1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 2 locks: a multi-reader lock called the 121 * i_iolock and a multi-reader lock called the i_lock. This routine 122 * allows either or both of the locks to be obtained. 123 * 124 * The 2 locks should always be ordered so that the IO lock is 125 * obtained first in order to prevent deadlock. 126 * 127 * ip -- the inode being locked 128 * lock_flags -- this parameter indicates the inode's locks 129 * to be locked. It can be: 130 * XFS_IOLOCK_SHARED, 131 * XFS_IOLOCK_EXCL, 132 * XFS_ILOCK_SHARED, 133 * XFS_ILOCK_EXCL, 134 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 135 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 136 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 137 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 138 */ 139 void 140 xfs_ilock( 141 xfs_inode_t *ip, 142 uint lock_flags) 143 { 144 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 145 146 /* 147 * You can't set both SHARED and EXCL for the same lock, 148 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 149 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 150 */ 151 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 152 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 153 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 154 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 155 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 156 157 if (lock_flags & XFS_IOLOCK_EXCL) 158 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 159 else if (lock_flags & XFS_IOLOCK_SHARED) 160 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 161 162 if (lock_flags & XFS_ILOCK_EXCL) 163 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 164 else if (lock_flags & XFS_ILOCK_SHARED) 165 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 } 167 168 /* 169 * This is just like xfs_ilock(), except that the caller 170 * is guaranteed not to sleep. It returns 1 if it gets 171 * the requested locks and 0 otherwise. If the IO lock is 172 * obtained but the inode lock cannot be, then the IO lock 173 * is dropped before returning. 174 * 175 * ip -- the inode being locked 176 * lock_flags -- this parameter indicates the inode's locks to be 177 * to be locked. See the comment for xfs_ilock() for a list 178 * of valid values. 179 */ 180 int 181 xfs_ilock_nowait( 182 xfs_inode_t *ip, 183 uint lock_flags) 184 { 185 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 186 187 /* 188 * You can't set both SHARED and EXCL for the same lock, 189 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 190 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 191 */ 192 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 193 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 194 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 195 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 196 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 197 198 if (lock_flags & XFS_IOLOCK_EXCL) { 199 if (!mrtryupdate(&ip->i_iolock)) 200 goto out; 201 } else if (lock_flags & XFS_IOLOCK_SHARED) { 202 if (!mrtryaccess(&ip->i_iolock)) 203 goto out; 204 } 205 if (lock_flags & XFS_ILOCK_EXCL) { 206 if (!mrtryupdate(&ip->i_lock)) 207 goto out_undo_iolock; 208 } else if (lock_flags & XFS_ILOCK_SHARED) { 209 if (!mrtryaccess(&ip->i_lock)) 210 goto out_undo_iolock; 211 } 212 return 1; 213 214 out_undo_iolock: 215 if (lock_flags & XFS_IOLOCK_EXCL) 216 mrunlock_excl(&ip->i_iolock); 217 else if (lock_flags & XFS_IOLOCK_SHARED) 218 mrunlock_shared(&ip->i_iolock); 219 out: 220 return 0; 221 } 222 223 /* 224 * xfs_iunlock() is used to drop the inode locks acquired with 225 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 226 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 227 * that we know which locks to drop. 228 * 229 * ip -- the inode being unlocked 230 * lock_flags -- this parameter indicates the inode's locks to be 231 * to be unlocked. See the comment for xfs_ilock() for a list 232 * of valid values for this parameter. 233 * 234 */ 235 void 236 xfs_iunlock( 237 xfs_inode_t *ip, 238 uint lock_flags) 239 { 240 /* 241 * You can't set both SHARED and EXCL for the same lock, 242 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 243 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 244 */ 245 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 246 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 247 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 248 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 249 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 250 ASSERT(lock_flags != 0); 251 252 if (lock_flags & XFS_IOLOCK_EXCL) 253 mrunlock_excl(&ip->i_iolock); 254 else if (lock_flags & XFS_IOLOCK_SHARED) 255 mrunlock_shared(&ip->i_iolock); 256 257 if (lock_flags & XFS_ILOCK_EXCL) 258 mrunlock_excl(&ip->i_lock); 259 else if (lock_flags & XFS_ILOCK_SHARED) 260 mrunlock_shared(&ip->i_lock); 261 262 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 263 } 264 265 /* 266 * give up write locks. the i/o lock cannot be held nested 267 * if it is being demoted. 268 */ 269 void 270 xfs_ilock_demote( 271 xfs_inode_t *ip, 272 uint lock_flags) 273 { 274 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 275 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 276 277 if (lock_flags & XFS_ILOCK_EXCL) 278 mrdemote(&ip->i_lock); 279 if (lock_flags & XFS_IOLOCK_EXCL) 280 mrdemote(&ip->i_iolock); 281 282 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 283 } 284 285 #if defined(DEBUG) || defined(XFS_WARN) 286 int 287 xfs_isilocked( 288 xfs_inode_t *ip, 289 uint lock_flags) 290 { 291 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 292 if (!(lock_flags & XFS_ILOCK_SHARED)) 293 return !!ip->i_lock.mr_writer; 294 return rwsem_is_locked(&ip->i_lock.mr_lock); 295 } 296 297 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 298 if (!(lock_flags & XFS_IOLOCK_SHARED)) 299 return !!ip->i_iolock.mr_writer; 300 return rwsem_is_locked(&ip->i_iolock.mr_lock); 301 } 302 303 ASSERT(0); 304 return 0; 305 } 306 #endif 307 308 #ifdef DEBUG 309 int xfs_locked_n; 310 int xfs_small_retries; 311 int xfs_middle_retries; 312 int xfs_lots_retries; 313 int xfs_lock_delays; 314 #endif 315 316 /* 317 * Bump the subclass so xfs_lock_inodes() acquires each lock with 318 * a different value 319 */ 320 static inline int 321 xfs_lock_inumorder(int lock_mode, int subclass) 322 { 323 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 324 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 325 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 327 328 return lock_mode; 329 } 330 331 /* 332 * The following routine will lock n inodes in exclusive mode. 333 * We assume the caller calls us with the inodes in i_ino order. 334 * 335 * We need to detect deadlock where an inode that we lock 336 * is in the AIL and we start waiting for another inode that is locked 337 * by a thread in a long running transaction (such as truncate). This can 338 * result in deadlock since the long running trans might need to wait 339 * for the inode we just locked in order to push the tail and free space 340 * in the log. 341 */ 342 void 343 xfs_lock_inodes( 344 xfs_inode_t **ips, 345 int inodes, 346 uint lock_mode) 347 { 348 int attempts = 0, i, j, try_lock; 349 xfs_log_item_t *lp; 350 351 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 352 353 try_lock = 0; 354 i = 0; 355 356 again: 357 for (; i < inodes; i++) { 358 ASSERT(ips[i]); 359 360 if (i && (ips[i] == ips[i-1])) /* Already locked */ 361 continue; 362 363 /* 364 * If try_lock is not set yet, make sure all locked inodes 365 * are not in the AIL. 366 * If any are, set try_lock to be used later. 367 */ 368 369 if (!try_lock) { 370 for (j = (i - 1); j >= 0 && !try_lock; j--) { 371 lp = (xfs_log_item_t *)ips[j]->i_itemp; 372 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 373 try_lock++; 374 } 375 } 376 } 377 378 /* 379 * If any of the previous locks we have locked is in the AIL, 380 * we must TRY to get the second and subsequent locks. If 381 * we can't get any, we must release all we have 382 * and try again. 383 */ 384 385 if (try_lock) { 386 /* try_lock must be 0 if i is 0. */ 387 /* 388 * try_lock means we have an inode locked 389 * that is in the AIL. 390 */ 391 ASSERT(i != 0); 392 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 393 attempts++; 394 395 /* 396 * Unlock all previous guys and try again. 397 * xfs_iunlock will try to push the tail 398 * if the inode is in the AIL. 399 */ 400 401 for(j = i - 1; j >= 0; j--) { 402 403 /* 404 * Check to see if we've already 405 * unlocked this one. 406 * Not the first one going back, 407 * and the inode ptr is the same. 408 */ 409 if ((j != (i - 1)) && ips[j] == 410 ips[j+1]) 411 continue; 412 413 xfs_iunlock(ips[j], lock_mode); 414 } 415 416 if ((attempts % 5) == 0) { 417 delay(1); /* Don't just spin the CPU */ 418 #ifdef DEBUG 419 xfs_lock_delays++; 420 #endif 421 } 422 i = 0; 423 try_lock = 0; 424 goto again; 425 } 426 } else { 427 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 428 } 429 } 430 431 #ifdef DEBUG 432 if (attempts) { 433 if (attempts < 5) xfs_small_retries++; 434 else if (attempts < 100) xfs_middle_retries++; 435 else xfs_lots_retries++; 436 } else { 437 xfs_locked_n++; 438 } 439 #endif 440 } 441 442 /* 443 * xfs_lock_two_inodes() can only be used to lock one type of lock 444 * at a time - the iolock or the ilock, but not both at once. If 445 * we lock both at once, lockdep will report false positives saying 446 * we have violated locking orders. 447 */ 448 void 449 xfs_lock_two_inodes( 450 xfs_inode_t *ip0, 451 xfs_inode_t *ip1, 452 uint lock_mode) 453 { 454 xfs_inode_t *temp; 455 int attempts = 0; 456 xfs_log_item_t *lp; 457 458 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 459 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 460 ASSERT(ip0->i_ino != ip1->i_ino); 461 462 if (ip0->i_ino > ip1->i_ino) { 463 temp = ip0; 464 ip0 = ip1; 465 ip1 = temp; 466 } 467 468 again: 469 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 470 471 /* 472 * If the first lock we have locked is in the AIL, we must TRY to get 473 * the second lock. If we can't get it, we must release the first one 474 * and try again. 475 */ 476 lp = (xfs_log_item_t *)ip0->i_itemp; 477 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 478 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 479 xfs_iunlock(ip0, lock_mode); 480 if ((++attempts % 5) == 0) 481 delay(1); /* Don't just spin the CPU */ 482 goto again; 483 } 484 } else { 485 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 486 } 487 } 488 489 490 void 491 __xfs_iflock( 492 struct xfs_inode *ip) 493 { 494 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 495 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 496 497 do { 498 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 499 if (xfs_isiflocked(ip)) 500 io_schedule(); 501 } while (!xfs_iflock_nowait(ip)); 502 503 finish_wait(wq, &wait.wait); 504 } 505 506 STATIC uint 507 _xfs_dic2xflags( 508 __uint16_t di_flags) 509 { 510 uint flags = 0; 511 512 if (di_flags & XFS_DIFLAG_ANY) { 513 if (di_flags & XFS_DIFLAG_REALTIME) 514 flags |= XFS_XFLAG_REALTIME; 515 if (di_flags & XFS_DIFLAG_PREALLOC) 516 flags |= XFS_XFLAG_PREALLOC; 517 if (di_flags & XFS_DIFLAG_IMMUTABLE) 518 flags |= XFS_XFLAG_IMMUTABLE; 519 if (di_flags & XFS_DIFLAG_APPEND) 520 flags |= XFS_XFLAG_APPEND; 521 if (di_flags & XFS_DIFLAG_SYNC) 522 flags |= XFS_XFLAG_SYNC; 523 if (di_flags & XFS_DIFLAG_NOATIME) 524 flags |= XFS_XFLAG_NOATIME; 525 if (di_flags & XFS_DIFLAG_NODUMP) 526 flags |= XFS_XFLAG_NODUMP; 527 if (di_flags & XFS_DIFLAG_RTINHERIT) 528 flags |= XFS_XFLAG_RTINHERIT; 529 if (di_flags & XFS_DIFLAG_PROJINHERIT) 530 flags |= XFS_XFLAG_PROJINHERIT; 531 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 532 flags |= XFS_XFLAG_NOSYMLINKS; 533 if (di_flags & XFS_DIFLAG_EXTSIZE) 534 flags |= XFS_XFLAG_EXTSIZE; 535 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 536 flags |= XFS_XFLAG_EXTSZINHERIT; 537 if (di_flags & XFS_DIFLAG_NODEFRAG) 538 flags |= XFS_XFLAG_NODEFRAG; 539 if (di_flags & XFS_DIFLAG_FILESTREAM) 540 flags |= XFS_XFLAG_FILESTREAM; 541 } 542 543 return flags; 544 } 545 546 uint 547 xfs_ip2xflags( 548 xfs_inode_t *ip) 549 { 550 xfs_icdinode_t *dic = &ip->i_d; 551 552 return _xfs_dic2xflags(dic->di_flags) | 553 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 554 } 555 556 uint 557 xfs_dic2xflags( 558 xfs_dinode_t *dip) 559 { 560 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 561 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 562 } 563 564 /* 565 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 566 * is allowed, otherwise it has to be an exact match. If a CI match is found, 567 * ci_name->name will point to a the actual name (caller must free) or 568 * will be set to NULL if an exact match is found. 