xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 	struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	/*
59 	 * No point in aligning allocations if we need to COW to actually
60 	 * write to them.
61 	 */
62 	if (xfs_is_always_cow_inode(ip))
63 		return 0;
64 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 		return ip->i_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (xfs_need_iread_extents(&ip->i_df))
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 		lock_mode = XFS_ILOCK_EXCL;
129 	xfs_ilock(ip, lock_mode);
130 	return lock_mode;
131 }
132 
133 /*
134  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
136  * various combinations of the locks to be obtained.
137  *
138  * The 3 locks should always be ordered so that the IO lock is obtained first,
139  * the mmap lock second and the ilock last in order to prevent deadlock.
140  *
141  * Basic locking order:
142  *
143  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
144  *
145  * mmap_lock locking order:
146  *
147  * i_rwsem -> page lock -> mmap_lock
148  * mmap_lock -> invalidate_lock -> page_lock
149  *
150  * The difference in mmap_lock locking order mean that we cannot hold the
151  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
152  * can fault in pages during copy in/out (for buffered IO) or require the
153  * mmap_lock in get_user_pages() to map the user pages into the kernel address
154  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
155  * fault because page faults already hold the mmap_lock.
156  *
157  * Hence to serialise fully against both syscall and mmap based IO, we need to
158  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
159  * both taken in places where we need to invalidate the page cache in a race
160  * free manner (e.g. truncate, hole punch and other extent manipulation
161  * functions).
162  */
163 void
164 xfs_ilock(
165 	xfs_inode_t		*ip,
166 	uint			lock_flags)
167 {
168 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169 
170 	/*
171 	 * You can't set both SHARED and EXCL for the same lock,
172 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 	 */
175 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182 
183 	if (lock_flags & XFS_IOLOCK_EXCL) {
184 		down_write_nested(&VFS_I(ip)->i_rwsem,
185 				  XFS_IOLOCK_DEP(lock_flags));
186 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
187 		down_read_nested(&VFS_I(ip)->i_rwsem,
188 				 XFS_IOLOCK_DEP(lock_flags));
189 	}
190 
191 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
192 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
193 				  XFS_MMAPLOCK_DEP(lock_flags));
194 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
195 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
196 				 XFS_MMAPLOCK_DEP(lock_flags));
197 	}
198 
199 	if (lock_flags & XFS_ILOCK_EXCL)
200 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 	else if (lock_flags & XFS_ILOCK_SHARED)
202 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203 }
204 
205 /*
206  * This is just like xfs_ilock(), except that the caller
207  * is guaranteed not to sleep.  It returns 1 if it gets
208  * the requested locks and 0 otherwise.  If the IO lock is
209  * obtained but the inode lock cannot be, then the IO lock
210  * is dropped before returning.
211  *
212  * ip -- the inode being locked
213  * lock_flags -- this parameter indicates the inode's locks to be
214  *       to be locked.  See the comment for xfs_ilock() for a list
215  *	 of valid values.
216  */
217 int
218 xfs_ilock_nowait(
219 	xfs_inode_t		*ip,
220 	uint			lock_flags)
221 {
222 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223 
224 	/*
225 	 * You can't set both SHARED and EXCL for the same lock,
226 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 	 */
229 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
231 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
233 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
235 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 
237 	if (lock_flags & XFS_IOLOCK_EXCL) {
238 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 			goto out;
243 	}
244 
245 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 			goto out_undo_iolock;
248 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 			goto out_undo_iolock;
251 	}
252 
253 	if (lock_flags & XFS_ILOCK_EXCL) {
254 		if (!mrtryupdate(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	} else if (lock_flags & XFS_ILOCK_SHARED) {
257 		if (!mrtryaccess(&ip->i_lock))
258 			goto out_undo_mmaplock;
259 	}
260 	return 1;
261 
262 out_undo_mmaplock:
263 	if (lock_flags & XFS_MMAPLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 	if (lock_flags & XFS_IOLOCK_EXCL)
269 		up_write(&VFS_I(ip)->i_rwsem);
270 	else if (lock_flags & XFS_IOLOCK_SHARED)
271 		up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 	return 0;
274 }
275 
276 /*
277  * xfs_iunlock() is used to drop the inode locks acquired with
278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280  * that we know which locks to drop.
281  *
282  * ip -- the inode being unlocked
283  * lock_flags -- this parameter indicates the inode's locks to be
284  *       to be unlocked.  See the comment for xfs_ilock() for a list
285  *	 of valid values for this parameter.
286  *
287  */
288 void
289 xfs_iunlock(
290 	xfs_inode_t		*ip,
291 	uint			lock_flags)
292 {
293 	/*
294 	 * You can't set both SHARED and EXCL for the same lock,
295 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 	 */
298 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
300 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
302 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
304 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
305 	ASSERT(lock_flags != 0);
306 
307 	if (lock_flags & XFS_IOLOCK_EXCL)
308 		up_write(&VFS_I(ip)->i_rwsem);
309 	else if (lock_flags & XFS_IOLOCK_SHARED)
310 		up_read(&VFS_I(ip)->i_rwsem);
311 
312 	if (lock_flags & XFS_MMAPLOCK_EXCL)
313 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
314 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
316 
317 	if (lock_flags & XFS_ILOCK_EXCL)
318 		mrunlock_excl(&ip->i_lock);
319 	else if (lock_flags & XFS_ILOCK_SHARED)
320 		mrunlock_shared(&ip->i_lock);
321 
322 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323 }
324 
325 /*
326  * give up write locks.  the i/o lock cannot be held nested
327  * if it is being demoted.
328  */
329 void
330 xfs_ilock_demote(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 	ASSERT((lock_flags &
336 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 
338 	if (lock_flags & XFS_ILOCK_EXCL)
339 		mrdemote(&ip->i_lock);
340 	if (lock_flags & XFS_MMAPLOCK_EXCL)
341 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
342 	if (lock_flags & XFS_IOLOCK_EXCL)
343 		downgrade_write(&VFS_I(ip)->i_rwsem);
344 
345 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346 }
347 
348 #if defined(DEBUG) || defined(XFS_WARN)
349 static inline bool
350 __xfs_rwsem_islocked(
351 	struct rw_semaphore	*rwsem,
352 	bool			shared)
353 {
354 	if (!debug_locks)
355 		return rwsem_is_locked(rwsem);
356 
357 	if (!shared)
358 		return lockdep_is_held_type(rwsem, 0);
359 
360 	/*
361 	 * We are checking that the lock is held at least in shared
362 	 * mode but don't care that it might be held exclusively
363 	 * (i.e. shared | excl). Hence we check if the lock is held
364 	 * in any mode rather than an explicit shared mode.
365 	 */
366 	return lockdep_is_held_type(rwsem, -1);
367 }
368 
369 bool
370 xfs_isilocked(
371 	struct xfs_inode	*ip,
372 	uint			lock_flags)
373 {
374 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
375 		if (!(lock_flags & XFS_ILOCK_SHARED))
376 			return !!ip->i_lock.mr_writer;
377 		return rwsem_is_locked(&ip->i_lock.mr_lock);
378 	}
379 
380 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
381 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
382 				(lock_flags & XFS_IOLOCK_SHARED));
383 	}
384 
385 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
386 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
387 				(lock_flags & XFS_IOLOCK_SHARED));
388 	}
389 
390 	ASSERT(0);
391 	return false;
392 }
393 #endif
394 
395 /*
396  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399  * errors and warnings.
400  */
401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
402 static bool
403 xfs_lockdep_subclass_ok(
404 	int subclass)
405 {
406 	return subclass < MAX_LOCKDEP_SUBCLASSES;
407 }
408 #else
409 #define xfs_lockdep_subclass_ok(subclass)	(true)
410 #endif
411 
412 /*
413  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
414  * value. This can be called for any type of inode lock combination, including
415  * parent locking. Care must be taken to ensure we don't overrun the subclass
416  * storage fields in the class mask we build.
417  */
418 static inline int
419 xfs_lock_inumorder(int lock_mode, int subclass)
420 {
421 	int	class = 0;
422 
423 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 			      XFS_ILOCK_RTSUM)));
425 	ASSERT(xfs_lockdep_subclass_ok(subclass));
426 
427 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
428 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
429 		class += subclass << XFS_IOLOCK_SHIFT;
430 	}
431 
432 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 		class += subclass << XFS_MMAPLOCK_SHIFT;
435 	}
436 
437 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 		class += subclass << XFS_ILOCK_SHIFT;
440 	}
441 
442 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444 
445 /*
446  * The following routine will lock n inodes in exclusive mode.  We assume the
447  * caller calls us with the inodes in i_ino order.
448  *
449  * We need to detect deadlock where an inode that we lock is in the AIL and we
450  * start waiting for another inode that is locked by a thread in a long running
451  * transaction (such as truncate). This can result in deadlock since the long
452  * running trans might need to wait for the inode we just locked in order to
453  * push the tail and free space in the log.
454  *
455  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457  * lock more than one at a time, lockdep will report false positives saying we
458  * have violated locking orders.
459  */
460 static void
461 xfs_lock_inodes(
462 	struct xfs_inode	**ips,
463 	int			inodes,
464 	uint			lock_mode)
465 {
466 	int			attempts = 0, i, j, try_lock;
467 	struct xfs_log_item	*lp;
468 
469 	/*
470 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
471 	 * support an arbitrary depth of locking here, but absolute limits on
472 	 * inodes depend on the type of locking and the limits placed by
473 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
474 	 * the asserts.
475 	 */
476 	ASSERT(ips && inodes >= 2 && inodes <= 5);
477 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 			    XFS_ILOCK_EXCL));
479 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 			      XFS_ILOCK_SHARED)));
481 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485 
486 	if (lock_mode & XFS_IOLOCK_EXCL) {
487 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
490 
491 	try_lock = 0;
492 	i = 0;
493 again:
494 	for (; i < inodes; i++) {
495 		ASSERT(ips[i]);
496 
497 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
498 			continue;
499 
500 		/*
501 		 * If try_lock is not set yet, make sure all locked inodes are
502 		 * not in the AIL.  If any are, set try_lock to be used later.
503 		 */
504 		if (!try_lock) {
505 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 				lp = &ips[j]->i_itemp->ili_item;
507 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
508 					try_lock++;
509 			}
510 		}
511 
512 		/*
513 		 * If any of the previous locks we have locked is in the AIL,
514 		 * we must TRY to get the second and subsequent locks. If
515 		 * we can't get any, we must release all we have
516 		 * and try again.
517 		 */
518 		if (!try_lock) {
519 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 			continue;
521 		}
522 
523 		/* try_lock means we have an inode locked that is in the AIL. */
524 		ASSERT(i != 0);
525 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 			continue;
527 
528 		/*
529 		 * Unlock all previous guys and try again.  xfs_iunlock will try
530 		 * to push the tail if the inode is in the AIL.
531 		 */
532 		attempts++;
533 		for (j = i - 1; j >= 0; j--) {
534 			/*
535 			 * Check to see if we've already unlocked this one.  Not
536 			 * the first one going back, and the inode ptr is the
537 			 * same.
538 			 */
539 			if (j != (i - 1) && ips[j] == ips[j + 1])
540 				continue;
541 
542 			xfs_iunlock(ips[j], lock_mode);
543 		}
544 
545 		if ((attempts % 5) == 0) {
546 			delay(1); /* Don't just spin the CPU */
547 		}
548 		i = 0;
549 		try_lock = 0;
550 		goto again;
551 	}
552 }
553 
554 /*
555  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
556  * mmaplock must be double-locked separately since we use i_rwsem and
557  * invalidate_lock for that. We now support taking one lock EXCL and the
558  * other SHARED.
559  */
560 void
561 xfs_lock_two_inodes(
562 	struct xfs_inode	*ip0,
563 	uint			ip0_mode,
564 	struct xfs_inode	*ip1,
565 	uint			ip1_mode)
566 {
567 	struct xfs_inode	*temp;
568 	uint			mode_temp;
569 	int			attempts = 0;
570 	struct xfs_log_item	*lp;
571 
572 	ASSERT(hweight32(ip0_mode) == 1);
573 	ASSERT(hweight32(ip1_mode) == 1);
574 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
575 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
576 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
577 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
578 	ASSERT(ip0->i_ino != ip1->i_ino);
579 
580 	if (ip0->i_ino > ip1->i_ino) {
581 		temp = ip0;
582 		ip0 = ip1;
583 		ip1 = temp;
584 		mode_temp = ip0_mode;
585 		ip0_mode = ip1_mode;
586 		ip1_mode = mode_temp;
587 	}
588 
589  again:
590 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
591 
592 	/*
593 	 * If the first lock we have locked is in the AIL, we must TRY to get
594 	 * the second lock. If we can't get it, we must release the first one
595 	 * and try again.
596 	 */
597 	lp = &ip0->i_itemp->ili_item;
598 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
599 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
600 			xfs_iunlock(ip0, ip0_mode);
601 			if ((++attempts % 5) == 0)
602 				delay(1); /* Don't just spin the CPU */
603 			goto again;
604 		}
605 	} else {
606 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
607 	}
608 }
609 
610 uint
611 xfs_ip2xflags(
612 	struct xfs_inode	*ip)
613 {
614 	uint			flags = 0;
615 
616 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
617 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
618 			flags |= FS_XFLAG_REALTIME;
619 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
620 			flags |= FS_XFLAG_PREALLOC;
621 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
622 			flags |= FS_XFLAG_IMMUTABLE;
623 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
624 			flags |= FS_XFLAG_APPEND;
625 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
626 			flags |= FS_XFLAG_SYNC;
627 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
628 			flags |= FS_XFLAG_NOATIME;
629 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
630 			flags |= FS_XFLAG_NODUMP;
631 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
632 			flags |= FS_XFLAG_RTINHERIT;
633 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
634 			flags |= FS_XFLAG_PROJINHERIT;
635 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
636 			flags |= FS_XFLAG_NOSYMLINKS;
637 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
638 			flags |= FS_XFLAG_EXTSIZE;
639 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
640 			flags |= FS_XFLAG_EXTSZINHERIT;
641 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
642 			flags |= FS_XFLAG_NODEFRAG;
643 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
644 			flags |= FS_XFLAG_FILESTREAM;
645 	}
646 
647 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
648 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
649 			flags |= FS_XFLAG_DAX;
650 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
651 			flags |= FS_XFLAG_COWEXTSIZE;
652 	}
653 
654 	if (XFS_IFORK_Q(ip))
655 		flags |= FS_XFLAG_HASATTR;
656 	return flags;
657 }
658 
659 /*
660  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
661  * is allowed, otherwise it has to be an exact match. If a CI match is found,
662  * ci_name->name will point to a the actual name (caller must free) or
663  * will be set to NULL if an exact match is found.
