xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision d3597236)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367  * value. This shouldn't be called for page fault locking, but we also need to
368  * ensure we don't overrun the number of lockdep subclasses for the iolock or
369  * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
370  */
371 static inline int
372 xfs_lock_inumorder(int lock_mode, int subclass)
373 {
374 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 		ASSERT(subclass + XFS_LOCK_INUMORDER <
376 			(1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
377 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
378 	}
379 
380 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 		ASSERT(subclass + XFS_LOCK_INUMORDER <
382 			(1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 							XFS_MMAPLOCK_SHIFT;
385 	}
386 
387 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389 
390 	return lock_mode;
391 }
392 
393 /*
394  * The following routine will lock n inodes in exclusive mode.  We assume the
395  * caller calls us with the inodes in i_ino order.
396  *
397  * We need to detect deadlock where an inode that we lock is in the AIL and we
398  * start waiting for another inode that is locked by a thread in a long running
399  * transaction (such as truncate). This can result in deadlock since the long
400  * running trans might need to wait for the inode we just locked in order to
401  * push the tail and free space in the log.
402  */
403 void
404 xfs_lock_inodes(
405 	xfs_inode_t	**ips,
406 	int		inodes,
407 	uint		lock_mode)
408 {
409 	int		attempts = 0, i, j, try_lock;
410 	xfs_log_item_t	*lp;
411 
412 	/* currently supports between 2 and 5 inodes */
413 	ASSERT(ips && inodes >= 2 && inodes <= 5);
414 
415 	try_lock = 0;
416 	i = 0;
417 again:
418 	for (; i < inodes; i++) {
419 		ASSERT(ips[i]);
420 
421 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422 			continue;
423 
424 		/*
425 		 * If try_lock is not set yet, make sure all locked inodes are
426 		 * not in the AIL.  If any are, set try_lock to be used later.
427 		 */
428 		if (!try_lock) {
429 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
431 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
432 					try_lock++;
433 			}
434 		}
435 
436 		/*
437 		 * If any of the previous locks we have locked is in the AIL,
438 		 * we must TRY to get the second and subsequent locks. If
439 		 * we can't get any, we must release all we have
440 		 * and try again.
441 		 */
442 		if (!try_lock) {
443 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 			continue;
445 		}
446 
447 		/* try_lock means we have an inode locked that is in the AIL. */
448 		ASSERT(i != 0);
449 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 			continue;
451 
452 		/*
453 		 * Unlock all previous guys and try again.  xfs_iunlock will try
454 		 * to push the tail if the inode is in the AIL.
455 		 */
456 		attempts++;
457 		for (j = i - 1; j >= 0; j--) {
458 			/*
459 			 * Check to see if we've already unlocked this one.  Not
460 			 * the first one going back, and the inode ptr is the
461 			 * same.
462 			 */
463 			if (j != (i - 1) && ips[j] == ips[j + 1])
464 				continue;
465 
466 			xfs_iunlock(ips[j], lock_mode);
467 		}
468 
469 		if ((attempts % 5) == 0) {
470 			delay(1); /* Don't just spin the CPU */
471 #ifdef DEBUG
472 			xfs_lock_delays++;
473 #endif
474 		}
475 		i = 0;
476 		try_lock = 0;
477 		goto again;
478 	}
479 
480 #ifdef DEBUG
481 	if (attempts) {
482 		if (attempts < 5) xfs_small_retries++;
483 		else if (attempts < 100) xfs_middle_retries++;
484 		else xfs_lots_retries++;
485 	} else {
486 		xfs_locked_n++;
487 	}
488 #endif
489 }
490 
491 /*
492  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494  * lock more than one at a time, lockdep will report false positives saying we
495  * have violated locking orders.
496  */
497 void
498 xfs_lock_two_inodes(
499 	xfs_inode_t		*ip0,
500 	xfs_inode_t		*ip1,
501 	uint			lock_mode)
502 {
503 	xfs_inode_t		*temp;
504 	int			attempts = 0;
505 	xfs_log_item_t		*lp;
506 
507 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512 
513 	ASSERT(ip0->i_ino != ip1->i_ino);
514 
515 	if (ip0->i_ino > ip1->i_ino) {
516 		temp = ip0;
517 		ip0 = ip1;
518 		ip1 = temp;
519 	}
520 
521  again:
522 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523 
524 	/*
525 	 * If the first lock we have locked is in the AIL, we must TRY to get
526 	 * the second lock. If we can't get it, we must release the first one
527 	 * and try again.