569 */ 570 int 571 xfs_lookup( 572 xfs_inode_t *dp, 573 struct xfs_name *name, 574 xfs_inode_t **ipp, 575 struct xfs_name *ci_name) 576 { 577 xfs_ino_t inum; 578 int error; 579 uint lock_mode; 580 581 trace_xfs_lookup(dp, name); 582 583 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 584 return -EIO; 585 586 lock_mode = xfs_ilock_data_map_shared(dp); 587 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 588 xfs_iunlock(dp, lock_mode); 589 590 if (error) 591 goto out; 592 593 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 594 if (error) 595 goto out_free_name; 596 597 return 0; 598 599 out_free_name: 600 if (ci_name) 601 kmem_free(ci_name->name); 602 out: 603 *ipp = NULL; 604 return error; 605 } 606 607 /* 608 * Allocate an inode on disk and return a copy of its in-core version. 609 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 610 * appropriately within the inode. The uid and gid for the inode are 611 * set according to the contents of the given cred structure. 612 * 613 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 614 * has a free inode available, call xfs_iget() to obtain the in-core 615 * version of the allocated inode. Finally, fill in the inode and 616 * log its initial contents. In this case, ialloc_context would be 617 * set to NULL. 618 * 619 * If xfs_dialloc() does not have an available inode, it will replenish 620 * its supply by doing an allocation. Since we can only do one 621 * allocation within a transaction without deadlocks, we must commit 622 * the current transaction before returning the inode itself. 623 * In this case, therefore, we will set ialloc_context and return. 624 * The caller should then commit the current transaction, start a new 625 * transaction, and call xfs_ialloc() again to actually get the inode. 626 * 627 * To ensure that some other process does not grab the inode that 628 * was allocated during the first call to xfs_ialloc(), this routine 629 * also returns the [locked] bp pointing to the head of the freelist 630 * as ialloc_context. The caller should hold this buffer across 631 * the commit and pass it back into this routine on the second call. 632 * 633 * If we are allocating quota inodes, we do not have a parent inode 634 * to attach to or associate with (i.e. pip == NULL) because they 635 * are not linked into the directory structure - they are attached 636 * directly to the superblock - and so have no parent. 637 */ 638 int 639 xfs_ialloc( 640 xfs_trans_t *tp, 641 xfs_inode_t *pip, 642 umode_t mode, 643 xfs_nlink_t nlink, 644 xfs_dev_t rdev, 645 prid_t prid, 646 int okalloc, 647 xfs_buf_t **ialloc_context, 648 xfs_inode_t **ipp) 649 { 650 struct xfs_mount *mp = tp->t_mountp; 651 xfs_ino_t ino; 652 xfs_inode_t *ip; 653 uint flags; 654 int error; 655 struct timespec tv; 656 657 /* 658 * Call the space management code to pick 659 * the on-disk inode to be allocated. 660 */ 661 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 662 ialloc_context, &ino); 663 if (error) 664 return error; 665 if (*ialloc_context || ino == NULLFSINO) { 666 *ipp = NULL; 667 return 0; 668 } 669 ASSERT(*ialloc_context == NULL); 670 671 /* 672 * Get the in-core inode with the lock held exclusively. 673 * This is because we're setting fields here we need 674 * to prevent others from looking at until we're done. 675 */ 676 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 677 XFS_ILOCK_EXCL, &ip); 678 if (error) 679 return error; 680 ASSERT(ip != NULL); 681 682 /* 683 * We always convert v1 inodes to v2 now - we only support filesystems 684 * with >= v2 inode capability, so there is no reason for ever leaving 685 * an inode in v1 format. 686 */ 687 if (ip->i_d.di_version == 1) 688 ip->i_d.di_version = 2; 689 690 ip->i_d.di_mode = mode; 691 ip->i_d.di_onlink = 0; 692 ip->i_d.di_nlink = nlink; 693 ASSERT(ip->i_d.di_nlink == nlink); 694 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 695 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 696 xfs_set_projid(ip, prid); 697 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 698 699 if (pip && XFS_INHERIT_GID(pip)) { 700 ip->i_d.di_gid = pip->i_d.di_gid; 701 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 702 ip->i_d.di_mode |= S_ISGID; 703 } 704 } 705 706 /* 707 * If the group ID of the new file does not match the effective group 708 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 709 * (and only if the irix_sgid_inherit compatibility variable is set). 710 */ 711 if ((irix_sgid_inherit) && 712 (ip->i_d.di_mode & S_ISGID) && 713 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 714 ip->i_d.di_mode &= ~S_ISGID; 715 } 716 717 ip->i_d.di_size = 0; 718 ip->i_d.di_nextents = 0; 719 ASSERT(ip->i_d.di_nblocks == 0); 720 721 tv = current_fs_time(mp->m_super); 722 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 723 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 724 ip->i_d.di_atime = ip->i_d.di_mtime; 725 ip->i_d.di_ctime = ip->i_d.di_mtime; 726 727 /* 728 * di_gen will have been taken care of in xfs_iread. 729 */ 730 ip->i_d.di_extsize = 0; 731 ip->i_d.di_dmevmask = 0; 732 ip->i_d.di_dmstate = 0; 733 ip->i_d.di_flags = 0; 734 735 if (ip->i_d.di_version == 3) { 736 ASSERT(ip->i_d.di_ino == ino); 737 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 738 ip->i_d.di_crc = 0; 739 ip->i_d.di_changecount = 1; 740 ip->i_d.di_lsn = 0; 741 ip->i_d.di_flags2 = 0; 742 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 743 ip->i_d.di_crtime = ip->i_d.di_mtime; 744 } 745 746 747 flags = XFS_ILOG_CORE; 748 switch (mode & S_IFMT) { 749 case S_IFIFO: 750 case S_IFCHR: 751 case S_IFBLK: 752 case S_IFSOCK: 753 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 754 ip->i_df.if_u2.if_rdev = rdev; 755 ip->i_df.if_flags = 0; 756 flags |= XFS_ILOG_DEV; 757 break; 758 case S_IFREG: 759 case S_IFDIR: 760 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 761 uint di_flags = 0; 762 763 if (S_ISDIR(mode)) { 764 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 765 di_flags |= XFS_DIFLAG_RTINHERIT; 766 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 767 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 768 ip->i_d.di_extsize = pip->i_d.di_extsize; 769 } 770 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 771 di_flags |= XFS_DIFLAG_PROJINHERIT; 772 } else if (S_ISREG(mode)) { 773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 774 di_flags |= XFS_DIFLAG_REALTIME; 775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 776 di_flags |= XFS_DIFLAG_EXTSIZE; 777 ip->i_d.di_extsize = pip->i_d.di_extsize; 778 } 779 } 780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 781 xfs_inherit_noatime) 782 di_flags |= XFS_DIFLAG_NOATIME; 783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 784 xfs_inherit_nodump) 785 di_flags |= XFS_DIFLAG_NODUMP; 786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 787 xfs_inherit_sync) 788 di_flags |= XFS_DIFLAG_SYNC; 789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 790 xfs_inherit_nosymlinks) 791 di_flags |= XFS_DIFLAG_NOSYMLINKS; 792 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 793 xfs_inherit_nodefrag) 794 di_flags |= XFS_DIFLAG_NODEFRAG; 795 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 796 di_flags |= XFS_DIFLAG_FILESTREAM; 797 ip->i_d.di_flags |= di_flags; 798 } 799 /* FALLTHROUGH */ 800 case S_IFLNK: 801 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 802 ip->i_df.if_flags = XFS_IFEXTENTS; 803 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 804 ip->i_df.if_u1.if_extents = NULL; 805 break; 806 default: 807 ASSERT(0); 808 } 809 /* 810 * Attribute fork settings for new inode. 811 */ 812 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 813 ip->i_d.di_anextents = 0; 814 815 /* 816 * Log the new values stuffed into the inode. 817 */ 818 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 819 xfs_trans_log_inode(tp, ip, flags); 820 821 /* now that we have an i_mode we can setup inode ops and unlock */ 822 xfs_setup_inode(ip); 823 824 *ipp = ip; 825 return 0; 826 } 827 828 /* 829 * Allocates a new inode from disk and return a pointer to the 830 * incore copy. This routine will internally commit the current 831 * transaction and allocate a new one if the Space Manager needed 832 * to do an allocation to replenish the inode free-list. 833 * 834 * This routine is designed to be called from xfs_create and 835 * xfs_create_dir. 836 * 837 */ 838 int 839 xfs_dir_ialloc( 840 xfs_trans_t **tpp, /* input: current transaction; 841 output: may be a new transaction. */ 842 xfs_inode_t *dp, /* directory within whose allocate 843 the inode. */ 844 umode_t mode, 845 xfs_nlink_t nlink, 846 xfs_dev_t rdev, 847 prid_t prid, /* project id */ 848 int okalloc, /* ok to allocate new space */ 849 xfs_inode_t **ipp, /* pointer to inode; it will be 850 locked. */ 851 int *committed) 852 853 { 854 xfs_trans_t *tp; 855 xfs_trans_t *ntp; 856 xfs_inode_t *ip; 857 xfs_buf_t *ialloc_context = NULL; 858 int code; 859 void *dqinfo; 860 uint tflags; 861 862 tp = *tpp; 863 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 864 865 /* 866 * xfs_ialloc will return a pointer to an incore inode if 867 * the Space Manager has an available inode on the free 868 * list. Otherwise, it will do an allocation and replenish 869 * the freelist. Since we can only do one allocation per 870 * transaction without deadlocks, we will need to commit the 871 * current transaction and start a new one. We will then 872 * need to call xfs_ialloc again to get the inode. 873 * 874 * If xfs_ialloc did an allocation to replenish the freelist, 875 * it returns the bp containing the head of the freelist as 876 * ialloc_context. We will hold a lock on it across the 877 * transaction commit so that no other process can steal 878 * the inode(s) that we've just allocated. 879 */ 880 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 881 &ialloc_context, &ip); 882 883 /* 884 * Return an error if we were unable to allocate a new inode. 885 * This should only happen if we run out of space on disk or 886 * encounter a disk error. 887 */ 888 if (code) { 889 *ipp = NULL; 890 return code; 891 } 892 if (!ialloc_context && !ip) { 893 *ipp = NULL; 894 return -ENOSPC; 895 } 896 897 /* 898 * If the AGI buffer is non-NULL, then we were unable to get an 899 * inode in one operation. We need to commit the current 900 * transaction and call xfs_ialloc() again. It is guaranteed 901 * to succeed the second time. 902 */ 903 if (ialloc_context) { 904 struct xfs_trans_res tres; 905 906 /* 907 * Normally, xfs_trans_commit releases all the locks. 908 * We call bhold to hang on to the ialloc_context across 909 * the commit. Holding this buffer prevents any other 910 * processes from doing any allocations in this 911 * allocation group. 912 */ 913 xfs_trans_bhold(tp, ialloc_context); 914 /* 915 * Save the log reservation so we can use 916 * them in the next transaction. 917 */ 918 tres.tr_logres = xfs_trans_get_log_res(tp); 919 tres.tr_logcount = xfs_trans_get_log_count(tp); 920 921 /* 922 * We want the quota changes to be associated with the next 923 * transaction, NOT this one. So, detach the dqinfo from this 924 * and attach it to the next transaction. 