664  */
665 int
666 xfs_lookup(
667 	xfs_inode_t		*dp,
668 	struct xfs_name		*name,
669 	xfs_inode_t		**ipp,
670 	struct xfs_name		*ci_name)
671 {
672 	xfs_ino_t		inum;
673 	int			error;
674 
675 	trace_xfs_lookup(dp, name);
676 
677 	if (xfs_is_shutdown(dp->i_mount))
678 		return -EIO;
679 
680 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
681 	if (error)
682 		goto out_unlock;
683 
684 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
685 	if (error)
686 		goto out_free_name;
687 
688 	return 0;
689 
690 out_free_name:
691 	if (ci_name)
692 		kmem_free(ci_name->name);
693 out_unlock:
694 	*ipp = NULL;
695 	return error;
696 }
697 
698 /* Propagate di_flags from a parent inode to a child inode. */
699 static void
700 xfs_inode_inherit_flags(
701 	struct xfs_inode	*ip,
702 	const struct xfs_inode	*pip)
703 {
704 	unsigned int		di_flags = 0;
705 	xfs_failaddr_t		failaddr;
706 	umode_t			mode = VFS_I(ip)->i_mode;
707 
708 	if (S_ISDIR(mode)) {
709 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
710 			di_flags |= XFS_DIFLAG_RTINHERIT;
711 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
712 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
713 			ip->i_extsize = pip->i_extsize;
714 		}
715 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
716 			di_flags |= XFS_DIFLAG_PROJINHERIT;
717 	} else if (S_ISREG(mode)) {
718 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
719 		    xfs_has_realtime(ip->i_mount))
720 			di_flags |= XFS_DIFLAG_REALTIME;
721 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
722 			di_flags |= XFS_DIFLAG_EXTSIZE;
723 			ip->i_extsize = pip->i_extsize;
724 		}
725 	}
726 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
727 	    xfs_inherit_noatime)
728 		di_flags |= XFS_DIFLAG_NOATIME;
729 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
730 	    xfs_inherit_nodump)
731 		di_flags |= XFS_DIFLAG_NODUMP;
732 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
733 	    xfs_inherit_sync)
734 		di_flags |= XFS_DIFLAG_SYNC;
735 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
736 	    xfs_inherit_nosymlinks)
737 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
738 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
739 	    xfs_inherit_nodefrag)
740 		di_flags |= XFS_DIFLAG_NODEFRAG;
741 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
742 		di_flags |= XFS_DIFLAG_FILESTREAM;
743 
744 	ip->i_diflags |= di_flags;
745 
746 	/*
747 	 * Inode verifiers on older kernels only check that the extent size
748 	 * hint is an integer multiple of the rt extent size on realtime files.
749 	 * They did not check the hint alignment on a directory with both
750 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
751 	 * propagated from a directory into a new realtime file, new file
752 	 * allocations will fail due to math errors in the rt allocator and/or
753 	 * trip the verifiers.  Validate the hint settings in the new file so
754 	 * that we don't let broken hints propagate.
755 	 */
756 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
757 			VFS_I(ip)->i_mode, ip->i_diflags);
758 	if (failaddr) {
759 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
760 				   XFS_DIFLAG_EXTSZINHERIT);
761 		ip->i_extsize = 0;
762 	}
763 }
764 
765 /* Propagate di_flags2 from a parent inode to a child inode. */
766 static void
767 xfs_inode_inherit_flags2(
768 	struct xfs_inode	*ip,
769 	const struct xfs_inode	*pip)
770 {
771 	xfs_failaddr_t		failaddr;
772 
773 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
774 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
775 		ip->i_cowextsize = pip->i_cowextsize;
776 	}
777 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
778 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
779 
780 	/* Don't let invalid cowextsize hints propagate. */
781 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
782 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
783 	if (failaddr) {
784 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
785 		ip->i_cowextsize = 0;
786 	}
787 }
788 
789 /*
790  * Initialise a newly allocated inode and return the in-core inode to the
791  * caller locked exclusively.
792  */
793 int
794 xfs_init_new_inode(
795 	struct user_namespace	*mnt_userns,
796 	struct xfs_trans	*tp,
797 	struct xfs_inode	*pip,
798 	xfs_ino_t		ino,
799 	umode_t			mode,
800 	xfs_nlink_t		nlink,
801 	dev_t			rdev,
802 	prid_t			prid,
803 	bool			init_xattrs,
804 	struct xfs_inode	**ipp)
805 {
806 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
807 	struct xfs_mount	*mp = tp->t_mountp;
808 	struct xfs_inode	*ip;
809 	unsigned int		flags;
810 	int			error;
811 	struct timespec64	tv;
812 	struct inode		*inode;
813 
814 	/*
815 	 * Protect against obviously corrupt allocation btree records. Later
816 	 * xfs_iget checks will catch re-allocation of other active in-memory
817 	 * and on-disk inodes. If we don't catch reallocating the parent inode
818 	 * here we will deadlock in xfs_iget() so we have to do these checks
819 	 * first.
820 	 */
821 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
822 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
823 		return -EFSCORRUPTED;
824 	}
825 
826 	/*
827 	 * Get the in-core inode with the lock held exclusively to prevent
828 	 * others from looking at until we're done.
829 	 */
830 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
831 	if (error)
832 		return error;
833 
834 	ASSERT(ip != NULL);
835 	inode = VFS_I(ip);
836 	set_nlink(inode, nlink);
837 	inode->i_rdev = rdev;
838 	ip->i_projid = prid;
839 
840 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
841 		inode_fsuid_set(inode, mnt_userns);
842 		inode->i_gid = dir->i_gid;
843 		inode->i_mode = mode;
844 	} else {
845 		inode_init_owner(mnt_userns, inode, dir, mode);
846 	}
847 
848 	/*
849 	 * If the group ID of the new file does not match the effective group
850 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
851 	 * (and only if the irix_sgid_inherit compatibility variable is set).
852 	 */
853 	if (irix_sgid_inherit &&
854 	    (inode->i_mode & S_ISGID) &&
855 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
856 		inode->i_mode &= ~S_ISGID;
857 
858 	ip->i_disk_size = 0;
859 	ip->i_df.if_nextents = 0;
860 	ASSERT(ip->i_nblocks == 0);
861 
862 	tv = current_time(inode);
863 	inode->i_mtime = tv;
864 	inode->i_atime = tv;
865 	inode->i_ctime = tv;
866 
867 	ip->i_extsize = 0;
868 	ip->i_diflags = 0;
869 
870 	if (xfs_has_v3inodes(mp)) {
871 		inode_set_iversion(inode, 1);
872 		ip->i_cowextsize = 0;
873 		ip->i_crtime = tv;
874 	}
875 
876 	flags = XFS_ILOG_CORE;
877 	switch (mode & S_IFMT) {
878 	case S_IFIFO:
879 	case S_IFCHR:
880 	case S_IFBLK:
881 	case S_IFSOCK:
882 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
883 		flags |= XFS_ILOG_DEV;
884 		break;
885 	case S_IFREG:
886 	case S_IFDIR:
887 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
888 			xfs_inode_inherit_flags(ip, pip);
889 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
890 			xfs_inode_inherit_flags2(ip, pip);
891 		fallthrough;
892 	case S_IFLNK:
893 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
894 		ip->i_df.if_bytes = 0;
895 		ip->i_df.if_u1.if_root = NULL;
896 		break;
897 	default:
898 		ASSERT(0);
899 	}
900 
901 	/*
902 	 * If we need to create attributes immediately after allocating the
903 	 * inode, initialise an empty attribute fork right now. We use the
904 	 * default fork offset for attributes here as we don't know exactly what
905 	 * size or how many attributes we might be adding. We can do this
906 	 * safely here because we know the data fork is completely empty and
907 	 * this saves us from needing to run a separate transaction to set the
908 	 * fork offset in the immediate future.
909 	 */
910 	if (init_xattrs && xfs_has_attr(mp)) {
911 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
912 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
913 	}
914 
915 	/*
916 	 * Log the new values stuffed into the inode.
917 	 */
918 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
919 	xfs_trans_log_inode(tp, ip, flags);
920 
921 	/* now that we have an i_mode we can setup the inode structure */
922 	xfs_setup_inode(ip);
923 
924 	*ipp = ip;
925 	return 0;
926 }
927 
928 /*
929  * Decrement the link count on an inode & log the change.  If this causes the
930  * link count to go to zero, move the inode to AGI unlinked list so that it can
931  * be freed when the last active reference goes away via xfs_inactive().
932  */
933 static int			/* error */
934 xfs_droplink(
935 	xfs_trans_t *tp,
936 	xfs_inode_t *ip)
937 {
938 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
939 
940 	drop_nlink(VFS_I(ip));
941 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
942 
943 	if (VFS_I(ip)->i_nlink)
944 		return 0;
945 
946 	return xfs_iunlink(tp, ip);
947 }
948 
949 /*
950  * Increment the link count on an inode & log the change.
951  */
952 static void
953 xfs_bumplink(
954 	xfs_trans_t *tp,
955 	xfs_inode_t *ip)
956 {
957 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
958 
959 	inc_nlink(VFS_I(ip));
960 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
961 }
962 
963 int
964 xfs_create(
965 	struct user_namespace	*mnt_userns,
966 	xfs_inode_t		*dp,
967 	struct xfs_name		*name,
968 	umode_t			mode,
969 	dev_t			rdev,
970 	bool			init_xattrs,
971 	xfs_inode_t		**ipp)
972 {
973 	int			is_dir = S_ISDIR(mode);
974 	struct xfs_mount	*mp = dp->i_mount;
975 	struct xfs_inode	*ip = NULL;
976 	struct xfs_trans	*tp = NULL;
977 	int			error;
978 	bool                    unlock_dp_on_error = false;
979 	prid_t			prid;
980 	struct xfs_dquot	*udqp = NULL;
981 	struct xfs_dquot	*gdqp = NULL;
982 	struct xfs_dquot	*pdqp = NULL;
983 	struct xfs_trans_res	*tres;
984 	uint			resblks;
985 	xfs_ino_t		ino;
986 
987 	trace_xfs_create(dp, name);
988 
989 	if (xfs_is_shutdown(mp))
990 		return -EIO;
991 
992 	prid = xfs_get_initial_prid(dp);
993 
994 	/*
995 	 * Make sure that we have allocated dquot(s) on disk.
996 	 */
997 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
998 			mapped_fsgid(mnt_userns), prid,
999 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1000 			&udqp, &gdqp, &pdqp);
1001 	if (error)
1002 		return error;
1003 
1004 	if (is_dir) {
1005 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1006 		tres = &M_RES(mp)->tr_mkdir;
1007 	} else {
1008 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1009 		tres = &M_RES(mp)->tr_create;
1010 	}
1011 
1012 	/*
1013 	 * Initially assume that the file does not exist and
1014 	 * reserve the resources for that case.  If that is not
1015 	 * the case we'll drop the one we have and get a more
1016 	 * appropriate transaction later.
1017 	 */
1018 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1019 			&tp);
1020 	if (error == -ENOSPC) {
1021 		/* flush outstanding delalloc blocks and retry */
1022 		xfs_flush_inodes(mp);
1023 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1024 				resblks, &tp);
1025 	}
1026 	if (error)
1027 		goto out_release_dquots;
1028 
1029 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1030 	unlock_dp_on_error = true;
1031 
1032 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1033 			XFS_IEXT_DIR_MANIP_CNT(mp));
1034 	if (error)
1035 		goto out_trans_cancel;
1036 
1037 	/*
1038 	 * A newly created regular or special file just has one directory
1039 	 * entry pointing to them, but a directory also the "." entry
1040 	 * pointing to itself.
1041 	 */
1042 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1043 	if (!error)
1044 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1045 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1046 	if (error)
1047 		goto out_trans_cancel;
1048 
1049 	/*
1050 	 * Now we join the directory inode to the transaction.  We do not do it
1051 	 * earlier because xfs_dialloc might commit the previous transaction
1052 	 * (and release all the locks).  An error from here on will result in
1053 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1054 	 * error path.
1055 	 */
1056 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1057 	unlock_dp_on_error = false;
1058 
1059 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1060 					resblks - XFS_IALLOC_SPACE_RES(mp));
1061 	if (error) {
1062 		ASSERT(error != -ENOSPC);
1063 		goto out_trans_cancel;
1064 	}
1065 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1066 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1067 
1068 	if (is_dir) {
1069 		error = xfs_dir_init(tp, ip, dp);
1070 		if (error)
1071 			goto out_trans_cancel;
1072 
1073 		xfs_bumplink(tp, dp);
1074 	}
1075 
1076 	/*
1077 	 * If this is a synchronous mount, make sure that the
1078 	 * create transaction goes to disk before returning to
1079 	 * the user.
1080 	 */
1081 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1082 		xfs_trans_set_sync(tp);
1083 
1084 	/*
1085 	 * Attach the dquot(s) to the inodes and modify them incore.
1086 	 * These ids of the inode couldn't have changed since the new
1087 	 * inode has been locked ever since it was created.
1088 	 */
1089 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1090 
1091 	error = xfs_trans_commit(tp);
1092 	if (error)
1093 		goto out_release_inode;
1094 
1095 	xfs_qm_dqrele(udqp);
1096 	xfs_qm_dqrele(gdqp);
1097 	xfs_qm_dqrele(pdqp);
1098 
1099 	*ipp = ip;
1100 	return 0;
1101 
1102  out_trans_cancel:
1103 	xfs_trans_cancel(tp);
1104  out_release_inode:
1105 	/*
1106 	 * Wait until after the current transaction is aborted to finish the
1107 	 * setup of the inode and release the inode.  This prevents recursive
1108 	 * transactions and deadlocks from xfs_inactive.
