xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 #ifdef DEBUG
66 /*
67  * Make sure that the extents in the given memory buffer
68  * are valid.
69  */
70 STATIC void
71 xfs_validate_extents(
72 	xfs_ifork_t		*ifp,
73 	int			nrecs,
74 	xfs_exntfmt_t		fmt)
75 {
76 	xfs_bmbt_irec_t		irec;
77 	xfs_bmbt_rec_host_t	rec;
78 	int			i;
79 
80 	for (i = 0; i < nrecs; i++) {
81 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 		rec.l0 = get_unaligned(&ep->l0);
83 		rec.l1 = get_unaligned(&ep->l1);
84 		xfs_bmbt_get_all(&rec, &irec);
85 		if (fmt == XFS_EXTFMT_NOSTATE)
86 			ASSERT(irec.br_state == XFS_EXT_NORM);
87 	}
88 }
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
92 
93 /*
94  * Check that none of the inode's in the buffer have a next
95  * unlinked field of 0.
96  */
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 	xfs_mount_t	*mp,
101 	xfs_buf_t	*bp)
102 {
103 	int		i;
104 	int		j;
105 	xfs_dinode_t	*dip;
106 
107 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 
109 	for (i = 0; i < j; i++) {
110 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 					i * mp->m_sb.sb_inodesize);
112 		if (!dip->di_next_unlinked)  {
113 			xfs_fs_cmn_err(CE_ALERT, mp,
114 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
115 				bp);
116 			ASSERT(dip->di_next_unlinked);
117 		}
118 	}
119 }
120 #endif
121 
122 /*
123  * Find the buffer associated with the given inode map
124  * We do basic validation checks on the buffer once it has been
125  * retrieved from disk.
126  */
127 STATIC int
128 xfs_imap_to_bp(
129 	xfs_mount_t	*mp,
130 	xfs_trans_t	*tp,
131 	struct xfs_imap	*imap,
132 	xfs_buf_t	**bpp,
133 	uint		buf_flags,
134 	uint		iget_flags)
135 {
136 	int		error;
137 	int		i;
138 	int		ni;
139 	xfs_buf_t	*bp;
140 
141 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 				   (int)imap->im_len, buf_flags, &bp);
143 	if (error) {
144 		if (error != EAGAIN) {
145 			cmn_err(CE_WARN,
146 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 				"an error %d on %s.  Returning error.",
148 				error, mp->m_fsname);
149 		} else {
150 			ASSERT(buf_flags & XBF_TRYLOCK);
151 		}
152 		return error;
153 	}
154 
155 	/*
156 	 * Validate the magic number and version of every inode in the buffer
157 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 	 */
159 #ifdef DEBUG
160 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161 #else	/* usual case */
162 	ni = 1;
163 #endif
164 
165 	for (i = 0; i < ni; i++) {
166 		int		di_ok;
167 		xfs_dinode_t	*dip;
168 
169 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 					(i << mp->m_sb.sb_inodelog));
171 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
173 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 						XFS_ERRTAG_ITOBP_INOTOBP,
175 						XFS_RANDOM_ITOBP_INOTOBP))) {
176 			if (iget_flags & XFS_IGET_UNTRUSTED) {
177 				xfs_trans_brelse(tp, bp);
178 				return XFS_ERROR(EINVAL);
179 			}
180 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 						XFS_ERRLEVEL_HIGH, mp, dip);
182 #ifdef DEBUG
183 			cmn_err(CE_PANIC,
184 					"Device %s - bad inode magic/vsn "
185 					"daddr %lld #%d (magic=%x)",
186 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 				(unsigned long long)imap->im_blkno, i,
188 				be16_to_cpu(dip->di_magic));
189 #endif
190 			xfs_trans_brelse(tp, bp);
191 			return XFS_ERROR(EFSCORRUPTED);
192 		}
193 	}
194 
195 	xfs_inobp_check(mp, bp);
196 
197 	/*
198 	 * Mark the buffer as an inode buffer now that it looks good
199 	 */
200 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201 
202 	*bpp = bp;
203 	return 0;
204 }
205 
206 /*
207  * This routine is called to map an inode number within a file
208  * system to the buffer containing the on-disk version of the
209  * inode.  It returns a pointer to the buffer containing the
210  * on-disk inode in the bpp parameter, and in the dip parameter
211  * it returns a pointer to the on-disk inode within that buffer.
212  *
213  * If a non-zero error is returned, then the contents of bpp and
214  * dipp are undefined.
215  *
216  * Use xfs_imap() to determine the size and location of the
217  * buffer to read from disk.
218  */
219 int
220 xfs_inotobp(
221 	xfs_mount_t	*mp,
222 	xfs_trans_t	*tp,
223 	xfs_ino_t	ino,
224 	xfs_dinode_t	**dipp,
225 	xfs_buf_t	**bpp,
226 	int		*offset,
227 	uint		imap_flags)
228 {
229 	struct xfs_imap	imap;
230 	xfs_buf_t	*bp;
231 	int		error;
232 
233 	imap.im_blkno = 0;
234 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 	if (error)
236 		return error;
237 
238 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 	if (error)
240 		return error;
241 
242 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 	*bpp = bp;
244 	*offset = imap.im_boffset;
245 	return 0;
246 }
247 
248 
249 /*
250  * This routine is called to map an inode to the buffer containing
251  * the on-disk version of the inode.  It returns a pointer to the
252  * buffer containing the on-disk inode in the bpp parameter, and in
253  * the dip parameter it returns a pointer to the on-disk inode within
254  * that buffer.
255  *
256  * If a non-zero error is returned, then the contents of bpp and
257  * dipp are undefined.
258  *
259  * The inode is expected to already been mapped to its buffer and read
260  * in once, thus we can use the mapping information stored in the inode
261  * rather than calling xfs_imap().  This allows us to avoid the overhead
262  * of looking at the inode btree for small block file systems
263  * (see xfs_imap()).
264  */
265 int
266 xfs_itobp(
267 	xfs_mount_t	*mp,
268 	xfs_trans_t	*tp,
269 	xfs_inode_t	*ip,
270 	xfs_dinode_t	**dipp,
271 	xfs_buf_t	**bpp,
272 	uint		buf_flags)
273 {
274 	xfs_buf_t	*bp;
275 	int		error;
276 
277 	ASSERT(ip->i_imap.im_blkno != 0);
278 
279 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 	if (error)
281 		return error;
282 
283 	if (!bp) {
284 		ASSERT(buf_flags & XBF_TRYLOCK);
285 		ASSERT(tp == NULL);
286 		*bpp = NULL;
287 		return EAGAIN;
288 	}
289 
290 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 	*bpp = bp;
292 	return 0;
293 }
294 
295 /*
296  * Move inode type and inode format specific information from the
297  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
298  * this means set if_rdev to the proper value.  For files, directories,
299  * and symlinks this means to bring in the in-line data or extent
300  * pointers.  For a file in B-tree format, only the root is immediately
301  * brought in-core.  The rest will be in-lined in if_extents when it
302  * is first referenced (see xfs_iread_extents()).
303  */
304 STATIC int
305 xfs_iformat(
306 	xfs_inode_t		*ip,
307 	xfs_dinode_t		*dip)
308 {
309 	xfs_attr_shortform_t	*atp;
310 	int			size;
311 	int			error;
312 	xfs_fsize_t             di_size;
313 	ip->i_df.if_ext_max =
314 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 	error = 0;
316 
317 	if (unlikely(be32_to_cpu(dip->di_nextents) +
318 		     be16_to_cpu(dip->di_anextents) >
319 		     be64_to_cpu(dip->di_nblocks))) {
320 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 			(unsigned long long)ip->i_ino,
323 			(int)(be32_to_cpu(dip->di_nextents) +
324 			      be16_to_cpu(dip->di_anextents)),
325 			(unsigned long long)
326 				be64_to_cpu(dip->di_nblocks));
327 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 				     ip->i_mount, dip);
329 		return XFS_ERROR(EFSCORRUPTED);
330 	}
331 
332 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 			"corrupt dinode %Lu, forkoff = 0x%x.",
335 			(unsigned long long)ip->i_ino,
336 			dip->di_forkoff);
337 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 				     ip->i_mount, dip);
339 		return XFS_ERROR(EFSCORRUPTED);
340 	}
341 
342 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 		     !ip->i_mount->m_rtdev_targp)) {
344 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 			"corrupt dinode %Lu, has realtime flag set.",
346 			ip->i_ino);
347 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 		return XFS_ERROR(EFSCORRUPTED);
350 	}
351 
352 	switch (ip->i_d.di_mode & S_IFMT) {
353 	case S_IFIFO:
354 	case S_IFCHR:
355 	case S_IFBLK:
356 	case S_IFSOCK:
357 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
358 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 					      ip->i_mount, dip);
360 			return XFS_ERROR(EFSCORRUPTED);
361 		}
362 		ip->i_d.di_size = 0;
363 		ip->i_size = 0;
364 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 		break;
366 
367 	case S_IFREG:
368 	case S_IFLNK:
369 	case S_IFDIR:
370 		switch (dip->di_format) {
371 		case XFS_DINODE_FMT_LOCAL:
372 			/*
373 			 * no local regular files yet
374 			 */
375 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
376 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 					"corrupt inode %Lu "
378 					"(local format for regular file).",
379 					(unsigned long long) ip->i_ino);
380 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 						     XFS_ERRLEVEL_LOW,
382 						     ip->i_mount, dip);
383 				return XFS_ERROR(EFSCORRUPTED);
384 			}
385 
386 			di_size = be64_to_cpu(dip->di_size);
387 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
388 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 					"corrupt inode %Lu "
390 					"(bad size %Ld for local inode).",
391 					(unsigned long long) ip->i_ino,
392 					(long long) di_size);
393 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 						     XFS_ERRLEVEL_LOW,
395 						     ip->i_mount, dip);
396 				return XFS_ERROR(EFSCORRUPTED);
397 			}
398 
399 			size = (int)di_size;
400 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 			break;
402 		case XFS_DINODE_FMT_EXTENTS:
403 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 			break;
405 		case XFS_DINODE_FMT_BTREE:
406 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 			break;
408 		default:
409 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 					 ip->i_mount);
411 			return XFS_ERROR(EFSCORRUPTED);
412 		}
413 		break;
414 
415 	default:
416 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 		return XFS_ERROR(EFSCORRUPTED);
418 	}
419 	if (error) {
420 		return error;
421 	}
422 	if (!XFS_DFORK_Q(dip))
423 		return 0;
424 	ASSERT(ip->i_afp == NULL);
425 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
426 	ip->i_afp->if_ext_max =
427 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
428 	switch (dip->di_aformat) {
429 	case XFS_DINODE_FMT_LOCAL:
430 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
431 		size = be16_to_cpu(atp->hdr.totsize);
432 
433 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 				"corrupt inode %Lu "
436 				"(bad attr fork size %Ld).",
437 				(unsigned long long) ip->i_ino,
438 				(long long) size);
439 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 					     XFS_ERRLEVEL_LOW,
441 					     ip->i_mount, dip);
442 			return XFS_ERROR(EFSCORRUPTED);
443 		}
444 
445 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 		break;
447 	case XFS_DINODE_FMT_EXTENTS:
448 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 		break;
450 	case XFS_DINODE_FMT_BTREE:
451 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 		break;
453 	default:
454 		error = XFS_ERROR(EFSCORRUPTED);
455 		break;
456 	}
457 	if (error) {
458 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 		ip->i_afp = NULL;
460 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 	}
462 	return error;
463 }
464 
465 /*
466  * The file is in-lined in the on-disk inode.
467  * If it fits into if_inline_data, then copy
468  * it there, otherwise allocate a buffer for it
469  * and copy the data there.  Either way, set
470  * if_data to point at the data.
471  * If we allocate a buffer for the data, make
472  * sure that its size is a multiple of 4 and
473  * record the real size in i_real_bytes.
474  */
475 STATIC int
476 xfs_iformat_local(
477 	xfs_inode_t	*ip,
478 	xfs_dinode_t	*dip,
479 	int		whichfork,
480 	int		size)
481 {
482 	xfs_ifork_t	*ifp;
483 	int		real_size;
484 
485 	/*
486 	 * If the size is unreasonable, then something
487 	 * is wrong and we just bail out rather than crash in
488 	 * kmem_alloc() or memcpy() below.
489 	 */
490 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
491 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 			"corrupt inode %Lu "
493 			"(bad size %d for local fork, size = %d).",
494 			(unsigned long long) ip->i_ino, size,
495 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 				     ip->i_mount, dip);
498 		return XFS_ERROR(EFSCORRUPTED);
499 	}
500 	ifp = XFS_IFORK_PTR(ip, whichfork);
501 	real_size = 0;
502 	if (size == 0)
503 		ifp->if_u1.if_data = NULL;
504 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 	else {
507 		real_size = roundup(size, 4);
508 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
509 	}
510 	ifp->if_bytes = size;
511 	ifp->if_real_bytes = real_size;
512 	if (size)
513 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 	ifp->if_flags &= ~XFS_IFEXTENTS;
515 	ifp->if_flags |= XFS_IFINLINE;
516 	return 0;
517 }
518 
519 /*
520  * The file consists of a set of extents all
521  * of which fit into the on-disk inode.
522  * If there are few enough extents to fit into
523  * the if_inline_ext, then copy them there.
524  * Otherwise allocate a buffer for them and copy
525  * them into it.  Either way, set if_extents
526  * to point at the extents.
527  */
528 STATIC int
529 xfs_iformat_extents(
530 	xfs_inode_t	*ip,
531 	xfs_dinode_t	*dip,
532 	int		whichfork)
533 {
534 	xfs_bmbt_rec_t	*dp;
535 	xfs_ifork_t	*ifp;
536 	int		nex;
537 	int		size;
538 	int		i;
539 
540 	ifp = XFS_IFORK_PTR(ip, whichfork);
541 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543 
544 	/*
545 	 * If the number of extents is unreasonable, then something
546 	 * is wrong and we just bail out rather than crash in
547 	 * kmem_alloc() or memcpy() below.
548 	 */
549 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
550 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 			"corrupt inode %Lu ((a)extents = %d).",
552 			(unsigned long long) ip->i_ino, nex);
553 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 				     ip->i_mount, dip);
555 		return XFS_ERROR(EFSCORRUPTED);
556 	}
557 
558 	ifp->if_real_bytes = 0;
559 	if (nex == 0)
560 		ifp->if_u1.if_extents = NULL;
561 	else if (nex <= XFS_INLINE_EXTS)
562 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
563 	else
564 		xfs_iext_add(ifp, 0, nex);
565 
566 	ifp->if_bytes = size;
567 	if (size) {
568 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
569 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
570 		for (i = 0; i < nex; i++, dp++) {
571 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
572 			ep->l0 = get_unaligned_be64(&dp->l0);
573 			ep->l1 = get_unaligned_be64(&dp->l1);
574 		}
575 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
576 		if (whichfork != XFS_DATA_FORK ||
577 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 				if (unlikely(xfs_check_nostate_extents(
579 				    ifp, 0, nex))) {
580 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 							 XFS_ERRLEVEL_LOW,
582 							 ip->i_mount);
583 					return XFS_ERROR(EFSCORRUPTED);
584 				}
585 	}
586 	ifp->if_flags |= XFS_IFEXTENTS;
587 	return 0;
588 }
589 
590 /*
591  * The file has too many extents to fit into
592  * the inode, so they are in B-tree format.
593  * Allocate a buffer for the root of the B-tree
594  * and copy the root into it.  The i_extents
595  * field will remain NULL until all of the
596  * extents are read in (when they are needed).
597  */
598 STATIC int
599 xfs_iformat_btree(
600 	xfs_inode_t		*ip,
601 	xfs_dinode_t		*dip,
602 	int			whichfork)
603 {
604 	xfs_bmdr_block_t	*dfp;
605 	xfs_ifork_t		*ifp;
606 	/* REFERENCED */
607 	int			nrecs;
608 	int			size;
609 
610 	ifp = XFS_IFORK_PTR(ip, whichfork);
611 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 	size = XFS_BMAP_BROOT_SPACE(dfp);
613 	nrecs = be16_to_cpu(dfp->bb_numrecs);
614 
615 	/*
616 	 * blow out if -- fork has less extents than can fit in
617 	 * fork (fork shouldn't be a btree format), root btree
618 	 * block has more records than can fit into the fork,
619 	 * or the number of extents is greater than the number of
620 	 * blocks.
621 	 */
622 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 	    || XFS_BMDR_SPACE_CALC(nrecs) >
624 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
626 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 			"corrupt inode %Lu (btree).",
628 			(unsigned long long) ip->i_ino);
629 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 				 ip->i_mount);
631 		return XFS_ERROR(EFSCORRUPTED);
632 	}
633 
634 	ifp->if_broot_bytes = size;
635 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
636 	ASSERT(ifp->if_broot != NULL);
637 	/*
638 	 * Copy and convert from the on-disk structure
639 	 * to the in-memory structure.
