as long as we remove the directory
2531  * entry and drop the link count in the first transaction of the remove
2532  * operation, there are no transactional constraints on the ordering here.
2533  */
2534 int
2535 xfs_remove(
2536 	xfs_inode_t             *dp,
2537 	struct xfs_name		*name,
2538 	xfs_inode_t		*ip)
2539 {
2540 	xfs_mount_t		*mp = dp->i_mount;
2541 	xfs_trans_t             *tp = NULL;
2542 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2543 	int                     error = 0;
2544 	struct xfs_defer_ops	dfops;
2545 	xfs_fsblock_t           first_block;
2546 	uint			resblks;
2547 
2548 	trace_xfs_remove(dp, name);
2549 
2550 	if (XFS_FORCED_SHUTDOWN(mp))
2551 		return -EIO;
2552 
2553 	error = xfs_qm_dqattach(dp, 0);
2554 	if (error)
2555 		goto std_return;
2556 
2557 	error = xfs_qm_dqattach(ip, 0);
2558 	if (error)
2559 		goto std_return;
2560 
2561 	/*
2562 	 * We try to get the real space reservation first,
2563 	 * allowing for directory btree deletion(s) implying
2564 	 * possible bmap insert(s).  If we can't get the space
2565 	 * reservation then we use 0 instead, and avoid the bmap
2566 	 * btree insert(s) in the directory code by, if the bmap
2567 	 * insert tries to happen, instead trimming the LAST
2568 	 * block from the directory.
2569 	 */
2570 	resblks = XFS_REMOVE_SPACE_RES(mp);
2571 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2572 	if (error == -ENOSPC) {
2573 		resblks = 0;
2574 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2575 				&tp);
2576 	}
2577 	if (error) {
2578 		ASSERT(error != -ENOSPC);
2579 		goto std_return;
2580 	}
2581 
2582 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2583 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2584 
2585 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2586 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2587 
2588 	/*
2589 	 * If we're removing a directory perform some additional validation.
2590 	 */
2591 	if (is_dir) {
2592 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2593 		if (VFS_I(ip)->i_nlink != 2) {
2594 			error = -ENOTEMPTY;
2595 			goto out_trans_cancel;
2596 		}
2597 		if (!xfs_dir_isempty(ip)) {
2598 			error = -ENOTEMPTY;
2599 			goto out_trans_cancel;
2600 		}
2601 
2602 		/* Drop the link from ip's "..".  */
2603 		error = xfs_droplink(tp, dp);
2604 		if (error)
2605 			goto out_trans_cancel;
2606 
2607 		/* Drop the "." link from ip to self.  */
2608 		error = xfs_droplink(tp, ip);
2609 		if (error)
2610 			goto out_trans_cancel;
2611 	} else {
2612 		/*
2613 		 * When removing a non-directory we need to log the parent
2614 		 * inode here.  For a directory this is done implicitly
2615 		 * by the xfs_droplink call for the ".." entry.
2616 		 */
2617 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2618 	}
2619 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2620 
2621 	/* Drop the link from dp to ip. */
2622 	error = xfs_droplink(tp, ip);
2623 	if (error)
2624 		goto out_trans_cancel;
2625 
2626 	xfs_defer_init(&dfops, &first_block);
2627 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2628 					&first_block, &dfops, resblks);
2629 	if (error) {
2630 		ASSERT(error != -ENOENT);
2631 		goto out_bmap_cancel;
2632 	}
2633 
2634 	/*
2635 	 * If this is a synchronous mount, make sure that the
2636 	 * remove transaction goes to disk before returning to
2637 	 * the user.
2638 	 */
2639 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2640 		xfs_trans_set_sync(tp);
2641 
2642 	error = xfs_defer_finish(&tp, &dfops, NULL);
2643 	if (error)
2644 		goto out_bmap_cancel;
2645 
2646 	error = xfs_trans_commit(tp);
2647 	if (error)
2648 		goto std_return;
2649 
2650 	if (is_dir && xfs_inode_is_filestream(ip))
2651 		xfs_filestream_deassociate(ip);
2652 
2653 	return 0;
2654 
2655  out_bmap_cancel:
2656 	xfs_defer_cancel(&dfops);
2657  out_trans_cancel:
2658 	xfs_trans_cancel(tp);
2659  std_return:
2660 	return error;
2661 }
2662 
2663 /*
2664  * Enter all inodes for a rename transaction into a sorted array.