925 */ 926 dqinfo = NULL; 927 tflags = 0; 928 if (tp->t_dqinfo) { 929 dqinfo = (void *)tp->t_dqinfo; 930 tp->t_dqinfo = NULL; 931 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 932 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 933 } 934 935 ntp = xfs_trans_dup(tp); 936 code = xfs_trans_commit(tp, 0); 937 tp = ntp; 938 if (committed != NULL) { 939 *committed = 1; 940 } 941 /* 942 * If we get an error during the commit processing, 943 * release the buffer that is still held and return 944 * to the caller. 945 */ 946 if (code) { 947 xfs_buf_relse(ialloc_context); 948 if (dqinfo) { 949 tp->t_dqinfo = dqinfo; 950 xfs_trans_free_dqinfo(tp); 951 } 952 *tpp = ntp; 953 *ipp = NULL; 954 return code; 955 } 956 957 /* 958 * transaction commit worked ok so we can drop the extra ticket 959 * reference that we gained in xfs_trans_dup() 960 */ 961 xfs_log_ticket_put(tp->t_ticket); 962 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 963 code = xfs_trans_reserve(tp, &tres, 0, 0); 964 965 /* 966 * Re-attach the quota info that we detached from prev trx. 967 */ 968 if (dqinfo) { 969 tp->t_dqinfo = dqinfo; 970 tp->t_flags |= tflags; 971 } 972 973 if (code) { 974 xfs_buf_relse(ialloc_context); 975 *tpp = ntp; 976 *ipp = NULL; 977 return code; 978 } 979 xfs_trans_bjoin(tp, ialloc_context); 980 981 /* 982 * Call ialloc again. Since we've locked out all 983 * other allocations in this allocation group, 984 * this call should always succeed. 985 */ 986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 987 okalloc, &ialloc_context, &ip); 988 989 /* 990 * If we get an error at this point, return to the caller 991 * so that the current transaction can be aborted. 992 */ 993 if (code) { 994 *tpp = tp; 995 *ipp = NULL; 996 return code; 997 } 998 ASSERT(!ialloc_context && ip); 999 1000 } else { 1001 if (committed != NULL) 1002 *committed = 0; 1003 } 1004 1005 *ipp = ip; 1006 *tpp = tp; 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * Decrement the link count on an inode & log the change. 1013 * If this causes the link count to go to zero, initiate the 1014 * logging activity required to truncate a file. 1015 */ 1016 int /* error */ 1017 xfs_droplink( 1018 xfs_trans_t *tp, 1019 xfs_inode_t *ip) 1020 { 1021 int error; 1022 1023 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1024 1025 ASSERT (ip->i_d.di_nlink > 0); 1026 ip->i_d.di_nlink--; 1027 drop_nlink(VFS_I(ip)); 1028 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1029 1030 error = 0; 1031 if (ip->i_d.di_nlink == 0) { 1032 /* 1033 * We're dropping the last link to this file. 1034 * Move the on-disk inode to the AGI unlinked list. 1035 * From xfs_inactive() we will pull the inode from 1036 * the list and free it. 1037 */ 1038 error = xfs_iunlink(tp, ip); 1039 } 1040 return error; 1041 } 1042 1043 /* 1044 * Increment the link count on an inode & log the change. 1045 */ 1046 int 1047 xfs_bumplink( 1048 xfs_trans_t *tp, 1049 xfs_inode_t *ip) 1050 { 1051 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1052 1053 ASSERT(ip->i_d.di_version > 1); 1054 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1055 ip->i_d.di_nlink++; 1056 inc_nlink(VFS_I(ip)); 1057 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1058 return 0; 1059 } 1060 1061 int 1062 xfs_create( 1063 xfs_inode_t *dp, 1064 struct xfs_name *name, 1065 umode_t mode, 1066 xfs_dev_t rdev, 1067 xfs_inode_t **ipp) 1068 { 1069 int is_dir = S_ISDIR(mode); 1070 struct xfs_mount *mp = dp->i_mount; 1071 struct xfs_inode *ip = NULL; 1072 struct xfs_trans *tp = NULL; 1073 int error; 1074 xfs_bmap_free_t free_list; 1075 xfs_fsblock_t first_block; 1076 bool unlock_dp_on_error = false; 1077 uint cancel_flags; 1078 int committed; 1079 prid_t prid; 1080 struct xfs_dquot *udqp = NULL; 1081 struct xfs_dquot *gdqp = NULL; 1082 struct xfs_dquot *pdqp = NULL; 1083 struct xfs_trans_res *tres; 1084 uint resblks; 1085 1086 trace_xfs_create(dp, name); 1087 1088 if (XFS_FORCED_SHUTDOWN(mp)) 1089 return -EIO; 1090 1091 prid = xfs_get_initial_prid(dp); 1092 1093 /* 1094 * Make sure that we have allocated dquot(s) on disk. 1095 */ 1096 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1097 xfs_kgid_to_gid(current_fsgid()), prid, 1098 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1099 &udqp, &gdqp, &pdqp); 1100 if (error) 1101 return error; 1102 1103 if (is_dir) { 1104 rdev = 0; 1105 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1106 tres = &M_RES(mp)->tr_mkdir; 1107 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1108 } else { 1109 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1110 tres = &M_RES(mp)->tr_create; 1111 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1112 } 1113 1114 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1115 1116 /* 1117 * Initially assume that the file does not exist and 1118 * reserve the resources for that case. If that is not 1119 * the case we'll drop the one we have and get a more 1120 * appropriate transaction later. 1121 */ 1122 error = xfs_trans_reserve(tp, tres, resblks, 0); 1123 if (error == -ENOSPC) { 1124 /* flush outstanding delalloc blocks and retry */ 1125 xfs_flush_inodes(mp); 1126 error = xfs_trans_reserve(tp, tres, resblks, 0); 1127 } 1128 if (error == -ENOSPC) { 1129 /* No space at all so try a "no-allocation" reservation */ 1130 resblks = 0; 1131 error = xfs_trans_reserve(tp, tres, 0, 0); 1132 } 1133 if (error) { 1134 cancel_flags = 0; 1135 goto out_trans_cancel; 1136 } 1137 1138 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1139 unlock_dp_on_error = true; 1140 1141 xfs_bmap_init(&free_list, &first_block); 1142 1143 /* 1144 * Reserve disk quota and the inode. 1145 */ 1146 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1147 pdqp, resblks, 1, 0); 1148 if (error) 1149 goto out_trans_cancel; 1150 1151 if (!resblks) { 1152 error = xfs_dir_canenter(tp, dp, name); 1153 if (error) 1154 goto out_trans_cancel; 1155 } 1156 1157 /* 1158 * A newly created regular or special file just has one directory 1159 * entry pointing to them, but a directory also the "." entry 1160 * pointing to itself. 1161 */ 1162 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1163 prid, resblks > 0, &ip, &committed); 1164 if (error) { 1165 if (error == -ENOSPC) 1166 goto out_trans_cancel; 1167 goto out_trans_abort; 1168 } 1169 1170 /* 1171 * Now we join the directory inode to the transaction. We do not do it 1172 * earlier because xfs_dir_ialloc might commit the previous transaction 1173 * (and release all the locks). An error from here on will result in 1174 * the transaction cancel unlocking dp so don't do it explicitly in the 1175 * error path. 1176 */ 1177 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1178 unlock_dp_on_error = false; 1179 1180 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1181 &first_block, &free_list, resblks ? 1182 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1183 if (error) { 1184 ASSERT(error != -ENOSPC); 1185 goto out_trans_abort; 1186 } 1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1189 1190 if (is_dir) { 1191 error = xfs_dir_init(tp, ip, dp); 1192 if (error) 1193 goto out_bmap_cancel; 1194 1195 error = xfs_bumplink(tp, dp); 1196 if (error) 1197 goto out_bmap_cancel; 1198 } 1199 1200 /* 1201 * If this is a synchronous mount, make sure that the 1202 * create transaction goes to disk before returning to 1203 * the user. 1204 */ 1205 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1206 xfs_trans_set_sync(tp); 1207 1208 /* 1209 * Attach the dquot(s) to the inodes and modify them incore. 1210 * These ids of the inode couldn't have changed since the new 1211 * inode has been locked ever since it was created. 1212 */ 1213 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1214 1215 error = xfs_bmap_finish(&tp, &free_list, &committed); 1216 if (error) 1217 goto out_bmap_cancel; 1218 1219 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1220 if (error) 1221 goto out_release_inode; 1222 1223 xfs_qm_dqrele(udqp); 1224 xfs_qm_dqrele(gdqp); 1225 xfs_qm_dqrele(pdqp); 1226 1227 *ipp = ip; 1228 return 0; 1229 1230 out_bmap_cancel: 1231 xfs_bmap_cancel(&free_list); 1232 out_trans_abort: 1233 cancel_flags |= XFS_TRANS_ABORT; 1234 out_trans_cancel: 1235 xfs_trans_cancel(tp, cancel_flags); 1236 out_release_inode: 1237 /* 1238 * Wait until after the current transaction is aborted to 1239 * release the inode. This prevents recursive transactions 1240 * and deadlocks from xfs_inactive. 1241 */ 1242 if (ip) 1243 IRELE(ip); 1244 1245 xfs_qm_dqrele(udqp); 1246 xfs_qm_dqrele(gdqp); 1247 xfs_qm_dqrele(pdqp); 1248 1249 if (unlock_dp_on_error) 1250 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1251 return error; 1252 } 1253 1254 int 1255 xfs_create_tmpfile( 1256 struct xfs_inode *dp, 1257 struct dentry *dentry, 1258 umode_t mode, 1259 struct xfs_inode **ipp) 1260 { 1261 struct xfs_mount *mp = dp->i_mount; 1262 struct xfs_inode *ip = NULL; 1263 struct xfs_trans *tp = NULL; 1264 int error; 1265 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1266 prid_t prid; 1267 struct xfs_dquot *udqp = NULL; 1268 struct xfs_dquot *gdqp = NULL; 1269 struct xfs_dquot *pdqp = NULL; 1270 struct xfs_trans_res *tres; 1271 uint resblks; 1272 1273 if (XFS_FORCED_SHUTDOWN(mp)) 1274 return -EIO; 1275 1276 prid = xfs_get_initial_prid(dp); 1277 1278 /* 1279 * Make sure that we have allocated dquot(s) on disk. 1280 */ 1281 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1282 xfs_kgid_to_gid(current_fsgid()), prid, 1283 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1284 &udqp, &gdqp, &pdqp); 1285 if (error) 1286 return error; 1287 1288 resblks = XFS_IALLOC_SPACE_RES(mp); 1289 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1290 1291 tres = &M_RES(mp)->tr_create_tmpfile; 1292 error = xfs_trans_reserve(tp, tres, resblks, 0); 1293 if (error == -ENOSPC) { 1294 /* No space at all so try a "no-allocation" reservation */ 1295 resblks = 0; 1296 error = xfs_trans_reserve(tp, tres, 0, 0); 1297 } 1298 if (error) { 1299 cancel_flags = 0; 1300 goto out_trans_cancel; 1301 } 1302 1303 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1304 pdqp, resblks, 1, 0); 1305 if (error) 1306 goto out_trans_cancel; 1307 1308 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1309 prid, resblks > 0, &ip, NULL); 1310 if (error) { 1311 if (error == -ENOSPC) 1312 goto out_trans_cancel; 1313 goto out_trans_abort; 1314 } 1315 1316 if (mp->m_flags & XFS_MOUNT_WSYNC) 1317 xfs_trans_set_sync(tp); 1318 1319 /* 1320 * Attach the dquot(s) to the inodes and modify them incore. 1321 * These ids of the inode couldn't have changed since the new 1322 * inode has been locked ever since it was created. 1323 */ 1324 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1325 1326 ip->i_d.di_nlink--; 1327 error = xfs_iunlink(tp, ip); 1328 if (error) 1329 goto out_trans_abort; 1330 1331 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1332 if (error) 1333 goto out_release_inode; 1334 1335 xfs_qm_dqrele(udqp); 1336 xfs_qm_dqrele(gdqp); 1337 xfs_qm_dqrele(pdqp); 1338 1339 *ipp = ip; 1340 return 0; 1341 1342 out_trans_abort: 1343 cancel_flags |= XFS_TRANS_ABORT; 1344 out_trans_cancel: 1345 xfs_trans_cancel(tp, cancel_flags); 1346 out_release_inode: 1347 /* 1348 * Wait until after the current transaction is aborted to 1349 * release the inode. This prevents recursive transactions 1350 * and deadlocks from xfs_inactive. 