1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_mount.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_btree.h" 40 #include "xfs_btree_trace.h" 41 #include "xfs_alloc.h" 42 #include "xfs_ialloc.h" 43 #include "xfs_bmap.h" 44 #include "xfs_error.h" 45 #include "xfs_utils.h" 46 #include "xfs_quota.h" 47 #include "xfs_filestream.h" 48 #include "xfs_vnodeops.h" 49 #include "xfs_trace.h" 50 51 kmem_zone_t *xfs_ifork_zone; 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 64 65 #ifdef DEBUG 66 /* 67 * Make sure that the extents in the given memory buffer 68 * are valid. 69 */ 70 STATIC void 71 xfs_validate_extents( 72 xfs_ifork_t *ifp, 73 int nrecs, 74 xfs_exntfmt_t fmt) 75 { 76 xfs_bmbt_irec_t irec; 77 xfs_bmbt_rec_host_t rec; 78 int i; 79 80 for (i = 0; i < nrecs; i++) { 81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 82 rec.l0 = get_unaligned(&ep->l0); 83 rec.l1 = get_unaligned(&ep->l1); 84 xfs_bmbt_get_all(&rec, &irec); 85 if (fmt == XFS_EXTFMT_NOSTATE) 86 ASSERT(irec.br_state == XFS_EXT_NORM); 87 } 88 } 89 #else /* DEBUG */ 90 #define xfs_validate_extents(ifp, nrecs, fmt) 91 #endif /* DEBUG */ 92 93 /* 94 * Check that none of the inode's in the buffer have a next 95 * unlinked field of 0. 96 */ 97 #if defined(DEBUG) 98 void 99 xfs_inobp_check( 100 xfs_mount_t *mp, 101 xfs_buf_t *bp) 102 { 103 int i; 104 int j; 105 xfs_dinode_t *dip; 106 107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 108 109 for (i = 0; i < j; i++) { 110 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 111 i * mp->m_sb.sb_inodesize); 112 if (!dip->di_next_unlinked) { 113 xfs_fs_cmn_err(CE_ALERT, mp, 114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 115 bp); 116 ASSERT(dip->di_next_unlinked); 117 } 118 } 119 } 120 #endif 121 122 /* 123 * Find the buffer associated with the given inode map 124 * We do basic validation checks on the buffer once it has been 125 * retrieved from disk. 126 */ 127 STATIC int 128 xfs_imap_to_bp( 129 xfs_mount_t *mp, 130 xfs_trans_t *tp, 131 struct xfs_imap *imap, 132 xfs_buf_t **bpp, 133 uint buf_flags, 134 uint iget_flags) 135 { 136 int error; 137 int i; 138 int ni; 139 xfs_buf_t *bp; 140 141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 142 (int)imap->im_len, buf_flags, &bp); 143 if (error) { 144 if (error != EAGAIN) { 145 cmn_err(CE_WARN, 146 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 147 "an error %d on %s. Returning error.", 148 error, mp->m_fsname); 149 } else { 150 ASSERT(buf_flags & XBF_TRYLOCK); 151 } 152 return error; 153 } 154 155 /* 156 * Validate the magic number and version of every inode in the buffer 157 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 158 */ 159 #ifdef DEBUG 160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 161 #else /* usual case */ 162 ni = 1; 163 #endif 164 165 for (i = 0; i < ni; i++) { 166 int di_ok; 167 xfs_dinode_t *dip; 168 169 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 170 (i << mp->m_sb.sb_inodelog)); 171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 172 XFS_DINODE_GOOD_VERSION(dip->di_version); 173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 174 XFS_ERRTAG_ITOBP_INOTOBP, 175 XFS_RANDOM_ITOBP_INOTOBP))) { 176 if (iget_flags & XFS_IGET_UNTRUSTED) { 177 xfs_trans_brelse(tp, bp); 178 return XFS_ERROR(EINVAL); 179 } 180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 181 XFS_ERRLEVEL_HIGH, mp, dip); 182 #ifdef DEBUG 183 cmn_err(CE_PANIC, 184 "Device %s - bad inode magic/vsn " 185 "daddr %lld #%d (magic=%x)", 186 XFS_BUFTARG_NAME(mp->m_ddev_targp), 187 (unsigned long long)imap->im_blkno, i, 188 be16_to_cpu(dip->di_magic)); 189 #endif 190 xfs_trans_brelse(tp, bp); 191 return XFS_ERROR(EFSCORRUPTED); 192 } 193 } 194 195 xfs_inobp_check(mp, bp); 196 197 /* 198 * Mark the buffer as an inode buffer now that it looks good 199 */ 200 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 201 202 *bpp = bp; 203 return 0; 204 } 205 206 /* 207 * This routine is called to map an inode number within a file 208 * system to the buffer containing the on-disk version of the 209 * inode. It returns a pointer to the buffer containing the 210 * on-disk inode in the bpp parameter, and in the dip parameter 211 * it returns a pointer to the on-disk inode within that buffer. 212 * 213 * If a non-zero error is returned, then the contents of bpp and 214 * dipp are undefined. 215 * 216 * Use xfs_imap() to determine the size and location of the 217 * buffer to read from disk. 218 */ 219 int 220 xfs_inotobp( 221 xfs_mount_t *mp, 222 xfs_trans_t *tp, 223 xfs_ino_t ino, 224 xfs_dinode_t **dipp, 225 xfs_buf_t **bpp, 226 int *offset, 227 uint imap_flags) 228 { 229 struct xfs_imap imap; 230 xfs_buf_t *bp; 231 int error; 232 233 imap.im_blkno = 0; 234 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 235 if (error) 236 return error; 237 238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags); 239 if (error) 240 return error; 241 242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 243 *bpp = bp; 244 *offset = imap.im_boffset; 245 return 0; 246 } 247 248 249 /* 250 * This routine is called to map an inode to the buffer containing 251 * the on-disk version of the inode. It returns a pointer to the 252 * buffer containing the on-disk inode in the bpp parameter, and in 253 * the dip parameter it returns a pointer to the on-disk inode within 254 * that buffer. 255 * 256 * If a non-zero error is returned, then the contents of bpp and 257 * dipp are undefined. 258 * 259 * The inode is expected to already been mapped to its buffer and read 260 * in once, thus we can use the mapping information stored in the inode 261 * rather than calling xfs_imap(). This allows us to avoid the overhead 262 * of looking at the inode btree for small block file systems 263 * (see xfs_imap()). 264 */ 265 int 266 xfs_itobp( 267 xfs_mount_t *mp, 268 xfs_trans_t *tp, 269 xfs_inode_t *ip, 270 xfs_dinode_t **dipp, 271 xfs_buf_t **bpp, 272 uint buf_flags) 273 { 274 xfs_buf_t *bp; 275 int error; 276 277 ASSERT(ip->i_imap.im_blkno != 0); 278 279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 280 if (error) 281 return error; 282 283 if (!bp) { 284 ASSERT(buf_flags & XBF_TRYLOCK); 285 ASSERT(tp == NULL); 286 *bpp = NULL; 287 return EAGAIN; 288 } 289 290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 291 *bpp = bp; 292 return 0; 293 } 294 295 /* 296 * Move inode type and inode format specific information from the 297 * on-disk inode to the in-core inode. For fifos, devs, and sockets 298 * this means set if_rdev to the proper value. For files, directories, 299 * and symlinks this means to bring in the in-line data or extent 300 * pointers. For a file in B-tree format, only the root is immediately 301 * brought in-core. The rest will be in-lined in if_extents when it 302 * is first referenced (see xfs_iread_extents()). 303 */ 304 STATIC int 305 xfs_iformat( 306 xfs_inode_t *ip, 307 xfs_dinode_t *dip) 308 { 309 xfs_attr_shortform_t *atp; 310 int size; 311 int error; 312 xfs_fsize_t di_size; 313 ip->i_df.if_ext_max = 314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 315 error = 0; 316 317 if (unlikely(be32_to_cpu(dip->di_nextents) + 318 be16_to_cpu(dip->di_anextents) > 319 be64_to_cpu(dip->di_nblocks))) { 320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 322 (unsigned long long)ip->i_ino, 323 (int)(be32_to_cpu(dip->di_nextents) + 324 be16_to_cpu(dip->di_anextents)), 325 (unsigned long long) 326 be64_to_cpu(dip->di_nblocks)); 327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 328 ip->i_mount, dip); 329 return XFS_ERROR(EFSCORRUPTED); 330 } 331 332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 334 "corrupt dinode %Lu, forkoff = 0x%x.", 335 (unsigned long long)ip->i_ino, 336 dip->di_forkoff); 337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 338 ip->i_mount, dip); 339 return XFS_ERROR(EFSCORRUPTED); 340 } 341 342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 343 !ip->i_mount->m_rtdev_targp)) { 344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 345 "corrupt dinode %Lu, has realtime flag set.", 346 ip->i_ino); 347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 348 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 349 return XFS_ERROR(EFSCORRUPTED); 350 } 351 352 switch (ip->i_d.di_mode & S_IFMT) { 353 case S_IFIFO: 354 case S_IFCHR: 355 case S_IFBLK: 356 case S_IFSOCK: 357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 359 ip->i_mount, dip); 360 return XFS_ERROR(EFSCORRUPTED); 361 } 362 ip->i_d.di_size = 0; 363 ip->i_size = 0; 364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 365 break; 366 367 case S_IFREG: 368 case S_IFLNK: 369 case S_IFDIR: 370 switch (dip->di_format) { 371 case XFS_DINODE_FMT_LOCAL: 372 /* 373 * no local regular files yet 374 */ 375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 377 "corrupt inode %Lu " 378 "(local format for regular file).", 379 (unsigned long long) ip->i_ino); 380 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 381 XFS_ERRLEVEL_LOW, 382 ip->i_mount, dip); 383 return XFS_ERROR(EFSCORRUPTED); 384 } 385 386 di_size = be64_to_cpu(dip->di_size); 387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 389 "corrupt inode %Lu " 390 "(bad size %Ld for local inode).", 391 (unsigned long long) ip->i_ino, 392 (long long) di_size); 393 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 394 XFS_ERRLEVEL_LOW, 395 ip->i_mount, dip); 396 return XFS_ERROR(EFSCORRUPTED); 397 } 398 399 size = (int)di_size; 400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 401 break; 402 case XFS_DINODE_FMT_EXTENTS: 403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 404 break; 405 case XFS_DINODE_FMT_BTREE: 406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 407 break; 408 default: 409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 410 ip->i_mount); 411 return XFS_ERROR(EFSCORRUPTED); 412 } 413 break; 414 415 default: 416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 417 return XFS_ERROR(EFSCORRUPTED); 418 } 419 if (error) { 420 return error; 421 } 422 if (!XFS_DFORK_Q(dip)) 423 return 0; 424 ASSERT(ip->i_afp == NULL); 425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 426 ip->i_afp->if_ext_max = 427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 428 switch (dip->di_aformat) { 429 case XFS_DINODE_FMT_LOCAL: 430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 431 size = be16_to_cpu(atp->hdr.totsize); 432 433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 435 "corrupt inode %Lu " 436 "(bad attr fork size %Ld).", 437 (unsigned long long) ip->i_ino, 438 (long long) size); 439 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 440 XFS_ERRLEVEL_LOW, 441 ip->i_mount, dip); 442 return XFS_ERROR(EFSCORRUPTED); 443 } 444 445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 446 break; 447 case XFS_DINODE_FMT_EXTENTS: 448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 449 break; 450 case XFS_DINODE_FMT_BTREE: 451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 452 break; 453 default: 454 error = XFS_ERROR(EFSCORRUPTED); 455 break; 456 } 457 if (error) { 458 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 459 ip->i_afp = NULL; 460 xfs_idestroy_fork(ip, XFS_DATA_FORK); 461 } 462 return error; 463 } 464 465 /* 466 * The file is in-lined in the on-disk inode. 467 * If it fits into if_inline_data, then copy 468 * it there, otherwise allocate a buffer for it 469 * and copy the data there. Either way, set 470 * if_data to point at the data. 471 * If we allocate a buffer for the data, make 472 * sure that its size is a multiple of 4 and 473 * record the real size in i_real_bytes. 474 */ 475 STATIC int 476 xfs_iformat_local( 477 xfs_inode_t *ip, 478 xfs_dinode_t *dip, 479 int whichfork, 480 int size) 481 { 482 xfs_ifork_t *ifp; 483 int real_size; 484 485 /* 486 * If the size is unreasonable, then something 487 * is wrong and we just bail out rather than crash in 488 * kmem_alloc() or memcpy() below. 489 */ 490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 492 "corrupt inode %Lu " 493 "(bad size %d for local fork, size = %d).", 494 (unsigned long long) ip->i_ino, size, 495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 497 ip->i_mount, dip); 498 return XFS_ERROR(EFSCORRUPTED); 499 } 500 ifp = XFS_IFORK_PTR(ip, whichfork); 501 real_size = 0; 502 if (size == 0) 503 ifp->if_u1.if_data = NULL; 504 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 506 else { 507 real_size = roundup(size, 4); 508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 509 } 510 ifp->if_bytes = size; 511 ifp->if_real_bytes = real_size; 512 if (size) 513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 514 ifp->if_flags &= ~XFS_IFEXTENTS; 515 ifp->if_flags |= XFS_IFINLINE; 516 return 0; 517 } 518 519 /* 520 * The file consists of a set of extents all 521 * of which fit into the on-disk inode. 522 * If there are few enough extents to fit into 523 * the if_inline_ext, then copy them there. 524 * Otherwise allocate a buffer for them and copy 525 * them into it. Either way, set if_extents 526 * to point at the extents. 527 */ 528 STATIC int 529 xfs_iformat_extents( 530 xfs_inode_t *ip, 531 xfs_dinode_t *dip, 532 int whichfork) 533 { 534 xfs_bmbt_rec_t *dp; 535 xfs_ifork_t *ifp; 536 int nex; 537 int size; 538 int i; 539 540 ifp = XFS_IFORK_PTR(ip, whichfork); 541 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 542 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 543 544 /* 545 * If the number of extents is unreasonable, then something 546 * is wrong and we just bail out rather than crash in 547 * kmem_alloc() or memcpy() below. 548 */ 549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 551 "corrupt inode %Lu ((a)extents = %d).", 552 (unsigned long long) ip->i_ino, nex); 553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 554 ip->i_mount, dip); 555 return XFS_ERROR(EFSCORRUPTED); 556 } 557 558 ifp->if_real_bytes = 0; 559 if (nex == 0) 560 ifp->if_u1.if_extents = NULL; 561 else if (nex <= XFS_INLINE_EXTS) 562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 563 else 564 xfs_iext_add(ifp, 0, nex); 565 566 ifp->if_bytes = size; 567 if (size) { 568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 570 for (i = 0; i < nex; i++, dp++) { 571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 572 ep->l0 = get_unaligned_be64(&dp->l0); 573 ep->l1 = get_unaligned_be64(&dp->l1); 574 } 575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 576 if (whichfork != XFS_DATA_FORK || 577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 578 if (unlikely(xfs_check_nostate_extents( 579 ifp, 0, nex))) { 580 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 581 XFS_ERRLEVEL_LOW, 582 ip->i_mount); 583 return XFS_ERROR(EFSCORRUPTED); 584 } 585 } 586 ifp->if_flags |= XFS_IFEXTENTS; 587 return 0; 588 } 589 590 /* 591 * The file has too many extents to fit into 592 * the inode, so they are in B-tree format. 593 * Allocate a buffer for the root of the B-tree 594 * and copy the root into it. The i_extents 595 * field will remain NULL until all of the 596 * extents are read in (when they are needed). 597 */ 598 STATIC int 599 xfs_iformat_btree( 600 xfs_inode_t *ip, 601 xfs_dinode_t *dip, 602 int whichfork) 603 { 604 xfs_bmdr_block_t *dfp; 605 xfs_ifork_t *ifp; 606 /* REFERENCED */ 607 int nrecs; 608 int size; 609 610 ifp = XFS_IFORK_PTR(ip, whichfork); 611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 612 size = XFS_BMAP_BROOT_SPACE(dfp); 613 nrecs = be16_to_cpu(dfp->bb_numrecs); 614 615 /* 616 * blow out if -- fork has less extents than can fit in 617 * fork (fork shouldn't be a btree format), root btree 618 * block has more records than can fit into the fork, 619 * or the number of extents is greater than the number of 620 * blocks. 621 */ 622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 623 || XFS_BMDR_SPACE_CALC(nrecs) > 624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 627 "corrupt inode %Lu (btree).", 628 (unsigned long long) ip->i_ino); 629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 630 ip->i_mount); 631 return XFS_ERROR(EFSCORRUPTED); 632 } 633 634 ifp->if_broot_bytes = size; 635 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 636 ASSERT(ifp->if_broot != NULL); 637 /* 638 * Copy and convert from the on-disk structure 639 * to the in-memory structure. 