1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 64 return ip->i_d.di_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_d.di_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && 128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_lock locking order: 148 * 149 * i_rwsem -> page lock -> mmap_lock 150 * mmap_lock -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_lock locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_lock. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 STATIC uint 602 _xfs_dic2xflags( 603 uint16_t di_flags, 604 uint64_t di_flags2, 605 bool has_attr) 606 { 607 uint flags = 0; 608 609 if (di_flags & XFS_DIFLAG_ANY) { 610 if (di_flags & XFS_DIFLAG_REALTIME) 611 flags |= FS_XFLAG_REALTIME; 612 if (di_flags & XFS_DIFLAG_PREALLOC) 613 flags |= FS_XFLAG_PREALLOC; 614 if (di_flags & XFS_DIFLAG_IMMUTABLE) 615 flags |= FS_XFLAG_IMMUTABLE; 616 if (di_flags & XFS_DIFLAG_APPEND) 617 flags |= FS_XFLAG_APPEND; 618 if (di_flags & XFS_DIFLAG_SYNC) 619 flags |= FS_XFLAG_SYNC; 620 if (di_flags & XFS_DIFLAG_NOATIME) 621 flags |= FS_XFLAG_NOATIME; 622 if (di_flags & XFS_DIFLAG_NODUMP) 623 flags |= FS_XFLAG_NODUMP; 624 if (di_flags & XFS_DIFLAG_RTINHERIT) 625 flags |= FS_XFLAG_RTINHERIT; 626 if (di_flags & XFS_DIFLAG_PROJINHERIT) 627 flags |= FS_XFLAG_PROJINHERIT; 628 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 629 flags |= FS_XFLAG_NOSYMLINKS; 630 if (di_flags & XFS_DIFLAG_EXTSIZE) 631 flags |= FS_XFLAG_EXTSIZE; 632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 633 flags |= FS_XFLAG_EXTSZINHERIT; 634 if (di_flags & XFS_DIFLAG_NODEFRAG) 635 flags |= FS_XFLAG_NODEFRAG; 636 if (di_flags & XFS_DIFLAG_FILESTREAM) 637 flags |= FS_XFLAG_FILESTREAM; 638 } 639 640 if (di_flags2 & XFS_DIFLAG2_ANY) { 641 if (di_flags2 & XFS_DIFLAG2_DAX) 642 flags |= FS_XFLAG_DAX; 643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 644 flags |= FS_XFLAG_COWEXTSIZE; 645 } 646 647 if (has_attr) 648 flags |= FS_XFLAG_HASATTR; 649 650 return flags; 651 } 652 653 uint 654 xfs_ip2xflags( 655 struct xfs_inode *ip) 656 { 657 struct xfs_icdinode *dic = &ip->i_d; 658 659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 660 } 661 662 /* 663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 664 * is allowed, otherwise it has to be an exact match. If a CI match is found, 665 * ci_name->name will point to a the actual name (caller must free) or 666 * will be set to NULL if an exact match is found. 667 */ 668 int 669 xfs_lookup( 670 xfs_inode_t *dp, 671 struct xfs_name *name, 672 xfs_inode_t **ipp, 673 struct xfs_name *ci_name) 674 { 675 xfs_ino_t inum; 676 int error; 677 678 trace_xfs_lookup(dp, name); 679 680 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 681 return -EIO; 682 683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 684 if (error) 685 goto out_unlock; 686 687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 688 if (error) 689 goto out_free_name; 690 691 return 0; 692 693 out_free_name: 694 if (ci_name) 695 kmem_free(ci_name->name); 696 out_unlock: 697 *ipp = NULL; 698 return error; 699 } 700 701 /* Propagate di_flags from a parent inode to a child inode. */ 702 static void 703 xfs_inode_inherit_flags( 704 struct xfs_inode *ip, 705 const struct xfs_inode *pip) 706 { 707 unsigned int di_flags = 0; 708 umode_t mode = VFS_I(ip)->i_mode; 709 710 if (S_ISDIR(mode)) { 711 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 712 di_flags |= XFS_DIFLAG_RTINHERIT; 713 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 714 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 715 ip->i_d.di_extsize = pip->i_d.di_extsize; 716 } 717 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 718 di_flags |= XFS_DIFLAG_PROJINHERIT; 719 } else if (S_ISREG(mode)) { 720 if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) && 721 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) 722 di_flags |= XFS_DIFLAG_REALTIME; 723 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 724 di_flags |= XFS_DIFLAG_EXTSIZE; 725 ip->i_d.di_extsize = pip->i_d.di_extsize; 726 } 727 } 728 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 729 xfs_inherit_noatime) 730 di_flags |= XFS_DIFLAG_NOATIME; 731 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 732 xfs_inherit_nodump) 733 di_flags |= XFS_DIFLAG_NODUMP; 734 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 735 xfs_inherit_sync) 736 di_flags |= XFS_DIFLAG_SYNC; 737 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 738 xfs_inherit_nosymlinks) 739 di_flags |= XFS_DIFLAG_NOSYMLINKS; 740 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 741 xfs_inherit_nodefrag) 742 di_flags |= XFS_DIFLAG_NODEFRAG; 743 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 744 di_flags |= XFS_DIFLAG_FILESTREAM; 745 746 ip->i_d.di_flags |= di_flags; 747 } 748 749 /* Propagate di_flags2 from a parent inode to a child inode. */ 750 static void 751 xfs_inode_inherit_flags2( 752 struct xfs_inode *ip, 753 const struct xfs_inode *pip) 754 { 755 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 756 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 757 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 758 } 759 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 760 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 761 } 762 763 /* 764 * Initialise a newly allocated inode and return the in-core inode to the 765 * caller locked exclusively. 766 */ 767 static int 768 xfs_init_new_inode( 769 struct xfs_trans *tp, 770 struct xfs_inode *pip, 771 xfs_ino_t ino, 772 umode_t mode, 773 xfs_nlink_t nlink, 774 dev_t rdev, 775 prid_t prid, 776 struct xfs_inode **ipp) 777 { 778 struct inode *dir = pip ? VFS_I(pip) : NULL; 779 struct xfs_mount *mp = tp->t_mountp; 780 struct xfs_inode *ip; 781 unsigned int flags; 782 int error; 783 struct timespec64 tv; 784 struct inode *inode; 785 786 /* 787 * Protect against obviously corrupt allocation btree records. Later 788 * xfs_iget checks will catch re-allocation of other active in-memory 789 * and on-disk inodes. If we don't catch reallocating the parent inode 790 * here we will deadlock in xfs_iget() so we have to do these checks 791 * first. 792 */ 793 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 794 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 795 return -EFSCORRUPTED; 796 } 797 798 /* 799 * Get the in-core inode with the lock held exclusively to prevent 800 * others from looking at until we're done. 801 */ 802 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 803 if (error) 804 return error; 805 806 ASSERT(ip != NULL); 807 inode = VFS_I(ip); 808 set_nlink(inode, nlink); 809 inode->i_rdev = rdev; 810 ip->i_d.di_projid = prid; 811 812 if (dir && !(dir->i_mode & S_ISGID) && 813 (mp->m_flags & XFS_MOUNT_GRPID)) { 814 inode->i_uid = current_fsuid(); 815 inode->i_gid = dir->i_gid; 816 inode->i_mode = mode; 817 } else { 818 inode_init_owner(inode, dir, mode); 819 } 820 821 /* 822 * If the group ID of the new file does not match the effective group 823 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 824 * (and only if the irix_sgid_inherit compatibility variable is set). 825 */ 826 if (irix_sgid_inherit && 827 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 828 inode->i_mode &= ~S_ISGID; 829 830 ip->i_d.di_size = 0; 831 ip->i_df.if_nextents = 0; 832 ASSERT(ip->i_d.di_nblocks == 0); 833 834 tv = current_time(inode); 835 inode->i_mtime = tv; 836 inode->i_atime = tv; 837 inode->i_ctime = tv; 838 839 ip->i_d.di_extsize = 0; 840 ip->i_d.di_dmevmask = 0; 841 ip->i_d.di_dmstate = 0; 842 ip->i_d.di_flags = 0; 843 844 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 845 inode_set_iversion(inode, 1); 846 ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2; 847 ip->i_d.di_cowextsize = 0; 848 ip->i_d.di_crtime = tv; 849 } 850 851 flags = XFS_ILOG_CORE; 852 switch (mode & S_IFMT) { 853 case S_IFIFO: 854 case S_IFCHR: 855 case S_IFBLK: 856 case S_IFSOCK: 857 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 858 ip->i_df.if_flags = 0; 859 flags |= XFS_ILOG_DEV; 860 break; 861 case S_IFREG: 862 case S_IFDIR: 863 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) 864 xfs_inode_inherit_flags(ip, pip); 865 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) 866 xfs_inode_inherit_flags2(ip, pip); 867 /* FALLTHROUGH */ 868 case S_IFLNK: 869 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 870 ip->i_df.if_flags = XFS_IFEXTENTS; 871 ip->i_df.if_bytes = 0; 872 ip->i_df.if_u1.if_root = NULL; 873 break; 874 default: 875 ASSERT(0); 876 } 877 878 /* 879 * Log the new values stuffed into the inode. 880 */ 881 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 882 xfs_trans_log_inode(tp, ip, flags); 883 884 /* now that we have an i_mode we can setup the inode structure */ 885 xfs_setup_inode(ip); 886 887 *ipp = ip; 888 return 0; 889 } 890 891 /* 892 * Allocates a new inode from disk and return a pointer to the incore copy. This 893 * routine will internally commit the current transaction and allocate a new one 894 * if we needed to allocate more on-disk free inodes to perform the requested 895 * operation. 896 * 897 * If we are allocating quota inodes, we do not have a parent inode to attach to 898 * or associate with (i.e. dp == NULL) because they are not linked into the 899 * directory structure - they are attached directly to the superblock - and so 900 * have no parent. 901 */ 902 int 903 xfs_dir_ialloc( 904 struct xfs_trans **tpp, 905 struct xfs_inode *dp, 906 umode_t mode, 907 xfs_nlink_t nlink, 908 dev_t rdev, 909 prid_t prid, 910 struct xfs_inode **ipp) 911 { 912 struct xfs_buf *agibp; 913 xfs_ino_t parent_ino = dp ? dp->i_ino : 0; 914 xfs_ino_t ino; 915 int error; 916 917 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 918 919 /* 920 * Call the space management code to pick the on-disk inode to be 921 * allocated. 922 */ 923 error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp); 924 if (error) 925 return error; 926 927 if (!agibp) 928 return -ENOSPC; 929 930 /* Allocate an inode from the selected AG */ 931 error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino); 932 if (error) 933 return error; 934 ASSERT(ino != NULLFSINO); 935 936 return xfs_init_new_inode(*tpp, dp, ino, mode, nlink, rdev, prid, ipp); 937 } 938 939 /* 940 * Decrement the link count on an inode & log the change. If this causes the 941 * link count to go to zero, move the inode to AGI unlinked list so that it can 942 * be freed when the last active reference goes away via xfs_inactive(). 943 */ 944 static int /* error */ 945 xfs_droplink( 946 xfs_trans_t *tp, 947 xfs_inode_t *ip) 948 { 949 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 950 951 drop_nlink(VFS_I(ip)); 952 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 953 954 if (VFS_I(ip)->i_nlink) 955 return 0; 956 957 return xfs_iunlink(tp, ip); 958 } 959 960 /* 961 * Increment the link count on an inode & log the change. 962 */ 963 static void 964 xfs_bumplink( 965 xfs_trans_t *tp, 966 xfs_inode_t *ip) 967 { 968 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 969 970 inc_nlink(VFS_I(ip)); 971 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 972 } 973 974 int 975 xfs_create( 976 xfs_inode_t *dp, 977 struct xfs_name *name, 978 umode_t mode, 979 dev_t rdev, 980 xfs_inode_t **ipp) 981 { 982 int is_dir = S_ISDIR(mode); 983 struct xfs_mount *mp = dp->i_mount; 984 struct xfs_inode *ip = NULL; 985 struct xfs_trans *tp = NULL; 986 int error; 987 bool unlock_dp_on_error = false; 988 prid_t prid; 989 struct xfs_dquot *udqp = NULL; 990 struct xfs_dquot *gdqp = NULL; 991 struct xfs_dquot *pdqp = NULL; 992 struct xfs_trans_res *tres; 993 uint resblks; 994 995 trace_xfs_create(dp, name); 996 997 if (XFS_FORCED_SHUTDOWN(mp)) 998 return -EIO; 999 1000 prid = xfs_get_initial_prid(dp); 1001 1002 /* 1003 * Make sure that we have allocated dquot(s) on disk. 1004 */ 1005 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1006 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1007 &udqp, &gdqp, &pdqp); 1008 if (error) 1009 return error; 1010 1011 if (is_dir) { 1012 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1013 tres = &M_RES(mp)->tr_mkdir; 1014 } else { 1015 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1016 tres = &M_RES(mp)->tr_create; 1017 } 1018 1019 /* 1020 * Initially assume that the file does not exist and 1021 * reserve the resources for that case. If that is not 1022 * the case we'll drop the one we have and get a more 1023 * appropriate transaction later. 