640 	 */
641 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 			 ifp->if_broot, size);
644 	ifp->if_flags &= ~XFS_IFEXTENTS;
645 	ifp->if_flags |= XFS_IFBROOT;
646 
647 	return 0;
648 }
649 
650 STATIC void
651 xfs_dinode_from_disk(
652 	xfs_icdinode_t		*to,
653 	xfs_dinode_t		*from)
654 {
655 	to->di_magic = be16_to_cpu(from->di_magic);
656 	to->di_mode = be16_to_cpu(from->di_mode);
657 	to->di_version = from ->di_version;
658 	to->di_format = from->di_format;
659 	to->di_onlink = be16_to_cpu(from->di_onlink);
660 	to->di_uid = be32_to_cpu(from->di_uid);
661 	to->di_gid = be32_to_cpu(from->di_gid);
662 	to->di_nlink = be32_to_cpu(from->di_nlink);
663 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
664 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
665 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
666 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
667 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
668 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
669 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
670 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
671 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
672 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
673 	to->di_size = be64_to_cpu(from->di_size);
674 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
675 	to->di_extsize = be32_to_cpu(from->di_extsize);
676 	to->di_nextents = be32_to_cpu(from->di_nextents);
677 	to->di_anextents = be16_to_cpu(from->di_anextents);
678 	to->di_forkoff = from->di_forkoff;
679 	to->di_aformat	= from->di_aformat;
680 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
681 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
682 	to->di_flags	= be16_to_cpu(from->di_flags);
683 	to->di_gen	= be32_to_cpu(from->di_gen);
684 }
685 
686 void
687 xfs_dinode_to_disk(
688 	xfs_dinode_t		*to,
689 	xfs_icdinode_t		*from)
690 {
691 	to->di_magic = cpu_to_be16(from->di_magic);
692 	to->di_mode = cpu_to_be16(from->di_mode);
693 	to->di_version = from ->di_version;
694 	to->di_format = from->di_format;
695 	to->di_onlink = cpu_to_be16(from->di_onlink);
696 	to->di_uid = cpu_to_be32(from->di_uid);
697 	to->di_gid = cpu_to_be32(from->di_gid);
698 	to->di_nlink = cpu_to_be32(from->di_nlink);
699 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
700 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
701 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
702 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
703 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
704 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
705 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
706 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
707 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
708 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
709 	to->di_size = cpu_to_be64(from->di_size);
710 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
711 	to->di_extsize = cpu_to_be32(from->di_extsize);
712 	to->di_nextents = cpu_to_be32(from->di_nextents);
713 	to->di_anextents = cpu_to_be16(from->di_anextents);
714 	to->di_forkoff = from->di_forkoff;
715 	to->di_aformat = from->di_aformat;
716 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
717 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
718 	to->di_flags = cpu_to_be16(from->di_flags);
719 	to->di_gen = cpu_to_be32(from->di_gen);
720 }
721 
722 STATIC uint
723 _xfs_dic2xflags(
724 	__uint16_t		di_flags)
725 {
726 	uint			flags = 0;
727 
728 	if (di_flags & XFS_DIFLAG_ANY) {
729 		if (di_flags & XFS_DIFLAG_REALTIME)
730 			flags |= XFS_XFLAG_REALTIME;
731 		if (di_flags & XFS_DIFLAG_PREALLOC)
732 			flags |= XFS_XFLAG_PREALLOC;
733 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
734 			flags |= XFS_XFLAG_IMMUTABLE;
735 		if (di_flags & XFS_DIFLAG_APPEND)
736 			flags |= XFS_XFLAG_APPEND;
737 		if (di_flags & XFS_DIFLAG_SYNC)
738 			flags |= XFS_XFLAG_SYNC;
739 		if (di_flags & XFS_DIFLAG_NOATIME)
740 			flags |= XFS_XFLAG_NOATIME;
741 		if (di_flags & XFS_DIFLAG_NODUMP)
742 			flags |= XFS_XFLAG_NODUMP;
743 		if (di_flags & XFS_DIFLAG_RTINHERIT)
744 			flags |= XFS_XFLAG_RTINHERIT;
745 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
746 			flags |= XFS_XFLAG_PROJINHERIT;
747 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
748 			flags |= XFS_XFLAG_NOSYMLINKS;
749 		if (di_flags & XFS_DIFLAG_EXTSIZE)
750 			flags |= XFS_XFLAG_EXTSIZE;
751 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
752 			flags |= XFS_XFLAG_EXTSZINHERIT;
753 		if (di_flags & XFS_DIFLAG_NODEFRAG)
754 			flags |= XFS_XFLAG_NODEFRAG;
755 		if (di_flags & XFS_DIFLAG_FILESTREAM)
756 			flags |= XFS_XFLAG_FILESTREAM;
757 	}
758 
759 	return flags;
760 }
761 
762 uint
763 xfs_ip2xflags(
764 	xfs_inode_t		*ip)
765 {
766 	xfs_icdinode_t		*dic = &ip->i_d;
767 
768 	return _xfs_dic2xflags(dic->di_flags) |
769 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
770 }
771 
772 uint
773 xfs_dic2xflags(
774 	xfs_dinode_t		*dip)
775 {
776 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
777 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
778 }
779 
780 /*
781  * Read the disk inode attributes into the in-core inode structure.
782  */
783 int
784 xfs_iread(
785 	xfs_mount_t	*mp,
786 	xfs_trans_t	*tp,
787 	xfs_inode_t	*ip,
788 	uint		iget_flags)
789 {
790 	xfs_buf_t	*bp;
791 	xfs_dinode_t	*dip;
792 	int		error;
793 
794 	/*
795 	 * Fill in the location information in the in-core inode.
796 	 */
797 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
798 	if (error)
799 		return error;
800 
801 	/*
802 	 * Get pointers to the on-disk inode and the buffer containing it.
803 	 */
804 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
805 			       XBF_LOCK, iget_flags);
806 	if (error)
807 		return error;
808 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
809 
810 	/*
811 	 * If we got something that isn't an inode it means someone
812 	 * (nfs or dmi) has a stale handle.
813 	 */
814 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
815 #ifdef DEBUG
816 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
817 				"dip->di_magic (0x%x) != "
818 				"XFS_DINODE_MAGIC (0x%x)",
819 				be16_to_cpu(dip->di_magic),
820 				XFS_DINODE_MAGIC);
821 #endif /* DEBUG */
822 		error = XFS_ERROR(EINVAL);
823 		goto out_brelse;
824 	}
825 
826 	/*
827 	 * If the on-disk inode is already linked to a directory
828 	 * entry, copy all of the inode into the in-core inode.
829 	 * xfs_iformat() handles copying in the inode format
830 	 * specific information.
831 	 * Otherwise, just get the truly permanent information.
832 	 */
833 	if (dip->di_mode) {
834 		xfs_dinode_from_disk(&ip->i_d, dip);
835 		error = xfs_iformat(ip, dip);
836 		if (error)  {
837 #ifdef DEBUG
838 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
839 					"xfs_iformat() returned error %d",
840 					error);
841 #endif /* DEBUG */
842 			goto out_brelse;
843 		}
844 	} else {
845 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
846 		ip->i_d.di_version = dip->di_version;
847 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
848 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
849 		/*
850 		 * Make sure to pull in the mode here as well in
851 		 * case the inode is released without being used.
852 		 * This ensures that xfs_inactive() will see that
853 		 * the inode is already free and not try to mess
854 		 * with the uninitialized part of it.
855 		 */
856 		ip->i_d.di_mode = 0;
857 		/*
858 		 * Initialize the per-fork minima and maxima for a new
859 		 * inode here.  xfs_iformat will do it for old inodes.
860 		 */
861 		ip->i_df.if_ext_max =
862 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
863 	}
864 
865 	/*
866 	 * The inode format changed when we moved the link count and
867 	 * made it 32 bits long.  If this is an old format inode,
868 	 * convert it in memory to look like a new one.  If it gets
869 	 * flushed to disk we will convert back before flushing or
870 	 * logging it.  We zero out the new projid field and the old link
871 	 * count field.  We'll handle clearing the pad field (the remains
872 	 * of the old uuid field) when we actually convert the inode to
873 	 * the new format. We don't change the version number so that we
874 	 * can distinguish this from a real new format inode.
875 	 */
876 	if (ip->i_d.di_version == 1) {
877 		ip->i_d.di_nlink = ip->i_d.di_onlink;
878 		ip->i_d.di_onlink = 0;
879 		xfs_set_projid(ip, 0);
880 	}
881 
882 	ip->i_delayed_blks = 0;
883 	ip->i_size = ip->i_d.di_size;
884 
885 	/*
886 	 * Mark the buffer containing the inode as something to keep
887 	 * around for a while.  This helps to keep recently accessed
888 	 * meta-data in-core longer.
889 	 */
890 	xfs_buf_set_ref(bp, XFS_INO_REF);
891 
892 	/*
893 	 * Use xfs_trans_brelse() to release the buffer containing the
894 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
895 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
896 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
897 	 * will only release the buffer if it is not dirty within the
898 	 * transaction.  It will be OK to release the buffer in this case,
899 	 * because inodes on disk are never destroyed and we will be
900 	 * locking the new in-core inode before putting it in the hash
901 	 * table where other processes can find it.  Thus we don't have
902 	 * to worry about the inode being changed just because we released
903 	 * the buffer.
904 	 */
905  out_brelse:
906 	xfs_trans_brelse(tp, bp);
907 	return error;
908 }
909 
910 /*
911  * Read in extents from a btree-format inode.
912  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
913  */
914 int
915 xfs_iread_extents(
916 	xfs_trans_t	*tp,
917 	xfs_inode_t	*ip,
918 	int		whichfork)
919 {
920 	int		error;
921 	xfs_ifork_t	*ifp;
922 	xfs_extnum_t	nextents;
923 
924 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
925 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
926 				 ip->i_mount);
927 		return XFS_ERROR(EFSCORRUPTED);
928 	}
929 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
930 	ifp = XFS_IFORK_PTR(ip, whichfork);
931 
932 	/*
933 	 * We know that the size is valid (it's checked in iformat_btree)
934 	 */
935 	ifp->if_lastex = NULLEXTNUM;
936 	ifp->if_bytes = ifp->if_real_bytes = 0;
937 	ifp->if_flags |= XFS_IFEXTENTS;
938 	xfs_iext_add(ifp, 0, nextents);
939 	error = xfs_bmap_read_extents(tp, ip, whichfork);
940 	if (error) {
941 		xfs_iext_destroy(ifp);
942 		ifp->if_flags &= ~XFS_IFEXTENTS;
943 		return error;
944 	}
945 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
946 	return 0;
947 }
948 
949 /*
950  * Allocate an inode on disk and return a copy of its in-core version.
951  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
952  * appropriately within the inode.  The uid and gid for the inode are
953  * set according to the contents of the given cred structure.
954  *
955  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
956  * has a free inode available, call xfs_iget()
957  * to obtain the in-core version of the allocated inode.  Finally,
958  * fill in the inode and log its initial contents.  In this case,
959  * ialloc_context would be set to NULL and call_again set to false.
960  *
961  * If xfs_dialloc() does not have an available inode,
962  * it will replenish its supply by doing an allocation. Since we can
963  * only do one allocation within a transaction without deadlocks, we
964  * must commit the current transaction before returning the inode itself.
965  * In this case, therefore, we will set call_again to true and return.
966  * The caller should then commit the current transaction, start a new
967  * transaction, and call xfs_ialloc() again to actually get the inode.
968  *
969  * To ensure that some other process does not grab the inode that
970  * was allocated during the first call to xfs_ialloc(), this routine
971  * also returns the [locked] bp pointing to the head of the freelist
972  * as ialloc_context.  The caller should hold this buffer across
973  * the commit and pass it back into this routine on the second call.
974  *
975  * If we are allocating quota inodes, we do not have a parent inode
976  * to attach to or associate with (i.e. pip == NULL) because they
977  * are not linked into the directory structure - they are attached
978  * directly to the superblock - and so have no parent.
979  */
980 int
981 xfs_ialloc(
982 	xfs_trans_t	*tp,
983 	xfs_inode_t	*pip,
984 	mode_t		mode,
985 	xfs_nlink_t	nlink,
986 	xfs_dev_t	rdev,
987 	prid_t		prid,
988 	int		okalloc,
989 	xfs_buf_t	**ialloc_context,
990 	boolean_t	*call_again,
991 	xfs_inode_t	**ipp)
992 {
993 	xfs_ino_t	ino;
994 	xfs_inode_t	*ip;
995 	uint		flags;
996 	int		error;
997 	timespec_t	tv;
998 	int		filestreams = 0;
999 
1000 	/*
1001 	 * Call the space management code to pick
1002 	 * the on-disk inode to be allocated.
1003 	 */
1004 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1005 			    ialloc_context, call_again, &ino);
1006 	if (error)
1007 		return error;
1008 	if (*call_again || ino == NULLFSINO) {
1009 		*ipp = NULL;
1010 		return 0;
1011 	}
1012 	ASSERT(*ialloc_context == NULL);
1013 
1014 	/*
1015 	 * Get the in-core inode with the lock held exclusively.
1016 	 * This is because we're setting fields here we need
1017 	 * to prevent others from looking at until we're done.
1018 	 */
1019 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1020 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1021 	if (error)
1022 		return error;
1023 	ASSERT(ip != NULL);
1024 
1025 	ip->i_d.di_mode = (__uint16_t)mode;
1026 	ip->i_d.di_onlink = 0;
1027 	ip->i_d.di_nlink = nlink;
1028 	ASSERT(ip->i_d.di_nlink == nlink);
1029 	ip->i_d.di_uid = current_fsuid();
1030 	ip->i_d.di_gid = current_fsgid();
1031 	xfs_set_projid(ip, prid);
1032 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1033 
1034 	/*
1035 	 * If the superblock version is up to where we support new format
1036 	 * inodes and this is currently an old format inode, then change
1037 	 * the inode version number now.  This way we only do the conversion
1038 	 * here rather than here and in the flush/logging code.
1039 	 */
1040 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1041 	    ip->i_d.di_version == 1) {
1042 		ip->i_d.di_version = 2;
1043 		/*
1044 		 * We've already zeroed the old link count, the projid field,
1045 		 * and the pad field.
1046 		 */
1047 	}
1048 
1049 	/*
1050 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 	 */
1052 	if ((prid != 0) && (ip->i_d.di_version == 1))
1053 		xfs_bump_ino_vers2(tp, ip);
1054 
1055 	if (pip && XFS_INHERIT_GID(pip)) {
1056 		ip->i_d.di_gid = pip->i_d.di_gid;
1057 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1058 			ip->i_d.di_mode |= S_ISGID;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * If the group ID of the new file does not match the effective group
1064 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1065 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 	 */
1067 	if ((irix_sgid_inherit) &&
1068 	    (ip->i_d.di_mode & S_ISGID) &&
1069 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1070 		ip->i_d.di_mode &= ~S_ISGID;
1071 	}
1072 
1073 	ip->i_d.di_size = 0;
1074 	ip->i_size = 0;
1075 	ip->i_d.di_nextents = 0;
1076 	ASSERT(ip->i_d.di_nblocks == 0);
1077 
1078 	nanotime(&tv);
1079 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1080 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1081 	ip->i_d.di_atime = ip->i_d.di_mtime;
1082 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1083 
1084 	/*
1085 	 * di_gen will have been taken care of in xfs_iread.
1086 	 */
1087 	ip->i_d.di_extsize = 0;
1088 	ip->i_d.di_dmevmask = 0;
1089 	ip->i_d.di_dmstate = 0;
1090 	ip->i_d.di_flags = 0;
1091 	flags = XFS_ILOG_CORE;
1092 	switch (mode & S_IFMT) {
1093 	case S_IFIFO:
1094 	case S_IFCHR:
1095 	case S_IFBLK:
1096 	case S_IFSOCK:
1097 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1098 		ip->i_df.if_u2.if_rdev = rdev;
1099 		ip->i_df.if_flags = 0;
1100 		flags |= XFS_ILOG_DEV;
1101 		break;
1102 	case S_IFREG:
1103 		/*
1104 		 * we can't set up filestreams until after the VFS inode
1105 		 * is set up properly.
