1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_iunlink_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 #include "xfs_ag.h" 39 #include "xfs_log_priv.h" 40 41 struct kmem_cache *xfs_inode_cache; 42 43 /* 44 * Used in xfs_itruncate_extents(). This is the maximum number of extents 45 * freed from a file in a single transaction. 46 */ 47 #define XFS_ITRUNC_MAX_EXTENTS 2 48 49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 51 struct xfs_inode *); 52 53 /* 54 * helper function to extract extent size hint from inode 55 */ 56 xfs_extlen_t 57 xfs_get_extsz_hint( 58 struct xfs_inode *ip) 59 { 60 /* 61 * No point in aligning allocations if we need to COW to actually 62 * write to them. 63 */ 64 if (xfs_is_always_cow_inode(ip)) 65 return 0; 66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 67 return ip->i_extsize; 68 if (XFS_IS_REALTIME_INODE(ip)) 69 return ip->i_mount->m_sb.sb_rextsize; 70 return 0; 71 } 72 73 /* 74 * Helper function to extract CoW extent size hint from inode. 75 * Between the extent size hint and the CoW extent size hint, we 76 * return the greater of the two. If the value is zero (automatic), 77 * use the default size. 78 */ 79 xfs_extlen_t 80 xfs_get_cowextsz_hint( 81 struct xfs_inode *ip) 82 { 83 xfs_extlen_t a, b; 84 85 a = 0; 86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 87 a = ip->i_cowextsize; 88 b = xfs_get_extsz_hint(ip); 89 90 a = max(a, b); 91 if (a == 0) 92 return XFS_DEFAULT_COWEXTSZ_HINT; 93 return a; 94 } 95 96 /* 97 * These two are wrapper routines around the xfs_ilock() routine used to 98 * centralize some grungy code. They are used in places that wish to lock the 99 * inode solely for reading the extents. The reason these places can't just 100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 101 * bringing in of the extents from disk for a file in b-tree format. If the 102 * inode is in b-tree format, then we need to lock the inode exclusively until 103 * the extents are read in. Locking it exclusively all the time would limit 104 * our parallelism unnecessarily, though. What we do instead is check to see 105 * if the extents have been read in yet, and only lock the inode exclusively 106 * if they have not. 107 * 108 * The functions return a value which should be given to the corresponding 109 * xfs_iunlock() call. 110 */ 111 uint 112 xfs_ilock_data_map_shared( 113 struct xfs_inode *ip) 114 { 115 uint lock_mode = XFS_ILOCK_SHARED; 116 117 if (xfs_need_iread_extents(&ip->i_df)) 118 lock_mode = XFS_ILOCK_EXCL; 119 xfs_ilock(ip, lock_mode); 120 return lock_mode; 121 } 122 123 uint 124 xfs_ilock_attr_map_shared( 125 struct xfs_inode *ip) 126 { 127 uint lock_mode = XFS_ILOCK_SHARED; 128 129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af)) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * You can't set both SHARED and EXCL for the same lock, 137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED, 138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values 139 * to set in lock_flags. 140 */ 141 static inline void 142 xfs_lock_flags_assert( 143 uint lock_flags) 144 { 145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 152 ASSERT(lock_flags != 0); 153 } 154 155 /* 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 158 * various combinations of the locks to be obtained. 159 * 160 * The 3 locks should always be ordered so that the IO lock is obtained first, 161 * the mmap lock second and the ilock last in order to prevent deadlock. 162 * 163 * Basic locking order: 164 * 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 166 * 167 * mmap_lock locking order: 168 * 169 * i_rwsem -> page lock -> mmap_lock 170 * mmap_lock -> invalidate_lock -> page_lock 171 * 172 * The difference in mmap_lock locking order mean that we cannot hold the 173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 174 * can fault in pages during copy in/out (for buffered IO) or require the 175 * mmap_lock in get_user_pages() to map the user pages into the kernel address 176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 177 * fault because page faults already hold the mmap_lock. 178 * 179 * Hence to serialise fully against both syscall and mmap based IO, we need to 180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 181 * both taken in places where we need to invalidate the page cache in a race 182 * free manner (e.g. truncate, hole punch and other extent manipulation 183 * functions). 184 */ 185 void 186 xfs_ilock( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 191 192 xfs_lock_flags_assert(lock_flags); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) { 195 down_write_nested(&VFS_I(ip)->i_rwsem, 196 XFS_IOLOCK_DEP(lock_flags)); 197 } else if (lock_flags & XFS_IOLOCK_SHARED) { 198 down_read_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } 201 202 if (lock_flags & XFS_MMAPLOCK_EXCL) { 203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 204 XFS_MMAPLOCK_DEP(lock_flags)); 205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 207 XFS_MMAPLOCK_DEP(lock_flags)); 208 } 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 xfs_lock_flags_assert(lock_flags); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 xfs_lock_flags_assert(lock_flags); 294 295 if (lock_flags & XFS_IOLOCK_EXCL) 296 up_write(&VFS_I(ip)->i_rwsem); 297 else if (lock_flags & XFS_IOLOCK_SHARED) 298 up_read(&VFS_I(ip)->i_rwsem); 299 300 if (lock_flags & XFS_MMAPLOCK_EXCL) 301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 302 else if (lock_flags & XFS_MMAPLOCK_SHARED) 303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 304 305 if (lock_flags & XFS_ILOCK_EXCL) 306 mrunlock_excl(&ip->i_lock); 307 else if (lock_flags & XFS_ILOCK_SHARED) 308 mrunlock_shared(&ip->i_lock); 309 310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 311 } 312 313 /* 314 * give up write locks. the i/o lock cannot be held nested 315 * if it is being demoted. 316 */ 317 void 318 xfs_ilock_demote( 319 xfs_inode_t *ip, 320 uint lock_flags) 321 { 322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 323 ASSERT((lock_flags & 324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrdemote(&ip->i_lock); 328 if (lock_flags & XFS_MMAPLOCK_EXCL) 329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 330 if (lock_flags & XFS_IOLOCK_EXCL) 331 downgrade_write(&VFS_I(ip)->i_rwsem); 332 333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 334 } 335 336 #if defined(DEBUG) || defined(XFS_WARN) 337 static inline bool 338 __xfs_rwsem_islocked( 339 struct rw_semaphore *rwsem, 340 bool shared) 341 { 342 if (!debug_locks) 343 return rwsem_is_locked(rwsem); 344 345 if (!shared) 346 return lockdep_is_held_type(rwsem, 0); 347 348 /* 349 * We are checking that the lock is held at least in shared 350 * mode but don't care that it might be held exclusively 351 * (i.e. shared | excl). Hence we check if the lock is held 352 * in any mode rather than an explicit shared mode. 353 */ 354 return lockdep_is_held_type(rwsem, -1); 355 } 356 357 bool 358 xfs_isilocked( 359 struct xfs_inode *ip, 360 uint lock_flags) 361 { 362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 363 if (!(lock_flags & XFS_ILOCK_SHARED)) 364 return !!ip->i_lock.mr_writer; 365 return rwsem_is_locked(&ip->i_lock.mr_lock); 366 } 367 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock, 370 (lock_flags & XFS_MMAPLOCK_SHARED)); 371 } 372 373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 375 (lock_flags & XFS_IOLOCK_SHARED)); 376 } 377 378 ASSERT(0); 379 return false; 380 } 381 #endif 382 383 /* 384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 387 * errors and warnings. 388 */ 389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 390 static bool 391 xfs_lockdep_subclass_ok( 392 int subclass) 393 { 394 return subclass < MAX_LOCKDEP_SUBCLASSES; 395 } 396 #else 397 #define xfs_lockdep_subclass_ok(subclass) (true) 398 #endif 399 400 /* 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 402 * value. This can be called for any type of inode lock combination, including 403 * parent locking. Care must be taken to ensure we don't overrun the subclass 404 * storage fields in the class mask we build. 405 */ 406 static inline uint 407 xfs_lock_inumorder( 408 uint lock_mode, 409 uint subclass) 410 { 411 uint class = 0; 412 413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 414 XFS_ILOCK_RTSUM))); 415 ASSERT(xfs_lockdep_subclass_ok(subclass)); 416 417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 419 class += subclass << XFS_IOLOCK_SHIFT; 420 } 421 422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 424 class += subclass << XFS_MMAPLOCK_SHIFT; 425 } 426 427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 429 class += subclass << XFS_ILOCK_SHIFT; 430 } 431 432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 433 } 434 435 /* 436 * The following routine will lock n inodes in exclusive mode. We assume the 437 * caller calls us with the inodes in i_ino order. 438 * 439 * We need to detect deadlock where an inode that we lock is in the AIL and we 440 * start waiting for another inode that is locked by a thread in a long running 441 * transaction (such as truncate). This can result in deadlock since the long 442 * running trans might need to wait for the inode we just locked in order to 443 * push the tail and free space in the log. 444 * 445 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 447 * lock more than one at a time, lockdep will report false positives saying we 448 * have violated locking orders. 449 */ 450 static void 451 xfs_lock_inodes( 452 struct xfs_inode **ips, 453 int inodes, 454 uint lock_mode) 455 { 456 int attempts = 0; 457 uint i; 458 int j; 459 bool try_lock; 460 struct xfs_log_item *lp; 461 462 /* 463 * Currently supports between 2 and 5 inodes with exclusive locking. We 464 * support an arbitrary depth of locking here, but absolute limits on 465 * inodes depend on the type of locking and the limits placed by 466 * lockdep annotations in xfs_lock_inumorder. These are all checked by 467 * the asserts. 468 */ 469 ASSERT(ips && inodes >= 2 && inodes <= 5); 470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 471 XFS_ILOCK_EXCL)); 472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 473 XFS_ILOCK_SHARED))); 474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 478 479 if (lock_mode & XFS_IOLOCK_EXCL) { 480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 481 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 483 484 again: 485 try_lock = false; 486 i = 0; 487 for (; i < inodes; i++) { 488 ASSERT(ips[i]); 489 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 491 continue; 492 493 /* 494 * If try_lock is not set yet, make sure all locked inodes are 495 * not in the AIL. If any are, set try_lock to be used later. 496 */ 497 if (!try_lock) { 498 for (j = (i - 1); j >= 0 && !try_lock; j--) { 499 lp = &ips[j]->i_itemp->ili_item; 500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 501 try_lock = true; 502 } 503 } 504 505 /* 506 * If any of the previous locks we have locked is in the AIL, 507 * we must TRY to get the second and subsequent locks. If 508 * we can't get any, we must release all we have 509 * and try again. 510 */ 511 if (!try_lock) { 512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 513 continue; 514 } 515 516 /* try_lock means we have an inode locked that is in the AIL. */ 517 ASSERT(i != 0); 518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 519 continue; 520 521 /* 522 * Unlock all previous guys and try again. xfs_iunlock will try 523 * to push the tail if the inode is in the AIL. 524 */ 525 attempts++; 526 for (j = i - 1; j >= 0; j--) { 527 /* 528 * Check to see if we've already unlocked this one. Not 529 * the first one going back, and the inode ptr is the 530 * same. 531 */ 532 if (j != (i - 1) && ips[j] == ips[j + 1]) 533 continue; 534 535 xfs_iunlock(ips[j], lock_mode); 536 } 537 538 if ((attempts % 5) == 0) { 539 delay(1); /* Don't just spin the CPU */ 540 } 541 goto again; 542 } 543 } 544 545 /* 546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 547 * mmaplock must be double-locked separately since we use i_rwsem and 548 * invalidate_lock for that. We now support taking one lock EXCL and the 549 * other SHARED. 550 */ 551 void 552 xfs_lock_two_inodes( 553 struct xfs_inode *ip0, 554 uint ip0_mode, 555 struct xfs_inode *ip1, 556 uint ip1_mode) 557 { 558 int attempts = 0; 559 struct xfs_log_item *lp; 560 561 ASSERT(hweight32(ip0_mode) == 1); 562 ASSERT(hweight32(ip1_mode) == 1); 563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 567 ASSERT(ip0->i_ino != ip1->i_ino); 568 569 if (ip0->i_ino > ip1->i_ino) { 570 swap(ip0, ip1); 571 swap(ip0_mode, ip1_mode); 572 } 573 574 again: 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 576 577 /* 578 * If the first lock we have locked is in the AIL, we must TRY to get 579 * the second lock. If we can't get it, we must release the first one 580 * and try again. 