1024 */ 1025 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1026 &tp); 1027 if (error == -ENOSPC) { 1028 /* flush outstanding delalloc blocks and retry */ 1029 xfs_flush_inodes(mp); 1030 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1031 resblks, &tp); 1032 } 1033 if (error) 1034 goto out_release_dquots; 1035 1036 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1037 unlock_dp_on_error = true; 1038 1039 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1040 XFS_IEXT_DIR_MANIP_CNT(mp)); 1041 if (error) 1042 goto out_trans_cancel; 1043 1044 /* 1045 * A newly created regular or special file just has one directory 1046 * entry pointing to them, but a directory also the "." entry 1047 * pointing to itself. 1048 */ 1049 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1050 if (error) 1051 goto out_trans_cancel; 1052 1053 /* 1054 * Now we join the directory inode to the transaction. We do not do it 1055 * earlier because xfs_dir_ialloc might commit the previous transaction 1056 * (and release all the locks). An error from here on will result in 1057 * the transaction cancel unlocking dp so don't do it explicitly in the 1058 * error path. 1059 */ 1060 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1061 unlock_dp_on_error = false; 1062 1063 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1064 resblks - XFS_IALLOC_SPACE_RES(mp)); 1065 if (error) { 1066 ASSERT(error != -ENOSPC); 1067 goto out_trans_cancel; 1068 } 1069 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1070 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1071 1072 if (is_dir) { 1073 error = xfs_dir_init(tp, ip, dp); 1074 if (error) 1075 goto out_trans_cancel; 1076 1077 xfs_bumplink(tp, dp); 1078 } 1079 1080 /* 1081 * If this is a synchronous mount, make sure that the 1082 * create transaction goes to disk before returning to 1083 * the user. 1084 */ 1085 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1086 xfs_trans_set_sync(tp); 1087 1088 /* 1089 * Attach the dquot(s) to the inodes and modify them incore. 1090 * These ids of the inode couldn't have changed since the new 1091 * inode has been locked ever since it was created. 1092 */ 1093 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1094 1095 error = xfs_trans_commit(tp); 1096 if (error) 1097 goto out_release_inode; 1098 1099 xfs_qm_dqrele(udqp); 1100 xfs_qm_dqrele(gdqp); 1101 xfs_qm_dqrele(pdqp); 1102 1103 *ipp = ip; 1104 return 0; 1105 1106 out_trans_cancel: 1107 xfs_trans_cancel(tp); 1108 out_release_inode: 1109 /* 1110 * Wait until after the current transaction is aborted to finish the 1111 * setup of the inode and release the inode. This prevents recursive 1112 * transactions and deadlocks from xfs_inactive. 1113 */ 1114 if (ip) { 1115 xfs_finish_inode_setup(ip); 1116 xfs_irele(ip); 1117 } 1118 out_release_dquots: 1119 xfs_qm_dqrele(udqp); 1120 xfs_qm_dqrele(gdqp); 1121 xfs_qm_dqrele(pdqp); 1122 1123 if (unlock_dp_on_error) 1124 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1125 return error; 1126 } 1127 1128 int 1129 xfs_create_tmpfile( 1130 struct xfs_inode *dp, 1131 umode_t mode, 1132 struct xfs_inode **ipp) 1133 { 1134 struct xfs_mount *mp = dp->i_mount; 1135 struct xfs_inode *ip = NULL; 1136 struct xfs_trans *tp = NULL; 1137 int error; 1138 prid_t prid; 1139 struct xfs_dquot *udqp = NULL; 1140 struct xfs_dquot *gdqp = NULL; 1141 struct xfs_dquot *pdqp = NULL; 1142 struct xfs_trans_res *tres; 1143 uint resblks; 1144 1145 if (XFS_FORCED_SHUTDOWN(mp)) 1146 return -EIO; 1147 1148 prid = xfs_get_initial_prid(dp); 1149 1150 /* 1151 * Make sure that we have allocated dquot(s) on disk. 1152 */ 1153 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1154 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1155 &udqp, &gdqp, &pdqp); 1156 if (error) 1157 return error; 1158 1159 resblks = XFS_IALLOC_SPACE_RES(mp); 1160 tres = &M_RES(mp)->tr_create_tmpfile; 1161 1162 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1163 &tp); 1164 if (error) 1165 goto out_release_dquots; 1166 1167 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1168 if (error) 1169 goto out_trans_cancel; 1170 1171 if (mp->m_flags & XFS_MOUNT_WSYNC) 1172 xfs_trans_set_sync(tp); 1173 1174 /* 1175 * Attach the dquot(s) to the inodes and modify them incore. 1176 * These ids of the inode couldn't have changed since the new 1177 * inode has been locked ever since it was created. 1178 */ 1179 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1180 1181 error = xfs_iunlink(tp, ip); 1182 if (error) 1183 goto out_trans_cancel; 1184 1185 error = xfs_trans_commit(tp); 1186 if (error) 1187 goto out_release_inode; 1188 1189 xfs_qm_dqrele(udqp); 1190 xfs_qm_dqrele(gdqp); 1191 xfs_qm_dqrele(pdqp); 1192 1193 *ipp = ip; 1194 return 0; 1195 1196 out_trans_cancel: 1197 xfs_trans_cancel(tp); 1198 out_release_inode: 1199 /* 1200 * Wait until after the current transaction is aborted to finish the 1201 * setup of the inode and release the inode. This prevents recursive 1202 * transactions and deadlocks from xfs_inactive. 1203 */ 1204 if (ip) { 1205 xfs_finish_inode_setup(ip); 1206 xfs_irele(ip); 1207 } 1208 out_release_dquots: 1209 xfs_qm_dqrele(udqp); 1210 xfs_qm_dqrele(gdqp); 1211 xfs_qm_dqrele(pdqp); 1212 1213 return error; 1214 } 1215 1216 int 1217 xfs_link( 1218 xfs_inode_t *tdp, 1219 xfs_inode_t *sip, 1220 struct xfs_name *target_name) 1221 { 1222 xfs_mount_t *mp = tdp->i_mount; 1223 xfs_trans_t *tp; 1224 int error; 1225 int resblks; 1226 1227 trace_xfs_link(tdp, target_name); 1228 1229 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1230 1231 if (XFS_FORCED_SHUTDOWN(mp)) 1232 return -EIO; 1233 1234 error = xfs_qm_dqattach(sip); 1235 if (error) 1236 goto std_return; 1237 1238 error = xfs_qm_dqattach(tdp); 1239 if (error) 1240 goto std_return; 1241 1242 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1243 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1244 if (error == -ENOSPC) { 1245 resblks = 0; 1246 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1247 } 1248 if (error) 1249 goto std_return; 1250 1251 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1252 1253 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1254 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1255 1256 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1257 XFS_IEXT_DIR_MANIP_CNT(mp)); 1258 if (error) 1259 goto error_return; 1260 1261 /* 1262 * If we are using project inheritance, we only allow hard link 1263 * creation in our tree when the project IDs are the same; else 1264 * the tree quota mechanism could be circumvented. 1265 */ 1266 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1267 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1268 error = -EXDEV; 1269 goto error_return; 1270 } 1271 1272 if (!resblks) { 1273 error = xfs_dir_canenter(tp, tdp, target_name); 1274 if (error) 1275 goto error_return; 1276 } 1277 1278 /* 1279 * Handle initial link state of O_TMPFILE inode 1280 */ 1281 if (VFS_I(sip)->i_nlink == 0) { 1282 error = xfs_iunlink_remove(tp, sip); 1283 if (error) 1284 goto error_return; 1285 } 1286 1287 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1288 resblks); 1289 if (error) 1290 goto error_return; 1291 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1292 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1293 1294 xfs_bumplink(tp, sip); 1295 1296 /* 1297 * If this is a synchronous mount, make sure that the 1298 * link transaction goes to disk before returning to 1299 * the user. 1300 */ 1301 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1302 xfs_trans_set_sync(tp); 1303 1304 return xfs_trans_commit(tp); 1305 1306 error_return: 1307 xfs_trans_cancel(tp); 1308 std_return: 1309 return error; 1310 } 1311 1312 /* Clear the reflink flag and the cowblocks tag if possible. */ 1313 static void 1314 xfs_itruncate_clear_reflink_flags( 1315 struct xfs_inode *ip) 1316 { 1317 struct xfs_ifork *dfork; 1318 struct xfs_ifork *cfork; 1319 1320 if (!xfs_is_reflink_inode(ip)) 1321 return; 1322 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1323 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1324 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1325 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1326 if (cfork->if_bytes == 0) 1327 xfs_inode_clear_cowblocks_tag(ip); 1328 } 1329 1330 /* 1331 * Free up the underlying blocks past new_size. The new size must be smaller 1332 * than the current size. This routine can be used both for the attribute and 1333 * data fork, and does not modify the inode size, which is left to the caller. 1334 * 1335 * The transaction passed to this routine must have made a permanent log 1336 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1337 * given transaction and start new ones, so make sure everything involved in 1338 * the transaction is tidy before calling here. Some transaction will be 1339 * returned to the caller to be committed. The incoming transaction must 1340 * already include the inode, and both inode locks must be held exclusively. 1341 * The inode must also be "held" within the transaction. On return the inode 1342 * will be "held" within the returned transaction. This routine does NOT 1343 * require any disk space to be reserved for it within the transaction. 1344 * 1345 * If we get an error, we must return with the inode locked and linked into the 1346 * current transaction. This keeps things simple for the higher level code, 1347 * because it always knows that the inode is locked and held in the transaction 1348 * that returns to it whether errors occur or not. We don't mark the inode 1349 * dirty on error so that transactions can be easily aborted if possible. 1350 */ 1351 int 1352 xfs_itruncate_extents_flags( 1353 struct xfs_trans **tpp, 1354 struct xfs_inode *ip, 1355 int whichfork, 1356 xfs_fsize_t new_size, 1357 int flags) 1358 { 1359 struct xfs_mount *mp = ip->i_mount; 1360 struct xfs_trans *tp = *tpp; 1361 xfs_fileoff_t first_unmap_block; 1362 xfs_filblks_t unmap_len; 1363 int error = 0; 1364 1365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1366 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1367 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1368 ASSERT(new_size <= XFS_ISIZE(ip)); 1369 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1370 ASSERT(ip->i_itemp != NULL); 1371 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1372 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1373 1374 trace_xfs_itruncate_extents_start(ip, new_size); 1375 1376 flags |= xfs_bmapi_aflag(whichfork); 1377 1378 /* 1379 * Since it is possible for space to become allocated beyond 1380 * the end of the file (in a crash where the space is allocated 1381 * but the inode size is not yet updated), simply remove any 1382 * blocks which show up between the new EOF and the maximum 1383 * possible file size. 1384 * 1385 * We have to free all the blocks to the bmbt maximum offset, even if 1386 * the page cache can't scale that far. 1387 */ 1388 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1389 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1390 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1391 return 0; 1392 } 1393 1394 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1395 while (unmap_len > 0) { 1396 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1397 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1398 flags, XFS_ITRUNC_MAX_EXTENTS); 1399 if (error) 1400 goto out; 1401 1402 /* free the just unmapped extents */ 1403 error = xfs_defer_finish(&tp); 1404 if (error) 1405 goto out; 1406 } 1407 1408 if (whichfork == XFS_DATA_FORK) { 1409 /* Remove all pending CoW reservations. */ 1410 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1411 first_unmap_block, XFS_MAX_FILEOFF, true); 1412 if (error) 1413 goto out; 1414 1415 xfs_itruncate_clear_reflink_flags(ip); 1416 } 1417 1418 /* 1419 * Always re-log the inode so that our permanent transaction can keep 1420 * on rolling it forward in the log. 1421 */ 1422 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1423 1424 trace_xfs_itruncate_extents_end(ip, new_size); 1425 1426 out: 1427 *tpp = tp; 1428 return error; 1429 } 1430 1431 int 1432 xfs_release( 1433 xfs_inode_t *ip) 1434 { 1435 xfs_mount_t *mp = ip->i_mount; 1436 int error; 1437 1438 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1439 return 0; 1440 1441 /* If this is a read-only mount, don't do this (would generate I/O) */ 1442 if (mp->m_flags & XFS_MOUNT_RDONLY) 1443 return 0; 1444 1445 if (!XFS_FORCED_SHUTDOWN(mp)) { 1446 int truncated; 1447 1448 /* 1449 * If we previously truncated this file and removed old data 1450 * in the process, we want to initiate "early" writeout on 1451 * the last close. This is an attempt to combat the notorious 1452 * NULL files problem which is particularly noticeable from a 1453 * truncate down, buffered (re-)write (delalloc), followed by 1454 * a crash. What we are effectively doing here is 1455 * significantly reducing the time window where we'd otherwise 1456 * be exposed to that problem. 