1351 */ 1352 if (ip) 1353 IRELE(ip); 1354 1355 xfs_qm_dqrele(udqp); 1356 xfs_qm_dqrele(gdqp); 1357 xfs_qm_dqrele(pdqp); 1358 1359 return error; 1360 } 1361 1362 int 1363 xfs_link( 1364 xfs_inode_t *tdp, 1365 xfs_inode_t *sip, 1366 struct xfs_name *target_name) 1367 { 1368 xfs_mount_t *mp = tdp->i_mount; 1369 xfs_trans_t *tp; 1370 int error; 1371 xfs_bmap_free_t free_list; 1372 xfs_fsblock_t first_block; 1373 int cancel_flags; 1374 int committed; 1375 int resblks; 1376 1377 trace_xfs_link(tdp, target_name); 1378 1379 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1380 1381 if (XFS_FORCED_SHUTDOWN(mp)) 1382 return -EIO; 1383 1384 error = xfs_qm_dqattach(sip, 0); 1385 if (error) 1386 goto std_return; 1387 1388 error = xfs_qm_dqattach(tdp, 0); 1389 if (error) 1390 goto std_return; 1391 1392 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1393 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1394 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1396 if (error == -ENOSPC) { 1397 resblks = 0; 1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1399 } 1400 if (error) { 1401 cancel_flags = 0; 1402 goto error_return; 1403 } 1404 1405 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1406 1407 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1408 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1409 1410 /* 1411 * If we are using project inheritance, we only allow hard link 1412 * creation in our tree when the project IDs are the same; else 1413 * the tree quota mechanism could be circumvented. 1414 */ 1415 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1416 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1417 error = -EXDEV; 1418 goto error_return; 1419 } 1420 1421 if (!resblks) { 1422 error = xfs_dir_canenter(tp, tdp, target_name); 1423 if (error) 1424 goto error_return; 1425 } 1426 1427 xfs_bmap_init(&free_list, &first_block); 1428 1429 if (sip->i_d.di_nlink == 0) { 1430 error = xfs_iunlink_remove(tp, sip); 1431 if (error) 1432 goto abort_return; 1433 } 1434 1435 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1436 &first_block, &free_list, resblks); 1437 if (error) 1438 goto abort_return; 1439 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1440 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1441 1442 error = xfs_bumplink(tp, sip); 1443 if (error) 1444 goto abort_return; 1445 1446 /* 1447 * If this is a synchronous mount, make sure that the 1448 * link transaction goes to disk before returning to 1449 * the user. 1450 */ 1451 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1452 xfs_trans_set_sync(tp); 1453 } 1454 1455 error = xfs_bmap_finish (&tp, &free_list, &committed); 1456 if (error) { 1457 xfs_bmap_cancel(&free_list); 1458 goto abort_return; 1459 } 1460 1461 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1462 1463 abort_return: 1464 cancel_flags |= XFS_TRANS_ABORT; 1465 error_return: 1466 xfs_trans_cancel(tp, cancel_flags); 1467 std_return: 1468 return error; 1469 } 1470 1471 /* 1472 * Free up the underlying blocks past new_size. The new size must be smaller 1473 * than the current size. This routine can be used both for the attribute and 1474 * data fork, and does not modify the inode size, which is left to the caller. 1475 * 1476 * The transaction passed to this routine must have made a permanent log 1477 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1478 * given transaction and start new ones, so make sure everything involved in 1479 * the transaction is tidy before calling here. Some transaction will be 1480 * returned to the caller to be committed. The incoming transaction must 1481 * already include the inode, and both inode locks must be held exclusively. 1482 * The inode must also be "held" within the transaction. On return the inode 1483 * will be "held" within the returned transaction. This routine does NOT 1484 * require any disk space to be reserved for it within the transaction. 1485 * 1486 * If we get an error, we must return with the inode locked and linked into the 1487 * current transaction. This keeps things simple for the higher level code, 1488 * because it always knows that the inode is locked and held in the transaction 1489 * that returns to it whether errors occur or not. We don't mark the inode 1490 * dirty on error so that transactions can be easily aborted if possible. 1491 */ 1492 int 1493 xfs_itruncate_extents( 1494 struct xfs_trans **tpp, 1495 struct xfs_inode *ip, 1496 int whichfork, 1497 xfs_fsize_t new_size) 1498 { 1499 struct xfs_mount *mp = ip->i_mount; 1500 struct xfs_trans *tp = *tpp; 1501 struct xfs_trans *ntp; 1502 xfs_bmap_free_t free_list; 1503 xfs_fsblock_t first_block; 1504 xfs_fileoff_t first_unmap_block; 1505 xfs_fileoff_t last_block; 1506 xfs_filblks_t unmap_len; 1507 int committed; 1508 int error = 0; 1509 int done = 0; 1510 1511 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1512 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1513 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1514 ASSERT(new_size <= XFS_ISIZE(ip)); 1515 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1516 ASSERT(ip->i_itemp != NULL); 1517 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1518 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1519 1520 trace_xfs_itruncate_extents_start(ip, new_size); 1521 1522 /* 1523 * Since it is possible for space to become allocated beyond 1524 * the end of the file (in a crash where the space is allocated 1525 * but the inode size is not yet updated), simply remove any 1526 * blocks which show up between the new EOF and the maximum 1527 * possible file size. If the first block to be removed is 1528 * beyond the maximum file size (ie it is the same as last_block), 1529 * then there is nothing to do. 1530 */ 1531 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1532 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1533 if (first_unmap_block == last_block) 1534 return 0; 1535 1536 ASSERT(first_unmap_block < last_block); 1537 unmap_len = last_block - first_unmap_block + 1; 1538 while (!done) { 1539 xfs_bmap_init(&free_list, &first_block); 1540 error = xfs_bunmapi(tp, ip, 1541 first_unmap_block, unmap_len, 1542 xfs_bmapi_aflag(whichfork), 1543 XFS_ITRUNC_MAX_EXTENTS, 1544 &first_block, &free_list, 1545 &done); 1546 if (error) 1547 goto out_bmap_cancel; 1548 1549 /* 1550 * Duplicate the transaction that has the permanent 1551 * reservation and commit the old transaction. 1552 */ 1553 error = xfs_bmap_finish(&tp, &free_list, &committed); 1554 if (committed) 1555 xfs_trans_ijoin(tp, ip, 0); 1556 if (error) 1557 goto out_bmap_cancel; 1558 1559 if (committed) { 1560 /* 1561 * Mark the inode dirty so it will be logged and 1562 * moved forward in the log as part of every commit. 1563 */ 1564 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1565 } 1566 1567 ntp = xfs_trans_dup(tp); 1568 error = xfs_trans_commit(tp, 0); 1569 tp = ntp; 1570 1571 xfs_trans_ijoin(tp, ip, 0); 1572 1573 if (error) 1574 goto out; 1575 1576 /* 1577 * Transaction commit worked ok so we can drop the extra ticket 1578 * reference that we gained in xfs_trans_dup() 1579 */ 1580 xfs_log_ticket_put(tp->t_ticket); 1581 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1582 if (error) 1583 goto out; 1584 } 1585 1586 /* 1587 * Always re-log the inode so that our permanent transaction can keep 1588 * on rolling it forward in the log. 1589 */ 1590 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1591 1592 trace_xfs_itruncate_extents_end(ip, new_size); 1593 1594 out: 1595 *tpp = tp; 1596 return error; 1597 out_bmap_cancel: 1598 /* 1599 * If the bunmapi call encounters an error, return to the caller where 1600 * the transaction can be properly aborted. We just need to make sure 1601 * we're not holding any resources that we were not when we came in. 1602 */ 1603 xfs_bmap_cancel(&free_list); 1604 goto out; 1605 } 1606 1607 int 1608 xfs_release( 1609 xfs_inode_t *ip) 1610 { 1611 xfs_mount_t *mp = ip->i_mount; 1612 int error; 1613 1614 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1615 return 0; 1616 1617 /* If this is a read-only mount, don't do this (would generate I/O) */ 1618 if (mp->m_flags & XFS_MOUNT_RDONLY) 1619 return 0; 1620 1621 if (!XFS_FORCED_SHUTDOWN(mp)) { 1622 int truncated; 1623 1624 /* 1625 * If we previously truncated this file and removed old data 1626 * in the process, we want to initiate "early" writeout on 1627 * the last close. This is an attempt to combat the notorious 1628 * NULL files problem which is particularly noticeable from a 1629 * truncate down, buffered (re-)write (delalloc), followed by 1630 * a crash. What we are effectively doing here is 1631 * significantly reducing the time window where we'd otherwise 1632 * be exposed to that problem. 1633 */ 1634 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1635 if (truncated) { 1636 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1637 if (ip->i_delayed_blks > 0) { 1638 error = filemap_flush(VFS_I(ip)->i_mapping); 1639 if (error) 1640 return error; 1641 } 1642 } 1643 } 1644 1645 if (ip->i_d.di_nlink == 0) 1646 return 0; 1647 1648 if (xfs_can_free_eofblocks(ip, false)) { 1649 1650 /* 1651 * If we can't get the iolock just skip truncating the blocks 1652 * past EOF because we could deadlock with the mmap_sem 1653 * otherwise. We'll get another chance to drop them once the 1654 * last reference to the inode is dropped, so we'll never leak 1655 * blocks permanently. 1656 * 1657 * Further, check if the inode is being opened, written and 1658 * closed frequently and we have delayed allocation blocks 1659 * outstanding (e.g. streaming writes from the NFS server), 1660 * truncating the blocks past EOF will cause fragmentation to 1661 * occur. 1662 * 1663 * In this case don't do the truncation, either, but we have to 1664 * be careful how we detect this case. Blocks beyond EOF show 1665 * up as i_delayed_blks even when the inode is clean, so we 1666 * need to truncate them away first before checking for a dirty 1667 * release. Hence on the first dirty close we will still remove 1668 * the speculative allocation, but after that we will leave it 1669 * in place. 1670 */ 1671 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1672 return 0; 1673 1674 error = xfs_free_eofblocks(mp, ip, true); 1675 if (error && error != -EAGAIN) 1676 return error; 1677 1678 /* delalloc blocks after truncation means it really is dirty */ 1679 if (ip->i_delayed_blks) 1680 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1681 } 1682 return 0; 1683 } 1684 1685 /* 1686 * xfs_inactive_truncate 1687 * 1688 * Called to perform a truncate when an inode becomes unlinked. 1689 */ 1690 STATIC int 1691 xfs_inactive_truncate( 1692 struct xfs_inode *ip) 1693 { 1694 struct xfs_mount *mp = ip->i_mount; 1695 struct xfs_trans *tp; 1696 int error; 1697 1698 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1699 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1700 if (error) { 1701 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1702 xfs_trans_cancel(tp, 0); 1703 return error; 1704 } 1705 1706 xfs_ilock(ip, XFS_ILOCK_EXCL); 1707 xfs_trans_ijoin(tp, ip, 0); 1708 1709 /* 1710 * Log the inode size first to prevent stale data exposure in the event 1711 * of a system crash before the truncate completes. See the related 1712 * comment in xfs_setattr_size() for details. 1713 */ 1714 ip->i_d.di_size = 0; 1715 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1716 1717 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1718 if (error) 1719 goto error_trans_cancel; 1720 1721 ASSERT(ip->i_d.di_nextents == 0); 1722 1723 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1724 if (error) 1725 goto error_unlock; 1726 1727 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1728 return 0; 1729 1730 error_trans_cancel: 1731 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1732 error_unlock: 1733 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1734 return error; 1735 } 1736 1737 /* 1738 * xfs_inactive_ifree() 1739 * 1740 * Perform the inode free when an inode is unlinked. 1741 */ 1742 STATIC int 1743 xfs_inactive_ifree( 1744 struct xfs_inode *ip) 1745 { 1746 xfs_bmap_free_t free_list; 1747 xfs_fsblock_t first_block; 1748 int committed; 1749 struct xfs_mount *mp = ip->i_mount; 1750 struct xfs_trans *tp; 1751 int error; 1752 1753 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1754 1755 /* 1756 * The ifree transaction might need to allocate blocks for record 1757 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1758 * allow ifree to dip into the reserved block pool if necessary. 