xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision e481ff3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 	struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	/*
59 	 * No point in aligning allocations if we need to COW to actually
60 	 * write to them.
61 	 */
62 	if (xfs_is_always_cow_inode(ip))
63 		return 0;
64 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 		return ip->i_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (xfs_need_iread_extents(&ip->i_df))
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 		lock_mode = XFS_ILOCK_EXCL;
129 	xfs_ilock(ip, lock_mode);
130 	return lock_mode;
131 }
132 
133 /*
134  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
136  * various combinations of the locks to be obtained.
137  *
138  * The 3 locks should always be ordered so that the IO lock is obtained first,
139  * the mmap lock second and the ilock last in order to prevent deadlock.
140  *
141  * Basic locking order:
142  *
143  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
144  *
145  * mmap_lock locking order:
146  *
147  * i_rwsem -> page lock -> mmap_lock
148  * mmap_lock -> i_mmap_lock -> page_lock
149  *
150  * The difference in mmap_lock locking order mean that we cannot hold the
151  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
152  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
153  * in get_user_pages() to map the user pages into the kernel address space for
154  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
155  * page faults already hold the mmap_lock.
156  *
157  * Hence to serialise fully against both syscall and mmap based IO, we need to
158  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
159  * taken in places where we need to invalidate the page cache in a race
160  * free manner (e.g. truncate, hole punch and other extent manipulation
161  * functions).
162  */
163 void
164 xfs_ilock(
165 	xfs_inode_t		*ip,
166 	uint			lock_flags)
167 {
168 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169 
170 	/*
171 	 * You can't set both SHARED and EXCL for the same lock,
172 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 	 */
175 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182 
183 	if (lock_flags & XFS_IOLOCK_EXCL) {
184 		down_write_nested(&VFS_I(ip)->i_rwsem,
185 				  XFS_IOLOCK_DEP(lock_flags));
186 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
187 		down_read_nested(&VFS_I(ip)->i_rwsem,
188 				 XFS_IOLOCK_DEP(lock_flags));
189 	}
190 
191 	if (lock_flags & XFS_MMAPLOCK_EXCL)
192 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
193 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
194 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 
196 	if (lock_flags & XFS_ILOCK_EXCL)
197 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
198 	else if (lock_flags & XFS_ILOCK_SHARED)
199 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 }
201 
202 /*
203  * This is just like xfs_ilock(), except that the caller
204  * is guaranteed not to sleep.  It returns 1 if it gets
205  * the requested locks and 0 otherwise.  If the IO lock is
206  * obtained but the inode lock cannot be, then the IO lock
207  * is dropped before returning.
208  *
209  * ip -- the inode being locked
210  * lock_flags -- this parameter indicates the inode's locks to be
211  *       to be locked.  See the comment for xfs_ilock() for a list
212  *	 of valid values.
213  */
214 int
215 xfs_ilock_nowait(
216 	xfs_inode_t		*ip,
217 	uint			lock_flags)
218 {
219 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
220 
221 	/*
222 	 * You can't set both SHARED and EXCL for the same lock,
223 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
224 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
225 	 */
226 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
227 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
228 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
229 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
231 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
232 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
233 
234 	if (lock_flags & XFS_IOLOCK_EXCL) {
235 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
236 			goto out;
237 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
238 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	}
241 
242 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
243 		if (!mrtryupdate(&ip->i_mmaplock))
244 			goto out_undo_iolock;
245 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
246 		if (!mrtryaccess(&ip->i_mmaplock))
247 			goto out_undo_iolock;
248 	}
249 
250 	if (lock_flags & XFS_ILOCK_EXCL) {
251 		if (!mrtryupdate(&ip->i_lock))
252 			goto out_undo_mmaplock;
253 	} else if (lock_flags & XFS_ILOCK_SHARED) {
254 		if (!mrtryaccess(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	}
257 	return 1;
258 
259 out_undo_mmaplock:
260 	if (lock_flags & XFS_MMAPLOCK_EXCL)
261 		mrunlock_excl(&ip->i_mmaplock);
262 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
263 		mrunlock_shared(&ip->i_mmaplock);
264 out_undo_iolock:
265 	if (lock_flags & XFS_IOLOCK_EXCL)
266 		up_write(&VFS_I(ip)->i_rwsem);
267 	else if (lock_flags & XFS_IOLOCK_SHARED)
268 		up_read(&VFS_I(ip)->i_rwsem);
269 out:
270 	return 0;
271 }
272 
273 /*
274  * xfs_iunlock() is used to drop the inode locks acquired with
275  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
276  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
277  * that we know which locks to drop.
278  *
279  * ip -- the inode being unlocked
280  * lock_flags -- this parameter indicates the inode's locks to be
281  *       to be unlocked.  See the comment for xfs_ilock() for a list
282  *	 of valid values for this parameter.
283  *
284  */
285 void
286 xfs_iunlock(
287 	xfs_inode_t		*ip,
288 	uint			lock_flags)
289 {
290 	/*
291 	 * You can't set both SHARED and EXCL for the same lock,
292 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
293 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
294 	 */
295 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
296 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
297 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
298 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
300 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
301 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
302 	ASSERT(lock_flags != 0);
303 
304 	if (lock_flags & XFS_IOLOCK_EXCL)
305 		up_write(&VFS_I(ip)->i_rwsem);
306 	else if (lock_flags & XFS_IOLOCK_SHARED)
307 		up_read(&VFS_I(ip)->i_rwsem);
308 
309 	if (lock_flags & XFS_MMAPLOCK_EXCL)
310 		mrunlock_excl(&ip->i_mmaplock);
311 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
312 		mrunlock_shared(&ip->i_mmaplock);
313 
314 	if (lock_flags & XFS_ILOCK_EXCL)
315 		mrunlock_excl(&ip->i_lock);
316 	else if (lock_flags & XFS_ILOCK_SHARED)
317 		mrunlock_shared(&ip->i_lock);
318 
319 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
320 }
321 
322 /*
323  * give up write locks.  the i/o lock cannot be held nested
324  * if it is being demoted.
325  */
326 void
327 xfs_ilock_demote(
328 	xfs_inode_t		*ip,
329 	uint			lock_flags)
330 {
331 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
332 	ASSERT((lock_flags &
333 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
334 
335 	if (lock_flags & XFS_ILOCK_EXCL)
336 		mrdemote(&ip->i_lock);
337 	if (lock_flags & XFS_MMAPLOCK_EXCL)
338 		mrdemote(&ip->i_mmaplock);
339 	if (lock_flags & XFS_IOLOCK_EXCL)
340 		downgrade_write(&VFS_I(ip)->i_rwsem);
341 
342 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
343 }
344 
345 #if defined(DEBUG) || defined(XFS_WARN)
346 int
347 xfs_isilocked(
348 	xfs_inode_t		*ip,
349 	uint			lock_flags)
350 {
351 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
352 		if (!(lock_flags & XFS_ILOCK_SHARED))
353 			return !!ip->i_lock.mr_writer;
354 		return rwsem_is_locked(&ip->i_lock.mr_lock);
355 	}
356 
357 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
358 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
359 			return !!ip->i_mmaplock.mr_writer;
360 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
361 	}
362 
363 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
364 		if (!(lock_flags & XFS_IOLOCK_SHARED))
365 			return !debug_locks ||
366 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
367 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
368 	}
369 
370 	ASSERT(0);
371 	return 0;
372 }
373 #endif
374 
375 /*
376  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
377  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
378  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
379  * errors and warnings.
380  */
381 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
382 static bool
383 xfs_lockdep_subclass_ok(
384 	int subclass)
385 {
386 	return subclass < MAX_LOCKDEP_SUBCLASSES;
387 }
388 #else
389 #define xfs_lockdep_subclass_ok(subclass)	(true)
390 #endif
391 
392 /*
393  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
394  * value. This can be called for any type of inode lock combination, including
395  * parent locking. Care must be taken to ensure we don't overrun the subclass
396  * storage fields in the class mask we build.
397  */
398 static inline int
399 xfs_lock_inumorder(int lock_mode, int subclass)
400 {
401 	int	class = 0;
402 
403 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
404 			      XFS_ILOCK_RTSUM)));
405 	ASSERT(xfs_lockdep_subclass_ok(subclass));
406 
407 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
408 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
409 		class += subclass << XFS_IOLOCK_SHIFT;
410 	}
411 
412 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
413 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
414 		class += subclass << XFS_MMAPLOCK_SHIFT;
415 	}
416 
417 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
418 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
419 		class += subclass << XFS_ILOCK_SHIFT;
420 	}
421 
422 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
423 }
424 
425 /*
426  * The following routine will lock n inodes in exclusive mode.  We assume the
427  * caller calls us with the inodes in i_ino order.
428  *
429  * We need to detect deadlock where an inode that we lock is in the AIL and we
430  * start waiting for another inode that is locked by a thread in a long running
431  * transaction (such as truncate). This can result in deadlock since the long
432  * running trans might need to wait for the inode we just locked in order to
433  * push the tail and free space in the log.
434  *
435  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
436  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
437  * lock more than one at a time, lockdep will report false positives saying we
438  * have violated locking orders.
439  */
440 static void
441 xfs_lock_inodes(
442 	struct xfs_inode	**ips,
443 	int			inodes,
444 	uint			lock_mode)
445 {
446 	int			attempts = 0, i, j, try_lock;
447 	struct xfs_log_item	*lp;
448 
449 	/*
450 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
451 	 * support an arbitrary depth of locking here, but absolute limits on
452 	 * inodes depend on the type of locking and the limits placed by
453 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
454 	 * the asserts.
455 	 */
456 	ASSERT(ips && inodes >= 2 && inodes <= 5);
457 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
458 			    XFS_ILOCK_EXCL));
459 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
460 			      XFS_ILOCK_SHARED)));
461 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
462 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
463 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
464 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
465 
466 	if (lock_mode & XFS_IOLOCK_EXCL) {
467 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
468 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
469 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
470 
471 	try_lock = 0;
472 	i = 0;
473 again:
474 	for (; i < inodes; i++) {
475 		ASSERT(ips[i]);
476 
477 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
478 			continue;
479 
480 		/*
481 		 * If try_lock is not set yet, make sure all locked inodes are
482 		 * not in the AIL.  If any are, set try_lock to be used later.
483 		 */
484 		if (!try_lock) {
485 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
486 				lp = &ips[j]->i_itemp->ili_item;
487 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
488 					try_lock++;
489 			}
490 		}
491 
492 		/*
493 		 * If any of the previous locks we have locked is in the AIL,
494 		 * we must TRY to get the second and subsequent locks. If
495 		 * we can't get any, we must release all we have
496 		 * and try again.
497 		 */
498 		if (!try_lock) {
499 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
500 			continue;
501 		}
502 
503 		/* try_lock means we have an inode locked that is in the AIL. */
504 		ASSERT(i != 0);
505 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
506 			continue;
507 
508 		/*
509 		 * Unlock all previous guys and try again.  xfs_iunlock will try
510 		 * to push the tail if the inode is in the AIL.
511 		 */
512 		attempts++;
513 		for (j = i - 1; j >= 0; j--) {
514 			/*
515 			 * Check to see if we've already unlocked this one.  Not
516 			 * the first one going back, and the inode ptr is the
517 			 * same.
518 			 */
519 			if (j != (i - 1) && ips[j] == ips[j + 1])
520 				continue;
521 
522 			xfs_iunlock(ips[j], lock_mode);
523 		}
524 
525 		if ((attempts % 5) == 0) {
526 			delay(1); /* Don't just spin the CPU */
527 		}
528 		i = 0;
529 		try_lock = 0;
530 		goto again;
531 	}
532 }
533 
534 /*
535  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
536  * the mmaplock or the ilock, but not more than one type at a time. If we lock
537  * more than one at a time, lockdep will report false positives saying we have
538  * violated locking orders.  The iolock must be double-locked separately since
539  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
540  * SHARED.
541  */
542 void
543 xfs_lock_two_inodes(
544 	struct xfs_inode	*ip0,
545 	uint			ip0_mode,
546 	struct xfs_inode	*ip1,
547 	uint			ip1_mode)
548 {
549 	struct xfs_inode	*temp;
550 	uint			mode_temp;
551 	int			attempts = 0;
552 	struct xfs_log_item	*lp;
553 
554 	ASSERT(hweight32(ip0_mode) == 1);
555 	ASSERT(hweight32(ip1_mode) == 1);
556 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
557 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
558 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 
567 	ASSERT(ip0->i_ino != ip1->i_ino);
568 
569 	if (ip0->i_ino > ip1->i_ino) {
570 		temp = ip0;
571 		ip0 = ip1;
572 		ip1 = temp;
573 		mode_temp = ip0_mode;
574 		ip0_mode = ip1_mode;
575 		ip1_mode = mode_temp;
576 	}
577 
578  again:
579 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
580 
581 	/*
582 	 * If the first lock we have locked is in the AIL, we must TRY to get
583 	 * the second lock. If we can't get it, we must release the first one
584 	 * and try again.