640 */ 641 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 643 ifp->if_broot, size); 644 ifp->if_flags &= ~XFS_IFEXTENTS; 645 ifp->if_flags |= XFS_IFBROOT; 646 647 return 0; 648 } 649 650 STATIC void 651 xfs_dinode_from_disk( 652 xfs_icdinode_t *to, 653 xfs_dinode_t *from) 654 { 655 to->di_magic = be16_to_cpu(from->di_magic); 656 to->di_mode = be16_to_cpu(from->di_mode); 657 to->di_version = from ->di_version; 658 to->di_format = from->di_format; 659 to->di_onlink = be16_to_cpu(from->di_onlink); 660 to->di_uid = be32_to_cpu(from->di_uid); 661 to->di_gid = be32_to_cpu(from->di_gid); 662 to->di_nlink = be32_to_cpu(from->di_nlink); 663 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 664 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 665 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 666 to->di_flushiter = be16_to_cpu(from->di_flushiter); 667 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 668 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 669 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 670 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 671 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 672 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 673 to->di_size = be64_to_cpu(from->di_size); 674 to->di_nblocks = be64_to_cpu(from->di_nblocks); 675 to->di_extsize = be32_to_cpu(from->di_extsize); 676 to->di_nextents = be32_to_cpu(from->di_nextents); 677 to->di_anextents = be16_to_cpu(from->di_anextents); 678 to->di_forkoff = from->di_forkoff; 679 to->di_aformat = from->di_aformat; 680 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 681 to->di_dmstate = be16_to_cpu(from->di_dmstate); 682 to->di_flags = be16_to_cpu(from->di_flags); 683 to->di_gen = be32_to_cpu(from->di_gen); 684 } 685 686 void 687 xfs_dinode_to_disk( 688 xfs_dinode_t *to, 689 xfs_icdinode_t *from) 690 { 691 to->di_magic = cpu_to_be16(from->di_magic); 692 to->di_mode = cpu_to_be16(from->di_mode); 693 to->di_version = from ->di_version; 694 to->di_format = from->di_format; 695 to->di_onlink = cpu_to_be16(from->di_onlink); 696 to->di_uid = cpu_to_be32(from->di_uid); 697 to->di_gid = cpu_to_be32(from->di_gid); 698 to->di_nlink = cpu_to_be32(from->di_nlink); 699 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 700 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 701 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 702 to->di_flushiter = cpu_to_be16(from->di_flushiter); 703 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 704 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 705 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 706 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 707 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 708 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 709 to->di_size = cpu_to_be64(from->di_size); 710 to->di_nblocks = cpu_to_be64(from->di_nblocks); 711 to->di_extsize = cpu_to_be32(from->di_extsize); 712 to->di_nextents = cpu_to_be32(from->di_nextents); 713 to->di_anextents = cpu_to_be16(from->di_anextents); 714 to->di_forkoff = from->di_forkoff; 715 to->di_aformat = from->di_aformat; 716 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 717 to->di_dmstate = cpu_to_be16(from->di_dmstate); 718 to->di_flags = cpu_to_be16(from->di_flags); 719 to->di_gen = cpu_to_be32(from->di_gen); 720 } 721 722 STATIC uint 723 _xfs_dic2xflags( 724 __uint16_t di_flags) 725 { 726 uint flags = 0; 727 728 if (di_flags & XFS_DIFLAG_ANY) { 729 if (di_flags & XFS_DIFLAG_REALTIME) 730 flags |= XFS_XFLAG_REALTIME; 731 if (di_flags & XFS_DIFLAG_PREALLOC) 732 flags |= XFS_XFLAG_PREALLOC; 733 if (di_flags & XFS_DIFLAG_IMMUTABLE) 734 flags |= XFS_XFLAG_IMMUTABLE; 735 if (di_flags & XFS_DIFLAG_APPEND) 736 flags |= XFS_XFLAG_APPEND; 737 if (di_flags & XFS_DIFLAG_SYNC) 738 flags |= XFS_XFLAG_SYNC; 739 if (di_flags & XFS_DIFLAG_NOATIME) 740 flags |= XFS_XFLAG_NOATIME; 741 if (di_flags & XFS_DIFLAG_NODUMP) 742 flags |= XFS_XFLAG_NODUMP; 743 if (di_flags & XFS_DIFLAG_RTINHERIT) 744 flags |= XFS_XFLAG_RTINHERIT; 745 if (di_flags & XFS_DIFLAG_PROJINHERIT) 746 flags |= XFS_XFLAG_PROJINHERIT; 747 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 748 flags |= XFS_XFLAG_NOSYMLINKS; 749 if (di_flags & XFS_DIFLAG_EXTSIZE) 750 flags |= XFS_XFLAG_EXTSIZE; 751 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 752 flags |= XFS_XFLAG_EXTSZINHERIT; 753 if (di_flags & XFS_DIFLAG_NODEFRAG) 754 flags |= XFS_XFLAG_NODEFRAG; 755 if (di_flags & XFS_DIFLAG_FILESTREAM) 756 flags |= XFS_XFLAG_FILESTREAM; 757 } 758 759 return flags; 760 } 761 762 uint 763 xfs_ip2xflags( 764 xfs_inode_t *ip) 765 { 766 xfs_icdinode_t *dic = &ip->i_d; 767 768 return _xfs_dic2xflags(dic->di_flags) | 769 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 770 } 771 772 uint 773 xfs_dic2xflags( 774 xfs_dinode_t *dip) 775 { 776 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 777 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 778 } 779 780 /* 781 * Read the disk inode attributes into the in-core inode structure. 782 */ 783 int 784 xfs_iread( 785 xfs_mount_t *mp, 786 xfs_trans_t *tp, 787 xfs_inode_t *ip, 788 uint iget_flags) 789 { 790 xfs_buf_t *bp; 791 xfs_dinode_t *dip; 792 int error; 793 794 /* 795 * Fill in the location information in the in-core inode. 796 */ 797 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 798 if (error) 799 return error; 800 801 /* 802 * Get pointers to the on-disk inode and the buffer containing it. 803 */ 804 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 805 XBF_LOCK, iget_flags); 806 if (error) 807 return error; 808 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 809 810 /* 811 * If we got something that isn't an inode it means someone 812 * (nfs or dmi) has a stale handle. 813 */ 814 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 815 #ifdef DEBUG 816 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 817 "dip->di_magic (0x%x) != " 818 "XFS_DINODE_MAGIC (0x%x)", 819 be16_to_cpu(dip->di_magic), 820 XFS_DINODE_MAGIC); 821 #endif /* DEBUG */ 822 error = XFS_ERROR(EINVAL); 823 goto out_brelse; 824 } 825 826 /* 827 * If the on-disk inode is already linked to a directory 828 * entry, copy all of the inode into the in-core inode. 829 * xfs_iformat() handles copying in the inode format 830 * specific information. 831 * Otherwise, just get the truly permanent information. 832 */ 833 if (dip->di_mode) { 834 xfs_dinode_from_disk(&ip->i_d, dip); 835 error = xfs_iformat(ip, dip); 836 if (error) { 837 #ifdef DEBUG 838 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 839 "xfs_iformat() returned error %d", 840 error); 841 #endif /* DEBUG */ 842 goto out_brelse; 843 } 844 } else { 845 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 846 ip->i_d.di_version = dip->di_version; 847 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 848 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 849 /* 850 * Make sure to pull in the mode here as well in 851 * case the inode is released without being used. 852 * This ensures that xfs_inactive() will see that 853 * the inode is already free and not try to mess 854 * with the uninitialized part of it. 855 */ 856 ip->i_d.di_mode = 0; 857 /* 858 * Initialize the per-fork minima and maxima for a new 859 * inode here. xfs_iformat will do it for old inodes. 860 */ 861 ip->i_df.if_ext_max = 862 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 863 } 864 865 /* 866 * The inode format changed when we moved the link count and 867 * made it 32 bits long. If this is an old format inode, 868 * convert it in memory to look like a new one. If it gets 869 * flushed to disk we will convert back before flushing or 870 * logging it. We zero out the new projid field and the old link 871 * count field. We'll handle clearing the pad field (the remains 872 * of the old uuid field) when we actually convert the inode to 873 * the new format. We don't change the version number so that we 874 * can distinguish this from a real new format inode. 875 */ 876 if (ip->i_d.di_version == 1) { 877 ip->i_d.di_nlink = ip->i_d.di_onlink; 878 ip->i_d.di_onlink = 0; 879 xfs_set_projid(ip, 0); 880 } 881 882 ip->i_delayed_blks = 0; 883 ip->i_size = ip->i_d.di_size; 884 885 /* 886 * Mark the buffer containing the inode as something to keep 887 * around for a while. This helps to keep recently accessed 888 * meta-data in-core longer. 889 */ 890 xfs_buf_set_ref(bp, XFS_INO_REF); 891 892 /* 893 * Use xfs_trans_brelse() to release the buffer containing the 894 * on-disk inode, because it was acquired with xfs_trans_read_buf() 895 * in xfs_itobp() above. If tp is NULL, this is just a normal 896 * brelse(). If we're within a transaction, then xfs_trans_brelse() 897 * will only release the buffer if it is not dirty within the 898 * transaction. It will be OK to release the buffer in this case, 899 * because inodes on disk are never destroyed and we will be 900 * locking the new in-core inode before putting it in the hash 901 * table where other processes can find it. Thus we don't have 902 * to worry about the inode being changed just because we released 903 * the buffer. 904 */ 905 out_brelse: 906 xfs_trans_brelse(tp, bp); 907 return error; 908 } 909 910 /* 911 * Read in extents from a btree-format inode. 912 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 913 */ 914 int 915 xfs_iread_extents( 916 xfs_trans_t *tp, 917 xfs_inode_t *ip, 918 int whichfork) 919 { 920 int error; 921 xfs_ifork_t *ifp; 922 xfs_extnum_t nextents; 923 924 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 925 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 926 ip->i_mount); 927 return XFS_ERROR(EFSCORRUPTED); 928 } 929 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 930 ifp = XFS_IFORK_PTR(ip, whichfork); 931 932 /* 933 * We know that the size is valid (it's checked in iformat_btree) 934 */ 935 ifp->if_lastex = NULLEXTNUM; 936 ifp->if_bytes = ifp->if_real_bytes = 0; 937 ifp->if_flags |= XFS_IFEXTENTS; 938 xfs_iext_add(ifp, 0, nextents); 939 error = xfs_bmap_read_extents(tp, ip, whichfork); 940 if (error) { 941 xfs_iext_destroy(ifp); 942 ifp->if_flags &= ~XFS_IFEXTENTS; 943 return error; 944 } 945 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 946 return 0; 947 } 948 949 /* 950 * Allocate an inode on disk and return a copy of its in-core version. 951 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 952 * appropriately within the inode. The uid and gid for the inode are 953 * set according to the contents of the given cred structure. 954 * 955 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 956 * has a free inode available, call xfs_iget() 957 * to obtain the in-core version of the allocated inode. Finally, 958 * fill in the inode and log its initial contents. In this case, 959 * ialloc_context would be set to NULL and call_again set to false. 960 * 961 * If xfs_dialloc() does not have an available inode, 962 * it will replenish its supply by doing an allocation. Since we can 963 * only do one allocation within a transaction without deadlocks, we 964 * must commit the current transaction before returning the inode itself. 965 * In this case, therefore, we will set call_again to true and return. 966 * The caller should then commit the current transaction, start a new 967 * transaction, and call xfs_ialloc() again to actually get the inode. 968 * 969 * To ensure that some other process does not grab the inode that 970 * was allocated during the first call to xfs_ialloc(), this routine 971 * also returns the [locked] bp pointing to the head of the freelist 972 * as ialloc_context. The caller should hold this buffer across 973 * the commit and pass it back into this routine on the second call. 974 * 975 * If we are allocating quota inodes, we do not have a parent inode 976 * to attach to or associate with (i.e. pip == NULL) because they 977 * are not linked into the directory structure - they are attached 978 * directly to the superblock - and so have no parent. 979 */ 980 int 981 xfs_ialloc( 982 xfs_trans_t *tp, 983 xfs_inode_t *pip, 984 mode_t mode, 985 xfs_nlink_t nlink, 986 xfs_dev_t rdev, 987 prid_t prid, 988 int okalloc, 989 xfs_buf_t **ialloc_context, 990 boolean_t *call_again, 991 xfs_inode_t **ipp) 992 { 993 xfs_ino_t ino; 994 xfs_inode_t *ip; 995 uint flags; 996 int error; 997 timespec_t tv; 998 int filestreams = 0; 999 1000 /* 1001 * Call the space management code to pick 1002 * the on-disk inode to be allocated. 1003 */ 1004 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1005 ialloc_context, call_again, &ino); 1006 if (error) 1007 return error; 1008 if (*call_again || ino == NULLFSINO) { 1009 *ipp = NULL; 1010 return 0; 1011 } 1012 ASSERT(*ialloc_context == NULL); 1013 1014 /* 1015 * Get the in-core inode with the lock held exclusively. 1016 * This is because we're setting fields here we need 1017 * to prevent others from looking at until we're done. 1018 */ 1019 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1020 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1021 if (error) 1022 return error; 1023 ASSERT(ip != NULL); 1024 1025 ip->i_d.di_mode = (__uint16_t)mode; 1026 ip->i_d.di_onlink = 0; 1027 ip->i_d.di_nlink = nlink; 1028 ASSERT(ip->i_d.di_nlink == nlink); 1029 ip->i_d.di_uid = current_fsuid(); 1030 ip->i_d.di_gid = current_fsgid(); 1031 xfs_set_projid(ip, prid); 1032 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1033 1034 /* 1035 * If the superblock version is up to where we support new format 1036 * inodes and this is currently an old format inode, then change 1037 * the inode version number now. This way we only do the conversion 1038 * here rather than here and in the flush/logging code. 1039 */ 1040 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1041 ip->i_d.di_version == 1) { 1042 ip->i_d.di_version = 2; 1043 /* 1044 * We've already zeroed the old link count, the projid field, 1045 * and the pad field. 1046 */ 1047 } 1048 1049 /* 1050 * Project ids won't be stored on disk if we are using a version 1 inode. 1051 */ 1052 if ((prid != 0) && (ip->i_d.di_version == 1)) 1053 xfs_bump_ino_vers2(tp, ip); 1054 1055 if (pip && XFS_INHERIT_GID(pip)) { 1056 ip->i_d.di_gid = pip->i_d.di_gid; 1057 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1058 ip->i_d.di_mode |= S_ISGID; 1059 } 1060 } 1061 1062 /* 1063 * If the group ID of the new file does not match the effective group 1064 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1065 * (and only if the irix_sgid_inherit compatibility variable is set). 1066 */ 1067 if ((irix_sgid_inherit) && 1068 (ip->i_d.di_mode & S_ISGID) && 1069 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1070 ip->i_d.di_mode &= ~S_ISGID; 1071 } 1072 1073 ip->i_d.di_size = 0; 1074 ip->i_size = 0; 1075 ip->i_d.di_nextents = 0; 1076 ASSERT(ip->i_d.di_nblocks == 0); 1077 1078 nanotime(&tv); 1079 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1080 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1081 ip->i_d.di_atime = ip->i_d.di_mtime; 1082 ip->i_d.di_ctime = ip->i_d.di_mtime; 1083 1084 /* 1085 * di_gen will have been taken care of in xfs_iread. 1086 */ 1087 ip->i_d.di_extsize = 0; 1088 ip->i_d.di_dmevmask = 0; 1089 ip->i_d.di_dmstate = 0; 1090 ip->i_d.di_flags = 0; 1091 flags = XFS_ILOG_CORE; 1092 switch (mode & S_IFMT) { 1093 case S_IFIFO: 1094 case S_IFCHR: 1095 case S_IFBLK: 1096 case S_IFSOCK: 1097 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1098 ip->i_df.if_u2.if_rdev = rdev; 1099 ip->i_df.if_flags = 0; 1100 flags |= XFS_ILOG_DEV; 1101 break; 1102 case S_IFREG: 1103 /* 1104 * we can't set up filestreams until after the VFS inode 1105 * is set up properly. 1106 */ 1107 if (pip && xfs_inode_is_filestream(pip)) 1108 filestreams = 1; 1109 /* fall through */ 1110 case S_IFDIR: 1111 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1112 uint di_flags = 0; 1113 1114 if ((mode & S_IFMT) == S_IFDIR) { 1115 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1116 di_flags |= XFS_DIFLAG_RTINHERIT; 1117 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1118 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1119 ip->i_d.di_extsize = pip->i_d.di_extsize; 1120 } 1121 } else if ((mode & S_IFMT) == S_IFREG) { 1122 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1123 di_flags |= XFS_DIFLAG_REALTIME; 1124 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1125 di_flags |= XFS_DIFLAG_EXTSIZE; 1126 ip->i_d.di_extsize = pip->i_d.di_extsize; 1127 } 1128 } 1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1130 xfs_inherit_noatime) 1131 di_flags |= XFS_DIFLAG_NOATIME; 1132 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1133 xfs_inherit_nodump) 1134 di_flags |= XFS_DIFLAG_NODUMP; 1135 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1136 xfs_inherit_sync) 1137 di_flags |= XFS_DIFLAG_SYNC; 1138 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1139 xfs_inherit_nosymlinks) 1140 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1141 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1142 di_flags |= XFS_DIFLAG_PROJINHERIT; 1143 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1144 xfs_inherit_nodefrag) 1145 di_flags |= XFS_DIFLAG_NODEFRAG; 1146 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1147 di_flags |= XFS_DIFLAG_FILESTREAM; 1148 ip->i_d.di_flags |= di_flags; 1149 } 1150 /* FALLTHROUGH */ 1151 case S_IFLNK: 1152 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1153 ip->i_df.if_flags = XFS_IFEXTENTS; 1154 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1155 ip->i_df.if_u1.if_extents = NULL; 1156 break; 1157 default: 1158 ASSERT(0); 1159 } 1160 /* 1161 * Attribute fork settings for new inode. 