1109 	 */
1110 	if (ip) {
1111 		xfs_finish_inode_setup(ip);
1112 		xfs_irele(ip);
1113 	}
1114  out_release_dquots:
1115 	xfs_qm_dqrele(udqp);
1116 	xfs_qm_dqrele(gdqp);
1117 	xfs_qm_dqrele(pdqp);
1118 
1119 	if (unlock_dp_on_error)
1120 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1121 	return error;
1122 }
1123 
1124 int
1125 xfs_create_tmpfile(
1126 	struct user_namespace	*mnt_userns,
1127 	struct xfs_inode	*dp,
1128 	umode_t			mode,
1129 	struct xfs_inode	**ipp)
1130 {
1131 	struct xfs_mount	*mp = dp->i_mount;
1132 	struct xfs_inode	*ip = NULL;
1133 	struct xfs_trans	*tp = NULL;
1134 	int			error;
1135 	prid_t                  prid;
1136 	struct xfs_dquot	*udqp = NULL;
1137 	struct xfs_dquot	*gdqp = NULL;
1138 	struct xfs_dquot	*pdqp = NULL;
1139 	struct xfs_trans_res	*tres;
1140 	uint			resblks;
1141 	xfs_ino_t		ino;
1142 
1143 	if (xfs_is_shutdown(mp))
1144 		return -EIO;
1145 
1146 	prid = xfs_get_initial_prid(dp);
1147 
1148 	/*
1149 	 * Make sure that we have allocated dquot(s) on disk.
1150 	 */
1151 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1152 			mapped_fsgid(mnt_userns), prid,
1153 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1154 			&udqp, &gdqp, &pdqp);
1155 	if (error)
1156 		return error;
1157 
1158 	resblks = XFS_IALLOC_SPACE_RES(mp);
1159 	tres = &M_RES(mp)->tr_create_tmpfile;
1160 
1161 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1162 			&tp);
1163 	if (error)
1164 		goto out_release_dquots;
1165 
1166 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1167 	if (!error)
1168 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1169 				0, 0, prid, false, &ip);
1170 	if (error)
1171 		goto out_trans_cancel;
1172 
1173 	if (xfs_has_wsync(mp))
1174 		xfs_trans_set_sync(tp);
1175 
1176 	/*
1177 	 * Attach the dquot(s) to the inodes and modify them incore.
1178 	 * These ids of the inode couldn't have changed since the new
1179 	 * inode has been locked ever since it was created.
1180 	 */
1181 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1182 
1183 	error = xfs_iunlink(tp, ip);
1184 	if (error)
1185 		goto out_trans_cancel;
1186 
1187 	error = xfs_trans_commit(tp);
1188 	if (error)
1189 		goto out_release_inode;
1190 
1191 	xfs_qm_dqrele(udqp);
1192 	xfs_qm_dqrele(gdqp);
1193 	xfs_qm_dqrele(pdqp);
1194 
1195 	*ipp = ip;
1196 	return 0;
1197 
1198  out_trans_cancel:
1199 	xfs_trans_cancel(tp);
1200  out_release_inode:
1201 	/*
1202 	 * Wait until after the current transaction is aborted to finish the
1203 	 * setup of the inode and release the inode.  This prevents recursive
1204 	 * transactions and deadlocks from xfs_inactive.
1205 	 */
1206 	if (ip) {
1207 		xfs_finish_inode_setup(ip);
1208 		xfs_irele(ip);
1209 	}
1210  out_release_dquots:
1211 	xfs_qm_dqrele(udqp);
1212 	xfs_qm_dqrele(gdqp);
1213 	xfs_qm_dqrele(pdqp);
1214 
1215 	return error;
1216 }
1217 
1218 int
1219 xfs_link(
1220 	xfs_inode_t		*tdp,
1221 	xfs_inode_t		*sip,
1222 	struct xfs_name		*target_name)
1223 {
1224 	xfs_mount_t		*mp = tdp->i_mount;
1225 	xfs_trans_t		*tp;
1226 	int			error;
1227 	int			resblks;
1228 
1229 	trace_xfs_link(tdp, target_name);
1230 
1231 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1232 
1233 	if (xfs_is_shutdown(mp))
1234 		return -EIO;
1235 
1236 	error = xfs_qm_dqattach(sip);
1237 	if (error)
1238 		goto std_return;
1239 
1240 	error = xfs_qm_dqattach(tdp);
1241 	if (error)
1242 		goto std_return;
1243 
1244 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1245 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1246 	if (error == -ENOSPC) {
1247 		resblks = 0;
1248 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1249 	}
1250 	if (error)
1251 		goto std_return;
1252 
1253 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1254 
1255 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1256 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1257 
1258 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1259 			XFS_IEXT_DIR_MANIP_CNT(mp));
1260 	if (error)
1261 		goto error_return;
1262 
1263 	/*
1264 	 * If we are using project inheritance, we only allow hard link
1265 	 * creation in our tree when the project IDs are the same; else
1266 	 * the tree quota mechanism could be circumvented.
1267 	 */
1268 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1269 		     tdp->i_projid != sip->i_projid)) {
1270 		error = -EXDEV;
1271 		goto error_return;
1272 	}
1273 
1274 	if (!resblks) {
1275 		error = xfs_dir_canenter(tp, tdp, target_name);
1276 		if (error)
1277 			goto error_return;
1278 	}
1279 
1280 	/*
1281 	 * Handle initial link state of O_TMPFILE inode
1282 	 */
1283 	if (VFS_I(sip)->i_nlink == 0) {
1284 		struct xfs_perag	*pag;
1285 
1286 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1287 		error = xfs_iunlink_remove(tp, pag, sip);
1288 		xfs_perag_put(pag);
1289 		if (error)
1290 			goto error_return;
1291 	}
1292 
1293 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1294 				   resblks);
1295 	if (error)
1296 		goto error_return;
1297 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1298 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1299 
1300 	xfs_bumplink(tp, sip);
1301 
1302 	/*
1303 	 * If this is a synchronous mount, make sure that the
1304 	 * link transaction goes to disk before returning to
1305 	 * the user.
1306 	 */
1307 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1308 		xfs_trans_set_sync(tp);
1309 
1310 	return xfs_trans_commit(tp);
1311 
1312  error_return:
1313 	xfs_trans_cancel(tp);
1314  std_return:
1315 	return error;
1316 }
1317 
1318 /* Clear the reflink flag and the cowblocks tag if possible. */
1319 static void
1320 xfs_itruncate_clear_reflink_flags(
1321 	struct xfs_inode	*ip)
1322 {
1323 	struct xfs_ifork	*dfork;
1324 	struct xfs_ifork	*cfork;
1325 
1326 	if (!xfs_is_reflink_inode(ip))
1327 		return;
1328 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1329 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1330 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1331 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1332 	if (cfork->if_bytes == 0)
1333 		xfs_inode_clear_cowblocks_tag(ip);
1334 }
1335 
1336 /*
1337  * Free up the underlying blocks past new_size.  The new size must be smaller
1338  * than the current size.  This routine can be used both for the attribute and
1339  * data fork, and does not modify the inode size, which is left to the caller.
1340  *
1341  * The transaction passed to this routine must have made a permanent log
1342  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1343  * given transaction and start new ones, so make sure everything involved in
1344  * the transaction is tidy before calling here.  Some transaction will be
1345  * returned to the caller to be committed.  The incoming transaction must
1346  * already include the inode, and both inode locks must be held exclusively.
1347  * The inode must also be "held" within the transaction.  On return the inode
1348  * will be "held" within the returned transaction.  This routine does NOT
1349  * require any disk space to be reserved for it within the transaction.
1350  *
1351  * If we get an error, we must return with the inode locked and linked into the
1352  * current transaction. This keeps things simple for the higher level code,
1353  * because it always knows that the inode is locked and held in the transaction
1354  * that returns to it whether errors occur or not.  We don't mark the inode
1355  * dirty on error so that transactions can be easily aborted if possible.
1356  */
1357 int
1358 xfs_itruncate_extents_flags(
1359 	struct xfs_trans	**tpp,
1360 	struct xfs_inode	*ip,
1361 	int			whichfork,
1362 	xfs_fsize_t		new_size,
1363 	int			flags)
1364 {
1365 	struct xfs_mount	*mp = ip->i_mount;
1366 	struct xfs_trans	*tp = *tpp;
1367 	xfs_fileoff_t		first_unmap_block;
1368 	xfs_filblks_t		unmap_len;
1369 	int			error = 0;
1370 
1371 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1372 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1373 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1374 	ASSERT(new_size <= XFS_ISIZE(ip));
1375 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1376 	ASSERT(ip->i_itemp != NULL);
1377 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1378 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1379 
1380 	trace_xfs_itruncate_extents_start(ip, new_size);
1381 
1382 	flags |= xfs_bmapi_aflag(whichfork);
1383 
1384 	/*
1385 	 * Since it is possible for space to become allocated beyond
1386 	 * the end of the file (in a crash where the space is allocated
1387 	 * but the inode size is not yet updated), simply remove any
1388 	 * blocks which show up between the new EOF and the maximum
1389 	 * possible file size.
1390 	 *
1391 	 * We have to free all the blocks to the bmbt maximum offset, even if
1392 	 * the page cache can't scale that far.
1393 	 */
1394 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1395 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1396 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1397 		return 0;
1398 	}
1399 
1400 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1401 	while (unmap_len > 0) {
1402 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1403 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1404 				flags, XFS_ITRUNC_MAX_EXTENTS);
1405 		if (error)
1406 			goto out;
1407 
1408 		/* free the just unmapped extents */
1409 		error = xfs_defer_finish(&tp);
1410 		if (error)
1411 			goto out;
1412 	}
1413 
1414 	if (whichfork == XFS_DATA_FORK) {
1415 		/* Remove all pending CoW reservations. */
1416 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1417 				first_unmap_block, XFS_MAX_FILEOFF, true);
1418 		if (error)
1419 			goto out;
1420 
1421 		xfs_itruncate_clear_reflink_flags(ip);
1422 	}
1423 
1424 	/*
1425 	 * Always re-log the inode so that our permanent transaction can keep
1426 	 * on rolling it forward in the log.
1427 	 */
1428 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1429 
1430 	trace_xfs_itruncate_extents_end(ip, new_size);
1431 
1432 out:
1433 	*tpp = tp;
1434 	return error;
1435 }
1436 
1437 int
1438 xfs_release(
1439 	xfs_inode_t	*ip)
1440 {
1441 	xfs_mount_t	*mp = ip->i_mount;
1442 	int		error = 0;
1443 
1444 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1445 		return 0;
1446 
1447 	/* If this is a read-only mount, don't do this (would generate I/O) */
1448 	if (xfs_is_readonly(mp))
1449 		return 0;
1450 
1451 	if (!xfs_is_shutdown(mp)) {
1452 		int truncated;
1453 
1454 		/*
1455 		 * If we previously truncated this file and removed old data
1456 		 * in the process, we want to initiate "early" writeout on
1457 		 * the last close.  This is an attempt to combat the notorious
1458 		 * NULL files problem which is particularly noticeable from a
1459 		 * truncate down, buffered (re-)write (delalloc), followed by
1460 		 * a crash.  What we are effectively doing here is
1461 		 * significantly reducing the time window where we'd otherwise
1462 		 * be exposed to that problem.
1463 		 */
1464 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1465 		if (truncated) {
1466 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1467 			if (ip->i_delayed_blks > 0) {
1468 				error = filemap_flush(VFS_I(ip)->i_mapping);
1469 				if (error)
1470 					return error;
1471 			}
1472 		}
1473 	}
1474 
1475 	if (VFS_I(ip)->i_nlink == 0)
1476 		return 0;
1477 
1478 	/*
1479 	 * If we can't get the iolock just skip truncating the blocks past EOF
1480 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1481 	 * another chance to drop them once the last reference to the inode is
1482 	 * dropped, so we'll never leak blocks permanently.
1483 	 */
1484 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1485 		return 0;
1486 
1487 	if (xfs_can_free_eofblocks(ip, false)) {
1488 		/*
1489 		 * Check if the inode is being opened, written and closed
1490 		 * frequently and we have delayed allocation blocks outstanding
1491 		 * (e.g. streaming writes from the NFS server), truncating the
1492 		 * blocks past EOF will cause fragmentation to occur.
1493 		 *
1494 		 * In this case don't do the truncation, but we have to be
1495 		 * careful how we detect this case. Blocks beyond EOF show up as
1496 		 * i_delayed_blks even when the inode is clean, so we need to
1497 		 * truncate them away first before checking for a dirty release.
1498 		 * Hence on the first dirty close we will still remove the
1499 		 * speculative allocation, but after that we will leave it in
1500 		 * place.
1501 		 */
1502 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1503 			goto out_unlock;
1504 
1505 		error = xfs_free_eofblocks(ip);
1506 		if (error)
1507 			goto out_unlock;
1508 
1509 		/* delalloc blocks after truncation means it really is dirty */
1510 		if (ip->i_delayed_blks)
1511 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1512 	}
1513 
1514 out_unlock:
1515 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1516 	return error;
1517 }
1518 
1519 /*
1520  * xfs_inactive_truncate
1521  *
1522  * Called to perform a truncate when an inode becomes unlinked.
1523  */
1524 STATIC int
1525 xfs_inactive_truncate(
1526 	struct xfs_inode *ip)
1527 {
1528 	struct xfs_mount	*mp = ip->i_mount;
1529 	struct xfs_trans	*tp;
1530 	int			error;
1531 
1532 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1533 	if (error) {
1534 		ASSERT(xfs_is_shutdown(mp));
1535 		return error;
1536 	}
1537 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1538 	xfs_trans_ijoin(tp, ip, 0);
1539 
1540 	/*
1541 	 * Log the inode size first to prevent stale data exposure in the event
1542 	 * of a system crash before the truncate completes. See the related
1543 	 * comment in xfs_vn_setattr_size() for details.
1544 	 */
1545 	ip->i_disk_size = 0;
1546 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1547 
1548 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1549 	if (error)
1550 		goto error_trans_cancel;
1551 
1552 	ASSERT(ip->i_df.if_nextents == 0);
1553 
1554 	error = xfs_trans_commit(tp);
1555 	if (error)
1556 		goto error_unlock;
1557 
1558 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1559 	return 0;
1560 
1561 error_trans_cancel:
1562 	xfs_trans_cancel(tp);
1563 error_unlock:
1564 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1565 	return error;
1566 }
1567 
1568 /*
1569  * xfs_inactive_ifree()
1570  *
1571  * Perform the inode free when an inode is unlinked.