1457 */ 1458 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1459 if (truncated) { 1460 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1461 if (ip->i_delayed_blks > 0) { 1462 error = filemap_flush(VFS_I(ip)->i_mapping); 1463 if (error) 1464 return error; 1465 } 1466 } 1467 } 1468 1469 if (VFS_I(ip)->i_nlink == 0) 1470 return 0; 1471 1472 if (xfs_can_free_eofblocks(ip, false)) { 1473 1474 /* 1475 * Check if the inode is being opened, written and closed 1476 * frequently and we have delayed allocation blocks outstanding 1477 * (e.g. streaming writes from the NFS server), truncating the 1478 * blocks past EOF will cause fragmentation to occur. 1479 * 1480 * In this case don't do the truncation, but we have to be 1481 * careful how we detect this case. Blocks beyond EOF show up as 1482 * i_delayed_blks even when the inode is clean, so we need to 1483 * truncate them away first before checking for a dirty release. 1484 * Hence on the first dirty close we will still remove the 1485 * speculative allocation, but after that we will leave it in 1486 * place. 1487 */ 1488 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1489 return 0; 1490 /* 1491 * If we can't get the iolock just skip truncating the blocks 1492 * past EOF because we could deadlock with the mmap_lock 1493 * otherwise. We'll get another chance to drop them once the 1494 * last reference to the inode is dropped, so we'll never leak 1495 * blocks permanently. 1496 */ 1497 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1498 error = xfs_free_eofblocks(ip); 1499 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1500 if (error) 1501 return error; 1502 } 1503 1504 /* delalloc blocks after truncation means it really is dirty */ 1505 if (ip->i_delayed_blks) 1506 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1507 } 1508 return 0; 1509 } 1510 1511 /* 1512 * xfs_inactive_truncate 1513 * 1514 * Called to perform a truncate when an inode becomes unlinked. 1515 */ 1516 STATIC int 1517 xfs_inactive_truncate( 1518 struct xfs_inode *ip) 1519 { 1520 struct xfs_mount *mp = ip->i_mount; 1521 struct xfs_trans *tp; 1522 int error; 1523 1524 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1525 if (error) { 1526 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1527 return error; 1528 } 1529 xfs_ilock(ip, XFS_ILOCK_EXCL); 1530 xfs_trans_ijoin(tp, ip, 0); 1531 1532 /* 1533 * Log the inode size first to prevent stale data exposure in the event 1534 * of a system crash before the truncate completes. See the related 1535 * comment in xfs_vn_setattr_size() for details. 1536 */ 1537 ip->i_d.di_size = 0; 1538 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1539 1540 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1541 if (error) 1542 goto error_trans_cancel; 1543 1544 ASSERT(ip->i_df.if_nextents == 0); 1545 1546 error = xfs_trans_commit(tp); 1547 if (error) 1548 goto error_unlock; 1549 1550 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1551 return 0; 1552 1553 error_trans_cancel: 1554 xfs_trans_cancel(tp); 1555 error_unlock: 1556 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1557 return error; 1558 } 1559 1560 /* 1561 * xfs_inactive_ifree() 1562 * 1563 * Perform the inode free when an inode is unlinked. 1564 */ 1565 STATIC int 1566 xfs_inactive_ifree( 1567 struct xfs_inode *ip) 1568 { 1569 struct xfs_mount *mp = ip->i_mount; 1570 struct xfs_trans *tp; 1571 int error; 1572 1573 /* 1574 * We try to use a per-AG reservation for any block needed by the finobt 1575 * tree, but as the finobt feature predates the per-AG reservation 1576 * support a degraded file system might not have enough space for the 1577 * reservation at mount time. In that case try to dip into the reserved 1578 * pool and pray. 1579 * 1580 * Send a warning if the reservation does happen to fail, as the inode 1581 * now remains allocated and sits on the unlinked list until the fs is 1582 * repaired. 1583 */ 1584 if (unlikely(mp->m_finobt_nores)) { 1585 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1586 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1587 &tp); 1588 } else { 1589 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1590 } 1591 if (error) { 1592 if (error == -ENOSPC) { 1593 xfs_warn_ratelimited(mp, 1594 "Failed to remove inode(s) from unlinked list. " 1595 "Please free space, unmount and run xfs_repair."); 1596 } else { 1597 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1598 } 1599 return error; 1600 } 1601 1602 /* 1603 * We do not hold the inode locked across the entire rolling transaction 1604 * here. We only need to hold it for the first transaction that 1605 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1606 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1607 * here breaks the relationship between cluster buffer invalidation and 1608 * stale inode invalidation on cluster buffer item journal commit 1609 * completion, and can result in leaving dirty stale inodes hanging 1610 * around in memory. 1611 * 1612 * We have no need for serialising this inode operation against other 1613 * operations - we freed the inode and hence reallocation is required 1614 * and that will serialise on reallocating the space the deferops need 1615 * to free. Hence we can unlock the inode on the first commit of 1616 * the transaction rather than roll it right through the deferops. This 1617 * avoids relogging the XFS_ISTALE inode. 1618 * 1619 * We check that xfs_ifree() hasn't grown an internal transaction roll 1620 * by asserting that the inode is still locked when it returns. 1621 */ 1622 xfs_ilock(ip, XFS_ILOCK_EXCL); 1623 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1624 1625 error = xfs_ifree(tp, ip); 1626 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1627 if (error) { 1628 /* 1629 * If we fail to free the inode, shut down. The cancel 1630 * might do that, we need to make sure. Otherwise the 1631 * inode might be lost for a long time or forever. 1632 */ 1633 if (!XFS_FORCED_SHUTDOWN(mp)) { 1634 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1635 __func__, error); 1636 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1637 } 1638 xfs_trans_cancel(tp); 1639 return error; 1640 } 1641 1642 /* 1643 * Credit the quota account(s). The inode is gone. 1644 */ 1645 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1646 1647 /* 1648 * Just ignore errors at this point. There is nothing we can do except 1649 * to try to keep going. Make sure it's not a silent error. 1650 */ 1651 error = xfs_trans_commit(tp); 1652 if (error) 1653 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1654 __func__, error); 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * xfs_inactive 1661 * 1662 * This is called when the vnode reference count for the vnode 1663 * goes to zero. If the file has been unlinked, then it must 1664 * now be truncated. Also, we clear all of the read-ahead state 1665 * kept for the inode here since the file is now closed. 1666 */ 1667 void 1668 xfs_inactive( 1669 xfs_inode_t *ip) 1670 { 1671 struct xfs_mount *mp; 1672 int error; 1673 int truncate = 0; 1674 1675 /* 1676 * If the inode is already free, then there can be nothing 1677 * to clean up here. 1678 */ 1679 if (VFS_I(ip)->i_mode == 0) { 1680 ASSERT(ip->i_df.if_broot_bytes == 0); 1681 return; 1682 } 1683 1684 mp = ip->i_mount; 1685 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1686 1687 /* If this is a read-only mount, don't do this (would generate I/O) */ 1688 if (mp->m_flags & XFS_MOUNT_RDONLY) 1689 return; 1690 1691 /* Try to clean out the cow blocks if there are any. */ 1692 if (xfs_inode_has_cow_data(ip)) 1693 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1694 1695 if (VFS_I(ip)->i_nlink != 0) { 1696 /* 1697 * force is true because we are evicting an inode from the 1698 * cache. Post-eof blocks must be freed, lest we end up with 1699 * broken free space accounting. 1700 * 1701 * Note: don't bother with iolock here since lockdep complains 1702 * about acquiring it in reclaim context. We have the only 1703 * reference to the inode at this point anyways. 1704 */ 1705 if (xfs_can_free_eofblocks(ip, true)) 1706 xfs_free_eofblocks(ip); 1707 1708 return; 1709 } 1710 1711 if (S_ISREG(VFS_I(ip)->i_mode) && 1712 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1713 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1714 truncate = 1; 1715 1716 error = xfs_qm_dqattach(ip); 1717 if (error) 1718 return; 1719 1720 if (S_ISLNK(VFS_I(ip)->i_mode)) 1721 error = xfs_inactive_symlink(ip); 1722 else if (truncate) 1723 error = xfs_inactive_truncate(ip); 1724 if (error) 1725 return; 1726 1727 /* 1728 * If there are attributes associated with the file then blow them away 1729 * now. The code calls a routine that recursively deconstructs the 1730 * attribute fork. If also blows away the in-core attribute fork. 1731 */ 1732 if (XFS_IFORK_Q(ip)) { 1733 error = xfs_attr_inactive(ip); 1734 if (error) 1735 return; 1736 } 1737 1738 ASSERT(!ip->i_afp); 1739 ASSERT(ip->i_d.di_forkoff == 0); 1740 1741 /* 1742 * Free the inode. 1743 */ 1744 error = xfs_inactive_ifree(ip); 1745 if (error) 1746 return; 1747 1748 /* 1749 * Release the dquots held by inode, if any. 1750 */ 1751 xfs_qm_dqdetach(ip); 1752 } 1753 1754 /* 1755 * In-Core Unlinked List Lookups 1756 * ============================= 1757 * 1758 * Every inode is supposed to be reachable from some other piece of metadata 1759 * with the exception of the root directory. Inodes with a connection to a 1760 * file descriptor but not linked from anywhere in the on-disk directory tree 1761 * are collectively known as unlinked inodes, though the filesystem itself 1762 * maintains links to these inodes so that on-disk metadata are consistent. 1763 * 1764 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1765 * header contains a number of buckets that point to an inode, and each inode 1766 * record has a pointer to the next inode in the hash chain. This 1767 * singly-linked list causes scaling problems in the iunlink remove function 1768 * because we must walk that list to find the inode that points to the inode 1769 * being removed from the unlinked hash bucket list. 1770 * 1771 * What if we modelled the unlinked list as a collection of records capturing 1772 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1773 * have a fast way to look up unlinked list predecessors, which avoids the 1774 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1775 * rhashtable. 1776 * 1777 * Because this is a backref cache, we ignore operational failures since the 1778 * iunlink code can fall back to the slow bucket walk. The only errors that 1779 * should bubble out are for obviously incorrect situations. 1780 * 1781 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1782 * access or have otherwise provided for concurrency control. 