1162 */ 1163 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1164 ip->i_d.di_anextents = 0; 1165 1166 /* 1167 * Log the new values stuffed into the inode. 1168 */ 1169 xfs_trans_log_inode(tp, ip, flags); 1170 1171 /* now that we have an i_mode we can setup inode ops and unlock */ 1172 xfs_setup_inode(ip); 1173 1174 /* now we have set up the vfs inode we can associate the filestream */ 1175 if (filestreams) { 1176 error = xfs_filestream_associate(pip, ip); 1177 if (error < 0) 1178 return -error; 1179 if (!error) 1180 xfs_iflags_set(ip, XFS_IFILESTREAM); 1181 } 1182 1183 *ipp = ip; 1184 return 0; 1185 } 1186 1187 /* 1188 * Check to make sure that there are no blocks allocated to the 1189 * file beyond the size of the file. We don't check this for 1190 * files with fixed size extents or real time extents, but we 1191 * at least do it for regular files. 1192 */ 1193 #ifdef DEBUG 1194 void 1195 xfs_isize_check( 1196 xfs_mount_t *mp, 1197 xfs_inode_t *ip, 1198 xfs_fsize_t isize) 1199 { 1200 xfs_fileoff_t map_first; 1201 int nimaps; 1202 xfs_bmbt_irec_t imaps[2]; 1203 1204 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1205 return; 1206 1207 if (XFS_IS_REALTIME_INODE(ip)) 1208 return; 1209 1210 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1211 return; 1212 1213 nimaps = 2; 1214 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1215 /* 1216 * The filesystem could be shutting down, so bmapi may return 1217 * an error. 1218 */ 1219 if (xfs_bmapi(NULL, ip, map_first, 1220 (XFS_B_TO_FSB(mp, 1221 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1222 map_first), 1223 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1224 NULL)) 1225 return; 1226 ASSERT(nimaps == 1); 1227 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1228 } 1229 #endif /* DEBUG */ 1230 1231 /* 1232 * Calculate the last possible buffered byte in a file. This must 1233 * include data that was buffered beyond the EOF by the write code. 1234 * This also needs to deal with overflowing the xfs_fsize_t type 1235 * which can happen for sizes near the limit. 1236 * 1237 * We also need to take into account any blocks beyond the EOF. It 1238 * may be the case that they were buffered by a write which failed. 1239 * In that case the pages will still be in memory, but the inode size 1240 * will never have been updated. 1241 */ 1242 STATIC xfs_fsize_t 1243 xfs_file_last_byte( 1244 xfs_inode_t *ip) 1245 { 1246 xfs_mount_t *mp; 1247 xfs_fsize_t last_byte; 1248 xfs_fileoff_t last_block; 1249 xfs_fileoff_t size_last_block; 1250 int error; 1251 1252 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1253 1254 mp = ip->i_mount; 1255 /* 1256 * Only check for blocks beyond the EOF if the extents have 1257 * been read in. This eliminates the need for the inode lock, 1258 * and it also saves us from looking when it really isn't 1259 * necessary. 1260 */ 1261 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1262 xfs_ilock(ip, XFS_ILOCK_SHARED); 1263 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1264 XFS_DATA_FORK); 1265 xfs_iunlock(ip, XFS_ILOCK_SHARED); 1266 if (error) { 1267 last_block = 0; 1268 } 1269 } else { 1270 last_block = 0; 1271 } 1272 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1273 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1274 1275 last_byte = XFS_FSB_TO_B(mp, last_block); 1276 if (last_byte < 0) { 1277 return XFS_MAXIOFFSET(mp); 1278 } 1279 last_byte += (1 << mp->m_writeio_log); 1280 if (last_byte < 0) { 1281 return XFS_MAXIOFFSET(mp); 1282 } 1283 return last_byte; 1284 } 1285 1286 /* 1287 * Start the truncation of the file to new_size. The new size 1288 * must be smaller than the current size. This routine will 1289 * clear the buffer and page caches of file data in the removed 1290 * range, and xfs_itruncate_finish() will remove the underlying 1291 * disk blocks. 1292 * 1293 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1294 * must NOT have the inode lock held at all. This is because we're 1295 * calling into the buffer/page cache code and we can't hold the 1296 * inode lock when we do so. 1297 * 1298 * We need to wait for any direct I/Os in flight to complete before we 1299 * proceed with the truncate. This is needed to prevent the extents 1300 * being read or written by the direct I/Os from being removed while the 1301 * I/O is in flight as there is no other method of synchronising 1302 * direct I/O with the truncate operation. Also, because we hold 1303 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1304 * started until the truncate completes and drops the lock. Essentially, 1305 * the xfs_ioend_wait() call forms an I/O barrier that provides strict 1306 * ordering between direct I/Os and the truncate operation. 1307 * 1308 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1309 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1310 * in the case that the caller is locking things out of order and 1311 * may not be able to call xfs_itruncate_finish() with the inode lock 1312 * held without dropping the I/O lock. If the caller must drop the 1313 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1314 * must be called again with all the same restrictions as the initial 1315 * call. 1316 */ 1317 int 1318 xfs_itruncate_start( 1319 xfs_inode_t *ip, 1320 uint flags, 1321 xfs_fsize_t new_size) 1322 { 1323 xfs_fsize_t last_byte; 1324 xfs_off_t toss_start; 1325 xfs_mount_t *mp; 1326 int error = 0; 1327 1328 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1329 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1330 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1331 (flags == XFS_ITRUNC_MAYBE)); 1332 1333 mp = ip->i_mount; 1334 1335 /* wait for the completion of any pending DIOs */ 1336 if (new_size == 0 || new_size < ip->i_size) 1337 xfs_ioend_wait(ip); 1338 1339 /* 1340 * Call toss_pages or flushinval_pages to get rid of pages 1341 * overlapping the region being removed. We have to use 1342 * the less efficient flushinval_pages in the case that the 1343 * caller may not be able to finish the truncate without 1344 * dropping the inode's I/O lock. Make sure 1345 * to catch any pages brought in by buffers overlapping 1346 * the EOF by searching out beyond the isize by our 1347 * block size. We round new_size up to a block boundary 1348 * so that we don't toss things on the same block as 1349 * new_size but before it. 1350 * 1351 * Before calling toss_page or flushinval_pages, make sure to 1352 * call remapf() over the same region if the file is mapped. 1353 * This frees up mapped file references to the pages in the 1354 * given range and for the flushinval_pages case it ensures 1355 * that we get the latest mapped changes flushed out. 1356 */ 1357 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1358 toss_start = XFS_FSB_TO_B(mp, toss_start); 1359 if (toss_start < 0) { 1360 /* 1361 * The place to start tossing is beyond our maximum 1362 * file size, so there is no way that the data extended 1363 * out there. 1364 */ 1365 return 0; 1366 } 1367 last_byte = xfs_file_last_byte(ip); 1368 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte); 1369 if (last_byte > toss_start) { 1370 if (flags & XFS_ITRUNC_DEFINITE) { 1371 xfs_tosspages(ip, toss_start, 1372 -1, FI_REMAPF_LOCKED); 1373 } else { 1374 error = xfs_flushinval_pages(ip, toss_start, 1375 -1, FI_REMAPF_LOCKED); 1376 } 1377 } 1378 1379 #ifdef DEBUG 1380 if (new_size == 0) { 1381 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1382 } 1383 #endif 1384 return error; 1385 } 1386 1387 /* 1388 * Shrink the file to the given new_size. The new size must be smaller than 1389 * the current size. This will free up the underlying blocks in the removed 1390 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1391 * 1392 * The transaction passed to this routine must have made a permanent log 1393 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1394 * given transaction and start new ones, so make sure everything involved in 1395 * the transaction is tidy before calling here. Some transaction will be 1396 * returned to the caller to be committed. The incoming transaction must 1397 * already include the inode, and both inode locks must be held exclusively. 1398 * The inode must also be "held" within the transaction. On return the inode 1399 * will be "held" within the returned transaction. This routine does NOT 1400 * require any disk space to be reserved for it within the transaction. 1401 * 1402 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1403 * indicates the fork which is to be truncated. For the attribute fork we only 1404 * support truncation to size 0. 1405 * 1406 * We use the sync parameter to indicate whether or not the first transaction 1407 * we perform might have to be synchronous. For the attr fork, it needs to be 1408 * so if the unlink of the inode is not yet known to be permanent in the log. 1409 * This keeps us from freeing and reusing the blocks of the attribute fork 1410 * before the unlink of the inode becomes permanent. 1411 * 1412 * For the data fork, we normally have to run synchronously if we're being 1413 * called out of the inactive path or we're being called out of the create path 1414 * where we're truncating an existing file. Either way, the truncate needs to 1415 * be sync so blocks don't reappear in the file with altered data in case of a 1416 * crash. wsync filesystems can run the first case async because anything that 1417 * shrinks the inode has to run sync so by the time we're called here from 1418 * inactive, the inode size is permanently set to 0. 1419 * 1420 * Calls from the truncate path always need to be sync unless we're in a wsync 1421 * filesystem and the file has already been unlinked. 1422 * 1423 * The caller is responsible for correctly setting the sync parameter. It gets 1424 * too hard for us to guess here which path we're being called out of just 1425 * based on inode state. 1426 * 1427 * If we get an error, we must return with the inode locked and linked into the 1428 * current transaction. This keeps things simple for the higher level code, 1429 * because it always knows that the inode is locked and held in the transaction 1430 * that returns to it whether errors occur or not. We don't mark the inode 1431 * dirty on error so that transactions can be easily aborted if possible. 1432 */ 1433 int 1434 xfs_itruncate_finish( 1435 xfs_trans_t **tp, 1436 xfs_inode_t *ip, 1437 xfs_fsize_t new_size, 1438 int fork, 1439 int sync) 1440 { 1441 xfs_fsblock_t first_block; 1442 xfs_fileoff_t first_unmap_block; 1443 xfs_fileoff_t last_block; 1444 xfs_filblks_t unmap_len=0; 1445 xfs_mount_t *mp; 1446 xfs_trans_t *ntp; 1447 int done; 1448 int committed; 1449 xfs_bmap_free_t free_list; 1450 int error; 1451 1452 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1453 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1454 ASSERT(*tp != NULL); 1455 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1456 ASSERT(ip->i_transp == *tp); 1457 ASSERT(ip->i_itemp != NULL); 1458 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1459 1460 1461 ntp = *tp; 1462 mp = (ntp)->t_mountp; 1463 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1464 1465 /* 1466 * We only support truncating the entire attribute fork. 1467 */ 1468 if (fork == XFS_ATTR_FORK) { 1469 new_size = 0LL; 1470 } 1471 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1472 trace_xfs_itruncate_finish_start(ip, new_size); 1473 1474 /* 1475 * The first thing we do is set the size to new_size permanently 1476 * on disk. This way we don't have to worry about anyone ever 1477 * being able to look at the data being freed even in the face 1478 * of a crash. What we're getting around here is the case where 1479 * we free a block, it is allocated to another file, it is written 1480 * to, and then we crash. If the new data gets written to the 1481 * file but the log buffers containing the free and reallocation 1482 * don't, then we'd end up with garbage in the blocks being freed. 1483 * As long as we make the new_size permanent before actually 1484 * freeing any blocks it doesn't matter if they get writtten to. 1485 * 1486 * The callers must signal into us whether or not the size 1487 * setting here must be synchronous. There are a few cases 1488 * where it doesn't have to be synchronous. Those cases 1489 * occur if the file is unlinked and we know the unlink is 1490 * permanent or if the blocks being truncated are guaranteed 1491 * to be beyond the inode eof (regardless of the link count) 1492 * and the eof value is permanent. Both of these cases occur 1493 * only on wsync-mounted filesystems. In those cases, we're 1494 * guaranteed that no user will ever see the data in the blocks 1495 * that are being truncated so the truncate can run async. 1496 * In the free beyond eof case, the file may wind up with 1497 * more blocks allocated to it than it needs if we crash 1498 * and that won't get fixed until the next time the file 1499 * is re-opened and closed but that's ok as that shouldn't 1500 * be too many blocks. 1501 * 1502 * However, we can't just make all wsync xactions run async 1503 * because there's one call out of the create path that needs 1504 * to run sync where it's truncating an existing file to size 1505 * 0 whose size is > 0. 1506 * 1507 * It's probably possible to come up with a test in this 1508 * routine that would correctly distinguish all the above 1509 * cases from the values of the function parameters and the 1510 * inode state but for sanity's sake, I've decided to let the 1511 * layers above just tell us. It's simpler to correctly figure 1512 * out in the layer above exactly under what conditions we 1513 * can run async and I think it's easier for others read and 1514 * follow the logic in case something has to be changed. 1515 * cscope is your friend -- rcc. 1516 * 1517 * The attribute fork is much simpler. 1518 * 1519 * For the attribute fork we allow the caller to tell us whether 1520 * the unlink of the inode that led to this call is yet permanent 1521 * in the on disk log. If it is not and we will be freeing extents 1522 * in this inode then we make the first transaction synchronous 1523 * to make sure that the unlink is permanent by the time we free 1524 * the blocks. 1525 */ 1526 if (fork == XFS_DATA_FORK) { 1527 if (ip->i_d.di_nextents > 0) { 1528 /* 1529 * If we are not changing the file size then do 1530 * not update the on-disk file size - we may be 1531 * called from xfs_inactive_free_eofblocks(). If we 1532 * update the on-disk file size and then the system 1533 * crashes before the contents of the file are 1534 * flushed to disk then the files may be full of 1535 * holes (ie NULL files bug). 1536 */ 1537 if (ip->i_size != new_size) { 1538 ip->i_d.di_size = new_size; 1539 ip->i_size = new_size; 1540 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1541 } 1542 } 1543 } else if (sync) { 1544 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1545 if (ip->i_d.di_anextents > 0) 1546 xfs_trans_set_sync(ntp); 1547 } 1548 ASSERT(fork == XFS_DATA_FORK || 1549 (fork == XFS_ATTR_FORK && 1550 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1551 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1552 1553 /* 1554 * Since it is possible for space to become allocated beyond 1555 * the end of the file (in a crash where the space is allocated 1556 * but the inode size is not yet updated), simply remove any 1557 * blocks which show up between the new EOF and the maximum 1558 * possible file size. If the first block to be removed is 1559 * beyond the maximum file size (ie it is the same as last_block), 1560 * then there is nothing to do. 1561 */ 1562 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1563 ASSERT(first_unmap_block <= last_block); 1564 done = 0; 1565 if (last_block == first_unmap_block) { 1566 done = 1; 1567 } else { 1568 unmap_len = last_block - first_unmap_block + 1; 1569 } 1570 while (!done) { 1571 /* 1572 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1573 * will tell us whether it freed the entire range or 1574 * not. If this is a synchronous mount (wsync), 1575 * then we can tell bunmapi to keep all the 1576 * transactions asynchronous since the unlink 1577 * transaction that made this inode inactive has 1578 * already hit the disk. There's no danger of 1579 * the freed blocks being reused, there being a 1580 * crash, and the reused blocks suddenly reappearing 1581 * in this file with garbage in them once recovery 1582 * runs. 1583 */ 1584 xfs_bmap_init(&free_list, &first_block); 1585 error = xfs_bunmapi(ntp, ip, 1586 first_unmap_block, unmap_len, 1587 xfs_bmapi_aflag(fork), 1588 XFS_ITRUNC_MAX_EXTENTS, 1589 &first_block, &free_list, 1590 &done); 1591 if (error) { 1592 /* 1593 * If the bunmapi call encounters an error, 1594 * return to the caller where the transaction 1595 * can be properly aborted. We just need to 1596 * make sure we're not holding any resources 1597 * that we were not when we came in. 1598 */ 1599 xfs_bmap_cancel(&free_list); 1600 return error; 1601 } 1602 1603 /* 1604 * Duplicate the transaction that has the permanent 1605 * reservation and commit the old transaction. 