1572  */
1573 STATIC int
1574 xfs_inactive_ifree(
1575 	struct xfs_inode *ip)
1576 {
1577 	struct xfs_mount	*mp = ip->i_mount;
1578 	struct xfs_trans	*tp;
1579 	int			error;
1580 
1581 	/*
1582 	 * We try to use a per-AG reservation for any block needed by the finobt
1583 	 * tree, but as the finobt feature predates the per-AG reservation
1584 	 * support a degraded file system might not have enough space for the
1585 	 * reservation at mount time.  In that case try to dip into the reserved
1586 	 * pool and pray.
1587 	 *
1588 	 * Send a warning if the reservation does happen to fail, as the inode
1589 	 * now remains allocated and sits on the unlinked list until the fs is
1590 	 * repaired.
1591 	 */
1592 	if (unlikely(mp->m_finobt_nores)) {
1593 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1594 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1595 				&tp);
1596 	} else {
1597 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1598 	}
1599 	if (error) {
1600 		if (error == -ENOSPC) {
1601 			xfs_warn_ratelimited(mp,
1602 			"Failed to remove inode(s) from unlinked list. "
1603 			"Please free space, unmount and run xfs_repair.");
1604 		} else {
1605 			ASSERT(xfs_is_shutdown(mp));
1606 		}
1607 		return error;
1608 	}
1609 
1610 	/*
1611 	 * We do not hold the inode locked across the entire rolling transaction
1612 	 * here. We only need to hold it for the first transaction that
1613 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1614 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1615 	 * here breaks the relationship between cluster buffer invalidation and
1616 	 * stale inode invalidation on cluster buffer item journal commit
1617 	 * completion, and can result in leaving dirty stale inodes hanging
1618 	 * around in memory.
1619 	 *
1620 	 * We have no need for serialising this inode operation against other
1621 	 * operations - we freed the inode and hence reallocation is required
1622 	 * and that will serialise on reallocating the space the deferops need
1623 	 * to free. Hence we can unlock the inode on the first commit of
1624 	 * the transaction rather than roll it right through the deferops. This
1625 	 * avoids relogging the XFS_ISTALE inode.
1626 	 *
1627 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1628 	 * by asserting that the inode is still locked when it returns.
1629 	 */
1630 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1631 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1632 
1633 	error = xfs_ifree(tp, ip);
1634 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1635 	if (error) {
1636 		/*
1637 		 * If we fail to free the inode, shut down.  The cancel
1638 		 * might do that, we need to make sure.  Otherwise the
1639 		 * inode might be lost for a long time or forever.
1640 		 */
1641 		if (!xfs_is_shutdown(mp)) {
1642 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1643 				__func__, error);
1644 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1645 		}
1646 		xfs_trans_cancel(tp);
1647 		return error;
1648 	}
1649 
1650 	/*
1651 	 * Credit the quota account(s). The inode is gone.
1652 	 */
1653 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1654 
1655 	/*
1656 	 * Just ignore errors at this point.  There is nothing we can do except
1657 	 * to try to keep going. Make sure it's not a silent error.
1658 	 */
1659 	error = xfs_trans_commit(tp);
1660 	if (error)
1661 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1662 			__func__, error);
1663 
1664 	return 0;
1665 }
1666 
1667 /*
1668  * Returns true if we need to update the on-disk metadata before we can free
1669  * the memory used by this inode.  Updates include freeing post-eof
1670  * preallocations; freeing COW staging extents; and marking the inode free in
1671  * the inobt if it is on the unlinked list.
1672  */
1673 bool
1674 xfs_inode_needs_inactive(
1675 	struct xfs_inode	*ip)
1676 {
1677 	struct xfs_mount	*mp = ip->i_mount;
1678 	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1679 
1680 	/*
1681 	 * If the inode is already free, then there can be nothing
1682 	 * to clean up here.
1683 	 */
1684 	if (VFS_I(ip)->i_mode == 0)
1685 		return false;
1686 
1687 	/* If this is a read-only mount, don't do this (would generate I/O) */
1688 	if (xfs_is_readonly(mp))
1689 		return false;
1690 
1691 	/* If the log isn't running, push inodes straight to reclaim. */
1692 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1693 		return false;
1694 
1695 	/* Metadata inodes require explicit resource cleanup. */
1696 	if (xfs_is_metadata_inode(ip))
1697 		return false;
1698 
1699 	/* Want to clean out the cow blocks if there are any. */
1700 	if (cow_ifp && cow_ifp->if_bytes > 0)
1701 		return true;
1702 
1703 	/* Unlinked files must be freed. */
1704 	if (VFS_I(ip)->i_nlink == 0)
1705 		return true;
1706 
1707 	/*
1708 	 * This file isn't being freed, so check if there are post-eof blocks
1709 	 * to free.  @force is true because we are evicting an inode from the
1710 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1711 	 * free space accounting.
1712 	 *
1713 	 * Note: don't bother with iolock here since lockdep complains about
1714 	 * acquiring it in reclaim context. We have the only reference to the
1715 	 * inode at this point anyways.
1716 	 */
1717 	return xfs_can_free_eofblocks(ip, true);
1718 }
1719 
1720 /*
1721  * xfs_inactive
1722  *
1723  * This is called when the vnode reference count for the vnode
1724  * goes to zero.  If the file has been unlinked, then it must
1725  * now be truncated.  Also, we clear all of the read-ahead state
1726  * kept for the inode here since the file is now closed.
1727  */
1728 void
1729 xfs_inactive(
1730 	xfs_inode_t	*ip)
1731 {
1732 	struct xfs_mount	*mp;
1733 	int			error;
1734 	int			truncate = 0;
1735 
1736 	/*
1737 	 * If the inode is already free, then there can be nothing
1738 	 * to clean up here.
1739 	 */
1740 	if (VFS_I(ip)->i_mode == 0) {
1741 		ASSERT(ip->i_df.if_broot_bytes == 0);
1742 		goto out;
1743 	}
1744 
1745 	mp = ip->i_mount;
1746 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1747 
1748 	/* If this is a read-only mount, don't do this (would generate I/O) */
1749 	if (xfs_is_readonly(mp))
1750 		goto out;
1751 
1752 	/* Metadata inodes require explicit resource cleanup. */
1753 	if (xfs_is_metadata_inode(ip))
1754 		goto out;
1755 
1756 	/* Try to clean out the cow blocks if there are any. */
1757 	if (xfs_inode_has_cow_data(ip))
1758 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1759 
1760 	if (VFS_I(ip)->i_nlink != 0) {
1761 		/*
1762 		 * force is true because we are evicting an inode from the
1763 		 * cache. Post-eof blocks must be freed, lest we end up with
1764 		 * broken free space accounting.
1765 		 *
1766 		 * Note: don't bother with iolock here since lockdep complains
1767 		 * about acquiring it in reclaim context. We have the only
1768 		 * reference to the inode at this point anyways.
1769 		 */
1770 		if (xfs_can_free_eofblocks(ip, true))
1771 			xfs_free_eofblocks(ip);
1772 
1773 		goto out;
1774 	}
1775 
1776 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1777 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1778 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1779 		truncate = 1;
1780 
1781 	error = xfs_qm_dqattach(ip);
1782 	if (error)
1783 		goto out;
1784 
1785 	if (S_ISLNK(VFS_I(ip)->i_mode))
1786 		error = xfs_inactive_symlink(ip);
1787 	else if (truncate)
1788 		error = xfs_inactive_truncate(ip);
1789 	if (error)
1790 		goto out;
1791 
1792 	/*
1793 	 * If there are attributes associated with the file then blow them away
1794 	 * now.  The code calls a routine that recursively deconstructs the
1795 	 * attribute fork. If also blows away the in-core attribute fork.
1796 	 */
1797 	if (XFS_IFORK_Q(ip)) {
1798 		error = xfs_attr_inactive(ip);
1799 		if (error)
1800 			goto out;
1801 	}
1802 
1803 	ASSERT(!ip->i_afp);
1804 	ASSERT(ip->i_forkoff == 0);
1805 
1806 	/*
1807 	 * Free the inode.
1808 	 */
1809 	xfs_inactive_ifree(ip);
1810 
1811 out:
1812 	/*
1813 	 * We're done making metadata updates for this inode, so we can release
1814 	 * the attached dquots.
1815 	 */
1816 	xfs_qm_dqdetach(ip);
1817 }
1818 
1819 /*
1820  * In-Core Unlinked List Lookups
1821  * =============================
1822  *
1823  * Every inode is supposed to be reachable from some other piece of metadata
1824  * with the exception of the root directory.  Inodes with a connection to a
1825  * file descriptor but not linked from anywhere in the on-disk directory tree
1826  * are collectively known as unlinked inodes, though the filesystem itself
1827  * maintains links to these inodes so that on-disk metadata are consistent.
1828  *
1829  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1830  * header contains a number of buckets that point to an inode, and each inode
1831  * record has a pointer to the next inode in the hash chain.  This
1832  * singly-linked list causes scaling problems in the iunlink remove function
1833  * because we must walk that list to find the inode that points to the inode
1834  * being removed from the unlinked hash bucket list.
1835  *
1836  * What if we modelled the unlinked list as a collection of records capturing
1837  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1838  * have a fast way to look up unlinked list predecessors, which avoids the
1839  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1840  * rhashtable.
1841  *
1842  * Because this is a backref cache, we ignore operational failures since the
1843  * iunlink code can fall back to the slow bucket walk.  The only errors that
1844  * should bubble out are for obviously incorrect situations.
1845  *
1846  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1847  * access or have otherwise provided for concurrency control.
1848  */
1849 
1850 /* Capture a "X.next_unlinked = Y" relationship. */
1851 struct xfs_iunlink {
1852 	struct rhash_head	iu_rhash_head;
1853 	xfs_agino_t		iu_agino;		/* X */
1854 	xfs_agino_t		iu_next_unlinked;	/* Y */
1855 };
1856 
1857 /* Unlinked list predecessor lookup hashtable construction */
1858 static int
1859 xfs_iunlink_obj_cmpfn(
1860 	struct rhashtable_compare_arg	*arg,
1861 	const void			*obj)
1862 {
1863 	const xfs_agino_t		*key = arg->key;
1864 	const struct xfs_iunlink	*iu = obj;
1865 
1866 	if (iu->iu_next_unlinked != *key)
1867 		return 1;
1868 	return 0;
1869 }
1870 
1871 static const struct rhashtable_params xfs_iunlink_hash_params = {
1872 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1873 	.key_len		= sizeof(xfs_agino_t),
1874 	.key_offset		= offsetof(struct xfs_iunlink,
1875 					   iu_next_unlinked),
1876 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1877 	.automatic_shrinking	= true,
1878 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1879 };
1880 
1881 /*
1882  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1883  * relation is found.
1884  */
1885 static xfs_agino_t
1886 xfs_iunlink_lookup_backref(
1887 	struct xfs_perag	*pag,
1888 	xfs_agino_t		agino)
1889 {
1890 	struct xfs_iunlink	*iu;
1891 
1892 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1893 			xfs_iunlink_hash_params);
1894 	return iu ? iu->iu_agino : NULLAGINO;
1895 }
1896 
1897 /*
1898  * Take ownership of an iunlink cache entry and insert it into the hash table.
1899  * If successful, the entry will be owned by the cache; if not, it is freed.
1900  * Either way, the caller does not own @iu after this call.
1901  */
1902 static int
1903 xfs_iunlink_insert_backref(
1904 	struct xfs_perag	*pag,
1905 	struct xfs_iunlink	*iu)
1906 {
1907 	int			error;
1908 
1909 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1910 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1911 	/*
1912 	 * Fail loudly if there already was an entry because that's a sign of
1913 	 * corruption of in-memory data.  Also fail loudly if we see an error
1914 	 * code we didn't anticipate from the rhashtable code.  Currently we
1915 	 * only anticipate ENOMEM.
1916 	 */
1917 	if (error) {
1918 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1919 		kmem_free(iu);
1920 	}
1921 	/*
1922 	 * Absorb any runtime errors that aren't a result of corruption because
1923 	 * this is a cache and we can always fall back to bucket list scanning.
1924 	 */
1925 	if (error != 0 && error != -EEXIST)
1926 		error = 0;
1927 	return error;
1928 }
1929 
1930 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1931 static int
1932 xfs_iunlink_add_backref(
1933 	struct xfs_perag	*pag,
1934 	xfs_agino_t		prev_agino,
1935 	xfs_agino_t		this_agino)
1936 {
1937 	struct xfs_iunlink	*iu;
1938 
1939 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1940 		return 0;
1941 
1942 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1943 	iu->iu_agino = prev_agino;
1944 	iu->iu_next_unlinked = this_agino;
1945 
1946 	return xfs_iunlink_insert_backref(pag, iu);
1947 }
1948 
1949 /*
1950  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1951  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1952  * wasn't any such entry then we don't bother.
1953  */
1954 static int
1955 xfs_iunlink_change_backref(
1956 	struct xfs_perag	*pag,
1957 	xfs_agino_t		agino,
1958 	xfs_agino_t		next_unlinked)
1959 {
1960 	struct xfs_iunlink	*iu;
1961 	int			error;
1962 
1963 	/* Look up the old entry; if there wasn't one then exit. */
1964 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1965 			xfs_iunlink_hash_params);
1966 	if (!iu)
1967 		return 0;
1968 
1969 	/*
1970 	 * Remove the entry.  This shouldn't ever return an error, but if we
1971 	 * couldn't remove the old entry we don't want to add it again to the
1972 	 * hash table, and if the entry disappeared on us then someone's
1973 	 * violated the locking rules and we need to fail loudly.  Either way
1974 	 * we cannot remove the inode because internal state is or would have
1975 	 * been corrupt.