1106 		 */
1107 		if (pip && xfs_inode_is_filestream(pip))
1108 			filestreams = 1;
1109 		/* fall through */
1110 	case S_IFDIR:
1111 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1112 			uint	di_flags = 0;
1113 
1114 			if ((mode & S_IFMT) == S_IFDIR) {
1115 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1116 					di_flags |= XFS_DIFLAG_RTINHERIT;
1117 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1118 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1119 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 				}
1121 			} else if ((mode & S_IFMT) == S_IFREG) {
1122 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1123 					di_flags |= XFS_DIFLAG_REALTIME;
1124 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1125 					di_flags |= XFS_DIFLAG_EXTSIZE;
1126 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1127 				}
1128 			}
1129 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1130 			    xfs_inherit_noatime)
1131 				di_flags |= XFS_DIFLAG_NOATIME;
1132 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1133 			    xfs_inherit_nodump)
1134 				di_flags |= XFS_DIFLAG_NODUMP;
1135 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1136 			    xfs_inherit_sync)
1137 				di_flags |= XFS_DIFLAG_SYNC;
1138 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1139 			    xfs_inherit_nosymlinks)
1140 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1141 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1142 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1144 			    xfs_inherit_nodefrag)
1145 				di_flags |= XFS_DIFLAG_NODEFRAG;
1146 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1147 				di_flags |= XFS_DIFLAG_FILESTREAM;
1148 			ip->i_d.di_flags |= di_flags;
1149 		}
1150 		/* FALLTHROUGH */
1151 	case S_IFLNK:
1152 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1153 		ip->i_df.if_flags = XFS_IFEXTENTS;
1154 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1155 		ip->i_df.if_u1.if_extents = NULL;
1156 		break;
1157 	default:
1158 		ASSERT(0);
1159 	}
1160 	/*
1161 	 * Attribute fork settings for new inode.
1162 	 */
1163 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1164 	ip->i_d.di_anextents = 0;
1165 
1166 	/*
1167 	 * Log the new values stuffed into the inode.
1168 	 */
1169 	xfs_trans_log_inode(tp, ip, flags);
1170 
1171 	/* now that we have an i_mode we can setup inode ops and unlock */
1172 	xfs_setup_inode(ip);
1173 
1174 	/* now we have set up the vfs inode we can associate the filestream */
1175 	if (filestreams) {
1176 		error = xfs_filestream_associate(pip, ip);
1177 		if (error < 0)
1178 			return -error;
1179 		if (!error)
1180 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1181 	}
1182 
1183 	*ipp = ip;
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Check to make sure that there are no blocks allocated to the
1189  * file beyond the size of the file.  We don't check this for
1190  * files with fixed size extents or real time extents, but we
1191  * at least do it for regular files.
1192  */
1193 #ifdef DEBUG
1194 void
1195 xfs_isize_check(
1196 	xfs_mount_t	*mp,
1197 	xfs_inode_t	*ip,
1198 	xfs_fsize_t	isize)
1199 {
1200 	xfs_fileoff_t	map_first;
1201 	int		nimaps;
1202 	xfs_bmbt_irec_t	imaps[2];
1203 
1204 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1205 		return;
1206 
1207 	if (XFS_IS_REALTIME_INODE(ip))
1208 		return;
1209 
1210 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1211 		return;
1212 
1213 	nimaps = 2;
1214 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1215 	/*
1216 	 * The filesystem could be shutting down, so bmapi may return
1217 	 * an error.
1218 	 */
1219 	if (xfs_bmapi(NULL, ip, map_first,
1220 			 (XFS_B_TO_FSB(mp,
1221 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1222 			  map_first),
1223 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1224 			 NULL))
1225 	    return;
1226 	ASSERT(nimaps == 1);
1227 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1228 }
1229 #endif	/* DEBUG */
1230 
1231 /*
1232  * Calculate the last possible buffered byte in a file.  This must
1233  * include data that was buffered beyond the EOF by the write code.
1234  * This also needs to deal with overflowing the xfs_fsize_t type
1235  * which can happen for sizes near the limit.
1236  *
1237  * We also need to take into account any blocks beyond the EOF.  It
1238  * may be the case that they were buffered by a write which failed.
1239  * In that case the pages will still be in memory, but the inode size
1240  * will never have been updated.
1241  */
1242 STATIC xfs_fsize_t
1243 xfs_file_last_byte(
1244 	xfs_inode_t	*ip)
1245 {
1246 	xfs_mount_t	*mp;
1247 	xfs_fsize_t	last_byte;
1248 	xfs_fileoff_t	last_block;
1249 	xfs_fileoff_t	size_last_block;
1250 	int		error;
1251 
1252 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1253 
1254 	mp = ip->i_mount;
1255 	/*
1256 	 * Only check for blocks beyond the EOF if the extents have
1257 	 * been read in.  This eliminates the need for the inode lock,
1258 	 * and it also saves us from looking when it really isn't
1259 	 * necessary.
1260 	 */
1261 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1262 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1263 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1264 			XFS_DATA_FORK);
1265 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1266 		if (error) {
1267 			last_block = 0;
1268 		}
1269 	} else {
1270 		last_block = 0;
1271 	}
1272 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1273 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1274 
1275 	last_byte = XFS_FSB_TO_B(mp, last_block);
1276 	if (last_byte < 0) {
1277 		return XFS_MAXIOFFSET(mp);
1278 	}
1279 	last_byte += (1 << mp->m_writeio_log);
1280 	if (last_byte < 0) {
1281 		return XFS_MAXIOFFSET(mp);
1282 	}
1283 	return last_byte;
1284 }
1285 
1286 /*
1287  * Start the truncation of the file to new_size.  The new size
1288  * must be smaller than the current size.  This routine will
1289  * clear the buffer and page caches of file data in the removed
1290  * range, and xfs_itruncate_finish() will remove the underlying
1291  * disk blocks.
1292  *
1293  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1294  * must NOT have the inode lock held at all.  This is because we're
1295  * calling into the buffer/page cache code and we can't hold the
1296  * inode lock when we do so.
1297  *
1298  * We need to wait for any direct I/Os in flight to complete before we
1299  * proceed with the truncate. This is needed to prevent the extents
1300  * being read or written by the direct I/Os from being removed while the
1301  * I/O is in flight as there is no other method of synchronising
1302  * direct I/O with the truncate operation.  Also, because we hold
1303  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1304  * started until the truncate completes and drops the lock. Essentially,
1305  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1306  * ordering between direct I/Os and the truncate operation.
1307  *
1308  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1309  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1310  * in the case that the caller is locking things out of order and
1311  * may not be able to call xfs_itruncate_finish() with the inode lock
1312  * held without dropping the I/O lock.  If the caller must drop the
1313  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1314  * must be called again with all the same restrictions as the initial
1315  * call.
1316  */
1317 int
1318 xfs_itruncate_start(
1319 	xfs_inode_t	*ip,
1320 	uint		flags,
1321 	xfs_fsize_t	new_size)
1322 {
1323 	xfs_fsize_t	last_byte;
1324 	xfs_off_t	toss_start;
1325 	xfs_mount_t	*mp;
1326 	int		error = 0;
1327 
1328 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1329 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1330 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1331 	       (flags == XFS_ITRUNC_MAYBE));
1332 
1333 	mp = ip->i_mount;
1334 
1335 	/* wait for the completion of any pending DIOs */
1336 	if (new_size == 0 || new_size < ip->i_size)
1337 		xfs_ioend_wait(ip);
1338 
1339 	/*
1340 	 * Call toss_pages or flushinval_pages to get rid of pages
1341 	 * overlapping the region being removed.  We have to use
1342 	 * the less efficient flushinval_pages in the case that the
1343 	 * caller may not be able to finish the truncate without
1344 	 * dropping the inode's I/O lock.  Make sure
1345 	 * to catch any pages brought in by buffers overlapping
1346 	 * the EOF by searching out beyond the isize by our
1347 	 * block size. We round new_size up to a block boundary
1348 	 * so that we don't toss things on the same block as
1349 	 * new_size but before it.
1350 	 *
1351 	 * Before calling toss_page or flushinval_pages, make sure to
1352 	 * call remapf() over the same region if the file is mapped.
1353 	 * This frees up mapped file references to the pages in the
1354 	 * given range and for the flushinval_pages case it ensures
1355 	 * that we get the latest mapped changes flushed out.
1356 	 */
1357 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1358 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1359 	if (toss_start < 0) {
1360 		/*
1361 		 * The place to start tossing is beyond our maximum
1362 		 * file size, so there is no way that the data extended
1363 		 * out there.
1364 		 */
1365 		return 0;
1366 	}
1367 	last_byte = xfs_file_last_byte(ip);
1368 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1369 	if (last_byte > toss_start) {
1370 		if (flags & XFS_ITRUNC_DEFINITE) {
1371 			xfs_tosspages(ip, toss_start,
1372 					-1, FI_REMAPF_LOCKED);
1373 		} else {
1374 			error = xfs_flushinval_pages(ip, toss_start,
1375 					-1, FI_REMAPF_LOCKED);
1376 		}
1377 	}
1378 
1379 #ifdef DEBUG
1380 	if (new_size == 0) {
1381 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1382 	}
1383 #endif
1384 	return error;
1385 }
1386 
1387 /*
1388  * Shrink the file to the given new_size.  The new size must be smaller than
1389  * the current size.  This will free up the underlying blocks in the removed
1390  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1391  *
1392  * The transaction passed to this routine must have made a permanent log
1393  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1394  * given transaction and start new ones, so make sure everything involved in
1395  * the transaction is tidy before calling here.  Some transaction will be
1396  * returned to the caller to be committed.  The incoming transaction must
1397  * already include the inode, and both inode locks must be held exclusively.
1398  * The inode must also be "held" within the transaction.  On return the inode
1399  * will be "held" within the returned transaction.  This routine does NOT
1400  * require any disk space to be reserved for it within the transaction.
1401  *
1402  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1403  * indicates the fork which is to be truncated.  For the attribute fork we only
1404  * support truncation to size 0.
1405  *
1406  * We use the sync parameter to indicate whether or not the first transaction
1407  * we perform might have to be synchronous.  For the attr fork, it needs to be
1408  * so if the unlink of the inode is not yet known to be permanent in the log.
1409  * This keeps us from freeing and reusing the blocks of the attribute fork
1410  * before the unlink of the inode becomes permanent.
1411  *
1412  * For the data fork, we normally have to run synchronously if we're being
1413  * called out of the inactive path or we're being called out of the create path
1414  * where we're truncating an existing file.  Either way, the truncate needs to
1415  * be sync so blocks don't reappear in the file with altered data in case of a
1416  * crash.  wsync filesystems can run the first case async because anything that
1417  * shrinks the inode has to run sync so by the time we're called here from
1418  * inactive, the inode size is permanently set to 0.
1419  *
1420  * Calls from the truncate path always need to be sync unless we're in a wsync
1421  * filesystem and the file has already been unlinked.
1422  *
1423  * The caller is responsible for correctly setting the sync parameter.  It gets
1424  * too hard for us to guess here which path we're being called out of just
1425  * based on inode state.
1426  *
1427  * If we get an error, we must return with the inode locked and linked into the
1428  * current transaction. This keeps things simple for the higher level code,
1429  * because it always knows that the inode is locked and held in the transaction
1430  * that returns to it whether errors occur or not.  We don't mark the inode
1431  * dirty on error so that transactions can be easily aborted if possible.
1432  */
1433 int
1434 xfs_itruncate_finish(
1435 	xfs_trans_t	**tp,
1436 	xfs_inode_t	*ip,
1437 	xfs_fsize_t	new_size,
1438 	int		fork,
1439 	int		sync)
1440 {
1441 	xfs_fsblock_t	first_block;
1442 	xfs_fileoff_t	first_unmap_block;
1443 	xfs_fileoff_t	last_block;
1444 	xfs_filblks_t	unmap_len=0;
1445 	xfs_mount_t	*mp;
1446 	xfs_trans_t	*ntp;
1447 	int		done;
1448 	int		committed;
1449 	xfs_bmap_free_t	free_list;
1450 	int		error;
1451 
1452 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1453 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1454 	ASSERT(*tp != NULL);
1455 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1456 	ASSERT(ip->i_transp == *tp);
1457 	ASSERT(ip->i_itemp != NULL);
1458 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1459 
1460 
1461 	ntp = *tp;
1462 	mp = (ntp)->t_mountp;
1463 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1464 
1465 	/*
1466 	 * We only support truncating the entire attribute fork.
1467 	 */
1468 	if (fork == XFS_ATTR_FORK) {
1469 		new_size = 0LL;
1470 	}
1471 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1472 	trace_xfs_itruncate_finish_start(ip, new_size);
1473 
1474 	/*
1475 	 * The first thing we do is set the size to new_size permanently
1476 	 * on disk.  This way we don't have to worry about anyone ever
1477 	 * being able to look at the data being freed even in the face
1478 	 * of a crash.  What we're getting around here is the case where
1479 	 * we free a block, it is allocated to another file, it is written
1480 	 * to, and then we crash.  If the new data gets written to the
1481 	 * file but the log buffers containing the free and reallocation
1482 	 * don't, then we'd end up with garbage in the blocks being freed.
1483 	 * As long as we make the new_size permanent before actually
1484 	 * freeing any blocks it doesn't matter if they get writtten to.
1485 	 *
1486 	 * The callers must signal into us whether or not the size
1487 	 * setting here must be synchronous.  There are a few cases
1488 	 * where it doesn't have to be synchronous.  Those cases
1489 	 * occur if the file is unlinked and we know the unlink is
1490 	 * permanent or if the blocks being truncated are guaranteed
1491 	 * to be beyond the inode eof (regardless of the link count)
1492 	 * and the eof value is permanent.  Both of these cases occur
1493 	 * only on wsync-mounted filesystems.  In those cases, we're
1494 	 * guaranteed that no user will ever see the data in the blocks
1495 	 * that are being truncated so the truncate can run async.
1496 	 * In the free beyond eof case, the file may wind up with
1497 	 * more blocks allocated to it than it needs if we crash
1498 	 * and that won't get fixed until the next time the file
1499 	 * is re-opened and closed but that's ok as that shouldn't
1500 	 * be too many blocks.
1501 	 *
1502 	 * However, we can't just make all wsync xactions run async
1503 	 * because there's one call out of the create path that needs
1504 	 * to run sync where it's truncating an existing file to size
1505 	 * 0 whose size is > 0.
1506 	 *
1507 	 * It's probably possible to come up with a test in this
1508 	 * routine that would correctly distinguish all the above
1509 	 * cases from the values of the function parameters and the
1510 	 * inode state but for sanity's sake, I've decided to let the
1511 	 * layers above just tell us.  It's simpler to correctly figure
1512 	 * out in the layer above exactly under what conditions we
1513 	 * can run async and I think it's easier for others read and
1514 	 * follow the logic in case something has to be changed.
1515 	 * cscope is your friend -- rcc.
1516 	 *
1517 	 * The attribute fork is much simpler.
1518 	 *
1519 	 * For the attribute fork we allow the caller to tell us whether
1520 	 * the unlink of the inode that led to this call is yet permanent
1521 	 * in the on disk log.  If it is not and we will be freeing extents
1522 	 * in this inode then we make the first transaction synchronous
1523 	 * to make sure that the unlink is permanent by the time we free
1524 	 * the blocks.
1525 	 */
1526 	if (fork == XFS_DATA_FORK) {
1527 		if (ip->i_d.di_nextents > 0) {
1528 			/*
1529 			 * If we are not changing the file size then do
1530 			 * not update the on-disk file size - we may be
1531 			 * called from xfs_inactive_free_eofblocks().  If we
1532 			 * update the on-disk file size and then the system
1533 			 * crashes before the contents of the file are
1534 			 * flushed to disk then the files may be full of
1535 			 * holes (ie NULL files bug).
1536 			 */
1537 			if (ip->i_size != new_size) {
1538 				ip->i_d.di_size = new_size;
1539 				ip->i_size = new_size;
1540 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1541 			}
1542 		}
1543 	} else if (sync) {
1544 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1545 		if (ip->i_d.di_anextents > 0)
1546 			xfs_trans_set_sync(ntp);
1547 	}
1548 	ASSERT(fork == XFS_DATA_FORK ||
1549 		(fork == XFS_ATTR_FORK &&
1550 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1551 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1552 
1553 	/*
1554 	 * Since it is possible for space to become allocated beyond
1555 	 * the end of the file (in a crash where the space is allocated
1556 	 * but the inode size is not yet updated), simply remove any
1557 	 * blocks which show up between the new EOF and the maximum
1558 	 * possible file size.  If the first block to be removed is
1559 	 * beyond the maximum file size (ie it is the same as last_block),
1560 	 * then there is nothing to do.
1561 	 */
1562 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1563 	ASSERT(first_unmap_block <= last_block);
1564 	done = 0;
1565 	if (last_block == first_unmap_block) {
1566 		done = 1;
1567 	} else {
1568 		unmap_len = last_block - first_unmap_block + 1;
1569 	}
1570 	while (!done) {
1571 		/*
1572 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1573 		 * will tell us whether it freed the entire range or
1574 		 * not.  If this is a synchronous mount (wsync),
1575 		 * then we can tell bunmapi to keep all the
1576 		 * transactions asynchronous since the unlink
1577 		 * transaction that made this inode inactive has
1578 		 * already hit the disk.  There's no danger of
1579 		 * the freed blocks being reused, there being a
1580 		 * crash, and the reused blocks suddenly reappearing
1581 		 * in this file with garbage in them once recovery
1582 		 * runs.