1606 */ 1607 error = xfs_bmap_finish(tp, &free_list, &committed); 1608 ntp = *tp; 1609 if (committed) 1610 xfs_trans_ijoin(ntp, ip); 1611 1612 if (error) { 1613 /* 1614 * If the bmap finish call encounters an error, return 1615 * to the caller where the transaction can be properly 1616 * aborted. We just need to make sure we're not 1617 * holding any resources that we were not when we came 1618 * in. 1619 * 1620 * Aborting from this point might lose some blocks in 1621 * the file system, but oh well. 1622 */ 1623 xfs_bmap_cancel(&free_list); 1624 return error; 1625 } 1626 1627 if (committed) { 1628 /* 1629 * Mark the inode dirty so it will be logged and 1630 * moved forward in the log as part of every commit. 1631 */ 1632 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1633 } 1634 1635 ntp = xfs_trans_dup(ntp); 1636 error = xfs_trans_commit(*tp, 0); 1637 *tp = ntp; 1638 1639 xfs_trans_ijoin(ntp, ip); 1640 1641 if (error) 1642 return error; 1643 /* 1644 * transaction commit worked ok so we can drop the extra ticket 1645 * reference that we gained in xfs_trans_dup() 1646 */ 1647 xfs_log_ticket_put(ntp->t_ticket); 1648 error = xfs_trans_reserve(ntp, 0, 1649 XFS_ITRUNCATE_LOG_RES(mp), 0, 1650 XFS_TRANS_PERM_LOG_RES, 1651 XFS_ITRUNCATE_LOG_COUNT); 1652 if (error) 1653 return error; 1654 } 1655 /* 1656 * Only update the size in the case of the data fork, but 1657 * always re-log the inode so that our permanent transaction 1658 * can keep on rolling it forward in the log. 1659 */ 1660 if (fork == XFS_DATA_FORK) { 1661 xfs_isize_check(mp, ip, new_size); 1662 /* 1663 * If we are not changing the file size then do 1664 * not update the on-disk file size - we may be 1665 * called from xfs_inactive_free_eofblocks(). If we 1666 * update the on-disk file size and then the system 1667 * crashes before the contents of the file are 1668 * flushed to disk then the files may be full of 1669 * holes (ie NULL files bug). 1670 */ 1671 if (ip->i_size != new_size) { 1672 ip->i_d.di_size = new_size; 1673 ip->i_size = new_size; 1674 } 1675 } 1676 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1677 ASSERT((new_size != 0) || 1678 (fork == XFS_ATTR_FORK) || 1679 (ip->i_delayed_blks == 0)); 1680 ASSERT((new_size != 0) || 1681 (fork == XFS_ATTR_FORK) || 1682 (ip->i_d.di_nextents == 0)); 1683 trace_xfs_itruncate_finish_end(ip, new_size); 1684 return 0; 1685 } 1686 1687 /* 1688 * This is called when the inode's link count goes to 0. 1689 * We place the on-disk inode on a list in the AGI. It 1690 * will be pulled from this list when the inode is freed. 1691 */ 1692 int 1693 xfs_iunlink( 1694 xfs_trans_t *tp, 1695 xfs_inode_t *ip) 1696 { 1697 xfs_mount_t *mp; 1698 xfs_agi_t *agi; 1699 xfs_dinode_t *dip; 1700 xfs_buf_t *agibp; 1701 xfs_buf_t *ibp; 1702 xfs_agino_t agino; 1703 short bucket_index; 1704 int offset; 1705 int error; 1706 1707 ASSERT(ip->i_d.di_nlink == 0); 1708 ASSERT(ip->i_d.di_mode != 0); 1709 ASSERT(ip->i_transp == tp); 1710 1711 mp = tp->t_mountp; 1712 1713 /* 1714 * Get the agi buffer first. It ensures lock ordering 1715 * on the list. 1716 */ 1717 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1718 if (error) 1719 return error; 1720 agi = XFS_BUF_TO_AGI(agibp); 1721 1722 /* 1723 * Get the index into the agi hash table for the 1724 * list this inode will go on. 1725 */ 1726 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1727 ASSERT(agino != 0); 1728 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1729 ASSERT(agi->agi_unlinked[bucket_index]); 1730 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1731 1732 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1733 /* 1734 * There is already another inode in the bucket we need 1735 * to add ourselves to. Add us at the front of the list. 1736 * Here we put the head pointer into our next pointer, 1737 * and then we fall through to point the head at us. 1738 */ 1739 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1740 if (error) 1741 return error; 1742 1743 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1744 /* both on-disk, don't endian flip twice */ 1745 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1746 offset = ip->i_imap.im_boffset + 1747 offsetof(xfs_dinode_t, di_next_unlinked); 1748 xfs_trans_inode_buf(tp, ibp); 1749 xfs_trans_log_buf(tp, ibp, offset, 1750 (offset + sizeof(xfs_agino_t) - 1)); 1751 xfs_inobp_check(mp, ibp); 1752 } 1753 1754 /* 1755 * Point the bucket head pointer at the inode being inserted. 1756 */ 1757 ASSERT(agino != 0); 1758 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1759 offset = offsetof(xfs_agi_t, agi_unlinked) + 1760 (sizeof(xfs_agino_t) * bucket_index); 1761 xfs_trans_log_buf(tp, agibp, offset, 1762 (offset + sizeof(xfs_agino_t) - 1)); 1763 return 0; 1764 } 1765 1766 /* 1767 * Pull the on-disk inode from the AGI unlinked list. 1768 */ 1769 STATIC int 1770 xfs_iunlink_remove( 1771 xfs_trans_t *tp, 1772 xfs_inode_t *ip) 1773 { 1774 xfs_ino_t next_ino; 1775 xfs_mount_t *mp; 1776 xfs_agi_t *agi; 1777 xfs_dinode_t *dip; 1778 xfs_buf_t *agibp; 1779 xfs_buf_t *ibp; 1780 xfs_agnumber_t agno; 1781 xfs_agino_t agino; 1782 xfs_agino_t next_agino; 1783 xfs_buf_t *last_ibp; 1784 xfs_dinode_t *last_dip = NULL; 1785 short bucket_index; 1786 int offset, last_offset = 0; 1787 int error; 1788 1789 mp = tp->t_mountp; 1790 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1791 1792 /* 1793 * Get the agi buffer first. It ensures lock ordering 1794 * on the list. 1795 */ 1796 error = xfs_read_agi(mp, tp, agno, &agibp); 1797 if (error) 1798 return error; 1799 1800 agi = XFS_BUF_TO_AGI(agibp); 1801 1802 /* 1803 * Get the index into the agi hash table for the 1804 * list this inode will go on. 1805 */ 1806 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1807 ASSERT(agino != 0); 1808 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1809 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1810 ASSERT(agi->agi_unlinked[bucket_index]); 1811 1812 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1813 /* 1814 * We're at the head of the list. Get the inode's 1815 * on-disk buffer to see if there is anyone after us 1816 * on the list. Only modify our next pointer if it 1817 * is not already NULLAGINO. This saves us the overhead 1818 * of dealing with the buffer when there is no need to 1819 * change it. 1820 */ 1821 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1822 if (error) { 1823 cmn_err(CE_WARN, 1824 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1825 error, mp->m_fsname); 1826 return error; 1827 } 1828 next_agino = be32_to_cpu(dip->di_next_unlinked); 1829 ASSERT(next_agino != 0); 1830 if (next_agino != NULLAGINO) { 1831 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1832 offset = ip->i_imap.im_boffset + 1833 offsetof(xfs_dinode_t, di_next_unlinked); 1834 xfs_trans_inode_buf(tp, ibp); 1835 xfs_trans_log_buf(tp, ibp, offset, 1836 (offset + sizeof(xfs_agino_t) - 1)); 1837 xfs_inobp_check(mp, ibp); 1838 } else { 1839 xfs_trans_brelse(tp, ibp); 1840 } 1841 /* 1842 * Point the bucket head pointer at the next inode. 1843 */ 1844 ASSERT(next_agino != 0); 1845 ASSERT(next_agino != agino); 1846 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1847 offset = offsetof(xfs_agi_t, agi_unlinked) + 1848 (sizeof(xfs_agino_t) * bucket_index); 1849 xfs_trans_log_buf(tp, agibp, offset, 1850 (offset + sizeof(xfs_agino_t) - 1)); 1851 } else { 1852 /* 1853 * We need to search the list for the inode being freed. 1854 */ 1855 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1856 last_ibp = NULL; 1857 while (next_agino != agino) { 1858 /* 1859 * If the last inode wasn't the one pointing to 1860 * us, then release its buffer since we're not 1861 * going to do anything with it. 1862 */ 1863 if (last_ibp != NULL) { 1864 xfs_trans_brelse(tp, last_ibp); 1865 } 1866 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1867 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1868 &last_ibp, &last_offset, 0); 1869 if (error) { 1870 cmn_err(CE_WARN, 1871 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1872 error, mp->m_fsname); 1873 return error; 1874 } 1875 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1876 ASSERT(next_agino != NULLAGINO); 1877 ASSERT(next_agino != 0); 1878 } 1879 /* 1880 * Now last_ibp points to the buffer previous to us on 1881 * the unlinked list. Pull us from the list. 1882 */ 1883 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1884 if (error) { 1885 cmn_err(CE_WARN, 1886 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1887 error, mp->m_fsname); 1888 return error; 1889 } 1890 next_agino = be32_to_cpu(dip->di_next_unlinked); 1891 ASSERT(next_agino != 0); 1892 ASSERT(next_agino != agino); 1893 if (next_agino != NULLAGINO) { 1894 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1895 offset = ip->i_imap.im_boffset + 1896 offsetof(xfs_dinode_t, di_next_unlinked); 1897 xfs_trans_inode_buf(tp, ibp); 1898 xfs_trans_log_buf(tp, ibp, offset, 1899 (offset + sizeof(xfs_agino_t) - 1)); 1900 xfs_inobp_check(mp, ibp); 1901 } else { 1902 xfs_trans_brelse(tp, ibp); 1903 } 1904 /* 1905 * Point the previous inode on the list to the next inode. 1906 */ 1907 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1908 ASSERT(next_agino != 0); 1909 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1910 xfs_trans_inode_buf(tp, last_ibp); 1911 xfs_trans_log_buf(tp, last_ibp, offset, 1912 (offset + sizeof(xfs_agino_t) - 1)); 1913 xfs_inobp_check(mp, last_ibp); 1914 } 1915 return 0; 1916 } 1917 1918 /* 1919 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1920 * inodes that are in memory - they all must be marked stale and attached to 1921 * the cluster buffer. 1922 */ 1923 STATIC void 1924 xfs_ifree_cluster( 1925 xfs_inode_t *free_ip, 1926 xfs_trans_t *tp, 1927 xfs_ino_t inum) 1928 { 1929 xfs_mount_t *mp = free_ip->i_mount; 1930 int blks_per_cluster; 1931 int nbufs; 1932 int ninodes; 1933 int i, j; 1934 xfs_daddr_t blkno; 1935 xfs_buf_t *bp; 1936 xfs_inode_t *ip; 1937 xfs_inode_log_item_t *iip; 1938 xfs_log_item_t *lip; 1939 struct xfs_perag *pag; 1940 1941 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1942 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1943 blks_per_cluster = 1; 1944 ninodes = mp->m_sb.sb_inopblock; 1945 nbufs = XFS_IALLOC_BLOCKS(mp); 1946 } else { 1947 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1948 mp->m_sb.sb_blocksize; 1949 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1950 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1951 } 1952 1953 for (j = 0; j < nbufs; j++, inum += ninodes) { 1954 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1955 XFS_INO_TO_AGBNO(mp, inum)); 1956 1957 /* 1958 * We obtain and lock the backing buffer first in the process 1959 * here, as we have to ensure that any dirty inode that we 1960 * can't get the flush lock on is attached to the buffer. 1961 * If we scan the in-memory inodes first, then buffer IO can 1962 * complete before we get a lock on it, and hence we may fail 1963 * to mark all the active inodes on the buffer stale. 1964 */ 1965 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1966 mp->m_bsize * blks_per_cluster, 1967 XBF_LOCK); 1968 1969 /* 1970 * Walk the inodes already attached to the buffer and mark them 1971 * stale. These will all have the flush locks held, so an 1972 * in-memory inode walk can't lock them. By marking them all 1973 * stale first, we will not attempt to lock them in the loop 1974 * below as the XFS_ISTALE flag will be set. 1975 */ 1976 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 1977 while (lip) { 1978 if (lip->li_type == XFS_LI_INODE) { 1979 iip = (xfs_inode_log_item_t *)lip; 1980 ASSERT(iip->ili_logged == 1); 1981 lip->li_cb = xfs_istale_done; 1982 xfs_trans_ail_copy_lsn(mp->m_ail, 1983 &iip->ili_flush_lsn, 1984 &iip->ili_item.li_lsn); 1985 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1986 } 1987 lip = lip->li_bio_list; 1988 } 1989 1990 1991 /* 1992 * For each inode in memory attempt to add it to the inode 1993 * buffer and set it up for being staled on buffer IO 1994 * completion. This is safe as we've locked out tail pushing 1995 * and flushing by locking the buffer. 1996 * 1997 * We have already marked every inode that was part of a 1998 * transaction stale above, which means there is no point in 1999 * even trying to lock them. 2000 */ 2001 for (i = 0; i < ninodes; i++) { 2002 retry: 2003 rcu_read_lock(); 2004 ip = radix_tree_lookup(&pag->pag_ici_root, 2005 XFS_INO_TO_AGINO(mp, (inum + i))); 2006 2007 /* Inode not in memory, nothing to do */ 2008 if (!ip) { 2009 rcu_read_unlock(); 2010 continue; 2011 } 2012 2013 /* 2014 * because this is an RCU protected lookup, we could 2015 * find a recently freed or even reallocated inode 2016 * during the lookup. We need to check under the 2017 * i_flags_lock for a valid inode here. Skip it if it 2018 * is not valid, the wrong inode or stale. 2019 */ 2020 spin_lock(&ip->i_flags_lock); 2021 if (ip->i_ino != inum + i || 2022 __xfs_iflags_test(ip, XFS_ISTALE)) { 2023 spin_unlock(&ip->i_flags_lock); 2024 rcu_read_unlock(); 2025 continue; 2026 } 2027 spin_unlock(&ip->i_flags_lock); 2028 2029 /* 2030 * Don't try to lock/unlock the current inode, but we 2031 * _cannot_ skip the other inodes that we did not find 2032 * in the list attached to the buffer and are not 2033 * already marked stale. If we can't lock it, back off 2034 * and retry. 2035 */ 2036 if (ip != free_ip && 2037 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2038 rcu_read_unlock(); 2039 delay(1); 2040 goto retry; 2041 } 2042 rcu_read_unlock(); 2043 2044 xfs_iflock(ip); 2045 xfs_iflags_set(ip, XFS_ISTALE); 2046 2047 /* 2048 * we don't need to attach clean inodes or those only 2049 * with unlogged changes (which we throw away, anyway). 2050 */ 2051 iip = ip->i_itemp; 2052 if (!iip || xfs_inode_clean(ip)) { 2053 ASSERT(ip != free_ip); 2054 ip->i_update_core = 0; 2055 xfs_ifunlock(ip); 2056 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2057 continue; 2058 } 2059 2060 iip->ili_last_fields = iip->ili_format.ilf_fields; 2061 iip->ili_format.ilf_fields = 0; 2062 iip->ili_logged = 1; 2063 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2064 &iip->ili_item.li_lsn); 2065 2066 xfs_buf_attach_iodone(bp, xfs_istale_done, 2067 &iip->ili_item); 2068 2069 if (ip != free_ip) 2070 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2071 } 2072 2073 xfs_trans_stale_inode_buf(tp, bp); 2074 xfs_trans_binval(tp, bp); 2075 } 2076 2077 xfs_perag_put(pag); 2078 } 2079 2080 /* 2081 * This is called to return an inode to the inode free list. 2082 * The inode should already be truncated to 0 length and have 2083 * no pages associated with it. This routine also assumes that 2084 * the inode is already a part of the transaction. 2085 * 2086 * The on-disk copy of the inode will have been added to the list 2087 * of unlinked inodes in the AGI. We need to remove the inode from 2088 * that list atomically with respect to freeing it here. 2089 */ 2090 int 2091 xfs_ifree( 2092 xfs_trans_t *tp, 2093 xfs_inode_t *ip, 2094 xfs_bmap_free_t *flist) 2095 { 2096 int error; 2097 int delete; 2098 xfs_ino_t first_ino; 2099 xfs_dinode_t *dip; 2100 xfs_buf_t *ibp; 2101 2102 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2103 ASSERT(ip->i_transp == tp); 2104 ASSERT(ip->i_d.di_nlink == 0); 2105 ASSERT(ip->i_d.di_nextents == 0); 2106 ASSERT(ip->i_d.di_anextents == 0); 2107 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2108 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2109 ASSERT(ip->i_d.di_nblocks == 0); 2110 2111 /* 2112 * Pull the on-disk inode from the AGI unlinked list. 2113 */ 2114 error = xfs_iunlink_remove(tp, ip); 2115 if (error != 0) { 2116 return error; 2117 } 2118 2119 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2120 if (error != 0) { 2121 return error; 2122 } 2123 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2124 ip->i_d.di_flags = 0; 2125 ip->i_d.di_dmevmask = 0; 2126 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2127 ip->i_df.if_ext_max = 2128 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2129 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2130 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2131 /* 2132 * Bump the generation count so no one will be confused 2133 * by reincarnations of this inode. 