2665  */
2666 #define __XFS_SORT_INODES	5
2667 STATIC void
2668 xfs_sort_for_rename(
2669 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2670 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2671 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2672 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2673 	struct xfs_inode	*wip,	/* in: whiteout inode */
2674 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2675 	int			*num_inodes)  /* in/out: inodes in array */
2676 {
2677 	int			i, j;
2678 
2679 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2680 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2681 
2682 	/*
2683 	 * i_tab contains a list of pointers to inodes.  We initialize
2684 	 * the table here & we'll sort it.  We will then use it to
2685 	 * order the acquisition of the inode locks.
2686 	 *
2687 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2688 	 */
2689 	i = 0;
2690 	i_tab[i++] = dp1;
2691 	i_tab[i++] = dp2;
2692 	i_tab[i++] = ip1;
2693 	if (ip2)
2694 		i_tab[i++] = ip2;
2695 	if (wip)
2696 		i_tab[i++] = wip;
2697 	*num_inodes = i;
2698 
2699 	/*
2700 	 * Sort the elements via bubble sort.  (Remember, there are at
2701 	 * most 5 elements to sort, so this is adequate.)
2702 	 */
2703 	for (i = 0; i < *num_inodes; i++) {
2704 		for (j = 1; j < *num_inodes; j++) {
2705 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2706 				struct xfs_inode *temp = i_tab[j];
2707 				i_tab[j] = i_tab[j-1];
2708 				i_tab[j-1] = temp;
2709 			}
2710 		}
2711 	}
2712 }
2713 
2714 static int
2715 xfs_finish_rename(
2716 	struct xfs_trans	*tp,
2717 	struct xfs_defer_ops	*dfops)
2718 {
2719 	int			error;
2720 
2721 	/*
2722 	 * If this is a synchronous mount, make sure that the rename transaction
2723 	 * goes to disk before returning to the user.
2724 	 */
2725 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2726 		xfs_trans_set_sync(tp);
2727 
2728 	error = xfs_defer_finish(&tp, dfops, NULL);
2729 	if (error) {
2730 		xfs_defer_cancel(dfops);
2731 		xfs_trans_cancel(tp);
2732 		return error;
2733 	}
2734 
2735 	return xfs_trans_commit(tp);
2736 }
2737 
2738 /*
2739  * xfs_cross_rename()
2740  *
2741  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2742  */
2743 STATIC int
2744 xfs_cross_rename(
2745 	struct xfs_trans	*tp,
2746 	struct xfs_inode	*dp1,
2747 	struct xfs_name		*name1,
2748 	struct xfs_inode	*ip1,
2749 	struct xfs_inode	*dp2,
2750 	struct xfs_name		*name2,
2751 	struct xfs_inode	*ip2,
2752 	struct xfs_defer_ops	*dfops,
2753 	xfs_fsblock_t		*first_block,
2754 	int			spaceres)
2755 {
2756 	int		error = 0;
2757 	int		ip1_flags = 0;
2758 	int		ip2_flags = 0;
2759 	int		dp2_flags = 0;
2760 
2761 	/* Swap inode number for dirent in first parent */
2762 	error = xfs_dir_replace(tp, dp1, name1,
2763 				ip2->i_ino,
2764 				first_block, dfops, spaceres);
2765 	if (error)
2766 		goto out_trans_abort;
2767 
2768 	/* Swap inode number for dirent in second parent */
2769 	error = xfs_dir_replace(tp, dp2, name2,
2770 				ip1->i_ino,
2771 				first_block, dfops, spaceres);
2772 	if (error)
2773 		goto out_trans_abort;
2774 
2775 	/*
2776 	 * If we're renaming one or more directories across different parents,
2777 	 * update the respective ".." entries (and link counts) to match the new
2778 	 * parents.