1783 */ 1784 1785 /* Capture a "X.next_unlinked = Y" relationship. */ 1786 struct xfs_iunlink { 1787 struct rhash_head iu_rhash_head; 1788 xfs_agino_t iu_agino; /* X */ 1789 xfs_agino_t iu_next_unlinked; /* Y */ 1790 }; 1791 1792 /* Unlinked list predecessor lookup hashtable construction */ 1793 static int 1794 xfs_iunlink_obj_cmpfn( 1795 struct rhashtable_compare_arg *arg, 1796 const void *obj) 1797 { 1798 const xfs_agino_t *key = arg->key; 1799 const struct xfs_iunlink *iu = obj; 1800 1801 if (iu->iu_next_unlinked != *key) 1802 return 1; 1803 return 0; 1804 } 1805 1806 static const struct rhashtable_params xfs_iunlink_hash_params = { 1807 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1808 .key_len = sizeof(xfs_agino_t), 1809 .key_offset = offsetof(struct xfs_iunlink, 1810 iu_next_unlinked), 1811 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1812 .automatic_shrinking = true, 1813 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1814 }; 1815 1816 /* 1817 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1818 * relation is found. 1819 */ 1820 static xfs_agino_t 1821 xfs_iunlink_lookup_backref( 1822 struct xfs_perag *pag, 1823 xfs_agino_t agino) 1824 { 1825 struct xfs_iunlink *iu; 1826 1827 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1828 xfs_iunlink_hash_params); 1829 return iu ? iu->iu_agino : NULLAGINO; 1830 } 1831 1832 /* 1833 * Take ownership of an iunlink cache entry and insert it into the hash table. 1834 * If successful, the entry will be owned by the cache; if not, it is freed. 1835 * Either way, the caller does not own @iu after this call. 1836 */ 1837 static int 1838 xfs_iunlink_insert_backref( 1839 struct xfs_perag *pag, 1840 struct xfs_iunlink *iu) 1841 { 1842 int error; 1843 1844 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1845 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1846 /* 1847 * Fail loudly if there already was an entry because that's a sign of 1848 * corruption of in-memory data. Also fail loudly if we see an error 1849 * code we didn't anticipate from the rhashtable code. Currently we 1850 * only anticipate ENOMEM. 1851 */ 1852 if (error) { 1853 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1854 kmem_free(iu); 1855 } 1856 /* 1857 * Absorb any runtime errors that aren't a result of corruption because 1858 * this is a cache and we can always fall back to bucket list scanning. 1859 */ 1860 if (error != 0 && error != -EEXIST) 1861 error = 0; 1862 return error; 1863 } 1864 1865 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1866 static int 1867 xfs_iunlink_add_backref( 1868 struct xfs_perag *pag, 1869 xfs_agino_t prev_agino, 1870 xfs_agino_t this_agino) 1871 { 1872 struct xfs_iunlink *iu; 1873 1874 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1875 return 0; 1876 1877 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1878 iu->iu_agino = prev_agino; 1879 iu->iu_next_unlinked = this_agino; 1880 1881 return xfs_iunlink_insert_backref(pag, iu); 1882 } 1883 1884 /* 1885 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1886 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1887 * wasn't any such entry then we don't bother. 1888 */ 1889 static int 1890 xfs_iunlink_change_backref( 1891 struct xfs_perag *pag, 1892 xfs_agino_t agino, 1893 xfs_agino_t next_unlinked) 1894 { 1895 struct xfs_iunlink *iu; 1896 int error; 1897 1898 /* Look up the old entry; if there wasn't one then exit. */ 1899 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1900 xfs_iunlink_hash_params); 1901 if (!iu) 1902 return 0; 1903 1904 /* 1905 * Remove the entry. This shouldn't ever return an error, but if we 1906 * couldn't remove the old entry we don't want to add it again to the 1907 * hash table, and if the entry disappeared on us then someone's 1908 * violated the locking rules and we need to fail loudly. Either way 1909 * we cannot remove the inode because internal state is or would have 1910 * been corrupt. 1911 */ 1912 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1913 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1914 if (error) 1915 return error; 1916 1917 /* If there is no new next entry just free our item and return. */ 1918 if (next_unlinked == NULLAGINO) { 1919 kmem_free(iu); 1920 return 0; 1921 } 1922 1923 /* Update the entry and re-add it to the hash table. */ 1924 iu->iu_next_unlinked = next_unlinked; 1925 return xfs_iunlink_insert_backref(pag, iu); 1926 } 1927 1928 /* Set up the in-core predecessor structures. */ 1929 int 1930 xfs_iunlink_init( 1931 struct xfs_perag *pag) 1932 { 1933 return rhashtable_init(&pag->pagi_unlinked_hash, 1934 &xfs_iunlink_hash_params); 1935 } 1936 1937 /* Free the in-core predecessor structures. */ 1938 static void 1939 xfs_iunlink_free_item( 1940 void *ptr, 1941 void *arg) 1942 { 1943 struct xfs_iunlink *iu = ptr; 1944 bool *freed_anything = arg; 1945 1946 *freed_anything = true; 1947 kmem_free(iu); 1948 } 1949 1950 void 1951 xfs_iunlink_destroy( 1952 struct xfs_perag *pag) 1953 { 1954 bool freed_anything = false; 1955 1956 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1957 xfs_iunlink_free_item, &freed_anything); 1958 1959 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 1960 } 1961 1962 /* 1963 * Point the AGI unlinked bucket at an inode and log the results. The caller 1964 * is responsible for validating the old value. 1965 */ 1966 STATIC int 1967 xfs_iunlink_update_bucket( 1968 struct xfs_trans *tp, 1969 xfs_agnumber_t agno, 1970 struct xfs_buf *agibp, 1971 unsigned int bucket_index, 1972 xfs_agino_t new_agino) 1973 { 1974 struct xfs_agi *agi = agibp->b_addr; 1975 xfs_agino_t old_value; 1976 int offset; 1977 1978 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 1979 1980 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1981 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 1982 old_value, new_agino); 1983 1984 /* 1985 * We should never find the head of the list already set to the value 1986 * passed in because either we're adding or removing ourselves from the 1987 * head of the list. 1988 */ 1989 if (old_value == new_agino) { 1990 xfs_buf_mark_corrupt(agibp); 1991 return -EFSCORRUPTED; 1992 } 1993 1994 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 1995 offset = offsetof(struct xfs_agi, agi_unlinked) + 1996 (sizeof(xfs_agino_t) * bucket_index); 1997 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 1998 return 0; 1999 } 2000 2001 /* Set an on-disk inode's next_unlinked pointer. */ 2002 STATIC void 2003 xfs_iunlink_update_dinode( 2004 struct xfs_trans *tp, 2005 xfs_agnumber_t agno, 2006 xfs_agino_t agino, 2007 struct xfs_buf *ibp, 2008 struct xfs_dinode *dip, 2009 struct xfs_imap *imap, 2010 xfs_agino_t next_agino) 2011 { 2012 struct xfs_mount *mp = tp->t_mountp; 2013 int offset; 2014 2015 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2016 2017 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2018 be32_to_cpu(dip->di_next_unlinked), next_agino); 2019 2020 dip->di_next_unlinked = cpu_to_be32(next_agino); 2021 offset = imap->im_boffset + 2022 offsetof(struct xfs_dinode, di_next_unlinked); 2023 2024 /* need to recalc the inode CRC if appropriate */ 2025 xfs_dinode_calc_crc(mp, dip); 2026 xfs_trans_inode_buf(tp, ibp); 2027 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2028 } 2029 2030 /* Set an in-core inode's unlinked pointer and return the old value. */ 2031 STATIC int 2032 xfs_iunlink_update_inode( 2033 struct xfs_trans *tp, 2034 struct xfs_inode *ip, 2035 xfs_agnumber_t agno, 2036 xfs_agino_t next_agino, 2037 xfs_agino_t *old_next_agino) 2038 { 2039 struct xfs_mount *mp = tp->t_mountp; 2040 struct xfs_dinode *dip; 2041 struct xfs_buf *ibp; 2042 xfs_agino_t old_value; 2043 int error; 2044 2045 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2046 2047 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2048 if (error) 2049 return error; 2050 2051 /* Make sure the old pointer isn't garbage. */ 2052 old_value = be32_to_cpu(dip->di_next_unlinked); 2053 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2054 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2055 sizeof(*dip), __this_address); 2056 error = -EFSCORRUPTED; 2057 goto out; 2058 } 2059 2060 /* 2061 * Since we're updating a linked list, we should never find that the 2062 * current pointer is the same as the new value, unless we're 2063 * terminating the list. 2064 */ 2065 *old_next_agino = old_value; 2066 if (old_value == next_agino) { 2067 if (next_agino != NULLAGINO) { 2068 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2069 dip, sizeof(*dip), __this_address); 2070 error = -EFSCORRUPTED; 2071 } 2072 goto out; 2073 } 2074 2075 /* Ok, update the new pointer. */ 2076 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2077 ibp, dip, &ip->i_imap, next_agino); 2078 return 0; 2079 out: 2080 xfs_trans_brelse(tp, ibp); 2081 return error; 2082 } 2083 2084 /* 2085 * This is called when the inode's link count has gone to 0 or we are creating 2086 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2087 * 2088 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2089 * list when the inode is freed. 2090 */ 2091 STATIC int 2092 xfs_iunlink( 2093 struct xfs_trans *tp, 2094 struct xfs_inode *ip) 2095 { 2096 struct xfs_mount *mp = tp->t_mountp; 2097 struct xfs_agi *agi; 2098 struct xfs_buf *agibp; 2099 xfs_agino_t next_agino; 2100 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2101 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2102 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2103 int error; 2104 2105 ASSERT(VFS_I(ip)->i_nlink == 0); 2106 ASSERT(VFS_I(ip)->i_mode != 0); 2107 trace_xfs_iunlink(ip); 2108 2109 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2110 error = xfs_read_agi(mp, tp, agno, &agibp); 2111 if (error) 2112 return error; 2113 agi = agibp->b_addr; 2114 2115 /* 2116 * Get the index into the agi hash table for the list this inode will 2117 * go on. Make sure the pointer isn't garbage and that this inode 2118 * isn't already on the list. 2119 */ 2120 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2121 if (next_agino == agino || 2122 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2123 xfs_buf_mark_corrupt(agibp); 2124 return -EFSCORRUPTED; 2125 } 2126 2127 if (next_agino != NULLAGINO) { 2128 xfs_agino_t old_agino; 2129 2130 /* 2131 * There is already another inode in the bucket, so point this 2132 * inode to the current head of the list. 2133 */ 2134 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2135 &old_agino); 2136 if (error) 2137 return error; 2138 ASSERT(old_agino == NULLAGINO); 2139 2140 /* 2141 * agino has been unlinked, add a backref from the next inode 2142 * back to agino. 2143 */ 2144 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2145 if (error) 2146 return error; 2147 } 2148 2149 /* Point the head of the list to point to this inode. */ 2150 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2151 } 2152 2153 /* Return the imap, dinode pointer, and buffer for an inode. */ 2154 STATIC int 2155 xfs_iunlink_map_ino( 2156 struct xfs_trans *tp, 2157 xfs_agnumber_t agno, 2158 xfs_agino_t agino, 2159 struct xfs_imap *imap, 2160 struct xfs_dinode **dipp, 2161 struct xfs_buf **bpp) 2162 { 2163 struct xfs_mount *mp = tp->t_mountp; 2164 int error; 2165 2166 imap->im_blkno = 0; 2167 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2168 if (error) { 2169 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2170 __func__, error); 2171 return error; 2172 } 2173 2174 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2175 if (error) { 2176 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2177 __func__, error); 2178 return error; 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* 2185 * Walk the unlinked chain from @head_agino until we find the inode that 2186 * points to @target_agino. Return the inode number, map, dinode pointer, 2187 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2188 * 2189 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2190 * @agino, @imap, @dipp, and @bpp are all output parameters. 