528 	 */
529 	lp = (xfs_log_item_t *)ip0->i_itemp;
530 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 			xfs_iunlock(ip0, lock_mode);
533 			if ((++attempts % 5) == 0)
534 				delay(1); /* Don't just spin the CPU */
535 			goto again;
536 		}
537 	} else {
538 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539 	}
540 }
541 
542 
543 void
544 __xfs_iflock(
545 	struct xfs_inode	*ip)
546 {
547 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549 
550 	do {
551 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 		if (xfs_isiflocked(ip))
553 			io_schedule();
554 	} while (!xfs_iflock_nowait(ip));
555 
556 	finish_wait(wq, &wait.wait);
557 }
558 
559 STATIC uint
560 _xfs_dic2xflags(
561 	__uint16_t		di_flags)
562 {
563 	uint			flags = 0;
564 
565 	if (di_flags & XFS_DIFLAG_ANY) {
566 		if (di_flags & XFS_DIFLAG_REALTIME)
567 			flags |= XFS_XFLAG_REALTIME;
568 		if (di_flags & XFS_DIFLAG_PREALLOC)
569 			flags |= XFS_XFLAG_PREALLOC;
570 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 			flags |= XFS_XFLAG_IMMUTABLE;
572 		if (di_flags & XFS_DIFLAG_APPEND)
573 			flags |= XFS_XFLAG_APPEND;
574 		if (di_flags & XFS_DIFLAG_SYNC)
575 			flags |= XFS_XFLAG_SYNC;
576 		if (di_flags & XFS_DIFLAG_NOATIME)
577 			flags |= XFS_XFLAG_NOATIME;
578 		if (di_flags & XFS_DIFLAG_NODUMP)
579 			flags |= XFS_XFLAG_NODUMP;
580 		if (di_flags & XFS_DIFLAG_RTINHERIT)
581 			flags |= XFS_XFLAG_RTINHERIT;
582 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 			flags |= XFS_XFLAG_PROJINHERIT;
584 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 			flags |= XFS_XFLAG_NOSYMLINKS;
586 		if (di_flags & XFS_DIFLAG_EXTSIZE)
587 			flags |= XFS_XFLAG_EXTSIZE;
588 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 			flags |= XFS_XFLAG_EXTSZINHERIT;
590 		if (di_flags & XFS_DIFLAG_NODEFRAG)
591 			flags |= XFS_XFLAG_NODEFRAG;
592 		if (di_flags & XFS_DIFLAG_FILESTREAM)
593 			flags |= XFS_XFLAG_FILESTREAM;
594 	}
595 
596 	return flags;
597 }
598 
599 uint
600 xfs_ip2xflags(
601 	xfs_inode_t		*ip)
602 {
603 	xfs_icdinode_t		*dic = &ip->i_d;
604 
605 	return _xfs_dic2xflags(dic->di_flags) |
606 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
607 }
608 
609 uint
610 xfs_dic2xflags(
611 	xfs_dinode_t		*dip)
612 {
613 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
614 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
615 }
616 
617 /*
618  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619  * is allowed, otherwise it has to be an exact match. If a CI match is found,
620  * ci_name->name will point to a the actual name (caller must free) or
621  * will be set to NULL if an exact match is found.
622  */
623 int
624 xfs_lookup(
625 	xfs_inode_t		*dp,
626 	struct xfs_name		*name,
627 	xfs_inode_t		**ipp,
628 	struct xfs_name		*ci_name)
629 {
630 	xfs_ino_t		inum;
631 	int			error;
632 	uint			lock_mode;
633 
634 	trace_xfs_lookup(dp, name);
635 
636 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
637 		return -EIO;
638 
639 	lock_mode = xfs_ilock_data_map_shared(dp);
640 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 	xfs_iunlock(dp, lock_mode);
642 
643 	if (error)
644 		goto out;
645 
646 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 	if (error)
648 		goto out_free_name;
649 
650 	return 0;
651 
652 out_free_name:
653 	if (ci_name)
654 		kmem_free(ci_name->name);
655 out:
656 	*ipp = NULL;
657 	return error;
658 }
659 
660 /*
661  * Allocate an inode on disk and return a copy of its in-core version.
662  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
663  * appropriately within the inode.  The uid and gid for the inode are
664  * set according to the contents of the given cred structure.
665  *
666  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
667  * has a free inode available, call xfs_iget() to obtain the in-core
668  * version of the allocated inode.  Finally, fill in the inode and
669  * log its initial contents.  In this case, ialloc_context would be
670  * set to NULL.
671  *
672  * If xfs_dialloc() does not have an available inode, it will replenish
673  * its supply by doing an allocation. Since we can only do one
674  * allocation within a transaction without deadlocks, we must commit
675  * the current transaction before returning the inode itself.
676  * In this case, therefore, we will set ialloc_context and return.
677  * The caller should then commit the current transaction, start a new
678  * transaction, and call xfs_ialloc() again to actually get the inode.
679  *
680  * To ensure that some other process does not grab the inode that
681  * was allocated during the first call to xfs_ialloc(), this routine
682  * also returns the [locked] bp pointing to the head of the freelist
683  * as ialloc_context.  The caller should hold this buffer across
684  * the commit and pass it back into this routine on the second call.
685  *
686  * If we are allocating quota inodes, we do not have a parent inode
687  * to attach to or associate with (i.e. pip == NULL) because they
688  * are not linked into the directory structure - they are attached
689  * directly to the superblock - and so have no parent.