2779 	 */
2780 	if (dp1 != dp2) {
2781 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2782 
2783 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2784 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2785 						dp1->i_ino, first_block,
2786 						dfops, spaceres);
2787 			if (error)
2788 				goto out_trans_abort;
2789 
2790 			/* transfer ip2 ".." reference to dp1 */
2791 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2792 				error = xfs_droplink(tp, dp2);
2793 				if (error)
2794 					goto out_trans_abort;
2795 				error = xfs_bumplink(tp, dp1);
2796 				if (error)
2797 					goto out_trans_abort;
2798 			}
2799 
2800 			/*
2801 			 * Although ip1 isn't changed here, userspace needs
2802 			 * to be warned about the change, so that applications
2803 			 * relying on it (like backup ones), will properly
2804 			 * notify the change
2805 			 */
2806 			ip1_flags |= XFS_ICHGTIME_CHG;
2807 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2808 		}
2809 
2810 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2811 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2812 						dp2->i_ino, first_block,
2813 						dfops, spaceres);
2814 			if (error)
2815 				goto out_trans_abort;
2816 
2817 			/* transfer ip1 ".." reference to dp2 */
2818 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2819 				error = xfs_droplink(tp, dp1);
2820 				if (error)
2821 					goto out_trans_abort;
2822 				error = xfs_bumplink(tp, dp2);
2823 				if (error)
2824 					goto out_trans_abort;
2825 			}
2826 
2827 			/*
2828 			 * Although ip2 isn't changed here, userspace needs
2829 			 * to be warned about the change, so that applications
2830 			 * relying on it (like backup ones), will properly
2831 			 * notify the change
2832 			 */
2833 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2834 			ip2_flags |= XFS_ICHGTIME_CHG;
2835 		}
2836 	}
2837 
2838 	if (ip1_flags) {
2839 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2840 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2841 	}
2842 	if (ip2_flags) {
2843 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2844 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2845 	}
2846 	if (dp2_flags) {
2847 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2848 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2849 	}
2850 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2851 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2852 	return xfs_finish_rename(tp, dfops);
2853 
2854 out_trans_abort:
2855 	xfs_defer_cancel(dfops);
2856 	xfs_trans_cancel(tp);
2857 	return error;
2858 }
2859 
2860 /*
2861  * xfs_rename_alloc_whiteout()
2862  *
2863  * Return a referenced, unlinked, unlocked inode that that can be used as a
2864  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2865  * crash between allocating the inode and linking it into the rename transaction
2866  * recovery will free the inode and we won't leak it.
2867  */
2868 static int
2869 xfs_rename_alloc_whiteout(
2870 	struct xfs_inode	*dp,
2871 	struct xfs_inode	**wip)
2872 {
2873 	struct xfs_inode	*tmpfile;
2874 	int			error;
2875 
2876 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2877 	if (error)
2878 		return error;
2879 
2880 	/*
2881 	 * Prepare the tmpfile inode as if it were created through the VFS.
2882 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2883 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2884 	 * and flag it as linkable.
2885 	 */
2886 	drop_nlink(VFS_I(tmpfile));
2887 	xfs_setup_iops(tmpfile);
2888 	xfs_finish_inode_setup(tmpfile);
2889 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2890 
2891 	*wip = tmpfile;
2892 	return 0;
2893 }
2894 
2895 /*
2896  * xfs_rename
2897  */
2898 int
2899 xfs_rename(
2900 	struct xfs_inode	*src_dp,
2901 	struct xfs_name		*src_name,
2902 	struct xfs_inode	*src_ip,
2903 	struct xfs_inode	*target_dp,
2904 	struct xfs_name		*target_name,
2905 	struct xfs_inode	*target_ip,
2906 	unsigned int		flags)
2907 {
2908 	struct xfs_mount	*mp = src_dp->i_mount;
2909 	struct xfs_trans	*tp;
2910 	struct xfs_defer_ops	dfops;
2911 	xfs_fsblock_t		first_block;
2912 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2913 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2914 	int			num_inodes = __XFS_SORT_INODES;
2915 	bool			new_parent = (src_dp != target_dp);
2916 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2917 	int			spaceres;
2918 	int			error;
2919 
2920 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2921 
2922 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2923 		return -EINVAL;
2924 
2925 	/*
2926 	 * If we are doing a whiteout operation, allocate the whiteout inode
2927 	 * we will be placing at the target and ensure the type is set
2928 	 * appropriately.
2929 	 */
2930 	if (flags & RENAME_WHITEOUT) {
2931 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2932 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2933 		if (error)
2934 			return error;
2935 
2936 		/* setup target dirent info as whiteout */
2937 		src_name->type = XFS_DIR3_FT_CHRDEV;
2938 	}
2939 
2940 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2941 				inodes, &num_inodes);
2942 
2943 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2944 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2945 	if (error == -ENOSPC) {
2946 		spaceres = 0;
2947 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2948 				&tp);
2949 	}
2950 	if (error)
2951 		goto out_release_wip;
2952 
2953 	/*
2954 	 * Attach the dquots to the inodes
2955 	 */
2956 	error = xfs_qm_vop_rename_dqattach(inodes);
2957 	if (error)
2958 		goto out_trans_cancel;
2959 
2960 	/*
2961 	 * Lock all the participating inodes. Depending upon whether
2962 	 * the target_name exists in the target directory, and
2963 	 * whether the target directory is the same as the source
2964 	 * directory, we can lock from 2 to 4 inodes.