2134 */ 2135 ip->i_d.di_gen++; 2136 2137 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2138 2139 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK); 2140 if (error) 2141 return error; 2142 2143 /* 2144 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2145 * from picking up this inode when it is reclaimed (its incore state 2146 * initialzed but not flushed to disk yet). The in-core di_mode is 2147 * already cleared and a corresponding transaction logged. 2148 * The hack here just synchronizes the in-core to on-disk 2149 * di_mode value in advance before the actual inode sync to disk. 2150 * This is OK because the inode is already unlinked and would never 2151 * change its di_mode again for this inode generation. 2152 * This is a temporary hack that would require a proper fix 2153 * in the future. 2154 */ 2155 dip->di_mode = 0; 2156 2157 if (delete) { 2158 xfs_ifree_cluster(ip, tp, first_ino); 2159 } 2160 2161 return 0; 2162 } 2163 2164 /* 2165 * Reallocate the space for if_broot based on the number of records 2166 * being added or deleted as indicated in rec_diff. Move the records 2167 * and pointers in if_broot to fit the new size. When shrinking this 2168 * will eliminate holes between the records and pointers created by 2169 * the caller. When growing this will create holes to be filled in 2170 * by the caller. 2171 * 2172 * The caller must not request to add more records than would fit in 2173 * the on-disk inode root. If the if_broot is currently NULL, then 2174 * if we adding records one will be allocated. The caller must also 2175 * not request that the number of records go below zero, although 2176 * it can go to zero. 2177 * 2178 * ip -- the inode whose if_broot area is changing 2179 * ext_diff -- the change in the number of records, positive or negative, 2180 * requested for the if_broot array. 2181 */ 2182 void 2183 xfs_iroot_realloc( 2184 xfs_inode_t *ip, 2185 int rec_diff, 2186 int whichfork) 2187 { 2188 struct xfs_mount *mp = ip->i_mount; 2189 int cur_max; 2190 xfs_ifork_t *ifp; 2191 struct xfs_btree_block *new_broot; 2192 int new_max; 2193 size_t new_size; 2194 char *np; 2195 char *op; 2196 2197 /* 2198 * Handle the degenerate case quietly. 2199 */ 2200 if (rec_diff == 0) { 2201 return; 2202 } 2203 2204 ifp = XFS_IFORK_PTR(ip, whichfork); 2205 if (rec_diff > 0) { 2206 /* 2207 * If there wasn't any memory allocated before, just 2208 * allocate it now and get out. 2209 */ 2210 if (ifp->if_broot_bytes == 0) { 2211 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2212 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2213 ifp->if_broot_bytes = (int)new_size; 2214 return; 2215 } 2216 2217 /* 2218 * If there is already an existing if_broot, then we need 2219 * to realloc() it and shift the pointers to their new 2220 * location. The records don't change location because 2221 * they are kept butted up against the btree block header. 2222 */ 2223 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2224 new_max = cur_max + rec_diff; 2225 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2226 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2227 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2228 KM_SLEEP | KM_NOFS); 2229 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2230 ifp->if_broot_bytes); 2231 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2232 (int)new_size); 2233 ifp->if_broot_bytes = (int)new_size; 2234 ASSERT(ifp->if_broot_bytes <= 2235 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2236 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2237 return; 2238 } 2239 2240 /* 2241 * rec_diff is less than 0. In this case, we are shrinking the 2242 * if_broot buffer. It must already exist. If we go to zero 2243 * records, just get rid of the root and clear the status bit. 2244 */ 2245 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2246 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2247 new_max = cur_max + rec_diff; 2248 ASSERT(new_max >= 0); 2249 if (new_max > 0) 2250 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2251 else 2252 new_size = 0; 2253 if (new_size > 0) { 2254 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2255 /* 2256 * First copy over the btree block header. 2257 */ 2258 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2259 } else { 2260 new_broot = NULL; 2261 ifp->if_flags &= ~XFS_IFBROOT; 2262 } 2263 2264 /* 2265 * Only copy the records and pointers if there are any. 2266 */ 2267 if (new_max > 0) { 2268 /* 2269 * First copy the records. 2270 */ 2271 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2272 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2273 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2274 2275 /* 2276 * Then copy the pointers. 2277 */ 2278 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2279 ifp->if_broot_bytes); 2280 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2281 (int)new_size); 2282 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2283 } 2284 kmem_free(ifp->if_broot); 2285 ifp->if_broot = new_broot; 2286 ifp->if_broot_bytes = (int)new_size; 2287 ASSERT(ifp->if_broot_bytes <= 2288 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2289 return; 2290 } 2291 2292 2293 /* 2294 * This is called when the amount of space needed for if_data 2295 * is increased or decreased. The change in size is indicated by 2296 * the number of bytes that need to be added or deleted in the 2297 * byte_diff parameter. 2298 * 2299 * If the amount of space needed has decreased below the size of the 2300 * inline buffer, then switch to using the inline buffer. Otherwise, 2301 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2302 * to what is needed. 2303 * 2304 * ip -- the inode whose if_data area is changing 2305 * byte_diff -- the change in the number of bytes, positive or negative, 2306 * requested for the if_data array. 2307 */ 2308 void 2309 xfs_idata_realloc( 2310 xfs_inode_t *ip, 2311 int byte_diff, 2312 int whichfork) 2313 { 2314 xfs_ifork_t *ifp; 2315 int new_size; 2316 int real_size; 2317 2318 if (byte_diff == 0) { 2319 return; 2320 } 2321 2322 ifp = XFS_IFORK_PTR(ip, whichfork); 2323 new_size = (int)ifp->if_bytes + byte_diff; 2324 ASSERT(new_size >= 0); 2325 2326 if (new_size == 0) { 2327 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2328 kmem_free(ifp->if_u1.if_data); 2329 } 2330 ifp->if_u1.if_data = NULL; 2331 real_size = 0; 2332 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2333 /* 2334 * If the valid extents/data can fit in if_inline_ext/data, 2335 * copy them from the malloc'd vector and free it. 2336 */ 2337 if (ifp->if_u1.if_data == NULL) { 2338 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2339 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2340 ASSERT(ifp->if_real_bytes != 0); 2341 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2342 new_size); 2343 kmem_free(ifp->if_u1.if_data); 2344 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2345 } 2346 real_size = 0; 2347 } else { 2348 /* 2349 * Stuck with malloc/realloc. 2350 * For inline data, the underlying buffer must be 2351 * a multiple of 4 bytes in size so that it can be 2352 * logged and stay on word boundaries. We enforce 2353 * that here. 2354 */ 2355 real_size = roundup(new_size, 4); 2356 if (ifp->if_u1.if_data == NULL) { 2357 ASSERT(ifp->if_real_bytes == 0); 2358 ifp->if_u1.if_data = kmem_alloc(real_size, 2359 KM_SLEEP | KM_NOFS); 2360 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2361 /* 2362 * Only do the realloc if the underlying size 2363 * is really changing. 2364 */ 2365 if (ifp->if_real_bytes != real_size) { 2366 ifp->if_u1.if_data = 2367 kmem_realloc(ifp->if_u1.if_data, 2368 real_size, 2369 ifp->if_real_bytes, 2370 KM_SLEEP | KM_NOFS); 2371 } 2372 } else { 2373 ASSERT(ifp->if_real_bytes == 0); 2374 ifp->if_u1.if_data = kmem_alloc(real_size, 2375 KM_SLEEP | KM_NOFS); 2376 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2377 ifp->if_bytes); 2378 } 2379 } 2380 ifp->if_real_bytes = real_size; 2381 ifp->if_bytes = new_size; 2382 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2383 } 2384 2385 void 2386 xfs_idestroy_fork( 2387 xfs_inode_t *ip, 2388 int whichfork) 2389 { 2390 xfs_ifork_t *ifp; 2391 2392 ifp = XFS_IFORK_PTR(ip, whichfork); 2393 if (ifp->if_broot != NULL) { 2394 kmem_free(ifp->if_broot); 2395 ifp->if_broot = NULL; 2396 } 2397 2398 /* 2399 * If the format is local, then we can't have an extents 2400 * array so just look for an inline data array. If we're 2401 * not local then we may or may not have an extents list, 2402 * so check and free it up if we do. 2403 */ 2404 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2405 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2406 (ifp->if_u1.if_data != NULL)) { 2407 ASSERT(ifp->if_real_bytes != 0); 2408 kmem_free(ifp->if_u1.if_data); 2409 ifp->if_u1.if_data = NULL; 2410 ifp->if_real_bytes = 0; 2411 } 2412 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2413 ((ifp->if_flags & XFS_IFEXTIREC) || 2414 ((ifp->if_u1.if_extents != NULL) && 2415 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2416 ASSERT(ifp->if_real_bytes != 0); 2417 xfs_iext_destroy(ifp); 2418 } 2419 ASSERT(ifp->if_u1.if_extents == NULL || 2420 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2421 ASSERT(ifp->if_real_bytes == 0); 2422 if (whichfork == XFS_ATTR_FORK) { 2423 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2424 ip->i_afp = NULL; 2425 } 2426 } 2427 2428 /* 2429 * This is called to unpin an inode. The caller must have the inode locked 2430 * in at least shared mode so that the buffer cannot be subsequently pinned 2431 * once someone is waiting for it to be unpinned. 2432 */ 2433 static void 2434 xfs_iunpin_nowait( 2435 struct xfs_inode *ip) 2436 { 2437 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2438 2439 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2440 2441 /* Give the log a push to start the unpinning I/O */ 2442 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2443 2444 } 2445 2446 void 2447 xfs_iunpin_wait( 2448 struct xfs_inode *ip) 2449 { 2450 if (xfs_ipincount(ip)) { 2451 xfs_iunpin_nowait(ip); 2452 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0)); 2453 } 2454 } 2455 2456 /* 2457 * xfs_iextents_copy() 2458 * 2459 * This is called to copy the REAL extents (as opposed to the delayed 2460 * allocation extents) from the inode into the given buffer. It 2461 * returns the number of bytes copied into the buffer. 2462 * 2463 * If there are no delayed allocation extents, then we can just 2464 * memcpy() the extents into the buffer. Otherwise, we need to 2465 * examine each extent in turn and skip those which are delayed. 2466 */ 2467 int 2468 xfs_iextents_copy( 2469 xfs_inode_t *ip, 2470 xfs_bmbt_rec_t *dp, 2471 int whichfork) 2472 { 2473 int copied; 2474 int i; 2475 xfs_ifork_t *ifp; 2476 int nrecs; 2477 xfs_fsblock_t start_block; 2478 2479 ifp = XFS_IFORK_PTR(ip, whichfork); 2480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2481 ASSERT(ifp->if_bytes > 0); 2482 2483 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2484 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2485 ASSERT(nrecs > 0); 2486 2487 /* 2488 * There are some delayed allocation extents in the 2489 * inode, so copy the extents one at a time and skip 2490 * the delayed ones. There must be at least one 2491 * non-delayed extent. 2492 */ 2493 copied = 0; 2494 for (i = 0; i < nrecs; i++) { 2495 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2496 start_block = xfs_bmbt_get_startblock(ep); 2497 if (isnullstartblock(start_block)) { 2498 /* 2499 * It's a delayed allocation extent, so skip it. 2500 */ 2501 continue; 2502 } 2503 2504 /* Translate to on disk format */ 2505 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2506 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2507 dp++; 2508 copied++; 2509 } 2510 ASSERT(copied != 0); 2511 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2512 2513 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2514 } 2515 2516 /* 2517 * Each of the following cases stores data into the same region 2518 * of the on-disk inode, so only one of them can be valid at 2519 * any given time. While it is possible to have conflicting formats 2520 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2521 * in EXTENTS format, this can only happen when the fork has 2522 * changed formats after being modified but before being flushed. 2523 * In these cases, the format always takes precedence, because the 2524 * format indicates the current state of the fork. 2525 */ 2526 /*ARGSUSED*/ 2527 STATIC void 2528 xfs_iflush_fork( 2529 xfs_inode_t *ip, 2530 xfs_dinode_t *dip, 2531 xfs_inode_log_item_t *iip, 2532 int whichfork, 2533 xfs_buf_t *bp) 2534 { 2535 char *cp; 2536 xfs_ifork_t *ifp; 2537 xfs_mount_t *mp; 2538 #ifdef XFS_TRANS_DEBUG 2539 int first; 2540 #endif 2541 static const short brootflag[2] = 2542 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2543 static const short dataflag[2] = 2544 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2545 static const short extflag[2] = 2546 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2547 2548 if (!iip) 2549 return; 2550 ifp = XFS_IFORK_PTR(ip, whichfork); 2551 /* 2552 * This can happen if we gave up in iformat in an error path, 2553 * for the attribute fork. 2554 */ 2555 if (!ifp) { 2556 ASSERT(whichfork == XFS_ATTR_FORK); 2557 return; 2558 } 2559 cp = XFS_DFORK_PTR(dip, whichfork); 2560 mp = ip->i_mount; 2561 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2562 case XFS_DINODE_FMT_LOCAL: 2563 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2564 (ifp->if_bytes > 0)) { 2565 ASSERT(ifp->if_u1.if_data != NULL); 2566 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2567 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2568 } 2569 break; 2570 2571 case XFS_DINODE_FMT_EXTENTS: 2572 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2573 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2574 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2575 (ifp->if_bytes == 0)); 2576 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2577 (ifp->if_bytes > 0)); 2578 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2579 (ifp->if_bytes > 0)) { 2580 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2581 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2582 whichfork); 2583 } 2584 break; 2585 2586 case XFS_DINODE_FMT_BTREE: 2587 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2588 (ifp->if_broot_bytes > 0)) { 2589 ASSERT(ifp->if_broot != NULL); 2590 ASSERT(ifp->if_broot_bytes <= 2591 (XFS_IFORK_SIZE(ip, whichfork) + 2592 XFS_BROOT_SIZE_ADJ)); 2593 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2594 (xfs_bmdr_block_t *)cp, 2595 XFS_DFORK_SIZE(dip, mp, whichfork)); 2596 } 2597 break; 2598 2599 case XFS_DINODE_FMT_DEV: 2600 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2601 ASSERT(whichfork == XFS_DATA_FORK); 2602 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2603 } 2604 break; 2605 2606 case XFS_DINODE_FMT_UUID: 2607 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2608 ASSERT(whichfork == XFS_DATA_FORK); 2609 memcpy(XFS_DFORK_DPTR(dip), 2610 &ip->i_df.if_u2.if_uuid, 2611 sizeof(uuid_t)); 2612 } 2613 break; 2614 2615 default: 2616 ASSERT(0); 2617 break; 2618 } 2619 } 2620 2621 STATIC int 2622 xfs_iflush_cluster( 2623 xfs_inode_t *ip, 2624 xfs_buf_t *bp) 2625 { 2626 xfs_mount_t *mp = ip->i_mount; 2627 struct xfs_perag *pag; 2628 unsigned long first_index, mask; 2629 unsigned long inodes_per_cluster; 2630 int ilist_size; 2631 xfs_inode_t **ilist; 2632 xfs_inode_t *iq; 2633 int nr_found; 2634 int clcount = 0; 2635 int bufwasdelwri; 2636 int i; 2637 2638 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2639 2640 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2641 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2642 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2643 if (!ilist) 2644 goto out_put; 2645 2646 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2647 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2648 rcu_read_lock(); 2649 /* really need a gang lookup range call here */ 2650 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2651 first_index, inodes_per_cluster); 2652 if (nr_found == 0) 2653 goto out_free; 2654 2655 for (i = 0; i < nr_found; i++) { 2656 iq = ilist[i]; 2657 if (iq == ip) 2658 continue; 2659 2660 /* 2661 * because this is an RCU protected lookup, we could find a 2662 * recently freed or even reallocated inode during the lookup. 2663 * We need to check under the i_flags_lock for a valid inode 2664 * here. Skip it if it is not valid or the wrong inode. 