1976 	 */
1977 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1978 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1979 	if (error)
1980 		return error;
1981 
1982 	/* If there is no new next entry just free our item and return. */
1983 	if (next_unlinked == NULLAGINO) {
1984 		kmem_free(iu);
1985 		return 0;
1986 	}
1987 
1988 	/* Update the entry and re-add it to the hash table. */
1989 	iu->iu_next_unlinked = next_unlinked;
1990 	return xfs_iunlink_insert_backref(pag, iu);
1991 }
1992 
1993 /* Set up the in-core predecessor structures. */
1994 int
1995 xfs_iunlink_init(
1996 	struct xfs_perag	*pag)
1997 {
1998 	return rhashtable_init(&pag->pagi_unlinked_hash,
1999 			&xfs_iunlink_hash_params);
2000 }
2001 
2002 /* Free the in-core predecessor structures. */
2003 static void
2004 xfs_iunlink_free_item(
2005 	void			*ptr,
2006 	void			*arg)
2007 {
2008 	struct xfs_iunlink	*iu = ptr;
2009 	bool			*freed_anything = arg;
2010 
2011 	*freed_anything = true;
2012 	kmem_free(iu);
2013 }
2014 
2015 void
2016 xfs_iunlink_destroy(
2017 	struct xfs_perag	*pag)
2018 {
2019 	bool			freed_anything = false;
2020 
2021 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2022 			xfs_iunlink_free_item, &freed_anything);
2023 
2024 	ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
2025 }
2026 
2027 /*
2028  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2029  * is responsible for validating the old value.
2030  */
2031 STATIC int
2032 xfs_iunlink_update_bucket(
2033 	struct xfs_trans	*tp,
2034 	struct xfs_perag	*pag,
2035 	struct xfs_buf		*agibp,
2036 	unsigned int		bucket_index,
2037 	xfs_agino_t		new_agino)
2038 {
2039 	struct xfs_agi		*agi = agibp->b_addr;
2040 	xfs_agino_t		old_value;
2041 	int			offset;
2042 
2043 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2044 
2045 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2046 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2047 			old_value, new_agino);
2048 
2049 	/*
2050 	 * We should never find the head of the list already set to the value
2051 	 * passed in because either we're adding or removing ourselves from the
2052 	 * head of the list.
2053 	 */
2054 	if (old_value == new_agino) {
2055 		xfs_buf_mark_corrupt(agibp);
2056 		return -EFSCORRUPTED;
2057 	}
2058 
2059 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2060 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2061 			(sizeof(xfs_agino_t) * bucket_index);
2062 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2063 	return 0;
2064 }
2065 
2066 /* Set an on-disk inode's next_unlinked pointer. */
2067 STATIC void
2068 xfs_iunlink_update_dinode(
2069 	struct xfs_trans	*tp,
2070 	struct xfs_perag	*pag,
2071 	xfs_agino_t		agino,
2072 	struct xfs_buf		*ibp,
2073 	struct xfs_dinode	*dip,
2074 	struct xfs_imap		*imap,
2075 	xfs_agino_t		next_agino)
2076 {
2077 	struct xfs_mount	*mp = tp->t_mountp;
2078 	int			offset;
2079 
2080 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2081 
2082 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2083 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2084 
2085 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2086 	offset = imap->im_boffset +
2087 			offsetof(struct xfs_dinode, di_next_unlinked);
2088 
2089 	/* need to recalc the inode CRC if appropriate */
2090 	xfs_dinode_calc_crc(mp, dip);
2091 	xfs_trans_inode_buf(tp, ibp);
2092 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2093 }
2094 
2095 /* Set an in-core inode's unlinked pointer and return the old value. */
2096 STATIC int
2097 xfs_iunlink_update_inode(
2098 	struct xfs_trans	*tp,
2099 	struct xfs_inode	*ip,
2100 	struct xfs_perag	*pag,
2101 	xfs_agino_t		next_agino,
2102 	xfs_agino_t		*old_next_agino)
2103 {
2104 	struct xfs_mount	*mp = tp->t_mountp;
2105 	struct xfs_dinode	*dip;
2106 	struct xfs_buf		*ibp;
2107 	xfs_agino_t		old_value;
2108 	int			error;
2109 
2110 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2111 
2112 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2113 	if (error)
2114 		return error;
2115 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2116 
2117 	/* Make sure the old pointer isn't garbage. */
2118 	old_value = be32_to_cpu(dip->di_next_unlinked);
2119 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2120 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2121 				sizeof(*dip), __this_address);
2122 		error = -EFSCORRUPTED;
2123 		goto out;
2124 	}
2125 
2126 	/*
2127 	 * Since we're updating a linked list, we should never find that the
2128 	 * current pointer is the same as the new value, unless we're
2129 	 * terminating the list.
2130 	 */
2131 	*old_next_agino = old_value;
2132 	if (old_value == next_agino) {
2133 		if (next_agino != NULLAGINO) {
2134 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2135 					dip, sizeof(*dip), __this_address);
2136 			error = -EFSCORRUPTED;
2137 		}
2138 		goto out;
2139 	}
2140 
2141 	/* Ok, update the new pointer. */
2142 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2143 			ibp, dip, &ip->i_imap, next_agino);
2144 	return 0;
2145 out:
2146 	xfs_trans_brelse(tp, ibp);
2147 	return error;
2148 }
2149 
2150 /*
2151  * This is called when the inode's link count has gone to 0 or we are creating
2152  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2153  *
2154  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2155  * list when the inode is freed.
2156  */
2157 STATIC int
2158 xfs_iunlink(
2159 	struct xfs_trans	*tp,
2160 	struct xfs_inode	*ip)
2161 {
2162 	struct xfs_mount	*mp = tp->t_mountp;
2163 	struct xfs_perag	*pag;
2164 	struct xfs_agi		*agi;
2165 	struct xfs_buf		*agibp;
2166 	xfs_agino_t		next_agino;
2167 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2168 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2169 	int			error;
2170 
2171 	ASSERT(VFS_I(ip)->i_nlink == 0);
2172 	ASSERT(VFS_I(ip)->i_mode != 0);
2173 	trace_xfs_iunlink(ip);
2174 
2175 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2176 
2177 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2178 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2179 	if (error)
2180 		goto out;
2181 	agi = agibp->b_addr;
2182 
2183 	/*
2184 	 * Get the index into the agi hash table for the list this inode will
2185 	 * go on.  Make sure the pointer isn't garbage and that this inode
2186 	 * isn't already on the list.
2187 	 */
2188 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2189 	if (next_agino == agino ||
2190 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2191 		xfs_buf_mark_corrupt(agibp);
2192 		error = -EFSCORRUPTED;
2193 		goto out;
2194 	}
2195 
2196 	if (next_agino != NULLAGINO) {
2197 		xfs_agino_t		old_agino;
2198 
2199 		/*
2200 		 * There is already another inode in the bucket, so point this
2201 		 * inode to the current head of the list.
2202 		 */
2203 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2204 				&old_agino);
2205 		if (error)
2206 			goto out;
2207 		ASSERT(old_agino == NULLAGINO);
2208 
2209 		/*
2210 		 * agino has been unlinked, add a backref from the next inode
2211 		 * back to agino.
2212 		 */
2213 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2214 		if (error)
2215 			goto out;
2216 	}
2217 
2218 	/* Point the head of the list to point to this inode. */
2219 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2220 out:
2221 	xfs_perag_put(pag);
2222 	return error;
2223 }
2224 
2225 /* Return the imap, dinode pointer, and buffer for an inode. */
2226 STATIC int
2227 xfs_iunlink_map_ino(
2228 	struct xfs_trans	*tp,
2229 	xfs_agnumber_t		agno,
2230 	xfs_agino_t		agino,
2231 	struct xfs_imap		*imap,
2232 	struct xfs_dinode	**dipp,
2233 	struct xfs_buf		**bpp)
2234 {
2235 	struct xfs_mount	*mp = tp->t_mountp;
2236 	int			error;
2237 
2238 	imap->im_blkno = 0;
2239 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2240 	if (error) {
2241 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2242 				__func__, error);
2243 		return error;
2244 	}
2245 
2246 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2247 	if (error) {
2248 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2249 				__func__, error);
2250 		return error;
2251 	}
2252 
2253 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2254 	return 0;
2255 }
2256 
2257 /*
2258  * Walk the unlinked chain from @head_agino until we find the inode that
2259  * points to @target_agino.  Return the inode number, map, dinode pointer,
2260  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2261  *
2262  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2263  * @agino, @imap, @dipp, and @bpp are all output parameters.
2264  *
2265  * Do not call this function if @target_agino is the head of the list.
2266  */
2267 STATIC int
2268 xfs_iunlink_map_prev(
2269 	struct xfs_trans	*tp,
2270 	struct xfs_perag	*pag,
2271 	xfs_agino_t		head_agino,
2272 	xfs_agino_t		target_agino,
2273 	xfs_agino_t		*agino,
2274 	struct xfs_imap		*imap,
2275 	struct xfs_dinode	**dipp,
2276 	struct xfs_buf		**bpp)
2277 {
2278 	struct xfs_mount	*mp = tp->t_mountp;
2279 	xfs_agino_t		next_agino;
2280 	int			error;
2281 
2282 	ASSERT(head_agino != target_agino);
2283 	*bpp = NULL;
2284 
2285 	/* See if our backref cache can find it faster. */
2286 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2287 	if (*agino != NULLAGINO) {
2288 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2289 				dipp, bpp);
2290 		if (error)
2291 			return error;
2292 
2293 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2294 			return 0;
2295 
2296 		/*
2297 		 * If we get here the cache contents were corrupt, so drop the
2298 		 * buffer and fall back to walking the bucket list.
2299 		 */
2300 		xfs_trans_brelse(tp, *bpp);
2301 		*bpp = NULL;
2302 		WARN_ON_ONCE(1);
2303 	}
2304 
2305 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2306 
2307 	/* Otherwise, walk the entire bucket until we find it. */
2308 	next_agino = head_agino;
2309 	while (next_agino != target_agino) {
2310 		xfs_agino_t	unlinked_agino;
2311 
2312 		if (*bpp)
2313 			xfs_trans_brelse(tp, *bpp);
2314 
2315 		*agino = next_agino;
2316 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2317 				dipp, bpp);
2318 		if (error)
2319 			return error;
2320 
2321 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2322 		/*
2323 		 * Make sure this pointer is valid and isn't an obvious
2324 		 * infinite loop.
2325 		 */
2326 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2327 		    next_agino == unlinked_agino) {
2328 			XFS_CORRUPTION_ERROR(__func__,
2329 					XFS_ERRLEVEL_LOW, mp,
2330 					*dipp, sizeof(**dipp));
2331 			error = -EFSCORRUPTED;
2332 			return error;
2333 		}
2334 		next_agino = unlinked_agino;
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Pull the on-disk inode from the AGI unlinked list.
2342  */
2343 STATIC int
2344 xfs_iunlink_remove(
2345 	struct xfs_trans	*tp,
2346 	struct xfs_perag	*pag,
2347 	struct xfs_inode	*ip)
2348 {
2349 	struct xfs_mount	*mp = tp->t_mountp;
2350 	struct xfs_agi		*agi;
2351 	struct xfs_buf		*agibp;
2352 	struct xfs_buf		*last_ibp;
2353 	struct xfs_dinode	*last_dip = NULL;
2354 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2355 	xfs_agino_t		next_agino;
2356 	xfs_agino_t		head_agino;
2357 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2358 	int			error;
2359 
2360 	trace_xfs_iunlink_remove(ip);
2361 
2362 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2363 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2364 	if (error)
2365 		return error;
2366 	agi = agibp->b_addr;
2367 
2368 	/*
2369 	 * Get the index into the agi hash table for the list this inode will
2370 	 * go on.  Make sure the head pointer isn't garbage.
2371 	 */
2372 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2373 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2374 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2375 				agi, sizeof(*agi));
2376 		return -EFSCORRUPTED;
2377 	}
2378 
2379 	/*
2380 	 * Set our inode's next_unlinked pointer to NULL and then return
2381 	 * the old pointer value so that we can update whatever was previous
2382 	 * to us in the list to point to whatever was next in the list.
2383 	 */
2384 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2385 	if (error)
2386 		return error;
2387 
2388 	/*
2389 	 * If there was a backref pointing from the next inode back to this
2390 	 * one, remove it because we've removed this inode from the list.
2391 	 *
2392 	 * Later, if this inode was in the middle of the list we'll update
2393 	 * this inode's backref to point from the next inode.
2394 	 */
2395 	if (next_agino != NULLAGINO) {
2396 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2397 		if (error)
2398 			return error;
2399 	}
2400 
2401 	if (head_agino != agino) {
2402 		struct xfs_imap	imap;
2403 		xfs_agino_t	prev_agino;
2404 
2405 		/* We need to search the list for the inode being freed. */
2406 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2407 				&prev_agino, &imap, &last_dip, &last_ibp);
2408 		if (error)
2409 			return error;
2410 
2411 		/* Point the previous inode on the list to the next inode. */
2412 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2413 				last_dip, &imap, next_agino);
2414 
2415 		/*
2416 		 * Now we deal with the backref for this inode.  If this inode
2417 		 * pointed at a real inode, change the backref that pointed to
2418 		 * us to point to our old next.  If this inode was the end of
2419 		 * the list, delete the backref that pointed to us.  Note that
2420 		 * change_backref takes care of deleting the backref if
2421 		 * next_agino is NULLAGINO.
2422 		 */
2423 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2424 				next_agino);
2425 	}
2426 
2427 	/* Point the head of the list to the next unlinked inode. */
2428 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2429 			next_agino);
2430 }
2431 
2432 /*
2433  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2434  * mark it stale. We should only find clean inodes in this lookup that aren't
2435  * already stale.
2436  */
2437 static void
2438 xfs_ifree_mark_inode_stale(
2439 	struct xfs_perag	*pag,
2440 	struct xfs_inode	*free_ip,
2441 	xfs_ino_t		inum)
2442 {
2443 	struct xfs_mount	*mp = pag->pag_mount;
2444 	struct xfs_inode_log_item *iip;
2445 	struct xfs_inode	*ip;
2446 
2447 retry:
2448 	rcu_read_lock();
2449 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2450 
2451 	/* Inode not in memory, nothing to do */
2452 	if (!ip) {
2453 		rcu_read_unlock();
2454 		return;
2455 	}
2456 
2457 	/*
2458 	 * because this is an RCU protected lookup, we could find a recently
2459 	 * freed or even reallocated inode during the lookup. We need to check
2460 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2461 	 * valid, the wrong inode or stale.