585 	 */
586 	lp = &ip0->i_itemp->ili_item;
587 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
588 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
589 			xfs_iunlock(ip0, ip0_mode);
590 			if ((++attempts % 5) == 0)
591 				delay(1); /* Don't just spin the CPU */
592 			goto again;
593 		}
594 	} else {
595 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
596 	}
597 }
598 
599 uint
600 xfs_ip2xflags(
601 	struct xfs_inode	*ip)
602 {
603 	uint			flags = 0;
604 
605 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
606 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
607 			flags |= FS_XFLAG_REALTIME;
608 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
609 			flags |= FS_XFLAG_PREALLOC;
610 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
611 			flags |= FS_XFLAG_IMMUTABLE;
612 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
613 			flags |= FS_XFLAG_APPEND;
614 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
615 			flags |= FS_XFLAG_SYNC;
616 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
617 			flags |= FS_XFLAG_NOATIME;
618 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
619 			flags |= FS_XFLAG_NODUMP;
620 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
621 			flags |= FS_XFLAG_RTINHERIT;
622 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
623 			flags |= FS_XFLAG_PROJINHERIT;
624 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
625 			flags |= FS_XFLAG_NOSYMLINKS;
626 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
627 			flags |= FS_XFLAG_EXTSIZE;
628 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
629 			flags |= FS_XFLAG_EXTSZINHERIT;
630 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
631 			flags |= FS_XFLAG_NODEFRAG;
632 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
633 			flags |= FS_XFLAG_FILESTREAM;
634 	}
635 
636 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
637 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
638 			flags |= FS_XFLAG_DAX;
639 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
640 			flags |= FS_XFLAG_COWEXTSIZE;
641 	}
642 
643 	if (XFS_IFORK_Q(ip))
644 		flags |= FS_XFLAG_HASATTR;
645 	return flags;
646 }
647 
648 /*
649  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
650  * is allowed, otherwise it has to be an exact match. If a CI match is found,
651  * ci_name->name will point to a the actual name (caller must free) or
652  * will be set to NULL if an exact match is found.
653  */
654 int
655 xfs_lookup(
656 	xfs_inode_t		*dp,
657 	struct xfs_name		*name,
658 	xfs_inode_t		**ipp,
659 	struct xfs_name		*ci_name)
660 {
661 	xfs_ino_t		inum;
662 	int			error;
663 
664 	trace_xfs_lookup(dp, name);
665 
666 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
667 		return -EIO;
668 
669 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
670 	if (error)
671 		goto out_unlock;
672 
673 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
674 	if (error)
675 		goto out_free_name;
676 
677 	return 0;
678 
679 out_free_name:
680 	if (ci_name)
681 		kmem_free(ci_name->name);
682 out_unlock:
683 	*ipp = NULL;
684 	return error;
685 }
686 
687 /* Propagate di_flags from a parent inode to a child inode. */
688 static void
689 xfs_inode_inherit_flags(
690 	struct xfs_inode	*ip,
691 	const struct xfs_inode	*pip)
692 {
693 	unsigned int		di_flags = 0;
694 	xfs_failaddr_t		failaddr;
695 	umode_t			mode = VFS_I(ip)->i_mode;
696 
697 	if (S_ISDIR(mode)) {
698 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
699 			di_flags |= XFS_DIFLAG_RTINHERIT;
700 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
701 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
702 			ip->i_extsize = pip->i_extsize;
703 		}
704 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
705 			di_flags |= XFS_DIFLAG_PROJINHERIT;
706 	} else if (S_ISREG(mode)) {
707 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
708 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
709 			di_flags |= XFS_DIFLAG_REALTIME;
710 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
711 			di_flags |= XFS_DIFLAG_EXTSIZE;
712 			ip->i_extsize = pip->i_extsize;
713 		}
714 	}
715 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
716 	    xfs_inherit_noatime)
717 		di_flags |= XFS_DIFLAG_NOATIME;
718 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
719 	    xfs_inherit_nodump)
720 		di_flags |= XFS_DIFLAG_NODUMP;
721 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
722 	    xfs_inherit_sync)
723 		di_flags |= XFS_DIFLAG_SYNC;
724 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
725 	    xfs_inherit_nosymlinks)
726 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
727 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
728 	    xfs_inherit_nodefrag)
729 		di_flags |= XFS_DIFLAG_NODEFRAG;
730 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
731 		di_flags |= XFS_DIFLAG_FILESTREAM;
732 
733 	ip->i_diflags |= di_flags;
734 
735 	/*
736 	 * Inode verifiers on older kernels only check that the extent size
737 	 * hint is an integer multiple of the rt extent size on realtime files.
738 	 * They did not check the hint alignment on a directory with both
739 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
740 	 * propagated from a directory into a new realtime file, new file
741 	 * allocations will fail due to math errors in the rt allocator and/or
742 	 * trip the verifiers.  Validate the hint settings in the new file so
743 	 * that we don't let broken hints propagate.
744 	 */
745 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
746 			VFS_I(ip)->i_mode, ip->i_diflags);
747 	if (failaddr) {
748 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
749 				   XFS_DIFLAG_EXTSZINHERIT);
750 		ip->i_extsize = 0;
751 	}
752 }
753 
754 /* Propagate di_flags2 from a parent inode to a child inode. */
755 static void
756 xfs_inode_inherit_flags2(
757 	struct xfs_inode	*ip,
758 	const struct xfs_inode	*pip)
759 {
760 	xfs_failaddr_t		failaddr;
761 
762 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
763 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
764 		ip->i_cowextsize = pip->i_cowextsize;
765 	}
766 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
767 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
768 
769 	/* Don't let invalid cowextsize hints propagate. */
770 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
771 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
772 	if (failaddr) {
773 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
774 		ip->i_cowextsize = 0;
775 	}
776 }
777 
778 /*
779  * Initialise a newly allocated inode and return the in-core inode to the
780  * caller locked exclusively.
781  */
782 int
783 xfs_init_new_inode(
784 	struct user_namespace	*mnt_userns,
785 	struct xfs_trans	*tp,
786 	struct xfs_inode	*pip,
787 	xfs_ino_t		ino,
788 	umode_t			mode,
789 	xfs_nlink_t		nlink,
790 	dev_t			rdev,
791 	prid_t			prid,
792 	bool			init_xattrs,
793 	struct xfs_inode	**ipp)
794 {
795 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
796 	struct xfs_mount	*mp = tp->t_mountp;
797 	struct xfs_inode	*ip;
798 	unsigned int		flags;
799 	int			error;
800 	struct timespec64	tv;
801 	struct inode		*inode;
802 
803 	/*
804 	 * Protect against obviously corrupt allocation btree records. Later
805 	 * xfs_iget checks will catch re-allocation of other active in-memory
806 	 * and on-disk inodes. If we don't catch reallocating the parent inode
807 	 * here we will deadlock in xfs_iget() so we have to do these checks
808 	 * first.
809 	 */
810 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
811 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
812 		return -EFSCORRUPTED;
813 	}
814 
815 	/*
816 	 * Get the in-core inode with the lock held exclusively to prevent
817 	 * others from looking at until we're done.
818 	 */
819 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
820 	if (error)
821 		return error;
822 
823 	ASSERT(ip != NULL);
824 	inode = VFS_I(ip);
825 	set_nlink(inode, nlink);
826 	inode->i_rdev = rdev;
827 	ip->i_projid = prid;
828 
829 	if (dir && !(dir->i_mode & S_ISGID) &&
830 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
831 		inode_fsuid_set(inode, mnt_userns);
832 		inode->i_gid = dir->i_gid;
833 		inode->i_mode = mode;
834 	} else {
835 		inode_init_owner(mnt_userns, inode, dir, mode);
836 	}
837 
838 	/*
839 	 * If the group ID of the new file does not match the effective group
840 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
841 	 * (and only if the irix_sgid_inherit compatibility variable is set).
842 	 */
843 	if (irix_sgid_inherit &&
844 	    (inode->i_mode & S_ISGID) &&
845 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
846 		inode->i_mode &= ~S_ISGID;
847 
848 	ip->i_disk_size = 0;
849 	ip->i_df.if_nextents = 0;
850 	ASSERT(ip->i_nblocks == 0);
851 
852 	tv = current_time(inode);
853 	inode->i_mtime = tv;
854 	inode->i_atime = tv;
855 	inode->i_ctime = tv;
856 
857 	ip->i_extsize = 0;
858 	ip->i_diflags = 0;
859 
860 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
861 		inode_set_iversion(inode, 1);
862 		ip->i_cowextsize = 0;
863 		ip->i_crtime = tv;
864 	}
865 
866 	flags = XFS_ILOG_CORE;
867 	switch (mode & S_IFMT) {
868 	case S_IFIFO:
869 	case S_IFCHR:
870 	case S_IFBLK:
871 	case S_IFSOCK:
872 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
873 		flags |= XFS_ILOG_DEV;
874 		break;
875 	case S_IFREG:
876 	case S_IFDIR:
877 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
878 			xfs_inode_inherit_flags(ip, pip);
879 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
880 			xfs_inode_inherit_flags2(ip, pip);
881 		fallthrough;
882 	case S_IFLNK:
883 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
884 		ip->i_df.if_bytes = 0;
885 		ip->i_df.if_u1.if_root = NULL;
886 		break;
887 	default:
888 		ASSERT(0);
889 	}
890 
891 	/*
892 	 * If we need to create attributes immediately after allocating the
893 	 * inode, initialise an empty attribute fork right now. We use the
894 	 * default fork offset for attributes here as we don't know exactly what
895 	 * size or how many attributes we might be adding. We can do this
896 	 * safely here because we know the data fork is completely empty and
897 	 * this saves us from needing to run a separate transaction to set the
898 	 * fork offset in the immediate future.
899 	 */
900 	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
901 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
902 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
903 	}
904 
905 	/*
906 	 * Log the new values stuffed into the inode.
907 	 */
908 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
909 	xfs_trans_log_inode(tp, ip, flags);
910 
911 	/* now that we have an i_mode we can setup the inode structure */
912 	xfs_setup_inode(ip);
913 
914 	*ipp = ip;
915 	return 0;
916 }
917 
918 /*
919  * Decrement the link count on an inode & log the change.  If this causes the
920  * link count to go to zero, move the inode to AGI unlinked list so that it can
921  * be freed when the last active reference goes away via xfs_inactive().
922  */
923 static int			/* error */
924 xfs_droplink(
925 	xfs_trans_t *tp,
926 	xfs_inode_t *ip)
927 {
928 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
929 
930 	drop_nlink(VFS_I(ip));
931 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
932 
933 	if (VFS_I(ip)->i_nlink)
934 		return 0;
935 
936 	return xfs_iunlink(tp, ip);
937 }
938 
939 /*
940  * Increment the link count on an inode & log the change.
941  */
942 static void
943 xfs_bumplink(
944 	xfs_trans_t *tp,
945 	xfs_inode_t *ip)
946 {
947 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
948 
949 	inc_nlink(VFS_I(ip));
950 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
951 }
952 
953 int
954 xfs_create(
955 	struct user_namespace	*mnt_userns,
956 	xfs_inode_t		*dp,
957 	struct xfs_name		*name,
958 	umode_t			mode,
959 	dev_t			rdev,
960 	bool			init_xattrs,
961 	xfs_inode_t		**ipp)
962 {
963 	int			is_dir = S_ISDIR(mode);
964 	struct xfs_mount	*mp = dp->i_mount;
965 	struct xfs_inode	*ip = NULL;
966 	struct xfs_trans	*tp = NULL;
967 	int			error;
968 	bool                    unlock_dp_on_error = false;
969 	prid_t			prid;
970 	struct xfs_dquot	*udqp = NULL;
971 	struct xfs_dquot	*gdqp = NULL;
972 	struct xfs_dquot	*pdqp = NULL;
973 	struct xfs_trans_res	*tres;
974 	uint			resblks;
975 	xfs_ino_t		ino;
976 
977 	trace_xfs_create(dp, name);
978 
979 	if (XFS_FORCED_SHUTDOWN(mp))
980 		return -EIO;
981 
982 	prid = xfs_get_initial_prid(dp);
983 
984 	/*
985 	 * Make sure that we have allocated dquot(s) on disk.
986 	 */
987 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
988 			mapped_fsgid(mnt_userns), prid,
989 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
990 			&udqp, &gdqp, &pdqp);
991 	if (error)
992 		return error;
993 
994 	if (is_dir) {
995 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
996 		tres = &M_RES(mp)->tr_mkdir;
997 	} else {
998 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
999 		tres = &M_RES(mp)->tr_create;
1000 	}
1001 
1002 	/*
1003 	 * Initially assume that the file does not exist and
1004 	 * reserve the resources for that case.  If that is not
1005 	 * the case we'll drop the one we have and get a more
1006 	 * appropriate transaction later.
1007 	 */
1008 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009 			&tp);
1010 	if (error == -ENOSPC) {
1011 		/* flush outstanding delalloc blocks and retry */
1012 		xfs_flush_inodes(mp);
1013 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014 				resblks, &tp);
1015 	}
1016 	if (error)
1017 		goto out_release_dquots;
1018 
1019 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020 	unlock_dp_on_error = true;
1021 
1022 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023 			XFS_IEXT_DIR_MANIP_CNT(mp));
1024 	if (error)
1025 		goto out_trans_cancel;
1026 
1027 	/*
1028 	 * A newly created regular or special file just has one directory
1029 	 * entry pointing to them, but a directory also the "." entry
1030 	 * pointing to itself.
1031 	 */
1032 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033 	if (!error)
1034 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036 	if (error)
1037 		goto out_trans_cancel;
1038 
1039 	/*
1040 	 * Now we join the directory inode to the transaction.  We do not do it
1041 	 * earlier because xfs_dialloc might commit the previous transaction
1042 	 * (and release all the locks).  An error from here on will result in
1043 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1044 	 * error path.
1045 	 */
1046 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047 	unlock_dp_on_error = false;
1048 
1049 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050 					resblks - XFS_IALLOC_SPACE_RES(mp));
1051 	if (error) {
1052 		ASSERT(error != -ENOSPC);
1053 		goto out_trans_cancel;
1054 	}
1055 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057 
1058 	if (is_dir) {
1059 		error = xfs_dir_init(tp, ip, dp);
1060 		if (error)
1061 			goto out_trans_cancel;
1062 
1063 		xfs_bumplink(tp, dp);
1064 	}
1065 
1066 	/*
1067 	 * If this is a synchronous mount, make sure that the
1068 	 * create transaction goes to disk before returning to
1069 	 * the user.
1070 	 */
1071 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072 		xfs_trans_set_sync(tp);
1073 
1074 	/*
1075 	 * Attach the dquot(s) to the inodes and modify them incore.