2665 */ 2666 spin_lock(&ip->i_flags_lock); 2667 if (!ip->i_ino || 2668 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2669 spin_unlock(&ip->i_flags_lock); 2670 continue; 2671 } 2672 spin_unlock(&ip->i_flags_lock); 2673 2674 /* 2675 * Do an un-protected check to see if the inode is dirty and 2676 * is a candidate for flushing. These checks will be repeated 2677 * later after the appropriate locks are acquired. 2678 */ 2679 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2680 continue; 2681 2682 /* 2683 * Try to get locks. If any are unavailable or it is pinned, 2684 * then this inode cannot be flushed and is skipped. 2685 */ 2686 2687 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2688 continue; 2689 if (!xfs_iflock_nowait(iq)) { 2690 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2691 continue; 2692 } 2693 if (xfs_ipincount(iq)) { 2694 xfs_ifunlock(iq); 2695 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2696 continue; 2697 } 2698 2699 /* 2700 * arriving here means that this inode can be flushed. First 2701 * re-check that it's dirty before flushing. 2702 */ 2703 if (!xfs_inode_clean(iq)) { 2704 int error; 2705 error = xfs_iflush_int(iq, bp); 2706 if (error) { 2707 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2708 goto cluster_corrupt_out; 2709 } 2710 clcount++; 2711 } else { 2712 xfs_ifunlock(iq); 2713 } 2714 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2715 } 2716 2717 if (clcount) { 2718 XFS_STATS_INC(xs_icluster_flushcnt); 2719 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2720 } 2721 2722 out_free: 2723 rcu_read_unlock(); 2724 kmem_free(ilist); 2725 out_put: 2726 xfs_perag_put(pag); 2727 return 0; 2728 2729 2730 cluster_corrupt_out: 2731 /* 2732 * Corruption detected in the clustering loop. Invalidate the 2733 * inode buffer and shut down the filesystem. 2734 */ 2735 rcu_read_unlock(); 2736 /* 2737 * Clean up the buffer. If it was B_DELWRI, just release it -- 2738 * brelse can handle it with no problems. If not, shut down the 2739 * filesystem before releasing the buffer. 2740 */ 2741 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2742 if (bufwasdelwri) 2743 xfs_buf_relse(bp); 2744 2745 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2746 2747 if (!bufwasdelwri) { 2748 /* 2749 * Just like incore_relse: if we have b_iodone functions, 2750 * mark the buffer as an error and call them. Otherwise 2751 * mark it as stale and brelse. 2752 */ 2753 if (XFS_BUF_IODONE_FUNC(bp)) { 2754 XFS_BUF_UNDONE(bp); 2755 XFS_BUF_STALE(bp); 2756 XFS_BUF_ERROR(bp,EIO); 2757 xfs_buf_ioend(bp, 0); 2758 } else { 2759 XFS_BUF_STALE(bp); 2760 xfs_buf_relse(bp); 2761 } 2762 } 2763 2764 /* 2765 * Unlocks the flush lock 2766 */ 2767 xfs_iflush_abort(iq); 2768 kmem_free(ilist); 2769 xfs_perag_put(pag); 2770 return XFS_ERROR(EFSCORRUPTED); 2771 } 2772 2773 /* 2774 * xfs_iflush() will write a modified inode's changes out to the 2775 * inode's on disk home. The caller must have the inode lock held 2776 * in at least shared mode and the inode flush completion must be 2777 * active as well. The inode lock will still be held upon return from 2778 * the call and the caller is free to unlock it. 2779 * The inode flush will be completed when the inode reaches the disk. 2780 * The flags indicate how the inode's buffer should be written out. 2781 */ 2782 int 2783 xfs_iflush( 2784 xfs_inode_t *ip, 2785 uint flags) 2786 { 2787 xfs_inode_log_item_t *iip; 2788 xfs_buf_t *bp; 2789 xfs_dinode_t *dip; 2790 xfs_mount_t *mp; 2791 int error; 2792 2793 XFS_STATS_INC(xs_iflush_count); 2794 2795 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2796 ASSERT(!completion_done(&ip->i_flush)); 2797 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2798 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2799 2800 iip = ip->i_itemp; 2801 mp = ip->i_mount; 2802 2803 /* 2804 * We can't flush the inode until it is unpinned, so wait for it if we 2805 * are allowed to block. We know noone new can pin it, because we are 2806 * holding the inode lock shared and you need to hold it exclusively to 2807 * pin the inode. 2808 * 2809 * If we are not allowed to block, force the log out asynchronously so 2810 * that when we come back the inode will be unpinned. If other inodes 2811 * in the same cluster are dirty, they will probably write the inode 2812 * out for us if they occur after the log force completes. 2813 */ 2814 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) { 2815 xfs_iunpin_nowait(ip); 2816 xfs_ifunlock(ip); 2817 return EAGAIN; 2818 } 2819 xfs_iunpin_wait(ip); 2820 2821 /* 2822 * For stale inodes we cannot rely on the backing buffer remaining 2823 * stale in cache for the remaining life of the stale inode and so 2824 * xfs_itobp() below may give us a buffer that no longer contains 2825 * inodes below. We have to check this after ensuring the inode is 2826 * unpinned so that it is safe to reclaim the stale inode after the 2827 * flush call. 2828 */ 2829 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2830 xfs_ifunlock(ip); 2831 return 0; 2832 } 2833 2834 /* 2835 * This may have been unpinned because the filesystem is shutting 2836 * down forcibly. If that's the case we must not write this inode 2837 * to disk, because the log record didn't make it to disk! 2838 */ 2839 if (XFS_FORCED_SHUTDOWN(mp)) { 2840 ip->i_update_core = 0; 2841 if (iip) 2842 iip->ili_format.ilf_fields = 0; 2843 xfs_ifunlock(ip); 2844 return XFS_ERROR(EIO); 2845 } 2846 2847 /* 2848 * Get the buffer containing the on-disk inode. 2849 */ 2850 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2851 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK); 2852 if (error || !bp) { 2853 xfs_ifunlock(ip); 2854 return error; 2855 } 2856 2857 /* 2858 * First flush out the inode that xfs_iflush was called with. 2859 */ 2860 error = xfs_iflush_int(ip, bp); 2861 if (error) 2862 goto corrupt_out; 2863 2864 /* 2865 * If the buffer is pinned then push on the log now so we won't 2866 * get stuck waiting in the write for too long. 2867 */ 2868 if (XFS_BUF_ISPINNED(bp)) 2869 xfs_log_force(mp, 0); 2870 2871 /* 2872 * inode clustering: 2873 * see if other inodes can be gathered into this write 2874 */ 2875 error = xfs_iflush_cluster(ip, bp); 2876 if (error) 2877 goto cluster_corrupt_out; 2878 2879 if (flags & SYNC_WAIT) 2880 error = xfs_bwrite(mp, bp); 2881 else 2882 xfs_bdwrite(mp, bp); 2883 return error; 2884 2885 corrupt_out: 2886 xfs_buf_relse(bp); 2887 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2888 cluster_corrupt_out: 2889 /* 2890 * Unlocks the flush lock 2891 */ 2892 xfs_iflush_abort(ip); 2893 return XFS_ERROR(EFSCORRUPTED); 2894 } 2895 2896 2897 STATIC int 2898 xfs_iflush_int( 2899 xfs_inode_t *ip, 2900 xfs_buf_t *bp) 2901 { 2902 xfs_inode_log_item_t *iip; 2903 xfs_dinode_t *dip; 2904 xfs_mount_t *mp; 2905 #ifdef XFS_TRANS_DEBUG 2906 int first; 2907 #endif 2908 2909 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2910 ASSERT(!completion_done(&ip->i_flush)); 2911 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2912 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2913 2914 iip = ip->i_itemp; 2915 mp = ip->i_mount; 2916 2917 /* set *dip = inode's place in the buffer */ 2918 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2919 2920 /* 2921 * Clear i_update_core before copying out the data. 2922 * This is for coordination with our timestamp updates 2923 * that don't hold the inode lock. They will always 2924 * update the timestamps BEFORE setting i_update_core, 2925 * so if we clear i_update_core after they set it we 2926 * are guaranteed to see their updates to the timestamps. 2927 * I believe that this depends on strongly ordered memory 2928 * semantics, but we have that. We use the SYNCHRONIZE 2929 * macro to make sure that the compiler does not reorder 2930 * the i_update_core access below the data copy below. 2931 */ 2932 ip->i_update_core = 0; 2933 SYNCHRONIZE(); 2934 2935 /* 2936 * Make sure to get the latest timestamps from the Linux inode. 2937 */ 2938 xfs_synchronize_times(ip); 2939 2940 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 2941 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2942 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2943 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2944 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2945 goto corrupt_out; 2946 } 2947 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2948 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2949 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2950 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2951 ip->i_ino, ip, ip->i_d.di_magic); 2952 goto corrupt_out; 2953 } 2954 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 2955 if (XFS_TEST_ERROR( 2956 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2957 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2958 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2959 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2960 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 2961 ip->i_ino, ip); 2962 goto corrupt_out; 2963 } 2964 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 2965 if (XFS_TEST_ERROR( 2966 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2967 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2968 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2969 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2970 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2971 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 2972 ip->i_ino, ip); 2973 goto corrupt_out; 2974 } 2975 } 2976 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2977 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2978 XFS_RANDOM_IFLUSH_5)) { 2979 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2980 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 2981 ip->i_ino, 2982 ip->i_d.di_nextents + ip->i_d.di_anextents, 2983 ip->i_d.di_nblocks, 2984 ip); 2985 goto corrupt_out; 2986 } 2987 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2988 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2989 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2990 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2991 ip->i_ino, ip->i_d.di_forkoff, ip); 2992 goto corrupt_out; 2993 } 2994 /* 2995 * bump the flush iteration count, used to detect flushes which 2996 * postdate a log record during recovery. 2997 */ 2998 2999 ip->i_d.di_flushiter++; 3000 3001 /* 3002 * Copy the dirty parts of the inode into the on-disk 3003 * inode. We always copy out the core of the inode, 3004 * because if the inode is dirty at all the core must 3005 * be. 3006 */ 3007 xfs_dinode_to_disk(dip, &ip->i_d); 3008 3009 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3010 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3011 ip->i_d.di_flushiter = 0; 3012 3013 /* 3014 * If this is really an old format inode and the superblock version 3015 * has not been updated to support only new format inodes, then 3016 * convert back to the old inode format. If the superblock version 3017 * has been updated, then make the conversion permanent. 3018 */ 3019 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3020 if (ip->i_d.di_version == 1) { 3021 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3022 /* 3023 * Convert it back. 3024 */ 3025 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3026 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3027 } else { 3028 /* 3029 * The superblock version has already been bumped, 3030 * so just make the conversion to the new inode 3031 * format permanent. 3032 */ 3033 ip->i_d.di_version = 2; 3034 dip->di_version = 2; 3035 ip->i_d.di_onlink = 0; 3036 dip->di_onlink = 0; 3037 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3038 memset(&(dip->di_pad[0]), 0, 3039 sizeof(dip->di_pad)); 3040 ASSERT(xfs_get_projid(ip) == 0); 3041 } 3042 } 3043 3044 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3045 if (XFS_IFORK_Q(ip)) 3046 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3047 xfs_inobp_check(mp, bp); 3048 3049 /* 3050 * We've recorded everything logged in the inode, so we'd 3051 * like to clear the ilf_fields bits so we don't log and 3052 * flush things unnecessarily. However, we can't stop 3053 * logging all this information until the data we've copied 3054 * into the disk buffer is written to disk. If we did we might 3055 * overwrite the copy of the inode in the log with all the 3056 * data after re-logging only part of it, and in the face of 3057 * a crash we wouldn't have all the data we need to recover. 3058 * 3059 * What we do is move the bits to the ili_last_fields field. 3060 * When logging the inode, these bits are moved back to the 3061 * ilf_fields field. In the xfs_iflush_done() routine we 3062 * clear ili_last_fields, since we know that the information 3063 * those bits represent is permanently on disk. As long as 3064 * the flush completes before the inode is logged again, then 3065 * both ilf_fields and ili_last_fields will be cleared. 3066 * 3067 * We can play with the ilf_fields bits here, because the inode 3068 * lock must be held exclusively in order to set bits there 3069 * and the flush lock protects the ili_last_fields bits. 3070 * Set ili_logged so the flush done 3071 * routine can tell whether or not to look in the AIL. 3072 * Also, store the current LSN of the inode so that we can tell 3073 * whether the item has moved in the AIL from xfs_iflush_done(). 3074 * In order to read the lsn we need the AIL lock, because 3075 * it is a 64 bit value that cannot be read atomically. 3076 */ 3077 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3078 iip->ili_last_fields = iip->ili_format.ilf_fields; 3079 iip->ili_format.ilf_fields = 0; 3080 iip->ili_logged = 1; 3081 3082 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3083 &iip->ili_item.li_lsn); 3084 3085 /* 3086 * Attach the function xfs_iflush_done to the inode's 3087 * buffer. This will remove the inode from the AIL 3088 * and unlock the inode's flush lock when the inode is 3089 * completely written to disk. 3090 */ 3091 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3092 3093 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3094 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3095 } else { 3096 /* 3097 * We're flushing an inode which is not in the AIL and has 3098 * not been logged but has i_update_core set. For this 3099 * case we can use a B_DELWRI flush and immediately drop 3100 * the inode flush lock because we can avoid the whole 3101 * AIL state thing. It's OK to drop the flush lock now, 3102 * because we've already locked the buffer and to do anything 3103 * you really need both. 3104 */ 3105 if (iip != NULL) { 3106 ASSERT(iip->ili_logged == 0); 3107 ASSERT(iip->ili_last_fields == 0); 3108 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3109 } 3110 xfs_ifunlock(ip); 3111 } 3112 3113 return 0; 3114 3115 corrupt_out: 3116 return XFS_ERROR(EFSCORRUPTED); 3117 } 3118 3119 /* 3120 * Return a pointer to the extent record at file index idx. 3121 */ 3122 xfs_bmbt_rec_host_t * 3123 xfs_iext_get_ext( 3124 xfs_ifork_t *ifp, /* inode fork pointer */ 3125 xfs_extnum_t idx) /* index of target extent */ 3126 { 3127 ASSERT(idx >= 0); 3128 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3129 return ifp->if_u1.if_ext_irec->er_extbuf; 3130 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3131 xfs_ext_irec_t *erp; /* irec pointer */ 3132 int erp_idx = 0; /* irec index */ 3133 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3134 3135 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3136 return &erp->er_extbuf[page_idx]; 3137 } else if (ifp->if_bytes) { 3138 return &ifp->if_u1.if_extents[idx]; 3139 } else { 3140 return NULL; 3141 } 3142 } 3143 3144 /* 3145 * Insert new item(s) into the extent records for incore inode 3146 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3147 */ 3148 void 3149 xfs_iext_insert( 3150 xfs_inode_t *ip, /* incore inode pointer */ 3151 xfs_extnum_t idx, /* starting index of new items */ 3152 xfs_extnum_t count, /* number of inserted items */ 3153 xfs_bmbt_irec_t *new, /* items to insert */ 3154 int state) /* type of extent conversion */ 3155 { 3156 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3157 xfs_extnum_t i; /* extent record index */ 3158 3159 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 3160 3161 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3162 xfs_iext_add(ifp, idx, count); 3163 for (i = idx; i < idx + count; i++, new++) 3164 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3165 } 3166 3167 /* 3168 * This is called when the amount of space required for incore file 3169 * extents needs to be increased. The ext_diff parameter stores the 3170 * number of new extents being added and the idx parameter contains 3171 * the extent index where the new extents will be added. If the new 3172 * extents are being appended, then we just need to (re)allocate and 3173 * initialize the space. Otherwise, if the new extents are being 3174 * inserted into the middle of the existing entries, a bit more work 3175 * is required to make room for the new extents to be inserted. The 3176 * caller is responsible for filling in the new extent entries upon 3177 * return. 