2191 * 2192 * Do not call this function if @target_agino is the head of the list. 2193 */ 2194 STATIC int 2195 xfs_iunlink_map_prev( 2196 struct xfs_trans *tp, 2197 xfs_agnumber_t agno, 2198 xfs_agino_t head_agino, 2199 xfs_agino_t target_agino, 2200 xfs_agino_t *agino, 2201 struct xfs_imap *imap, 2202 struct xfs_dinode **dipp, 2203 struct xfs_buf **bpp, 2204 struct xfs_perag *pag) 2205 { 2206 struct xfs_mount *mp = tp->t_mountp; 2207 xfs_agino_t next_agino; 2208 int error; 2209 2210 ASSERT(head_agino != target_agino); 2211 *bpp = NULL; 2212 2213 /* See if our backref cache can find it faster. */ 2214 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2215 if (*agino != NULLAGINO) { 2216 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2217 if (error) 2218 return error; 2219 2220 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2221 return 0; 2222 2223 /* 2224 * If we get here the cache contents were corrupt, so drop the 2225 * buffer and fall back to walking the bucket list. 2226 */ 2227 xfs_trans_brelse(tp, *bpp); 2228 *bpp = NULL; 2229 WARN_ON_ONCE(1); 2230 } 2231 2232 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2233 2234 /* Otherwise, walk the entire bucket until we find it. */ 2235 next_agino = head_agino; 2236 while (next_agino != target_agino) { 2237 xfs_agino_t unlinked_agino; 2238 2239 if (*bpp) 2240 xfs_trans_brelse(tp, *bpp); 2241 2242 *agino = next_agino; 2243 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2244 bpp); 2245 if (error) 2246 return error; 2247 2248 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2249 /* 2250 * Make sure this pointer is valid and isn't an obvious 2251 * infinite loop. 2252 */ 2253 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2254 next_agino == unlinked_agino) { 2255 XFS_CORRUPTION_ERROR(__func__, 2256 XFS_ERRLEVEL_LOW, mp, 2257 *dipp, sizeof(**dipp)); 2258 error = -EFSCORRUPTED; 2259 return error; 2260 } 2261 next_agino = unlinked_agino; 2262 } 2263 2264 return 0; 2265 } 2266 2267 /* 2268 * Pull the on-disk inode from the AGI unlinked list. 2269 */ 2270 STATIC int 2271 xfs_iunlink_remove( 2272 struct xfs_trans *tp, 2273 struct xfs_inode *ip) 2274 { 2275 struct xfs_mount *mp = tp->t_mountp; 2276 struct xfs_agi *agi; 2277 struct xfs_buf *agibp; 2278 struct xfs_buf *last_ibp; 2279 struct xfs_dinode *last_dip = NULL; 2280 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2281 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2282 xfs_agino_t next_agino; 2283 xfs_agino_t head_agino; 2284 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2285 int error; 2286 2287 trace_xfs_iunlink_remove(ip); 2288 2289 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2290 error = xfs_read_agi(mp, tp, agno, &agibp); 2291 if (error) 2292 return error; 2293 agi = agibp->b_addr; 2294 2295 /* 2296 * Get the index into the agi hash table for the list this inode will 2297 * go on. Make sure the head pointer isn't garbage. 2298 */ 2299 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2300 if (!xfs_verify_agino(mp, agno, head_agino)) { 2301 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2302 agi, sizeof(*agi)); 2303 return -EFSCORRUPTED; 2304 } 2305 2306 /* 2307 * Set our inode's next_unlinked pointer to NULL and then return 2308 * the old pointer value so that we can update whatever was previous 2309 * to us in the list to point to whatever was next in the list. 2310 */ 2311 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2312 if (error) 2313 return error; 2314 2315 /* 2316 * If there was a backref pointing from the next inode back to this 2317 * one, remove it because we've removed this inode from the list. 2318 * 2319 * Later, if this inode was in the middle of the list we'll update 2320 * this inode's backref to point from the next inode. 2321 */ 2322 if (next_agino != NULLAGINO) { 2323 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2324 NULLAGINO); 2325 if (error) 2326 return error; 2327 } 2328 2329 if (head_agino != agino) { 2330 struct xfs_imap imap; 2331 xfs_agino_t prev_agino; 2332 2333 /* We need to search the list for the inode being freed. */ 2334 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2335 &prev_agino, &imap, &last_dip, &last_ibp, 2336 agibp->b_pag); 2337 if (error) 2338 return error; 2339 2340 /* Point the previous inode on the list to the next inode. */ 2341 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2342 last_dip, &imap, next_agino); 2343 2344 /* 2345 * Now we deal with the backref for this inode. If this inode 2346 * pointed at a real inode, change the backref that pointed to 2347 * us to point to our old next. If this inode was the end of 2348 * the list, delete the backref that pointed to us. Note that 2349 * change_backref takes care of deleting the backref if 2350 * next_agino is NULLAGINO. 2351 */ 2352 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2353 next_agino); 2354 } 2355 2356 /* Point the head of the list to the next unlinked inode. */ 2357 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2358 next_agino); 2359 } 2360 2361 /* 2362 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2363 * mark it stale. We should only find clean inodes in this lookup that aren't 2364 * already stale. 2365 */ 2366 static void 2367 xfs_ifree_mark_inode_stale( 2368 struct xfs_buf *bp, 2369 struct xfs_inode *free_ip, 2370 xfs_ino_t inum) 2371 { 2372 struct xfs_mount *mp = bp->b_mount; 2373 struct xfs_perag *pag = bp->b_pag; 2374 struct xfs_inode_log_item *iip; 2375 struct xfs_inode *ip; 2376 2377 retry: 2378 rcu_read_lock(); 2379 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2380 2381 /* Inode not in memory, nothing to do */ 2382 if (!ip) { 2383 rcu_read_unlock(); 2384 return; 2385 } 2386 2387 /* 2388 * because this is an RCU protected lookup, we could find a recently 2389 * freed or even reallocated inode during the lookup. We need to check 2390 * under the i_flags_lock for a valid inode here. Skip it if it is not 2391 * valid, the wrong inode or stale. 2392 */ 2393 spin_lock(&ip->i_flags_lock); 2394 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2395 goto out_iflags_unlock; 2396 2397 /* 2398 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2399 * other inodes that we did not find in the list attached to the buffer 2400 * and are not already marked stale. If we can't lock it, back off and 2401 * retry. 2402 */ 2403 if (ip != free_ip) { 2404 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2405 spin_unlock(&ip->i_flags_lock); 2406 rcu_read_unlock(); 2407 delay(1); 2408 goto retry; 2409 } 2410 } 2411 ip->i_flags |= XFS_ISTALE; 2412 2413 /* 2414 * If the inode is flushing, it is already attached to the buffer. All 2415 * we needed to do here is mark the inode stale so buffer IO completion 2416 * will remove it from the AIL. 2417 */ 2418 iip = ip->i_itemp; 2419 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2420 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2421 ASSERT(iip->ili_last_fields); 2422 goto out_iunlock; 2423 } 2424 2425 /* 2426 * Inodes not attached to the buffer can be released immediately. 2427 * Everything else has to go through xfs_iflush_abort() on journal 2428 * commit as the flock synchronises removal of the inode from the 2429 * cluster buffer against inode reclaim. 2430 */ 2431 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2432 goto out_iunlock; 2433 2434 __xfs_iflags_set(ip, XFS_IFLUSHING); 2435 spin_unlock(&ip->i_flags_lock); 2436 rcu_read_unlock(); 2437 2438 /* we have a dirty inode in memory that has not yet been flushed. */ 2439 spin_lock(&iip->ili_lock); 2440 iip->ili_last_fields = iip->ili_fields; 2441 iip->ili_fields = 0; 2442 iip->ili_fsync_fields = 0; 2443 spin_unlock(&iip->ili_lock); 2444 ASSERT(iip->ili_last_fields); 2445 2446 if (ip != free_ip) 2447 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2448 return; 2449 2450 out_iunlock: 2451 if (ip != free_ip) 2452 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2453 out_iflags_unlock: 2454 spin_unlock(&ip->i_flags_lock); 2455 rcu_read_unlock(); 2456 } 2457 2458 /* 2459 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2460 * inodes that are in memory - they all must be marked stale and attached to 2461 * the cluster buffer. 2462 */ 2463 STATIC int 2464 xfs_ifree_cluster( 2465 struct xfs_inode *free_ip, 2466 struct xfs_trans *tp, 2467 struct xfs_icluster *xic) 2468 { 2469 struct xfs_mount *mp = free_ip->i_mount; 2470 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2471 struct xfs_buf *bp; 2472 xfs_daddr_t blkno; 2473 xfs_ino_t inum = xic->first_ino; 2474 int nbufs; 2475 int i, j; 2476 int ioffset; 2477 int error; 2478 2479 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2480 2481 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2482 /* 2483 * The allocation bitmap tells us which inodes of the chunk were 2484 * physically allocated. Skip the cluster if an inode falls into 2485 * a sparse region. 2486 */ 2487 ioffset = inum - xic->first_ino; 2488 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2489 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2490 continue; 2491 } 2492 2493 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2494 XFS_INO_TO_AGBNO(mp, inum)); 2495 2496 /* 2497 * We obtain and lock the backing buffer first in the process 2498 * here to ensure dirty inodes attached to the buffer remain in 2499 * the flushing state while we mark them stale. 2500 * 2501 * If we scan the in-memory inodes first, then buffer IO can 2502 * complete before we get a lock on it, and hence we may fail 2503 * to mark all the active inodes on the buffer stale. 2504 */ 2505 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2506 mp->m_bsize * igeo->blocks_per_cluster, 2507 XBF_UNMAPPED, &bp); 2508 if (error) 2509 return error; 2510 2511 /* 2512 * This buffer may not have been correctly initialised as we 2513 * didn't read it from disk. That's not important because we are 2514 * only using to mark the buffer as stale in the log, and to 2515 * attach stale cached inodes on it. That means it will never be 2516 * dispatched for IO. If it is, we want to know about it, and we 2517 * want it to fail. We can acheive this by adding a write 2518 * verifier to the buffer. 2519 */ 2520 bp->b_ops = &xfs_inode_buf_ops; 2521 2522 /* 2523 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2524 * too. This requires lookups, and will skip inodes that we've 2525 * already marked XFS_ISTALE. 2526 */ 2527 for (i = 0; i < igeo->inodes_per_cluster; i++) 2528 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2529 2530 xfs_trans_stale_inode_buf(tp, bp); 2531 xfs_trans_binval(tp, bp); 2532 } 2533 return 0; 2534 } 2535 2536 /* 2537 * This is called to return an inode to the inode free list. 2538 * The inode should already be truncated to 0 length and have 2539 * no pages associated with it. This routine also assumes that 2540 * the inode is already a part of the transaction. 2541 * 2542 * The on-disk copy of the inode will have been added to the list 2543 * of unlinked inodes in the AGI. We need to remove the inode from 2544 * that list atomically with respect to freeing it here. 2545 */ 2546 int 2547 xfs_ifree( 2548 struct xfs_trans *tp, 2549 struct xfs_inode *ip) 2550 { 2551 int error; 2552 struct xfs_icluster xic = { 0 }; 2553 struct xfs_inode_log_item *iip = ip->i_itemp; 2554 2555 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2556 ASSERT(VFS_I(ip)->i_nlink == 0); 2557 ASSERT(ip->i_df.if_nextents == 0); 2558 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2559 ASSERT(ip->i_d.di_nblocks == 0); 2560 2561 /* 2562 * Pull the on-disk inode from the AGI unlinked list. 2563 */ 2564 error = xfs_iunlink_remove(tp, ip); 2565 if (error) 2566 return error; 2567 2568 error = xfs_difree(tp, ip->i_ino, &xic); 2569 if (error) 2570 return error; 2571 2572 /* 2573 * Free any local-format data sitting around before we reset the 2574 * data fork to extents format. Note that the attr fork data has 2575 * already been freed by xfs_attr_inactive. 