581 */ 582 lp = &ip0->i_itemp->ili_item; 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 585 xfs_iunlock(ip0, ip0_mode); 586 if ((++attempts % 5) == 0) 587 delay(1); /* Don't just spin the CPU */ 588 goto again; 589 } 590 } else { 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 592 } 593 } 594 595 uint 596 xfs_ip2xflags( 597 struct xfs_inode *ip) 598 { 599 uint flags = 0; 600 601 if (ip->i_diflags & XFS_DIFLAG_ANY) { 602 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 603 flags |= FS_XFLAG_REALTIME; 604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 605 flags |= FS_XFLAG_PREALLOC; 606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 607 flags |= FS_XFLAG_IMMUTABLE; 608 if (ip->i_diflags & XFS_DIFLAG_APPEND) 609 flags |= FS_XFLAG_APPEND; 610 if (ip->i_diflags & XFS_DIFLAG_SYNC) 611 flags |= FS_XFLAG_SYNC; 612 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 613 flags |= FS_XFLAG_NOATIME; 614 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 615 flags |= FS_XFLAG_NODUMP; 616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 617 flags |= FS_XFLAG_RTINHERIT; 618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 619 flags |= FS_XFLAG_PROJINHERIT; 620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 621 flags |= FS_XFLAG_NOSYMLINKS; 622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 623 flags |= FS_XFLAG_EXTSIZE; 624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 625 flags |= FS_XFLAG_EXTSZINHERIT; 626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 627 flags |= FS_XFLAG_NODEFRAG; 628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 629 flags |= FS_XFLAG_FILESTREAM; 630 } 631 632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 634 flags |= FS_XFLAG_DAX; 635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 636 flags |= FS_XFLAG_COWEXTSIZE; 637 } 638 639 if (xfs_inode_has_attr_fork(ip)) 640 flags |= FS_XFLAG_HASATTR; 641 return flags; 642 } 643 644 /* 645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 646 * is allowed, otherwise it has to be an exact match. If a CI match is found, 647 * ci_name->name will point to a the actual name (caller must free) or 648 * will be set to NULL if an exact match is found. 649 */ 650 int 651 xfs_lookup( 652 struct xfs_inode *dp, 653 const struct xfs_name *name, 654 struct xfs_inode **ipp, 655 struct xfs_name *ci_name) 656 { 657 xfs_ino_t inum; 658 int error; 659 660 trace_xfs_lookup(dp, name); 661 662 if (xfs_is_shutdown(dp->i_mount)) 663 return -EIO; 664 665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 666 if (error) 667 goto out_unlock; 668 669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 670 if (error) 671 goto out_free_name; 672 673 return 0; 674 675 out_free_name: 676 if (ci_name) 677 kmem_free(ci_name->name); 678 out_unlock: 679 *ipp = NULL; 680 return error; 681 } 682 683 /* Propagate di_flags from a parent inode to a child inode. */ 684 static void 685 xfs_inode_inherit_flags( 686 struct xfs_inode *ip, 687 const struct xfs_inode *pip) 688 { 689 unsigned int di_flags = 0; 690 xfs_failaddr_t failaddr; 691 umode_t mode = VFS_I(ip)->i_mode; 692 693 if (S_ISDIR(mode)) { 694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 695 di_flags |= XFS_DIFLAG_RTINHERIT; 696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 697 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 698 ip->i_extsize = pip->i_extsize; 699 } 700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 701 di_flags |= XFS_DIFLAG_PROJINHERIT; 702 } else if (S_ISREG(mode)) { 703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 704 xfs_has_realtime(ip->i_mount)) 705 di_flags |= XFS_DIFLAG_REALTIME; 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 707 di_flags |= XFS_DIFLAG_EXTSIZE; 708 ip->i_extsize = pip->i_extsize; 709 } 710 } 711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 712 xfs_inherit_noatime) 713 di_flags |= XFS_DIFLAG_NOATIME; 714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 715 xfs_inherit_nodump) 716 di_flags |= XFS_DIFLAG_NODUMP; 717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 718 xfs_inherit_sync) 719 di_flags |= XFS_DIFLAG_SYNC; 720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 721 xfs_inherit_nosymlinks) 722 di_flags |= XFS_DIFLAG_NOSYMLINKS; 723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 724 xfs_inherit_nodefrag) 725 di_flags |= XFS_DIFLAG_NODEFRAG; 726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 727 di_flags |= XFS_DIFLAG_FILESTREAM; 728 729 ip->i_diflags |= di_flags; 730 731 /* 732 * Inode verifiers on older kernels only check that the extent size 733 * hint is an integer multiple of the rt extent size on realtime files. 734 * They did not check the hint alignment on a directory with both 735 * rtinherit and extszinherit flags set. If the misaligned hint is 736 * propagated from a directory into a new realtime file, new file 737 * allocations will fail due to math errors in the rt allocator and/or 738 * trip the verifiers. Validate the hint settings in the new file so 739 * that we don't let broken hints propagate. 740 */ 741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 742 VFS_I(ip)->i_mode, ip->i_diflags); 743 if (failaddr) { 744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 745 XFS_DIFLAG_EXTSZINHERIT); 746 ip->i_extsize = 0; 747 } 748 } 749 750 /* Propagate di_flags2 from a parent inode to a child inode. */ 751 static void 752 xfs_inode_inherit_flags2( 753 struct xfs_inode *ip, 754 const struct xfs_inode *pip) 755 { 756 xfs_failaddr_t failaddr; 757 758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 760 ip->i_cowextsize = pip->i_cowextsize; 761 } 762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 763 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 764 765 /* Don't let invalid cowextsize hints propagate. */ 766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 768 if (failaddr) { 769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 770 ip->i_cowextsize = 0; 771 } 772 } 773 774 /* 775 * Initialise a newly allocated inode and return the in-core inode to the 776 * caller locked exclusively. 777 */ 778 int 779 xfs_init_new_inode( 780 struct user_namespace *mnt_userns, 781 struct xfs_trans *tp, 782 struct xfs_inode *pip, 783 xfs_ino_t ino, 784 umode_t mode, 785 xfs_nlink_t nlink, 786 dev_t rdev, 787 prid_t prid, 788 bool init_xattrs, 789 struct xfs_inode **ipp) 790 { 791 struct inode *dir = pip ? VFS_I(pip) : NULL; 792 struct xfs_mount *mp = tp->t_mountp; 793 struct xfs_inode *ip; 794 unsigned int flags; 795 int error; 796 struct timespec64 tv; 797 struct inode *inode; 798 799 /* 800 * Protect against obviously corrupt allocation btree records. Later 801 * xfs_iget checks will catch re-allocation of other active in-memory 802 * and on-disk inodes. If we don't catch reallocating the parent inode 803 * here we will deadlock in xfs_iget() so we have to do these checks 804 * first. 805 */ 806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 808 return -EFSCORRUPTED; 809 } 810 811 /* 812 * Get the in-core inode with the lock held exclusively to prevent 813 * others from looking at until we're done. 814 */ 815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 816 if (error) 817 return error; 818 819 ASSERT(ip != NULL); 820 inode = VFS_I(ip); 821 set_nlink(inode, nlink); 822 inode->i_rdev = rdev; 823 ip->i_projid = prid; 824 825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 826 inode_fsuid_set(inode, mnt_userns); 827 inode->i_gid = dir->i_gid; 828 inode->i_mode = mode; 829 } else { 830 inode_init_owner(mnt_userns, inode, dir, mode); 831 } 832 833 /* 834 * If the group ID of the new file does not match the effective group 835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 836 * (and only if the irix_sgid_inherit compatibility variable is set). 837 */ 838 if (irix_sgid_inherit && 839 (inode->i_mode & S_ISGID) && 840 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 841 inode->i_mode &= ~S_ISGID; 842 843 ip->i_disk_size = 0; 844 ip->i_df.if_nextents = 0; 845 ASSERT(ip->i_nblocks == 0); 846 847 tv = current_time(inode); 848 inode->i_mtime = tv; 849 inode->i_atime = tv; 850 inode->i_ctime = tv; 851 852 ip->i_extsize = 0; 853 ip->i_diflags = 0; 854 855 if (xfs_has_v3inodes(mp)) { 856 inode_set_iversion(inode, 1); 857 ip->i_cowextsize = 0; 858 ip->i_crtime = tv; 859 } 860 861 flags = XFS_ILOG_CORE; 862 switch (mode & S_IFMT) { 863 case S_IFIFO: 864 case S_IFCHR: 865 case S_IFBLK: 866 case S_IFSOCK: 867 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 868 flags |= XFS_ILOG_DEV; 869 break; 870 case S_IFREG: 871 case S_IFDIR: 872 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 873 xfs_inode_inherit_flags(ip, pip); 874 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 875 xfs_inode_inherit_flags2(ip, pip); 876 fallthrough; 877 case S_IFLNK: 878 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 879 ip->i_df.if_bytes = 0; 880 ip->i_df.if_u1.if_root = NULL; 881 break; 882 default: 883 ASSERT(0); 884 } 885 886 /* 887 * If we need to create attributes immediately after allocating the 888 * inode, initialise an empty attribute fork right now. We use the 889 * default fork offset for attributes here as we don't know exactly what 890 * size or how many attributes we might be adding. We can do this 891 * safely here because we know the data fork is completely empty and 892 * this saves us from needing to run a separate transaction to set the 893 * fork offset in the immediate future. 894 */ 895 if (init_xattrs && xfs_has_attr(mp)) { 896 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 897 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0); 898 } 899 900 /* 901 * Log the new values stuffed into the inode. 902 */ 903 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 904 xfs_trans_log_inode(tp, ip, flags); 905 906 /* now that we have an i_mode we can setup the inode structure */ 907 xfs_setup_inode(ip); 908 909 *ipp = ip; 910 return 0; 911 } 912 913 /* 914 * Decrement the link count on an inode & log the change. If this causes the 915 * link count to go to zero, move the inode to AGI unlinked list so that it can 916 * be freed when the last active reference goes away via xfs_inactive(). 917 */ 918 static int /* error */ 919 xfs_droplink( 920 xfs_trans_t *tp, 921 xfs_inode_t *ip) 922 { 923 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 924 925 drop_nlink(VFS_I(ip)); 926 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 927 928 if (VFS_I(ip)->i_nlink) 929 return 0; 930 931 return xfs_iunlink(tp, ip); 932 } 933 934 /* 935 * Increment the link count on an inode & log the change. 936 */ 937 static void 938 xfs_bumplink( 939 xfs_trans_t *tp, 940 xfs_inode_t *ip) 941 { 942 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 943 944 inc_nlink(VFS_I(ip)); 945 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 946 } 947 948 int 949 xfs_create( 950 struct user_namespace *mnt_userns, 951 xfs_inode_t *dp, 952 struct xfs_name *name, 953 umode_t mode, 954 dev_t rdev, 955 bool init_xattrs, 956 xfs_inode_t **ipp) 957 { 958 int is_dir = S_ISDIR(mode); 959 struct xfs_mount *mp = dp->i_mount; 960 struct xfs_inode *ip = NULL; 961 struct xfs_trans *tp = NULL; 962 int error; 963 bool unlock_dp_on_error = false; 964 prid_t prid; 965 struct xfs_dquot *udqp = NULL; 966 struct xfs_dquot *gdqp = NULL; 967 struct xfs_dquot *pdqp = NULL; 968 struct xfs_trans_res *tres; 969 uint resblks; 970 xfs_ino_t ino; 971 972 trace_xfs_create(dp, name); 973 974 if (xfs_is_shutdown(mp)) 975 return -EIO; 976 977 prid = xfs_get_initial_prid(dp); 978 979 /* 980 * Make sure that we have allocated dquot(s) on disk. 981 */ 982 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 983 mapped_fsgid(mnt_userns, &init_user_ns), prid, 984 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 985 &udqp, &gdqp, &pdqp); 986 if (error) 987 return error; 988 989 if (is_dir) { 990 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 991 tres = &M_RES(mp)->tr_mkdir; 992 } else { 993 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 994 tres = &M_RES(mp)->tr_create; 995 } 996 997 /* 998 * Initially assume that the file does not exist and 999 * reserve the resources for that case. If that is not 1000 * the case we'll drop the one we have and get a more 1001 * appropriate transaction later. 1002 */ 1003 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1004 &tp); 1005 if (error == -ENOSPC) { 1006 /* flush outstanding delalloc blocks and retry */ 1007 xfs_flush_inodes(mp); 1008 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1009 resblks, &tp); 1010 } 1011 if (error) 1012 goto out_release_dquots; 1013 1014 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1015 unlock_dp_on_error = true; 1016 1017 /* 1018 * A newly created regular or special file just has one directory 1019 * entry pointing to them, but a directory also the "." entry 1020 * pointing to itself. 