1759 * 1760 * Freeing large sets of inodes generally means freeing inode chunks, 1761 * directory and file data blocks, so this should be relatively safe. 1762 * Only under severe circumstances should it be possible to free enough 1763 * inodes to exhaust the reserve block pool via finobt expansion while 1764 * at the same time not creating free space in the filesystem. 1765 * 1766 * Send a warning if the reservation does happen to fail, as the inode 1767 * now remains allocated and sits on the unlinked list until the fs is 1768 * repaired. 1769 */ 1770 tp->t_flags |= XFS_TRANS_RESERVE; 1771 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1772 XFS_IFREE_SPACE_RES(mp), 0); 1773 if (error) { 1774 if (error == -ENOSPC) { 1775 xfs_warn_ratelimited(mp, 1776 "Failed to remove inode(s) from unlinked list. " 1777 "Please free space, unmount and run xfs_repair."); 1778 } else { 1779 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1780 } 1781 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1782 return error; 1783 } 1784 1785 xfs_ilock(ip, XFS_ILOCK_EXCL); 1786 xfs_trans_ijoin(tp, ip, 0); 1787 1788 xfs_bmap_init(&free_list, &first_block); 1789 error = xfs_ifree(tp, ip, &free_list); 1790 if (error) { 1791 /* 1792 * If we fail to free the inode, shut down. The cancel 1793 * might do that, we need to make sure. Otherwise the 1794 * inode might be lost for a long time or forever. 1795 */ 1796 if (!XFS_FORCED_SHUTDOWN(mp)) { 1797 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1798 __func__, error); 1799 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1800 } 1801 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1802 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1803 return error; 1804 } 1805 1806 /* 1807 * Credit the quota account(s). The inode is gone. 1808 */ 1809 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1810 1811 /* 1812 * Just ignore errors at this point. There is nothing we can 1813 * do except to try to keep going. Make sure it's not a silent 1814 * error. 1815 */ 1816 error = xfs_bmap_finish(&tp, &free_list, &committed); 1817 if (error) 1818 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1819 __func__, error); 1820 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1821 if (error) 1822 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1823 __func__, error); 1824 1825 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1826 return 0; 1827 } 1828 1829 /* 1830 * xfs_inactive 1831 * 1832 * This is called when the vnode reference count for the vnode 1833 * goes to zero. If the file has been unlinked, then it must 1834 * now be truncated. Also, we clear all of the read-ahead state 1835 * kept for the inode here since the file is now closed. 1836 */ 1837 void 1838 xfs_inactive( 1839 xfs_inode_t *ip) 1840 { 1841 struct xfs_mount *mp; 1842 int error; 1843 int truncate = 0; 1844 1845 /* 1846 * If the inode is already free, then there can be nothing 1847 * to clean up here. 1848 */ 1849 if (ip->i_d.di_mode == 0) { 1850 ASSERT(ip->i_df.if_real_bytes == 0); 1851 ASSERT(ip->i_df.if_broot_bytes == 0); 1852 return; 1853 } 1854 1855 mp = ip->i_mount; 1856 1857 /* If this is a read-only mount, don't do this (would generate I/O) */ 1858 if (mp->m_flags & XFS_MOUNT_RDONLY) 1859 return; 1860 1861 if (ip->i_d.di_nlink != 0) { 1862 /* 1863 * force is true because we are evicting an inode from the 1864 * cache. Post-eof blocks must be freed, lest we end up with 1865 * broken free space accounting. 1866 */ 1867 if (xfs_can_free_eofblocks(ip, true)) 1868 xfs_free_eofblocks(mp, ip, false); 1869 1870 return; 1871 } 1872 1873 if (S_ISREG(ip->i_d.di_mode) && 1874 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1875 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1876 truncate = 1; 1877 1878 error = xfs_qm_dqattach(ip, 0); 1879 if (error) 1880 return; 1881 1882 if (S_ISLNK(ip->i_d.di_mode)) 1883 error = xfs_inactive_symlink(ip); 1884 else if (truncate) 1885 error = xfs_inactive_truncate(ip); 1886 if (error) 1887 return; 1888 1889 /* 1890 * If there are attributes associated with the file then blow them away 1891 * now. The code calls a routine that recursively deconstructs the 1892 * attribute fork. We need to just commit the current transaction 1893 * because we can't use it for xfs_attr_inactive(). 1894 */ 1895 if (ip->i_d.di_anextents > 0) { 1896 ASSERT(ip->i_d.di_forkoff != 0); 1897 1898 error = xfs_attr_inactive(ip); 1899 if (error) 1900 return; 1901 } 1902 1903 if (ip->i_afp) 1904 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1905 1906 ASSERT(ip->i_d.di_anextents == 0); 1907 1908 /* 1909 * Free the inode. 1910 */ 1911 error = xfs_inactive_ifree(ip); 1912 if (error) 1913 return; 1914 1915 /* 1916 * Release the dquots held by inode, if any. 1917 */ 1918 xfs_qm_dqdetach(ip); 1919 } 1920 1921 /* 1922 * This is called when the inode's link count goes to 0. 1923 * We place the on-disk inode on a list in the AGI. It 1924 * will be pulled from this list when the inode is freed. 1925 */ 1926 int 1927 xfs_iunlink( 1928 xfs_trans_t *tp, 1929 xfs_inode_t *ip) 1930 { 1931 xfs_mount_t *mp; 1932 xfs_agi_t *agi; 1933 xfs_dinode_t *dip; 1934 xfs_buf_t *agibp; 1935 xfs_buf_t *ibp; 1936 xfs_agino_t agino; 1937 short bucket_index; 1938 int offset; 1939 int error; 1940 1941 ASSERT(ip->i_d.di_nlink == 0); 1942 ASSERT(ip->i_d.di_mode != 0); 1943 1944 mp = tp->t_mountp; 1945 1946 /* 1947 * Get the agi buffer first. It ensures lock ordering 1948 * on the list. 1949 */ 1950 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1951 if (error) 1952 return error; 1953 agi = XFS_BUF_TO_AGI(agibp); 1954 1955 /* 1956 * Get the index into the agi hash table for the 1957 * list this inode will go on. 1958 */ 1959 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1960 ASSERT(agino != 0); 1961 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1962 ASSERT(agi->agi_unlinked[bucket_index]); 1963 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1964 1965 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1966 /* 1967 * There is already another inode in the bucket we need 1968 * to add ourselves to. Add us at the front of the list. 1969 * Here we put the head pointer into our next pointer, 1970 * and then we fall through to point the head at us. 1971 */ 1972 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1973 0, 0); 1974 if (error) 1975 return error; 1976 1977 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1978 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1979 offset = ip->i_imap.im_boffset + 1980 offsetof(xfs_dinode_t, di_next_unlinked); 1981 1982 /* need to recalc the inode CRC if appropriate */ 1983 xfs_dinode_calc_crc(mp, dip); 1984 1985 xfs_trans_inode_buf(tp, ibp); 1986 xfs_trans_log_buf(tp, ibp, offset, 1987 (offset + sizeof(xfs_agino_t) - 1)); 1988 xfs_inobp_check(mp, ibp); 1989 } 1990 1991 /* 1992 * Point the bucket head pointer at the inode being inserted. 1993 */ 1994 ASSERT(agino != 0); 1995 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1996 offset = offsetof(xfs_agi_t, agi_unlinked) + 1997 (sizeof(xfs_agino_t) * bucket_index); 1998 xfs_trans_log_buf(tp, agibp, offset, 1999 (offset + sizeof(xfs_agino_t) - 1)); 2000 return 0; 2001 } 2002 2003 /* 2004 * Pull the on-disk inode from the AGI unlinked list. 2005 */ 2006 STATIC int 2007 xfs_iunlink_remove( 2008 xfs_trans_t *tp, 2009 xfs_inode_t *ip) 2010 { 2011 xfs_ino_t next_ino; 2012 xfs_mount_t *mp; 2013 xfs_agi_t *agi; 2014 xfs_dinode_t *dip; 2015 xfs_buf_t *agibp; 2016 xfs_buf_t *ibp; 2017 xfs_agnumber_t agno; 2018 xfs_agino_t agino; 2019 xfs_agino_t next_agino; 2020 xfs_buf_t *last_ibp; 2021 xfs_dinode_t *last_dip = NULL; 2022 short bucket_index; 2023 int offset, last_offset = 0; 2024 int error; 2025 2026 mp = tp->t_mountp; 2027 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2028 2029 /* 2030 * Get the agi buffer first. It ensures lock ordering 2031 * on the list. 2032 */ 2033 error = xfs_read_agi(mp, tp, agno, &agibp); 2034 if (error) 2035 return error; 2036 2037 agi = XFS_BUF_TO_AGI(agibp); 2038 2039 /* 2040 * Get the index into the agi hash table for the 2041 * list this inode will go on. 2042 */ 2043 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2044 ASSERT(agino != 0); 2045 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2046 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2047 ASSERT(agi->agi_unlinked[bucket_index]); 2048 2049 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2050 /* 2051 * We're at the head of the list. Get the inode's on-disk 2052 * buffer to see if there is anyone after us on the list. 2053 * Only modify our next pointer if it is not already NULLAGINO. 2054 * This saves us the overhead of dealing with the buffer when 2055 * there is no need to change it. 2056 */ 2057 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2058 0, 0); 2059 if (error) { 2060 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2061 __func__, error); 2062 return error; 2063 } 2064 next_agino = be32_to_cpu(dip->di_next_unlinked); 2065 ASSERT(next_agino != 0); 2066 if (next_agino != NULLAGINO) { 2067 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2068 offset = ip->i_imap.im_boffset + 2069 offsetof(xfs_dinode_t, di_next_unlinked); 2070 2071 /* need to recalc the inode CRC if appropriate */ 2072 xfs_dinode_calc_crc(mp, dip); 2073 2074 xfs_trans_inode_buf(tp, ibp); 2075 xfs_trans_log_buf(tp, ibp, offset, 2076 (offset + sizeof(xfs_agino_t) - 1)); 2077 xfs_inobp_check(mp, ibp); 2078 } else { 2079 xfs_trans_brelse(tp, ibp); 2080 } 2081 /* 2082 * Point the bucket head pointer at the next inode. 2083 */ 2084 ASSERT(next_agino != 0); 2085 ASSERT(next_agino != agino); 2086 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2087 offset = offsetof(xfs_agi_t, agi_unlinked) + 2088 (sizeof(xfs_agino_t) * bucket_index); 2089 xfs_trans_log_buf(tp, agibp, offset, 2090 (offset + sizeof(xfs_agino_t) - 1)); 2091 } else { 2092 /* 2093 * We need to search the list for the inode being freed. 2094 */ 2095 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2096 last_ibp = NULL; 2097 while (next_agino != agino) { 2098 struct xfs_imap imap; 2099 2100 if (last_ibp) 2101 xfs_trans_brelse(tp, last_ibp); 2102 2103 imap.im_blkno = 0; 2104 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2105 2106 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2107 if (error) { 2108 xfs_warn(mp, 2109 "%s: xfs_imap returned error %d.", 2110 __func__, error); 2111 return error; 2112 } 2113 2114 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2115 &last_ibp, 0, 0); 2116 if (error) { 2117 xfs_warn(mp, 2118 "%s: xfs_imap_to_bp returned error %d.", 2119 __func__, error); 2120 return error; 2121 } 2122 2123 last_offset = imap.im_boffset; 2124 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2125 ASSERT(next_agino != NULLAGINO); 2126 ASSERT(next_agino != 0); 2127 } 2128 2129 /* 2130 * Now last_ibp points to the buffer previous to us on the 2131 * unlinked list. Pull us from the list. 2132 */ 2133 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2134 0, 0); 2135 if (error) { 2136 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2137 __func__, error); 2138 return error; 2139 } 2140 next_agino = be32_to_cpu(dip->di_next_unlinked); 2141 ASSERT(next_agino != 0); 2142 ASSERT(next_agino != agino); 2143 if (next_agino != NULLAGINO) { 2144 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2145 offset = ip->i_imap.im_boffset + 2146 offsetof(xfs_dinode_t, di_next_unlinked); 2147 2148 /* need to recalc the inode CRC if appropriate */ 2149 xfs_dinode_calc_crc(mp, dip); 2150 2151 xfs_trans_inode_buf(tp, ibp); 2152 xfs_trans_log_buf(tp, ibp, offset, 2153 (offset + sizeof(xfs_agino_t) - 1)); 2154 xfs_inobp_check(mp, ibp); 2155 } else { 2156 xfs_trans_brelse(tp, ibp); 2157 } 2158 /* 2159 * Point the previous inode on the list to the next inode. 2160 */ 2161 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2162 ASSERT(next_agino != 0); 2163 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2164 2165 /* need to recalc the inode CRC if appropriate */ 2166 xfs_dinode_calc_crc(mp, last_dip); 2167 2168 xfs_trans_inode_buf(tp, last_ibp); 2169 xfs_trans_log_buf(tp, last_ibp, offset, 2170 (offset + sizeof(xfs_agino_t) - 1)); 2171 xfs_inobp_check(mp, last_ibp); 2172 } 2173 return 0; 2174 } 2175 2176 /* 2177 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2178 * inodes that are in memory - they all must be marked stale and attached to 2179 * the cluster buffer. 