1583 		 */
1584 		xfs_bmap_init(&free_list, &first_block);
1585 		error = xfs_bunmapi(ntp, ip,
1586 				    first_unmap_block, unmap_len,
1587 				    xfs_bmapi_aflag(fork),
1588 				    XFS_ITRUNC_MAX_EXTENTS,
1589 				    &first_block, &free_list,
1590 				    &done);
1591 		if (error) {
1592 			/*
1593 			 * If the bunmapi call encounters an error,
1594 			 * return to the caller where the transaction
1595 			 * can be properly aborted.  We just need to
1596 			 * make sure we're not holding any resources
1597 			 * that we were not when we came in.
1598 			 */
1599 			xfs_bmap_cancel(&free_list);
1600 			return error;
1601 		}
1602 
1603 		/*
1604 		 * Duplicate the transaction that has the permanent
1605 		 * reservation and commit the old transaction.
1606 		 */
1607 		error = xfs_bmap_finish(tp, &free_list, &committed);
1608 		ntp = *tp;
1609 		if (committed)
1610 			xfs_trans_ijoin(ntp, ip);
1611 
1612 		if (error) {
1613 			/*
1614 			 * If the bmap finish call encounters an error, return
1615 			 * to the caller where the transaction can be properly
1616 			 * aborted.  We just need to make sure we're not
1617 			 * holding any resources that we were not when we came
1618 			 * in.
1619 			 *
1620 			 * Aborting from this point might lose some blocks in
1621 			 * the file system, but oh well.
1622 			 */
1623 			xfs_bmap_cancel(&free_list);
1624 			return error;
1625 		}
1626 
1627 		if (committed) {
1628 			/*
1629 			 * Mark the inode dirty so it will be logged and
1630 			 * moved forward in the log as part of every commit.
1631 			 */
1632 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1633 		}
1634 
1635 		ntp = xfs_trans_dup(ntp);
1636 		error = xfs_trans_commit(*tp, 0);
1637 		*tp = ntp;
1638 
1639 		xfs_trans_ijoin(ntp, ip);
1640 
1641 		if (error)
1642 			return error;
1643 		/*
1644 		 * transaction commit worked ok so we can drop the extra ticket
1645 		 * reference that we gained in xfs_trans_dup()
1646 		 */
1647 		xfs_log_ticket_put(ntp->t_ticket);
1648 		error = xfs_trans_reserve(ntp, 0,
1649 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1650 					XFS_TRANS_PERM_LOG_RES,
1651 					XFS_ITRUNCATE_LOG_COUNT);
1652 		if (error)
1653 			return error;
1654 	}
1655 	/*
1656 	 * Only update the size in the case of the data fork, but
1657 	 * always re-log the inode so that our permanent transaction
1658 	 * can keep on rolling it forward in the log.
1659 	 */
1660 	if (fork == XFS_DATA_FORK) {
1661 		xfs_isize_check(mp, ip, new_size);
1662 		/*
1663 		 * If we are not changing the file size then do
1664 		 * not update the on-disk file size - we may be
1665 		 * called from xfs_inactive_free_eofblocks().  If we
1666 		 * update the on-disk file size and then the system
1667 		 * crashes before the contents of the file are
1668 		 * flushed to disk then the files may be full of
1669 		 * holes (ie NULL files bug).
1670 		 */
1671 		if (ip->i_size != new_size) {
1672 			ip->i_d.di_size = new_size;
1673 			ip->i_size = new_size;
1674 		}
1675 	}
1676 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1677 	ASSERT((new_size != 0) ||
1678 	       (fork == XFS_ATTR_FORK) ||
1679 	       (ip->i_delayed_blks == 0));
1680 	ASSERT((new_size != 0) ||
1681 	       (fork == XFS_ATTR_FORK) ||
1682 	       (ip->i_d.di_nextents == 0));
1683 	trace_xfs_itruncate_finish_end(ip, new_size);
1684 	return 0;
1685 }
1686 
1687 /*
1688  * This is called when the inode's link count goes to 0.
1689  * We place the on-disk inode on a list in the AGI.  It
1690  * will be pulled from this list when the inode is freed.
1691  */
1692 int
1693 xfs_iunlink(
1694 	xfs_trans_t	*tp,
1695 	xfs_inode_t	*ip)
1696 {
1697 	xfs_mount_t	*mp;
1698 	xfs_agi_t	*agi;
1699 	xfs_dinode_t	*dip;
1700 	xfs_buf_t	*agibp;
1701 	xfs_buf_t	*ibp;
1702 	xfs_agino_t	agino;
1703 	short		bucket_index;
1704 	int		offset;
1705 	int		error;
1706 
1707 	ASSERT(ip->i_d.di_nlink == 0);
1708 	ASSERT(ip->i_d.di_mode != 0);
1709 	ASSERT(ip->i_transp == tp);
1710 
1711 	mp = tp->t_mountp;
1712 
1713 	/*
1714 	 * Get the agi buffer first.  It ensures lock ordering
1715 	 * on the list.
1716 	 */
1717 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1718 	if (error)
1719 		return error;
1720 	agi = XFS_BUF_TO_AGI(agibp);
1721 
1722 	/*
1723 	 * Get the index into the agi hash table for the
1724 	 * list this inode will go on.
1725 	 */
1726 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1727 	ASSERT(agino != 0);
1728 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1729 	ASSERT(agi->agi_unlinked[bucket_index]);
1730 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1731 
1732 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1733 		/*
1734 		 * There is already another inode in the bucket we need
1735 		 * to add ourselves to.  Add us at the front of the list.
1736 		 * Here we put the head pointer into our next pointer,
1737 		 * and then we fall through to point the head at us.
1738 		 */
1739 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1740 		if (error)
1741 			return error;
1742 
1743 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1744 		/* both on-disk, don't endian flip twice */
1745 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1746 		offset = ip->i_imap.im_boffset +
1747 			offsetof(xfs_dinode_t, di_next_unlinked);
1748 		xfs_trans_inode_buf(tp, ibp);
1749 		xfs_trans_log_buf(tp, ibp, offset,
1750 				  (offset + sizeof(xfs_agino_t) - 1));
1751 		xfs_inobp_check(mp, ibp);
1752 	}
1753 
1754 	/*
1755 	 * Point the bucket head pointer at the inode being inserted.
1756 	 */
1757 	ASSERT(agino != 0);
1758 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1759 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1760 		(sizeof(xfs_agino_t) * bucket_index);
1761 	xfs_trans_log_buf(tp, agibp, offset,
1762 			  (offset + sizeof(xfs_agino_t) - 1));
1763 	return 0;
1764 }
1765 
1766 /*
1767  * Pull the on-disk inode from the AGI unlinked list.
1768  */
1769 STATIC int
1770 xfs_iunlink_remove(
1771 	xfs_trans_t	*tp,
1772 	xfs_inode_t	*ip)
1773 {
1774 	xfs_ino_t	next_ino;
1775 	xfs_mount_t	*mp;
1776 	xfs_agi_t	*agi;
1777 	xfs_dinode_t	*dip;
1778 	xfs_buf_t	*agibp;
1779 	xfs_buf_t	*ibp;
1780 	xfs_agnumber_t	agno;
1781 	xfs_agino_t	agino;
1782 	xfs_agino_t	next_agino;
1783 	xfs_buf_t	*last_ibp;
1784 	xfs_dinode_t	*last_dip = NULL;
1785 	short		bucket_index;
1786 	int		offset, last_offset = 0;
1787 	int		error;
1788 
1789 	mp = tp->t_mountp;
1790 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1791 
1792 	/*
1793 	 * Get the agi buffer first.  It ensures lock ordering
1794 	 * on the list.
1795 	 */
1796 	error = xfs_read_agi(mp, tp, agno, &agibp);
1797 	if (error)
1798 		return error;
1799 
1800 	agi = XFS_BUF_TO_AGI(agibp);
1801 
1802 	/*
1803 	 * Get the index into the agi hash table for the
1804 	 * list this inode will go on.
1805 	 */
1806 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1807 	ASSERT(agino != 0);
1808 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1809 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1810 	ASSERT(agi->agi_unlinked[bucket_index]);
1811 
1812 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1813 		/*
1814 		 * We're at the head of the list.  Get the inode's
1815 		 * on-disk buffer to see if there is anyone after us
1816 		 * on the list.  Only modify our next pointer if it
1817 		 * is not already NULLAGINO.  This saves us the overhead
1818 		 * of dealing with the buffer when there is no need to
1819 		 * change it.
1820 		 */
1821 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1822 		if (error) {
1823 			cmn_err(CE_WARN,
1824 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1825 				error, mp->m_fsname);
1826 			return error;
1827 		}
1828 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1829 		ASSERT(next_agino != 0);
1830 		if (next_agino != NULLAGINO) {
1831 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1832 			offset = ip->i_imap.im_boffset +
1833 				offsetof(xfs_dinode_t, di_next_unlinked);
1834 			xfs_trans_inode_buf(tp, ibp);
1835 			xfs_trans_log_buf(tp, ibp, offset,
1836 					  (offset + sizeof(xfs_agino_t) - 1));
1837 			xfs_inobp_check(mp, ibp);
1838 		} else {
1839 			xfs_trans_brelse(tp, ibp);
1840 		}
1841 		/*
1842 		 * Point the bucket head pointer at the next inode.
1843 		 */
1844 		ASSERT(next_agino != 0);
1845 		ASSERT(next_agino != agino);
1846 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1847 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1848 			(sizeof(xfs_agino_t) * bucket_index);
1849 		xfs_trans_log_buf(tp, agibp, offset,
1850 				  (offset + sizeof(xfs_agino_t) - 1));
1851 	} else {
1852 		/*
1853 		 * We need to search the list for the inode being freed.
1854 		 */
1855 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1856 		last_ibp = NULL;
1857 		while (next_agino != agino) {
1858 			/*
1859 			 * If the last inode wasn't the one pointing to
1860 			 * us, then release its buffer since we're not
1861 			 * going to do anything with it.
1862 			 */
1863 			if (last_ibp != NULL) {
1864 				xfs_trans_brelse(tp, last_ibp);
1865 			}
1866 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1867 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1868 					    &last_ibp, &last_offset, 0);
1869 			if (error) {
1870 				cmn_err(CE_WARN,
1871 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1872 					error, mp->m_fsname);
1873 				return error;
1874 			}
1875 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1876 			ASSERT(next_agino != NULLAGINO);
1877 			ASSERT(next_agino != 0);
1878 		}
1879 		/*
1880 		 * Now last_ibp points to the buffer previous to us on
1881 		 * the unlinked list.  Pull us from the list.
1882 		 */
1883 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1884 		if (error) {
1885 			cmn_err(CE_WARN,
1886 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1887 				error, mp->m_fsname);
1888 			return error;
1889 		}
1890 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1891 		ASSERT(next_agino != 0);
1892 		ASSERT(next_agino != agino);
1893 		if (next_agino != NULLAGINO) {
1894 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1895 			offset = ip->i_imap.im_boffset +
1896 				offsetof(xfs_dinode_t, di_next_unlinked);
1897 			xfs_trans_inode_buf(tp, ibp);
1898 			xfs_trans_log_buf(tp, ibp, offset,
1899 					  (offset + sizeof(xfs_agino_t) - 1));
1900 			xfs_inobp_check(mp, ibp);
1901 		} else {
1902 			xfs_trans_brelse(tp, ibp);
1903 		}
1904 		/*
1905 		 * Point the previous inode on the list to the next inode.
1906 		 */
1907 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1908 		ASSERT(next_agino != 0);
1909 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1910 		xfs_trans_inode_buf(tp, last_ibp);
1911 		xfs_trans_log_buf(tp, last_ibp, offset,
1912 				  (offset + sizeof(xfs_agino_t) - 1));
1913 		xfs_inobp_check(mp, last_ibp);
1914 	}
1915 	return 0;
1916 }
1917 
1918 /*
1919  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1920  * inodes that are in memory - they all must be marked stale and attached to
1921  * the cluster buffer.
1922  */
1923 STATIC void
1924 xfs_ifree_cluster(
1925 	xfs_inode_t	*free_ip,
1926 	xfs_trans_t	*tp,
1927 	xfs_ino_t	inum)
1928 {
1929 	xfs_mount_t		*mp = free_ip->i_mount;
1930 	int			blks_per_cluster;
1931 	int			nbufs;
1932 	int			ninodes;
1933 	int			i, j;
1934 	xfs_daddr_t		blkno;
1935 	xfs_buf_t		*bp;
1936 	xfs_inode_t		*ip;
1937 	xfs_inode_log_item_t	*iip;
1938 	xfs_log_item_t		*lip;
1939 	struct xfs_perag	*pag;
1940 
1941 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1942 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1943 		blks_per_cluster = 1;
1944 		ninodes = mp->m_sb.sb_inopblock;
1945 		nbufs = XFS_IALLOC_BLOCKS(mp);
1946 	} else {
1947 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1948 					mp->m_sb.sb_blocksize;
1949 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1950 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1951 	}
1952 
1953 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1954 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1955 					 XFS_INO_TO_AGBNO(mp, inum));
1956 
1957 		/*
1958 		 * We obtain and lock the backing buffer first in the process
1959 		 * here, as we have to ensure that any dirty inode that we
1960 		 * can't get the flush lock on is attached to the buffer.
1961 		 * If we scan the in-memory inodes first, then buffer IO can
1962 		 * complete before we get a lock on it, and hence we may fail
1963 		 * to mark all the active inodes on the buffer stale.
1964 		 */
1965 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1966 					mp->m_bsize * blks_per_cluster,
1967 					XBF_LOCK);
1968 
1969 		/*
1970 		 * Walk the inodes already attached to the buffer and mark them
1971 		 * stale. These will all have the flush locks held, so an
1972 		 * in-memory inode walk can't lock them. By marking them all
1973 		 * stale first, we will not attempt to lock them in the loop
1974 		 * below as the XFS_ISTALE flag will be set.
1975 		 */
1976 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1977 		while (lip) {
1978 			if (lip->li_type == XFS_LI_INODE) {
1979 				iip = (xfs_inode_log_item_t *)lip;
1980 				ASSERT(iip->ili_logged == 1);
1981 				lip->li_cb = xfs_istale_done;
1982 				xfs_trans_ail_copy_lsn(mp->m_ail,
1983 							&iip->ili_flush_lsn,
1984 							&iip->ili_item.li_lsn);
1985 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1986 			}
1987 			lip = lip->li_bio_list;
1988 		}
1989 
1990 
1991 		/*
1992 		 * For each inode in memory attempt to add it to the inode
1993 		 * buffer and set it up for being staled on buffer IO
1994 		 * completion.  This is safe as we've locked out tail pushing
1995 		 * and flushing by locking the buffer.
1996 		 *
1997 		 * We have already marked every inode that was part of a
1998 		 * transaction stale above, which means there is no point in
1999 		 * even trying to lock them.
2000 		 */
2001 		for (i = 0; i < ninodes; i++) {
2002 retry:
2003 			rcu_read_lock();
2004 			ip = radix_tree_lookup(&pag->pag_ici_root,
2005 					XFS_INO_TO_AGINO(mp, (inum + i)));
2006 
2007 			/* Inode not in memory, nothing to do */
2008 			if (!ip) {
2009 				rcu_read_unlock();
2010 				continue;
2011 			}
2012 
2013 			/*
2014 			 * because this is an RCU protected lookup, we could
2015 			 * find a recently freed or even reallocated inode
2016 			 * during the lookup. We need to check under the
2017 			 * i_flags_lock for a valid inode here. Skip it if it
2018 			 * is not valid, the wrong inode or stale.
2019 			 */
2020 			spin_lock(&ip->i_flags_lock);
2021 			if (ip->i_ino != inum + i ||
2022 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2023 				spin_unlock(&ip->i_flags_lock);
2024 				rcu_read_unlock();
2025 				continue;
2026 			}
2027 			spin_unlock(&ip->i_flags_lock);
2028 
2029 			/*
2030 			 * Don't try to lock/unlock the current inode, but we
2031 			 * _cannot_ skip the other inodes that we did not find
2032 			 * in the list attached to the buffer and are not
2033 			 * already marked stale. If we can't lock it, back off
2034 			 * and retry.
2035 			 */
2036 			if (ip != free_ip &&
2037 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2038 				rcu_read_unlock();
2039 				delay(1);
2040 				goto retry;
2041 			}
2042 			rcu_read_unlock();
2043 
2044 			xfs_iflock(ip);
2045 			xfs_iflags_set(ip, XFS_ISTALE);
2046 
2047 			/*
2048 			 * we don't need to attach clean inodes or those only
2049 			 * with unlogged changes (which we throw away, anyway).