1021 */ 1022 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1023 if (!error) 1024 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1025 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1026 if (error) 1027 goto out_trans_cancel; 1028 1029 /* 1030 * Now we join the directory inode to the transaction. We do not do it 1031 * earlier because xfs_dialloc might commit the previous transaction 1032 * (and release all the locks). An error from here on will result in 1033 * the transaction cancel unlocking dp so don't do it explicitly in the 1034 * error path. 1035 */ 1036 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1037 unlock_dp_on_error = false; 1038 1039 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1040 resblks - XFS_IALLOC_SPACE_RES(mp)); 1041 if (error) { 1042 ASSERT(error != -ENOSPC); 1043 goto out_trans_cancel; 1044 } 1045 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1046 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1047 1048 if (is_dir) { 1049 error = xfs_dir_init(tp, ip, dp); 1050 if (error) 1051 goto out_trans_cancel; 1052 1053 xfs_bumplink(tp, dp); 1054 } 1055 1056 /* 1057 * If this is a synchronous mount, make sure that the 1058 * create transaction goes to disk before returning to 1059 * the user. 1060 */ 1061 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1062 xfs_trans_set_sync(tp); 1063 1064 /* 1065 * Attach the dquot(s) to the inodes and modify them incore. 1066 * These ids of the inode couldn't have changed since the new 1067 * inode has been locked ever since it was created. 1068 */ 1069 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1070 1071 error = xfs_trans_commit(tp); 1072 if (error) 1073 goto out_release_inode; 1074 1075 xfs_qm_dqrele(udqp); 1076 xfs_qm_dqrele(gdqp); 1077 xfs_qm_dqrele(pdqp); 1078 1079 *ipp = ip; 1080 return 0; 1081 1082 out_trans_cancel: 1083 xfs_trans_cancel(tp); 1084 out_release_inode: 1085 /* 1086 * Wait until after the current transaction is aborted to finish the 1087 * setup of the inode and release the inode. This prevents recursive 1088 * transactions and deadlocks from xfs_inactive. 1089 */ 1090 if (ip) { 1091 xfs_finish_inode_setup(ip); 1092 xfs_irele(ip); 1093 } 1094 out_release_dquots: 1095 xfs_qm_dqrele(udqp); 1096 xfs_qm_dqrele(gdqp); 1097 xfs_qm_dqrele(pdqp); 1098 1099 if (unlock_dp_on_error) 1100 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1101 return error; 1102 } 1103 1104 int 1105 xfs_create_tmpfile( 1106 struct user_namespace *mnt_userns, 1107 struct xfs_inode *dp, 1108 umode_t mode, 1109 struct xfs_inode **ipp) 1110 { 1111 struct xfs_mount *mp = dp->i_mount; 1112 struct xfs_inode *ip = NULL; 1113 struct xfs_trans *tp = NULL; 1114 int error; 1115 prid_t prid; 1116 struct xfs_dquot *udqp = NULL; 1117 struct xfs_dquot *gdqp = NULL; 1118 struct xfs_dquot *pdqp = NULL; 1119 struct xfs_trans_res *tres; 1120 uint resblks; 1121 xfs_ino_t ino; 1122 1123 if (xfs_is_shutdown(mp)) 1124 return -EIO; 1125 1126 prid = xfs_get_initial_prid(dp); 1127 1128 /* 1129 * Make sure that we have allocated dquot(s) on disk. 1130 */ 1131 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 1132 mapped_fsgid(mnt_userns, &init_user_ns), prid, 1133 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1134 &udqp, &gdqp, &pdqp); 1135 if (error) 1136 return error; 1137 1138 resblks = XFS_IALLOC_SPACE_RES(mp); 1139 tres = &M_RES(mp)->tr_create_tmpfile; 1140 1141 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1142 &tp); 1143 if (error) 1144 goto out_release_dquots; 1145 1146 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1147 if (!error) 1148 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1149 0, 0, prid, false, &ip); 1150 if (error) 1151 goto out_trans_cancel; 1152 1153 if (xfs_has_wsync(mp)) 1154 xfs_trans_set_sync(tp); 1155 1156 /* 1157 * Attach the dquot(s) to the inodes and modify them incore. 1158 * These ids of the inode couldn't have changed since the new 1159 * inode has been locked ever since it was created. 1160 */ 1161 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1162 1163 error = xfs_iunlink(tp, ip); 1164 if (error) 1165 goto out_trans_cancel; 1166 1167 error = xfs_trans_commit(tp); 1168 if (error) 1169 goto out_release_inode; 1170 1171 xfs_qm_dqrele(udqp); 1172 xfs_qm_dqrele(gdqp); 1173 xfs_qm_dqrele(pdqp); 1174 1175 *ipp = ip; 1176 return 0; 1177 1178 out_trans_cancel: 1179 xfs_trans_cancel(tp); 1180 out_release_inode: 1181 /* 1182 * Wait until after the current transaction is aborted to finish the 1183 * setup of the inode and release the inode. This prevents recursive 1184 * transactions and deadlocks from xfs_inactive. 1185 */ 1186 if (ip) { 1187 xfs_finish_inode_setup(ip); 1188 xfs_irele(ip); 1189 } 1190 out_release_dquots: 1191 xfs_qm_dqrele(udqp); 1192 xfs_qm_dqrele(gdqp); 1193 xfs_qm_dqrele(pdqp); 1194 1195 return error; 1196 } 1197 1198 int 1199 xfs_link( 1200 xfs_inode_t *tdp, 1201 xfs_inode_t *sip, 1202 struct xfs_name *target_name) 1203 { 1204 xfs_mount_t *mp = tdp->i_mount; 1205 xfs_trans_t *tp; 1206 int error, nospace_error = 0; 1207 int resblks; 1208 1209 trace_xfs_link(tdp, target_name); 1210 1211 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1212 1213 if (xfs_is_shutdown(mp)) 1214 return -EIO; 1215 1216 error = xfs_qm_dqattach(sip); 1217 if (error) 1218 goto std_return; 1219 1220 error = xfs_qm_dqattach(tdp); 1221 if (error) 1222 goto std_return; 1223 1224 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1225 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks, 1226 &tp, &nospace_error); 1227 if (error) 1228 goto std_return; 1229 1230 /* 1231 * If we are using project inheritance, we only allow hard link 1232 * creation in our tree when the project IDs are the same; else 1233 * the tree quota mechanism could be circumvented. 1234 */ 1235 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1236 tdp->i_projid != sip->i_projid)) { 1237 error = -EXDEV; 1238 goto error_return; 1239 } 1240 1241 if (!resblks) { 1242 error = xfs_dir_canenter(tp, tdp, target_name); 1243 if (error) 1244 goto error_return; 1245 } 1246 1247 /* 1248 * Handle initial link state of O_TMPFILE inode 1249 */ 1250 if (VFS_I(sip)->i_nlink == 0) { 1251 struct xfs_perag *pag; 1252 1253 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1254 error = xfs_iunlink_remove(tp, pag, sip); 1255 xfs_perag_put(pag); 1256 if (error) 1257 goto error_return; 1258 } 1259 1260 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1261 resblks); 1262 if (error) 1263 goto error_return; 1264 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1265 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1266 1267 xfs_bumplink(tp, sip); 1268 1269 /* 1270 * If this is a synchronous mount, make sure that the 1271 * link transaction goes to disk before returning to 1272 * the user. 1273 */ 1274 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1275 xfs_trans_set_sync(tp); 1276 1277 return xfs_trans_commit(tp); 1278 1279 error_return: 1280 xfs_trans_cancel(tp); 1281 std_return: 1282 if (error == -ENOSPC && nospace_error) 1283 error = nospace_error; 1284 return error; 1285 } 1286 1287 /* Clear the reflink flag and the cowblocks tag if possible. */ 1288 static void 1289 xfs_itruncate_clear_reflink_flags( 1290 struct xfs_inode *ip) 1291 { 1292 struct xfs_ifork *dfork; 1293 struct xfs_ifork *cfork; 1294 1295 if (!xfs_is_reflink_inode(ip)) 1296 return; 1297 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1298 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK); 1299 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1300 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1301 if (cfork->if_bytes == 0) 1302 xfs_inode_clear_cowblocks_tag(ip); 1303 } 1304 1305 /* 1306 * Free up the underlying blocks past new_size. The new size must be smaller 1307 * than the current size. This routine can be used both for the attribute and 1308 * data fork, and does not modify the inode size, which is left to the caller. 1309 * 1310 * The transaction passed to this routine must have made a permanent log 1311 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1312 * given transaction and start new ones, so make sure everything involved in 1313 * the transaction is tidy before calling here. Some transaction will be 1314 * returned to the caller to be committed. The incoming transaction must 1315 * already include the inode, and both inode locks must be held exclusively. 1316 * The inode must also be "held" within the transaction. On return the inode 1317 * will be "held" within the returned transaction. This routine does NOT 1318 * require any disk space to be reserved for it within the transaction. 1319 * 1320 * If we get an error, we must return with the inode locked and linked into the 1321 * current transaction. This keeps things simple for the higher level code, 1322 * because it always knows that the inode is locked and held in the transaction 1323 * that returns to it whether errors occur or not. We don't mark the inode 1324 * dirty on error so that transactions can be easily aborted if possible. 1325 */ 1326 int 1327 xfs_itruncate_extents_flags( 1328 struct xfs_trans **tpp, 1329 struct xfs_inode *ip, 1330 int whichfork, 1331 xfs_fsize_t new_size, 1332 int flags) 1333 { 1334 struct xfs_mount *mp = ip->i_mount; 1335 struct xfs_trans *tp = *tpp; 1336 xfs_fileoff_t first_unmap_block; 1337 xfs_filblks_t unmap_len; 1338 int error = 0; 1339 1340 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1341 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1342 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1343 ASSERT(new_size <= XFS_ISIZE(ip)); 1344 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1345 ASSERT(ip->i_itemp != NULL); 1346 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1347 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1348 1349 trace_xfs_itruncate_extents_start(ip, new_size); 1350 1351 flags |= xfs_bmapi_aflag(whichfork); 1352 1353 /* 1354 * Since it is possible for space to become allocated beyond 1355 * the end of the file (in a crash where the space is allocated 1356 * but the inode size is not yet updated), simply remove any 1357 * blocks which show up between the new EOF and the maximum 1358 * possible file size. 1359 * 1360 * We have to free all the blocks to the bmbt maximum offset, even if 1361 * the page cache can't scale that far. 1362 */ 1363 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1364 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1365 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1366 return 0; 1367 } 1368 1369 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1370 while (unmap_len > 0) { 1371 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1372 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1373 flags, XFS_ITRUNC_MAX_EXTENTS); 1374 if (error) 1375 goto out; 1376 1377 /* free the just unmapped extents */ 1378 error = xfs_defer_finish(&tp); 1379 if (error) 1380 goto out; 1381 } 1382 1383 if (whichfork == XFS_DATA_FORK) { 1384 /* Remove all pending CoW reservations. */ 1385 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1386 first_unmap_block, XFS_MAX_FILEOFF, true); 1387 if (error) 1388 goto out; 1389 1390 xfs_itruncate_clear_reflink_flags(ip); 1391 } 1392 1393 /* 1394 * Always re-log the inode so that our permanent transaction can keep 1395 * on rolling it forward in the log. 1396 */ 1397 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1398 1399 trace_xfs_itruncate_extents_end(ip, new_size); 1400 1401 out: 1402 *tpp = tp; 1403 return error; 1404 } 1405 1406 int 1407 xfs_release( 1408 xfs_inode_t *ip) 1409 { 1410 xfs_mount_t *mp = ip->i_mount; 1411 int error = 0; 1412 1413 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1414 return 0; 1415 1416 /* If this is a read-only mount, don't do this (would generate I/O) */ 1417 if (xfs_is_readonly(mp)) 1418 return 0; 1419 1420 if (!xfs_is_shutdown(mp)) { 1421 int truncated; 1422 1423 /* 1424 * If we previously truncated this file and removed old data 1425 * in the process, we want to initiate "early" writeout on 1426 * the last close. This is an attempt to combat the notorious 1427 * NULL files problem which is particularly noticeable from a 1428 * truncate down, buffered (re-)write (delalloc), followed by 1429 * a crash. What we are effectively doing here is 1430 * significantly reducing the time window where we'd otherwise 1431 * be exposed to that problem. 1432 */ 1433 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1434 if (truncated) { 1435 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1436 if (ip->i_delayed_blks > 0) { 1437 error = filemap_flush(VFS_I(ip)->i_mapping); 1438 if (error) 1439 return error; 1440 } 1441 } 1442 } 1443 1444 if (VFS_I(ip)->i_nlink == 0) 1445 return 0; 1446 1447 /* 1448 * If we can't get the iolock just skip truncating the blocks past EOF 1449 * because we could deadlock with the mmap_lock otherwise. We'll get 1450 * another chance to drop them once the last reference to the inode is 1451 * dropped, so we'll never leak blocks permanently. 1452 */ 1453 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1454 return 0; 1455 1456 if (xfs_can_free_eofblocks(ip, false)) { 1457 /* 1458 * Check if the inode is being opened, written and closed 1459 * frequently and we have delayed allocation blocks outstanding 1460 * (e.g. streaming writes from the NFS server), truncating the 1461 * blocks past EOF will cause fragmentation to occur. 