3178 */ 3179 void 3180 xfs_iext_add( 3181 xfs_ifork_t *ifp, /* inode fork pointer */ 3182 xfs_extnum_t idx, /* index to begin adding exts */ 3183 int ext_diff) /* number of extents to add */ 3184 { 3185 int byte_diff; /* new bytes being added */ 3186 int new_size; /* size of extents after adding */ 3187 xfs_extnum_t nextents; /* number of extents in file */ 3188 3189 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3190 ASSERT((idx >= 0) && (idx <= nextents)); 3191 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3192 new_size = ifp->if_bytes + byte_diff; 3193 /* 3194 * If the new number of extents (nextents + ext_diff) 3195 * fits inside the inode, then continue to use the inline 3196 * extent buffer. 3197 */ 3198 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3199 if (idx < nextents) { 3200 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3201 &ifp->if_u2.if_inline_ext[idx], 3202 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3203 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3204 } 3205 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3206 ifp->if_real_bytes = 0; 3207 ifp->if_lastex = nextents + ext_diff; 3208 } 3209 /* 3210 * Otherwise use a linear (direct) extent list. 3211 * If the extents are currently inside the inode, 3212 * xfs_iext_realloc_direct will switch us from 3213 * inline to direct extent allocation mode. 3214 */ 3215 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3216 xfs_iext_realloc_direct(ifp, new_size); 3217 if (idx < nextents) { 3218 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3219 &ifp->if_u1.if_extents[idx], 3220 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3221 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3222 } 3223 } 3224 /* Indirection array */ 3225 else { 3226 xfs_ext_irec_t *erp; 3227 int erp_idx = 0; 3228 int page_idx = idx; 3229 3230 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3231 if (ifp->if_flags & XFS_IFEXTIREC) { 3232 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3233 } else { 3234 xfs_iext_irec_init(ifp); 3235 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3236 erp = ifp->if_u1.if_ext_irec; 3237 } 3238 /* Extents fit in target extent page */ 3239 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3240 if (page_idx < erp->er_extcount) { 3241 memmove(&erp->er_extbuf[page_idx + ext_diff], 3242 &erp->er_extbuf[page_idx], 3243 (erp->er_extcount - page_idx) * 3244 sizeof(xfs_bmbt_rec_t)); 3245 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3246 } 3247 erp->er_extcount += ext_diff; 3248 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3249 } 3250 /* Insert a new extent page */ 3251 else if (erp) { 3252 xfs_iext_add_indirect_multi(ifp, 3253 erp_idx, page_idx, ext_diff); 3254 } 3255 /* 3256 * If extent(s) are being appended to the last page in 3257 * the indirection array and the new extent(s) don't fit 3258 * in the page, then erp is NULL and erp_idx is set to 3259 * the next index needed in the indirection array. 3260 */ 3261 else { 3262 int count = ext_diff; 3263 3264 while (count) { 3265 erp = xfs_iext_irec_new(ifp, erp_idx); 3266 erp->er_extcount = count; 3267 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3268 if (count) { 3269 erp_idx++; 3270 } 3271 } 3272 } 3273 } 3274 ifp->if_bytes = new_size; 3275 } 3276 3277 /* 3278 * This is called when incore extents are being added to the indirection 3279 * array and the new extents do not fit in the target extent list. The 3280 * erp_idx parameter contains the irec index for the target extent list 3281 * in the indirection array, and the idx parameter contains the extent 3282 * index within the list. The number of extents being added is stored 3283 * in the count parameter. 3284 * 3285 * |-------| |-------| 3286 * | | | | idx - number of extents before idx 3287 * | idx | | count | 3288 * | | | | count - number of extents being inserted at idx 3289 * |-------| |-------| 3290 * | count | | nex2 | nex2 - number of extents after idx + count 3291 * |-------| |-------| 3292 */ 3293 void 3294 xfs_iext_add_indirect_multi( 3295 xfs_ifork_t *ifp, /* inode fork pointer */ 3296 int erp_idx, /* target extent irec index */ 3297 xfs_extnum_t idx, /* index within target list */ 3298 int count) /* new extents being added */ 3299 { 3300 int byte_diff; /* new bytes being added */ 3301 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3302 xfs_extnum_t ext_diff; /* number of extents to add */ 3303 xfs_extnum_t ext_cnt; /* new extents still needed */ 3304 xfs_extnum_t nex2; /* extents after idx + count */ 3305 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3306 int nlists; /* number of irec's (lists) */ 3307 3308 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3309 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3310 nex2 = erp->er_extcount - idx; 3311 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3312 3313 /* 3314 * Save second part of target extent list 3315 * (all extents past */ 3316 if (nex2) { 3317 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3318 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3319 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3320 erp->er_extcount -= nex2; 3321 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3322 memset(&erp->er_extbuf[idx], 0, byte_diff); 3323 } 3324 3325 /* 3326 * Add the new extents to the end of the target 3327 * list, then allocate new irec record(s) and 3328 * extent buffer(s) as needed to store the rest 3329 * of the new extents. 3330 */ 3331 ext_cnt = count; 3332 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3333 if (ext_diff) { 3334 erp->er_extcount += ext_diff; 3335 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3336 ext_cnt -= ext_diff; 3337 } 3338 while (ext_cnt) { 3339 erp_idx++; 3340 erp = xfs_iext_irec_new(ifp, erp_idx); 3341 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3342 erp->er_extcount = ext_diff; 3343 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3344 ext_cnt -= ext_diff; 3345 } 3346 3347 /* Add nex2 extents back to indirection array */ 3348 if (nex2) { 3349 xfs_extnum_t ext_avail; 3350 int i; 3351 3352 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3353 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3354 i = 0; 3355 /* 3356 * If nex2 extents fit in the current page, append 3357 * nex2_ep after the new extents. 3358 */ 3359 if (nex2 <= ext_avail) { 3360 i = erp->er_extcount; 3361 } 3362 /* 3363 * Otherwise, check if space is available in the 3364 * next page. 3365 */ 3366 else if ((erp_idx < nlists - 1) && 3367 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3368 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3369 erp_idx++; 3370 erp++; 3371 /* Create a hole for nex2 extents */ 3372 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3373 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3374 } 3375 /* 3376 * Final choice, create a new extent page for 3377 * nex2 extents. 3378 */ 3379 else { 3380 erp_idx++; 3381 erp = xfs_iext_irec_new(ifp, erp_idx); 3382 } 3383 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3384 kmem_free(nex2_ep); 3385 erp->er_extcount += nex2; 3386 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3387 } 3388 } 3389 3390 /* 3391 * This is called when the amount of space required for incore file 3392 * extents needs to be decreased. The ext_diff parameter stores the 3393 * number of extents to be removed and the idx parameter contains 3394 * the extent index where the extents will be removed from. 3395 * 3396 * If the amount of space needed has decreased below the linear 3397 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3398 * extent array. Otherwise, use kmem_realloc() to adjust the 3399 * size to what is needed. 3400 */ 3401 void 3402 xfs_iext_remove( 3403 xfs_inode_t *ip, /* incore inode pointer */ 3404 xfs_extnum_t idx, /* index to begin removing exts */ 3405 int ext_diff, /* number of extents to remove */ 3406 int state) /* type of extent conversion */ 3407 { 3408 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3409 xfs_extnum_t nextents; /* number of extents in file */ 3410 int new_size; /* size of extents after removal */ 3411 3412 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3413 3414 ASSERT(ext_diff > 0); 3415 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3416 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3417 3418 if (new_size == 0) { 3419 xfs_iext_destroy(ifp); 3420 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3421 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3422 } else if (ifp->if_real_bytes) { 3423 xfs_iext_remove_direct(ifp, idx, ext_diff); 3424 } else { 3425 xfs_iext_remove_inline(ifp, idx, ext_diff); 3426 } 3427 ifp->if_bytes = new_size; 3428 } 3429 3430 /* 3431 * This removes ext_diff extents from the inline buffer, beginning 3432 * at extent index idx. 3433 */ 3434 void 3435 xfs_iext_remove_inline( 3436 xfs_ifork_t *ifp, /* inode fork pointer */ 3437 xfs_extnum_t idx, /* index to begin removing exts */ 3438 int ext_diff) /* number of extents to remove */ 3439 { 3440 int nextents; /* number of extents in file */ 3441 3442 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3443 ASSERT(idx < XFS_INLINE_EXTS); 3444 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3445 ASSERT(((nextents - ext_diff) > 0) && 3446 (nextents - ext_diff) < XFS_INLINE_EXTS); 3447 3448 if (idx + ext_diff < nextents) { 3449 memmove(&ifp->if_u2.if_inline_ext[idx], 3450 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3451 (nextents - (idx + ext_diff)) * 3452 sizeof(xfs_bmbt_rec_t)); 3453 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3454 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3455 } else { 3456 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3457 ext_diff * sizeof(xfs_bmbt_rec_t)); 3458 } 3459 } 3460 3461 /* 3462 * This removes ext_diff extents from a linear (direct) extent list, 3463 * beginning at extent index idx. If the extents are being removed 3464 * from the end of the list (ie. truncate) then we just need to re- 3465 * allocate the list to remove the extra space. Otherwise, if the 3466 * extents are being removed from the middle of the existing extent 3467 * entries, then we first need to move the extent records beginning 3468 * at idx + ext_diff up in the list to overwrite the records being 3469 * removed, then remove the extra space via kmem_realloc. 3470 */ 3471 void 3472 xfs_iext_remove_direct( 3473 xfs_ifork_t *ifp, /* inode fork pointer */ 3474 xfs_extnum_t idx, /* index to begin removing exts */ 3475 int ext_diff) /* number of extents to remove */ 3476 { 3477 xfs_extnum_t nextents; /* number of extents in file */ 3478 int new_size; /* size of extents after removal */ 3479 3480 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3481 new_size = ifp->if_bytes - 3482 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3483 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3484 3485 if (new_size == 0) { 3486 xfs_iext_destroy(ifp); 3487 return; 3488 } 3489 /* Move extents up in the list (if needed) */ 3490 if (idx + ext_diff < nextents) { 3491 memmove(&ifp->if_u1.if_extents[idx], 3492 &ifp->if_u1.if_extents[idx + ext_diff], 3493 (nextents - (idx + ext_diff)) * 3494 sizeof(xfs_bmbt_rec_t)); 3495 } 3496 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3497 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3498 /* 3499 * Reallocate the direct extent list. If the extents 3500 * will fit inside the inode then xfs_iext_realloc_direct 3501 * will switch from direct to inline extent allocation 3502 * mode for us. 3503 */ 3504 xfs_iext_realloc_direct(ifp, new_size); 3505 ifp->if_bytes = new_size; 3506 } 3507 3508 /* 3509 * This is called when incore extents are being removed from the 3510 * indirection array and the extents being removed span multiple extent 3511 * buffers. The idx parameter contains the file extent index where we 3512 * want to begin removing extents, and the count parameter contains 3513 * how many extents need to be removed. 3514 * 3515 * |-------| |-------| 3516 * | nex1 | | | nex1 - number of extents before idx 3517 * |-------| | count | 3518 * | | | | count - number of extents being removed at idx 3519 * | count | |-------| 3520 * | | | nex2 | nex2 - number of extents after idx + count 3521 * |-------| |-------| 3522 */ 3523 void 3524 xfs_iext_remove_indirect( 3525 xfs_ifork_t *ifp, /* inode fork pointer */ 3526 xfs_extnum_t idx, /* index to begin removing extents */ 3527 int count) /* number of extents to remove */ 3528 { 3529 xfs_ext_irec_t *erp; /* indirection array pointer */ 3530 int erp_idx = 0; /* indirection array index */ 3531 xfs_extnum_t ext_cnt; /* extents left to remove */ 3532 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3533 xfs_extnum_t nex1; /* number of extents before idx */ 3534 xfs_extnum_t nex2; /* extents after idx + count */ 3535 int page_idx = idx; /* index in target extent list */ 3536 3537 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3538 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3539 ASSERT(erp != NULL); 3540 nex1 = page_idx; 3541 ext_cnt = count; 3542 while (ext_cnt) { 3543 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3544 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3545 /* 3546 * Check for deletion of entire list; 3547 * xfs_iext_irec_remove() updates extent offsets. 3548 */ 3549 if (ext_diff == erp->er_extcount) { 3550 xfs_iext_irec_remove(ifp, erp_idx); 3551 ext_cnt -= ext_diff; 3552 nex1 = 0; 3553 if (ext_cnt) { 3554 ASSERT(erp_idx < ifp->if_real_bytes / 3555 XFS_IEXT_BUFSZ); 3556 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3557 nex1 = 0; 3558 continue; 3559 } else { 3560 break; 3561 } 3562 } 3563 /* Move extents up (if needed) */ 3564 if (nex2) { 3565 memmove(&erp->er_extbuf[nex1], 3566 &erp->er_extbuf[nex1 + ext_diff], 3567 nex2 * sizeof(xfs_bmbt_rec_t)); 3568 } 3569 /* Zero out rest of page */ 3570 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3571 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3572 /* Update remaining counters */ 3573 erp->er_extcount -= ext_diff; 3574 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3575 ext_cnt -= ext_diff; 3576 nex1 = 0; 3577 erp_idx++; 3578 erp++; 3579 } 3580 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3581 xfs_iext_irec_compact(ifp); 3582 } 3583 3584 /* 3585 * Create, destroy, or resize a linear (direct) block of extents. 3586 */ 3587 void 3588 xfs_iext_realloc_direct( 3589 xfs_ifork_t *ifp, /* inode fork pointer */ 3590 int new_size) /* new size of extents */ 3591 { 3592 int rnew_size; /* real new size of extents */ 3593 3594 rnew_size = new_size; 3595 3596 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3597 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3598 (new_size != ifp->if_real_bytes))); 3599 3600 /* Free extent records */ 3601 if (new_size == 0) { 3602 xfs_iext_destroy(ifp); 3603 } 3604 /* Resize direct extent list and zero any new bytes */ 3605 else if (ifp->if_real_bytes) { 3606 /* Check if extents will fit inside the inode */ 3607 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3608 xfs_iext_direct_to_inline(ifp, new_size / 3609 (uint)sizeof(xfs_bmbt_rec_t)); 3610 ifp->if_bytes = new_size; 3611 return; 3612 } 3613 if (!is_power_of_2(new_size)){ 3614 rnew_size = roundup_pow_of_two(new_size); 3615 } 3616 if (rnew_size != ifp->if_real_bytes) { 3617 ifp->if_u1.if_extents = 3618 kmem_realloc(ifp->if_u1.if_extents, 3619 rnew_size, 3620 ifp->if_real_bytes, KM_NOFS); 3621 } 3622 if (rnew_size > ifp->if_real_bytes) { 3623 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3624 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3625 rnew_size - ifp->if_real_bytes); 3626 } 3627 } 3628 /* 3629 * Switch from the inline extent buffer to a direct 3630 * extent list. Be sure to include the inline extent 3631 * bytes in new_size. 3632 */ 3633 else { 3634 new_size += ifp->if_bytes; 3635 if (!is_power_of_2(new_size)) { 3636 rnew_size = roundup_pow_of_two(new_size); 3637 } 3638 xfs_iext_inline_to_direct(ifp, rnew_size); 3639 } 3640 ifp->if_real_bytes = rnew_size; 3641 ifp->if_bytes = new_size; 3642 } 3643 3644 /* 3645 * Switch from linear (direct) extent records to inline buffer. 