2965 	 */
2966 	if (!new_parent)
2967 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2968 	else
2969 		xfs_lock_two_inodes(src_dp, target_dp,
2970 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2971 
2972 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2973 
2974 	/*
2975 	 * Join all the inodes to the transaction. From this point on,
2976 	 * we can rely on either trans_commit or trans_cancel to unlock
2977 	 * them.
2978 	 */
2979 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2980 	if (new_parent)
2981 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2982 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2983 	if (target_ip)
2984 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2985 	if (wip)
2986 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2987 
2988 	/*
2989 	 * If we are using project inheritance, we only allow renames
2990 	 * into our tree when the project IDs are the same; else the
2991 	 * tree quota mechanism would be circumvented.
2992 	 */
2993 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2994 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2995 		error = -EXDEV;
2996 		goto out_trans_cancel;
2997 	}
2998 
2999 	xfs_defer_init(&dfops, &first_block);
3000 
3001 	/* RENAME_EXCHANGE is unique from here on. */
3002 	if (flags & RENAME_EXCHANGE)
3003 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3004 					target_dp, target_name, target_ip,
3005 					&dfops, &first_block, spaceres);
3006 
3007 	/*
3008 	 * Set up the target.
3009 	 */
3010 	if (target_ip == NULL) {
3011 		/*
3012 		 * If there's no space reservation, check the entry will
3013 		 * fit before actually inserting it.
3014 		 */
3015 		if (!spaceres) {
3016 			error = xfs_dir_canenter(tp, target_dp, target_name);
3017 			if (error)
3018 				goto out_trans_cancel;
3019 		}
3020 		/*
3021 		 * If target does not exist and the rename crosses
3022 		 * directories, adjust the target directory link count
3023 		 * to account for the ".." reference from the new entry.
3024 		 */
3025 		error = xfs_dir_createname(tp, target_dp, target_name,
3026 						src_ip->i_ino, &first_block,
3027 						&dfops, spaceres);
3028 		if (error)
3029 			goto out_bmap_cancel;
3030 
3031 		xfs_trans_ichgtime(tp, target_dp,
3032 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3033 
3034 		if (new_parent && src_is_directory) {
3035 			error = xfs_bumplink(tp, target_dp);
3036 			if (error)
3037 				goto out_bmap_cancel;
3038 		}
3039 	} else { /* target_ip != NULL */
3040 		/*
3041 		 * If target exists and it's a directory, check that both
3042 		 * target and source are directories and that target can be
3043 		 * destroyed, or that neither is a directory.
3044 		 */
3045 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3046 			/*
3047 			 * Make sure target dir is empty.
3048 			 */
3049 			if (!(xfs_dir_isempty(target_ip)) ||
3050 			    (VFS_I(target_ip)->i_nlink > 2)) {
3051 				error = -EEXIST;
3052 				goto out_trans_cancel;
3053 			}
3054 		}
3055 
3056 		/*
3057 		 * Link the source inode under the target name.
3058 		 * If the source inode is a directory and we are moving
3059 		 * it across directories, its ".." entry will be
3060 		 * inconsistent until we replace that down below.
3061 		 *
3062 		 * In case there is already an entry with the same
3063 		 * name at the destination directory, remove it first.
3064 		 */
3065 		error = xfs_dir_replace(tp, target_dp, target_name,
3066 					src_ip->i_ino,
3067 					&first_block, &dfops, spaceres);
3068 		if (error)
3069 			goto out_bmap_cancel;
3070 
3071 		xfs_trans_ichgtime(tp, target_dp,
3072 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3073 
3074 		/*
3075 		 * Decrement the link count on the target since the target
3076 		 * dir no longer points to it.
3077 		 */
3078 		error = xfs_droplink(tp, target_ip);
3079 		if (error)
3080 			goto out_bmap_cancel;
3081 
3082 		if (src_is_directory) {
3083 			/*
3084 			 * Drop the link from the old "." entry.