2576 */ 2577 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2578 kmem_free(ip->i_df.if_u1.if_data); 2579 ip->i_df.if_u1.if_data = NULL; 2580 ip->i_df.if_bytes = 0; 2581 } 2582 2583 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2584 ip->i_d.di_flags = 0; 2585 ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2; 2586 ip->i_d.di_dmevmask = 0; 2587 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2588 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2589 2590 /* Don't attempt to replay owner changes for a deleted inode */ 2591 spin_lock(&iip->ili_lock); 2592 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2593 spin_unlock(&iip->ili_lock); 2594 2595 /* 2596 * Bump the generation count so no one will be confused 2597 * by reincarnations of this inode. 2598 */ 2599 VFS_I(ip)->i_generation++; 2600 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2601 2602 if (xic.deleted) 2603 error = xfs_ifree_cluster(ip, tp, &xic); 2604 2605 return error; 2606 } 2607 2608 /* 2609 * This is called to unpin an inode. The caller must have the inode locked 2610 * in at least shared mode so that the buffer cannot be subsequently pinned 2611 * once someone is waiting for it to be unpinned. 2612 */ 2613 static void 2614 xfs_iunpin( 2615 struct xfs_inode *ip) 2616 { 2617 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2618 2619 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2620 2621 /* Give the log a push to start the unpinning I/O */ 2622 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2623 2624 } 2625 2626 static void 2627 __xfs_iunpin_wait( 2628 struct xfs_inode *ip) 2629 { 2630 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2631 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2632 2633 xfs_iunpin(ip); 2634 2635 do { 2636 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2637 if (xfs_ipincount(ip)) 2638 io_schedule(); 2639 } while (xfs_ipincount(ip)); 2640 finish_wait(wq, &wait.wq_entry); 2641 } 2642 2643 void 2644 xfs_iunpin_wait( 2645 struct xfs_inode *ip) 2646 { 2647 if (xfs_ipincount(ip)) 2648 __xfs_iunpin_wait(ip); 2649 } 2650 2651 /* 2652 * Removing an inode from the namespace involves removing the directory entry 2653 * and dropping the link count on the inode. Removing the directory entry can 2654 * result in locking an AGF (directory blocks were freed) and removing a link 2655 * count can result in placing the inode on an unlinked list which results in 2656 * locking an AGI. 2657 * 2658 * The big problem here is that we have an ordering constraint on AGF and AGI 2659 * locking - inode allocation locks the AGI, then can allocate a new extent for 2660 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2661 * removes the inode from the unlinked list, requiring that we lock the AGI 2662 * first, and then freeing the inode can result in an inode chunk being freed 2663 * and hence freeing disk space requiring that we lock an AGF. 2664 * 2665 * Hence the ordering that is imposed by other parts of the code is AGI before 2666 * AGF. This means we cannot remove the directory entry before we drop the inode 2667 * reference count and put it on the unlinked list as this results in a lock 2668 * order of AGF then AGI, and this can deadlock against inode allocation and 2669 * freeing. Therefore we must drop the link counts before we remove the 2670 * directory entry. 2671 * 2672 * This is still safe from a transactional point of view - it is not until we 2673 * get to xfs_defer_finish() that we have the possibility of multiple 2674 * transactions in this operation. Hence as long as we remove the directory 2675 * entry and drop the link count in the first transaction of the remove 2676 * operation, there are no transactional constraints on the ordering here. 2677 */ 2678 int 2679 xfs_remove( 2680 xfs_inode_t *dp, 2681 struct xfs_name *name, 2682 xfs_inode_t *ip) 2683 { 2684 xfs_mount_t *mp = dp->i_mount; 2685 xfs_trans_t *tp = NULL; 2686 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2687 int error = 0; 2688 uint resblks; 2689 2690 trace_xfs_remove(dp, name); 2691 2692 if (XFS_FORCED_SHUTDOWN(mp)) 2693 return -EIO; 2694 2695 error = xfs_qm_dqattach(dp); 2696 if (error) 2697 goto std_return; 2698 2699 error = xfs_qm_dqattach(ip); 2700 if (error) 2701 goto std_return; 2702 2703 /* 2704 * We try to get the real space reservation first, 2705 * allowing for directory btree deletion(s) implying 2706 * possible bmap insert(s). If we can't get the space 2707 * reservation then we use 0 instead, and avoid the bmap 2708 * btree insert(s) in the directory code by, if the bmap 2709 * insert tries to happen, instead trimming the LAST 2710 * block from the directory. 2711 */ 2712 resblks = XFS_REMOVE_SPACE_RES(mp); 2713 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2714 if (error == -ENOSPC) { 2715 resblks = 0; 2716 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2717 &tp); 2718 } 2719 if (error) { 2720 ASSERT(error != -ENOSPC); 2721 goto std_return; 2722 } 2723 2724 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2725 2726 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2727 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2728 2729 /* 2730 * If we're removing a directory perform some additional validation. 2731 */ 2732 if (is_dir) { 2733 ASSERT(VFS_I(ip)->i_nlink >= 2); 2734 if (VFS_I(ip)->i_nlink != 2) { 2735 error = -ENOTEMPTY; 2736 goto out_trans_cancel; 2737 } 2738 if (!xfs_dir_isempty(ip)) { 2739 error = -ENOTEMPTY; 2740 goto out_trans_cancel; 2741 } 2742 2743 /* Drop the link from ip's "..". */ 2744 error = xfs_droplink(tp, dp); 2745 if (error) 2746 goto out_trans_cancel; 2747 2748 /* Drop the "." link from ip to self. */ 2749 error = xfs_droplink(tp, ip); 2750 if (error) 2751 goto out_trans_cancel; 2752 } else { 2753 /* 2754 * When removing a non-directory we need to log the parent 2755 * inode here. For a directory this is done implicitly 2756 * by the xfs_droplink call for the ".." entry. 2757 */ 2758 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2759 } 2760 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2761 2762 /* Drop the link from dp to ip. */ 2763 error = xfs_droplink(tp, ip); 2764 if (error) 2765 goto out_trans_cancel; 2766 2767 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2768 if (error) { 2769 ASSERT(error != -ENOENT); 2770 goto out_trans_cancel; 2771 } 2772 2773 /* 2774 * If this is a synchronous mount, make sure that the 2775 * remove transaction goes to disk before returning to 2776 * the user. 2777 */ 2778 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2779 xfs_trans_set_sync(tp); 2780 2781 error = xfs_trans_commit(tp); 2782 if (error) 2783 goto std_return; 2784 2785 if (is_dir && xfs_inode_is_filestream(ip)) 2786 xfs_filestream_deassociate(ip); 2787 2788 return 0; 2789 2790 out_trans_cancel: 2791 xfs_trans_cancel(tp); 2792 std_return: 2793 return error; 2794 } 2795 2796 /* 2797 * Enter all inodes for a rename transaction into a sorted array. 2798 */ 2799 #define __XFS_SORT_INODES 5 2800 STATIC void 2801 xfs_sort_for_rename( 2802 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2803 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2804 struct xfs_inode *ip1, /* in: inode of old entry */ 2805 struct xfs_inode *ip2, /* in: inode of new entry */ 2806 struct xfs_inode *wip, /* in: whiteout inode */ 2807 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2808 int *num_inodes) /* in/out: inodes in array */ 2809 { 2810 int i, j; 2811 2812 ASSERT(*num_inodes == __XFS_SORT_INODES); 2813 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2814 2815 /* 2816 * i_tab contains a list of pointers to inodes. We initialize 2817 * the table here & we'll sort it. We will then use it to 2818 * order the acquisition of the inode locks. 2819 * 2820 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2821 */ 2822 i = 0; 2823 i_tab[i++] = dp1; 2824 i_tab[i++] = dp2; 2825 i_tab[i++] = ip1; 2826 if (ip2) 2827 i_tab[i++] = ip2; 2828 if (wip) 2829 i_tab[i++] = wip; 2830 *num_inodes = i; 2831 2832 /* 2833 * Sort the elements via bubble sort. (Remember, there are at 2834 * most 5 elements to sort, so this is adequate.) 2835 */ 2836 for (i = 0; i < *num_inodes; i++) { 2837 for (j = 1; j < *num_inodes; j++) { 2838 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2839 struct xfs_inode *temp = i_tab[j]; 2840 i_tab[j] = i_tab[j-1]; 2841 i_tab[j-1] = temp; 2842 } 2843 } 2844 } 2845 } 2846 2847 static int 2848 xfs_finish_rename( 2849 struct xfs_trans *tp) 2850 { 2851 /* 2852 * If this is a synchronous mount, make sure that the rename transaction 2853 * goes to disk before returning to the user. 2854 */ 2855 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2856 xfs_trans_set_sync(tp); 2857 2858 return xfs_trans_commit(tp); 2859 } 2860 2861 /* 2862 * xfs_cross_rename() 2863 * 2864 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2865 */ 2866 STATIC int 2867 xfs_cross_rename( 2868 struct xfs_trans *tp, 2869 struct xfs_inode *dp1, 2870 struct xfs_name *name1, 2871 struct xfs_inode *ip1, 2872 struct xfs_inode *dp2, 2873 struct xfs_name *name2, 2874 struct xfs_inode *ip2, 2875 int spaceres) 2876 { 2877 int error = 0; 2878 int ip1_flags = 0; 2879 int ip2_flags = 0; 2880 int dp2_flags = 0; 2881 2882 /* Swap inode number for dirent in first parent */ 2883 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2884 if (error) 2885 goto out_trans_abort; 2886 2887 /* Swap inode number for dirent in second parent */ 2888 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2889 if (error) 2890 goto out_trans_abort; 2891 2892 /* 2893 * If we're renaming one or more directories across different parents, 2894 * update the respective ".." entries (and link counts) to match the new 2895 * parents. 2896 */ 2897 if (dp1 != dp2) { 2898 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2899 2900 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2901 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2902 dp1->i_ino, spaceres); 2903 if (error) 2904 goto out_trans_abort; 2905 2906 /* transfer ip2 ".." reference to dp1 */ 2907 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2908 error = xfs_droplink(tp, dp2); 2909 if (error) 2910 goto out_trans_abort; 2911 xfs_bumplink(tp, dp1); 2912 } 2913 2914 /* 2915 * Although ip1 isn't changed here, userspace needs 2916 * to be warned about the change, so that applications 2917 * relying on it (like backup ones), will properly 2918 * notify the change 2919 */ 2920 ip1_flags |= XFS_ICHGTIME_CHG; 2921 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2922 } 2923 2924 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2925 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2926 dp2->i_ino, spaceres); 2927 if (error) 2928 goto out_trans_abort; 2929 2930 /* transfer ip1 ".." reference to dp2 */ 2931 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2932 error = xfs_droplink(tp, dp1); 2933 if (error) 2934 goto out_trans_abort; 2935 xfs_bumplink(tp, dp2); 2936 } 2937 2938 /* 2939 * Although ip2 isn't changed here, userspace needs 2940 * to be warned about the change, so that applications 2941 * relying on it (like backup ones), will properly 2942 * notify the change 2943 */ 2944 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2945 ip2_flags |= XFS_ICHGTIME_CHG; 2946 } 2947 } 2948 2949 if (ip1_flags) { 2950 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2951 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2952 } 2953 if (ip2_flags) { 2954 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2955 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2956 } 2957 if (dp2_flags) { 2958 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2959 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2960 } 2961 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2962 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2963 return xfs_finish_rename(tp); 2964 2965 out_trans_abort: 2966 xfs_trans_cancel(tp); 2967 return error; 2968 } 2969 2970 /* 2971 * xfs_rename_alloc_whiteout() 2972 * 2973 * Return a referenced, unlinked, unlocked inode that can be used as a 2974 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2975 * crash between allocating the inode and linking it into the rename transaction 2976 * recovery will free the inode and we won't leak it. 2977 */ 2978 static int 2979 xfs_rename_alloc_whiteout( 2980 struct xfs_inode *dp, 2981 struct xfs_inode **wip) 2982 { 2983 struct xfs_inode *tmpfile; 2984 int error; 2985 2986 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2987 if (error) 2988 return error; 2989 2990 /* 2991 * Prepare the tmpfile inode as if it were created through the VFS. 2992 * Complete the inode setup and flag it as linkable. nlink is already 2993 * zero, so we can skip the drop_nlink. 