2180 */ 2181 STATIC int 2182 xfs_ifree_cluster( 2183 xfs_inode_t *free_ip, 2184 xfs_trans_t *tp, 2185 xfs_ino_t inum) 2186 { 2187 xfs_mount_t *mp = free_ip->i_mount; 2188 int blks_per_cluster; 2189 int inodes_per_cluster; 2190 int nbufs; 2191 int i, j; 2192 xfs_daddr_t blkno; 2193 xfs_buf_t *bp; 2194 xfs_inode_t *ip; 2195 xfs_inode_log_item_t *iip; 2196 xfs_log_item_t *lip; 2197 struct xfs_perag *pag; 2198 2199 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2200 blks_per_cluster = xfs_icluster_size_fsb(mp); 2201 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2202 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2203 2204 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2205 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2206 XFS_INO_TO_AGBNO(mp, inum)); 2207 2208 /* 2209 * We obtain and lock the backing buffer first in the process 2210 * here, as we have to ensure that any dirty inode that we 2211 * can't get the flush lock on is attached to the buffer. 2212 * If we scan the in-memory inodes first, then buffer IO can 2213 * complete before we get a lock on it, and hence we may fail 2214 * to mark all the active inodes on the buffer stale. 2215 */ 2216 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2217 mp->m_bsize * blks_per_cluster, 2218 XBF_UNMAPPED); 2219 2220 if (!bp) 2221 return -ENOMEM; 2222 2223 /* 2224 * This buffer may not have been correctly initialised as we 2225 * didn't read it from disk. That's not important because we are 2226 * only using to mark the buffer as stale in the log, and to 2227 * attach stale cached inodes on it. That means it will never be 2228 * dispatched for IO. If it is, we want to know about it, and we 2229 * want it to fail. We can acheive this by adding a write 2230 * verifier to the buffer. 2231 */ 2232 bp->b_ops = &xfs_inode_buf_ops; 2233 2234 /* 2235 * Walk the inodes already attached to the buffer and mark them 2236 * stale. These will all have the flush locks held, so an 2237 * in-memory inode walk can't lock them. By marking them all 2238 * stale first, we will not attempt to lock them in the loop 2239 * below as the XFS_ISTALE flag will be set. 2240 */ 2241 lip = bp->b_fspriv; 2242 while (lip) { 2243 if (lip->li_type == XFS_LI_INODE) { 2244 iip = (xfs_inode_log_item_t *)lip; 2245 ASSERT(iip->ili_logged == 1); 2246 lip->li_cb = xfs_istale_done; 2247 xfs_trans_ail_copy_lsn(mp->m_ail, 2248 &iip->ili_flush_lsn, 2249 &iip->ili_item.li_lsn); 2250 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2251 } 2252 lip = lip->li_bio_list; 2253 } 2254 2255 2256 /* 2257 * For each inode in memory attempt to add it to the inode 2258 * buffer and set it up for being staled on buffer IO 2259 * completion. This is safe as we've locked out tail pushing 2260 * and flushing by locking the buffer. 2261 * 2262 * We have already marked every inode that was part of a 2263 * transaction stale above, which means there is no point in 2264 * even trying to lock them. 2265 */ 2266 for (i = 0; i < inodes_per_cluster; i++) { 2267 retry: 2268 rcu_read_lock(); 2269 ip = radix_tree_lookup(&pag->pag_ici_root, 2270 XFS_INO_TO_AGINO(mp, (inum + i))); 2271 2272 /* Inode not in memory, nothing to do */ 2273 if (!ip) { 2274 rcu_read_unlock(); 2275 continue; 2276 } 2277 2278 /* 2279 * because this is an RCU protected lookup, we could 2280 * find a recently freed or even reallocated inode 2281 * during the lookup. We need to check under the 2282 * i_flags_lock for a valid inode here. Skip it if it 2283 * is not valid, the wrong inode or stale. 2284 */ 2285 spin_lock(&ip->i_flags_lock); 2286 if (ip->i_ino != inum + i || 2287 __xfs_iflags_test(ip, XFS_ISTALE)) { 2288 spin_unlock(&ip->i_flags_lock); 2289 rcu_read_unlock(); 2290 continue; 2291 } 2292 spin_unlock(&ip->i_flags_lock); 2293 2294 /* 2295 * Don't try to lock/unlock the current inode, but we 2296 * _cannot_ skip the other inodes that we did not find 2297 * in the list attached to the buffer and are not 2298 * already marked stale. If we can't lock it, back off 2299 * and retry. 2300 */ 2301 if (ip != free_ip && 2302 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2303 rcu_read_unlock(); 2304 delay(1); 2305 goto retry; 2306 } 2307 rcu_read_unlock(); 2308 2309 xfs_iflock(ip); 2310 xfs_iflags_set(ip, XFS_ISTALE); 2311 2312 /* 2313 * we don't need to attach clean inodes or those only 2314 * with unlogged changes (which we throw away, anyway). 2315 */ 2316 iip = ip->i_itemp; 2317 if (!iip || xfs_inode_clean(ip)) { 2318 ASSERT(ip != free_ip); 2319 xfs_ifunlock(ip); 2320 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2321 continue; 2322 } 2323 2324 iip->ili_last_fields = iip->ili_fields; 2325 iip->ili_fields = 0; 2326 iip->ili_logged = 1; 2327 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2328 &iip->ili_item.li_lsn); 2329 2330 xfs_buf_attach_iodone(bp, xfs_istale_done, 2331 &iip->ili_item); 2332 2333 if (ip != free_ip) 2334 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2335 } 2336 2337 xfs_trans_stale_inode_buf(tp, bp); 2338 xfs_trans_binval(tp, bp); 2339 } 2340 2341 xfs_perag_put(pag); 2342 return 0; 2343 } 2344 2345 /* 2346 * This is called to return an inode to the inode free list. 2347 * The inode should already be truncated to 0 length and have 2348 * no pages associated with it. This routine also assumes that 2349 * the inode is already a part of the transaction. 2350 * 2351 * The on-disk copy of the inode will have been added to the list 2352 * of unlinked inodes in the AGI. We need to remove the inode from 2353 * that list atomically with respect to freeing it here. 2354 */ 2355 int 2356 xfs_ifree( 2357 xfs_trans_t *tp, 2358 xfs_inode_t *ip, 2359 xfs_bmap_free_t *flist) 2360 { 2361 int error; 2362 int delete; 2363 xfs_ino_t first_ino; 2364 2365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2366 ASSERT(ip->i_d.di_nlink == 0); 2367 ASSERT(ip->i_d.di_nextents == 0); 2368 ASSERT(ip->i_d.di_anextents == 0); 2369 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2370 ASSERT(ip->i_d.di_nblocks == 0); 2371 2372 /* 2373 * Pull the on-disk inode from the AGI unlinked list. 2374 */ 2375 error = xfs_iunlink_remove(tp, ip); 2376 if (error) 2377 return error; 2378 2379 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2380 if (error) 2381 return error; 2382 2383 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2384 ip->i_d.di_flags = 0; 2385 ip->i_d.di_dmevmask = 0; 2386 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2387 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2388 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2389 /* 2390 * Bump the generation count so no one will be confused 2391 * by reincarnations of this inode. 2392 */ 2393 ip->i_d.di_gen++; 2394 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2395 2396 if (delete) 2397 error = xfs_ifree_cluster(ip, tp, first_ino); 2398 2399 return error; 2400 } 2401 2402 /* 2403 * This is called to unpin an inode. The caller must have the inode locked 2404 * in at least shared mode so that the buffer cannot be subsequently pinned 2405 * once someone is waiting for it to be unpinned. 2406 */ 2407 static void 2408 xfs_iunpin( 2409 struct xfs_inode *ip) 2410 { 2411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2412 2413 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2414 2415 /* Give the log a push to start the unpinning I/O */ 2416 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2417 2418 } 2419 2420 static void 2421 __xfs_iunpin_wait( 2422 struct xfs_inode *ip) 2423 { 2424 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2425 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2426 2427 xfs_iunpin(ip); 2428 2429 do { 2430 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2431 if (xfs_ipincount(ip)) 2432 io_schedule(); 2433 } while (xfs_ipincount(ip)); 2434 finish_wait(wq, &wait.wait); 2435 } 2436 2437 void 2438 xfs_iunpin_wait( 2439 struct xfs_inode *ip) 2440 { 2441 if (xfs_ipincount(ip)) 2442 __xfs_iunpin_wait(ip); 2443 } 2444 2445 /* 2446 * Removing an inode from the namespace involves removing the directory entry 2447 * and dropping the link count on the inode. Removing the directory entry can 2448 * result in locking an AGF (directory blocks were freed) and removing a link 2449 * count can result in placing the inode on an unlinked list which results in 2450 * locking an AGI. 2451 * 2452 * The big problem here is that we have an ordering constraint on AGF and AGI 2453 * locking - inode allocation locks the AGI, then can allocate a new extent for 2454 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2455 * removes the inode from the unlinked list, requiring that we lock the AGI 2456 * first, and then freeing the inode can result in an inode chunk being freed 2457 * and hence freeing disk space requiring that we lock an AGF. 2458 * 2459 * Hence the ordering that is imposed by other parts of the code is AGI before 2460 * AGF. This means we cannot remove the directory entry before we drop the inode 2461 * reference count and put it on the unlinked list as this results in a lock 2462 * order of AGF then AGI, and this can deadlock against inode allocation and 2463 * freeing. Therefore we must drop the link counts before we remove the 2464 * directory entry. 2465 * 2466 * This is still safe from a transactional point of view - it is not until we 2467 * get to xfs_bmap_finish() that we have the possibility of multiple 2468 * transactions in this operation. Hence as long as we remove the directory 2469 * entry and drop the link count in the first transaction of the remove 2470 * operation, there are no transactional constraints on the ordering here. 2471 */ 2472 int 2473 xfs_remove( 2474 xfs_inode_t *dp, 2475 struct xfs_name *name, 2476 xfs_inode_t *ip) 2477 { 2478 xfs_mount_t *mp = dp->i_mount; 2479 xfs_trans_t *tp = NULL; 2480 int is_dir = S_ISDIR(ip->i_d.di_mode); 2481 int error = 0; 2482 xfs_bmap_free_t free_list; 2483 xfs_fsblock_t first_block; 2484 int cancel_flags; 2485 int committed; 2486 uint resblks; 2487 2488 trace_xfs_remove(dp, name); 2489 2490 if (XFS_FORCED_SHUTDOWN(mp)) 2491 return -EIO; 2492 2493 error = xfs_qm_dqattach(dp, 0); 2494 if (error) 2495 goto std_return; 2496 2497 error = xfs_qm_dqattach(ip, 0); 2498 if (error) 2499 goto std_return; 2500 2501 if (is_dir) 2502 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2503 else 2504 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2505 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2506 2507 /* 2508 * We try to get the real space reservation first, 2509 * allowing for directory btree deletion(s) implying 2510 * possible bmap insert(s). If we can't get the space 2511 * reservation then we use 0 instead, and avoid the bmap 2512 * btree insert(s) in the directory code by, if the bmap 2513 * insert tries to happen, instead trimming the LAST 2514 * block from the directory. 2515 */ 2516 resblks = XFS_REMOVE_SPACE_RES(mp); 2517 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2518 if (error == -ENOSPC) { 2519 resblks = 0; 2520 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2521 } 2522 if (error) { 2523 ASSERT(error != -ENOSPC); 2524 cancel_flags = 0; 2525 goto out_trans_cancel; 2526 } 2527 2528 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2529 2530 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2531 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2532 2533 /* 2534 * If we're removing a directory perform some additional validation. 