3085 			 */
3086 			error = xfs_droplink(tp, target_ip);
3087 			if (error)
3088 				goto out_bmap_cancel;
3089 		}
3090 	} /* target_ip != NULL */
3091 
3092 	/*
3093 	 * Remove the source.
3094 	 */
3095 	if (new_parent && src_is_directory) {
3096 		/*
3097 		 * Rewrite the ".." entry to point to the new
3098 		 * directory.
3099 		 */
3100 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3101 					target_dp->i_ino,
3102 					&first_block, &dfops, spaceres);
3103 		ASSERT(error != -EEXIST);
3104 		if (error)
3105 			goto out_bmap_cancel;
3106 	}
3107 
3108 	/*
3109 	 * We always want to hit the ctime on the source inode.
3110 	 *
3111 	 * This isn't strictly required by the standards since the source
3112 	 * inode isn't really being changed, but old unix file systems did
3113 	 * it and some incremental backup programs won't work without it.
3114 	 */
3115 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3116 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3117 
3118 	/*
3119 	 * Adjust the link count on src_dp.  This is necessary when
3120 	 * renaming a directory, either within one parent when
3121 	 * the target existed, or across two parent directories.
3122 	 */
3123 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3124 
3125 		/*
3126 		 * Decrement link count on src_directory since the
3127 		 * entry that's moved no longer points to it.
3128 		 */
3129 		error = xfs_droplink(tp, src_dp);
3130 		if (error)
3131 			goto out_bmap_cancel;
3132 	}
3133 
3134 	/*
3135 	 * For whiteouts, we only need to update the source dirent with the
3136 	 * inode number of the whiteout inode rather than removing it
3137 	 * altogether.
3138 	 */
3139 	if (wip) {
3140 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3141 					&first_block, &dfops, spaceres);
3142 	} else
3143 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3144 					   &first_block, &dfops, spaceres);
3145 	if (error)
3146 		goto out_bmap_cancel;
3147 
3148 	/*
3149 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3150 	 * This means that failures all the way up to this point leave the inode
3151 	 * on the unlinked list and so cleanup is a simple matter of dropping
3152 	 * the remaining reference to it. If we fail here after bumping the link
3153 	 * count, we're shutting down the filesystem so we'll never see the
3154 	 * intermediate state on disk.
3155 	 */
3156 	if (wip) {
3157 		ASSERT(VFS_I(wip)->i_nlink == 0);
3158 		error = xfs_bumplink(tp, wip);
3159 		if (error)
3160 			goto out_bmap_cancel;
3161 		error = xfs_iunlink_remove(tp, wip);
3162 		if (error)
3163 			goto out_bmap_cancel;
3164 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3165 
3166 		/*
3167 		 * Now we have a real link, clear the "I'm a tmpfile" state
3168 		 * flag from the inode so it doesn't accidentally get misused in
3169 		 * future.
3170 		 */
3171 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3172 	}
3173 
3174 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3175 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3176 	if (new_parent)
3177 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3178 
3179 	error = xfs_finish_rename(tp, &dfops);
3180 	if (wip)
3181 		IRELE(wip);
3182 	return error;
3183 
3184 out_bmap_cancel:
3185 	xfs_defer_cancel(&dfops);
3186 out_trans_cancel:
3187 	xfs_trans_cancel(tp);
3188 out_release_wip:
3189 	if (wip)
3190 		IRELE(wip);
3191 	return error;
3192 }
3193 
3194 STATIC int
3195 xfs_iflush_cluster(
3196 	struct xfs_inode	*ip,
3197 	struct xfs_buf		*bp)
3198 {
3199 	struct xfs_mount	*mp = ip->i_mount;
3200 	struct xfs_perag	*pag;
3201 	unsigned long		first_index, mask;
3202 	unsigned long		inodes_per_cluster;
3203 	int			cilist_size;
3204 	struct xfs_inode	**cilist;
3205 	struct xfs_inode	*cip;
3206 	int			nr_found;
3207 	int			clcount = 0;
3208 	int			bufwasdelwri;
3209 	int			i;
3210 
3211 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3212 
3213 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3214 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3215 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3216 	if (!cilist)
3217 		goto out_put;
3218 
3219 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3220 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3221 	rcu_read_lock();
3222 	/* really need a gang lookup range call here */
3223 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3224 					first_index, inodes_per_cluster);
3225 	if (nr_found == 0)
3226 		goto out_free;
3227 
3228 	for (i = 0; i < nr_found; i++) {
3229 		cip = cilist[i];
3230 		if (cip == ip)
3231 			continue;
3232 
3233 		/*
3234 		 * because this is an RCU protected lookup, we could find a
3235 		 * recently freed or even reallocated inode during the lookup.