2462 	 */
2463 	spin_lock(&ip->i_flags_lock);
2464 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2465 		goto out_iflags_unlock;
2466 
2467 	/*
2468 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2469 	 * other inodes that we did not find in the list attached to the buffer
2470 	 * and are not already marked stale. If we can't lock it, back off and
2471 	 * retry.
2472 	 */
2473 	if (ip != free_ip) {
2474 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2475 			spin_unlock(&ip->i_flags_lock);
2476 			rcu_read_unlock();
2477 			delay(1);
2478 			goto retry;
2479 		}
2480 	}
2481 	ip->i_flags |= XFS_ISTALE;
2482 
2483 	/*
2484 	 * If the inode is flushing, it is already attached to the buffer.  All
2485 	 * we needed to do here is mark the inode stale so buffer IO completion
2486 	 * will remove it from the AIL.
2487 	 */
2488 	iip = ip->i_itemp;
2489 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2490 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2491 		ASSERT(iip->ili_last_fields);
2492 		goto out_iunlock;
2493 	}
2494 
2495 	/*
2496 	 * Inodes not attached to the buffer can be released immediately.
2497 	 * Everything else has to go through xfs_iflush_abort() on journal
2498 	 * commit as the flock synchronises removal of the inode from the
2499 	 * cluster buffer against inode reclaim.
2500 	 */
2501 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2502 		goto out_iunlock;
2503 
2504 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2505 	spin_unlock(&ip->i_flags_lock);
2506 	rcu_read_unlock();
2507 
2508 	/* we have a dirty inode in memory that has not yet been flushed. */
2509 	spin_lock(&iip->ili_lock);
2510 	iip->ili_last_fields = iip->ili_fields;
2511 	iip->ili_fields = 0;
2512 	iip->ili_fsync_fields = 0;
2513 	spin_unlock(&iip->ili_lock);
2514 	ASSERT(iip->ili_last_fields);
2515 
2516 	if (ip != free_ip)
2517 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2518 	return;
2519 
2520 out_iunlock:
2521 	if (ip != free_ip)
2522 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2523 out_iflags_unlock:
2524 	spin_unlock(&ip->i_flags_lock);
2525 	rcu_read_unlock();
2526 }
2527 
2528 /*
2529  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2530  * inodes that are in memory - they all must be marked stale and attached to
2531  * the cluster buffer.
2532  */
2533 static int
2534 xfs_ifree_cluster(
2535 	struct xfs_trans	*tp,
2536 	struct xfs_perag	*pag,
2537 	struct xfs_inode	*free_ip,
2538 	struct xfs_icluster	*xic)
2539 {
2540 	struct xfs_mount	*mp = free_ip->i_mount;
2541 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2542 	struct xfs_buf		*bp;
2543 	xfs_daddr_t		blkno;
2544 	xfs_ino_t		inum = xic->first_ino;
2545 	int			nbufs;
2546 	int			i, j;
2547 	int			ioffset;
2548 	int			error;
2549 
2550 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2551 
2552 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2553 		/*
2554 		 * The allocation bitmap tells us which inodes of the chunk were
2555 		 * physically allocated. Skip the cluster if an inode falls into
2556 		 * a sparse region.
2557 		 */
2558 		ioffset = inum - xic->first_ino;
2559 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2560 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2561 			continue;
2562 		}
2563 
2564 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2565 					 XFS_INO_TO_AGBNO(mp, inum));
2566 
2567 		/*
2568 		 * We obtain and lock the backing buffer first in the process
2569 		 * here to ensure dirty inodes attached to the buffer remain in
2570 		 * the flushing state while we mark them stale.
2571 		 *
2572 		 * If we scan the in-memory inodes first, then buffer IO can
2573 		 * complete before we get a lock on it, and hence we may fail
2574 		 * to mark all the active inodes on the buffer stale.
2575 		 */
2576 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2577 				mp->m_bsize * igeo->blocks_per_cluster,
2578 				XBF_UNMAPPED, &bp);
2579 		if (error)
2580 			return error;
2581 
2582 		/*
2583 		 * This buffer may not have been correctly initialised as we
2584 		 * didn't read it from disk. That's not important because we are
2585 		 * only using to mark the buffer as stale in the log, and to
2586 		 * attach stale cached inodes on it. That means it will never be
2587 		 * dispatched for IO. If it is, we want to know about it, and we
2588 		 * want it to fail. We can acheive this by adding a write
2589 		 * verifier to the buffer.
2590 		 */
2591 		bp->b_ops = &xfs_inode_buf_ops;
2592 
2593 		/*
2594 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2595 		 * too. This requires lookups, and will skip inodes that we've
2596 		 * already marked XFS_ISTALE.
2597 		 */
2598 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2599 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2600 
2601 		xfs_trans_stale_inode_buf(tp, bp);
2602 		xfs_trans_binval(tp, bp);
2603 	}
2604 	return 0;
2605 }
2606 
2607 /*
2608  * This is called to return an inode to the inode free list.
2609  * The inode should already be truncated to 0 length and have
2610  * no pages associated with it.  This routine also assumes that
2611  * the inode is already a part of the transaction.
2612  *
2613  * The on-disk copy of the inode will have been added to the list
2614  * of unlinked inodes in the AGI. We need to remove the inode from
2615  * that list atomically with respect to freeing it here.
2616  */
2617 int
2618 xfs_ifree(
2619 	struct xfs_trans	*tp,
2620 	struct xfs_inode	*ip)
2621 {
2622 	struct xfs_mount	*mp = ip->i_mount;
2623 	struct xfs_perag	*pag;
2624 	struct xfs_icluster	xic = { 0 };
2625 	struct xfs_inode_log_item *iip = ip->i_itemp;
2626 	int			error;
2627 
2628 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2629 	ASSERT(VFS_I(ip)->i_nlink == 0);
2630 	ASSERT(ip->i_df.if_nextents == 0);
2631 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2632 	ASSERT(ip->i_nblocks == 0);
2633 
2634 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2635 
2636 	/*
2637 	 * Pull the on-disk inode from the AGI unlinked list.
2638 	 */
2639 	error = xfs_iunlink_remove(tp, pag, ip);
2640 	if (error)
2641 		goto out;
2642 
2643 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2644 	if (error)
2645 		goto out;
2646 
2647 	/*
2648 	 * Free any local-format data sitting around before we reset the
2649 	 * data fork to extents format.  Note that the attr fork data has
2650 	 * already been freed by xfs_attr_inactive.
2651 	 */
2652 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2653 		kmem_free(ip->i_df.if_u1.if_data);
2654 		ip->i_df.if_u1.if_data = NULL;
2655 		ip->i_df.if_bytes = 0;
2656 	}
2657 
2658 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2659 	ip->i_diflags = 0;
2660 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2661 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2662 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2663 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2664 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2665 
2666 	/* Don't attempt to replay owner changes for a deleted inode */
2667 	spin_lock(&iip->ili_lock);
2668 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2669 	spin_unlock(&iip->ili_lock);
2670 
2671 	/*
2672 	 * Bump the generation count so no one will be confused
2673 	 * by reincarnations of this inode.
2674 	 */
2675 	VFS_I(ip)->i_generation++;
2676 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2677 
2678 	if (xic.deleted)
2679 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2680 out:
2681 	xfs_perag_put(pag);
2682 	return error;
2683 }
2684 
2685 /*
2686  * This is called to unpin an inode.  The caller must have the inode locked
2687  * in at least shared mode so that the buffer cannot be subsequently pinned
2688  * once someone is waiting for it to be unpinned.
2689  */
2690 static void
2691 xfs_iunpin(
2692 	struct xfs_inode	*ip)
2693 {
2694 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2695 
2696 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2697 
2698 	/* Give the log a push to start the unpinning I/O */
2699 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2700 
2701 }
2702 
2703 static void
2704 __xfs_iunpin_wait(
2705 	struct xfs_inode	*ip)
2706 {
2707 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2708 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2709 
2710 	xfs_iunpin(ip);
2711 
2712 	do {
2713 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2714 		if (xfs_ipincount(ip))
2715 			io_schedule();
2716 	} while (xfs_ipincount(ip));
2717 	finish_wait(wq, &wait.wq_entry);
2718 }
2719 
2720 void
2721 xfs_iunpin_wait(
2722 	struct xfs_inode	*ip)
2723 {
2724 	if (xfs_ipincount(ip))
2725 		__xfs_iunpin_wait(ip);
2726 }
2727 
2728 /*
2729  * Removing an inode from the namespace involves removing the directory entry
2730  * and dropping the link count on the inode. Removing the directory entry can
2731  * result in locking an AGF (directory blocks were freed) and removing a link
2732  * count can result in placing the inode on an unlinked list which results in
2733  * locking an AGI.
2734  *
2735  * The big problem here is that we have an ordering constraint on AGF and AGI
2736  * locking - inode allocation locks the AGI, then can allocate a new extent for
2737  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2738  * removes the inode from the unlinked list, requiring that we lock the AGI
2739  * first, and then freeing the inode can result in an inode chunk being freed
2740  * and hence freeing disk space requiring that we lock an AGF.
2741  *
2742  * Hence the ordering that is imposed by other parts of the code is AGI before
2743  * AGF. This means we cannot remove the directory entry before we drop the inode
2744  * reference count and put it on the unlinked list as this results in a lock
2745  * order of AGF then AGI, and this can deadlock against inode allocation and
2746  * freeing. Therefore we must drop the link counts before we remove the
2747  * directory entry.
2748  *
2749  * This is still safe from a transactional point of view - it is not until we
2750  * get to xfs_defer_finish() that we have the possibility of multiple
2751  * transactions in this operation. Hence as long as we remove the directory
2752  * entry and drop the link count in the first transaction of the remove
2753  * operation, there are no transactional constraints on the ordering here.
2754  */
2755 int
2756 xfs_remove(
2757 	xfs_inode_t             *dp,
2758 	struct xfs_name		*name,
2759 	xfs_inode_t		*ip)
2760 {
2761 	xfs_mount_t		*mp = dp->i_mount;
2762 	xfs_trans_t             *tp = NULL;
2763 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2764 	int                     error = 0;
2765 	uint			resblks;
2766 
2767 	trace_xfs_remove(dp, name);
2768 
2769 	if (xfs_is_shutdown(mp))
2770 		return -EIO;
2771 
2772 	error = xfs_qm_dqattach(dp);
2773 	if (error)
2774 		goto std_return;
2775 
2776 	error = xfs_qm_dqattach(ip);
2777 	if (error)
2778 		goto std_return;
2779 
2780 	/*
2781 	 * We try to get the real space reservation first,
2782 	 * allowing for directory btree deletion(s) implying
2783 	 * possible bmap insert(s).  If we can't get the space
2784 	 * reservation then we use 0 instead, and avoid the bmap
2785 	 * btree insert(s) in the directory code by, if the bmap
2786 	 * insert tries to happen, instead trimming the LAST
2787 	 * block from the directory.
2788 	 */
2789 	resblks = XFS_REMOVE_SPACE_RES(mp);
2790 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2791 	if (error == -ENOSPC) {
2792 		resblks = 0;
2793 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2794 				&tp);
2795 	}
2796 	if (error) {
2797 		ASSERT(error != -ENOSPC);
2798 		goto std_return;
2799 	}
2800 
2801 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2802 
2803 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2804 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2805 
2806 	/*
2807 	 * If we're removing a directory perform some additional validation.
2808 	 */
2809 	if (is_dir) {
2810 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2811 		if (VFS_I(ip)->i_nlink != 2) {
2812 			error = -ENOTEMPTY;
2813 			goto out_trans_cancel;
2814 		}
2815 		if (!xfs_dir_isempty(ip)) {
2816 			error = -ENOTEMPTY;
2817 			goto out_trans_cancel;
2818 		}
2819 
2820 		/* Drop the link from ip's "..".  */
2821 		error = xfs_droplink(tp, dp);
2822 		if (error)
2823 			goto out_trans_cancel;
2824 
2825 		/* Drop the "." link from ip to self.  */
2826 		error = xfs_droplink(tp, ip);
2827 		if (error)
2828 			goto out_trans_cancel;
2829 
2830 		/*
2831 		 * Point the unlinked child directory's ".." entry to the root
2832 		 * directory to eliminate back-references to inodes that may
2833 		 * get freed before the child directory is closed.  If the fs
2834 		 * gets shrunk, this can lead to dirent inode validation errors.
2835 		 */
2836 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2837 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2838 					tp->t_mountp->m_sb.sb_rootino, 0);
2839 			if (error)
2840 				return error;
2841 		}
2842 	} else {
2843 		/*
2844 		 * When removing a non-directory we need to log the parent
2845 		 * inode here.  For a directory this is done implicitly
2846 		 * by the xfs_droplink call for the ".." entry.
2847 		 */
2848 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2849 	}
2850 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2851 
2852 	/* Drop the link from dp to ip. */
2853 	error = xfs_droplink(tp, ip);
2854 	if (error)
2855 		goto out_trans_cancel;
2856 
2857 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2858 	if (error) {
2859 		ASSERT(error != -ENOENT);
2860 		goto out_trans_cancel;
2861 	}
2862 
2863 	/*
2864 	 * If this is a synchronous mount, make sure that the
2865 	 * remove transaction goes to disk before returning to
2866 	 * the user.
2867 	 */
2868 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2869 		xfs_trans_set_sync(tp);
2870 
2871 	error = xfs_trans_commit(tp);
2872 	if (error)
2873 		goto std_return;
2874 
2875 	if (is_dir && xfs_inode_is_filestream(ip))
2876 		xfs_filestream_deassociate(ip);
2877 
2878 	return 0;
2879 
2880  out_trans_cancel:
2881 	xfs_trans_cancel(tp);
2882  std_return:
2883 	return error;
2884 }
2885 
2886 /*
2887  * Enter all inodes for a rename transaction into a sorted array.