1076 	 * These ids of the inode couldn't have changed since the new
1077 	 * inode has been locked ever since it was created.
1078 	 */
1079 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080 
1081 	error = xfs_trans_commit(tp);
1082 	if (error)
1083 		goto out_release_inode;
1084 
1085 	xfs_qm_dqrele(udqp);
1086 	xfs_qm_dqrele(gdqp);
1087 	xfs_qm_dqrele(pdqp);
1088 
1089 	*ipp = ip;
1090 	return 0;
1091 
1092  out_trans_cancel:
1093 	xfs_trans_cancel(tp);
1094  out_release_inode:
1095 	/*
1096 	 * Wait until after the current transaction is aborted to finish the
1097 	 * setup of the inode and release the inode.  This prevents recursive
1098 	 * transactions and deadlocks from xfs_inactive.
1099 	 */
1100 	if (ip) {
1101 		xfs_finish_inode_setup(ip);
1102 		xfs_irele(ip);
1103 	}
1104  out_release_dquots:
1105 	xfs_qm_dqrele(udqp);
1106 	xfs_qm_dqrele(gdqp);
1107 	xfs_qm_dqrele(pdqp);
1108 
1109 	if (unlock_dp_on_error)
1110 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111 	return error;
1112 }
1113 
1114 int
1115 xfs_create_tmpfile(
1116 	struct user_namespace	*mnt_userns,
1117 	struct xfs_inode	*dp,
1118 	umode_t			mode,
1119 	struct xfs_inode	**ipp)
1120 {
1121 	struct xfs_mount	*mp = dp->i_mount;
1122 	struct xfs_inode	*ip = NULL;
1123 	struct xfs_trans	*tp = NULL;
1124 	int			error;
1125 	prid_t                  prid;
1126 	struct xfs_dquot	*udqp = NULL;
1127 	struct xfs_dquot	*gdqp = NULL;
1128 	struct xfs_dquot	*pdqp = NULL;
1129 	struct xfs_trans_res	*tres;
1130 	uint			resblks;
1131 	xfs_ino_t		ino;
1132 
1133 	if (XFS_FORCED_SHUTDOWN(mp))
1134 		return -EIO;
1135 
1136 	prid = xfs_get_initial_prid(dp);
1137 
1138 	/*
1139 	 * Make sure that we have allocated dquot(s) on disk.
1140 	 */
1141 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142 			mapped_fsgid(mnt_userns), prid,
1143 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144 			&udqp, &gdqp, &pdqp);
1145 	if (error)
1146 		return error;
1147 
1148 	resblks = XFS_IALLOC_SPACE_RES(mp);
1149 	tres = &M_RES(mp)->tr_create_tmpfile;
1150 
1151 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152 			&tp);
1153 	if (error)
1154 		goto out_release_dquots;
1155 
1156 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157 	if (!error)
1158 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159 				0, 0, prid, false, &ip);
1160 	if (error)
1161 		goto out_trans_cancel;
1162 
1163 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1164 		xfs_trans_set_sync(tp);
1165 
1166 	/*
1167 	 * Attach the dquot(s) to the inodes and modify them incore.
1168 	 * These ids of the inode couldn't have changed since the new
1169 	 * inode has been locked ever since it was created.
1170 	 */
1171 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172 
1173 	error = xfs_iunlink(tp, ip);
1174 	if (error)
1175 		goto out_trans_cancel;
1176 
1177 	error = xfs_trans_commit(tp);
1178 	if (error)
1179 		goto out_release_inode;
1180 
1181 	xfs_qm_dqrele(udqp);
1182 	xfs_qm_dqrele(gdqp);
1183 	xfs_qm_dqrele(pdqp);
1184 
1185 	*ipp = ip;
1186 	return 0;
1187 
1188  out_trans_cancel:
1189 	xfs_trans_cancel(tp);
1190  out_release_inode:
1191 	/*
1192 	 * Wait until after the current transaction is aborted to finish the
1193 	 * setup of the inode and release the inode.  This prevents recursive
1194 	 * transactions and deadlocks from xfs_inactive.
1195 	 */
1196 	if (ip) {
1197 		xfs_finish_inode_setup(ip);
1198 		xfs_irele(ip);
1199 	}
1200  out_release_dquots:
1201 	xfs_qm_dqrele(udqp);
1202 	xfs_qm_dqrele(gdqp);
1203 	xfs_qm_dqrele(pdqp);
1204 
1205 	return error;
1206 }
1207 
1208 int
1209 xfs_link(
1210 	xfs_inode_t		*tdp,
1211 	xfs_inode_t		*sip,
1212 	struct xfs_name		*target_name)
1213 {
1214 	xfs_mount_t		*mp = tdp->i_mount;
1215 	xfs_trans_t		*tp;
1216 	int			error;
1217 	int			resblks;
1218 
1219 	trace_xfs_link(tdp, target_name);
1220 
1221 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222 
1223 	if (XFS_FORCED_SHUTDOWN(mp))
1224 		return -EIO;
1225 
1226 	error = xfs_qm_dqattach(sip);
1227 	if (error)
1228 		goto std_return;
1229 
1230 	error = xfs_qm_dqattach(tdp);
1231 	if (error)
1232 		goto std_return;
1233 
1234 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236 	if (error == -ENOSPC) {
1237 		resblks = 0;
1238 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239 	}
1240 	if (error)
1241 		goto std_return;
1242 
1243 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1244 
1245 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247 
1248 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249 			XFS_IEXT_DIR_MANIP_CNT(mp));
1250 	if (error)
1251 		goto error_return;
1252 
1253 	/*
1254 	 * If we are using project inheritance, we only allow hard link
1255 	 * creation in our tree when the project IDs are the same; else
1256 	 * the tree quota mechanism could be circumvented.
1257 	 */
1258 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259 		     tdp->i_projid != sip->i_projid)) {
1260 		error = -EXDEV;
1261 		goto error_return;
1262 	}
1263 
1264 	if (!resblks) {
1265 		error = xfs_dir_canenter(tp, tdp, target_name);
1266 		if (error)
1267 			goto error_return;
1268 	}
1269 
1270 	/*
1271 	 * Handle initial link state of O_TMPFILE inode
1272 	 */
1273 	if (VFS_I(sip)->i_nlink == 0) {
1274 		struct xfs_perag	*pag;
1275 
1276 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277 		error = xfs_iunlink_remove(tp, pag, sip);
1278 		xfs_perag_put(pag);
1279 		if (error)
1280 			goto error_return;
1281 	}
1282 
1283 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284 				   resblks);
1285 	if (error)
1286 		goto error_return;
1287 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289 
1290 	xfs_bumplink(tp, sip);
1291 
1292 	/*
1293 	 * If this is a synchronous mount, make sure that the
1294 	 * link transaction goes to disk before returning to
1295 	 * the user.
1296 	 */
1297 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298 		xfs_trans_set_sync(tp);
1299 
1300 	return xfs_trans_commit(tp);
1301 
1302  error_return:
1303 	xfs_trans_cancel(tp);
1304  std_return:
1305 	return error;
1306 }
1307 
1308 /* Clear the reflink flag and the cowblocks tag if possible. */
1309 static void
1310 xfs_itruncate_clear_reflink_flags(
1311 	struct xfs_inode	*ip)
1312 {
1313 	struct xfs_ifork	*dfork;
1314 	struct xfs_ifork	*cfork;
1315 
1316 	if (!xfs_is_reflink_inode(ip))
1317 		return;
1318 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322 	if (cfork->if_bytes == 0)
1323 		xfs_inode_clear_cowblocks_tag(ip);
1324 }
1325 
1326 /*
1327  * Free up the underlying blocks past new_size.  The new size must be smaller
1328  * than the current size.  This routine can be used both for the attribute and
1329  * data fork, and does not modify the inode size, which is left to the caller.
1330  *
1331  * The transaction passed to this routine must have made a permanent log
1332  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1333  * given transaction and start new ones, so make sure everything involved in
1334  * the transaction is tidy before calling here.  Some transaction will be
1335  * returned to the caller to be committed.  The incoming transaction must
1336  * already include the inode, and both inode locks must be held exclusively.
1337  * The inode must also be "held" within the transaction.  On return the inode
1338  * will be "held" within the returned transaction.  This routine does NOT
1339  * require any disk space to be reserved for it within the transaction.
1340  *
1341  * If we get an error, we must return with the inode locked and linked into the
1342  * current transaction. This keeps things simple for the higher level code,
1343  * because it always knows that the inode is locked and held in the transaction
1344  * that returns to it whether errors occur or not.  We don't mark the inode
1345  * dirty on error so that transactions can be easily aborted if possible.
1346  */
1347 int
1348 xfs_itruncate_extents_flags(
1349 	struct xfs_trans	**tpp,
1350 	struct xfs_inode	*ip,
1351 	int			whichfork,
1352 	xfs_fsize_t		new_size,
1353 	int			flags)
1354 {
1355 	struct xfs_mount	*mp = ip->i_mount;
1356 	struct xfs_trans	*tp = *tpp;
1357 	xfs_fileoff_t		first_unmap_block;
1358 	xfs_filblks_t		unmap_len;
1359 	int			error = 0;
1360 
1361 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364 	ASSERT(new_size <= XFS_ISIZE(ip));
1365 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366 	ASSERT(ip->i_itemp != NULL);
1367 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369 
1370 	trace_xfs_itruncate_extents_start(ip, new_size);
1371 
1372 	flags |= xfs_bmapi_aflag(whichfork);
1373 
1374 	/*
1375 	 * Since it is possible for space to become allocated beyond
1376 	 * the end of the file (in a crash where the space is allocated
1377 	 * but the inode size is not yet updated), simply remove any
1378 	 * blocks which show up between the new EOF and the maximum
1379 	 * possible file size.
1380 	 *
1381 	 * We have to free all the blocks to the bmbt maximum offset, even if
1382 	 * the page cache can't scale that far.
1383 	 */
1384 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387 		return 0;
1388 	}
1389 
1390 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391 	while (unmap_len > 0) {
1392 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394 				flags, XFS_ITRUNC_MAX_EXTENTS);
1395 		if (error)
1396 			goto out;
1397 
1398 		/* free the just unmapped extents */
1399 		error = xfs_defer_finish(&tp);
1400 		if (error)
1401 			goto out;
1402 	}
1403 
1404 	if (whichfork == XFS_DATA_FORK) {
1405 		/* Remove all pending CoW reservations. */
1406 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407 				first_unmap_block, XFS_MAX_FILEOFF, true);
1408 		if (error)
1409 			goto out;
1410 
1411 		xfs_itruncate_clear_reflink_flags(ip);
1412 	}
1413 
1414 	/*
1415 	 * Always re-log the inode so that our permanent transaction can keep
1416 	 * on rolling it forward in the log.
1417 	 */
1418 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419 
1420 	trace_xfs_itruncate_extents_end(ip, new_size);
1421 
1422 out:
1423 	*tpp = tp;
1424 	return error;
1425 }
1426 
1427 int
1428 xfs_release(
1429 	xfs_inode_t	*ip)
1430 {
1431 	xfs_mount_t	*mp = ip->i_mount;
1432 	int		error = 0;
1433 
1434 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435 		return 0;
1436 
1437 	/* If this is a read-only mount, don't do this (would generate I/O) */
1438 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1439 		return 0;
1440 
1441 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1442 		int truncated;
1443 
1444 		/*
1445 		 * If we previously truncated this file and removed old data
1446 		 * in the process, we want to initiate "early" writeout on
1447 		 * the last close.  This is an attempt to combat the notorious
1448 		 * NULL files problem which is particularly noticeable from a
1449 		 * truncate down, buffered (re-)write (delalloc), followed by
1450 		 * a crash.  What we are effectively doing here is
1451 		 * significantly reducing the time window where we'd otherwise
1452 		 * be exposed to that problem.
1453 		 */
1454 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455 		if (truncated) {
1456 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457 			if (ip->i_delayed_blks > 0) {
1458 				error = filemap_flush(VFS_I(ip)->i_mapping);
1459 				if (error)
1460 					return error;
1461 			}
1462 		}
1463 	}
1464 
1465 	if (VFS_I(ip)->i_nlink == 0)
1466 		return 0;
1467 
1468 	/*
1469 	 * If we can't get the iolock just skip truncating the blocks past EOF
1470 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1471 	 * another chance to drop them once the last reference to the inode is
1472 	 * dropped, so we'll never leak blocks permanently.
1473 	 */
1474 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475 		return 0;
1476 
1477 	if (xfs_can_free_eofblocks(ip, false)) {
1478 		/*
1479 		 * Check if the inode is being opened, written and closed
1480 		 * frequently and we have delayed allocation blocks outstanding
1481 		 * (e.g. streaming writes from the NFS server), truncating the
1482 		 * blocks past EOF will cause fragmentation to occur.
1483 		 *
1484 		 * In this case don't do the truncation, but we have to be
1485 		 * careful how we detect this case. Blocks beyond EOF show up as
1486 		 * i_delayed_blks even when the inode is clean, so we need to
1487 		 * truncate them away first before checking for a dirty release.
1488 		 * Hence on the first dirty close we will still remove the
1489 		 * speculative allocation, but after that we will leave it in
1490 		 * place.
1491 		 */
1492 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493 			goto out_unlock;
1494 
1495 		error = xfs_free_eofblocks(ip);
1496 		if (error)
1497 			goto out_unlock;
1498 
1499 		/* delalloc blocks after truncation means it really is dirty */
1500 		if (ip->i_delayed_blks)
1501 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502 	}
1503 
1504 out_unlock:
1505 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506 	return error;
1507 }
1508 
1509 /*
1510  * xfs_inactive_truncate
1511  *
1512  * Called to perform a truncate when an inode becomes unlinked.