1462 * 1463 * In this case don't do the truncation, but we have to be 1464 * careful how we detect this case. Blocks beyond EOF show up as 1465 * i_delayed_blks even when the inode is clean, so we need to 1466 * truncate them away first before checking for a dirty release. 1467 * Hence on the first dirty close we will still remove the 1468 * speculative allocation, but after that we will leave it in 1469 * place. 1470 */ 1471 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1472 goto out_unlock; 1473 1474 error = xfs_free_eofblocks(ip); 1475 if (error) 1476 goto out_unlock; 1477 1478 /* delalloc blocks after truncation means it really is dirty */ 1479 if (ip->i_delayed_blks) 1480 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1481 } 1482 1483 out_unlock: 1484 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1485 return error; 1486 } 1487 1488 /* 1489 * xfs_inactive_truncate 1490 * 1491 * Called to perform a truncate when an inode becomes unlinked. 1492 */ 1493 STATIC int 1494 xfs_inactive_truncate( 1495 struct xfs_inode *ip) 1496 { 1497 struct xfs_mount *mp = ip->i_mount; 1498 struct xfs_trans *tp; 1499 int error; 1500 1501 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1502 if (error) { 1503 ASSERT(xfs_is_shutdown(mp)); 1504 return error; 1505 } 1506 xfs_ilock(ip, XFS_ILOCK_EXCL); 1507 xfs_trans_ijoin(tp, ip, 0); 1508 1509 /* 1510 * Log the inode size first to prevent stale data exposure in the event 1511 * of a system crash before the truncate completes. See the related 1512 * comment in xfs_vn_setattr_size() for details. 1513 */ 1514 ip->i_disk_size = 0; 1515 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1516 1517 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1518 if (error) 1519 goto error_trans_cancel; 1520 1521 ASSERT(ip->i_df.if_nextents == 0); 1522 1523 error = xfs_trans_commit(tp); 1524 if (error) 1525 goto error_unlock; 1526 1527 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1528 return 0; 1529 1530 error_trans_cancel: 1531 xfs_trans_cancel(tp); 1532 error_unlock: 1533 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1534 return error; 1535 } 1536 1537 /* 1538 * xfs_inactive_ifree() 1539 * 1540 * Perform the inode free when an inode is unlinked. 1541 */ 1542 STATIC int 1543 xfs_inactive_ifree( 1544 struct xfs_inode *ip) 1545 { 1546 struct xfs_mount *mp = ip->i_mount; 1547 struct xfs_trans *tp; 1548 int error; 1549 1550 /* 1551 * We try to use a per-AG reservation for any block needed by the finobt 1552 * tree, but as the finobt feature predates the per-AG reservation 1553 * support a degraded file system might not have enough space for the 1554 * reservation at mount time. In that case try to dip into the reserved 1555 * pool and pray. 1556 * 1557 * Send a warning if the reservation does happen to fail, as the inode 1558 * now remains allocated and sits on the unlinked list until the fs is 1559 * repaired. 1560 */ 1561 if (unlikely(mp->m_finobt_nores)) { 1562 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1563 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1564 &tp); 1565 } else { 1566 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1567 } 1568 if (error) { 1569 if (error == -ENOSPC) { 1570 xfs_warn_ratelimited(mp, 1571 "Failed to remove inode(s) from unlinked list. " 1572 "Please free space, unmount and run xfs_repair."); 1573 } else { 1574 ASSERT(xfs_is_shutdown(mp)); 1575 } 1576 return error; 1577 } 1578 1579 /* 1580 * We do not hold the inode locked across the entire rolling transaction 1581 * here. We only need to hold it for the first transaction that 1582 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1583 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1584 * here breaks the relationship between cluster buffer invalidation and 1585 * stale inode invalidation on cluster buffer item journal commit 1586 * completion, and can result in leaving dirty stale inodes hanging 1587 * around in memory. 1588 * 1589 * We have no need for serialising this inode operation against other 1590 * operations - we freed the inode and hence reallocation is required 1591 * and that will serialise on reallocating the space the deferops need 1592 * to free. Hence we can unlock the inode on the first commit of 1593 * the transaction rather than roll it right through the deferops. This 1594 * avoids relogging the XFS_ISTALE inode. 1595 * 1596 * We check that xfs_ifree() hasn't grown an internal transaction roll 1597 * by asserting that the inode is still locked when it returns. 1598 */ 1599 xfs_ilock(ip, XFS_ILOCK_EXCL); 1600 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1601 1602 error = xfs_ifree(tp, ip); 1603 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1604 if (error) { 1605 /* 1606 * If we fail to free the inode, shut down. The cancel 1607 * might do that, we need to make sure. Otherwise the 1608 * inode might be lost for a long time or forever. 1609 */ 1610 if (!xfs_is_shutdown(mp)) { 1611 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1612 __func__, error); 1613 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1614 } 1615 xfs_trans_cancel(tp); 1616 return error; 1617 } 1618 1619 /* 1620 * Credit the quota account(s). The inode is gone. 1621 */ 1622 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1623 1624 /* 1625 * Just ignore errors at this point. There is nothing we can do except 1626 * to try to keep going. Make sure it's not a silent error. 1627 */ 1628 error = xfs_trans_commit(tp); 1629 if (error) 1630 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1631 __func__, error); 1632 1633 return 0; 1634 } 1635 1636 /* 1637 * Returns true if we need to update the on-disk metadata before we can free 1638 * the memory used by this inode. Updates include freeing post-eof 1639 * preallocations; freeing COW staging extents; and marking the inode free in 1640 * the inobt if it is on the unlinked list. 1641 */ 1642 bool 1643 xfs_inode_needs_inactive( 1644 struct xfs_inode *ip) 1645 { 1646 struct xfs_mount *mp = ip->i_mount; 1647 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 1648 1649 /* 1650 * If the inode is already free, then there can be nothing 1651 * to clean up here. 1652 */ 1653 if (VFS_I(ip)->i_mode == 0) 1654 return false; 1655 1656 /* If this is a read-only mount, don't do this (would generate I/O) */ 1657 if (xfs_is_readonly(mp)) 1658 return false; 1659 1660 /* If the log isn't running, push inodes straight to reclaim. */ 1661 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1662 return false; 1663 1664 /* Metadata inodes require explicit resource cleanup. */ 1665 if (xfs_is_metadata_inode(ip)) 1666 return false; 1667 1668 /* Want to clean out the cow blocks if there are any. */ 1669 if (cow_ifp && cow_ifp->if_bytes > 0) 1670 return true; 1671 1672 /* Unlinked files must be freed. */ 1673 if (VFS_I(ip)->i_nlink == 0) 1674 return true; 1675 1676 /* 1677 * This file isn't being freed, so check if there are post-eof blocks 1678 * to free. @force is true because we are evicting an inode from the 1679 * cache. Post-eof blocks must be freed, lest we end up with broken 1680 * free space accounting. 1681 * 1682 * Note: don't bother with iolock here since lockdep complains about 1683 * acquiring it in reclaim context. We have the only reference to the 1684 * inode at this point anyways. 1685 */ 1686 return xfs_can_free_eofblocks(ip, true); 1687 } 1688 1689 /* 1690 * xfs_inactive 1691 * 1692 * This is called when the vnode reference count for the vnode 1693 * goes to zero. If the file has been unlinked, then it must 1694 * now be truncated. Also, we clear all of the read-ahead state 1695 * kept for the inode here since the file is now closed. 1696 */ 1697 void 1698 xfs_inactive( 1699 xfs_inode_t *ip) 1700 { 1701 struct xfs_mount *mp; 1702 int error; 1703 int truncate = 0; 1704 1705 /* 1706 * If the inode is already free, then there can be nothing 1707 * to clean up here. 1708 */ 1709 if (VFS_I(ip)->i_mode == 0) { 1710 ASSERT(ip->i_df.if_broot_bytes == 0); 1711 goto out; 1712 } 1713 1714 mp = ip->i_mount; 1715 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1716 1717 /* If this is a read-only mount, don't do this (would generate I/O) */ 1718 if (xfs_is_readonly(mp)) 1719 goto out; 1720 1721 /* Metadata inodes require explicit resource cleanup. */ 1722 if (xfs_is_metadata_inode(ip)) 1723 goto out; 1724 1725 /* Try to clean out the cow blocks if there are any. */ 1726 if (xfs_inode_has_cow_data(ip)) 1727 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1728 1729 if (VFS_I(ip)->i_nlink != 0) { 1730 /* 1731 * force is true because we are evicting an inode from the 1732 * cache. Post-eof blocks must be freed, lest we end up with 1733 * broken free space accounting. 1734 * 1735 * Note: don't bother with iolock here since lockdep complains 1736 * about acquiring it in reclaim context. We have the only 1737 * reference to the inode at this point anyways. 1738 */ 1739 if (xfs_can_free_eofblocks(ip, true)) 1740 xfs_free_eofblocks(ip); 1741 1742 goto out; 1743 } 1744 1745 if (S_ISREG(VFS_I(ip)->i_mode) && 1746 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1747 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1748 truncate = 1; 1749 1750 error = xfs_qm_dqattach(ip); 1751 if (error) 1752 goto out; 1753 1754 if (S_ISLNK(VFS_I(ip)->i_mode)) 1755 error = xfs_inactive_symlink(ip); 1756 else if (truncate) 1757 error = xfs_inactive_truncate(ip); 1758 if (error) 1759 goto out; 1760 1761 /* 1762 * If there are attributes associated with the file then blow them away 1763 * now. The code calls a routine that recursively deconstructs the 1764 * attribute fork. If also blows away the in-core attribute fork. 1765 */ 1766 if (xfs_inode_has_attr_fork(ip)) { 1767 error = xfs_attr_inactive(ip); 1768 if (error) 1769 goto out; 1770 } 1771 1772 ASSERT(ip->i_forkoff == 0); 1773 1774 /* 1775 * Free the inode. 1776 */ 1777 xfs_inactive_ifree(ip); 1778 1779 out: 1780 /* 1781 * We're done making metadata updates for this inode, so we can release 1782 * the attached dquots. 1783 */ 1784 xfs_qm_dqdetach(ip); 1785 } 1786 1787 /* 1788 * In-Core Unlinked List Lookups 1789 * ============================= 1790 * 1791 * Every inode is supposed to be reachable from some other piece of metadata 1792 * with the exception of the root directory. Inodes with a connection to a 1793 * file descriptor but not linked from anywhere in the on-disk directory tree 1794 * are collectively known as unlinked inodes, though the filesystem itself 1795 * maintains links to these inodes so that on-disk metadata are consistent. 1796 * 1797 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1798 * header contains a number of buckets that point to an inode, and each inode 1799 * record has a pointer to the next inode in the hash chain. This 1800 * singly-linked list causes scaling problems in the iunlink remove function 1801 * because we must walk that list to find the inode that points to the inode 1802 * being removed from the unlinked hash bucket list. 1803 * 1804 * Hence we keep an in-memory double linked list to link each inode on an 1805 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer 1806 * based lists would require having 64 list heads in the perag, one for each 1807 * list. This is expensive in terms of memory (think millions of AGs) and cache 1808 * misses on lookups. Instead, use the fact that inodes on the unlinked list 1809 * must be referenced at the VFS level to keep them on the list and hence we 1810 * have an existence guarantee for inodes on the unlinked list. 1811 * 1812 * Given we have an existence guarantee, we can use lockless inode cache lookups 1813 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode 1814 * for the double linked unlinked list, and we don't need any extra locking to 1815 * keep the list safe as all manipulations are done under the AGI buffer lock. 1816 * Keeping the list up to date does not require memory allocation, just finding 1817 * the XFS inode and updating the next/prev unlinked list aginos. 1818 */ 1819 1820 /* 1821 * Find an inode on the unlinked list. This does not take references to the 1822 * inode as we have existence guarantees by holding the AGI buffer lock and that 1823 * only unlinked, referenced inodes can be on the unlinked inode list. If we 1824 * don't find the inode in cache, then let the caller handle the situation. 1825 */ 1826 static struct xfs_inode * 1827 xfs_iunlink_lookup( 1828 struct xfs_perag *pag, 1829 xfs_agino_t agino) 1830 { 1831 struct xfs_inode *ip; 1832 1833 rcu_read_lock(); 1834 ip = radix_tree_lookup(&pag->pag_ici_root, agino); 1835 1836 /* 1837 * Inode not in memory or in RCU freeing limbo should not happen. 1838 * Warn about this and let the caller handle the failure. 