3236 		 * We need to check under the i_flags_lock for a valid inode
3237 		 * here. Skip it if it is not valid or the wrong inode.
3238 		 */
3239 		spin_lock(&cip->i_flags_lock);
3240 		if (!cip->i_ino ||
3241 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3242 			spin_unlock(&cip->i_flags_lock);
3243 			continue;
3244 		}
3245 
3246 		/*
3247 		 * Once we fall off the end of the cluster, no point checking
3248 		 * any more inodes in the list because they will also all be
3249 		 * outside the cluster.
3250 		 */
3251 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3252 			spin_unlock(&cip->i_flags_lock);
3253 			break;
3254 		}
3255 		spin_unlock(&cip->i_flags_lock);
3256 
3257 		/*
3258 		 * Do an un-protected check to see if the inode is dirty and
3259 		 * is a candidate for flushing.  These checks will be repeated
3260 		 * later after the appropriate locks are acquired.
3261 		 */
3262 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3263 			continue;
3264 
3265 		/*
3266 		 * Try to get locks.  If any are unavailable or it is pinned,
3267 		 * then this inode cannot be flushed and is skipped.
3268 		 */
3269 
3270 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3271 			continue;
3272 		if (!xfs_iflock_nowait(cip)) {
3273 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3274 			continue;
3275 		}
3276 		if (xfs_ipincount(cip)) {
3277 			xfs_ifunlock(cip);
3278 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3279 			continue;
3280 		}
3281 
3282 
3283 		/*
3284 		 * Check the inode number again, just to be certain we are not
3285 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3286 		 * in that function for more information as to why the initial
3287 		 * check is not sufficient.
3288 		 */
3289 		if (!cip->i_ino) {
3290 			xfs_ifunlock(cip);
3291 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3292 			continue;
3293 		}
3294 
3295 		/*
3296 		 * arriving here means that this inode can be flushed.  First
3297 		 * re-check that it's dirty before flushing.
3298 		 */
3299 		if (!xfs_inode_clean(cip)) {
3300 			int	error;
3301 			error = xfs_iflush_int(cip, bp);
3302 			if (error) {
3303 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3304 				goto cluster_corrupt_out;
3305 			}
3306 			clcount++;
3307 		} else {
3308 			xfs_ifunlock(cip);
3309 		}
3310 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3311 	}
3312 
3313 	if (clcount) {
3314 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3315 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3316 	}
3317 
3318 out_free:
3319 	rcu_read_unlock();
3320 	kmem_free(cilist);
3321 out_put:
3322 	xfs_perag_put(pag);
3323 	return 0;
3324 
3325 
3326 cluster_corrupt_out:
3327 	/*
3328 	 * Corruption detected in the clustering loop.  Invalidate the
3329 	 * inode buffer and shut down the filesystem.
3330 	 */
3331 	rcu_read_unlock();
3332 	/*
3333 	 * Clean up the buffer.  If it was delwri, just release it --
3334 	 * brelse can handle it with no problems.  If not, shut down the
3335 	 * filesystem before releasing the buffer.
3336 	 */
3337 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3338 	if (bufwasdelwri)
3339 		xfs_buf_relse(bp);
3340 
3341 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3342 
3343 	if (!bufwasdelwri) {
3344 		/*
3345 		 * Just like incore_relse: if we have b_iodone functions,
3346 		 * mark the buffer as an error and call them.  Otherwise
3347 		 * mark it as stale and brelse.
3348 		 */
3349 		if (bp->b_iodone) {
3350 			bp->b_flags &= ~XBF_DONE;
3351 			xfs_buf_stale(bp);
3352 			xfs_buf_ioerror(bp, -EIO);
3353 			xfs_buf_ioend(bp);
3354 		} else {
3355 			xfs_buf_stale(bp);
3356 			xfs_buf_relse(bp);
3357 		}
3358 	}
3359 
3360 	/*
3361 	 * Unlocks the flush lock
3362 	 */
3363 	xfs_iflush_abort(cip, false);
3364 	kmem_free(cilist);
3365 	xfs_perag_put(pag);
3366 	return -EFSCORRUPTED;
3367 }
3368 
3369 /*
3370  * Flush dirty inode metadata into the backing buffer.