1513  */
1514 STATIC int
1515 xfs_inactive_truncate(
1516 	struct xfs_inode *ip)
1517 {
1518 	struct xfs_mount	*mp = ip->i_mount;
1519 	struct xfs_trans	*tp;
1520 	int			error;
1521 
1522 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1523 	if (error) {
1524 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1525 		return error;
1526 	}
1527 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1528 	xfs_trans_ijoin(tp, ip, 0);
1529 
1530 	/*
1531 	 * Log the inode size first to prevent stale data exposure in the event
1532 	 * of a system crash before the truncate completes. See the related
1533 	 * comment in xfs_vn_setattr_size() for details.
1534 	 */
1535 	ip->i_disk_size = 0;
1536 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537 
1538 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539 	if (error)
1540 		goto error_trans_cancel;
1541 
1542 	ASSERT(ip->i_df.if_nextents == 0);
1543 
1544 	error = xfs_trans_commit(tp);
1545 	if (error)
1546 		goto error_unlock;
1547 
1548 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549 	return 0;
1550 
1551 error_trans_cancel:
1552 	xfs_trans_cancel(tp);
1553 error_unlock:
1554 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555 	return error;
1556 }
1557 
1558 /*
1559  * xfs_inactive_ifree()
1560  *
1561  * Perform the inode free when an inode is unlinked.
1562  */
1563 STATIC int
1564 xfs_inactive_ifree(
1565 	struct xfs_inode *ip)
1566 {
1567 	struct xfs_mount	*mp = ip->i_mount;
1568 	struct xfs_trans	*tp;
1569 	int			error;
1570 
1571 	/*
1572 	 * We try to use a per-AG reservation for any block needed by the finobt
1573 	 * tree, but as the finobt feature predates the per-AG reservation
1574 	 * support a degraded file system might not have enough space for the
1575 	 * reservation at mount time.  In that case try to dip into the reserved
1576 	 * pool and pray.
1577 	 *
1578 	 * Send a warning if the reservation does happen to fail, as the inode
1579 	 * now remains allocated and sits on the unlinked list until the fs is
1580 	 * repaired.
1581 	 */
1582 	if (unlikely(mp->m_finobt_nores)) {
1583 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585 				&tp);
1586 	} else {
1587 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588 	}
1589 	if (error) {
1590 		if (error == -ENOSPC) {
1591 			xfs_warn_ratelimited(mp,
1592 			"Failed to remove inode(s) from unlinked list. "
1593 			"Please free space, unmount and run xfs_repair.");
1594 		} else {
1595 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596 		}
1597 		return error;
1598 	}
1599 
1600 	/*
1601 	 * We do not hold the inode locked across the entire rolling transaction
1602 	 * here. We only need to hold it for the first transaction that
1603 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605 	 * here breaks the relationship between cluster buffer invalidation and
1606 	 * stale inode invalidation on cluster buffer item journal commit
1607 	 * completion, and can result in leaving dirty stale inodes hanging
1608 	 * around in memory.
1609 	 *
1610 	 * We have no need for serialising this inode operation against other
1611 	 * operations - we freed the inode and hence reallocation is required
1612 	 * and that will serialise on reallocating the space the deferops need
1613 	 * to free. Hence we can unlock the inode on the first commit of
1614 	 * the transaction rather than roll it right through the deferops. This
1615 	 * avoids relogging the XFS_ISTALE inode.
1616 	 *
1617 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1618 	 * by asserting that the inode is still locked when it returns.
1619 	 */
1620 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1621 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622 
1623 	error = xfs_ifree(tp, ip);
1624 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625 	if (error) {
1626 		/*
1627 		 * If we fail to free the inode, shut down.  The cancel
1628 		 * might do that, we need to make sure.  Otherwise the
1629 		 * inode might be lost for a long time or forever.
1630 		 */
1631 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1632 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633 				__func__, error);
1634 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635 		}
1636 		xfs_trans_cancel(tp);
1637 		return error;
1638 	}
1639 
1640 	/*
1641 	 * Credit the quota account(s). The inode is gone.
1642 	 */
1643 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644 
1645 	/*
1646 	 * Just ignore errors at this point.  There is nothing we can do except
1647 	 * to try to keep going. Make sure it's not a silent error.
1648 	 */
1649 	error = xfs_trans_commit(tp);
1650 	if (error)
1651 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652 			__func__, error);
1653 
1654 	return 0;
1655 }
1656 
1657 /*
1658  * xfs_inactive
1659  *
1660  * This is called when the vnode reference count for the vnode
1661  * goes to zero.  If the file has been unlinked, then it must
1662  * now be truncated.  Also, we clear all of the read-ahead state
1663  * kept for the inode here since the file is now closed.
1664  */
1665 void
1666 xfs_inactive(
1667 	xfs_inode_t	*ip)
1668 {
1669 	struct xfs_mount	*mp;
1670 	int			error;
1671 	int			truncate = 0;
1672 
1673 	/*
1674 	 * If the inode is already free, then there can be nothing
1675 	 * to clean up here.
1676 	 */
1677 	if (VFS_I(ip)->i_mode == 0) {
1678 		ASSERT(ip->i_df.if_broot_bytes == 0);
1679 		goto out;
1680 	}
1681 
1682 	mp = ip->i_mount;
1683 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684 
1685 	/* If this is a read-only mount, don't do this (would generate I/O) */
1686 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1687 		goto out;
1688 
1689 	/* Metadata inodes require explicit resource cleanup. */
1690 	if (xfs_is_metadata_inode(ip))
1691 		goto out;
1692 
1693 	/* Try to clean out the cow blocks if there are any. */
1694 	if (xfs_inode_has_cow_data(ip))
1695 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696 
1697 	if (VFS_I(ip)->i_nlink != 0) {
1698 		/*
1699 		 * force is true because we are evicting an inode from the
1700 		 * cache. Post-eof blocks must be freed, lest we end up with
1701 		 * broken free space accounting.
1702 		 *
1703 		 * Note: don't bother with iolock here since lockdep complains
1704 		 * about acquiring it in reclaim context. We have the only
1705 		 * reference to the inode at this point anyways.
1706 		 */
1707 		if (xfs_can_free_eofblocks(ip, true))
1708 			xfs_free_eofblocks(ip);
1709 
1710 		goto out;
1711 	}
1712 
1713 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1714 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716 		truncate = 1;
1717 
1718 	error = xfs_qm_dqattach(ip);
1719 	if (error)
1720 		goto out;
1721 
1722 	if (S_ISLNK(VFS_I(ip)->i_mode))
1723 		error = xfs_inactive_symlink(ip);
1724 	else if (truncate)
1725 		error = xfs_inactive_truncate(ip);
1726 	if (error)
1727 		goto out;
1728 
1729 	/*
1730 	 * If there are attributes associated with the file then blow them away
1731 	 * now.  The code calls a routine that recursively deconstructs the
1732 	 * attribute fork. If also blows away the in-core attribute fork.
1733 	 */
1734 	if (XFS_IFORK_Q(ip)) {
1735 		error = xfs_attr_inactive(ip);
1736 		if (error)
1737 			goto out;
1738 	}
1739 
1740 	ASSERT(!ip->i_afp);
1741 	ASSERT(ip->i_forkoff == 0);
1742 
1743 	/*
1744 	 * Free the inode.
1745 	 */
1746 	xfs_inactive_ifree(ip);
1747 
1748 out:
1749 	/*
1750 	 * We're done making metadata updates for this inode, so we can release
1751 	 * the attached dquots.
1752 	 */
1753 	xfs_qm_dqdetach(ip);
1754 }
1755 
1756 /*
1757  * In-Core Unlinked List Lookups
1758  * =============================
1759  *
1760  * Every inode is supposed to be reachable from some other piece of metadata
1761  * with the exception of the root directory.  Inodes with a connection to a
1762  * file descriptor but not linked from anywhere in the on-disk directory tree
1763  * are collectively known as unlinked inodes, though the filesystem itself
1764  * maintains links to these inodes so that on-disk metadata are consistent.
1765  *
1766  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1767  * header contains a number of buckets that point to an inode, and each inode
1768  * record has a pointer to the next inode in the hash chain.  This
1769  * singly-linked list causes scaling problems in the iunlink remove function
1770  * because we must walk that list to find the inode that points to the inode
1771  * being removed from the unlinked hash bucket list.
1772  *
1773  * What if we modelled the unlinked list as a collection of records capturing
1774  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1775  * have a fast way to look up unlinked list predecessors, which avoids the
1776  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1777  * rhashtable.
1778  *
1779  * Because this is a backref cache, we ignore operational failures since the
1780  * iunlink code can fall back to the slow bucket walk.  The only errors that
1781  * should bubble out are for obviously incorrect situations.
1782  *
1783  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784  * access or have otherwise provided for concurrency control.
1785  */
1786 
1787 /* Capture a "X.next_unlinked = Y" relationship. */
1788 struct xfs_iunlink {
1789 	struct rhash_head	iu_rhash_head;
1790 	xfs_agino_t		iu_agino;		/* X */
1791 	xfs_agino_t		iu_next_unlinked;	/* Y */
1792 };
1793 
1794 /* Unlinked list predecessor lookup hashtable construction */
1795 static int
1796 xfs_iunlink_obj_cmpfn(
1797 	struct rhashtable_compare_arg	*arg,
1798 	const void			*obj)
1799 {
1800 	const xfs_agino_t		*key = arg->key;
1801 	const struct xfs_iunlink	*iu = obj;
1802 
1803 	if (iu->iu_next_unlinked != *key)
1804 		return 1;
1805 	return 0;
1806 }
1807 
1808 static const struct rhashtable_params xfs_iunlink_hash_params = {
1809 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1810 	.key_len		= sizeof(xfs_agino_t),
1811 	.key_offset		= offsetof(struct xfs_iunlink,
1812 					   iu_next_unlinked),
1813 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1814 	.automatic_shrinking	= true,
1815 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1816 };
1817 
1818 /*
1819  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1820  * relation is found.
1821  */
1822 static xfs_agino_t
1823 xfs_iunlink_lookup_backref(
1824 	struct xfs_perag	*pag,
1825 	xfs_agino_t		agino)
1826 {
1827 	struct xfs_iunlink	*iu;
1828 
1829 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830 			xfs_iunlink_hash_params);
1831 	return iu ? iu->iu_agino : NULLAGINO;
1832 }
1833 
1834 /*
1835  * Take ownership of an iunlink cache entry and insert it into the hash table.
1836  * If successful, the entry will be owned by the cache; if not, it is freed.
1837  * Either way, the caller does not own @iu after this call.
1838  */
1839 static int
1840 xfs_iunlink_insert_backref(
1841 	struct xfs_perag	*pag,
1842 	struct xfs_iunlink	*iu)
1843 {
1844 	int			error;
1845 
1846 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1848 	/*
1849 	 * Fail loudly if there already was an entry because that's a sign of
1850 	 * corruption of in-memory data.  Also fail loudly if we see an error
1851 	 * code we didn't anticipate from the rhashtable code.  Currently we
1852 	 * only anticipate ENOMEM.
1853 	 */
1854 	if (error) {
1855 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856 		kmem_free(iu);
1857 	}
1858 	/*
1859 	 * Absorb any runtime errors that aren't a result of corruption because
1860 	 * this is a cache and we can always fall back to bucket list scanning.
1861 	 */
1862 	if (error != 0 && error != -EEXIST)
1863 		error = 0;
1864 	return error;
1865 }
1866 
1867 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1868 static int
1869 xfs_iunlink_add_backref(
1870 	struct xfs_perag	*pag,
1871 	xfs_agino_t		prev_agino,
1872 	xfs_agino_t		this_agino)
1873 {
1874 	struct xfs_iunlink	*iu;
1875 
1876 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1877 		return 0;
1878 
1879 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880 	iu->iu_agino = prev_agino;
1881 	iu->iu_next_unlinked = this_agino;
1882 
1883 	return xfs_iunlink_insert_backref(pag, iu);
1884 }
1885 
1886 /*
1887  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1889  * wasn't any such entry then we don't bother.
1890  */
1891 static int
1892 xfs_iunlink_change_backref(
1893 	struct xfs_perag	*pag,
1894 	xfs_agino_t		agino,
1895 	xfs_agino_t		next_unlinked)
1896 {
1897 	struct xfs_iunlink	*iu;
1898 	int			error;
1899 
1900 	/* Look up the old entry; if there wasn't one then exit. */
1901 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902 			xfs_iunlink_hash_params);
1903 	if (!iu)
1904 		return 0;
1905 
1906 	/*
1907 	 * Remove the entry.  This shouldn't ever return an error, but if we
1908 	 * couldn't remove the old entry we don't want to add it again to the
1909 	 * hash table, and if the entry disappeared on us then someone's
1910 	 * violated the locking rules and we need to fail loudly.  Either way
1911 	 * we cannot remove the inode because internal state is or would have
1912 	 * been corrupt.
1913 	 */
1914 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1916 	if (error)
1917 		return error;
1918 
1919 	/* If there is no new next entry just free our item and return. */
1920 	if (next_unlinked == NULLAGINO) {
1921 		kmem_free(iu);
1922 		return 0;
1923 	}
1924 
1925 	/* Update the entry and re-add it to the hash table. */
1926 	iu->iu_next_unlinked = next_unlinked;
1927 	return xfs_iunlink_insert_backref(pag, iu);
1928 }
1929 
1930 /* Set up the in-core predecessor structures. */
1931 int
1932 xfs_iunlink_init(
1933 	struct xfs_perag	*pag)
1934 {
1935 	return rhashtable_init(&pag->pagi_unlinked_hash,
1936 			&xfs_iunlink_hash_params);
1937 }
1938 
1939 /* Free the in-core predecessor structures. */
1940 static void
1941 xfs_iunlink_free_item(
1942 	void			*ptr,
1943 	void			*arg)
1944 {
1945 	struct xfs_iunlink	*iu = ptr;
1946 	bool			*freed_anything = arg;
1947 
1948 	*freed_anything = true;
1949 	kmem_free(iu);
1950 }
1951 
1952 void
1953 xfs_iunlink_destroy(
1954 	struct xfs_perag	*pag)
1955 {
1956 	bool			freed_anything = false;
1957 
1958 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959 			xfs_iunlink_free_item, &freed_anything);
1960 
1961 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962 }
1963 
1964 /*
1965  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1966  * is responsible for validating the old value.