2050 			 */
2051 			iip = ip->i_itemp;
2052 			if (!iip || xfs_inode_clean(ip)) {
2053 				ASSERT(ip != free_ip);
2054 				ip->i_update_core = 0;
2055 				xfs_ifunlock(ip);
2056 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2057 				continue;
2058 			}
2059 
2060 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2061 			iip->ili_format.ilf_fields = 0;
2062 			iip->ili_logged = 1;
2063 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2064 						&iip->ili_item.li_lsn);
2065 
2066 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2067 						  &iip->ili_item);
2068 
2069 			if (ip != free_ip)
2070 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2071 		}
2072 
2073 		xfs_trans_stale_inode_buf(tp, bp);
2074 		xfs_trans_binval(tp, bp);
2075 	}
2076 
2077 	xfs_perag_put(pag);
2078 }
2079 
2080 /*
2081  * This is called to return an inode to the inode free list.
2082  * The inode should already be truncated to 0 length and have
2083  * no pages associated with it.  This routine also assumes that
2084  * the inode is already a part of the transaction.
2085  *
2086  * The on-disk copy of the inode will have been added to the list
2087  * of unlinked inodes in the AGI. We need to remove the inode from
2088  * that list atomically with respect to freeing it here.
2089  */
2090 int
2091 xfs_ifree(
2092 	xfs_trans_t	*tp,
2093 	xfs_inode_t	*ip,
2094 	xfs_bmap_free_t	*flist)
2095 {
2096 	int			error;
2097 	int			delete;
2098 	xfs_ino_t		first_ino;
2099 	xfs_dinode_t    	*dip;
2100 	xfs_buf_t       	*ibp;
2101 
2102 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2103 	ASSERT(ip->i_transp == tp);
2104 	ASSERT(ip->i_d.di_nlink == 0);
2105 	ASSERT(ip->i_d.di_nextents == 0);
2106 	ASSERT(ip->i_d.di_anextents == 0);
2107 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2108 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2109 	ASSERT(ip->i_d.di_nblocks == 0);
2110 
2111 	/*
2112 	 * Pull the on-disk inode from the AGI unlinked list.
2113 	 */
2114 	error = xfs_iunlink_remove(tp, ip);
2115 	if (error != 0) {
2116 		return error;
2117 	}
2118 
2119 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2120 	if (error != 0) {
2121 		return error;
2122 	}
2123 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2124 	ip->i_d.di_flags = 0;
2125 	ip->i_d.di_dmevmask = 0;
2126 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2127 	ip->i_df.if_ext_max =
2128 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2129 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2130 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2131 	/*
2132 	 * Bump the generation count so no one will be confused
2133 	 * by reincarnations of this inode.
2134 	 */
2135 	ip->i_d.di_gen++;
2136 
2137 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2138 
2139 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2140 	if (error)
2141 		return error;
2142 
2143         /*
2144 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2145 	* from picking up this inode when it is reclaimed (its incore state
2146 	* initialzed but not flushed to disk yet). The in-core di_mode is
2147 	* already cleared  and a corresponding transaction logged.
2148 	* The hack here just synchronizes the in-core to on-disk
2149 	* di_mode value in advance before the actual inode sync to disk.
2150 	* This is OK because the inode is already unlinked and would never
2151 	* change its di_mode again for this inode generation.
2152 	* This is a temporary hack that would require a proper fix
2153 	* in the future.
2154 	*/
2155 	dip->di_mode = 0;
2156 
2157 	if (delete) {
2158 		xfs_ifree_cluster(ip, tp, first_ino);
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * Reallocate the space for if_broot based on the number of records
2166  * being added or deleted as indicated in rec_diff.  Move the records
2167  * and pointers in if_broot to fit the new size.  When shrinking this
2168  * will eliminate holes between the records and pointers created by
2169  * the caller.  When growing this will create holes to be filled in
2170  * by the caller.
2171  *
2172  * The caller must not request to add more records than would fit in
2173  * the on-disk inode root.  If the if_broot is currently NULL, then
2174  * if we adding records one will be allocated.  The caller must also
2175  * not request that the number of records go below zero, although
2176  * it can go to zero.
2177  *
2178  * ip -- the inode whose if_broot area is changing
2179  * ext_diff -- the change in the number of records, positive or negative,
2180  *	 requested for the if_broot array.
2181  */
2182 void
2183 xfs_iroot_realloc(
2184 	xfs_inode_t		*ip,
2185 	int			rec_diff,
2186 	int			whichfork)
2187 {
2188 	struct xfs_mount	*mp = ip->i_mount;
2189 	int			cur_max;
2190 	xfs_ifork_t		*ifp;
2191 	struct xfs_btree_block	*new_broot;
2192 	int			new_max;
2193 	size_t			new_size;
2194 	char			*np;
2195 	char			*op;
2196 
2197 	/*
2198 	 * Handle the degenerate case quietly.
2199 	 */
2200 	if (rec_diff == 0) {
2201 		return;
2202 	}
2203 
2204 	ifp = XFS_IFORK_PTR(ip, whichfork);
2205 	if (rec_diff > 0) {
2206 		/*
2207 		 * If there wasn't any memory allocated before, just
2208 		 * allocate it now and get out.
2209 		 */
2210 		if (ifp->if_broot_bytes == 0) {
2211 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2212 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2213 			ifp->if_broot_bytes = (int)new_size;
2214 			return;
2215 		}
2216 
2217 		/*
2218 		 * If there is already an existing if_broot, then we need
2219 		 * to realloc() it and shift the pointers to their new
2220 		 * location.  The records don't change location because
2221 		 * they are kept butted up against the btree block header.
2222 		 */
2223 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2224 		new_max = cur_max + rec_diff;
2225 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2226 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2227 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2228 				KM_SLEEP | KM_NOFS);
2229 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2230 						     ifp->if_broot_bytes);
2231 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2232 						     (int)new_size);
2233 		ifp->if_broot_bytes = (int)new_size;
2234 		ASSERT(ifp->if_broot_bytes <=
2235 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2236 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2237 		return;
2238 	}
2239 
2240 	/*
2241 	 * rec_diff is less than 0.  In this case, we are shrinking the
2242 	 * if_broot buffer.  It must already exist.  If we go to zero
2243 	 * records, just get rid of the root and clear the status bit.
2244 	 */
2245 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2246 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2247 	new_max = cur_max + rec_diff;
2248 	ASSERT(new_max >= 0);
2249 	if (new_max > 0)
2250 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2251 	else
2252 		new_size = 0;
2253 	if (new_size > 0) {
2254 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2255 		/*
2256 		 * First copy over the btree block header.
2257 		 */
2258 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2259 	} else {
2260 		new_broot = NULL;
2261 		ifp->if_flags &= ~XFS_IFBROOT;
2262 	}
2263 
2264 	/*
2265 	 * Only copy the records and pointers if there are any.
2266 	 */
2267 	if (new_max > 0) {
2268 		/*
2269 		 * First copy the records.
2270 		 */
2271 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2272 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2273 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2274 
2275 		/*
2276 		 * Then copy the pointers.
2277 		 */
2278 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2279 						     ifp->if_broot_bytes);
2280 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2281 						     (int)new_size);
2282 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2283 	}
2284 	kmem_free(ifp->if_broot);
2285 	ifp->if_broot = new_broot;
2286 	ifp->if_broot_bytes = (int)new_size;
2287 	ASSERT(ifp->if_broot_bytes <=
2288 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2289 	return;
2290 }
2291 
2292 
2293 /*
2294  * This is called when the amount of space needed for if_data
2295  * is increased or decreased.  The change in size is indicated by
2296  * the number of bytes that need to be added or deleted in the
2297  * byte_diff parameter.
2298  *
2299  * If the amount of space needed has decreased below the size of the
2300  * inline buffer, then switch to using the inline buffer.  Otherwise,
2301  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2302  * to what is needed.
2303  *
2304  * ip -- the inode whose if_data area is changing
2305  * byte_diff -- the change in the number of bytes, positive or negative,
2306  *	 requested for the if_data array.
2307  */
2308 void
2309 xfs_idata_realloc(
2310 	xfs_inode_t	*ip,
2311 	int		byte_diff,
2312 	int		whichfork)
2313 {
2314 	xfs_ifork_t	*ifp;
2315 	int		new_size;
2316 	int		real_size;
2317 
2318 	if (byte_diff == 0) {
2319 		return;
2320 	}
2321 
2322 	ifp = XFS_IFORK_PTR(ip, whichfork);
2323 	new_size = (int)ifp->if_bytes + byte_diff;
2324 	ASSERT(new_size >= 0);
2325 
2326 	if (new_size == 0) {
2327 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2328 			kmem_free(ifp->if_u1.if_data);
2329 		}
2330 		ifp->if_u1.if_data = NULL;
2331 		real_size = 0;
2332 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2333 		/*
2334 		 * If the valid extents/data can fit in if_inline_ext/data,
2335 		 * copy them from the malloc'd vector and free it.
2336 		 */
2337 		if (ifp->if_u1.if_data == NULL) {
2338 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2339 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2340 			ASSERT(ifp->if_real_bytes != 0);
2341 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2342 			      new_size);
2343 			kmem_free(ifp->if_u1.if_data);
2344 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2345 		}
2346 		real_size = 0;
2347 	} else {
2348 		/*
2349 		 * Stuck with malloc/realloc.
2350 		 * For inline data, the underlying buffer must be
2351 		 * a multiple of 4 bytes in size so that it can be
2352 		 * logged and stay on word boundaries.  We enforce
2353 		 * that here.
2354 		 */
2355 		real_size = roundup(new_size, 4);
2356 		if (ifp->if_u1.if_data == NULL) {
2357 			ASSERT(ifp->if_real_bytes == 0);
2358 			ifp->if_u1.if_data = kmem_alloc(real_size,
2359 							KM_SLEEP | KM_NOFS);
2360 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2361 			/*
2362 			 * Only do the realloc if the underlying size
2363 			 * is really changing.
2364 			 */
2365 			if (ifp->if_real_bytes != real_size) {
2366 				ifp->if_u1.if_data =
2367 					kmem_realloc(ifp->if_u1.if_data,
2368 							real_size,
2369 							ifp->if_real_bytes,
2370 							KM_SLEEP | KM_NOFS);
2371 			}
2372 		} else {
2373 			ASSERT(ifp->if_real_bytes == 0);
2374 			ifp->if_u1.if_data = kmem_alloc(real_size,
2375 							KM_SLEEP | KM_NOFS);
2376 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2377 				ifp->if_bytes);
2378 		}
2379 	}
2380 	ifp->if_real_bytes = real_size;
2381 	ifp->if_bytes = new_size;
2382 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2383 }
2384 
2385 void
2386 xfs_idestroy_fork(
2387 	xfs_inode_t	*ip,
2388 	int		whichfork)
2389 {
2390 	xfs_ifork_t	*ifp;
2391 
2392 	ifp = XFS_IFORK_PTR(ip, whichfork);
2393 	if (ifp->if_broot != NULL) {
2394 		kmem_free(ifp->if_broot);
2395 		ifp->if_broot = NULL;
2396 	}
2397 
2398 	/*
2399 	 * If the format is local, then we can't have an extents
2400 	 * array so just look for an inline data array.  If we're
2401 	 * not local then we may or may not have an extents list,
2402 	 * so check and free it up if we do.
2403 	 */
2404 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2405 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2406 		    (ifp->if_u1.if_data != NULL)) {
2407 			ASSERT(ifp->if_real_bytes != 0);
2408 			kmem_free(ifp->if_u1.if_data);
2409 			ifp->if_u1.if_data = NULL;
2410 			ifp->if_real_bytes = 0;
2411 		}
2412 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2413 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2414 		    ((ifp->if_u1.if_extents != NULL) &&
2415 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2416 		ASSERT(ifp->if_real_bytes != 0);
2417 		xfs_iext_destroy(ifp);
2418 	}
2419 	ASSERT(ifp->if_u1.if_extents == NULL ||
2420 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2421 	ASSERT(ifp->if_real_bytes == 0);
2422 	if (whichfork == XFS_ATTR_FORK) {
2423 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2424 		ip->i_afp = NULL;
2425 	}
2426 }
2427 
2428 /*
2429  * This is called to unpin an inode.  The caller must have the inode locked
2430  * in at least shared mode so that the buffer cannot be subsequently pinned
2431  * once someone is waiting for it to be unpinned.
2432  */
2433 static void
2434 xfs_iunpin_nowait(
2435 	struct xfs_inode	*ip)
2436 {
2437 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2438 
2439 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2440 
2441 	/* Give the log a push to start the unpinning I/O */
2442 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2443 
2444 }
2445 
2446 void
2447 xfs_iunpin_wait(
2448 	struct xfs_inode	*ip)
2449 {
2450 	if (xfs_ipincount(ip)) {
2451 		xfs_iunpin_nowait(ip);
2452 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2453 	}
2454 }
2455 
2456 /*
2457  * xfs_iextents_copy()
2458  *
2459  * This is called to copy the REAL extents (as opposed to the delayed
2460  * allocation extents) from the inode into the given buffer.  It
2461  * returns the number of bytes copied into the buffer.
2462  *
2463  * If there are no delayed allocation extents, then we can just
2464  * memcpy() the extents into the buffer.  Otherwise, we need to
2465  * examine each extent in turn and skip those which are delayed.
2466  */
2467 int
2468 xfs_iextents_copy(
2469 	xfs_inode_t		*ip,
2470 	xfs_bmbt_rec_t		*dp,
2471 	int			whichfork)
2472 {
2473 	int			copied;
2474 	int			i;
2475 	xfs_ifork_t		*ifp;
2476 	int			nrecs;
2477 	xfs_fsblock_t		start_block;
2478 
2479 	ifp = XFS_IFORK_PTR(ip, whichfork);
2480 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2481 	ASSERT(ifp->if_bytes > 0);
2482 
2483 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2484 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2485 	ASSERT(nrecs > 0);
2486 
2487 	/*
2488 	 * There are some delayed allocation extents in the
2489 	 * inode, so copy the extents one at a time and skip
2490 	 * the delayed ones.  There must be at least one
2491 	 * non-delayed extent.
2492 	 */
2493 	copied = 0;
2494 	for (i = 0; i < nrecs; i++) {
2495 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2496 		start_block = xfs_bmbt_get_startblock(ep);
2497 		if (isnullstartblock(start_block)) {
2498 			/*
2499 			 * It's a delayed allocation extent, so skip it.
2500 			 */
2501 			continue;
2502 		}
2503 
2504 		/* Translate to on disk format */
2505 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2506 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2507 		dp++;
2508 		copied++;
2509 	}
2510 	ASSERT(copied != 0);
2511 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2512 
2513 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2514 }
2515 
2516 /*
2517  * Each of the following cases stores data into the same region
2518  * of the on-disk inode, so only one of them can be valid at
2519  * any given time. While it is possible to have conflicting formats
2520  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2521  * in EXTENTS format, this can only happen when the fork has
2522  * changed formats after being modified but before being flushed.
2523  * In these cases, the format always takes precedence, because the
2524  * format indicates the current state of the fork.
2525  */
2526 /*ARGSUSED*/
2527 STATIC void
2528 xfs_iflush_fork(
2529 	xfs_inode_t		*ip,
2530 	xfs_dinode_t		*dip,
2531 	xfs_inode_log_item_t	*iip,
2532 	int			whichfork,
2533 	xfs_buf_t		*bp)
2534 {
2535 	char			*cp;
2536 	xfs_ifork_t		*ifp;
2537 	xfs_mount_t		*mp;
2538 #ifdef XFS_TRANS_DEBUG
2539 	int			first;
2540 #endif
2541 	static const short	brootflag[2] =
2542 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2543 	static const short	dataflag[2] =
2544 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2545 	static const short	extflag[2] =
2546 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2547 
2548 	if (!iip)
2549 		return;
2550 	ifp = XFS_IFORK_PTR(ip, whichfork);
2551 	/*
2552 	 * This can happen if we gave up in iformat in an error path,
2553 	 * for the attribute fork.