2888  */
2889 #define __XFS_SORT_INODES	5
2890 STATIC void
2891 xfs_sort_for_rename(
2892 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2893 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2894 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2895 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2896 	struct xfs_inode	*wip,	/* in: whiteout inode */
2897 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2898 	int			*num_inodes)  /* in/out: inodes in array */
2899 {
2900 	int			i, j;
2901 
2902 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2903 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2904 
2905 	/*
2906 	 * i_tab contains a list of pointers to inodes.  We initialize
2907 	 * the table here & we'll sort it.  We will then use it to
2908 	 * order the acquisition of the inode locks.
2909 	 *
2910 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2911 	 */
2912 	i = 0;
2913 	i_tab[i++] = dp1;
2914 	i_tab[i++] = dp2;
2915 	i_tab[i++] = ip1;
2916 	if (ip2)
2917 		i_tab[i++] = ip2;
2918 	if (wip)
2919 		i_tab[i++] = wip;
2920 	*num_inodes = i;
2921 
2922 	/*
2923 	 * Sort the elements via bubble sort.  (Remember, there are at
2924 	 * most 5 elements to sort, so this is adequate.)
2925 	 */
2926 	for (i = 0; i < *num_inodes; i++) {
2927 		for (j = 1; j < *num_inodes; j++) {
2928 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2929 				struct xfs_inode *temp = i_tab[j];
2930 				i_tab[j] = i_tab[j-1];
2931 				i_tab[j-1] = temp;
2932 			}
2933 		}
2934 	}
2935 }
2936 
2937 static int
2938 xfs_finish_rename(
2939 	struct xfs_trans	*tp)
2940 {
2941 	/*
2942 	 * If this is a synchronous mount, make sure that the rename transaction
2943 	 * goes to disk before returning to the user.
2944 	 */
2945 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2946 		xfs_trans_set_sync(tp);
2947 
2948 	return xfs_trans_commit(tp);
2949 }
2950 
2951 /*
2952  * xfs_cross_rename()
2953  *
2954  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2955  */
2956 STATIC int
2957 xfs_cross_rename(
2958 	struct xfs_trans	*tp,
2959 	struct xfs_inode	*dp1,
2960 	struct xfs_name		*name1,
2961 	struct xfs_inode	*ip1,
2962 	struct xfs_inode	*dp2,
2963 	struct xfs_name		*name2,
2964 	struct xfs_inode	*ip2,
2965 	int			spaceres)
2966 {
2967 	int		error = 0;
2968 	int		ip1_flags = 0;
2969 	int		ip2_flags = 0;
2970 	int		dp2_flags = 0;
2971 
2972 	/* Swap inode number for dirent in first parent */
2973 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2974 	if (error)
2975 		goto out_trans_abort;
2976 
2977 	/* Swap inode number for dirent in second parent */
2978 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2979 	if (error)
2980 		goto out_trans_abort;
2981 
2982 	/*
2983 	 * If we're renaming one or more directories across different parents,
2984 	 * update the respective ".." entries (and link counts) to match the new
2985 	 * parents.
2986 	 */
2987 	if (dp1 != dp2) {
2988 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2989 
2990 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2991 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2992 						dp1->i_ino, spaceres);
2993 			if (error)
2994 				goto out_trans_abort;
2995 
2996 			/* transfer ip2 ".." reference to dp1 */
2997 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2998 				error = xfs_droplink(tp, dp2);
2999 				if (error)
3000 					goto out_trans_abort;
3001 				xfs_bumplink(tp, dp1);
3002 			}
3003 
3004 			/*
3005 			 * Although ip1 isn't changed here, userspace needs
3006 			 * to be warned about the change, so that applications
3007 			 * relying on it (like backup ones), will properly
3008 			 * notify the change
3009 			 */
3010 			ip1_flags |= XFS_ICHGTIME_CHG;
3011 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3012 		}
3013 
3014 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3015 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3016 						dp2->i_ino, spaceres);
3017 			if (error)
3018 				goto out_trans_abort;
3019 
3020 			/* transfer ip1 ".." reference to dp2 */
3021 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3022 				error = xfs_droplink(tp, dp1);
3023 				if (error)
3024 					goto out_trans_abort;
3025 				xfs_bumplink(tp, dp2);
3026 			}
3027 
3028 			/*
3029 			 * Although ip2 isn't changed here, userspace needs
3030 			 * to be warned about the change, so that applications
3031 			 * relying on it (like backup ones), will properly
3032 			 * notify the change
3033 			 */
3034 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3035 			ip2_flags |= XFS_ICHGTIME_CHG;
3036 		}
3037 	}
3038 
3039 	if (ip1_flags) {
3040 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3041 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3042 	}
3043 	if (ip2_flags) {
3044 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3045 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3046 	}
3047 	if (dp2_flags) {
3048 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3049 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3050 	}
3051 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3052 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3053 	return xfs_finish_rename(tp);
3054 
3055 out_trans_abort:
3056 	xfs_trans_cancel(tp);
3057 	return error;
3058 }
3059 
3060 /*
3061  * xfs_rename_alloc_whiteout()
3062  *
3063  * Return a referenced, unlinked, unlocked inode that can be used as a
3064  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3065  * crash between allocating the inode and linking it into the rename transaction
3066  * recovery will free the inode and we won't leak it.
3067  */
3068 static int
3069 xfs_rename_alloc_whiteout(
3070 	struct user_namespace	*mnt_userns,
3071 	struct xfs_inode	*dp,
3072 	struct xfs_inode	**wip)
3073 {
3074 	struct xfs_inode	*tmpfile;
3075 	int			error;
3076 
3077 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3078 				   &tmpfile);
3079 	if (error)
3080 		return error;
3081 
3082 	/*
3083 	 * Prepare the tmpfile inode as if it were created through the VFS.
3084 	 * Complete the inode setup and flag it as linkable.  nlink is already
3085 	 * zero, so we can skip the drop_nlink.
3086 	 */
3087 	xfs_setup_iops(tmpfile);
3088 	xfs_finish_inode_setup(tmpfile);
3089 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3090 
3091 	*wip = tmpfile;
3092 	return 0;
3093 }
3094 
3095 /*
3096  * xfs_rename
3097  */
3098 int
3099 xfs_rename(
3100 	struct user_namespace	*mnt_userns,
3101 	struct xfs_inode	*src_dp,
3102 	struct xfs_name		*src_name,
3103 	struct xfs_inode	*src_ip,
3104 	struct xfs_inode	*target_dp,
3105 	struct xfs_name		*target_name,
3106 	struct xfs_inode	*target_ip,
3107 	unsigned int		flags)
3108 {
3109 	struct xfs_mount	*mp = src_dp->i_mount;
3110 	struct xfs_trans	*tp;
3111 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3112 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3113 	int			i;
3114 	int			num_inodes = __XFS_SORT_INODES;
3115 	bool			new_parent = (src_dp != target_dp);
3116 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3117 	int			spaceres;
3118 	int			error;
3119 
3120 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3121 
3122 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3123 		return -EINVAL;
3124 
3125 	/*
3126 	 * If we are doing a whiteout operation, allocate the whiteout inode
3127 	 * we will be placing at the target and ensure the type is set
3128 	 * appropriately.
3129 	 */
3130 	if (flags & RENAME_WHITEOUT) {
3131 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3132 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3133 		if (error)
3134 			return error;
3135 
3136 		/* setup target dirent info as whiteout */
3137 		src_name->type = XFS_DIR3_FT_CHRDEV;
3138 	}
3139 
3140 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3141 				inodes, &num_inodes);
3142 
3143 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3144 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3145 	if (error == -ENOSPC) {
3146 		spaceres = 0;
3147 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3148 				&tp);
3149 	}
3150 	if (error)
3151 		goto out_release_wip;
3152 
3153 	/*
3154 	 * Attach the dquots to the inodes
3155 	 */
3156 	error = xfs_qm_vop_rename_dqattach(inodes);
3157 	if (error)
3158 		goto out_trans_cancel;
3159 
3160 	/*
3161 	 * Lock all the participating inodes. Depending upon whether
3162 	 * the target_name exists in the target directory, and
3163 	 * whether the target directory is the same as the source
3164 	 * directory, we can lock from 2 to 4 inodes.
3165 	 */
3166 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3167 
3168 	/*
3169 	 * Join all the inodes to the transaction. From this point on,
3170 	 * we can rely on either trans_commit or trans_cancel to unlock
3171 	 * them.
3172 	 */
3173 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3174 	if (new_parent)
3175 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3176 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3177 	if (target_ip)
3178 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3179 	if (wip)
3180 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3181 
3182 	/*
3183 	 * If we are using project inheritance, we only allow renames
3184 	 * into our tree when the project IDs are the same; else the
3185 	 * tree quota mechanism would be circumvented.
3186 	 */
3187 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3188 		     target_dp->i_projid != src_ip->i_projid)) {
3189 		error = -EXDEV;
3190 		goto out_trans_cancel;
3191 	}
3192 
3193 	/* RENAME_EXCHANGE is unique from here on. */
3194 	if (flags & RENAME_EXCHANGE)
3195 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3196 					target_dp, target_name, target_ip,
3197 					spaceres);
3198 
3199 	/*
3200 	 * Check for expected errors before we dirty the transaction
3201 	 * so we can return an error without a transaction abort.
3202 	 *
3203 	 * Extent count overflow check:
3204 	 *
3205 	 * From the perspective of src_dp, a rename operation is essentially a
3206 	 * directory entry remove operation. Hence the only place where we check
3207 	 * for extent count overflow for src_dp is in
3208 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3209 	 * -ENOSPC when it detects a possible extent count overflow and in
3210 	 * response, the higher layers of directory handling code do the
3211 	 * following:
3212 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3213 	 *    future remove operation removes them.
3214 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3215 	 *    Leaf space and unmaps the last block.
3216 	 *
3217 	 * For target_dp, there are two cases depending on whether the
3218 	 * destination directory entry exists or not.
3219 	 *
3220 	 * When destination directory entry does not exist (i.e. target_ip ==
3221 	 * NULL), extent count overflow check is performed only when transaction
3222 	 * has a non-zero sized space reservation associated with it.  With a
3223 	 * zero-sized space reservation, XFS allows a rename operation to
3224 	 * continue only when the directory has sufficient free space in its
3225 	 * data/leaf/free space blocks to hold the new entry.
3226 	 *
3227 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3228 	 * we need to do is change the inode number associated with the already
3229 	 * existing entry. Hence there is no need to perform an extent count
3230 	 * overflow check.
3231 	 */
3232 	if (target_ip == NULL) {
3233 		/*
3234 		 * If there's no space reservation, check the entry will
3235 		 * fit before actually inserting it.
3236 		 */
3237 		if (!spaceres) {
3238 			error = xfs_dir_canenter(tp, target_dp, target_name);
3239 			if (error)
3240 				goto out_trans_cancel;
3241 		} else {
3242 			error = xfs_iext_count_may_overflow(target_dp,
3243 					XFS_DATA_FORK,
3244 					XFS_IEXT_DIR_MANIP_CNT(mp));
3245 			if (error)
3246 				goto out_trans_cancel;
3247 		}
3248 	} else {
3249 		/*
3250 		 * If target exists and it's a directory, check that whether
3251 		 * it can be destroyed.
3252 		 */
3253 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3254 		    (!xfs_dir_isempty(target_ip) ||
3255 		     (VFS_I(target_ip)->i_nlink > 2))) {
3256 			error = -EEXIST;
3257 			goto out_trans_cancel;
3258 		}
3259 	}
3260 
3261 	/*
3262 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3263 	 * whiteout inode off the unlinked list and to handle dropping the
3264 	 * nlink of the target inode.  Per locking order rules, do this in
3265 	 * increasing AG order and before directory block allocation tries to
3266 	 * grab AGFs because we grab AGIs before AGFs.
3267 	 *
3268 	 * The (vfs) caller must ensure that if src is a directory then
3269 	 * target_ip is either null or an empty directory.
3270 	 */
3271 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3272 		if (inodes[i] == wip ||
3273 		    (inodes[i] == target_ip &&
3274 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3275 			struct xfs_buf	*bp;
3276 			xfs_agnumber_t	agno;
3277 
3278 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3279 			error = xfs_read_agi(mp, tp, agno, &bp);
3280 			if (error)
3281 				goto out_trans_cancel;
3282 		}
3283 	}
3284 
3285 	/*
3286 	 * Directory entry creation below may acquire the AGF. Remove
3287 	 * the whiteout from the unlinked list first to preserve correct
3288 	 * AGI/AGF locking order. This dirties the transaction so failures
3289 	 * after this point will abort and log recovery will clean up the
3290 	 * mess.
3291 	 *
3292 	 * For whiteouts, we need to bump the link count on the whiteout
3293 	 * inode. After this point, we have a real link, clear the tmpfile
3294 	 * state flag from the inode so it doesn't accidentally get misused
3295 	 * in future.
3296 	 */
3297 	if (wip) {
3298 		struct xfs_perag	*pag;
3299 
3300 		ASSERT(VFS_I(wip)->i_nlink == 0);
3301 
3302 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3303 		error = xfs_iunlink_remove(tp, pag, wip);
3304 		xfs_perag_put(pag);
3305 		if (error)
3306 			goto out_trans_cancel;
3307 
3308 		xfs_bumplink(tp, wip);
3309 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3310 	}
3311 
3312 	/*
3313 	 * Set up the target.
3314 	 */
3315 	if (target_ip == NULL) {
3316 		/*
3317 		 * If target does not exist and the rename crosses
3318 		 * directories, adjust the target directory link count
3319 		 * to account for the ".." reference from the new entry.
3320 		 */
3321 		error = xfs_dir_createname(tp, target_dp, target_name,
3322 					   src_ip->i_ino, spaceres);
3323 		if (error)
3324 			goto out_trans_cancel;
3325 
3326 		xfs_trans_ichgtime(tp, target_dp,
3327 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3328 
3329 		if (new_parent && src_is_directory) {
3330 			xfs_bumplink(tp, target_dp);
3331 		}
3332 	} else { /* target_ip != NULL */
3333 		/*
3334 		 * Link the source inode under the target name.
3335 		 * If the source inode is a directory and we are moving
3336 		 * it across directories, its ".." entry will be
3337 		 * inconsistent until we replace that down below.
3338 		 *
3339 		 * In case there is already an entry with the same
3340 		 * name at the destination directory, remove it first.