1967  */
1968 STATIC int
1969 xfs_iunlink_update_bucket(
1970 	struct xfs_trans	*tp,
1971 	struct xfs_perag	*pag,
1972 	struct xfs_buf		*agibp,
1973 	unsigned int		bucket_index,
1974 	xfs_agino_t		new_agino)
1975 {
1976 	struct xfs_agi		*agi = agibp->b_addr;
1977 	xfs_agino_t		old_value;
1978 	int			offset;
1979 
1980 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981 
1982 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984 			old_value, new_agino);
1985 
1986 	/*
1987 	 * We should never find the head of the list already set to the value
1988 	 * passed in because either we're adding or removing ourselves from the
1989 	 * head of the list.
1990 	 */
1991 	if (old_value == new_agino) {
1992 		xfs_buf_mark_corrupt(agibp);
1993 		return -EFSCORRUPTED;
1994 	}
1995 
1996 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997 	offset = offsetof(struct xfs_agi, agi_unlinked) +
1998 			(sizeof(xfs_agino_t) * bucket_index);
1999 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000 	return 0;
2001 }
2002 
2003 /* Set an on-disk inode's next_unlinked pointer. */
2004 STATIC void
2005 xfs_iunlink_update_dinode(
2006 	struct xfs_trans	*tp,
2007 	struct xfs_perag	*pag,
2008 	xfs_agino_t		agino,
2009 	struct xfs_buf		*ibp,
2010 	struct xfs_dinode	*dip,
2011 	struct xfs_imap		*imap,
2012 	xfs_agino_t		next_agino)
2013 {
2014 	struct xfs_mount	*mp = tp->t_mountp;
2015 	int			offset;
2016 
2017 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018 
2019 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2021 
2022 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2023 	offset = imap->im_boffset +
2024 			offsetof(struct xfs_dinode, di_next_unlinked);
2025 
2026 	/* need to recalc the inode CRC if appropriate */
2027 	xfs_dinode_calc_crc(mp, dip);
2028 	xfs_trans_inode_buf(tp, ibp);
2029 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030 }
2031 
2032 /* Set an in-core inode's unlinked pointer and return the old value. */
2033 STATIC int
2034 xfs_iunlink_update_inode(
2035 	struct xfs_trans	*tp,
2036 	struct xfs_inode	*ip,
2037 	struct xfs_perag	*pag,
2038 	xfs_agino_t		next_agino,
2039 	xfs_agino_t		*old_next_agino)
2040 {
2041 	struct xfs_mount	*mp = tp->t_mountp;
2042 	struct xfs_dinode	*dip;
2043 	struct xfs_buf		*ibp;
2044 	xfs_agino_t		old_value;
2045 	int			error;
2046 
2047 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2048 
2049 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2050 	if (error)
2051 		return error;
2052 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053 
2054 	/* Make sure the old pointer isn't garbage. */
2055 	old_value = be32_to_cpu(dip->di_next_unlinked);
2056 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058 				sizeof(*dip), __this_address);
2059 		error = -EFSCORRUPTED;
2060 		goto out;
2061 	}
2062 
2063 	/*
2064 	 * Since we're updating a linked list, we should never find that the
2065 	 * current pointer is the same as the new value, unless we're
2066 	 * terminating the list.
2067 	 */
2068 	*old_next_agino = old_value;
2069 	if (old_value == next_agino) {
2070 		if (next_agino != NULLAGINO) {
2071 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072 					dip, sizeof(*dip), __this_address);
2073 			error = -EFSCORRUPTED;
2074 		}
2075 		goto out;
2076 	}
2077 
2078 	/* Ok, update the new pointer. */
2079 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080 			ibp, dip, &ip->i_imap, next_agino);
2081 	return 0;
2082 out:
2083 	xfs_trans_brelse(tp, ibp);
2084 	return error;
2085 }
2086 
2087 /*
2088  * This is called when the inode's link count has gone to 0 or we are creating
2089  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2090  *
2091  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2092  * list when the inode is freed.
2093  */
2094 STATIC int
2095 xfs_iunlink(
2096 	struct xfs_trans	*tp,
2097 	struct xfs_inode	*ip)
2098 {
2099 	struct xfs_mount	*mp = tp->t_mountp;
2100 	struct xfs_perag	*pag;
2101 	struct xfs_agi		*agi;
2102 	struct xfs_buf		*agibp;
2103 	xfs_agino_t		next_agino;
2104 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106 	int			error;
2107 
2108 	ASSERT(VFS_I(ip)->i_nlink == 0);
2109 	ASSERT(VFS_I(ip)->i_mode != 0);
2110 	trace_xfs_iunlink(ip);
2111 
2112 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113 
2114 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2115 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116 	if (error)
2117 		goto out;
2118 	agi = agibp->b_addr;
2119 
2120 	/*
2121 	 * Get the index into the agi hash table for the list this inode will
2122 	 * go on.  Make sure the pointer isn't garbage and that this inode
2123 	 * isn't already on the list.
2124 	 */
2125 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126 	if (next_agino == agino ||
2127 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128 		xfs_buf_mark_corrupt(agibp);
2129 		error = -EFSCORRUPTED;
2130 		goto out;
2131 	}
2132 
2133 	if (next_agino != NULLAGINO) {
2134 		xfs_agino_t		old_agino;
2135 
2136 		/*
2137 		 * There is already another inode in the bucket, so point this
2138 		 * inode to the current head of the list.
2139 		 */
2140 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141 				&old_agino);
2142 		if (error)
2143 			goto out;
2144 		ASSERT(old_agino == NULLAGINO);
2145 
2146 		/*
2147 		 * agino has been unlinked, add a backref from the next inode
2148 		 * back to agino.
2149 		 */
2150 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2151 		if (error)
2152 			goto out;
2153 	}
2154 
2155 	/* Point the head of the list to point to this inode. */
2156 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157 out:
2158 	xfs_perag_put(pag);
2159 	return error;
2160 }
2161 
2162 /* Return the imap, dinode pointer, and buffer for an inode. */
2163 STATIC int
2164 xfs_iunlink_map_ino(
2165 	struct xfs_trans	*tp,
2166 	xfs_agnumber_t		agno,
2167 	xfs_agino_t		agino,
2168 	struct xfs_imap		*imap,
2169 	struct xfs_dinode	**dipp,
2170 	struct xfs_buf		**bpp)
2171 {
2172 	struct xfs_mount	*mp = tp->t_mountp;
2173 	int			error;
2174 
2175 	imap->im_blkno = 0;
2176 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177 	if (error) {
2178 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179 				__func__, error);
2180 		return error;
2181 	}
2182 
2183 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184 	if (error) {
2185 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186 				__func__, error);
2187 		return error;
2188 	}
2189 
2190 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Walk the unlinked chain from @head_agino until we find the inode that
2196  * points to @target_agino.  Return the inode number, map, dinode pointer,
2197  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198  *
2199  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200  * @agino, @imap, @dipp, and @bpp are all output parameters.
2201  *
2202  * Do not call this function if @target_agino is the head of the list.
2203  */
2204 STATIC int
2205 xfs_iunlink_map_prev(
2206 	struct xfs_trans	*tp,
2207 	struct xfs_perag	*pag,
2208 	xfs_agino_t		head_agino,
2209 	xfs_agino_t		target_agino,
2210 	xfs_agino_t		*agino,
2211 	struct xfs_imap		*imap,
2212 	struct xfs_dinode	**dipp,
2213 	struct xfs_buf		**bpp)
2214 {
2215 	struct xfs_mount	*mp = tp->t_mountp;
2216 	xfs_agino_t		next_agino;
2217 	int			error;
2218 
2219 	ASSERT(head_agino != target_agino);
2220 	*bpp = NULL;
2221 
2222 	/* See if our backref cache can find it faster. */
2223 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224 	if (*agino != NULLAGINO) {
2225 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226 				dipp, bpp);
2227 		if (error)
2228 			return error;
2229 
2230 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231 			return 0;
2232 
2233 		/*
2234 		 * If we get here the cache contents were corrupt, so drop the
2235 		 * buffer and fall back to walking the bucket list.
2236 		 */
2237 		xfs_trans_brelse(tp, *bpp);
2238 		*bpp = NULL;
2239 		WARN_ON_ONCE(1);
2240 	}
2241 
2242 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243 
2244 	/* Otherwise, walk the entire bucket until we find it. */
2245 	next_agino = head_agino;
2246 	while (next_agino != target_agino) {
2247 		xfs_agino_t	unlinked_agino;
2248 
2249 		if (*bpp)
2250 			xfs_trans_brelse(tp, *bpp);
2251 
2252 		*agino = next_agino;
2253 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254 				dipp, bpp);
2255 		if (error)
2256 			return error;
2257 
2258 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259 		/*
2260 		 * Make sure this pointer is valid and isn't an obvious
2261 		 * infinite loop.
2262 		 */
2263 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264 		    next_agino == unlinked_agino) {
2265 			XFS_CORRUPTION_ERROR(__func__,
2266 					XFS_ERRLEVEL_LOW, mp,
2267 					*dipp, sizeof(**dipp));
2268 			error = -EFSCORRUPTED;
2269 			return error;
2270 		}
2271 		next_agino = unlinked_agino;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Pull the on-disk inode from the AGI unlinked list.
2279  */
2280 STATIC int
2281 xfs_iunlink_remove(
2282 	struct xfs_trans	*tp,
2283 	struct xfs_perag	*pag,
2284 	struct xfs_inode	*ip)
2285 {
2286 	struct xfs_mount	*mp = tp->t_mountp;
2287 	struct xfs_agi		*agi;
2288 	struct xfs_buf		*agibp;
2289 	struct xfs_buf		*last_ibp;
2290 	struct xfs_dinode	*last_dip = NULL;
2291 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292 	xfs_agino_t		next_agino;
2293 	xfs_agino_t		head_agino;
2294 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295 	int			error;
2296 
2297 	trace_xfs_iunlink_remove(ip);
2298 
2299 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2300 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301 	if (error)
2302 		return error;
2303 	agi = agibp->b_addr;
2304 
2305 	/*
2306 	 * Get the index into the agi hash table for the list this inode will
2307 	 * go on.  Make sure the head pointer isn't garbage.
2308 	 */
2309 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312 				agi, sizeof(*agi));
2313 		return -EFSCORRUPTED;
2314 	}
2315 
2316 	/*
2317 	 * Set our inode's next_unlinked pointer to NULL and then return
2318 	 * the old pointer value so that we can update whatever was previous
2319 	 * to us in the list to point to whatever was next in the list.
2320 	 */
2321 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322 	if (error)
2323 		return error;
2324 
2325 	/*
2326 	 * If there was a backref pointing from the next inode back to this
2327 	 * one, remove it because we've removed this inode from the list.
2328 	 *
2329 	 * Later, if this inode was in the middle of the list we'll update
2330 	 * this inode's backref to point from the next inode.
2331 	 */
2332 	if (next_agino != NULLAGINO) {
2333 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2334 		if (error)
2335 			return error;
2336 	}
2337 
2338 	if (head_agino != agino) {
2339 		struct xfs_imap	imap;
2340 		xfs_agino_t	prev_agino;
2341 
2342 		/* We need to search the list for the inode being freed. */
2343 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344 				&prev_agino, &imap, &last_dip, &last_ibp);
2345 		if (error)
2346 			return error;
2347 
2348 		/* Point the previous inode on the list to the next inode. */
2349 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350 				last_dip, &imap, next_agino);
2351 
2352 		/*
2353 		 * Now we deal with the backref for this inode.  If this inode
2354 		 * pointed at a real inode, change the backref that pointed to
2355 		 * us to point to our old next.  If this inode was the end of
2356 		 * the list, delete the backref that pointed to us.  Note that
2357 		 * change_backref takes care of deleting the backref if
2358 		 * next_agino is NULLAGINO.
2359 		 */
2360 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361 				next_agino);
2362 	}
2363 
2364 	/* Point the head of the list to the next unlinked inode. */
2365 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366 			next_agino);
2367 }
2368 
2369 /*
2370  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371  * mark it stale. We should only find clean inodes in this lookup that aren't
2372  * already stale.
2373  */
2374 static void
2375 xfs_ifree_mark_inode_stale(
2376 	struct xfs_perag	*pag,
2377 	struct xfs_inode	*free_ip,
2378 	xfs_ino_t		inum)
2379 {
2380 	struct xfs_mount	*mp = pag->pag_mount;
2381 	struct xfs_inode_log_item *iip;
2382 	struct xfs_inode	*ip;
2383 
2384 retry:
2385 	rcu_read_lock();
2386 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2387 
2388 	/* Inode not in memory, nothing to do */
2389 	if (!ip) {
2390 		rcu_read_unlock();
2391 		return;
2392 	}
2393 
2394 	/*
2395 	 * because this is an RCU protected lookup, we could find a recently
2396 	 * freed or even reallocated inode during the lookup. We need to check
2397 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2398 	 * valid, the wrong inode or stale.
2399 	 */
2400 	spin_lock(&ip->i_flags_lock);
2401 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402 		goto out_iflags_unlock;
2403 
2404 	/*
2405 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406 	 * other inodes that we did not find in the list attached to the buffer
2407 	 * and are not already marked stale. If we can't lock it, back off and
2408 	 * retry.