1839 */ 1840 if (WARN_ON_ONCE(!ip || !ip->i_ino)) { 1841 rcu_read_unlock(); 1842 return NULL; 1843 } 1844 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM)); 1845 rcu_read_unlock(); 1846 return ip; 1847 } 1848 1849 /* Update the prev pointer of the next agino. */ 1850 static int 1851 xfs_iunlink_update_backref( 1852 struct xfs_perag *pag, 1853 xfs_agino_t prev_agino, 1854 xfs_agino_t next_agino) 1855 { 1856 struct xfs_inode *ip; 1857 1858 /* No update necessary if we are at the end of the list. */ 1859 if (next_agino == NULLAGINO) 1860 return 0; 1861 1862 ip = xfs_iunlink_lookup(pag, next_agino); 1863 if (!ip) 1864 return -EFSCORRUPTED; 1865 ip->i_prev_unlinked = prev_agino; 1866 return 0; 1867 } 1868 1869 /* 1870 * Point the AGI unlinked bucket at an inode and log the results. The caller 1871 * is responsible for validating the old value. 1872 */ 1873 STATIC int 1874 xfs_iunlink_update_bucket( 1875 struct xfs_trans *tp, 1876 struct xfs_perag *pag, 1877 struct xfs_buf *agibp, 1878 unsigned int bucket_index, 1879 xfs_agino_t new_agino) 1880 { 1881 struct xfs_agi *agi = agibp->b_addr; 1882 xfs_agino_t old_value; 1883 int offset; 1884 1885 ASSERT(xfs_verify_agino_or_null(pag, new_agino)); 1886 1887 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1888 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 1889 old_value, new_agino); 1890 1891 /* 1892 * We should never find the head of the list already set to the value 1893 * passed in because either we're adding or removing ourselves from the 1894 * head of the list. 1895 */ 1896 if (old_value == new_agino) { 1897 xfs_buf_mark_corrupt(agibp); 1898 return -EFSCORRUPTED; 1899 } 1900 1901 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1902 offset = offsetof(struct xfs_agi, agi_unlinked) + 1903 (sizeof(xfs_agino_t) * bucket_index); 1904 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1905 return 0; 1906 } 1907 1908 static int 1909 xfs_iunlink_insert_inode( 1910 struct xfs_trans *tp, 1911 struct xfs_perag *pag, 1912 struct xfs_buf *agibp, 1913 struct xfs_inode *ip) 1914 { 1915 struct xfs_mount *mp = tp->t_mountp; 1916 struct xfs_agi *agi = agibp->b_addr; 1917 xfs_agino_t next_agino; 1918 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1919 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1920 int error; 1921 1922 /* 1923 * Get the index into the agi hash table for the list this inode will 1924 * go on. Make sure the pointer isn't garbage and that this inode 1925 * isn't already on the list. 1926 */ 1927 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1928 if (next_agino == agino || 1929 !xfs_verify_agino_or_null(pag, next_agino)) { 1930 xfs_buf_mark_corrupt(agibp); 1931 return -EFSCORRUPTED; 1932 } 1933 1934 /* 1935 * Update the prev pointer in the next inode to point back to this 1936 * inode. 1937 */ 1938 error = xfs_iunlink_update_backref(pag, agino, next_agino); 1939 if (error) 1940 return error; 1941 1942 if (next_agino != NULLAGINO) { 1943 /* 1944 * There is already another inode in the bucket, so point this 1945 * inode to the current head of the list. 1946 */ 1947 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino); 1948 if (error) 1949 return error; 1950 ip->i_next_unlinked = next_agino; 1951 } 1952 1953 /* Point the head of the list to point to this inode. */ 1954 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 1955 } 1956 1957 /* 1958 * This is called when the inode's link count has gone to 0 or we are creating 1959 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 1960 * 1961 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1962 * list when the inode is freed. 1963 */ 1964 STATIC int 1965 xfs_iunlink( 1966 struct xfs_trans *tp, 1967 struct xfs_inode *ip) 1968 { 1969 struct xfs_mount *mp = tp->t_mountp; 1970 struct xfs_perag *pag; 1971 struct xfs_buf *agibp; 1972 int error; 1973 1974 ASSERT(VFS_I(ip)->i_nlink == 0); 1975 ASSERT(VFS_I(ip)->i_mode != 0); 1976 trace_xfs_iunlink(ip); 1977 1978 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 1979 1980 /* Get the agi buffer first. It ensures lock ordering on the list. */ 1981 error = xfs_read_agi(pag, tp, &agibp); 1982 if (error) 1983 goto out; 1984 1985 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip); 1986 out: 1987 xfs_perag_put(pag); 1988 return error; 1989 } 1990 1991 static int 1992 xfs_iunlink_remove_inode( 1993 struct xfs_trans *tp, 1994 struct xfs_perag *pag, 1995 struct xfs_buf *agibp, 1996 struct xfs_inode *ip) 1997 { 1998 struct xfs_mount *mp = tp->t_mountp; 1999 struct xfs_agi *agi = agibp->b_addr; 2000 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2001 xfs_agino_t head_agino; 2002 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2003 int error; 2004 2005 trace_xfs_iunlink_remove(ip); 2006 2007 /* 2008 * Get the index into the agi hash table for the list this inode will 2009 * go on. Make sure the head pointer isn't garbage. 2010 */ 2011 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2012 if (!xfs_verify_agino(pag, head_agino)) { 2013 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2014 agi, sizeof(*agi)); 2015 return -EFSCORRUPTED; 2016 } 2017 2018 /* 2019 * Set our inode's next_unlinked pointer to NULL and then return 2020 * the old pointer value so that we can update whatever was previous 2021 * to us in the list to point to whatever was next in the list. 2022 */ 2023 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO); 2024 if (error) 2025 return error; 2026 2027 /* 2028 * Update the prev pointer in the next inode to point back to previous 2029 * inode in the chain. 2030 */ 2031 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked, 2032 ip->i_next_unlinked); 2033 if (error) 2034 return error; 2035 2036 if (head_agino != agino) { 2037 struct xfs_inode *prev_ip; 2038 2039 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked); 2040 if (!prev_ip) 2041 return -EFSCORRUPTED; 2042 2043 error = xfs_iunlink_log_inode(tp, prev_ip, pag, 2044 ip->i_next_unlinked); 2045 prev_ip->i_next_unlinked = ip->i_next_unlinked; 2046 } else { 2047 /* Point the head of the list to the next unlinked inode. */ 2048 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2049 ip->i_next_unlinked); 2050 } 2051 2052 ip->i_next_unlinked = NULLAGINO; 2053 ip->i_prev_unlinked = NULLAGINO; 2054 return error; 2055 } 2056 2057 /* 2058 * Pull the on-disk inode from the AGI unlinked list. 2059 */ 2060 STATIC int 2061 xfs_iunlink_remove( 2062 struct xfs_trans *tp, 2063 struct xfs_perag *pag, 2064 struct xfs_inode *ip) 2065 { 2066 struct xfs_buf *agibp; 2067 int error; 2068 2069 trace_xfs_iunlink_remove(ip); 2070 2071 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2072 error = xfs_read_agi(pag, tp, &agibp); 2073 if (error) 2074 return error; 2075 2076 return xfs_iunlink_remove_inode(tp, pag, agibp, ip); 2077 } 2078 2079 /* 2080 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2081 * mark it stale. We should only find clean inodes in this lookup that aren't 2082 * already stale. 2083 */ 2084 static void 2085 xfs_ifree_mark_inode_stale( 2086 struct xfs_perag *pag, 2087 struct xfs_inode *free_ip, 2088 xfs_ino_t inum) 2089 { 2090 struct xfs_mount *mp = pag->pag_mount; 2091 struct xfs_inode_log_item *iip; 2092 struct xfs_inode *ip; 2093 2094 retry: 2095 rcu_read_lock(); 2096 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2097 2098 /* Inode not in memory, nothing to do */ 2099 if (!ip) { 2100 rcu_read_unlock(); 2101 return; 2102 } 2103 2104 /* 2105 * because this is an RCU protected lookup, we could find a recently 2106 * freed or even reallocated inode during the lookup. We need to check 2107 * under the i_flags_lock for a valid inode here. Skip it if it is not 2108 * valid, the wrong inode or stale. 2109 */ 2110 spin_lock(&ip->i_flags_lock); 2111 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2112 goto out_iflags_unlock; 2113 2114 /* 2115 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2116 * other inodes that we did not find in the list attached to the buffer 2117 * and are not already marked stale. If we can't lock it, back off and 2118 * retry. 2119 */ 2120 if (ip != free_ip) { 2121 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2122 spin_unlock(&ip->i_flags_lock); 2123 rcu_read_unlock(); 2124 delay(1); 2125 goto retry; 2126 } 2127 } 2128 ip->i_flags |= XFS_ISTALE; 2129 2130 /* 2131 * If the inode is flushing, it is already attached to the buffer. All 2132 * we needed to do here is mark the inode stale so buffer IO completion 2133 * will remove it from the AIL. 2134 */ 2135 iip = ip->i_itemp; 2136 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2137 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2138 ASSERT(iip->ili_last_fields); 2139 goto out_iunlock; 2140 } 2141 2142 /* 2143 * Inodes not attached to the buffer can be released immediately. 2144 * Everything else has to go through xfs_iflush_abort() on journal 2145 * commit as the flock synchronises removal of the inode from the 2146 * cluster buffer against inode reclaim. 2147 */ 2148 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2149 goto out_iunlock; 2150 2151 __xfs_iflags_set(ip, XFS_IFLUSHING); 2152 spin_unlock(&ip->i_flags_lock); 2153 rcu_read_unlock(); 2154 2155 /* we have a dirty inode in memory that has not yet been flushed. */ 2156 spin_lock(&iip->ili_lock); 2157 iip->ili_last_fields = iip->ili_fields; 2158 iip->ili_fields = 0; 2159 iip->ili_fsync_fields = 0; 2160 spin_unlock(&iip->ili_lock); 2161 ASSERT(iip->ili_last_fields); 2162 2163 if (ip != free_ip) 2164 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2165 return; 2166 2167 out_iunlock: 2168 if (ip != free_ip) 2169 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2170 out_iflags_unlock: 2171 spin_unlock(&ip->i_flags_lock); 2172 rcu_read_unlock(); 2173 } 2174 2175 /* 2176 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2177 * inodes that are in memory - they all must be marked stale and attached to 2178 * the cluster buffer. 2179 */ 2180 static int 2181 xfs_ifree_cluster( 2182 struct xfs_trans *tp, 2183 struct xfs_perag *pag, 2184 struct xfs_inode *free_ip, 2185 struct xfs_icluster *xic) 2186 { 2187 struct xfs_mount *mp = free_ip->i_mount; 2188 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2189 struct xfs_buf *bp; 2190 xfs_daddr_t blkno; 2191 xfs_ino_t inum = xic->first_ino; 2192 int nbufs; 2193 int i, j; 2194 int ioffset; 2195 int error; 2196 2197 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2198 2199 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2200 /* 2201 * The allocation bitmap tells us which inodes of the chunk were 2202 * physically allocated. Skip the cluster if an inode falls into 2203 * a sparse region. 2204 */ 2205 ioffset = inum - xic->first_ino; 2206 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2207 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2208 continue; 2209 } 2210 2211 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2212 XFS_INO_TO_AGBNO(mp, inum)); 2213 2214 /* 2215 * We obtain and lock the backing buffer first in the process 2216 * here to ensure dirty inodes attached to the buffer remain in 2217 * the flushing state while we mark them stale. 2218 * 2219 * If we scan the in-memory inodes first, then buffer IO can 2220 * complete before we get a lock on it, and hence we may fail 2221 * to mark all the active inodes on the buffer stale. 2222 */ 2223 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2224 mp->m_bsize * igeo->blocks_per_cluster, 2225 XBF_UNMAPPED, &bp); 2226 if (error) 2227 return error; 2228 2229 /* 2230 * This buffer may not have been correctly initialised as we 2231 * didn't read it from disk. That's not important because we are 2232 * only using to mark the buffer as stale in the log, and to 2233 * attach stale cached inodes on it. That means it will never be 2234 * dispatched for IO. If it is, we want to know about it, and we 2235 * want it to fail. We can acheive this by adding a write 2236 * verifier to the buffer. 2237 */ 2238 bp->b_ops = &xfs_inode_buf_ops; 2239 2240 /* 2241 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2242 * too. This requires lookups, and will skip inodes that we've 2243 * already marked XFS_ISTALE. 2244 */ 2245 for (i = 0; i < igeo->inodes_per_cluster; i++) 2246 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2247 2248 xfs_trans_stale_inode_buf(tp, bp); 2249 xfs_trans_binval(tp, bp); 2250 } 2251 return 0; 2252 } 2253 2254 /* 2255 * This is called to return an inode to the inode free list. The inode should 2256 * already be truncated to 0 length and have no pages associated with it. This 2257 * routine also assumes that the inode is already a part of the transaction. 2258 * 2259 * The on-disk copy of the inode will have been added to the list of unlinked 2260 * inodes in the AGI. We need to remove the inode from that list atomically with 2261 * respect to freeing it here. 2262 */ 2263 int 2264 xfs_ifree( 2265 struct xfs_trans *tp, 2266 struct xfs_inode *ip) 2267 { 2268 struct xfs_mount *mp = ip->i_mount; 2269 struct xfs_perag *pag; 2270 struct xfs_icluster xic = { 0 }; 2271 struct xfs_inode_log_item *iip = ip->i_itemp; 2272 int error; 2273 2274 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2275 ASSERT(VFS_I(ip)->i_nlink == 0); 2276 ASSERT(ip->i_df.if_nextents == 0); 2277 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2278 ASSERT(ip->i_nblocks == 0); 2279 2280 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2281 2282 /* 2283 * Free the inode first so that we guarantee that the AGI lock is going 2284 * to be taken before we remove the inode from the unlinked list. This 2285 * makes the AGI lock -> unlinked list modification order the same as 2286 * used in O_TMPFILE creation. 