2994 */ 2995 xfs_setup_iops(tmpfile); 2996 xfs_finish_inode_setup(tmpfile); 2997 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2998 2999 *wip = tmpfile; 3000 return 0; 3001 } 3002 3003 /* 3004 * xfs_rename 3005 */ 3006 int 3007 xfs_rename( 3008 struct xfs_inode *src_dp, 3009 struct xfs_name *src_name, 3010 struct xfs_inode *src_ip, 3011 struct xfs_inode *target_dp, 3012 struct xfs_name *target_name, 3013 struct xfs_inode *target_ip, 3014 unsigned int flags) 3015 { 3016 struct xfs_mount *mp = src_dp->i_mount; 3017 struct xfs_trans *tp; 3018 struct xfs_inode *wip = NULL; /* whiteout inode */ 3019 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3020 int i; 3021 int num_inodes = __XFS_SORT_INODES; 3022 bool new_parent = (src_dp != target_dp); 3023 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3024 int spaceres; 3025 int error; 3026 3027 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3028 3029 if ((flags & RENAME_EXCHANGE) && !target_ip) 3030 return -EINVAL; 3031 3032 /* 3033 * If we are doing a whiteout operation, allocate the whiteout inode 3034 * we will be placing at the target and ensure the type is set 3035 * appropriately. 3036 */ 3037 if (flags & RENAME_WHITEOUT) { 3038 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3039 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3040 if (error) 3041 return error; 3042 3043 /* setup target dirent info as whiteout */ 3044 src_name->type = XFS_DIR3_FT_CHRDEV; 3045 } 3046 3047 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3048 inodes, &num_inodes); 3049 3050 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3051 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3052 if (error == -ENOSPC) { 3053 spaceres = 0; 3054 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3055 &tp); 3056 } 3057 if (error) 3058 goto out_release_wip; 3059 3060 /* 3061 * Attach the dquots to the inodes 3062 */ 3063 error = xfs_qm_vop_rename_dqattach(inodes); 3064 if (error) 3065 goto out_trans_cancel; 3066 3067 /* 3068 * Lock all the participating inodes. Depending upon whether 3069 * the target_name exists in the target directory, and 3070 * whether the target directory is the same as the source 3071 * directory, we can lock from 2 to 4 inodes. 3072 */ 3073 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3074 3075 /* 3076 * Join all the inodes to the transaction. From this point on, 3077 * we can rely on either trans_commit or trans_cancel to unlock 3078 * them. 3079 */ 3080 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3081 if (new_parent) 3082 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3083 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3084 if (target_ip) 3085 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3086 if (wip) 3087 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3088 3089 /* 3090 * If we are using project inheritance, we only allow renames 3091 * into our tree when the project IDs are the same; else the 3092 * tree quota mechanism would be circumvented. 3093 */ 3094 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3095 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3096 error = -EXDEV; 3097 goto out_trans_cancel; 3098 } 3099 3100 /* RENAME_EXCHANGE is unique from here on. */ 3101 if (flags & RENAME_EXCHANGE) 3102 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3103 target_dp, target_name, target_ip, 3104 spaceres); 3105 3106 /* 3107 * Check for expected errors before we dirty the transaction 3108 * so we can return an error without a transaction abort. 3109 * 3110 * Extent count overflow check: 3111 * 3112 * From the perspective of src_dp, a rename operation is essentially a 3113 * directory entry remove operation. Hence the only place where we check 3114 * for extent count overflow for src_dp is in 3115 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3116 * -ENOSPC when it detects a possible extent count overflow and in 3117 * response, the higher layers of directory handling code do the 3118 * following: 3119 * 1. Data/Free blocks: XFS lets these blocks linger until a 3120 * future remove operation removes them. 3121 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3122 * Leaf space and unmaps the last block. 3123 * 3124 * For target_dp, there are two cases depending on whether the 3125 * destination directory entry exists or not. 3126 * 3127 * When destination directory entry does not exist (i.e. target_ip == 3128 * NULL), extent count overflow check is performed only when transaction 3129 * has a non-zero sized space reservation associated with it. With a 3130 * zero-sized space reservation, XFS allows a rename operation to 3131 * continue only when the directory has sufficient free space in its 3132 * data/leaf/free space blocks to hold the new entry. 3133 * 3134 * When destination directory entry exists (i.e. target_ip != NULL), all 3135 * we need to do is change the inode number associated with the already 3136 * existing entry. Hence there is no need to perform an extent count 3137 * overflow check. 3138 */ 3139 if (target_ip == NULL) { 3140 /* 3141 * If there's no space reservation, check the entry will 3142 * fit before actually inserting it. 3143 */ 3144 if (!spaceres) { 3145 error = xfs_dir_canenter(tp, target_dp, target_name); 3146 if (error) 3147 goto out_trans_cancel; 3148 } else { 3149 error = xfs_iext_count_may_overflow(target_dp, 3150 XFS_DATA_FORK, 3151 XFS_IEXT_DIR_MANIP_CNT(mp)); 3152 if (error) 3153 goto out_trans_cancel; 3154 } 3155 } else { 3156 /* 3157 * If target exists and it's a directory, check that whether 3158 * it can be destroyed. 3159 */ 3160 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3161 (!xfs_dir_isempty(target_ip) || 3162 (VFS_I(target_ip)->i_nlink > 2))) { 3163 error = -EEXIST; 3164 goto out_trans_cancel; 3165 } 3166 } 3167 3168 /* 3169 * Lock the AGI buffers we need to handle bumping the nlink of the 3170 * whiteout inode off the unlinked list and to handle dropping the 3171 * nlink of the target inode. Per locking order rules, do this in 3172 * increasing AG order and before directory block allocation tries to 3173 * grab AGFs because we grab AGIs before AGFs. 3174 * 3175 * The (vfs) caller must ensure that if src is a directory then 3176 * target_ip is either null or an empty directory. 3177 */ 3178 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3179 if (inodes[i] == wip || 3180 (inodes[i] == target_ip && 3181 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3182 struct xfs_buf *bp; 3183 xfs_agnumber_t agno; 3184 3185 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3186 error = xfs_read_agi(mp, tp, agno, &bp); 3187 if (error) 3188 goto out_trans_cancel; 3189 } 3190 } 3191 3192 /* 3193 * Directory entry creation below may acquire the AGF. Remove 3194 * the whiteout from the unlinked list first to preserve correct 3195 * AGI/AGF locking order. This dirties the transaction so failures 3196 * after this point will abort and log recovery will clean up the 3197 * mess. 3198 * 3199 * For whiteouts, we need to bump the link count on the whiteout 3200 * inode. After this point, we have a real link, clear the tmpfile 3201 * state flag from the inode so it doesn't accidentally get misused 3202 * in future. 3203 */ 3204 if (wip) { 3205 ASSERT(VFS_I(wip)->i_nlink == 0); 3206 error = xfs_iunlink_remove(tp, wip); 3207 if (error) 3208 goto out_trans_cancel; 3209 3210 xfs_bumplink(tp, wip); 3211 VFS_I(wip)->i_state &= ~I_LINKABLE; 3212 } 3213 3214 /* 3215 * Set up the target. 3216 */ 3217 if (target_ip == NULL) { 3218 /* 3219 * If target does not exist and the rename crosses 3220 * directories, adjust the target directory link count 3221 * to account for the ".." reference from the new entry. 3222 */ 3223 error = xfs_dir_createname(tp, target_dp, target_name, 3224 src_ip->i_ino, spaceres); 3225 if (error) 3226 goto out_trans_cancel; 3227 3228 xfs_trans_ichgtime(tp, target_dp, 3229 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3230 3231 if (new_parent && src_is_directory) { 3232 xfs_bumplink(tp, target_dp); 3233 } 3234 } else { /* target_ip != NULL */ 3235 /* 3236 * Link the source inode under the target name. 3237 * If the source inode is a directory and we are moving 3238 * it across directories, its ".." entry will be 3239 * inconsistent until we replace that down below. 3240 * 3241 * In case there is already an entry with the same 3242 * name at the destination directory, remove it first. 3243 */ 3244 error = xfs_dir_replace(tp, target_dp, target_name, 3245 src_ip->i_ino, spaceres); 3246 if (error) 3247 goto out_trans_cancel; 3248 3249 xfs_trans_ichgtime(tp, target_dp, 3250 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3251 3252 /* 3253 * Decrement the link count on the target since the target 3254 * dir no longer points to it. 3255 */ 3256 error = xfs_droplink(tp, target_ip); 3257 if (error) 3258 goto out_trans_cancel; 3259 3260 if (src_is_directory) { 3261 /* 3262 * Drop the link from the old "." entry. 3263 */ 3264 error = xfs_droplink(tp, target_ip); 3265 if (error) 3266 goto out_trans_cancel; 3267 } 3268 } /* target_ip != NULL */ 3269 3270 /* 3271 * Remove the source. 3272 */ 3273 if (new_parent && src_is_directory) { 3274 /* 3275 * Rewrite the ".." entry to point to the new 3276 * directory. 3277 */ 3278 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3279 target_dp->i_ino, spaceres); 3280 ASSERT(error != -EEXIST); 3281 if (error) 3282 goto out_trans_cancel; 3283 } 3284 3285 /* 3286 * We always want to hit the ctime on the source inode. 3287 * 3288 * This isn't strictly required by the standards since the source 3289 * inode isn't really being changed, but old unix file systems did 3290 * it and some incremental backup programs won't work without it. 3291 */ 3292 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3293 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3294 3295 /* 3296 * Adjust the link count on src_dp. This is necessary when 3297 * renaming a directory, either within one parent when 3298 * the target existed, or across two parent directories. 3299 */ 3300 if (src_is_directory && (new_parent || target_ip != NULL)) { 3301 3302 /* 3303 * Decrement link count on src_directory since the 3304 * entry that's moved no longer points to it. 3305 */ 3306 error = xfs_droplink(tp, src_dp); 3307 if (error) 3308 goto out_trans_cancel; 3309 } 3310 3311 /* 3312 * For whiteouts, we only need to update the source dirent with the 3313 * inode number of the whiteout inode rather than removing it 3314 * altogether. 3315 */ 3316 if (wip) { 3317 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3318 spaceres); 3319 } else { 3320 /* 3321 * NOTE: We don't need to check for extent count overflow here 3322 * because the dir remove name code will leave the dir block in 3323 * place if the extent count would overflow. 3324 */ 3325 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3326 spaceres); 3327 } 3328 3329 if (error) 3330 goto out_trans_cancel; 3331 3332 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3333 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3334 if (new_parent) 3335 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3336 3337 error = xfs_finish_rename(tp); 3338 if (wip) 3339 xfs_irele(wip); 3340 return error; 3341 3342 out_trans_cancel: 3343 xfs_trans_cancel(tp); 3344 out_release_wip: 3345 if (wip) 3346 xfs_irele(wip); 3347 return error; 3348 } 3349 3350 static int 3351 xfs_iflush( 3352 struct xfs_inode *ip, 3353 struct xfs_buf *bp) 3354 { 3355 struct xfs_inode_log_item *iip = ip->i_itemp; 3356 struct xfs_dinode *dip; 3357 struct xfs_mount *mp = ip->i_mount; 3358 int error; 3359 3360 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3361 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3362 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3363 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3364 ASSERT(iip->ili_item.li_buf == bp); 3365 3366 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3367 3368 /* 3369 * We don't flush the inode if any of the following checks fail, but we 3370 * do still update the log item and attach to the backing buffer as if 3371 * the flush happened. This is a formality to facilitate predictable 3372 * error handling as the caller will shutdown and fail the buffer. 