2409 	 */
2410 	if (ip != free_ip) {
2411 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412 			spin_unlock(&ip->i_flags_lock);
2413 			rcu_read_unlock();
2414 			delay(1);
2415 			goto retry;
2416 		}
2417 	}
2418 	ip->i_flags |= XFS_ISTALE;
2419 
2420 	/*
2421 	 * If the inode is flushing, it is already attached to the buffer.  All
2422 	 * we needed to do here is mark the inode stale so buffer IO completion
2423 	 * will remove it from the AIL.
2424 	 */
2425 	iip = ip->i_itemp;
2426 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428 		ASSERT(iip->ili_last_fields);
2429 		goto out_iunlock;
2430 	}
2431 
2432 	/*
2433 	 * Inodes not attached to the buffer can be released immediately.
2434 	 * Everything else has to go through xfs_iflush_abort() on journal
2435 	 * commit as the flock synchronises removal of the inode from the
2436 	 * cluster buffer against inode reclaim.
2437 	 */
2438 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439 		goto out_iunlock;
2440 
2441 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2442 	spin_unlock(&ip->i_flags_lock);
2443 	rcu_read_unlock();
2444 
2445 	/* we have a dirty inode in memory that has not yet been flushed. */
2446 	spin_lock(&iip->ili_lock);
2447 	iip->ili_last_fields = iip->ili_fields;
2448 	iip->ili_fields = 0;
2449 	iip->ili_fsync_fields = 0;
2450 	spin_unlock(&iip->ili_lock);
2451 	ASSERT(iip->ili_last_fields);
2452 
2453 	if (ip != free_ip)
2454 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455 	return;
2456 
2457 out_iunlock:
2458 	if (ip != free_ip)
2459 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460 out_iflags_unlock:
2461 	spin_unlock(&ip->i_flags_lock);
2462 	rcu_read_unlock();
2463 }
2464 
2465 /*
2466  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467  * inodes that are in memory - they all must be marked stale and attached to
2468  * the cluster buffer.
2469  */
2470 static int
2471 xfs_ifree_cluster(
2472 	struct xfs_trans	*tp,
2473 	struct xfs_perag	*pag,
2474 	struct xfs_inode	*free_ip,
2475 	struct xfs_icluster	*xic)
2476 {
2477 	struct xfs_mount	*mp = free_ip->i_mount;
2478 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2479 	struct xfs_buf		*bp;
2480 	xfs_daddr_t		blkno;
2481 	xfs_ino_t		inum = xic->first_ino;
2482 	int			nbufs;
2483 	int			i, j;
2484 	int			ioffset;
2485 	int			error;
2486 
2487 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2488 
2489 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490 		/*
2491 		 * The allocation bitmap tells us which inodes of the chunk were
2492 		 * physically allocated. Skip the cluster if an inode falls into
2493 		 * a sparse region.
2494 		 */
2495 		ioffset = inum - xic->first_ino;
2496 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498 			continue;
2499 		}
2500 
2501 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502 					 XFS_INO_TO_AGBNO(mp, inum));
2503 
2504 		/*
2505 		 * We obtain and lock the backing buffer first in the process
2506 		 * here to ensure dirty inodes attached to the buffer remain in
2507 		 * the flushing state while we mark them stale.
2508 		 *
2509 		 * If we scan the in-memory inodes first, then buffer IO can
2510 		 * complete before we get a lock on it, and hence we may fail
2511 		 * to mark all the active inodes on the buffer stale.
2512 		 */
2513 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514 				mp->m_bsize * igeo->blocks_per_cluster,
2515 				XBF_UNMAPPED, &bp);
2516 		if (error)
2517 			return error;
2518 
2519 		/*
2520 		 * This buffer may not have been correctly initialised as we
2521 		 * didn't read it from disk. That's not important because we are
2522 		 * only using to mark the buffer as stale in the log, and to
2523 		 * attach stale cached inodes on it. That means it will never be
2524 		 * dispatched for IO. If it is, we want to know about it, and we
2525 		 * want it to fail. We can acheive this by adding a write
2526 		 * verifier to the buffer.
2527 		 */
2528 		bp->b_ops = &xfs_inode_buf_ops;
2529 
2530 		/*
2531 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532 		 * too. This requires lookups, and will skip inodes that we've
2533 		 * already marked XFS_ISTALE.
2534 		 */
2535 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2536 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2537 
2538 		xfs_trans_stale_inode_buf(tp, bp);
2539 		xfs_trans_binval(tp, bp);
2540 	}
2541 	return 0;
2542 }
2543 
2544 /*
2545  * This is called to return an inode to the inode free list.
2546  * The inode should already be truncated to 0 length and have
2547  * no pages associated with it.  This routine also assumes that
2548  * the inode is already a part of the transaction.
2549  *
2550  * The on-disk copy of the inode will have been added to the list
2551  * of unlinked inodes in the AGI. We need to remove the inode from
2552  * that list atomically with respect to freeing it here.
2553  */
2554 int
2555 xfs_ifree(
2556 	struct xfs_trans	*tp,
2557 	struct xfs_inode	*ip)
2558 {
2559 	struct xfs_mount	*mp = ip->i_mount;
2560 	struct xfs_perag	*pag;
2561 	struct xfs_icluster	xic = { 0 };
2562 	struct xfs_inode_log_item *iip = ip->i_itemp;
2563 	int			error;
2564 
2565 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566 	ASSERT(VFS_I(ip)->i_nlink == 0);
2567 	ASSERT(ip->i_df.if_nextents == 0);
2568 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569 	ASSERT(ip->i_nblocks == 0);
2570 
2571 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572 
2573 	/*
2574 	 * Pull the on-disk inode from the AGI unlinked list.
2575 	 */
2576 	error = xfs_iunlink_remove(tp, pag, ip);
2577 	if (error)
2578 		goto out;
2579 
2580 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581 	if (error)
2582 		goto out;
2583 
2584 	/*
2585 	 * Free any local-format data sitting around before we reset the
2586 	 * data fork to extents format.  Note that the attr fork data has
2587 	 * already been freed by xfs_attr_inactive.
2588 	 */
2589 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590 		kmem_free(ip->i_df.if_u1.if_data);
2591 		ip->i_df.if_u1.if_data = NULL;
2592 		ip->i_df.if_bytes = 0;
2593 	}
2594 
2595 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2596 	ip->i_diflags = 0;
2597 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2599 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602 
2603 	/* Don't attempt to replay owner changes for a deleted inode */
2604 	spin_lock(&iip->ili_lock);
2605 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606 	spin_unlock(&iip->ili_lock);
2607 
2608 	/*
2609 	 * Bump the generation count so no one will be confused
2610 	 * by reincarnations of this inode.
2611 	 */
2612 	VFS_I(ip)->i_generation++;
2613 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614 
2615 	if (xic.deleted)
2616 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617 out:
2618 	xfs_perag_put(pag);
2619 	return error;
2620 }
2621 
2622 /*
2623  * This is called to unpin an inode.  The caller must have the inode locked
2624  * in at least shared mode so that the buffer cannot be subsequently pinned
2625  * once someone is waiting for it to be unpinned.
2626  */
2627 static void
2628 xfs_iunpin(
2629 	struct xfs_inode	*ip)
2630 {
2631 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632 
2633 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634 
2635 	/* Give the log a push to start the unpinning I/O */
2636 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637 
2638 }
2639 
2640 static void
2641 __xfs_iunpin_wait(
2642 	struct xfs_inode	*ip)
2643 {
2644 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646 
2647 	xfs_iunpin(ip);
2648 
2649 	do {
2650 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651 		if (xfs_ipincount(ip))
2652 			io_schedule();
2653 	} while (xfs_ipincount(ip));
2654 	finish_wait(wq, &wait.wq_entry);
2655 }
2656 
2657 void
2658 xfs_iunpin_wait(
2659 	struct xfs_inode	*ip)
2660 {
2661 	if (xfs_ipincount(ip))
2662 		__xfs_iunpin_wait(ip);
2663 }
2664 
2665 /*
2666  * Removing an inode from the namespace involves removing the directory entry
2667  * and dropping the link count on the inode. Removing the directory entry can
2668  * result in locking an AGF (directory blocks were freed) and removing a link
2669  * count can result in placing the inode on an unlinked list which results in
2670  * locking an AGI.
2671  *
2672  * The big problem here is that we have an ordering constraint on AGF and AGI
2673  * locking - inode allocation locks the AGI, then can allocate a new extent for
2674  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675  * removes the inode from the unlinked list, requiring that we lock the AGI
2676  * first, and then freeing the inode can result in an inode chunk being freed
2677  * and hence freeing disk space requiring that we lock an AGF.
2678  *
2679  * Hence the ordering that is imposed by other parts of the code is AGI before
2680  * AGF. This means we cannot remove the directory entry before we drop the inode
2681  * reference count and put it on the unlinked list as this results in a lock
2682  * order of AGF then AGI, and this can deadlock against inode allocation and
2683  * freeing. Therefore we must drop the link counts before we remove the
2684  * directory entry.
2685  *
2686  * This is still safe from a transactional point of view - it is not until we
2687  * get to xfs_defer_finish() that we have the possibility of multiple
2688  * transactions in this operation. Hence as long as we remove the directory
2689  * entry and drop the link count in the first transaction of the remove
2690  * operation, there are no transactional constraints on the ordering here.
2691  */
2692 int
2693 xfs_remove(
2694 	xfs_inode_t             *dp,
2695 	struct xfs_name		*name,
2696 	xfs_inode_t		*ip)
2697 {
2698 	xfs_mount_t		*mp = dp->i_mount;
2699 	xfs_trans_t             *tp = NULL;
2700 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2701 	int                     error = 0;
2702 	uint			resblks;
2703 
2704 	trace_xfs_remove(dp, name);
2705 
2706 	if (XFS_FORCED_SHUTDOWN(mp))
2707 		return -EIO;
2708 
2709 	error = xfs_qm_dqattach(dp);
2710 	if (error)
2711 		goto std_return;
2712 
2713 	error = xfs_qm_dqattach(ip);
2714 	if (error)
2715 		goto std_return;
2716 
2717 	/*
2718 	 * We try to get the real space reservation first,
2719 	 * allowing for directory btree deletion(s) implying
2720 	 * possible bmap insert(s).  If we can't get the space
2721 	 * reservation then we use 0 instead, and avoid the bmap
2722 	 * btree insert(s) in the directory code by, if the bmap
2723 	 * insert tries to happen, instead trimming the LAST
2724 	 * block from the directory.
2725 	 */
2726 	resblks = XFS_REMOVE_SPACE_RES(mp);
2727 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728 	if (error == -ENOSPC) {
2729 		resblks = 0;
2730 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731 				&tp);
2732 	}
2733 	if (error) {
2734 		ASSERT(error != -ENOSPC);
2735 		goto std_return;
2736 	}
2737 
2738 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2739 
2740 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742 
2743 	/*
2744 	 * If we're removing a directory perform some additional validation.
2745 	 */
2746 	if (is_dir) {
2747 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2748 		if (VFS_I(ip)->i_nlink != 2) {
2749 			error = -ENOTEMPTY;
2750 			goto out_trans_cancel;
2751 		}
2752 		if (!xfs_dir_isempty(ip)) {
2753 			error = -ENOTEMPTY;
2754 			goto out_trans_cancel;
2755 		}
2756 
2757 		/* Drop the link from ip's "..".  */
2758 		error = xfs_droplink(tp, dp);
2759 		if (error)
2760 			goto out_trans_cancel;
2761 
2762 		/* Drop the "." link from ip to self.  */
2763 		error = xfs_droplink(tp, ip);
2764 		if (error)
2765 			goto out_trans_cancel;
2766 	} else {
2767 		/*
2768 		 * When removing a non-directory we need to log the parent
2769 		 * inode here.  For a directory this is done implicitly
2770 		 * by the xfs_droplink call for the ".." entry.
2771 		 */
2772 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2773 	}
2774 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2775 
2776 	/* Drop the link from dp to ip. */
2777 	error = xfs_droplink(tp, ip);
2778 	if (error)
2779 		goto out_trans_cancel;
2780 
2781 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2782 	if (error) {
2783 		ASSERT(error != -ENOENT);
2784 		goto out_trans_cancel;
2785 	}
2786 
2787 	/*
2788 	 * If this is a synchronous mount, make sure that the
2789 	 * remove transaction goes to disk before returning to
2790 	 * the user.
2791 	 */
2792 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2793 		xfs_trans_set_sync(tp);
2794 
2795 	error = xfs_trans_commit(tp);
2796 	if (error)
2797 		goto std_return;
2798 
2799 	if (is_dir && xfs_inode_is_filestream(ip))
2800 		xfs_filestream_deassociate(ip);
2801 
2802 	return 0;
2803 
2804  out_trans_cancel:
2805 	xfs_trans_cancel(tp);
2806  std_return:
2807 	return error;
2808 }
2809 
2810 /*
2811  * Enter all inodes for a rename transaction into a sorted array.
2812  */
2813 #define __XFS_SORT_INODES	5
2814 STATIC void
2815 xfs_sort_for_rename(
2816 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2817 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2818 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2819 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2820 	struct xfs_inode	*wip,	/* in: whiteout inode */
2821 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2822 	int			*num_inodes)  /* in/out: inodes in array */
2823 {
2824 	int			i, j;
2825 
2826 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2827 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2828 
2829 	/*
2830 	 * i_tab contains a list of pointers to inodes.  We initialize
2831 	 * the table here & we'll sort it.  We will then use it to
2832 	 * order the acquisition of the inode locks.
2833 	 *
2834 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2835 	 */
2836 	i = 0;
2837 	i_tab[i++] = dp1;
2838 	i_tab[i++] = dp2;
2839 	i_tab[i++] = ip1;
2840 	if (ip2)
2841 		i_tab[i++] = ip2;
2842 	if (wip)
2843 		i_tab[i++] = wip;
2844 	*num_inodes = i;
2845 
2846 	/*
2847 	 * Sort the elements via bubble sort.  (Remember, there are at
2848 	 * most 5 elements to sort, so this is adequate.)