2287 */ 2288 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2289 if (error) 2290 goto out; 2291 2292 error = xfs_iunlink_remove(tp, pag, ip); 2293 if (error) 2294 goto out; 2295 2296 /* 2297 * Free any local-format data sitting around before we reset the 2298 * data fork to extents format. Note that the attr fork data has 2299 * already been freed by xfs_attr_inactive. 2300 */ 2301 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2302 kmem_free(ip->i_df.if_u1.if_data); 2303 ip->i_df.if_u1.if_data = NULL; 2304 ip->i_df.if_bytes = 0; 2305 } 2306 2307 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2308 ip->i_diflags = 0; 2309 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2310 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2311 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2312 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2313 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2314 2315 /* Don't attempt to replay owner changes for a deleted inode */ 2316 spin_lock(&iip->ili_lock); 2317 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2318 spin_unlock(&iip->ili_lock); 2319 2320 /* 2321 * Bump the generation count so no one will be confused 2322 * by reincarnations of this inode. 2323 */ 2324 VFS_I(ip)->i_generation++; 2325 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2326 2327 if (xic.deleted) 2328 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2329 out: 2330 xfs_perag_put(pag); 2331 return error; 2332 } 2333 2334 /* 2335 * This is called to unpin an inode. The caller must have the inode locked 2336 * in at least shared mode so that the buffer cannot be subsequently pinned 2337 * once someone is waiting for it to be unpinned. 2338 */ 2339 static void 2340 xfs_iunpin( 2341 struct xfs_inode *ip) 2342 { 2343 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2344 2345 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2346 2347 /* Give the log a push to start the unpinning I/O */ 2348 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2349 2350 } 2351 2352 static void 2353 __xfs_iunpin_wait( 2354 struct xfs_inode *ip) 2355 { 2356 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2357 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2358 2359 xfs_iunpin(ip); 2360 2361 do { 2362 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2363 if (xfs_ipincount(ip)) 2364 io_schedule(); 2365 } while (xfs_ipincount(ip)); 2366 finish_wait(wq, &wait.wq_entry); 2367 } 2368 2369 void 2370 xfs_iunpin_wait( 2371 struct xfs_inode *ip) 2372 { 2373 if (xfs_ipincount(ip)) 2374 __xfs_iunpin_wait(ip); 2375 } 2376 2377 /* 2378 * Removing an inode from the namespace involves removing the directory entry 2379 * and dropping the link count on the inode. Removing the directory entry can 2380 * result in locking an AGF (directory blocks were freed) and removing a link 2381 * count can result in placing the inode on an unlinked list which results in 2382 * locking an AGI. 2383 * 2384 * The big problem here is that we have an ordering constraint on AGF and AGI 2385 * locking - inode allocation locks the AGI, then can allocate a new extent for 2386 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2387 * removes the inode from the unlinked list, requiring that we lock the AGI 2388 * first, and then freeing the inode can result in an inode chunk being freed 2389 * and hence freeing disk space requiring that we lock an AGF. 2390 * 2391 * Hence the ordering that is imposed by other parts of the code is AGI before 2392 * AGF. This means we cannot remove the directory entry before we drop the inode 2393 * reference count and put it on the unlinked list as this results in a lock 2394 * order of AGF then AGI, and this can deadlock against inode allocation and 2395 * freeing. Therefore we must drop the link counts before we remove the 2396 * directory entry. 2397 * 2398 * This is still safe from a transactional point of view - it is not until we 2399 * get to xfs_defer_finish() that we have the possibility of multiple 2400 * transactions in this operation. Hence as long as we remove the directory 2401 * entry and drop the link count in the first transaction of the remove 2402 * operation, there are no transactional constraints on the ordering here. 2403 */ 2404 int 2405 xfs_remove( 2406 xfs_inode_t *dp, 2407 struct xfs_name *name, 2408 xfs_inode_t *ip) 2409 { 2410 xfs_mount_t *mp = dp->i_mount; 2411 xfs_trans_t *tp = NULL; 2412 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2413 int dontcare; 2414 int error = 0; 2415 uint resblks; 2416 2417 trace_xfs_remove(dp, name); 2418 2419 if (xfs_is_shutdown(mp)) 2420 return -EIO; 2421 2422 error = xfs_qm_dqattach(dp); 2423 if (error) 2424 goto std_return; 2425 2426 error = xfs_qm_dqattach(ip); 2427 if (error) 2428 goto std_return; 2429 2430 /* 2431 * We try to get the real space reservation first, allowing for 2432 * directory btree deletion(s) implying possible bmap insert(s). If we 2433 * can't get the space reservation then we use 0 instead, and avoid the 2434 * bmap btree insert(s) in the directory code by, if the bmap insert 2435 * tries to happen, instead trimming the LAST block from the directory. 2436 * 2437 * Ignore EDQUOT and ENOSPC being returned via nospace_error because 2438 * the directory code can handle a reservationless update and we don't 2439 * want to prevent a user from trying to free space by deleting things. 2440 */ 2441 resblks = XFS_REMOVE_SPACE_RES(mp); 2442 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks, 2443 &tp, &dontcare); 2444 if (error) { 2445 ASSERT(error != -ENOSPC); 2446 goto std_return; 2447 } 2448 2449 /* 2450 * If we're removing a directory perform some additional validation. 2451 */ 2452 if (is_dir) { 2453 ASSERT(VFS_I(ip)->i_nlink >= 2); 2454 if (VFS_I(ip)->i_nlink != 2) { 2455 error = -ENOTEMPTY; 2456 goto out_trans_cancel; 2457 } 2458 if (!xfs_dir_isempty(ip)) { 2459 error = -ENOTEMPTY; 2460 goto out_trans_cancel; 2461 } 2462 2463 /* Drop the link from ip's "..". */ 2464 error = xfs_droplink(tp, dp); 2465 if (error) 2466 goto out_trans_cancel; 2467 2468 /* Drop the "." link from ip to self. */ 2469 error = xfs_droplink(tp, ip); 2470 if (error) 2471 goto out_trans_cancel; 2472 2473 /* 2474 * Point the unlinked child directory's ".." entry to the root 2475 * directory to eliminate back-references to inodes that may 2476 * get freed before the child directory is closed. If the fs 2477 * gets shrunk, this can lead to dirent inode validation errors. 2478 */ 2479 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2480 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2481 tp->t_mountp->m_sb.sb_rootino, 0); 2482 if (error) 2483 return error; 2484 } 2485 } else { 2486 /* 2487 * When removing a non-directory we need to log the parent 2488 * inode here. For a directory this is done implicitly 2489 * by the xfs_droplink call for the ".." entry. 2490 */ 2491 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2492 } 2493 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2494 2495 /* Drop the link from dp to ip. */ 2496 error = xfs_droplink(tp, ip); 2497 if (error) 2498 goto out_trans_cancel; 2499 2500 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2501 if (error) { 2502 ASSERT(error != -ENOENT); 2503 goto out_trans_cancel; 2504 } 2505 2506 /* 2507 * If this is a synchronous mount, make sure that the 2508 * remove transaction goes to disk before returning to 2509 * the user. 2510 */ 2511 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2512 xfs_trans_set_sync(tp); 2513 2514 error = xfs_trans_commit(tp); 2515 if (error) 2516 goto std_return; 2517 2518 if (is_dir && xfs_inode_is_filestream(ip)) 2519 xfs_filestream_deassociate(ip); 2520 2521 return 0; 2522 2523 out_trans_cancel: 2524 xfs_trans_cancel(tp); 2525 std_return: 2526 return error; 2527 } 2528 2529 /* 2530 * Enter all inodes for a rename transaction into a sorted array. 2531 */ 2532 #define __XFS_SORT_INODES 5 2533 STATIC void 2534 xfs_sort_for_rename( 2535 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2536 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2537 struct xfs_inode *ip1, /* in: inode of old entry */ 2538 struct xfs_inode *ip2, /* in: inode of new entry */ 2539 struct xfs_inode *wip, /* in: whiteout inode */ 2540 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2541 int *num_inodes) /* in/out: inodes in array */ 2542 { 2543 int i, j; 2544 2545 ASSERT(*num_inodes == __XFS_SORT_INODES); 2546 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2547 2548 /* 2549 * i_tab contains a list of pointers to inodes. We initialize 2550 * the table here & we'll sort it. We will then use it to 2551 * order the acquisition of the inode locks. 2552 * 2553 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2554 */ 2555 i = 0; 2556 i_tab[i++] = dp1; 2557 i_tab[i++] = dp2; 2558 i_tab[i++] = ip1; 2559 if (ip2) 2560 i_tab[i++] = ip2; 2561 if (wip) 2562 i_tab[i++] = wip; 2563 *num_inodes = i; 2564 2565 /* 2566 * Sort the elements via bubble sort. (Remember, there are at 2567 * most 5 elements to sort, so this is adequate.) 2568 */ 2569 for (i = 0; i < *num_inodes; i++) { 2570 for (j = 1; j < *num_inodes; j++) { 2571 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2572 struct xfs_inode *temp = i_tab[j]; 2573 i_tab[j] = i_tab[j-1]; 2574 i_tab[j-1] = temp; 2575 } 2576 } 2577 } 2578 } 2579 2580 static int 2581 xfs_finish_rename( 2582 struct xfs_trans *tp) 2583 { 2584 /* 2585 * If this is a synchronous mount, make sure that the rename transaction 2586 * goes to disk before returning to the user. 2587 */ 2588 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2589 xfs_trans_set_sync(tp); 2590 2591 return xfs_trans_commit(tp); 2592 } 2593 2594 /* 2595 * xfs_cross_rename() 2596 * 2597 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2598 */ 2599 STATIC int 2600 xfs_cross_rename( 2601 struct xfs_trans *tp, 2602 struct xfs_inode *dp1, 2603 struct xfs_name *name1, 2604 struct xfs_inode *ip1, 2605 struct xfs_inode *dp2, 2606 struct xfs_name *name2, 2607 struct xfs_inode *ip2, 2608 int spaceres) 2609 { 2610 int error = 0; 2611 int ip1_flags = 0; 2612 int ip2_flags = 0; 2613 int dp2_flags = 0; 2614 2615 /* Swap inode number for dirent in first parent */ 2616 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2617 if (error) 2618 goto out_trans_abort; 2619 2620 /* Swap inode number for dirent in second parent */ 2621 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2622 if (error) 2623 goto out_trans_abort; 2624 2625 /* 2626 * If we're renaming one or more directories across different parents, 2627 * update the respective ".." entries (and link counts) to match the new 2628 * parents. 2629 */ 2630 if (dp1 != dp2) { 2631 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2632 2633 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2634 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2635 dp1->i_ino, spaceres); 2636 if (error) 2637 goto out_trans_abort; 2638 2639 /* transfer ip2 ".." reference to dp1 */ 2640 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2641 error = xfs_droplink(tp, dp2); 2642 if (error) 2643 goto out_trans_abort; 2644 xfs_bumplink(tp, dp1); 2645 } 2646 2647 /* 2648 * Although ip1 isn't changed here, userspace needs 2649 * to be warned about the change, so that applications 2650 * relying on it (like backup ones), will properly 2651 * notify the change 2652 */ 2653 ip1_flags |= XFS_ICHGTIME_CHG; 2654 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2655 } 2656 2657 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2658 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2659 dp2->i_ino, spaceres); 2660 if (error) 2661 goto out_trans_abort; 2662 2663 /* transfer ip1 ".." reference to dp2 */ 2664 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2665 error = xfs_droplink(tp, dp1); 2666 if (error) 2667 goto out_trans_abort; 2668 xfs_bumplink(tp, dp2); 2669 } 2670 2671 /* 2672 * Although ip2 isn't changed here, userspace needs 2673 * to be warned about the change, so that applications 2674 * relying on it (like backup ones), will properly 2675 * notify the change 2676 */ 2677 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2678 ip2_flags |= XFS_ICHGTIME_CHG; 2679 } 2680 } 2681 2682 if (ip1_flags) { 2683 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2684 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2685 } 2686 if (ip2_flags) { 2687 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2688 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2689 } 2690 if (dp2_flags) { 2691 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2692 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2693 } 2694 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2695 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2696 return xfs_finish_rename(tp); 2697 2698 out_trans_abort: 2699 xfs_trans_cancel(tp); 2700 return error; 2701 } 2702 2703 /* 2704 * xfs_rename_alloc_whiteout() 2705 * 2706 * Return a referenced, unlinked, unlocked inode that can be used as a 2707 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2708 * crash between allocating the inode and linking it into the rename transaction 2709 * recovery will free the inode and we won't leak it. 2710 */ 2711 static int 2712 xfs_rename_alloc_whiteout( 2713 struct user_namespace *mnt_userns, 2714 struct xfs_name *src_name, 2715 struct xfs_inode *dp, 2716 struct xfs_inode **wip) 2717 { 2718 struct xfs_inode *tmpfile; 2719 struct qstr name; 2720 int error; 2721 2722 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 2723 &tmpfile); 2724 if (error) 2725 return error; 2726 2727 name.name = src_name->name; 2728 name.len = src_name->len; 2729 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name); 2730 if (error) { 2731 xfs_finish_inode_setup(tmpfile); 2732 xfs_irele(tmpfile); 2733 return error; 2734 } 2735 2736 /* 2737 * Prepare the tmpfile inode as if it were created through the VFS. 2738 * Complete the inode setup and flag it as linkable. nlink is already 2739 * zero, so we can skip the drop_nlink. 