2554 	 */
2555 	if (!ifp) {
2556 		ASSERT(whichfork == XFS_ATTR_FORK);
2557 		return;
2558 	}
2559 	cp = XFS_DFORK_PTR(dip, whichfork);
2560 	mp = ip->i_mount;
2561 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2562 	case XFS_DINODE_FMT_LOCAL:
2563 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2564 		    (ifp->if_bytes > 0)) {
2565 			ASSERT(ifp->if_u1.if_data != NULL);
2566 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2567 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2568 		}
2569 		break;
2570 
2571 	case XFS_DINODE_FMT_EXTENTS:
2572 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2573 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2574 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2575 			(ifp->if_bytes == 0));
2576 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2577 			(ifp->if_bytes > 0));
2578 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2579 		    (ifp->if_bytes > 0)) {
2580 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2581 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2582 				whichfork);
2583 		}
2584 		break;
2585 
2586 	case XFS_DINODE_FMT_BTREE:
2587 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2588 		    (ifp->if_broot_bytes > 0)) {
2589 			ASSERT(ifp->if_broot != NULL);
2590 			ASSERT(ifp->if_broot_bytes <=
2591 			       (XFS_IFORK_SIZE(ip, whichfork) +
2592 				XFS_BROOT_SIZE_ADJ));
2593 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2594 				(xfs_bmdr_block_t *)cp,
2595 				XFS_DFORK_SIZE(dip, mp, whichfork));
2596 		}
2597 		break;
2598 
2599 	case XFS_DINODE_FMT_DEV:
2600 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2601 			ASSERT(whichfork == XFS_DATA_FORK);
2602 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2603 		}
2604 		break;
2605 
2606 	case XFS_DINODE_FMT_UUID:
2607 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2608 			ASSERT(whichfork == XFS_DATA_FORK);
2609 			memcpy(XFS_DFORK_DPTR(dip),
2610 			       &ip->i_df.if_u2.if_uuid,
2611 			       sizeof(uuid_t));
2612 		}
2613 		break;
2614 
2615 	default:
2616 		ASSERT(0);
2617 		break;
2618 	}
2619 }
2620 
2621 STATIC int
2622 xfs_iflush_cluster(
2623 	xfs_inode_t	*ip,
2624 	xfs_buf_t	*bp)
2625 {
2626 	xfs_mount_t		*mp = ip->i_mount;
2627 	struct xfs_perag	*pag;
2628 	unsigned long		first_index, mask;
2629 	unsigned long		inodes_per_cluster;
2630 	int			ilist_size;
2631 	xfs_inode_t		**ilist;
2632 	xfs_inode_t		*iq;
2633 	int			nr_found;
2634 	int			clcount = 0;
2635 	int			bufwasdelwri;
2636 	int			i;
2637 
2638 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2639 
2640 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2641 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2642 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2643 	if (!ilist)
2644 		goto out_put;
2645 
2646 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2647 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2648 	rcu_read_lock();
2649 	/* really need a gang lookup range call here */
2650 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2651 					first_index, inodes_per_cluster);
2652 	if (nr_found == 0)
2653 		goto out_free;
2654 
2655 	for (i = 0; i < nr_found; i++) {
2656 		iq = ilist[i];
2657 		if (iq == ip)
2658 			continue;
2659 
2660 		/*
2661 		 * because this is an RCU protected lookup, we could find a
2662 		 * recently freed or even reallocated inode during the lookup.
2663 		 * We need to check under the i_flags_lock for a valid inode
2664 		 * here. Skip it if it is not valid or the wrong inode.
2665 		 */
2666 		spin_lock(&ip->i_flags_lock);
2667 		if (!ip->i_ino ||
2668 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2669 			spin_unlock(&ip->i_flags_lock);
2670 			continue;
2671 		}
2672 		spin_unlock(&ip->i_flags_lock);
2673 
2674 		/*
2675 		 * Do an un-protected check to see if the inode is dirty and
2676 		 * is a candidate for flushing.  These checks will be repeated
2677 		 * later after the appropriate locks are acquired.
2678 		 */
2679 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2680 			continue;
2681 
2682 		/*
2683 		 * Try to get locks.  If any are unavailable or it is pinned,
2684 		 * then this inode cannot be flushed and is skipped.
2685 		 */
2686 
2687 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2688 			continue;
2689 		if (!xfs_iflock_nowait(iq)) {
2690 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2691 			continue;
2692 		}
2693 		if (xfs_ipincount(iq)) {
2694 			xfs_ifunlock(iq);
2695 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2696 			continue;
2697 		}
2698 
2699 		/*
2700 		 * arriving here means that this inode can be flushed.  First
2701 		 * re-check that it's dirty before flushing.
2702 		 */
2703 		if (!xfs_inode_clean(iq)) {
2704 			int	error;
2705 			error = xfs_iflush_int(iq, bp);
2706 			if (error) {
2707 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2708 				goto cluster_corrupt_out;
2709 			}
2710 			clcount++;
2711 		} else {
2712 			xfs_ifunlock(iq);
2713 		}
2714 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2715 	}
2716 
2717 	if (clcount) {
2718 		XFS_STATS_INC(xs_icluster_flushcnt);
2719 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2720 	}
2721 
2722 out_free:
2723 	rcu_read_unlock();
2724 	kmem_free(ilist);
2725 out_put:
2726 	xfs_perag_put(pag);
2727 	return 0;
2728 
2729 
2730 cluster_corrupt_out:
2731 	/*
2732 	 * Corruption detected in the clustering loop.  Invalidate the
2733 	 * inode buffer and shut down the filesystem.
2734 	 */
2735 	rcu_read_unlock();
2736 	/*
2737 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2738 	 * brelse can handle it with no problems.  If not, shut down the
2739 	 * filesystem before releasing the buffer.
2740 	 */
2741 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2742 	if (bufwasdelwri)
2743 		xfs_buf_relse(bp);
2744 
2745 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2746 
2747 	if (!bufwasdelwri) {
2748 		/*
2749 		 * Just like incore_relse: if we have b_iodone functions,
2750 		 * mark the buffer as an error and call them.  Otherwise
2751 		 * mark it as stale and brelse.
2752 		 */
2753 		if (XFS_BUF_IODONE_FUNC(bp)) {
2754 			XFS_BUF_UNDONE(bp);
2755 			XFS_BUF_STALE(bp);
2756 			XFS_BUF_ERROR(bp,EIO);
2757 			xfs_buf_ioend(bp, 0);
2758 		} else {
2759 			XFS_BUF_STALE(bp);
2760 			xfs_buf_relse(bp);
2761 		}
2762 	}
2763 
2764 	/*
2765 	 * Unlocks the flush lock
2766 	 */
2767 	xfs_iflush_abort(iq);
2768 	kmem_free(ilist);
2769 	xfs_perag_put(pag);
2770 	return XFS_ERROR(EFSCORRUPTED);
2771 }
2772 
2773 /*
2774  * xfs_iflush() will write a modified inode's changes out to the
2775  * inode's on disk home.  The caller must have the inode lock held
2776  * in at least shared mode and the inode flush completion must be
2777  * active as well.  The inode lock will still be held upon return from
2778  * the call and the caller is free to unlock it.
2779  * The inode flush will be completed when the inode reaches the disk.
2780  * The flags indicate how the inode's buffer should be written out.
2781  */
2782 int
2783 xfs_iflush(
2784 	xfs_inode_t		*ip,
2785 	uint			flags)
2786 {
2787 	xfs_inode_log_item_t	*iip;
2788 	xfs_buf_t		*bp;
2789 	xfs_dinode_t		*dip;
2790 	xfs_mount_t		*mp;
2791 	int			error;
2792 
2793 	XFS_STATS_INC(xs_iflush_count);
2794 
2795 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2796 	ASSERT(!completion_done(&ip->i_flush));
2797 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2798 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2799 
2800 	iip = ip->i_itemp;
2801 	mp = ip->i_mount;
2802 
2803 	/*
2804 	 * We can't flush the inode until it is unpinned, so wait for it if we
2805 	 * are allowed to block.  We know noone new can pin it, because we are
2806 	 * holding the inode lock shared and you need to hold it exclusively to
2807 	 * pin the inode.
2808 	 *
2809 	 * If we are not allowed to block, force the log out asynchronously so
2810 	 * that when we come back the inode will be unpinned. If other inodes
2811 	 * in the same cluster are dirty, they will probably write the inode
2812 	 * out for us if they occur after the log force completes.
2813 	 */
2814 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2815 		xfs_iunpin_nowait(ip);
2816 		xfs_ifunlock(ip);
2817 		return EAGAIN;
2818 	}
2819 	xfs_iunpin_wait(ip);
2820 
2821 	/*
2822 	 * For stale inodes we cannot rely on the backing buffer remaining
2823 	 * stale in cache for the remaining life of the stale inode and so
2824 	 * xfs_itobp() below may give us a buffer that no longer contains
2825 	 * inodes below. We have to check this after ensuring the inode is
2826 	 * unpinned so that it is safe to reclaim the stale inode after the
2827 	 * flush call.
2828 	 */
2829 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2830 		xfs_ifunlock(ip);
2831 		return 0;
2832 	}
2833 
2834 	/*
2835 	 * This may have been unpinned because the filesystem is shutting
2836 	 * down forcibly. If that's the case we must not write this inode
2837 	 * to disk, because the log record didn't make it to disk!
2838 	 */
2839 	if (XFS_FORCED_SHUTDOWN(mp)) {
2840 		ip->i_update_core = 0;
2841 		if (iip)
2842 			iip->ili_format.ilf_fields = 0;
2843 		xfs_ifunlock(ip);
2844 		return XFS_ERROR(EIO);
2845 	}
2846 
2847 	/*
2848 	 * Get the buffer containing the on-disk inode.
2849 	 */
2850 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2851 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2852 	if (error || !bp) {
2853 		xfs_ifunlock(ip);
2854 		return error;
2855 	}
2856 
2857 	/*
2858 	 * First flush out the inode that xfs_iflush was called with.
2859 	 */
2860 	error = xfs_iflush_int(ip, bp);
2861 	if (error)
2862 		goto corrupt_out;
2863 
2864 	/*
2865 	 * If the buffer is pinned then push on the log now so we won't
2866 	 * get stuck waiting in the write for too long.
2867 	 */
2868 	if (XFS_BUF_ISPINNED(bp))
2869 		xfs_log_force(mp, 0);
2870 
2871 	/*
2872 	 * inode clustering:
2873 	 * see if other inodes can be gathered into this write
2874 	 */
2875 	error = xfs_iflush_cluster(ip, bp);
2876 	if (error)
2877 		goto cluster_corrupt_out;
2878 
2879 	if (flags & SYNC_WAIT)
2880 		error = xfs_bwrite(mp, bp);
2881 	else
2882 		xfs_bdwrite(mp, bp);
2883 	return error;
2884 
2885 corrupt_out:
2886 	xfs_buf_relse(bp);
2887 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2888 cluster_corrupt_out:
2889 	/*
2890 	 * Unlocks the flush lock
2891 	 */
2892 	xfs_iflush_abort(ip);
2893 	return XFS_ERROR(EFSCORRUPTED);
2894 }
2895 
2896 
2897 STATIC int
2898 xfs_iflush_int(
2899 	xfs_inode_t		*ip,
2900 	xfs_buf_t		*bp)
2901 {
2902 	xfs_inode_log_item_t	*iip;
2903 	xfs_dinode_t		*dip;
2904 	xfs_mount_t		*mp;
2905 #ifdef XFS_TRANS_DEBUG
2906 	int			first;
2907 #endif
2908 
2909 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2910 	ASSERT(!completion_done(&ip->i_flush));
2911 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2912 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2913 
2914 	iip = ip->i_itemp;
2915 	mp = ip->i_mount;
2916 
2917 	/* set *dip = inode's place in the buffer */
2918 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2919 
2920 	/*
2921 	 * Clear i_update_core before copying out the data.
2922 	 * This is for coordination with our timestamp updates
2923 	 * that don't hold the inode lock. They will always
2924 	 * update the timestamps BEFORE setting i_update_core,
2925 	 * so if we clear i_update_core after they set it we
2926 	 * are guaranteed to see their updates to the timestamps.
2927 	 * I believe that this depends on strongly ordered memory
2928 	 * semantics, but we have that.  We use the SYNCHRONIZE
2929 	 * macro to make sure that the compiler does not reorder
2930 	 * the i_update_core access below the data copy below.
2931 	 */
2932 	ip->i_update_core = 0;
2933 	SYNCHRONIZE();
2934 
2935 	/*
2936 	 * Make sure to get the latest timestamps from the Linux inode.
2937 	 */
2938 	xfs_synchronize_times(ip);
2939 
2940 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2941 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2942 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2943 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2944 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2945 		goto corrupt_out;
2946 	}
2947 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2948 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2949 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2950 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2951 			ip->i_ino, ip, ip->i_d.di_magic);
2952 		goto corrupt_out;
2953 	}
2954 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2955 		if (XFS_TEST_ERROR(
2956 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2957 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2958 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2959 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2960 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2961 				ip->i_ino, ip);
2962 			goto corrupt_out;
2963 		}
2964 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2965 		if (XFS_TEST_ERROR(
2966 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2967 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2968 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2969 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2970 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2971 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2972 				ip->i_ino, ip);
2973 			goto corrupt_out;
2974 		}
2975 	}
2976 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2977 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2978 				XFS_RANDOM_IFLUSH_5)) {
2979 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2980 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2981 			ip->i_ino,
2982 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2983 			ip->i_d.di_nblocks,
2984 			ip);
2985 		goto corrupt_out;
2986 	}
2987 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2988 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2989 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2990 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2991 			ip->i_ino, ip->i_d.di_forkoff, ip);
2992 		goto corrupt_out;
2993 	}
2994 	/*
2995 	 * bump the flush iteration count, used to detect flushes which
2996 	 * postdate a log record during recovery.
2997 	 */
2998 
2999 	ip->i_d.di_flushiter++;
3000 
3001 	/*
3002 	 * Copy the dirty parts of the inode into the on-disk
3003 	 * inode.  We always copy out the core of the inode,
3004 	 * because if the inode is dirty at all the core must
3005 	 * be.
3006 	 */
3007 	xfs_dinode_to_disk(dip, &ip->i_d);
3008 
3009 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3010 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3011 		ip->i_d.di_flushiter = 0;
3012 
3013 	/*
3014 	 * If this is really an old format inode and the superblock version
3015 	 * has not been updated to support only new format inodes, then
3016 	 * convert back to the old inode format.  If the superblock version
3017 	 * has been updated, then make the conversion permanent.
3018 	 */
3019 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3020 	if (ip->i_d.di_version == 1) {
3021 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3022 			/*
3023 			 * Convert it back.
3024 			 */
3025 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3026 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3027 		} else {
3028 			/*
3029 			 * The superblock version has already been bumped,
3030 			 * so just make the conversion to the new inode
3031 			 * format permanent.
3032 			 */
3033 			ip->i_d.di_version = 2;
3034 			dip->di_version = 2;
3035 			ip->i_d.di_onlink = 0;
3036 			dip->di_onlink = 0;
3037 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3038 			memset(&(dip->di_pad[0]), 0,
3039 			      sizeof(dip->di_pad));
3040 			ASSERT(xfs_get_projid(ip) == 0);
3041 		}
3042 	}
3043 
3044 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3045 	if (XFS_IFORK_Q(ip))
3046 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3047 	xfs_inobp_check(mp, bp);
3048 
3049 	/*
3050 	 * We've recorded everything logged in the inode, so we'd
3051 	 * like to clear the ilf_fields bits so we don't log and
3052 	 * flush things unnecessarily.  However, we can't stop
3053 	 * logging all this information until the data we've copied
3054 	 * into the disk buffer is written to disk.  If we did we might
3055 	 * overwrite the copy of the inode in the log with all the
3056 	 * data after re-logging only part of it, and in the face of
3057 	 * a crash we wouldn't have all the data we need to recover.
3058 	 *
3059 	 * What we do is move the bits to the ili_last_fields field.
3060 	 * When logging the inode, these bits are moved back to the
3061 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3062 	 * clear ili_last_fields, since we know that the information
3063 	 * those bits represent is permanently on disk.  As long as
3064 	 * the flush completes before the inode is logged again, then
3065 	 * both ilf_fields and ili_last_fields will be cleared.
3066 	 *
3067 	 * We can play with the ilf_fields bits here, because the inode
3068 	 * lock must be held exclusively in order to set bits there
3069 	 * and the flush lock protects the ili_last_fields bits.
3070 	 * Set ili_logged so the flush done
3071 	 * routine can tell whether or not to look in the AIL.
3072 	 * Also, store the current LSN of the inode so that we can tell
3073 	 * whether the item has moved in the AIL from xfs_iflush_done().
3074 	 * In order to read the lsn we need the AIL lock, because
3075 	 * it is a 64 bit value that cannot be read atomically.
3076 	 */
3077 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3078 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3079 		iip->ili_format.ilf_fields = 0;
3080 		iip->ili_logged = 1;
3081 
3082 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3083 					&iip->ili_item.li_lsn);
3084 
3085 		/*
3086 		 * Attach the function xfs_iflush_done to the inode's
3087 		 * buffer.  This will remove the inode from the AIL
3088 		 * and unlock the inode's flush lock when the inode is
3089 		 * completely written to disk.
3090 		 */
3091 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3092 
3093 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3094 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3095 	} else {
3096 		/*
3097 		 * We're flushing an inode which is not in the AIL and has
3098 		 * not been logged but has i_update_core set.  For this
3099 		 * case we can use a B_DELWRI flush and immediately drop
3100 		 * the inode flush lock because we can avoid the whole
3101 		 * AIL state thing.  It's OK to drop the flush lock now,
3102 		 * because we've already locked the buffer and to do anything
3103 		 * you really need both.