2849 	 */
2850 	for (i = 0; i < *num_inodes; i++) {
2851 		for (j = 1; j < *num_inodes; j++) {
2852 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2853 				struct xfs_inode *temp = i_tab[j];
2854 				i_tab[j] = i_tab[j-1];
2855 				i_tab[j-1] = temp;
2856 			}
2857 		}
2858 	}
2859 }
2860 
2861 static int
2862 xfs_finish_rename(
2863 	struct xfs_trans	*tp)
2864 {
2865 	/*
2866 	 * If this is a synchronous mount, make sure that the rename transaction
2867 	 * goes to disk before returning to the user.
2868 	 */
2869 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2870 		xfs_trans_set_sync(tp);
2871 
2872 	return xfs_trans_commit(tp);
2873 }
2874 
2875 /*
2876  * xfs_cross_rename()
2877  *
2878  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2879  */
2880 STATIC int
2881 xfs_cross_rename(
2882 	struct xfs_trans	*tp,
2883 	struct xfs_inode	*dp1,
2884 	struct xfs_name		*name1,
2885 	struct xfs_inode	*ip1,
2886 	struct xfs_inode	*dp2,
2887 	struct xfs_name		*name2,
2888 	struct xfs_inode	*ip2,
2889 	int			spaceres)
2890 {
2891 	int		error = 0;
2892 	int		ip1_flags = 0;
2893 	int		ip2_flags = 0;
2894 	int		dp2_flags = 0;
2895 
2896 	/* Swap inode number for dirent in first parent */
2897 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2898 	if (error)
2899 		goto out_trans_abort;
2900 
2901 	/* Swap inode number for dirent in second parent */
2902 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2903 	if (error)
2904 		goto out_trans_abort;
2905 
2906 	/*
2907 	 * If we're renaming one or more directories across different parents,
2908 	 * update the respective ".." entries (and link counts) to match the new
2909 	 * parents.
2910 	 */
2911 	if (dp1 != dp2) {
2912 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2913 
2914 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2915 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2916 						dp1->i_ino, spaceres);
2917 			if (error)
2918 				goto out_trans_abort;
2919 
2920 			/* transfer ip2 ".." reference to dp1 */
2921 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2922 				error = xfs_droplink(tp, dp2);
2923 				if (error)
2924 					goto out_trans_abort;
2925 				xfs_bumplink(tp, dp1);
2926 			}
2927 
2928 			/*
2929 			 * Although ip1 isn't changed here, userspace needs
2930 			 * to be warned about the change, so that applications
2931 			 * relying on it (like backup ones), will properly
2932 			 * notify the change
2933 			 */
2934 			ip1_flags |= XFS_ICHGTIME_CHG;
2935 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2936 		}
2937 
2938 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2939 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2940 						dp2->i_ino, spaceres);
2941 			if (error)
2942 				goto out_trans_abort;
2943 
2944 			/* transfer ip1 ".." reference to dp2 */
2945 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2946 				error = xfs_droplink(tp, dp1);
2947 				if (error)
2948 					goto out_trans_abort;
2949 				xfs_bumplink(tp, dp2);
2950 			}
2951 
2952 			/*
2953 			 * Although ip2 isn't changed here, userspace needs
2954 			 * to be warned about the change, so that applications
2955 			 * relying on it (like backup ones), will properly
2956 			 * notify the change
2957 			 */
2958 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2959 			ip2_flags |= XFS_ICHGTIME_CHG;
2960 		}
2961 	}
2962 
2963 	if (ip1_flags) {
2964 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2965 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2966 	}
2967 	if (ip2_flags) {
2968 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2969 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2970 	}
2971 	if (dp2_flags) {
2972 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2973 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2974 	}
2975 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2976 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2977 	return xfs_finish_rename(tp);
2978 
2979 out_trans_abort:
2980 	xfs_trans_cancel(tp);
2981 	return error;
2982 }
2983 
2984 /*
2985  * xfs_rename_alloc_whiteout()
2986  *
2987  * Return a referenced, unlinked, unlocked inode that can be used as a
2988  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2989  * crash between allocating the inode and linking it into the rename transaction
2990  * recovery will free the inode and we won't leak it.
2991  */
2992 static int
2993 xfs_rename_alloc_whiteout(
2994 	struct user_namespace	*mnt_userns,
2995 	struct xfs_inode	*dp,
2996 	struct xfs_inode	**wip)
2997 {
2998 	struct xfs_inode	*tmpfile;
2999 	int			error;
3000 
3001 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3002 				   &tmpfile);
3003 	if (error)
3004 		return error;
3005 
3006 	/*
3007 	 * Prepare the tmpfile inode as if it were created through the VFS.
3008 	 * Complete the inode setup and flag it as linkable.  nlink is already
3009 	 * zero, so we can skip the drop_nlink.
3010 	 */
3011 	xfs_setup_iops(tmpfile);
3012 	xfs_finish_inode_setup(tmpfile);
3013 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3014 
3015 	*wip = tmpfile;
3016 	return 0;
3017 }
3018 
3019 /*
3020  * xfs_rename
3021  */
3022 int
3023 xfs_rename(
3024 	struct user_namespace	*mnt_userns,
3025 	struct xfs_inode	*src_dp,
3026 	struct xfs_name		*src_name,
3027 	struct xfs_inode	*src_ip,
3028 	struct xfs_inode	*target_dp,
3029 	struct xfs_name		*target_name,
3030 	struct xfs_inode	*target_ip,
3031 	unsigned int		flags)
3032 {
3033 	struct xfs_mount	*mp = src_dp->i_mount;
3034 	struct xfs_trans	*tp;
3035 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3036 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3037 	int			i;
3038 	int			num_inodes = __XFS_SORT_INODES;
3039 	bool			new_parent = (src_dp != target_dp);
3040 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3041 	int			spaceres;
3042 	int			error;
3043 
3044 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3045 
3046 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3047 		return -EINVAL;
3048 
3049 	/*
3050 	 * If we are doing a whiteout operation, allocate the whiteout inode
3051 	 * we will be placing at the target and ensure the type is set
3052 	 * appropriately.
3053 	 */
3054 	if (flags & RENAME_WHITEOUT) {
3055 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3056 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3057 		if (error)
3058 			return error;
3059 
3060 		/* setup target dirent info as whiteout */
3061 		src_name->type = XFS_DIR3_FT_CHRDEV;
3062 	}
3063 
3064 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3065 				inodes, &num_inodes);
3066 
3067 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3068 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3069 	if (error == -ENOSPC) {
3070 		spaceres = 0;
3071 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3072 				&tp);
3073 	}
3074 	if (error)
3075 		goto out_release_wip;
3076 
3077 	/*
3078 	 * Attach the dquots to the inodes
3079 	 */
3080 	error = xfs_qm_vop_rename_dqattach(inodes);
3081 	if (error)
3082 		goto out_trans_cancel;
3083 
3084 	/*
3085 	 * Lock all the participating inodes. Depending upon whether
3086 	 * the target_name exists in the target directory, and
3087 	 * whether the target directory is the same as the source
3088 	 * directory, we can lock from 2 to 4 inodes.
3089 	 */
3090 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3091 
3092 	/*
3093 	 * Join all the inodes to the transaction. From this point on,
3094 	 * we can rely on either trans_commit or trans_cancel to unlock
3095 	 * them.
3096 	 */
3097 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3098 	if (new_parent)
3099 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3100 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3101 	if (target_ip)
3102 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3103 	if (wip)
3104 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3105 
3106 	/*
3107 	 * If we are using project inheritance, we only allow renames
3108 	 * into our tree when the project IDs are the same; else the
3109 	 * tree quota mechanism would be circumvented.
3110 	 */
3111 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3112 		     target_dp->i_projid != src_ip->i_projid)) {
3113 		error = -EXDEV;
3114 		goto out_trans_cancel;
3115 	}
3116 
3117 	/* RENAME_EXCHANGE is unique from here on. */
3118 	if (flags & RENAME_EXCHANGE)
3119 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3120 					target_dp, target_name, target_ip,
3121 					spaceres);
3122 
3123 	/*
3124 	 * Check for expected errors before we dirty the transaction
3125 	 * so we can return an error without a transaction abort.
3126 	 *
3127 	 * Extent count overflow check:
3128 	 *
3129 	 * From the perspective of src_dp, a rename operation is essentially a
3130 	 * directory entry remove operation. Hence the only place where we check
3131 	 * for extent count overflow for src_dp is in
3132 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3133 	 * -ENOSPC when it detects a possible extent count overflow and in
3134 	 * response, the higher layers of directory handling code do the
3135 	 * following:
3136 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3137 	 *    future remove operation removes them.
3138 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3139 	 *    Leaf space and unmaps the last block.
3140 	 *
3141 	 * For target_dp, there are two cases depending on whether the
3142 	 * destination directory entry exists or not.
3143 	 *
3144 	 * When destination directory entry does not exist (i.e. target_ip ==
3145 	 * NULL), extent count overflow check is performed only when transaction
3146 	 * has a non-zero sized space reservation associated with it.  With a
3147 	 * zero-sized space reservation, XFS allows a rename operation to
3148 	 * continue only when the directory has sufficient free space in its
3149 	 * data/leaf/free space blocks to hold the new entry.
3150 	 *
3151 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3152 	 * we need to do is change the inode number associated with the already
3153 	 * existing entry. Hence there is no need to perform an extent count
3154 	 * overflow check.
3155 	 */
3156 	if (target_ip == NULL) {
3157 		/*
3158 		 * If there's no space reservation, check the entry will
3159 		 * fit before actually inserting it.
3160 		 */
3161 		if (!spaceres) {
3162 			error = xfs_dir_canenter(tp, target_dp, target_name);
3163 			if (error)
3164 				goto out_trans_cancel;
3165 		} else {
3166 			error = xfs_iext_count_may_overflow(target_dp,
3167 					XFS_DATA_FORK,
3168 					XFS_IEXT_DIR_MANIP_CNT(mp));
3169 			if (error)
3170 				goto out_trans_cancel;
3171 		}
3172 	} else {
3173 		/*
3174 		 * If target exists and it's a directory, check that whether
3175 		 * it can be destroyed.
3176 		 */
3177 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3178 		    (!xfs_dir_isempty(target_ip) ||
3179 		     (VFS_I(target_ip)->i_nlink > 2))) {
3180 			error = -EEXIST;
3181 			goto out_trans_cancel;
3182 		}
3183 	}
3184 
3185 	/*
3186 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3187 	 * whiteout inode off the unlinked list and to handle dropping the
3188 	 * nlink of the target inode.  Per locking order rules, do this in
3189 	 * increasing AG order and before directory block allocation tries to
3190 	 * grab AGFs because we grab AGIs before AGFs.
3191 	 *
3192 	 * The (vfs) caller must ensure that if src is a directory then
3193 	 * target_ip is either null or an empty directory.
3194 	 */
3195 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3196 		if (inodes[i] == wip ||
3197 		    (inodes[i] == target_ip &&
3198 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3199 			struct xfs_buf	*bp;
3200 			xfs_agnumber_t	agno;
3201 
3202 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3203 			error = xfs_read_agi(mp, tp, agno, &bp);
3204 			if (error)
3205 				goto out_trans_cancel;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Directory entry creation below may acquire the AGF. Remove
3211 	 * the whiteout from the unlinked list first to preserve correct
3212 	 * AGI/AGF locking order. This dirties the transaction so failures
3213 	 * after this point will abort and log recovery will clean up the
3214 	 * mess.
3215 	 *
3216 	 * For whiteouts, we need to bump the link count on the whiteout
3217 	 * inode. After this point, we have a real link, clear the tmpfile
3218 	 * state flag from the inode so it doesn't accidentally get misused
3219 	 * in future.
3220 	 */
3221 	if (wip) {
3222 		struct xfs_perag	*pag;
3223 
3224 		ASSERT(VFS_I(wip)->i_nlink == 0);
3225 
3226 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3227 		error = xfs_iunlink_remove(tp, pag, wip);
3228 		xfs_perag_put(pag);
3229 		if (error)
3230 			goto out_trans_cancel;
3231 
3232 		xfs_bumplink(tp, wip);
3233 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3234 	}
3235 
3236 	/*
3237 	 * Set up the target.
3238 	 */
3239 	if (target_ip == NULL) {
3240 		/*
3241 		 * If target does not exist and the rename crosses
3242 		 * directories, adjust the target directory link count
3243 		 * to account for the ".." reference from the new entry.
3244 		 */
3245 		error = xfs_dir_createname(tp, target_dp, target_name,
3246 					   src_ip->i_ino, spaceres);
3247 		if (error)
3248 			goto out_trans_cancel;
3249 
3250 		xfs_trans_ichgtime(tp, target_dp,
3251 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3252 
3253 		if (new_parent && src_is_directory) {
3254 			xfs_bumplink(tp, target_dp);
3255 		}
3256 	} else { /* target_ip != NULL */
3257 		/*
3258 		 * Link the source inode under the target name.
3259 		 * If the source inode is a directory and we are moving
3260 		 * it across directories, its ".." entry will be
3261 		 * inconsistent until we replace that down below.
3262 		 *
3263 		 * In case there is already an entry with the same
3264 		 * name at the destination directory, remove it first.
3265 		 */
3266 		error = xfs_dir_replace(tp, target_dp, target_name,
3267 					src_ip->i_ino, spaceres);
3268 		if (error)
3269 			goto out_trans_cancel;
3270 
3271 		xfs_trans_ichgtime(tp, target_dp,
3272 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3273 
3274 		/*
3275 		 * Decrement the link count on the target since the target
3276 		 * dir no longer points to it.
3277 		 */
3278 		error = xfs_droplink(tp, target_ip);
3279 		if (error)
3280 			goto out_trans_cancel;
3281 
3282 		if (src_is_directory) {
3283 			/*
3284 			 * Drop the link from the old "." entry.