2740 */ 2741 xfs_setup_iops(tmpfile); 2742 xfs_finish_inode_setup(tmpfile); 2743 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2744 2745 *wip = tmpfile; 2746 return 0; 2747 } 2748 2749 /* 2750 * xfs_rename 2751 */ 2752 int 2753 xfs_rename( 2754 struct user_namespace *mnt_userns, 2755 struct xfs_inode *src_dp, 2756 struct xfs_name *src_name, 2757 struct xfs_inode *src_ip, 2758 struct xfs_inode *target_dp, 2759 struct xfs_name *target_name, 2760 struct xfs_inode *target_ip, 2761 unsigned int flags) 2762 { 2763 struct xfs_mount *mp = src_dp->i_mount; 2764 struct xfs_trans *tp; 2765 struct xfs_inode *wip = NULL; /* whiteout inode */ 2766 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2767 int i; 2768 int num_inodes = __XFS_SORT_INODES; 2769 bool new_parent = (src_dp != target_dp); 2770 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2771 int spaceres; 2772 bool retried = false; 2773 int error, nospace_error = 0; 2774 2775 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2776 2777 if ((flags & RENAME_EXCHANGE) && !target_ip) 2778 return -EINVAL; 2779 2780 /* 2781 * If we are doing a whiteout operation, allocate the whiteout inode 2782 * we will be placing at the target and ensure the type is set 2783 * appropriately. 2784 */ 2785 if (flags & RENAME_WHITEOUT) { 2786 error = xfs_rename_alloc_whiteout(mnt_userns, src_name, 2787 target_dp, &wip); 2788 if (error) 2789 return error; 2790 2791 /* setup target dirent info as whiteout */ 2792 src_name->type = XFS_DIR3_FT_CHRDEV; 2793 } 2794 2795 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2796 inodes, &num_inodes); 2797 2798 retry: 2799 nospace_error = 0; 2800 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2801 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2802 if (error == -ENOSPC) { 2803 nospace_error = error; 2804 spaceres = 0; 2805 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2806 &tp); 2807 } 2808 if (error) 2809 goto out_release_wip; 2810 2811 /* 2812 * Attach the dquots to the inodes 2813 */ 2814 error = xfs_qm_vop_rename_dqattach(inodes); 2815 if (error) 2816 goto out_trans_cancel; 2817 2818 /* 2819 * Lock all the participating inodes. Depending upon whether 2820 * the target_name exists in the target directory, and 2821 * whether the target directory is the same as the source 2822 * directory, we can lock from 2 to 4 inodes. 2823 */ 2824 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2825 2826 /* 2827 * Join all the inodes to the transaction. From this point on, 2828 * we can rely on either trans_commit or trans_cancel to unlock 2829 * them. 2830 */ 2831 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2832 if (new_parent) 2833 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2834 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2835 if (target_ip) 2836 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2837 if (wip) 2838 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2839 2840 /* 2841 * If we are using project inheritance, we only allow renames 2842 * into our tree when the project IDs are the same; else the 2843 * tree quota mechanism would be circumvented. 2844 */ 2845 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 2846 target_dp->i_projid != src_ip->i_projid)) { 2847 error = -EXDEV; 2848 goto out_trans_cancel; 2849 } 2850 2851 /* RENAME_EXCHANGE is unique from here on. */ 2852 if (flags & RENAME_EXCHANGE) 2853 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 2854 target_dp, target_name, target_ip, 2855 spaceres); 2856 2857 /* 2858 * Try to reserve quota to handle an expansion of the target directory. 2859 * We'll allow the rename to continue in reservationless mode if we hit 2860 * a space usage constraint. If we trigger reservationless mode, save 2861 * the errno if there isn't any free space in the target directory. 2862 */ 2863 if (spaceres != 0) { 2864 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres, 2865 0, false); 2866 if (error == -EDQUOT || error == -ENOSPC) { 2867 if (!retried) { 2868 xfs_trans_cancel(tp); 2869 xfs_blockgc_free_quota(target_dp, 0); 2870 retried = true; 2871 goto retry; 2872 } 2873 2874 nospace_error = error; 2875 spaceres = 0; 2876 error = 0; 2877 } 2878 if (error) 2879 goto out_trans_cancel; 2880 } 2881 2882 /* 2883 * Check for expected errors before we dirty the transaction 2884 * so we can return an error without a transaction abort. 2885 */ 2886 if (target_ip == NULL) { 2887 /* 2888 * If there's no space reservation, check the entry will 2889 * fit before actually inserting it. 2890 */ 2891 if (!spaceres) { 2892 error = xfs_dir_canenter(tp, target_dp, target_name); 2893 if (error) 2894 goto out_trans_cancel; 2895 } 2896 } else { 2897 /* 2898 * If target exists and it's a directory, check that whether 2899 * it can be destroyed. 2900 */ 2901 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 2902 (!xfs_dir_isempty(target_ip) || 2903 (VFS_I(target_ip)->i_nlink > 2))) { 2904 error = -EEXIST; 2905 goto out_trans_cancel; 2906 } 2907 } 2908 2909 /* 2910 * Lock the AGI buffers we need to handle bumping the nlink of the 2911 * whiteout inode off the unlinked list and to handle dropping the 2912 * nlink of the target inode. Per locking order rules, do this in 2913 * increasing AG order and before directory block allocation tries to 2914 * grab AGFs because we grab AGIs before AGFs. 2915 * 2916 * The (vfs) caller must ensure that if src is a directory then 2917 * target_ip is either null or an empty directory. 2918 */ 2919 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 2920 if (inodes[i] == wip || 2921 (inodes[i] == target_ip && 2922 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 2923 struct xfs_perag *pag; 2924 struct xfs_buf *bp; 2925 2926 pag = xfs_perag_get(mp, 2927 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino)); 2928 error = xfs_read_agi(pag, tp, &bp); 2929 xfs_perag_put(pag); 2930 if (error) 2931 goto out_trans_cancel; 2932 } 2933 } 2934 2935 /* 2936 * Directory entry creation below may acquire the AGF. Remove 2937 * the whiteout from the unlinked list first to preserve correct 2938 * AGI/AGF locking order. This dirties the transaction so failures 2939 * after this point will abort and log recovery will clean up the 2940 * mess. 2941 * 2942 * For whiteouts, we need to bump the link count on the whiteout 2943 * inode. After this point, we have a real link, clear the tmpfile 2944 * state flag from the inode so it doesn't accidentally get misused 2945 * in future. 2946 */ 2947 if (wip) { 2948 struct xfs_perag *pag; 2949 2950 ASSERT(VFS_I(wip)->i_nlink == 0); 2951 2952 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 2953 error = xfs_iunlink_remove(tp, pag, wip); 2954 xfs_perag_put(pag); 2955 if (error) 2956 goto out_trans_cancel; 2957 2958 xfs_bumplink(tp, wip); 2959 VFS_I(wip)->i_state &= ~I_LINKABLE; 2960 } 2961 2962 /* 2963 * Set up the target. 2964 */ 2965 if (target_ip == NULL) { 2966 /* 2967 * If target does not exist and the rename crosses 2968 * directories, adjust the target directory link count 2969 * to account for the ".." reference from the new entry. 2970 */ 2971 error = xfs_dir_createname(tp, target_dp, target_name, 2972 src_ip->i_ino, spaceres); 2973 if (error) 2974 goto out_trans_cancel; 2975 2976 xfs_trans_ichgtime(tp, target_dp, 2977 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2978 2979 if (new_parent && src_is_directory) { 2980 xfs_bumplink(tp, target_dp); 2981 } 2982 } else { /* target_ip != NULL */ 2983 /* 2984 * Link the source inode under the target name. 2985 * If the source inode is a directory and we are moving 2986 * it across directories, its ".." entry will be 2987 * inconsistent until we replace that down below. 2988 * 2989 * In case there is already an entry with the same 2990 * name at the destination directory, remove it first. 2991 */ 2992 error = xfs_dir_replace(tp, target_dp, target_name, 2993 src_ip->i_ino, spaceres); 2994 if (error) 2995 goto out_trans_cancel; 2996 2997 xfs_trans_ichgtime(tp, target_dp, 2998 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2999 3000 /* 3001 * Decrement the link count on the target since the target 3002 * dir no longer points to it. 3003 */ 3004 error = xfs_droplink(tp, target_ip); 3005 if (error) 3006 goto out_trans_cancel; 3007 3008 if (src_is_directory) { 3009 /* 3010 * Drop the link from the old "." entry. 3011 */ 3012 error = xfs_droplink(tp, target_ip); 3013 if (error) 3014 goto out_trans_cancel; 3015 } 3016 } /* target_ip != NULL */ 3017 3018 /* 3019 * Remove the source. 3020 */ 3021 if (new_parent && src_is_directory) { 3022 /* 3023 * Rewrite the ".." entry to point to the new 3024 * directory. 3025 */ 3026 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3027 target_dp->i_ino, spaceres); 3028 ASSERT(error != -EEXIST); 3029 if (error) 3030 goto out_trans_cancel; 3031 } 3032 3033 /* 3034 * We always want to hit the ctime on the source inode. 3035 * 3036 * This isn't strictly required by the standards since the source 3037 * inode isn't really being changed, but old unix file systems did 3038 * it and some incremental backup programs won't work without it. 3039 */ 3040 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3041 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3042 3043 /* 3044 * Adjust the link count on src_dp. This is necessary when 3045 * renaming a directory, either within one parent when 3046 * the target existed, or across two parent directories. 3047 */ 3048 if (src_is_directory && (new_parent || target_ip != NULL)) { 3049 3050 /* 3051 * Decrement link count on src_directory since the 3052 * entry that's moved no longer points to it. 3053 */ 3054 error = xfs_droplink(tp, src_dp); 3055 if (error) 3056 goto out_trans_cancel; 3057 } 3058 3059 /* 3060 * For whiteouts, we only need to update the source dirent with the 3061 * inode number of the whiteout inode rather than removing it 3062 * altogether. 3063 */ 3064 if (wip) 3065 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3066 spaceres); 3067 else 3068 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3069 spaceres); 3070 3071 if (error) 3072 goto out_trans_cancel; 3073 3074 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3075 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3076 if (new_parent) 3077 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3078 3079 error = xfs_finish_rename(tp); 3080 if (wip) 3081 xfs_irele(wip); 3082 return error; 3083 3084 out_trans_cancel: 3085 xfs_trans_cancel(tp); 3086 out_release_wip: 3087 if (wip) 3088 xfs_irele(wip); 3089 if (error == -ENOSPC && nospace_error) 3090 error = nospace_error; 3091 return error; 3092 } 3093 3094 static int 3095 xfs_iflush( 3096 struct xfs_inode *ip, 3097 struct xfs_buf *bp) 3098 { 3099 struct xfs_inode_log_item *iip = ip->i_itemp; 3100 struct xfs_dinode *dip; 3101 struct xfs_mount *mp = ip->i_mount; 3102 int error; 3103 3104 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3105 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3106 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3107 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3108 ASSERT(iip->ili_item.li_buf == bp); 3109 3110 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3111 3112 /* 3113 * We don't flush the inode if any of the following checks fail, but we 3114 * do still update the log item and attach to the backing buffer as if 3115 * the flush happened. This is a formality to facilitate predictable 3116 * error handling as the caller will shutdown and fail the buffer. 