3646 */ 3647 void 3648 xfs_iext_direct_to_inline( 3649 xfs_ifork_t *ifp, /* inode fork pointer */ 3650 xfs_extnum_t nextents) /* number of extents in file */ 3651 { 3652 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3653 ASSERT(nextents <= XFS_INLINE_EXTS); 3654 /* 3655 * The inline buffer was zeroed when we switched 3656 * from inline to direct extent allocation mode, 3657 * so we don't need to clear it here. 3658 */ 3659 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3660 nextents * sizeof(xfs_bmbt_rec_t)); 3661 kmem_free(ifp->if_u1.if_extents); 3662 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3663 ifp->if_real_bytes = 0; 3664 } 3665 3666 /* 3667 * Switch from inline buffer to linear (direct) extent records. 3668 * new_size should already be rounded up to the next power of 2 3669 * by the caller (when appropriate), so use new_size as it is. 3670 * However, since new_size may be rounded up, we can't update 3671 * if_bytes here. It is the caller's responsibility to update 3672 * if_bytes upon return. 3673 */ 3674 void 3675 xfs_iext_inline_to_direct( 3676 xfs_ifork_t *ifp, /* inode fork pointer */ 3677 int new_size) /* number of extents in file */ 3678 { 3679 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3680 memset(ifp->if_u1.if_extents, 0, new_size); 3681 if (ifp->if_bytes) { 3682 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3683 ifp->if_bytes); 3684 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3685 sizeof(xfs_bmbt_rec_t)); 3686 } 3687 ifp->if_real_bytes = new_size; 3688 } 3689 3690 /* 3691 * Resize an extent indirection array to new_size bytes. 3692 */ 3693 STATIC void 3694 xfs_iext_realloc_indirect( 3695 xfs_ifork_t *ifp, /* inode fork pointer */ 3696 int new_size) /* new indirection array size */ 3697 { 3698 int nlists; /* number of irec's (ex lists) */ 3699 int size; /* current indirection array size */ 3700 3701 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3702 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3703 size = nlists * sizeof(xfs_ext_irec_t); 3704 ASSERT(ifp->if_real_bytes); 3705 ASSERT((new_size >= 0) && (new_size != size)); 3706 if (new_size == 0) { 3707 xfs_iext_destroy(ifp); 3708 } else { 3709 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3710 kmem_realloc(ifp->if_u1.if_ext_irec, 3711 new_size, size, KM_NOFS); 3712 } 3713 } 3714 3715 /* 3716 * Switch from indirection array to linear (direct) extent allocations. 3717 */ 3718 STATIC void 3719 xfs_iext_indirect_to_direct( 3720 xfs_ifork_t *ifp) /* inode fork pointer */ 3721 { 3722 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3723 xfs_extnum_t nextents; /* number of extents in file */ 3724 int size; /* size of file extents */ 3725 3726 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3727 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3728 ASSERT(nextents <= XFS_LINEAR_EXTS); 3729 size = nextents * sizeof(xfs_bmbt_rec_t); 3730 3731 xfs_iext_irec_compact_pages(ifp); 3732 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3733 3734 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3735 kmem_free(ifp->if_u1.if_ext_irec); 3736 ifp->if_flags &= ~XFS_IFEXTIREC; 3737 ifp->if_u1.if_extents = ep; 3738 ifp->if_bytes = size; 3739 if (nextents < XFS_LINEAR_EXTS) { 3740 xfs_iext_realloc_direct(ifp, size); 3741 } 3742 } 3743 3744 /* 3745 * Free incore file extents. 3746 */ 3747 void 3748 xfs_iext_destroy( 3749 xfs_ifork_t *ifp) /* inode fork pointer */ 3750 { 3751 if (ifp->if_flags & XFS_IFEXTIREC) { 3752 int erp_idx; 3753 int nlists; 3754 3755 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3756 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3757 xfs_iext_irec_remove(ifp, erp_idx); 3758 } 3759 ifp->if_flags &= ~XFS_IFEXTIREC; 3760 } else if (ifp->if_real_bytes) { 3761 kmem_free(ifp->if_u1.if_extents); 3762 } else if (ifp->if_bytes) { 3763 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3764 sizeof(xfs_bmbt_rec_t)); 3765 } 3766 ifp->if_u1.if_extents = NULL; 3767 ifp->if_real_bytes = 0; 3768 ifp->if_bytes = 0; 3769 } 3770 3771 /* 3772 * Return a pointer to the extent record for file system block bno. 3773 */ 3774 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3775 xfs_iext_bno_to_ext( 3776 xfs_ifork_t *ifp, /* inode fork pointer */ 3777 xfs_fileoff_t bno, /* block number to search for */ 3778 xfs_extnum_t *idxp) /* index of target extent */ 3779 { 3780 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3781 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3782 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3783 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3784 int high; /* upper boundary in search */ 3785 xfs_extnum_t idx = 0; /* index of target extent */ 3786 int low; /* lower boundary in search */ 3787 xfs_extnum_t nextents; /* number of file extents */ 3788 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3789 3790 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3791 if (nextents == 0) { 3792 *idxp = 0; 3793 return NULL; 3794 } 3795 low = 0; 3796 if (ifp->if_flags & XFS_IFEXTIREC) { 3797 /* Find target extent list */ 3798 int erp_idx = 0; 3799 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3800 base = erp->er_extbuf; 3801 high = erp->er_extcount - 1; 3802 } else { 3803 base = ifp->if_u1.if_extents; 3804 high = nextents - 1; 3805 } 3806 /* Binary search extent records */ 3807 while (low <= high) { 3808 idx = (low + high) >> 1; 3809 ep = base + idx; 3810 startoff = xfs_bmbt_get_startoff(ep); 3811 blockcount = xfs_bmbt_get_blockcount(ep); 3812 if (bno < startoff) { 3813 high = idx - 1; 3814 } else if (bno >= startoff + blockcount) { 3815 low = idx + 1; 3816 } else { 3817 /* Convert back to file-based extent index */ 3818 if (ifp->if_flags & XFS_IFEXTIREC) { 3819 idx += erp->er_extoff; 3820 } 3821 *idxp = idx; 3822 return ep; 3823 } 3824 } 3825 /* Convert back to file-based extent index */ 3826 if (ifp->if_flags & XFS_IFEXTIREC) { 3827 idx += erp->er_extoff; 3828 } 3829 if (bno >= startoff + blockcount) { 3830 if (++idx == nextents) { 3831 ep = NULL; 3832 } else { 3833 ep = xfs_iext_get_ext(ifp, idx); 3834 } 3835 } 3836 *idxp = idx; 3837 return ep; 3838 } 3839 3840 /* 3841 * Return a pointer to the indirection array entry containing the 3842 * extent record for filesystem block bno. Store the index of the 3843 * target irec in *erp_idxp. 3844 */ 3845 xfs_ext_irec_t * /* pointer to found extent record */ 3846 xfs_iext_bno_to_irec( 3847 xfs_ifork_t *ifp, /* inode fork pointer */ 3848 xfs_fileoff_t bno, /* block number to search for */ 3849 int *erp_idxp) /* irec index of target ext list */ 3850 { 3851 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3852 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3853 int erp_idx; /* indirection array index */ 3854 int nlists; /* number of extent irec's (lists) */ 3855 int high; /* binary search upper limit */ 3856 int low; /* binary search lower limit */ 3857 3858 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3859 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3860 erp_idx = 0; 3861 low = 0; 3862 high = nlists - 1; 3863 while (low <= high) { 3864 erp_idx = (low + high) >> 1; 3865 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3866 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3867 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3868 high = erp_idx - 1; 3869 } else if (erp_next && bno >= 3870 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3871 low = erp_idx + 1; 3872 } else { 3873 break; 3874 } 3875 } 3876 *erp_idxp = erp_idx; 3877 return erp; 3878 } 3879 3880 /* 3881 * Return a pointer to the indirection array entry containing the 3882 * extent record at file extent index *idxp. Store the index of the 3883 * target irec in *erp_idxp and store the page index of the target 3884 * extent record in *idxp. 3885 */ 3886 xfs_ext_irec_t * 3887 xfs_iext_idx_to_irec( 3888 xfs_ifork_t *ifp, /* inode fork pointer */ 3889 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3890 int *erp_idxp, /* pointer to target irec */ 3891 int realloc) /* new bytes were just added */ 3892 { 3893 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3894 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3895 int erp_idx; /* indirection array index */ 3896 int nlists; /* number of irec's (ex lists) */ 3897 int high; /* binary search upper limit */ 3898 int low; /* binary search lower limit */ 3899 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3900 3901 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3902 ASSERT(page_idx >= 0 && page_idx <= 3903 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 3904 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3905 erp_idx = 0; 3906 low = 0; 3907 high = nlists - 1; 3908 3909 /* Binary search extent irec's */ 3910 while (low <= high) { 3911 erp_idx = (low + high) >> 1; 3912 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3913 prev = erp_idx > 0 ? erp - 1 : NULL; 3914 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3915 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3916 high = erp_idx - 1; 3917 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3918 (page_idx == erp->er_extoff + erp->er_extcount && 3919 !realloc)) { 3920 low = erp_idx + 1; 3921 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3922 erp->er_extcount == XFS_LINEAR_EXTS) { 3923 ASSERT(realloc); 3924 page_idx = 0; 3925 erp_idx++; 3926 erp = erp_idx < nlists ? erp + 1 : NULL; 3927 break; 3928 } else { 3929 page_idx -= erp->er_extoff; 3930 break; 3931 } 3932 } 3933 *idxp = page_idx; 3934 *erp_idxp = erp_idx; 3935 return(erp); 3936 } 3937 3938 /* 3939 * Allocate and initialize an indirection array once the space needed 3940 * for incore extents increases above XFS_IEXT_BUFSZ. 3941 */ 3942 void 3943 xfs_iext_irec_init( 3944 xfs_ifork_t *ifp) /* inode fork pointer */ 3945 { 3946 xfs_ext_irec_t *erp; /* indirection array pointer */ 3947 xfs_extnum_t nextents; /* number of extents in file */ 3948 3949 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3950 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3951 ASSERT(nextents <= XFS_LINEAR_EXTS); 3952 3953 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3954 3955 if (nextents == 0) { 3956 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3957 } else if (!ifp->if_real_bytes) { 3958 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3959 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3960 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3961 } 3962 erp->er_extbuf = ifp->if_u1.if_extents; 3963 erp->er_extcount = nextents; 3964 erp->er_extoff = 0; 3965 3966 ifp->if_flags |= XFS_IFEXTIREC; 3967 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3968 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3969 ifp->if_u1.if_ext_irec = erp; 3970 3971 return; 3972 } 3973 3974 /* 3975 * Allocate and initialize a new entry in the indirection array. 3976 */ 3977 xfs_ext_irec_t * 3978 xfs_iext_irec_new( 3979 xfs_ifork_t *ifp, /* inode fork pointer */ 3980 int erp_idx) /* index for new irec */ 3981 { 3982 xfs_ext_irec_t *erp; /* indirection array pointer */ 3983 int i; /* loop counter */ 3984 int nlists; /* number of irec's (ex lists) */ 3985 3986 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3987 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3988 3989 /* Resize indirection array */ 3990 xfs_iext_realloc_indirect(ifp, ++nlists * 3991 sizeof(xfs_ext_irec_t)); 3992 /* 3993 * Move records down in the array so the 3994 * new page can use erp_idx. 3995 */ 3996 erp = ifp->if_u1.if_ext_irec; 3997 for (i = nlists - 1; i > erp_idx; i--) { 3998 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3999 } 4000 ASSERT(i == erp_idx); 4001 4002 /* Initialize new extent record */ 4003 erp = ifp->if_u1.if_ext_irec; 4004 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4005 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4006 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4007 erp[erp_idx].er_extcount = 0; 4008 erp[erp_idx].er_extoff = erp_idx > 0 ? 4009 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4010 return (&erp[erp_idx]); 4011 } 4012 4013 /* 4014 * Remove a record from the indirection array. 4015 */ 4016 void 4017 xfs_iext_irec_remove( 4018 xfs_ifork_t *ifp, /* inode fork pointer */ 4019 int erp_idx) /* irec index to remove */ 4020 { 4021 xfs_ext_irec_t *erp; /* indirection array pointer */ 4022 int i; /* loop counter */ 4023 int nlists; /* number of irec's (ex lists) */ 4024 4025 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4026 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4027 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4028 if (erp->er_extbuf) { 4029 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4030 -erp->er_extcount); 4031 kmem_free(erp->er_extbuf); 4032 } 4033 /* Compact extent records */ 4034 erp = ifp->if_u1.if_ext_irec; 4035 for (i = erp_idx; i < nlists - 1; i++) { 4036 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4037 } 4038 /* 4039 * Manually free the last extent record from the indirection 4040 * array. A call to xfs_iext_realloc_indirect() with a size 4041 * of zero would result in a call to xfs_iext_destroy() which 4042 * would in turn call this function again, creating a nasty 4043 * infinite loop. 4044 */ 4045 if (--nlists) { 4046 xfs_iext_realloc_indirect(ifp, 4047 nlists * sizeof(xfs_ext_irec_t)); 4048 } else { 4049 kmem_free(ifp->if_u1.if_ext_irec); 4050 } 4051 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4052 } 4053 4054 /* 4055 * This is called to clean up large amounts of unused memory allocated 4056 * by the indirection array. Before compacting anything though, verify 4057 * that the indirection array is still needed and switch back to the 4058 * linear extent list (or even the inline buffer) if possible. The 4059 * compaction policy is as follows: 4060 * 4061 * Full Compaction: Extents fit into a single page (or inline buffer) 4062 * Partial Compaction: Extents occupy less than 50% of allocated space 4063 * No Compaction: Extents occupy at least 50% of allocated space 4064 */ 4065 void 4066 xfs_iext_irec_compact( 4067 xfs_ifork_t *ifp) /* inode fork pointer */ 4068 { 4069 xfs_extnum_t nextents; /* number of extents in file */ 4070 int nlists; /* number of irec's (ex lists) */ 4071 4072 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4073 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4074 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4075 4076 if (nextents == 0) { 4077 xfs_iext_destroy(ifp); 4078 } else if (nextents <= XFS_INLINE_EXTS) { 4079 xfs_iext_indirect_to_direct(ifp); 4080 xfs_iext_direct_to_inline(ifp, nextents); 4081 } else if (nextents <= XFS_LINEAR_EXTS) { 4082 xfs_iext_indirect_to_direct(ifp); 4083 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4084 xfs_iext_irec_compact_pages(ifp); 4085 } 4086 } 4087 4088 /* 4089 * Combine extents from neighboring extent pages. 4090 */ 4091 void 4092 xfs_iext_irec_compact_pages( 4093 xfs_ifork_t *ifp) /* inode fork pointer */ 4094 { 4095 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4096 int erp_idx = 0; /* indirection array index */ 4097 int nlists; /* number of irec's (ex lists) */ 4098 4099 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4100 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4101 while (erp_idx < nlists - 1) { 4102 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4103 erp_next = erp + 1; 4104 if (erp_next->er_extcount <= 4105 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4106 memcpy(&erp->er_extbuf[erp->er_extcount], 4107 erp_next->er_extbuf, erp_next->er_extcount * 4108 sizeof(xfs_bmbt_rec_t)); 4109 erp->er_extcount += erp_next->er_extcount; 4110 /* 4111 * Free page before removing extent record 4112 * so er_extoffs don't get modified in 4113 * xfs_iext_irec_remove. 4114 */ 4115 kmem_free(erp_next->er_extbuf); 4116 erp_next->er_extbuf = NULL; 4117 xfs_iext_irec_remove(ifp, erp_idx + 1); 4118 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4119 } else { 4120 erp_idx++; 4121 } 4122 } 4123 } 4124 4125 /* 4126 * This is called to update the er_extoff field in the indirection 4127 * array when extents have been added or removed from one of the 4128 * extent lists. erp_idx contains the irec index to begin updating 4129 * at and ext_diff contains the number of extents that were added 4130 * or removed. 4131 */ 4132 void 4133 xfs_iext_irec_update_extoffs( 4134 xfs_ifork_t *ifp, /* inode fork pointer */ 4135 int erp_idx, /* irec index to update */ 4136 int ext_diff) /* number of new extents */ 4137 { 4138 int i; /* loop counter */ 4139 int nlists; /* number of irec's (ex lists */ 4140 4141 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4142 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4143 for (i = erp_idx; i < nlists; i++) { 4144 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4145 } 4146 } 4147