3285 			 */
3286 			error = xfs_droplink(tp, target_ip);
3287 			if (error)
3288 				goto out_trans_cancel;
3289 		}
3290 	} /* target_ip != NULL */
3291 
3292 	/*
3293 	 * Remove the source.
3294 	 */
3295 	if (new_parent && src_is_directory) {
3296 		/*
3297 		 * Rewrite the ".." entry to point to the new
3298 		 * directory.
3299 		 */
3300 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3301 					target_dp->i_ino, spaceres);
3302 		ASSERT(error != -EEXIST);
3303 		if (error)
3304 			goto out_trans_cancel;
3305 	}
3306 
3307 	/*
3308 	 * We always want to hit the ctime on the source inode.
3309 	 *
3310 	 * This isn't strictly required by the standards since the source
3311 	 * inode isn't really being changed, but old unix file systems did
3312 	 * it and some incremental backup programs won't work without it.
3313 	 */
3314 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3315 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3316 
3317 	/*
3318 	 * Adjust the link count on src_dp.  This is necessary when
3319 	 * renaming a directory, either within one parent when
3320 	 * the target existed, or across two parent directories.
3321 	 */
3322 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3323 
3324 		/*
3325 		 * Decrement link count on src_directory since the
3326 		 * entry that's moved no longer points to it.
3327 		 */
3328 		error = xfs_droplink(tp, src_dp);
3329 		if (error)
3330 			goto out_trans_cancel;
3331 	}
3332 
3333 	/*
3334 	 * For whiteouts, we only need to update the source dirent with the
3335 	 * inode number of the whiteout inode rather than removing it
3336 	 * altogether.
3337 	 */
3338 	if (wip) {
3339 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3340 					spaceres);
3341 	} else {
3342 		/*
3343 		 * NOTE: We don't need to check for extent count overflow here
3344 		 * because the dir remove name code will leave the dir block in
3345 		 * place if the extent count would overflow.
3346 		 */
3347 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3348 					   spaceres);
3349 	}
3350 
3351 	if (error)
3352 		goto out_trans_cancel;
3353 
3354 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3355 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3356 	if (new_parent)
3357 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3358 
3359 	error = xfs_finish_rename(tp);
3360 	if (wip)
3361 		xfs_irele(wip);
3362 	return error;
3363 
3364 out_trans_cancel:
3365 	xfs_trans_cancel(tp);
3366 out_release_wip:
3367 	if (wip)
3368 		xfs_irele(wip);
3369 	return error;
3370 }
3371 
3372 static int
3373 xfs_iflush(
3374 	struct xfs_inode	*ip,
3375 	struct xfs_buf		*bp)
3376 {
3377 	struct xfs_inode_log_item *iip = ip->i_itemp;
3378 	struct xfs_dinode	*dip;
3379 	struct xfs_mount	*mp = ip->i_mount;
3380 	int			error;
3381 
3382 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3383 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3384 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3385 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3386 	ASSERT(iip->ili_item.li_buf == bp);
3387 
3388 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3389 
3390 	/*
3391 	 * We don't flush the inode if any of the following checks fail, but we
3392 	 * do still update the log item and attach to the backing buffer as if
3393 	 * the flush happened. This is a formality to facilitate predictable
3394 	 * error handling as the caller will shutdown and fail the buffer.
3395 	 */
3396 	error = -EFSCORRUPTED;
3397 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3398 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3399 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3400 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3401 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3402 		goto flush_out;
3403 	}
3404 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3405 		if (XFS_TEST_ERROR(
3406 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3407 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3408 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3409 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3410 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3411 				__func__, ip->i_ino, ip);
3412 			goto flush_out;
3413 		}
3414 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3415 		if (XFS_TEST_ERROR(
3416 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3417 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3418 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3419 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3420 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3421 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3422 				__func__, ip->i_ino, ip);
3423 			goto flush_out;
3424 		}
3425 	}
3426 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3427 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3428 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3429 			"%s: detected corrupt incore inode %Lu, "
3430 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3431 			__func__, ip->i_ino,
3432 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3433 			ip->i_nblocks, ip);
3434 		goto flush_out;
3435 	}
3436 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3437 				mp, XFS_ERRTAG_IFLUSH_6)) {
3438 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3439 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3440 			__func__, ip->i_ino, ip->i_forkoff, ip);
3441 		goto flush_out;
3442 	}
3443 
3444 	/*
3445 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3446 	 * count for correct sequencing.  We bump the flush iteration count so
3447 	 * we can detect flushes which postdate a log record during recovery.
3448 	 * This is redundant as we now log every change and hence this can't
3449 	 * happen but we need to still do it to ensure backwards compatibility
3450 	 * with old kernels that predate logging all inode changes.
3451 	 */
3452 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3453 		ip->i_flushiter++;
3454 
3455 	/*
3456 	 * If there are inline format data / attr forks attached to this inode,
3457 	 * make sure they are not corrupt.
3458 	 */
3459 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3460 	    xfs_ifork_verify_local_data(ip))
3461 		goto flush_out;
3462 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3463 	    xfs_ifork_verify_local_attr(ip))
3464 		goto flush_out;
3465 
3466 	/*
3467 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3468 	 * copy out the core of the inode, because if the inode is dirty at all
3469 	 * the core must be.
3470 	 */
3471 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3472 
3473 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3474 	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3475 		if (ip->i_flushiter == DI_MAX_FLUSH)
3476 			ip->i_flushiter = 0;
3477 	}
3478 
3479 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3480 	if (XFS_IFORK_Q(ip))
3481 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3482 
3483 	/*
3484 	 * We've recorded everything logged in the inode, so we'd like to clear
3485 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3486 	 * However, we can't stop logging all this information until the data
3487 	 * we've copied into the disk buffer is written to disk.  If we did we
3488 	 * might overwrite the copy of the inode in the log with all the data
3489 	 * after re-logging only part of it, and in the face of a crash we
3490 	 * wouldn't have all the data we need to recover.
3491 	 *
3492 	 * What we do is move the bits to the ili_last_fields field.  When
3493 	 * logging the inode, these bits are moved back to the ili_fields field.
3494 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3495 	 * we know that the information those bits represent is permanently on
3496 	 * disk.  As long as the flush completes before the inode is logged
3497 	 * again, then both ili_fields and ili_last_fields will be cleared.
3498 	 */
3499 	error = 0;
3500 flush_out:
3501 	spin_lock(&iip->ili_lock);
3502 	iip->ili_last_fields = iip->ili_fields;
3503 	iip->ili_fields = 0;
3504 	iip->ili_fsync_fields = 0;
3505 	spin_unlock(&iip->ili_lock);
3506 
3507 	/*
3508 	 * Store the current LSN of the inode so that we can tell whether the
3509 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3510 	 */
3511 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3512 				&iip->ili_item.li_lsn);
3513 
3514 	/* generate the checksum. */
3515 	xfs_dinode_calc_crc(mp, dip);
3516 	return error;
3517 }
3518 
3519 /*
3520  * Non-blocking flush of dirty inode metadata into the backing buffer.
3521  *
3522  * The caller must have a reference to the inode and hold the cluster buffer
3523  * locked. The function will walk across all the inodes on the cluster buffer it
3524  * can find and lock without blocking, and flush them to the cluster buffer.
3525  *
3526  * On successful flushing of at least one inode, the caller must write out the
3527  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3528  * the caller needs to release the buffer. On failure, the filesystem will be
3529  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3530  * will be returned.
3531  */
3532 int
3533 xfs_iflush_cluster(
3534 	struct xfs_buf		*bp)
3535 {
3536 	struct xfs_mount	*mp = bp->b_mount;
3537 	struct xfs_log_item	*lip, *n;
3538 	struct xfs_inode	*ip;
3539 	struct xfs_inode_log_item *iip;
3540 	int			clcount = 0;
3541 	int			error = 0;
3542 
3543 	/*
3544 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3545 	 * can remove itself from the list.
3546 	 */
3547 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3548 		iip = (struct xfs_inode_log_item *)lip;
3549 		ip = iip->ili_inode;
3550 
3551 		/*
3552 		 * Quick and dirty check to avoid locks if possible.
3553 		 */
3554 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3555 			continue;
3556 		if (xfs_ipincount(ip))
3557 			continue;
3558 
3559 		/*
3560 		 * The inode is still attached to the buffer, which means it is
3561 		 * dirty but reclaim might try to grab it. Check carefully for
3562 		 * that, and grab the ilock while still holding the i_flags_lock
3563 		 * to guarantee reclaim will not be able to reclaim this inode
3564 		 * once we drop the i_flags_lock.
3565 		 */
3566 		spin_lock(&ip->i_flags_lock);
3567 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3568 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3569 			spin_unlock(&ip->i_flags_lock);
3570 			continue;
3571 		}
3572 
3573 		/*
3574 		 * ILOCK will pin the inode against reclaim and prevent
3575 		 * concurrent transactions modifying the inode while we are
3576 		 * flushing the inode. If we get the lock, set the flushing
3577 		 * state before we drop the i_flags_lock.
3578 		 */
3579 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3580 			spin_unlock(&ip->i_flags_lock);
3581 			continue;
3582 		}
3583 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3584 		spin_unlock(&ip->i_flags_lock);
3585 
3586 		/*
3587 		 * Abort flushing this inode if we are shut down because the
3588 		 * inode may not currently be in the AIL. This can occur when
3589 		 * log I/O failure unpins the inode without inserting into the
3590 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3591 		 * that otherwise looks like it should be flushed.
3592 		 */
3593 		if (XFS_FORCED_SHUTDOWN(mp)) {
3594 			xfs_iunpin_wait(ip);
3595 			xfs_iflush_abort(ip);
3596 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3597 			error = -EIO;
3598 			continue;
3599 		}
3600 
3601 		/* don't block waiting on a log force to unpin dirty inodes */
3602 		if (xfs_ipincount(ip)) {
3603 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3604 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3605 			continue;
3606 		}
3607 
3608 		if (!xfs_inode_clean(ip))
3609 			error = xfs_iflush(ip, bp);
3610 		else
3611 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3612 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3613 		if (error)
3614 			break;
3615 		clcount++;
3616 	}
3617 
3618 	if (error) {
3619 		bp->b_flags |= XBF_ASYNC;
3620 		xfs_buf_ioend_fail(bp);
3621 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3622 		return error;
3623 	}
3624 
3625 	if (!clcount)
3626 		return -EAGAIN;
3627 
3628 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3629 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3630 	return 0;
3631 
3632 }
3633 
3634 /* Release an inode. */
3635 void
3636 xfs_irele(
3637 	struct xfs_inode	*ip)
3638 {
3639 	trace_xfs_irele(ip, _RET_IP_);
3640 	iput(VFS_I(ip));
3641 }
3642 
3643 /*
3644  * Ensure all commited transactions touching the inode are written to the log.
3645  */
3646 int
3647 xfs_log_force_inode(
3648 	struct xfs_inode	*ip)
3649 {
3650 	xfs_csn_t		seq = 0;
3651 
3652 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3653 	if (xfs_ipincount(ip))
3654 		seq = ip->i_itemp->ili_commit_seq;
3655 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3656 
3657 	if (!seq)
3658 		return 0;
3659 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3660 }
3661 
3662 /*
3663  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3664  * abide vfs locking order (lowest pointer value goes first) and breaking the
3665  * layout leases before proceeding.  The loop is needed because we cannot call
3666  * the blocking break_layout() with the iolocks held, and therefore have to
3667  * back out both locks.
3668  */
3669 static int
3670 xfs_iolock_two_inodes_and_break_layout(
3671 	struct inode		*src,
3672 	struct inode		*dest)
3673 {
3674 	int			error;
3675 
3676 	if (src > dest)
3677 		swap(src, dest);
3678 
3679 retry:
3680 	/* Wait to break both inodes' layouts before we start locking. */
3681 	error = break_layout(src, true);
3682 	if (error)
3683 		return error;
3684 	if (src != dest) {
3685 		error = break_layout(dest, true);
3686 		if (error)
3687 			return error;
3688 	}
3689 
3690 	/* Lock one inode and make sure nobody got in and leased it. */
3691 	inode_lock(src);
3692 	error = break_layout(src, false);
3693 	if (error) {
3694 		inode_unlock(src);
3695 		if (error == -EWOULDBLOCK)
3696 			goto retry;
3697 		return error;
3698 	}
3699 
3700 	if (src == dest)
3701 		return 0;
3702 
3703 	/* Lock the other inode and make sure nobody got in and leased it. */
3704 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3705 	error = break_layout(dest, false);
3706 	if (error) {
3707 		inode_unlock(src);
3708 		inode_unlock(dest);
3709 		if (error == -EWOULDBLOCK)
3710 			goto retry;
3711 		return error;
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 /*
3718  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3719  * mmap activity.
3720  */
3721 int
3722 xfs_ilock2_io_mmap(
3723 	struct xfs_inode	*ip1,
3724 	struct xfs_inode	*ip2)
3725 {
3726 	int			ret;
3727 
3728 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3729 	if (ret)
3730 		return ret;
3731 	if (ip1 == ip2)
3732 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3733 	else
3734 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3735 				    ip2, XFS_MMAPLOCK_EXCL);
3736 	return 0;
3737 }
3738 
3739 /* Unlock both inodes to allow IO and mmap activity. */
3740 void
3741 xfs_iunlock2_io_mmap(
3742 	struct xfs_inode	*ip1,
3743 	struct xfs_inode	*ip2)
3744 {
3745 	bool			same_inode = (ip1 == ip2);
3746 
3747 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3748 	if (!same_inode)
3749 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3750 	inode_unlock(VFS_I(ip2));
3751 	if (!same_inode)
3752 		inode_unlock(VFS_I(ip1));
3753 }
3754