3371  *
3372  * The caller must have the inode lock and the inode flush lock held.  The
3373  * inode lock will still be held upon return to the caller, and the inode
3374  * flush lock will be released after the inode has reached the disk.
3375  *
3376  * The caller must write out the buffer returned in *bpp and release it.
3377  */
3378 int
3379 xfs_iflush(
3380 	struct xfs_inode	*ip,
3381 	struct xfs_buf		**bpp)
3382 {
3383 	struct xfs_mount	*mp = ip->i_mount;
3384 	struct xfs_buf		*bp = NULL;
3385 	struct xfs_dinode	*dip;
3386 	int			error;
3387 
3388 	XFS_STATS_INC(mp, xs_iflush_count);
3389 
3390 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3391 	ASSERT(xfs_isiflocked(ip));
3392 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3393 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3394 
3395 	*bpp = NULL;
3396 
3397 	xfs_iunpin_wait(ip);
3398 
3399 	/*
3400 	 * For stale inodes we cannot rely on the backing buffer remaining
3401 	 * stale in cache for the remaining life of the stale inode and so
3402 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3403 	 * inodes below. We have to check this after ensuring the inode is
3404 	 * unpinned so that it is safe to reclaim the stale inode after the
3405 	 * flush call.
3406 	 */
3407 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3408 		xfs_ifunlock(ip);
3409 		return 0;
3410 	}
3411 
3412 	/*
3413 	 * This may have been unpinned because the filesystem is shutting
3414 	 * down forcibly. If that's the case we must not write this inode
3415 	 * to disk, because the log record didn't make it to disk.
3416 	 *
3417 	 * We also have to remove the log item from the AIL in this case,
3418 	 * as we wait for an empty AIL as part of the unmount process.
3419 	 */
3420 	if (XFS_FORCED_SHUTDOWN(mp)) {
3421 		error = -EIO;
3422 		goto abort_out;
3423 	}
3424 
3425 	/*
3426 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3427 	 * operation here, so we may get  an EAGAIN error. In that case, we
3428 	 * simply want to return with the inode still dirty.
3429 	 *
3430 	 * If we get any other error, we effectively have a corruption situation
3431 	 * and we cannot flush the inode, so we treat it the same as failing
3432 	 * xfs_iflush_int().
3433 	 */
3434 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3435 			       0);
3436 	if (error == -EAGAIN) {
3437 		xfs_ifunlock(ip);
3438 		return error;
3439 	}
3440 	if (error)
3441 		goto corrupt_out;
3442 
3443 	/*
3444 	 * First flush out the inode that xfs_iflush was called with.
3445 	 */
3446 	error = xfs_iflush_int(ip, bp);
3447 	if (error)
3448 		goto corrupt_out;
3449 
3450 	/*
3451 	 * If the buffer is pinned then push on the log now so we won't
3452 	 * get stuck waiting in the write for too long.