3341 		 */
3342 		error = xfs_dir_replace(tp, target_dp, target_name,
3343 					src_ip->i_ino, spaceres);
3344 		if (error)
3345 			goto out_trans_cancel;
3346 
3347 		xfs_trans_ichgtime(tp, target_dp,
3348 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3349 
3350 		/*
3351 		 * Decrement the link count on the target since the target
3352 		 * dir no longer points to it.
3353 		 */
3354 		error = xfs_droplink(tp, target_ip);
3355 		if (error)
3356 			goto out_trans_cancel;
3357 
3358 		if (src_is_directory) {
3359 			/*
3360 			 * Drop the link from the old "." entry.
3361 			 */
3362 			error = xfs_droplink(tp, target_ip);
3363 			if (error)
3364 				goto out_trans_cancel;
3365 		}
3366 	} /* target_ip != NULL */
3367 
3368 	/*
3369 	 * Remove the source.
3370 	 */
3371 	if (new_parent && src_is_directory) {
3372 		/*
3373 		 * Rewrite the ".." entry to point to the new
3374 		 * directory.
3375 		 */
3376 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3377 					target_dp->i_ino, spaceres);
3378 		ASSERT(error != -EEXIST);
3379 		if (error)
3380 			goto out_trans_cancel;
3381 	}
3382 
3383 	/*
3384 	 * We always want to hit the ctime on the source inode.
3385 	 *
3386 	 * This isn't strictly required by the standards since the source
3387 	 * inode isn't really being changed, but old unix file systems did
3388 	 * it and some incremental backup programs won't work without it.
3389 	 */
3390 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3391 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3392 
3393 	/*
3394 	 * Adjust the link count on src_dp.  This is necessary when
3395 	 * renaming a directory, either within one parent when
3396 	 * the target existed, or across two parent directories.
3397 	 */
3398 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3399 
3400 		/*
3401 		 * Decrement link count on src_directory since the
3402 		 * entry that's moved no longer points to it.
3403 		 */
3404 		error = xfs_droplink(tp, src_dp);
3405 		if (error)
3406 			goto out_trans_cancel;
3407 	}
3408 
3409 	/*
3410 	 * For whiteouts, we only need to update the source dirent with the
3411 	 * inode number of the whiteout inode rather than removing it
3412 	 * altogether.
3413 	 */
3414 	if (wip) {
3415 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3416 					spaceres);
3417 	} else {
3418 		/*
3419 		 * NOTE: We don't need to check for extent count overflow here
3420 		 * because the dir remove name code will leave the dir block in
3421 		 * place if the extent count would overflow.
3422 		 */
3423 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3424 					   spaceres);
3425 	}
3426 
3427 	if (error)
3428 		goto out_trans_cancel;
3429 
3430 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3431 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3432 	if (new_parent)
3433 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3434 
3435 	error = xfs_finish_rename(tp);
3436 	if (wip)
3437 		xfs_irele(wip);
3438 	return error;
3439 
3440 out_trans_cancel:
3441 	xfs_trans_cancel(tp);
3442 out_release_wip:
3443 	if (wip)
3444 		xfs_irele(wip);
3445 	return error;
3446 }
3447 
3448 static int
3449 xfs_iflush(
3450 	struct xfs_inode	*ip,
3451 	struct xfs_buf		*bp)
3452 {
3453 	struct xfs_inode_log_item *iip = ip->i_itemp;
3454 	struct xfs_dinode	*dip;
3455 	struct xfs_mount	*mp = ip->i_mount;
3456 	int			error;
3457 
3458 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3459 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3460 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3461 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3462 	ASSERT(iip->ili_item.li_buf == bp);
3463 
3464 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3465 
3466 	/*
3467 	 * We don't flush the inode if any of the following checks fail, but we
3468 	 * do still update the log item and attach to the backing buffer as if
3469 	 * the flush happened. This is a formality to facilitate predictable
3470 	 * error handling as the caller will shutdown and fail the buffer.
3471 	 */
3472 	error = -EFSCORRUPTED;
3473 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3474 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3475 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3476 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3477 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3478 		goto flush_out;
3479 	}
3480 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3481 		if (XFS_TEST_ERROR(
3482 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3483 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3484 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3485 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3486 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3487 				__func__, ip->i_ino, ip);
3488 			goto flush_out;
3489 		}
3490 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3491 		if (XFS_TEST_ERROR(
3492 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3493 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3494 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3495 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3496 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3497 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3498 				__func__, ip->i_ino, ip);
3499 			goto flush_out;
3500 		}
3501 	}
3502 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3503 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3504 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3505 			"%s: detected corrupt incore inode %Lu, "
3506 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3507 			__func__, ip->i_ino,
3508 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3509 			ip->i_nblocks, ip);
3510 		goto flush_out;
3511 	}
3512 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3513 				mp, XFS_ERRTAG_IFLUSH_6)) {
3514 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3515 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3516 			__func__, ip->i_ino, ip->i_forkoff, ip);
3517 		goto flush_out;
3518 	}
3519 
3520 	/*
3521 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3522 	 * count for correct sequencing.  We bump the flush iteration count so
3523 	 * we can detect flushes which postdate a log record during recovery.
3524 	 * This is redundant as we now log every change and hence this can't
3525 	 * happen but we need to still do it to ensure backwards compatibility
3526 	 * with old kernels that predate logging all inode changes.
3527 	 */
3528 	if (!xfs_has_v3inodes(mp))
3529 		ip->i_flushiter++;
3530 
3531 	/*
3532 	 * If there are inline format data / attr forks attached to this inode,
3533 	 * make sure they are not corrupt.
3534 	 */
3535 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3536 	    xfs_ifork_verify_local_data(ip))
3537 		goto flush_out;
3538 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3539 	    xfs_ifork_verify_local_attr(ip))
3540 		goto flush_out;
3541 
3542 	/*
3543 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3544 	 * copy out the core of the inode, because if the inode is dirty at all
3545 	 * the core must be.
3546 	 */
3547 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3548 
3549 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3550 	if (!xfs_has_v3inodes(mp)) {
3551 		if (ip->i_flushiter == DI_MAX_FLUSH)
3552 			ip->i_flushiter = 0;
3553 	}
3554 
3555 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3556 	if (XFS_IFORK_Q(ip))
3557 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3558 
3559 	/*
3560 	 * We've recorded everything logged in the inode, so we'd like to clear
3561 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3562 	 * However, we can't stop logging all this information until the data
3563 	 * we've copied into the disk buffer is written to disk.  If we did we
3564 	 * might overwrite the copy of the inode in the log with all the data
3565 	 * after re-logging only part of it, and in the face of a crash we
3566 	 * wouldn't have all the data we need to recover.
3567 	 *
3568 	 * What we do is move the bits to the ili_last_fields field.  When
3569 	 * logging the inode, these bits are moved back to the ili_fields field.
3570 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3571 	 * we know that the information those bits represent is permanently on
3572 	 * disk.  As long as the flush completes before the inode is logged
3573 	 * again, then both ili_fields and ili_last_fields will be cleared.
3574 	 */
3575 	error = 0;
3576 flush_out:
3577 	spin_lock(&iip->ili_lock);
3578 	iip->ili_last_fields = iip->ili_fields;
3579 	iip->ili_fields = 0;
3580 	iip->ili_fsync_fields = 0;
3581 	spin_unlock(&iip->ili_lock);
3582 
3583 	/*
3584 	 * Store the current LSN of the inode so that we can tell whether the
3585 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3586 	 */
3587 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3588 				&iip->ili_item.li_lsn);
3589 
3590 	/* generate the checksum. */
3591 	xfs_dinode_calc_crc(mp, dip);
3592 	return error;
3593 }
3594 
3595 /*
3596  * Non-blocking flush of dirty inode metadata into the backing buffer.
3597  *
3598  * The caller must have a reference to the inode and hold the cluster buffer
3599  * locked. The function will walk across all the inodes on the cluster buffer it
3600  * can find and lock without blocking, and flush them to the cluster buffer.
3601  *
3602  * On successful flushing of at least one inode, the caller must write out the
3603  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3604  * the caller needs to release the buffer. On failure, the filesystem will be
3605  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3606  * will be returned.
3607  */
3608 int
3609 xfs_iflush_cluster(
3610 	struct xfs_buf		*bp)
3611 {
3612 	struct xfs_mount	*mp = bp->b_mount;
3613 	struct xfs_log_item	*lip, *n;
3614 	struct xfs_inode	*ip;
3615 	struct xfs_inode_log_item *iip;
3616 	int			clcount = 0;
3617 	int			error = 0;
3618 
3619 	/*
3620 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3621 	 * can remove itself from the list.
3622 	 */
3623 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3624 		iip = (struct xfs_inode_log_item *)lip;
3625 		ip = iip->ili_inode;
3626 
3627 		/*
3628 		 * Quick and dirty check to avoid locks if possible.
3629 		 */
3630 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3631 			continue;
3632 		if (xfs_ipincount(ip))
3633 			continue;
3634 
3635 		/*
3636 		 * The inode is still attached to the buffer, which means it is
3637 		 * dirty but reclaim might try to grab it. Check carefully for
3638 		 * that, and grab the ilock while still holding the i_flags_lock
3639 		 * to guarantee reclaim will not be able to reclaim this inode
3640 		 * once we drop the i_flags_lock.
3641 		 */
3642 		spin_lock(&ip->i_flags_lock);
3643 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3644 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3645 			spin_unlock(&ip->i_flags_lock);
3646 			continue;
3647 		}
3648 
3649 		/*
3650 		 * ILOCK will pin the inode against reclaim and prevent
3651 		 * concurrent transactions modifying the inode while we are
3652 		 * flushing the inode. If we get the lock, set the flushing
3653 		 * state before we drop the i_flags_lock.
3654 		 */
3655 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3656 			spin_unlock(&ip->i_flags_lock);
3657 			continue;
3658 		}
3659 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3660 		spin_unlock(&ip->i_flags_lock);
3661 
3662 		/*
3663 		 * Abort flushing this inode if we are shut down because the
3664 		 * inode may not currently be in the AIL. This can occur when
3665 		 * log I/O failure unpins the inode without inserting into the
3666 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3667 		 * that otherwise looks like it should be flushed.
3668 		 */
3669 		if (xfs_is_shutdown(mp)) {
3670 			xfs_iunpin_wait(ip);
3671 			xfs_iflush_abort(ip);
3672 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3673 			error = -EIO;
3674 			continue;
3675 		}
3676 
3677 		/* don't block waiting on a log force to unpin dirty inodes */
3678 		if (xfs_ipincount(ip)) {
3679 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3680 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3681 			continue;
3682 		}
3683 
3684 		if (!xfs_inode_clean(ip))
3685 			error = xfs_iflush(ip, bp);
3686 		else
3687 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3688 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3689 		if (error)
3690 			break;
3691 		clcount++;
3692 	}
3693 
3694 	if (error) {
3695 		bp->b_flags |= XBF_ASYNC;
3696 		xfs_buf_ioend_fail(bp);
3697 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3698 		return error;
3699 	}
3700 
3701 	if (!clcount)
3702 		return -EAGAIN;
3703 
3704 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3705 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3706 	return 0;
3707 
3708 }
3709 
3710 /* Release an inode. */
3711 void
3712 xfs_irele(
3713 	struct xfs_inode	*ip)
3714 {
3715 	trace_xfs_irele(ip, _RET_IP_);
3716 	iput(VFS_I(ip));
3717 }
3718 
3719 /*
3720  * Ensure all commited transactions touching the inode are written to the log.
3721  */
3722 int
3723 xfs_log_force_inode(
3724 	struct xfs_inode	*ip)
3725 {
3726 	xfs_csn_t		seq = 0;
3727 
3728 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3729 	if (xfs_ipincount(ip))
3730 		seq = ip->i_itemp->ili_commit_seq;
3731 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3732 
3733 	if (!seq)
3734 		return 0;
3735 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3736 }
3737 
3738 /*
3739  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3740  * abide vfs locking order (lowest pointer value goes first) and breaking the
3741  * layout leases before proceeding.  The loop is needed because we cannot call
3742  * the blocking break_layout() with the iolocks held, and therefore have to
3743  * back out both locks.
3744  */
3745 static int
3746 xfs_iolock_two_inodes_and_break_layout(
3747 	struct inode		*src,
3748 	struct inode		*dest)
3749 {
3750 	int			error;
3751 
3752 	if (src > dest)
3753 		swap(src, dest);
3754 
3755 retry:
3756 	/* Wait to break both inodes' layouts before we start locking. */
3757 	error = break_layout(src, true);
3758 	if (error)
3759 		return error;
3760 	if (src != dest) {
3761 		error = break_layout(dest, true);
3762 		if (error)
3763 			return error;
3764 	}
3765 
3766 	/* Lock one inode and make sure nobody got in and leased it. */
3767 	inode_lock(src);
3768 	error = break_layout(src, false);
3769 	if (error) {
3770 		inode_unlock(src);
3771 		if (error == -EWOULDBLOCK)
3772 			goto retry;
3773 		return error;
3774 	}
3775 
3776 	if (src == dest)
3777 		return 0;
3778 
3779 	/* Lock the other inode and make sure nobody got in and leased it. */
3780 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3781 	error = break_layout(dest, false);
3782 	if (error) {
3783 		inode_unlock(src);
3784 		inode_unlock(dest);
3785 		if (error == -EWOULDBLOCK)
3786 			goto retry;
3787 		return error;
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 /*
3794  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3795  * mmap activity.
3796  */
3797 int
3798 xfs_ilock2_io_mmap(
3799 	struct xfs_inode	*ip1,
3800 	struct xfs_inode	*ip2)
3801 {
3802 	int			ret;
3803 
3804 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3805 	if (ret)
3806 		return ret;
3807 	filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3808 				    VFS_I(ip2)->i_mapping);
3809 	return 0;
3810 }
3811 
3812 /* Unlock both inodes to allow IO and mmap activity. */
3813 void
3814 xfs_iunlock2_io_mmap(
3815 	struct xfs_inode	*ip1,
3816 	struct xfs_inode	*ip2)
3817 {
3818 	filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3819 				      VFS_I(ip2)->i_mapping);
3820 	inode_unlock(VFS_I(ip2));
3821 	if (ip1 != ip2)
3822 		inode_unlock(VFS_I(ip1));
3823 }
3824