3117 */ 3118 error = -EFSCORRUPTED; 3119 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3120 mp, XFS_ERRTAG_IFLUSH_1)) { 3121 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3122 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3123 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3124 goto flush_out; 3125 } 3126 if (S_ISREG(VFS_I(ip)->i_mode)) { 3127 if (XFS_TEST_ERROR( 3128 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3129 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3130 mp, XFS_ERRTAG_IFLUSH_3)) { 3131 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3132 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3133 __func__, ip->i_ino, ip); 3134 goto flush_out; 3135 } 3136 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3137 if (XFS_TEST_ERROR( 3138 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3139 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3140 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3141 mp, XFS_ERRTAG_IFLUSH_4)) { 3142 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3143 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3144 __func__, ip->i_ino, ip); 3145 goto flush_out; 3146 } 3147 } 3148 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) > 3149 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3150 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3151 "%s: detected corrupt incore inode %llu, " 3152 "total extents = %llu nblocks = %lld, ptr "PTR_FMT, 3153 __func__, ip->i_ino, 3154 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af), 3155 ip->i_nblocks, ip); 3156 goto flush_out; 3157 } 3158 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3159 mp, XFS_ERRTAG_IFLUSH_6)) { 3160 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3161 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3162 __func__, ip->i_ino, ip->i_forkoff, ip); 3163 goto flush_out; 3164 } 3165 3166 /* 3167 * Inode item log recovery for v2 inodes are dependent on the flushiter 3168 * count for correct sequencing. We bump the flush iteration count so 3169 * we can detect flushes which postdate a log record during recovery. 3170 * This is redundant as we now log every change and hence this can't 3171 * happen but we need to still do it to ensure backwards compatibility 3172 * with old kernels that predate logging all inode changes. 3173 */ 3174 if (!xfs_has_v3inodes(mp)) 3175 ip->i_flushiter++; 3176 3177 /* 3178 * If there are inline format data / attr forks attached to this inode, 3179 * make sure they are not corrupt. 3180 */ 3181 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3182 xfs_ifork_verify_local_data(ip)) 3183 goto flush_out; 3184 if (xfs_inode_has_attr_fork(ip) && 3185 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL && 3186 xfs_ifork_verify_local_attr(ip)) 3187 goto flush_out; 3188 3189 /* 3190 * Copy the dirty parts of the inode into the on-disk inode. We always 3191 * copy out the core of the inode, because if the inode is dirty at all 3192 * the core must be. 3193 */ 3194 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3195 3196 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3197 if (!xfs_has_v3inodes(mp)) { 3198 if (ip->i_flushiter == DI_MAX_FLUSH) 3199 ip->i_flushiter = 0; 3200 } 3201 3202 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3203 if (xfs_inode_has_attr_fork(ip)) 3204 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3205 3206 /* 3207 * We've recorded everything logged in the inode, so we'd like to clear 3208 * the ili_fields bits so we don't log and flush things unnecessarily. 3209 * However, we can't stop logging all this information until the data 3210 * we've copied into the disk buffer is written to disk. If we did we 3211 * might overwrite the copy of the inode in the log with all the data 3212 * after re-logging only part of it, and in the face of a crash we 3213 * wouldn't have all the data we need to recover. 3214 * 3215 * What we do is move the bits to the ili_last_fields field. When 3216 * logging the inode, these bits are moved back to the ili_fields field. 3217 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3218 * we know that the information those bits represent is permanently on 3219 * disk. As long as the flush completes before the inode is logged 3220 * again, then both ili_fields and ili_last_fields will be cleared. 3221 */ 3222 error = 0; 3223 flush_out: 3224 spin_lock(&iip->ili_lock); 3225 iip->ili_last_fields = iip->ili_fields; 3226 iip->ili_fields = 0; 3227 iip->ili_fsync_fields = 0; 3228 spin_unlock(&iip->ili_lock); 3229 3230 /* 3231 * Store the current LSN of the inode so that we can tell whether the 3232 * item has moved in the AIL from xfs_buf_inode_iodone(). 3233 */ 3234 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3235 &iip->ili_item.li_lsn); 3236 3237 /* generate the checksum. */ 3238 xfs_dinode_calc_crc(mp, dip); 3239 return error; 3240 } 3241 3242 /* 3243 * Non-blocking flush of dirty inode metadata into the backing buffer. 3244 * 3245 * The caller must have a reference to the inode and hold the cluster buffer 3246 * locked. The function will walk across all the inodes on the cluster buffer it 3247 * can find and lock without blocking, and flush them to the cluster buffer. 3248 * 3249 * On successful flushing of at least one inode, the caller must write out the 3250 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3251 * the caller needs to release the buffer. On failure, the filesystem will be 3252 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3253 * will be returned. 3254 */ 3255 int 3256 xfs_iflush_cluster( 3257 struct xfs_buf *bp) 3258 { 3259 struct xfs_mount *mp = bp->b_mount; 3260 struct xfs_log_item *lip, *n; 3261 struct xfs_inode *ip; 3262 struct xfs_inode_log_item *iip; 3263 int clcount = 0; 3264 int error = 0; 3265 3266 /* 3267 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3268 * will remove itself from the list. 3269 */ 3270 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3271 iip = (struct xfs_inode_log_item *)lip; 3272 ip = iip->ili_inode; 3273 3274 /* 3275 * Quick and dirty check to avoid locks if possible. 3276 */ 3277 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3278 continue; 3279 if (xfs_ipincount(ip)) 3280 continue; 3281 3282 /* 3283 * The inode is still attached to the buffer, which means it is 3284 * dirty but reclaim might try to grab it. Check carefully for 3285 * that, and grab the ilock while still holding the i_flags_lock 3286 * to guarantee reclaim will not be able to reclaim this inode 3287 * once we drop the i_flags_lock. 3288 */ 3289 spin_lock(&ip->i_flags_lock); 3290 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3291 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3292 spin_unlock(&ip->i_flags_lock); 3293 continue; 3294 } 3295 3296 /* 3297 * ILOCK will pin the inode against reclaim and prevent 3298 * concurrent transactions modifying the inode while we are 3299 * flushing the inode. If we get the lock, set the flushing 3300 * state before we drop the i_flags_lock. 3301 */ 3302 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3303 spin_unlock(&ip->i_flags_lock); 3304 continue; 3305 } 3306 __xfs_iflags_set(ip, XFS_IFLUSHING); 3307 spin_unlock(&ip->i_flags_lock); 3308 3309 /* 3310 * Abort flushing this inode if we are shut down because the 3311 * inode may not currently be in the AIL. This can occur when 3312 * log I/O failure unpins the inode without inserting into the 3313 * AIL, leaving a dirty/unpinned inode attached to the buffer 3314 * that otherwise looks like it should be flushed. 3315 */ 3316 if (xlog_is_shutdown(mp->m_log)) { 3317 xfs_iunpin_wait(ip); 3318 xfs_iflush_abort(ip); 3319 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3320 error = -EIO; 3321 continue; 3322 } 3323 3324 /* don't block waiting on a log force to unpin dirty inodes */ 3325 if (xfs_ipincount(ip)) { 3326 xfs_iflags_clear(ip, XFS_IFLUSHING); 3327 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3328 continue; 3329 } 3330 3331 if (!xfs_inode_clean(ip)) 3332 error = xfs_iflush(ip, bp); 3333 else 3334 xfs_iflags_clear(ip, XFS_IFLUSHING); 3335 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3336 if (error) 3337 break; 3338 clcount++; 3339 } 3340 3341 if (error) { 3342 /* 3343 * Shutdown first so we kill the log before we release this 3344 * buffer. If it is an INODE_ALLOC buffer and pins the tail 3345 * of the log, failing it before the _log_ is shut down can 3346 * result in the log tail being moved forward in the journal 3347 * on disk because log writes can still be taking place. Hence 3348 * unpinning the tail will allow the ICREATE intent to be 3349 * removed from the log an recovery will fail with uninitialised 3350 * inode cluster buffers. 3351 */ 3352 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3353 bp->b_flags |= XBF_ASYNC; 3354 xfs_buf_ioend_fail(bp); 3355 return error; 3356 } 3357 3358 if (!clcount) 3359 return -EAGAIN; 3360 3361 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3362 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3363 return 0; 3364 3365 } 3366 3367 /* Release an inode. */ 3368 void 3369 xfs_irele( 3370 struct xfs_inode *ip) 3371 { 3372 trace_xfs_irele(ip, _RET_IP_); 3373 iput(VFS_I(ip)); 3374 } 3375 3376 /* 3377 * Ensure all commited transactions touching the inode are written to the log. 3378 */ 3379 int 3380 xfs_log_force_inode( 3381 struct xfs_inode *ip) 3382 { 3383 xfs_csn_t seq = 0; 3384 3385 xfs_ilock(ip, XFS_ILOCK_SHARED); 3386 if (xfs_ipincount(ip)) 3387 seq = ip->i_itemp->ili_commit_seq; 3388 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3389 3390 if (!seq) 3391 return 0; 3392 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3393 } 3394 3395 /* 3396 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3397 * abide vfs locking order (lowest pointer value goes first) and breaking the 3398 * layout leases before proceeding. The loop is needed because we cannot call 3399 * the blocking break_layout() with the iolocks held, and therefore have to 3400 * back out both locks. 3401 */ 3402 static int 3403 xfs_iolock_two_inodes_and_break_layout( 3404 struct inode *src, 3405 struct inode *dest) 3406 { 3407 int error; 3408 3409 if (src > dest) 3410 swap(src, dest); 3411 3412 retry: 3413 /* Wait to break both inodes' layouts before we start locking. */ 3414 error = break_layout(src, true); 3415 if (error) 3416 return error; 3417 if (src != dest) { 3418 error = break_layout(dest, true); 3419 if (error) 3420 return error; 3421 } 3422 3423 /* Lock one inode and make sure nobody got in and leased it. */ 3424 inode_lock(src); 3425 error = break_layout(src, false); 3426 if (error) { 3427 inode_unlock(src); 3428 if (error == -EWOULDBLOCK) 3429 goto retry; 3430 return error; 3431 } 3432 3433 if (src == dest) 3434 return 0; 3435 3436 /* Lock the other inode and make sure nobody got in and leased it. */ 3437 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3438 error = break_layout(dest, false); 3439 if (error) { 3440 inode_unlock(src); 3441 inode_unlock(dest); 3442 if (error == -EWOULDBLOCK) 3443 goto retry; 3444 return error; 3445 } 3446 3447 return 0; 3448 } 3449 3450 static int 3451 xfs_mmaplock_two_inodes_and_break_dax_layout( 3452 struct xfs_inode *ip1, 3453 struct xfs_inode *ip2) 3454 { 3455 int error; 3456 bool retry; 3457 struct page *page; 3458 3459 if (ip1->i_ino > ip2->i_ino) 3460 swap(ip1, ip2); 3461 3462 again: 3463 retry = false; 3464 /* Lock the first inode */ 3465 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3466 error = xfs_break_dax_layouts(VFS_I(ip1), &retry); 3467 if (error || retry) { 3468 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3469 if (error == 0 && retry) 3470 goto again; 3471 return error; 3472 } 3473 3474 if (ip1 == ip2) 3475 return 0; 3476 3477 /* Nested lock the second inode */ 3478 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1)); 3479 /* 3480 * We cannot use xfs_break_dax_layouts() directly here because it may 3481 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable 3482 * for this nested lock case. 3483 */ 3484 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping); 3485 if (page && page_ref_count(page) != 1) { 3486 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3487 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3488 goto again; 3489 } 3490 3491 return 0; 3492 } 3493 3494 /* 3495 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3496 * mmap activity. 3497 */ 3498 int 3499 xfs_ilock2_io_mmap( 3500 struct xfs_inode *ip1, 3501 struct xfs_inode *ip2) 3502 { 3503 int ret; 3504 3505 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3506 if (ret) 3507 return ret; 3508 3509 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3510 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2); 3511 if (ret) { 3512 inode_unlock(VFS_I(ip2)); 3513 if (ip1 != ip2) 3514 inode_unlock(VFS_I(ip1)); 3515 return ret; 3516 } 3517 } else 3518 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3519 VFS_I(ip2)->i_mapping); 3520 3521 return 0; 3522 } 3523 3524 /* Unlock both inodes to allow IO and mmap activity. */ 3525 void 3526 xfs_iunlock2_io_mmap( 3527 struct xfs_inode *ip1, 3528 struct xfs_inode *ip2) 3529 { 3530 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) { 3531 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3532 if (ip1 != ip2) 3533 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3534 } else 3535 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3536 VFS_I(ip2)->i_mapping); 3537 3538 inode_unlock(VFS_I(ip2)); 3539 if (ip1 != ip2) 3540 inode_unlock(VFS_I(ip1)); 3541 } 3542