3453 	 */
3454 	if (xfs_buf_ispinned(bp))
3455 		xfs_log_force(mp, 0);
3456 
3457 	/*
3458 	 * inode clustering:
3459 	 * see if other inodes can be gathered into this write
3460 	 */
3461 	error = xfs_iflush_cluster(ip, bp);
3462 	if (error)
3463 		goto cluster_corrupt_out;
3464 
3465 	*bpp = bp;
3466 	return 0;
3467 
3468 corrupt_out:
3469 	if (bp)
3470 		xfs_buf_relse(bp);
3471 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3472 cluster_corrupt_out:
3473 	error = -EFSCORRUPTED;
3474 abort_out:
3475 	/*
3476 	 * Unlocks the flush lock
3477 	 */
3478 	xfs_iflush_abort(ip, false);
3479 	return error;
3480 }
3481 
3482 STATIC int
3483 xfs_iflush_int(
3484 	struct xfs_inode	*ip,
3485 	struct xfs_buf		*bp)
3486 {
3487 	struct xfs_inode_log_item *iip = ip->i_itemp;
3488 	struct xfs_dinode	*dip;
3489 	struct xfs_mount	*mp = ip->i_mount;
3490 
3491 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3492 	ASSERT(xfs_isiflocked(ip));
3493 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3494 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3495 	ASSERT(iip != NULL && iip->ili_fields != 0);
3496 	ASSERT(ip->i_d.di_version > 1);
3497 
3498 	/* set *dip = inode's place in the buffer */
3499 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3500 
3501 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3502 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3503 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3504 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3505 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3506 		goto corrupt_out;
3507 	}
3508 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3509 		if (XFS_TEST_ERROR(
3510 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3511 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3512 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3513 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3514 				"%s: Bad regular inode %Lu, ptr 0x%p",
3515 				__func__, ip->i_ino, ip);
3516 			goto corrupt_out;
3517 		}
3518 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3519 		if (XFS_TEST_ERROR(
3520 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3521 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3522 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3523 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3524 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3525 				"%s: Bad directory inode %Lu, ptr 0x%p",
3526 				__func__, ip->i_ino, ip);
3527 			goto corrupt_out;
3528 		}
3529 	}
3530 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3531 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3532 				XFS_RANDOM_IFLUSH_5)) {
3533 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3534 			"%s: detected corrupt incore inode %Lu, "
3535 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3536 			__func__, ip->i_ino,
3537 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3538 			ip->i_d.di_nblocks, ip);
3539 		goto corrupt_out;
3540 	}
3541 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3542 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3543 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3544 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3545 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3546 		goto corrupt_out;
3547 	}
3548 
3549 	/*
3550 	 * Inode item log recovery for v2 inodes are dependent on the
3551 	 * di_flushiter count for correct sequencing. We bump the flush
3552 	 * iteration count so we can detect flushes which postdate a log record
3553 	 * during recovery. This is redundant as we now log every change and
3554 	 * hence this can't happen but we need to still do it to ensure
3555 	 * backwards compatibility with old kernels that predate logging all
3556 	 * inode changes.
3557 	 */
3558 	if (ip->i_d.di_version < 3)
3559 		ip->i_d.di_flushiter++;
3560 
3561 	/*
3562 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3563 	 * copy out the core of the inode, because if the inode is dirty at all
3564 	 * the core must be.
3565 	 */
3566 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3567 
3568 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3569 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3570 		ip->i_d.di_flushiter = 0;
3571 
3572 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3573 	if (XFS_IFORK_Q(ip))
3574 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3575 	xfs_inobp_check(mp, bp);
3576 
3577 	/*
3578 	 * We've recorded everything logged in the inode, so we'd like to clear
3579 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3580 	 * However, we can't stop logging all this information until the data
3581 	 * we've copied into the disk buffer is written to disk.  If we did we
3582 	 * might overwrite the copy of the inode in the log with all the data
3583 	 * after re-logging only part of it, and in the face of a crash we
3584 	 * wouldn't have all the data we need to recover.
3585 	 *
3586 	 * What we do is move the bits to the ili_last_fields field.  When
3587 	 * logging the inode, these bits are moved back to the ili_fields field.
3588 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3589 	 * know that the information those bits represent is permanently on
3590 	 * disk.  As long as the flush completes before the inode is logged
3591 	 * again, then both ili_fields and ili_last_fields will be cleared.
3592 	 *
3593 	 * We can play with the ili_fields bits here, because the inode lock
3594 	 * must be held exclusively in order to set bits there and the flush
3595 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3596 	 * done routine can tell whether or not to look in the AIL.  Also, store
3597 	 * the current LSN of the inode so that we can tell whether the item has
3598 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3599 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3600 	 * atomically.
3601 	 */
3602 	iip->ili_last_fields = iip->ili_fields;
3603 	iip->ili_fields = 0;
3604 	iip->ili_fsync_fields = 0;
3605 	iip->ili_logged = 1;
3606 
3607 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3608 				&iip->ili_item.li_lsn);
3609 
3610 	/*
3611 	 * Attach the function xfs_iflush_done to the inode's
3612 	 * buffer.  This will remove the inode from the AIL
3613 	 * and unlock the inode's flush lock when the inode is
3614 	 * completely written to disk.
3615 	 */
3616 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3617 
3618 	/* generate the checksum. */
3619 	xfs_dinode_calc_crc(mp, dip);
3620 
3621 	ASSERT(bp->b_fspriv != NULL);
3622 	ASSERT(bp->b_iodone != NULL);
3623 	return 0;
3624 
3625 corrupt_out:
3626 	return -EFSCORRUPTED;
3627 }
3628