3104 		 */
3105 		if (iip != NULL) {
3106 			ASSERT(iip->ili_logged == 0);
3107 			ASSERT(iip->ili_last_fields == 0);
3108 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3109 		}
3110 		xfs_ifunlock(ip);
3111 	}
3112 
3113 	return 0;
3114 
3115 corrupt_out:
3116 	return XFS_ERROR(EFSCORRUPTED);
3117 }
3118 
3119 /*
3120  * Return a pointer to the extent record at file index idx.
3121  */
3122 xfs_bmbt_rec_host_t *
3123 xfs_iext_get_ext(
3124 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3125 	xfs_extnum_t	idx)		/* index of target extent */
3126 {
3127 	ASSERT(idx >= 0);
3128 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3129 		return ifp->if_u1.if_ext_irec->er_extbuf;
3130 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3131 		xfs_ext_irec_t	*erp;		/* irec pointer */
3132 		int		erp_idx = 0;	/* irec index */
3133 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3134 
3135 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3136 		return &erp->er_extbuf[page_idx];
3137 	} else if (ifp->if_bytes) {
3138 		return &ifp->if_u1.if_extents[idx];
3139 	} else {
3140 		return NULL;
3141 	}
3142 }
3143 
3144 /*
3145  * Insert new item(s) into the extent records for incore inode
3146  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3147  */
3148 void
3149 xfs_iext_insert(
3150 	xfs_inode_t	*ip,		/* incore inode pointer */
3151 	xfs_extnum_t	idx,		/* starting index of new items */
3152 	xfs_extnum_t	count,		/* number of inserted items */
3153 	xfs_bmbt_irec_t	*new,		/* items to insert */
3154 	int		state)		/* type of extent conversion */
3155 {
3156 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3157 	xfs_extnum_t	i;		/* extent record index */
3158 
3159 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3160 
3161 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3162 	xfs_iext_add(ifp, idx, count);
3163 	for (i = idx; i < idx + count; i++, new++)
3164 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3165 }
3166 
3167 /*
3168  * This is called when the amount of space required for incore file
3169  * extents needs to be increased. The ext_diff parameter stores the
3170  * number of new extents being added and the idx parameter contains
3171  * the extent index where the new extents will be added. If the new
3172  * extents are being appended, then we just need to (re)allocate and
3173  * initialize the space. Otherwise, if the new extents are being
3174  * inserted into the middle of the existing entries, a bit more work
3175  * is required to make room for the new extents to be inserted. The
3176  * caller is responsible for filling in the new extent entries upon
3177  * return.
3178  */
3179 void
3180 xfs_iext_add(
3181 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3182 	xfs_extnum_t	idx,		/* index to begin adding exts */
3183 	int		ext_diff)	/* number of extents to add */
3184 {
3185 	int		byte_diff;	/* new bytes being added */
3186 	int		new_size;	/* size of extents after adding */
3187 	xfs_extnum_t	nextents;	/* number of extents in file */
3188 
3189 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3190 	ASSERT((idx >= 0) && (idx <= nextents));
3191 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3192 	new_size = ifp->if_bytes + byte_diff;
3193 	/*
3194 	 * If the new number of extents (nextents + ext_diff)
3195 	 * fits inside the inode, then continue to use the inline
3196 	 * extent buffer.
3197 	 */
3198 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3199 		if (idx < nextents) {
3200 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3201 				&ifp->if_u2.if_inline_ext[idx],
3202 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3203 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3204 		}
3205 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3206 		ifp->if_real_bytes = 0;
3207 		ifp->if_lastex = nextents + ext_diff;
3208 	}
3209 	/*
3210 	 * Otherwise use a linear (direct) extent list.
3211 	 * If the extents are currently inside the inode,
3212 	 * xfs_iext_realloc_direct will switch us from
3213 	 * inline to direct extent allocation mode.
3214 	 */
3215 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3216 		xfs_iext_realloc_direct(ifp, new_size);
3217 		if (idx < nextents) {
3218 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3219 				&ifp->if_u1.if_extents[idx],
3220 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3221 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3222 		}
3223 	}
3224 	/* Indirection array */
3225 	else {
3226 		xfs_ext_irec_t	*erp;
3227 		int		erp_idx = 0;
3228 		int		page_idx = idx;
3229 
3230 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3231 		if (ifp->if_flags & XFS_IFEXTIREC) {
3232 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3233 		} else {
3234 			xfs_iext_irec_init(ifp);
3235 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3236 			erp = ifp->if_u1.if_ext_irec;
3237 		}
3238 		/* Extents fit in target extent page */
3239 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3240 			if (page_idx < erp->er_extcount) {
3241 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3242 					&erp->er_extbuf[page_idx],
3243 					(erp->er_extcount - page_idx) *
3244 					sizeof(xfs_bmbt_rec_t));
3245 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3246 			}
3247 			erp->er_extcount += ext_diff;
3248 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3249 		}
3250 		/* Insert a new extent page */
3251 		else if (erp) {
3252 			xfs_iext_add_indirect_multi(ifp,
3253 				erp_idx, page_idx, ext_diff);
3254 		}
3255 		/*
3256 		 * If extent(s) are being appended to the last page in
3257 		 * the indirection array and the new extent(s) don't fit
3258 		 * in the page, then erp is NULL and erp_idx is set to
3259 		 * the next index needed in the indirection array.
3260 		 */
3261 		else {
3262 			int	count = ext_diff;
3263 
3264 			while (count) {
3265 				erp = xfs_iext_irec_new(ifp, erp_idx);
3266 				erp->er_extcount = count;
3267 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3268 				if (count) {
3269 					erp_idx++;
3270 				}
3271 			}
3272 		}
3273 	}
3274 	ifp->if_bytes = new_size;
3275 }
3276 
3277 /*
3278  * This is called when incore extents are being added to the indirection
3279  * array and the new extents do not fit in the target extent list. The
3280  * erp_idx parameter contains the irec index for the target extent list
3281  * in the indirection array, and the idx parameter contains the extent
3282  * index within the list. The number of extents being added is stored
3283  * in the count parameter.
3284  *
3285  *    |-------|   |-------|
3286  *    |       |   |       |    idx - number of extents before idx
3287  *    |  idx  |   | count |
3288  *    |       |   |       |    count - number of extents being inserted at idx
3289  *    |-------|   |-------|
3290  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3291  *    |-------|   |-------|
3292  */
3293 void
3294 xfs_iext_add_indirect_multi(
3295 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3296 	int		erp_idx,		/* target extent irec index */
3297 	xfs_extnum_t	idx,			/* index within target list */
3298 	int		count)			/* new extents being added */
3299 {
3300 	int		byte_diff;		/* new bytes being added */
3301 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3302 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3303 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3304 	xfs_extnum_t	nex2;			/* extents after idx + count */
3305 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3306 	int		nlists;			/* number of irec's (lists) */
3307 
3308 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3309 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3310 	nex2 = erp->er_extcount - idx;
3311 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3312 
3313 	/*
3314 	 * Save second part of target extent list
3315 	 * (all extents past */
3316 	if (nex2) {
3317 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3318 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3319 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3320 		erp->er_extcount -= nex2;
3321 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3322 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3323 	}
3324 
3325 	/*
3326 	 * Add the new extents to the end of the target
3327 	 * list, then allocate new irec record(s) and
3328 	 * extent buffer(s) as needed to store the rest
3329 	 * of the new extents.
3330 	 */
3331 	ext_cnt = count;
3332 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3333 	if (ext_diff) {
3334 		erp->er_extcount += ext_diff;
3335 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3336 		ext_cnt -= ext_diff;
3337 	}
3338 	while (ext_cnt) {
3339 		erp_idx++;
3340 		erp = xfs_iext_irec_new(ifp, erp_idx);
3341 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3342 		erp->er_extcount = ext_diff;
3343 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3344 		ext_cnt -= ext_diff;
3345 	}
3346 
3347 	/* Add nex2 extents back to indirection array */
3348 	if (nex2) {
3349 		xfs_extnum_t	ext_avail;
3350 		int		i;
3351 
3352 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3353 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3354 		i = 0;
3355 		/*
3356 		 * If nex2 extents fit in the current page, append
3357 		 * nex2_ep after the new extents.
3358 		 */
3359 		if (nex2 <= ext_avail) {
3360 			i = erp->er_extcount;
3361 		}
3362 		/*
3363 		 * Otherwise, check if space is available in the
3364 		 * next page.
3365 		 */
3366 		else if ((erp_idx < nlists - 1) &&
3367 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3368 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3369 			erp_idx++;
3370 			erp++;
3371 			/* Create a hole for nex2 extents */
3372 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3373 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3374 		}
3375 		/*
3376 		 * Final choice, create a new extent page for
3377 		 * nex2 extents.
3378 		 */
3379 		else {
3380 			erp_idx++;
3381 			erp = xfs_iext_irec_new(ifp, erp_idx);
3382 		}
3383 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3384 		kmem_free(nex2_ep);
3385 		erp->er_extcount += nex2;
3386 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3387 	}
3388 }
3389 
3390 /*
3391  * This is called when the amount of space required for incore file
3392  * extents needs to be decreased. The ext_diff parameter stores the
3393  * number of extents to be removed and the idx parameter contains
3394  * the extent index where the extents will be removed from.
3395  *
3396  * If the amount of space needed has decreased below the linear
3397  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3398  * extent array.  Otherwise, use kmem_realloc() to adjust the
3399  * size to what is needed.
3400  */
3401 void
3402 xfs_iext_remove(
3403 	xfs_inode_t	*ip,		/* incore inode pointer */
3404 	xfs_extnum_t	idx,		/* index to begin removing exts */
3405 	int		ext_diff,	/* number of extents to remove */
3406 	int		state)		/* type of extent conversion */
3407 {
3408 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3409 	xfs_extnum_t	nextents;	/* number of extents in file */
3410 	int		new_size;	/* size of extents after removal */
3411 
3412 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3413 
3414 	ASSERT(ext_diff > 0);
3415 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3416 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3417 
3418 	if (new_size == 0) {
3419 		xfs_iext_destroy(ifp);
3420 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3421 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3422 	} else if (ifp->if_real_bytes) {
3423 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3424 	} else {
3425 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3426 	}
3427 	ifp->if_bytes = new_size;
3428 }
3429 
3430 /*
3431  * This removes ext_diff extents from the inline buffer, beginning
3432  * at extent index idx.
3433  */
3434 void
3435 xfs_iext_remove_inline(
3436 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3437 	xfs_extnum_t	idx,		/* index to begin removing exts */
3438 	int		ext_diff)	/* number of extents to remove */
3439 {
3440 	int		nextents;	/* number of extents in file */
3441 
3442 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3443 	ASSERT(idx < XFS_INLINE_EXTS);
3444 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3445 	ASSERT(((nextents - ext_diff) > 0) &&
3446 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3447 
3448 	if (idx + ext_diff < nextents) {
3449 		memmove(&ifp->if_u2.if_inline_ext[idx],
3450 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3451 			(nextents - (idx + ext_diff)) *
3452 			 sizeof(xfs_bmbt_rec_t));
3453 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3454 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3455 	} else {
3456 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3457 			ext_diff * sizeof(xfs_bmbt_rec_t));
3458 	}
3459 }
3460 
3461 /*
3462  * This removes ext_diff extents from a linear (direct) extent list,
3463  * beginning at extent index idx. If the extents are being removed
3464  * from the end of the list (ie. truncate) then we just need to re-
3465  * allocate the list to remove the extra space. Otherwise, if the
3466  * extents are being removed from the middle of the existing extent
3467  * entries, then we first need to move the extent records beginning
3468  * at idx + ext_diff up in the list to overwrite the records being
3469  * removed, then remove the extra space via kmem_realloc.
3470  */
3471 void
3472 xfs_iext_remove_direct(
3473 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3474 	xfs_extnum_t	idx,		/* index to begin removing exts */
3475 	int		ext_diff)	/* number of extents to remove */
3476 {
3477 	xfs_extnum_t	nextents;	/* number of extents in file */
3478 	int		new_size;	/* size of extents after removal */
3479 
3480 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3481 	new_size = ifp->if_bytes -
3482 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3483 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3484 
3485 	if (new_size == 0) {
3486 		xfs_iext_destroy(ifp);
3487 		return;
3488 	}
3489 	/* Move extents up in the list (if needed) */
3490 	if (idx + ext_diff < nextents) {
3491 		memmove(&ifp->if_u1.if_extents[idx],
3492 			&ifp->if_u1.if_extents[idx + ext_diff],
3493 			(nextents - (idx + ext_diff)) *
3494 			 sizeof(xfs_bmbt_rec_t));
3495 	}
3496 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3497 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3498 	/*
3499 	 * Reallocate the direct extent list. If the extents
3500 	 * will fit inside the inode then xfs_iext_realloc_direct
3501 	 * will switch from direct to inline extent allocation
3502 	 * mode for us.
3503 	 */
3504 	xfs_iext_realloc_direct(ifp, new_size);
3505 	ifp->if_bytes = new_size;
3506 }
3507 
3508 /*
3509  * This is called when incore extents are being removed from the
3510  * indirection array and the extents being removed span multiple extent
3511  * buffers. The idx parameter contains the file extent index where we
3512  * want to begin removing extents, and the count parameter contains
3513  * how many extents need to be removed.
3514  *
3515  *    |-------|   |-------|
3516  *    | nex1  |   |       |    nex1 - number of extents before idx
3517  *    |-------|   | count |
3518  *    |       |   |       |    count - number of extents being removed at idx
3519  *    | count |   |-------|
3520  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3521  *    |-------|   |-------|
3522  */
3523 void
3524 xfs_iext_remove_indirect(
3525 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3526 	xfs_extnum_t	idx,		/* index to begin removing extents */
3527 	int		count)		/* number of extents to remove */
3528 {
3529 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3530 	int		erp_idx = 0;	/* indirection array index */
3531 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3532 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3533 	xfs_extnum_t	nex1;		/* number of extents before idx */
3534 	xfs_extnum_t	nex2;		/* extents after idx + count */
3535 	int		page_idx = idx;	/* index in target extent list */
3536 
3537 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3538 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3539 	ASSERT(erp != NULL);
3540 	nex1 = page_idx;
3541 	ext_cnt = count;
3542 	while (ext_cnt) {
3543 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3544 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3545 		/*
3546 		 * Check for deletion of entire list;
3547 		 * xfs_iext_irec_remove() updates extent offsets.
3548 		 */
3549 		if (ext_diff == erp->er_extcount) {
3550 			xfs_iext_irec_remove(ifp, erp_idx);
3551 			ext_cnt -= ext_diff;
3552 			nex1 = 0;
3553 			if (ext_cnt) {
3554 				ASSERT(erp_idx < ifp->if_real_bytes /
3555 					XFS_IEXT_BUFSZ);
3556 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3557 				nex1 = 0;
3558 				continue;
3559 			} else {
3560 				break;
3561 			}
3562 		}
3563 		/* Move extents up (if needed) */
3564 		if (nex2) {
3565 			memmove(&erp->er_extbuf[nex1],
3566 				&erp->er_extbuf[nex1 + ext_diff],
3567 				nex2 * sizeof(xfs_bmbt_rec_t));
3568 		}
3569 		/* Zero out rest of page */
3570 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3571 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3572 		/* Update remaining counters */
3573 		erp->er_extcount -= ext_diff;
3574 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3575 		ext_cnt -= ext_diff;
3576 		nex1 = 0;
3577 		erp_idx++;
3578 		erp++;
3579 	}
3580 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3581 	xfs_iext_irec_compact(ifp);
3582 }
3583 
3584 /*
3585  * Create, destroy, or resize a linear (direct) block of extents.
3586  */
3587 void
3588 xfs_iext_realloc_direct(
3589 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3590 	int		new_size)	/* new size of extents */
3591 {
3592 	int		rnew_size;	/* real new size of extents */
3593 
3594 	rnew_size = new_size;
3595 
3596 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3597 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3598 		 (new_size != ifp->if_real_bytes)));
3599 
3600 	/* Free extent records */
3601 	if (new_size == 0) {
3602 		xfs_iext_destroy(ifp);
3603 	}
3604 	/* Resize direct extent list and zero any new bytes */
3605 	else if (ifp->if_real_bytes) {
3606 		/* Check if extents will fit inside the inode */
3607 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3608 			xfs_iext_direct_to_inline(ifp, new_size /
3609 				(uint)sizeof(xfs_bmbt_rec_t));
3610 			ifp->if_bytes = new_size;
3611 			return;
3612 		}
3613 		if (!is_power_of_2(new_size)){
3614 			rnew_size = roundup_pow_of_two(new_size);
3615 		}
3616 		if (rnew_size != ifp->if_real_bytes) {
3617 			ifp->if_u1.if_extents =
3618 				kmem_realloc(ifp->if_u1.if_extents,
3619 						rnew_size,
3620 						ifp->if_real_bytes, KM_NOFS);
3621 		}
3622 		if (rnew_size > ifp->if_real_bytes) {
3623 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3624 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3625 				rnew_size - ifp->if_real_bytes);
3626 		}
3627 	}
3628 	/*
3629 	 * Switch from the inline extent buffer to a direct
3630 	 * extent list. Be sure to include the inline extent
3631 	 * bytes in new_size.