3373 */ 3374 error = -EFSCORRUPTED; 3375 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3376 mp, XFS_ERRTAG_IFLUSH_1)) { 3377 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3378 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3379 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3380 goto flush_out; 3381 } 3382 if (S_ISREG(VFS_I(ip)->i_mode)) { 3383 if (XFS_TEST_ERROR( 3384 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3385 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3386 mp, XFS_ERRTAG_IFLUSH_3)) { 3387 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3388 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3389 __func__, ip->i_ino, ip); 3390 goto flush_out; 3391 } 3392 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3393 if (XFS_TEST_ERROR( 3394 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3395 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3396 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3397 mp, XFS_ERRTAG_IFLUSH_4)) { 3398 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3399 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3400 __func__, ip->i_ino, ip); 3401 goto flush_out; 3402 } 3403 } 3404 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3405 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3406 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3407 "%s: detected corrupt incore inode %Lu, " 3408 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3409 __func__, ip->i_ino, 3410 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3411 ip->i_d.di_nblocks, ip); 3412 goto flush_out; 3413 } 3414 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3415 mp, XFS_ERRTAG_IFLUSH_6)) { 3416 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3417 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3418 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3419 goto flush_out; 3420 } 3421 3422 /* 3423 * Inode item log recovery for v2 inodes are dependent on the 3424 * di_flushiter count for correct sequencing. We bump the flush 3425 * iteration count so we can detect flushes which postdate a log record 3426 * during recovery. This is redundant as we now log every change and 3427 * hence this can't happen but we need to still do it to ensure 3428 * backwards compatibility with old kernels that predate logging all 3429 * inode changes. 3430 */ 3431 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3432 ip->i_d.di_flushiter++; 3433 3434 /* 3435 * If there are inline format data / attr forks attached to this inode, 3436 * make sure they are not corrupt. 3437 */ 3438 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3439 xfs_ifork_verify_local_data(ip)) 3440 goto flush_out; 3441 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3442 xfs_ifork_verify_local_attr(ip)) 3443 goto flush_out; 3444 3445 /* 3446 * Copy the dirty parts of the inode into the on-disk inode. We always 3447 * copy out the core of the inode, because if the inode is dirty at all 3448 * the core must be. 3449 */ 3450 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3451 3452 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3453 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3454 ip->i_d.di_flushiter = 0; 3455 3456 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3457 if (XFS_IFORK_Q(ip)) 3458 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3459 3460 /* 3461 * We've recorded everything logged in the inode, so we'd like to clear 3462 * the ili_fields bits so we don't log and flush things unnecessarily. 3463 * However, we can't stop logging all this information until the data 3464 * we've copied into the disk buffer is written to disk. If we did we 3465 * might overwrite the copy of the inode in the log with all the data 3466 * after re-logging only part of it, and in the face of a crash we 3467 * wouldn't have all the data we need to recover. 3468 * 3469 * What we do is move the bits to the ili_last_fields field. When 3470 * logging the inode, these bits are moved back to the ili_fields field. 3471 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3472 * we know that the information those bits represent is permanently on 3473 * disk. As long as the flush completes before the inode is logged 3474 * again, then both ili_fields and ili_last_fields will be cleared. 3475 */ 3476 error = 0; 3477 flush_out: 3478 spin_lock(&iip->ili_lock); 3479 iip->ili_last_fields = iip->ili_fields; 3480 iip->ili_fields = 0; 3481 iip->ili_fsync_fields = 0; 3482 spin_unlock(&iip->ili_lock); 3483 3484 /* 3485 * Store the current LSN of the inode so that we can tell whether the 3486 * item has moved in the AIL from xfs_buf_inode_iodone(). 3487 */ 3488 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3489 &iip->ili_item.li_lsn); 3490 3491 /* generate the checksum. */ 3492 xfs_dinode_calc_crc(mp, dip); 3493 return error; 3494 } 3495 3496 /* 3497 * Non-blocking flush of dirty inode metadata into the backing buffer. 3498 * 3499 * The caller must have a reference to the inode and hold the cluster buffer 3500 * locked. The function will walk across all the inodes on the cluster buffer it 3501 * can find and lock without blocking, and flush them to the cluster buffer. 3502 * 3503 * On successful flushing of at least one inode, the caller must write out the 3504 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3505 * the caller needs to release the buffer. On failure, the filesystem will be 3506 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3507 * will be returned. 3508 */ 3509 int 3510 xfs_iflush_cluster( 3511 struct xfs_buf *bp) 3512 { 3513 struct xfs_mount *mp = bp->b_mount; 3514 struct xfs_log_item *lip, *n; 3515 struct xfs_inode *ip; 3516 struct xfs_inode_log_item *iip; 3517 int clcount = 0; 3518 int error = 0; 3519 3520 /* 3521 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3522 * can remove itself from the list. 3523 */ 3524 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3525 iip = (struct xfs_inode_log_item *)lip; 3526 ip = iip->ili_inode; 3527 3528 /* 3529 * Quick and dirty check to avoid locks if possible. 3530 */ 3531 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3532 continue; 3533 if (xfs_ipincount(ip)) 3534 continue; 3535 3536 /* 3537 * The inode is still attached to the buffer, which means it is 3538 * dirty but reclaim might try to grab it. Check carefully for 3539 * that, and grab the ilock while still holding the i_flags_lock 3540 * to guarantee reclaim will not be able to reclaim this inode 3541 * once we drop the i_flags_lock. 3542 */ 3543 spin_lock(&ip->i_flags_lock); 3544 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3545 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3546 spin_unlock(&ip->i_flags_lock); 3547 continue; 3548 } 3549 3550 /* 3551 * ILOCK will pin the inode against reclaim and prevent 3552 * concurrent transactions modifying the inode while we are 3553 * flushing the inode. If we get the lock, set the flushing 3554 * state before we drop the i_flags_lock. 3555 */ 3556 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3557 spin_unlock(&ip->i_flags_lock); 3558 continue; 3559 } 3560 __xfs_iflags_set(ip, XFS_IFLUSHING); 3561 spin_unlock(&ip->i_flags_lock); 3562 3563 /* 3564 * Abort flushing this inode if we are shut down because the 3565 * inode may not currently be in the AIL. This can occur when 3566 * log I/O failure unpins the inode without inserting into the 3567 * AIL, leaving a dirty/unpinned inode attached to the buffer 3568 * that otherwise looks like it should be flushed. 3569 */ 3570 if (XFS_FORCED_SHUTDOWN(mp)) { 3571 xfs_iunpin_wait(ip); 3572 xfs_iflush_abort(ip); 3573 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3574 error = -EIO; 3575 continue; 3576 } 3577 3578 /* don't block waiting on a log force to unpin dirty inodes */ 3579 if (xfs_ipincount(ip)) { 3580 xfs_iflags_clear(ip, XFS_IFLUSHING); 3581 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3582 continue; 3583 } 3584 3585 if (!xfs_inode_clean(ip)) 3586 error = xfs_iflush(ip, bp); 3587 else 3588 xfs_iflags_clear(ip, XFS_IFLUSHING); 3589 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3590 if (error) 3591 break; 3592 clcount++; 3593 } 3594 3595 if (error) { 3596 bp->b_flags |= XBF_ASYNC; 3597 xfs_buf_ioend_fail(bp); 3598 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3599 return error; 3600 } 3601 3602 if (!clcount) 3603 return -EAGAIN; 3604 3605 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3606 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3607 return 0; 3608 3609 } 3610 3611 /* Release an inode. */ 3612 void 3613 xfs_irele( 3614 struct xfs_inode *ip) 3615 { 3616 trace_xfs_irele(ip, _RET_IP_); 3617 iput(VFS_I(ip)); 3618 } 3619 3620 /* 3621 * Ensure all commited transactions touching the inode are written to the log. 3622 */ 3623 int 3624 xfs_log_force_inode( 3625 struct xfs_inode *ip) 3626 { 3627 xfs_lsn_t lsn = 0; 3628 3629 xfs_ilock(ip, XFS_ILOCK_SHARED); 3630 if (xfs_ipincount(ip)) 3631 lsn = ip->i_itemp->ili_last_lsn; 3632 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3633 3634 if (!lsn) 3635 return 0; 3636 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3637 } 3638 3639 /* 3640 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3641 * abide vfs locking order (lowest pointer value goes first) and breaking the 3642 * layout leases before proceeding. The loop is needed because we cannot call 3643 * the blocking break_layout() with the iolocks held, and therefore have to 3644 * back out both locks. 3645 */ 3646 static int 3647 xfs_iolock_two_inodes_and_break_layout( 3648 struct inode *src, 3649 struct inode *dest) 3650 { 3651 int error; 3652 3653 if (src > dest) 3654 swap(src, dest); 3655 3656 retry: 3657 /* Wait to break both inodes' layouts before we start locking. */ 3658 error = break_layout(src, true); 3659 if (error) 3660 return error; 3661 if (src != dest) { 3662 error = break_layout(dest, true); 3663 if (error) 3664 return error; 3665 } 3666 3667 /* Lock one inode and make sure nobody got in and leased it. */ 3668 inode_lock(src); 3669 error = break_layout(src, false); 3670 if (error) { 3671 inode_unlock(src); 3672 if (error == -EWOULDBLOCK) 3673 goto retry; 3674 return error; 3675 } 3676 3677 if (src == dest) 3678 return 0; 3679 3680 /* Lock the other inode and make sure nobody got in and leased it. */ 3681 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3682 error = break_layout(dest, false); 3683 if (error) { 3684 inode_unlock(src); 3685 inode_unlock(dest); 3686 if (error == -EWOULDBLOCK) 3687 goto retry; 3688 return error; 3689 } 3690 3691 return 0; 3692 } 3693 3694 /* 3695 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3696 * mmap activity. 3697 */ 3698 int 3699 xfs_ilock2_io_mmap( 3700 struct xfs_inode *ip1, 3701 struct xfs_inode *ip2) 3702 { 3703 int ret; 3704 3705 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3706 if (ret) 3707 return ret; 3708 if (ip1 == ip2) 3709 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3710 else 3711 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3712 ip2, XFS_MMAPLOCK_EXCL); 3713 return 0; 3714 } 3715 3716 /* Unlock both inodes to allow IO and mmap activity. */ 3717 void 3718 xfs_iunlock2_io_mmap( 3719 struct xfs_inode *ip1, 3720 struct xfs_inode *ip2) 3721 { 3722 bool same_inode = (ip1 == ip2); 3723 3724 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3725 if (!same_inode) 3726 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3727 inode_unlock(VFS_I(ip2)); 3728 if (!same_inode) 3729 inode_unlock(VFS_I(ip1)); 3730 } 3731