2535 */ 2536 cancel_flags |= XFS_TRANS_ABORT; 2537 if (is_dir) { 2538 ASSERT(ip->i_d.di_nlink >= 2); 2539 if (ip->i_d.di_nlink != 2) { 2540 error = -ENOTEMPTY; 2541 goto out_trans_cancel; 2542 } 2543 if (!xfs_dir_isempty(ip)) { 2544 error = -ENOTEMPTY; 2545 goto out_trans_cancel; 2546 } 2547 2548 /* Drop the link from ip's "..". */ 2549 error = xfs_droplink(tp, dp); 2550 if (error) 2551 goto out_trans_cancel; 2552 2553 /* Drop the "." link from ip to self. */ 2554 error = xfs_droplink(tp, ip); 2555 if (error) 2556 goto out_trans_cancel; 2557 } else { 2558 /* 2559 * When removing a non-directory we need to log the parent 2560 * inode here. For a directory this is done implicitly 2561 * by the xfs_droplink call for the ".." entry. 2562 */ 2563 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2564 } 2565 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2566 2567 /* Drop the link from dp to ip. */ 2568 error = xfs_droplink(tp, ip); 2569 if (error) 2570 goto out_trans_cancel; 2571 2572 xfs_bmap_init(&free_list, &first_block); 2573 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2574 &first_block, &free_list, resblks); 2575 if (error) { 2576 ASSERT(error != -ENOENT); 2577 goto out_bmap_cancel; 2578 } 2579 2580 /* 2581 * If this is a synchronous mount, make sure that the 2582 * remove transaction goes to disk before returning to 2583 * the user. 2584 */ 2585 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2586 xfs_trans_set_sync(tp); 2587 2588 error = xfs_bmap_finish(&tp, &free_list, &committed); 2589 if (error) 2590 goto out_bmap_cancel; 2591 2592 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2593 if (error) 2594 goto std_return; 2595 2596 if (is_dir && xfs_inode_is_filestream(ip)) 2597 xfs_filestream_deassociate(ip); 2598 2599 return 0; 2600 2601 out_bmap_cancel: 2602 xfs_bmap_cancel(&free_list); 2603 out_trans_cancel: 2604 xfs_trans_cancel(tp, cancel_flags); 2605 std_return: 2606 return error; 2607 } 2608 2609 /* 2610 * Enter all inodes for a rename transaction into a sorted array. 2611 */ 2612 STATIC void 2613 xfs_sort_for_rename( 2614 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2615 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2616 xfs_inode_t *ip1, /* in: inode of old entry */ 2617 xfs_inode_t *ip2, /* in: inode of new entry, if it 2618 already exists, NULL otherwise. */ 2619 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2620 int *num_inodes) /* out: number of inodes in array */ 2621 { 2622 xfs_inode_t *temp; 2623 int i, j; 2624 2625 /* 2626 * i_tab contains a list of pointers to inodes. We initialize 2627 * the table here & we'll sort it. We will then use it to 2628 * order the acquisition of the inode locks. 2629 * 2630 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2631 */ 2632 i_tab[0] = dp1; 2633 i_tab[1] = dp2; 2634 i_tab[2] = ip1; 2635 if (ip2) { 2636 *num_inodes = 4; 2637 i_tab[3] = ip2; 2638 } else { 2639 *num_inodes = 3; 2640 i_tab[3] = NULL; 2641 } 2642 2643 /* 2644 * Sort the elements via bubble sort. (Remember, there are at 2645 * most 4 elements to sort, so this is adequate.) 2646 */ 2647 for (i = 0; i < *num_inodes; i++) { 2648 for (j = 1; j < *num_inodes; j++) { 2649 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2650 temp = i_tab[j]; 2651 i_tab[j] = i_tab[j-1]; 2652 i_tab[j-1] = temp; 2653 } 2654 } 2655 } 2656 } 2657 2658 /* 2659 * xfs_rename 2660 */ 2661 int 2662 xfs_rename( 2663 xfs_inode_t *src_dp, 2664 struct xfs_name *src_name, 2665 xfs_inode_t *src_ip, 2666 xfs_inode_t *target_dp, 2667 struct xfs_name *target_name, 2668 xfs_inode_t *target_ip) 2669 { 2670 xfs_trans_t *tp = NULL; 2671 xfs_mount_t *mp = src_dp->i_mount; 2672 int new_parent; /* moving to a new dir */ 2673 int src_is_directory; /* src_name is a directory */ 2674 int error; 2675 xfs_bmap_free_t free_list; 2676 xfs_fsblock_t first_block; 2677 int cancel_flags; 2678 int committed; 2679 xfs_inode_t *inodes[4]; 2680 int spaceres; 2681 int num_inodes; 2682 2683 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2684 2685 new_parent = (src_dp != target_dp); 2686 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2687 2688 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2689 inodes, &num_inodes); 2690 2691 xfs_bmap_init(&free_list, &first_block); 2692 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2693 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2694 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2695 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2696 if (error == -ENOSPC) { 2697 spaceres = 0; 2698 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2699 } 2700 if (error) { 2701 xfs_trans_cancel(tp, 0); 2702 goto std_return; 2703 } 2704 2705 /* 2706 * Attach the dquots to the inodes 2707 */ 2708 error = xfs_qm_vop_rename_dqattach(inodes); 2709 if (error) { 2710 xfs_trans_cancel(tp, cancel_flags); 2711 goto std_return; 2712 } 2713 2714 /* 2715 * Lock all the participating inodes. Depending upon whether 2716 * the target_name exists in the target directory, and 2717 * whether the target directory is the same as the source 2718 * directory, we can lock from 2 to 4 inodes. 2719 */ 2720 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2721 2722 /* 2723 * Join all the inodes to the transaction. From this point on, 2724 * we can rely on either trans_commit or trans_cancel to unlock 2725 * them. 2726 */ 2727 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2728 if (new_parent) 2729 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2730 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2731 if (target_ip) 2732 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2733 2734 /* 2735 * If we are using project inheritance, we only allow renames 2736 * into our tree when the project IDs are the same; else the 2737 * tree quota mechanism would be circumvented. 2738 */ 2739 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2740 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2741 error = -EXDEV; 2742 goto error_return; 2743 } 2744 2745 /* 2746 * Set up the target. 2747 */ 2748 if (target_ip == NULL) { 2749 /* 2750 * If there's no space reservation, check the entry will 2751 * fit before actually inserting it. 2752 */ 2753 if (!spaceres) { 2754 error = xfs_dir_canenter(tp, target_dp, target_name); 2755 if (error) 2756 goto error_return; 2757 } 2758 /* 2759 * If target does not exist and the rename crosses 2760 * directories, adjust the target directory link count 2761 * to account for the ".." reference from the new entry. 2762 */ 2763 error = xfs_dir_createname(tp, target_dp, target_name, 2764 src_ip->i_ino, &first_block, 2765 &free_list, spaceres); 2766 if (error == -ENOSPC) 2767 goto error_return; 2768 if (error) 2769 goto abort_return; 2770 2771 xfs_trans_ichgtime(tp, target_dp, 2772 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2773 2774 if (new_parent && src_is_directory) { 2775 error = xfs_bumplink(tp, target_dp); 2776 if (error) 2777 goto abort_return; 2778 } 2779 } else { /* target_ip != NULL */ 2780 /* 2781 * If target exists and it's a directory, check that both 2782 * target and source are directories and that target can be 2783 * destroyed, or that neither is a directory. 2784 */ 2785 if (S_ISDIR(target_ip->i_d.di_mode)) { 2786 /* 2787 * Make sure target dir is empty. 2788 */ 2789 if (!(xfs_dir_isempty(target_ip)) || 2790 (target_ip->i_d.di_nlink > 2)) { 2791 error = -EEXIST; 2792 goto error_return; 2793 } 2794 } 2795 2796 /* 2797 * Link the source inode under the target name. 2798 * If the source inode is a directory and we are moving 2799 * it across directories, its ".." entry will be 2800 * inconsistent until we replace that down below. 2801 * 2802 * In case there is already an entry with the same 2803 * name at the destination directory, remove it first. 2804 */ 2805 error = xfs_dir_replace(tp, target_dp, target_name, 2806 src_ip->i_ino, 2807 &first_block, &free_list, spaceres); 2808 if (error) 2809 goto abort_return; 2810 2811 xfs_trans_ichgtime(tp, target_dp, 2812 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2813 2814 /* 2815 * Decrement the link count on the target since the target 2816 * dir no longer points to it. 2817 */ 2818 error = xfs_droplink(tp, target_ip); 2819 if (error) 2820 goto abort_return; 2821 2822 if (src_is_directory) { 2823 /* 2824 * Drop the link from the old "." entry. 2825 */ 2826 error = xfs_droplink(tp, target_ip); 2827 if (error) 2828 goto abort_return; 2829 } 2830 } /* target_ip != NULL */ 2831 2832 /* 2833 * Remove the source. 2834 */ 2835 if (new_parent && src_is_directory) { 2836 /* 2837 * Rewrite the ".." entry to point to the new 2838 * directory. 2839 */ 2840 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2841 target_dp->i_ino, 2842 &first_block, &free_list, spaceres); 2843 ASSERT(error != -EEXIST); 2844 if (error) 2845 goto abort_return; 2846 } 2847 2848 /* 2849 * We always want to hit the ctime on the source inode. 2850 * 2851 * This isn't strictly required by the standards since the source 2852 * inode isn't really being changed, but old unix file systems did 2853 * it and some incremental backup programs won't work without it. 2854 */ 2855 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2856 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2857 2858 /* 2859 * Adjust the link count on src_dp. This is necessary when 2860 * renaming a directory, either within one parent when 2861 * the target existed, or across two parent directories. 2862 */ 2863 if (src_is_directory && (new_parent || target_ip != NULL)) { 2864 2865 /* 2866 * Decrement link count on src_directory since the 2867 * entry that's moved no longer points to it. 2868 */ 2869 error = xfs_droplink(tp, src_dp); 2870 if (error) 2871 goto abort_return; 2872 } 2873 2874 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2875 &first_block, &free_list, spaceres); 2876 if (error) 2877 goto abort_return; 2878 2879 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2880 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2881 if (new_parent) 2882 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2883 2884 /* 2885 * If this is a synchronous mount, make sure that the 2886 * rename transaction goes to disk before returning to 2887 * the user. 2888 */ 2889 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2890 xfs_trans_set_sync(tp); 2891 } 2892 2893 error = xfs_bmap_finish(&tp, &free_list, &committed); 2894 if (error) { 2895 xfs_bmap_cancel(&free_list); 2896 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2897 XFS_TRANS_ABORT)); 2898 goto std_return; 2899 } 2900 2901 /* 2902 * trans_commit will unlock src_ip, target_ip & decrement 2903 * the vnode references. 2904 */ 2905 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2906 2907 abort_return: 2908 cancel_flags |= XFS_TRANS_ABORT; 2909 error_return: 2910 xfs_bmap_cancel(&free_list); 2911 xfs_trans_cancel(tp, cancel_flags); 2912 std_return: 2913 return error; 2914 } 2915 2916 STATIC int 2917 xfs_iflush_cluster( 2918 xfs_inode_t *ip, 2919 xfs_buf_t *bp) 2920 { 2921 xfs_mount_t *mp = ip->i_mount; 2922 struct xfs_perag *pag; 2923 unsigned long first_index, mask; 2924 unsigned long inodes_per_cluster; 2925 int ilist_size; 2926 xfs_inode_t **ilist; 2927 xfs_inode_t *iq; 2928 int nr_found; 2929 int clcount = 0; 2930 int bufwasdelwri; 2931 int i; 2932 2933 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2934 2935 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 2936 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2937 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2938 if (!ilist) 2939 goto out_put; 2940 2941 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 2942 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2943 rcu_read_lock(); 2944 /* really need a gang lookup range call here */ 2945 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2946 first_index, inodes_per_cluster); 2947 if (nr_found == 0) 2948 goto out_free; 2949 2950 for (i = 0; i < nr_found; i++) { 2951 iq = ilist[i]; 2952 if (iq == ip) 2953 continue; 2954 2955 /* 2956 * because this is an RCU protected lookup, we could find a 2957 * recently freed or even reallocated inode during the lookup. 2958 * We need to check under the i_flags_lock for a valid inode 2959 * here. Skip it if it is not valid or the wrong inode. 