3632 	 */
3633 	else {
3634 		new_size += ifp->if_bytes;
3635 		if (!is_power_of_2(new_size)) {
3636 			rnew_size = roundup_pow_of_two(new_size);
3637 		}
3638 		xfs_iext_inline_to_direct(ifp, rnew_size);
3639 	}
3640 	ifp->if_real_bytes = rnew_size;
3641 	ifp->if_bytes = new_size;
3642 }
3643 
3644 /*
3645  * Switch from linear (direct) extent records to inline buffer.
3646  */
3647 void
3648 xfs_iext_direct_to_inline(
3649 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3650 	xfs_extnum_t	nextents)	/* number of extents in file */
3651 {
3652 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3653 	ASSERT(nextents <= XFS_INLINE_EXTS);
3654 	/*
3655 	 * The inline buffer was zeroed when we switched
3656 	 * from inline to direct extent allocation mode,
3657 	 * so we don't need to clear it here.
3658 	 */
3659 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3660 		nextents * sizeof(xfs_bmbt_rec_t));
3661 	kmem_free(ifp->if_u1.if_extents);
3662 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3663 	ifp->if_real_bytes = 0;
3664 }
3665 
3666 /*
3667  * Switch from inline buffer to linear (direct) extent records.
3668  * new_size should already be rounded up to the next power of 2
3669  * by the caller (when appropriate), so use new_size as it is.
3670  * However, since new_size may be rounded up, we can't update
3671  * if_bytes here. It is the caller's responsibility to update
3672  * if_bytes upon return.
3673  */
3674 void
3675 xfs_iext_inline_to_direct(
3676 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3677 	int		new_size)	/* number of extents in file */
3678 {
3679 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3680 	memset(ifp->if_u1.if_extents, 0, new_size);
3681 	if (ifp->if_bytes) {
3682 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3683 			ifp->if_bytes);
3684 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3685 			sizeof(xfs_bmbt_rec_t));
3686 	}
3687 	ifp->if_real_bytes = new_size;
3688 }
3689 
3690 /*
3691  * Resize an extent indirection array to new_size bytes.
3692  */
3693 STATIC void
3694 xfs_iext_realloc_indirect(
3695 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3696 	int		new_size)	/* new indirection array size */
3697 {
3698 	int		nlists;		/* number of irec's (ex lists) */
3699 	int		size;		/* current indirection array size */
3700 
3701 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3702 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703 	size = nlists * sizeof(xfs_ext_irec_t);
3704 	ASSERT(ifp->if_real_bytes);
3705 	ASSERT((new_size >= 0) && (new_size != size));
3706 	if (new_size == 0) {
3707 		xfs_iext_destroy(ifp);
3708 	} else {
3709 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3710 			kmem_realloc(ifp->if_u1.if_ext_irec,
3711 				new_size, size, KM_NOFS);
3712 	}
3713 }
3714 
3715 /*
3716  * Switch from indirection array to linear (direct) extent allocations.
3717  */
3718 STATIC void
3719 xfs_iext_indirect_to_direct(
3720 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3721 {
3722 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3723 	xfs_extnum_t	nextents;	/* number of extents in file */
3724 	int		size;		/* size of file extents */
3725 
3726 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3727 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3728 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3729 	size = nextents * sizeof(xfs_bmbt_rec_t);
3730 
3731 	xfs_iext_irec_compact_pages(ifp);
3732 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3733 
3734 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3735 	kmem_free(ifp->if_u1.if_ext_irec);
3736 	ifp->if_flags &= ~XFS_IFEXTIREC;
3737 	ifp->if_u1.if_extents = ep;
3738 	ifp->if_bytes = size;
3739 	if (nextents < XFS_LINEAR_EXTS) {
3740 		xfs_iext_realloc_direct(ifp, size);
3741 	}
3742 }
3743 
3744 /*
3745  * Free incore file extents.
3746  */
3747 void
3748 xfs_iext_destroy(
3749 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3750 {
3751 	if (ifp->if_flags & XFS_IFEXTIREC) {
3752 		int	erp_idx;
3753 		int	nlists;
3754 
3755 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3756 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3757 			xfs_iext_irec_remove(ifp, erp_idx);
3758 		}
3759 		ifp->if_flags &= ~XFS_IFEXTIREC;
3760 	} else if (ifp->if_real_bytes) {
3761 		kmem_free(ifp->if_u1.if_extents);
3762 	} else if (ifp->if_bytes) {
3763 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3764 			sizeof(xfs_bmbt_rec_t));
3765 	}
3766 	ifp->if_u1.if_extents = NULL;
3767 	ifp->if_real_bytes = 0;
3768 	ifp->if_bytes = 0;
3769 }
3770 
3771 /*
3772  * Return a pointer to the extent record for file system block bno.
3773  */
3774 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3775 xfs_iext_bno_to_ext(
3776 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3777 	xfs_fileoff_t	bno,		/* block number to search for */
3778 	xfs_extnum_t	*idxp)		/* index of target extent */
3779 {
3780 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3781 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3782 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3783 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3784 	int		high;		/* upper boundary in search */
3785 	xfs_extnum_t	idx = 0;	/* index of target extent */
3786 	int		low;		/* lower boundary in search */
3787 	xfs_extnum_t	nextents;	/* number of file extents */
3788 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3789 
3790 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3791 	if (nextents == 0) {
3792 		*idxp = 0;
3793 		return NULL;
3794 	}
3795 	low = 0;
3796 	if (ifp->if_flags & XFS_IFEXTIREC) {
3797 		/* Find target extent list */
3798 		int	erp_idx = 0;
3799 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3800 		base = erp->er_extbuf;
3801 		high = erp->er_extcount - 1;
3802 	} else {
3803 		base = ifp->if_u1.if_extents;
3804 		high = nextents - 1;
3805 	}
3806 	/* Binary search extent records */
3807 	while (low <= high) {
3808 		idx = (low + high) >> 1;
3809 		ep = base + idx;
3810 		startoff = xfs_bmbt_get_startoff(ep);
3811 		blockcount = xfs_bmbt_get_blockcount(ep);
3812 		if (bno < startoff) {
3813 			high = idx - 1;
3814 		} else if (bno >= startoff + blockcount) {
3815 			low = idx + 1;
3816 		} else {
3817 			/* Convert back to file-based extent index */
3818 			if (ifp->if_flags & XFS_IFEXTIREC) {
3819 				idx += erp->er_extoff;
3820 			}
3821 			*idxp = idx;
3822 			return ep;
3823 		}
3824 	}
3825 	/* Convert back to file-based extent index */
3826 	if (ifp->if_flags & XFS_IFEXTIREC) {
3827 		idx += erp->er_extoff;
3828 	}
3829 	if (bno >= startoff + blockcount) {
3830 		if (++idx == nextents) {
3831 			ep = NULL;
3832 		} else {
3833 			ep = xfs_iext_get_ext(ifp, idx);
3834 		}
3835 	}
3836 	*idxp = idx;
3837 	return ep;
3838 }
3839 
3840 /*
3841  * Return a pointer to the indirection array entry containing the
3842  * extent record for filesystem block bno. Store the index of the
3843  * target irec in *erp_idxp.
3844  */
3845 xfs_ext_irec_t *			/* pointer to found extent record */
3846 xfs_iext_bno_to_irec(
3847 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3848 	xfs_fileoff_t	bno,		/* block number to search for */
3849 	int		*erp_idxp)	/* irec index of target ext list */
3850 {
3851 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3852 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3853 	int		erp_idx;	/* indirection array index */
3854 	int		nlists;		/* number of extent irec's (lists) */
3855 	int		high;		/* binary search upper limit */
3856 	int		low;		/* binary search lower limit */
3857 
3858 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3859 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3860 	erp_idx = 0;
3861 	low = 0;
3862 	high = nlists - 1;
3863 	while (low <= high) {
3864 		erp_idx = (low + high) >> 1;
3865 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3866 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3867 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3868 			high = erp_idx - 1;
3869 		} else if (erp_next && bno >=
3870 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3871 			low = erp_idx + 1;
3872 		} else {
3873 			break;
3874 		}
3875 	}
3876 	*erp_idxp = erp_idx;
3877 	return erp;
3878 }
3879 
3880 /*
3881  * Return a pointer to the indirection array entry containing the
3882  * extent record at file extent index *idxp. Store the index of the
3883  * target irec in *erp_idxp and store the page index of the target
3884  * extent record in *idxp.
3885  */
3886 xfs_ext_irec_t *
3887 xfs_iext_idx_to_irec(
3888 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3889 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3890 	int		*erp_idxp,	/* pointer to target irec */
3891 	int		realloc)	/* new bytes were just added */
3892 {
3893 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3894 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3895 	int		erp_idx;	/* indirection array index */
3896 	int		nlists;		/* number of irec's (ex lists) */
3897 	int		high;		/* binary search upper limit */
3898 	int		low;		/* binary search lower limit */
3899 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3900 
3901 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3902 	ASSERT(page_idx >= 0 && page_idx <=
3903 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3904 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3905 	erp_idx = 0;
3906 	low = 0;
3907 	high = nlists - 1;
3908 
3909 	/* Binary search extent irec's */
3910 	while (low <= high) {
3911 		erp_idx = (low + high) >> 1;
3912 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3913 		prev = erp_idx > 0 ? erp - 1 : NULL;
3914 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3915 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3916 			high = erp_idx - 1;
3917 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3918 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3919 			    !realloc)) {
3920 			low = erp_idx + 1;
3921 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3922 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3923 			ASSERT(realloc);
3924 			page_idx = 0;
3925 			erp_idx++;
3926 			erp = erp_idx < nlists ? erp + 1 : NULL;
3927 			break;
3928 		} else {
3929 			page_idx -= erp->er_extoff;
3930 			break;
3931 		}
3932 	}
3933 	*idxp = page_idx;
3934 	*erp_idxp = erp_idx;
3935 	return(erp);
3936 }
3937 
3938 /*
3939  * Allocate and initialize an indirection array once the space needed
3940  * for incore extents increases above XFS_IEXT_BUFSZ.
3941  */
3942 void
3943 xfs_iext_irec_init(
3944 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3945 {
3946 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3947 	xfs_extnum_t	nextents;	/* number of extents in file */
3948 
3949 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3950 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3951 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3952 
3953 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3954 
3955 	if (nextents == 0) {
3956 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3957 	} else if (!ifp->if_real_bytes) {
3958 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3959 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3960 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3961 	}
3962 	erp->er_extbuf = ifp->if_u1.if_extents;
3963 	erp->er_extcount = nextents;
3964 	erp->er_extoff = 0;
3965 
3966 	ifp->if_flags |= XFS_IFEXTIREC;
3967 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3968 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3969 	ifp->if_u1.if_ext_irec = erp;
3970 
3971 	return;
3972 }
3973 
3974 /*
3975  * Allocate and initialize a new entry in the indirection array.
3976  */
3977 xfs_ext_irec_t *
3978 xfs_iext_irec_new(
3979 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3980 	int		erp_idx)	/* index for new irec */
3981 {
3982 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3983 	int		i;		/* loop counter */
3984 	int		nlists;		/* number of irec's (ex lists) */
3985 
3986 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3987 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3988 
3989 	/* Resize indirection array */
3990 	xfs_iext_realloc_indirect(ifp, ++nlists *
3991 				  sizeof(xfs_ext_irec_t));
3992 	/*
3993 	 * Move records down in the array so the
3994 	 * new page can use erp_idx.
3995 	 */
3996 	erp = ifp->if_u1.if_ext_irec;
3997 	for (i = nlists - 1; i > erp_idx; i--) {
3998 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3999 	}
4000 	ASSERT(i == erp_idx);
4001 
4002 	/* Initialize new extent record */
4003 	erp = ifp->if_u1.if_ext_irec;
4004 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4005 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4006 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4007 	erp[erp_idx].er_extcount = 0;
4008 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4009 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4010 	return (&erp[erp_idx]);
4011 }
4012 
4013 /*
4014  * Remove a record from the indirection array.
4015  */
4016 void
4017 xfs_iext_irec_remove(
4018 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4019 	int		erp_idx)	/* irec index to remove */
4020 {
4021 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4022 	int		i;		/* loop counter */
4023 	int		nlists;		/* number of irec's (ex lists) */
4024 
4025 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4026 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4027 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4028 	if (erp->er_extbuf) {
4029 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4030 			-erp->er_extcount);
4031 		kmem_free(erp->er_extbuf);
4032 	}
4033 	/* Compact extent records */
4034 	erp = ifp->if_u1.if_ext_irec;
4035 	for (i = erp_idx; i < nlists - 1; i++) {
4036 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4037 	}
4038 	/*
4039 	 * Manually free the last extent record from the indirection
4040 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4041 	 * of zero would result in a call to xfs_iext_destroy() which
4042 	 * would in turn call this function again, creating a nasty
4043 	 * infinite loop.
4044 	 */
4045 	if (--nlists) {
4046 		xfs_iext_realloc_indirect(ifp,
4047 			nlists * sizeof(xfs_ext_irec_t));
4048 	} else {
4049 		kmem_free(ifp->if_u1.if_ext_irec);
4050 	}
4051 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4052 }
4053 
4054 /*
4055  * This is called to clean up large amounts of unused memory allocated
4056  * by the indirection array.  Before compacting anything though, verify
4057  * that the indirection array is still needed and switch back to the
4058  * linear extent list (or even the inline buffer) if possible.  The
4059  * compaction policy is as follows:
4060  *
4061  *    Full Compaction: Extents fit into a single page (or inline buffer)
4062  * Partial Compaction: Extents occupy less than 50% of allocated space
4063  *      No Compaction: Extents occupy at least 50% of allocated space
4064  */
4065 void
4066 xfs_iext_irec_compact(
4067 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4068 {
4069 	xfs_extnum_t	nextents;	/* number of extents in file */
4070 	int		nlists;		/* number of irec's (ex lists) */
4071 
4072 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4073 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4074 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4075 
4076 	if (nextents == 0) {
4077 		xfs_iext_destroy(ifp);
4078 	} else if (nextents <= XFS_INLINE_EXTS) {
4079 		xfs_iext_indirect_to_direct(ifp);
4080 		xfs_iext_direct_to_inline(ifp, nextents);
4081 	} else if (nextents <= XFS_LINEAR_EXTS) {
4082 		xfs_iext_indirect_to_direct(ifp);
4083 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4084 		xfs_iext_irec_compact_pages(ifp);
4085 	}
4086 }
4087 
4088 /*
4089  * Combine extents from neighboring extent pages.
4090  */
4091 void
4092 xfs_iext_irec_compact_pages(
4093 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4094 {
4095 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4096 	int		erp_idx = 0;	/* indirection array index */
4097 	int		nlists;		/* number of irec's (ex lists) */
4098 
4099 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4100 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4101 	while (erp_idx < nlists - 1) {
4102 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4103 		erp_next = erp + 1;
4104 		if (erp_next->er_extcount <=
4105 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4106 			memcpy(&erp->er_extbuf[erp->er_extcount],
4107 				erp_next->er_extbuf, erp_next->er_extcount *
4108 				sizeof(xfs_bmbt_rec_t));
4109 			erp->er_extcount += erp_next->er_extcount;
4110 			/*
4111 			 * Free page before removing extent record
4112 			 * so er_extoffs don't get modified in
4113 			 * xfs_iext_irec_remove.
4114 			 */
4115 			kmem_free(erp_next->er_extbuf);
4116 			erp_next->er_extbuf = NULL;
4117 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4118 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4119 		} else {
4120 			erp_idx++;
4121 		}
4122 	}
4123 }
4124 
4125 /*
4126  * This is called to update the er_extoff field in the indirection
4127  * array when extents have been added or removed from one of the
4128  * extent lists. erp_idx contains the irec index to begin updating
4129  * at and ext_diff contains the number of extents that were added
4130  * or removed.
4131  */
4132 void
4133 xfs_iext_irec_update_extoffs(
4134 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4135 	int		erp_idx,	/* irec index to update */
4136 	int		ext_diff)	/* number of new extents */
4137 {
4138 	int		i;		/* loop counter */
4139 	int		nlists;		/* number of irec's (ex lists */
4140 
4141 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4142 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4143 	for (i = erp_idx; i < nlists; i++) {
4144 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4145 	}
4146 }
4147