2960 */ 2961 spin_lock(&ip->i_flags_lock); 2962 if (!ip->i_ino || 2963 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2964 spin_unlock(&ip->i_flags_lock); 2965 continue; 2966 } 2967 spin_unlock(&ip->i_flags_lock); 2968 2969 /* 2970 * Do an un-protected check to see if the inode is dirty and 2971 * is a candidate for flushing. These checks will be repeated 2972 * later after the appropriate locks are acquired. 2973 */ 2974 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2975 continue; 2976 2977 /* 2978 * Try to get locks. If any are unavailable or it is pinned, 2979 * then this inode cannot be flushed and is skipped. 2980 */ 2981 2982 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2983 continue; 2984 if (!xfs_iflock_nowait(iq)) { 2985 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2986 continue; 2987 } 2988 if (xfs_ipincount(iq)) { 2989 xfs_ifunlock(iq); 2990 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2991 continue; 2992 } 2993 2994 /* 2995 * arriving here means that this inode can be flushed. First 2996 * re-check that it's dirty before flushing. 2997 */ 2998 if (!xfs_inode_clean(iq)) { 2999 int error; 3000 error = xfs_iflush_int(iq, bp); 3001 if (error) { 3002 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3003 goto cluster_corrupt_out; 3004 } 3005 clcount++; 3006 } else { 3007 xfs_ifunlock(iq); 3008 } 3009 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3010 } 3011 3012 if (clcount) { 3013 XFS_STATS_INC(xs_icluster_flushcnt); 3014 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3015 } 3016 3017 out_free: 3018 rcu_read_unlock(); 3019 kmem_free(ilist); 3020 out_put: 3021 xfs_perag_put(pag); 3022 return 0; 3023 3024 3025 cluster_corrupt_out: 3026 /* 3027 * Corruption detected in the clustering loop. Invalidate the 3028 * inode buffer and shut down the filesystem. 3029 */ 3030 rcu_read_unlock(); 3031 /* 3032 * Clean up the buffer. If it was delwri, just release it -- 3033 * brelse can handle it with no problems. If not, shut down the 3034 * filesystem before releasing the buffer. 3035 */ 3036 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3037 if (bufwasdelwri) 3038 xfs_buf_relse(bp); 3039 3040 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3041 3042 if (!bufwasdelwri) { 3043 /* 3044 * Just like incore_relse: if we have b_iodone functions, 3045 * mark the buffer as an error and call them. Otherwise 3046 * mark it as stale and brelse. 3047 */ 3048 if (bp->b_iodone) { 3049 XFS_BUF_UNDONE(bp); 3050 xfs_buf_stale(bp); 3051 xfs_buf_ioerror(bp, -EIO); 3052 xfs_buf_ioend(bp); 3053 } else { 3054 xfs_buf_stale(bp); 3055 xfs_buf_relse(bp); 3056 } 3057 } 3058 3059 /* 3060 * Unlocks the flush lock 3061 */ 3062 xfs_iflush_abort(iq, false); 3063 kmem_free(ilist); 3064 xfs_perag_put(pag); 3065 return -EFSCORRUPTED; 3066 } 3067 3068 /* 3069 * Flush dirty inode metadata into the backing buffer. 3070 * 3071 * The caller must have the inode lock and the inode flush lock held. The 3072 * inode lock will still be held upon return to the caller, and the inode 3073 * flush lock will be released after the inode has reached the disk. 3074 * 3075 * The caller must write out the buffer returned in *bpp and release it. 3076 */ 3077 int 3078 xfs_iflush( 3079 struct xfs_inode *ip, 3080 struct xfs_buf **bpp) 3081 { 3082 struct xfs_mount *mp = ip->i_mount; 3083 struct xfs_buf *bp; 3084 struct xfs_dinode *dip; 3085 int error; 3086 3087 XFS_STATS_INC(xs_iflush_count); 3088 3089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3090 ASSERT(xfs_isiflocked(ip)); 3091 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3092 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3093 3094 *bpp = NULL; 3095 3096 xfs_iunpin_wait(ip); 3097 3098 /* 3099 * For stale inodes we cannot rely on the backing buffer remaining 3100 * stale in cache for the remaining life of the stale inode and so 3101 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3102 * inodes below. We have to check this after ensuring the inode is 3103 * unpinned so that it is safe to reclaim the stale inode after the 3104 * flush call. 3105 */ 3106 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3107 xfs_ifunlock(ip); 3108 return 0; 3109 } 3110 3111 /* 3112 * This may have been unpinned because the filesystem is shutting 3113 * down forcibly. If that's the case we must not write this inode 3114 * to disk, because the log record didn't make it to disk. 3115 * 3116 * We also have to remove the log item from the AIL in this case, 3117 * as we wait for an empty AIL as part of the unmount process. 3118 */ 3119 if (XFS_FORCED_SHUTDOWN(mp)) { 3120 error = -EIO; 3121 goto abort_out; 3122 } 3123 3124 /* 3125 * Get the buffer containing the on-disk inode. 3126 */ 3127 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3128 0); 3129 if (error || !bp) { 3130 xfs_ifunlock(ip); 3131 return error; 3132 } 3133 3134 /* 3135 * First flush out the inode that xfs_iflush was called with. 3136 */ 3137 error = xfs_iflush_int(ip, bp); 3138 if (error) 3139 goto corrupt_out; 3140 3141 /* 3142 * If the buffer is pinned then push on the log now so we won't 3143 * get stuck waiting in the write for too long. 3144 */ 3145 if (xfs_buf_ispinned(bp)) 3146 xfs_log_force(mp, 0); 3147 3148 /* 3149 * inode clustering: 3150 * see if other inodes can be gathered into this write 3151 */ 3152 error = xfs_iflush_cluster(ip, bp); 3153 if (error) 3154 goto cluster_corrupt_out; 3155 3156 *bpp = bp; 3157 return 0; 3158 3159 corrupt_out: 3160 xfs_buf_relse(bp); 3161 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3162 cluster_corrupt_out: 3163 error = -EFSCORRUPTED; 3164 abort_out: 3165 /* 3166 * Unlocks the flush lock 3167 */ 3168 xfs_iflush_abort(ip, false); 3169 return error; 3170 } 3171 3172 STATIC int 3173 xfs_iflush_int( 3174 struct xfs_inode *ip, 3175 struct xfs_buf *bp) 3176 { 3177 struct xfs_inode_log_item *iip = ip->i_itemp; 3178 struct xfs_dinode *dip; 3179 struct xfs_mount *mp = ip->i_mount; 3180 3181 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3182 ASSERT(xfs_isiflocked(ip)); 3183 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3184 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3185 ASSERT(iip != NULL && iip->ili_fields != 0); 3186 ASSERT(ip->i_d.di_version > 1); 3187 3188 /* set *dip = inode's place in the buffer */ 3189 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3190 3191 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3192 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3193 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3194 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3195 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3196 goto corrupt_out; 3197 } 3198 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3199 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3200 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3201 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3202 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3203 goto corrupt_out; 3204 } 3205 if (S_ISREG(ip->i_d.di_mode)) { 3206 if (XFS_TEST_ERROR( 3207 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3208 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3209 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3210 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3211 "%s: Bad regular inode %Lu, ptr 0x%p", 3212 __func__, ip->i_ino, ip); 3213 goto corrupt_out; 3214 } 3215 } else if (S_ISDIR(ip->i_d.di_mode)) { 3216 if (XFS_TEST_ERROR( 3217 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3218 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3219 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3220 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3221 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3222 "%s: Bad directory inode %Lu, ptr 0x%p", 3223 __func__, ip->i_ino, ip); 3224 goto corrupt_out; 3225 } 3226 } 3227 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3228 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3229 XFS_RANDOM_IFLUSH_5)) { 3230 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3231 "%s: detected corrupt incore inode %Lu, " 3232 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3233 __func__, ip->i_ino, 3234 ip->i_d.di_nextents + ip->i_d.di_anextents, 3235 ip->i_d.di_nblocks, ip); 3236 goto corrupt_out; 3237 } 3238 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3239 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3240 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3241 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3242 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3243 goto corrupt_out; 3244 } 3245 3246 /* 3247 * Inode item log recovery for v2 inodes are dependent on the 3248 * di_flushiter count for correct sequencing. We bump the flush 3249 * iteration count so we can detect flushes which postdate a log record 3250 * during recovery. This is redundant as we now log every change and 3251 * hence this can't happen but we need to still do it to ensure 3252 * backwards compatibility with old kernels that predate logging all 3253 * inode changes. 3254 */ 3255 if (ip->i_d.di_version < 3) 3256 ip->i_d.di_flushiter++; 3257 3258 /* 3259 * Copy the dirty parts of the inode into the on-disk 3260 * inode. We always copy out the core of the inode, 3261 * because if the inode is dirty at all the core must 3262 * be. 3263 */ 3264 xfs_dinode_to_disk(dip, &ip->i_d); 3265 3266 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3267 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3268 ip->i_d.di_flushiter = 0; 3269 3270 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3271 if (XFS_IFORK_Q(ip)) 3272 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3273 xfs_inobp_check(mp, bp); 3274 3275 /* 3276 * We've recorded everything logged in the inode, so we'd like to clear 3277 * the ili_fields bits so we don't log and flush things unnecessarily. 3278 * However, we can't stop logging all this information until the data 3279 * we've copied into the disk buffer is written to disk. If we did we 3280 * might overwrite the copy of the inode in the log with all the data 3281 * after re-logging only part of it, and in the face of a crash we 3282 * wouldn't have all the data we need to recover. 3283 * 3284 * What we do is move the bits to the ili_last_fields field. When 3285 * logging the inode, these bits are moved back to the ili_fields field. 3286 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3287 * know that the information those bits represent is permanently on 3288 * disk. As long as the flush completes before the inode is logged 3289 * again, then both ili_fields and ili_last_fields will be cleared. 3290 * 3291 * We can play with the ili_fields bits here, because the inode lock 3292 * must be held exclusively in order to set bits there and the flush 3293 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3294 * done routine can tell whether or not to look in the AIL. Also, store 3295 * the current LSN of the inode so that we can tell whether the item has 3296 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3297 * need the AIL lock, because it is a 64 bit value that cannot be read 3298 * atomically. 3299 */ 3300 iip->ili_last_fields = iip->ili_fields; 3301 iip->ili_fields = 0; 3302 iip->ili_logged = 1; 3303 3304 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3305 &iip->ili_item.li_lsn); 3306 3307 /* 3308 * Attach the function xfs_iflush_done to the inode's 3309 * buffer. This will remove the inode from the AIL 3310 * and unlock the inode's flush lock when the inode is 3311 * completely written to disk. 3312 */ 3313 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3314 3315 /* update the lsn in the on disk inode if required */ 3316 if (ip->i_d.di_version == 3) 3317 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3318 3319 /* generate the checksum. */ 3320 xfs_dinode_calc_crc(mp, dip); 3321 3322 ASSERT(bp->b_fspriv != NULL); 3323 ASSERT(bp->b_iodone != NULL); 3324 return 0; 3325 3326 corrupt_out: 3327 return -EFSCORRUPTED; 3328 } 3329