690  */
691 int
692 xfs_ialloc(
693 	xfs_trans_t	*tp,
694 	xfs_inode_t	*pip,
695 	umode_t		mode,
696 	xfs_nlink_t	nlink,
697 	xfs_dev_t	rdev,
698 	prid_t		prid,
699 	int		okalloc,
700 	xfs_buf_t	**ialloc_context,
701 	xfs_inode_t	**ipp)
702 {
703 	struct xfs_mount *mp = tp->t_mountp;
704 	xfs_ino_t	ino;
705 	xfs_inode_t	*ip;
706 	uint		flags;
707 	int		error;
708 	struct timespec	tv;
709 
710 	/*
711 	 * Call the space management code to pick
712 	 * the on-disk inode to be allocated.
713 	 */
714 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
715 			    ialloc_context, &ino);
716 	if (error)
717 		return error;
718 	if (*ialloc_context || ino == NULLFSINO) {
719 		*ipp = NULL;
720 		return 0;
721 	}
722 	ASSERT(*ialloc_context == NULL);
723 
724 	/*
725 	 * Get the in-core inode with the lock held exclusively.
726 	 * This is because we're setting fields here we need
727 	 * to prevent others from looking at until we're done.
728 	 */
729 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
730 			 XFS_ILOCK_EXCL, &ip);
731 	if (error)
732 		return error;
733 	ASSERT(ip != NULL);
734 
735 	/*
736 	 * We always convert v1 inodes to v2 now - we only support filesystems
737 	 * with >= v2 inode capability, so there is no reason for ever leaving
738 	 * an inode in v1 format.
739 	 */
740 	if (ip->i_d.di_version == 1)
741 		ip->i_d.di_version = 2;
742 
743 	ip->i_d.di_mode = mode;
744 	ip->i_d.di_onlink = 0;
745 	ip->i_d.di_nlink = nlink;
746 	ASSERT(ip->i_d.di_nlink == nlink);
747 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
749 	xfs_set_projid(ip, prid);
750 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751 
752 	if (pip && XFS_INHERIT_GID(pip)) {
753 		ip->i_d.di_gid = pip->i_d.di_gid;
754 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
755 			ip->i_d.di_mode |= S_ISGID;
756 		}
757 	}
758 
759 	/*
760 	 * If the group ID of the new file does not match the effective group
761 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 	 * (and only if the irix_sgid_inherit compatibility variable is set).
763 	 */
764 	if ((irix_sgid_inherit) &&
765 	    (ip->i_d.di_mode & S_ISGID) &&
766 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
767 		ip->i_d.di_mode &= ~S_ISGID;
768 	}
769 
770 	ip->i_d.di_size = 0;
771 	ip->i_d.di_nextents = 0;
772 	ASSERT(ip->i_d.di_nblocks == 0);
773 
774 	tv = current_fs_time(mp->m_super);
775 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 	ip->i_d.di_atime = ip->i_d.di_mtime;
778 	ip->i_d.di_ctime = ip->i_d.di_mtime;
779 
780 	/*
781 	 * di_gen will have been taken care of in xfs_iread.
782 	 */
783 	ip->i_d.di_extsize = 0;
784 	ip->i_d.di_dmevmask = 0;
785 	ip->i_d.di_dmstate = 0;
786 	ip->i_d.di_flags = 0;
787 
788 	if (ip->i_d.di_version == 3) {
789 		ASSERT(ip->i_d.di_ino == ino);
790 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 		ip->i_d.di_crc = 0;
792 		ip->i_d.di_changecount = 1;
793 		ip->i_d.di_lsn = 0;
794 		ip->i_d.di_flags2 = 0;
795 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 		ip->i_d.di_crtime = ip->i_d.di_mtime;
797 	}
798 
799 
800 	flags = XFS_ILOG_CORE;
801 	switch (mode & S_IFMT) {
802 	case S_IFIFO:
803 	case S_IFCHR:
804 	case S_IFBLK:
805 	case S_IFSOCK:
806 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 		ip->i_df.if_u2.if_rdev = rdev;
808 		ip->i_df.if_flags = 0;
809 		flags |= XFS_ILOG_DEV;
810 		break;
811 	case S_IFREG:
812 	case S_IFDIR:
813 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
814 			uint	di_flags = 0;
815 
816 			if (S_ISDIR(mode)) {
817 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 					di_flags |= XFS_DIFLAG_RTINHERIT;
819 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 					ip->i_d.di_extsize = pip->i_d.di_extsize;
822 				}
823 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 					di_flags |= XFS_DIFLAG_PROJINHERIT;
825 			} else if (S_ISREG(mode)) {
826 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
827 					di_flags |= XFS_DIFLAG_REALTIME;
828 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 					di_flags |= XFS_DIFLAG_EXTSIZE;
830 					ip->i_d.di_extsize = pip->i_d.di_extsize;
831 				}
832 			}
833 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 			    xfs_inherit_noatime)
835 				di_flags |= XFS_DIFLAG_NOATIME;
836 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 			    xfs_inherit_nodump)
838 				di_flags |= XFS_DIFLAG_NODUMP;
839 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 			    xfs_inherit_sync)
841 				di_flags |= XFS_DIFLAG_SYNC;
842 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 			    xfs_inherit_nosymlinks)
844 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
845 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 			    xfs_inherit_nodefrag)
847 				di_flags |= XFS_DIFLAG_NODEFRAG;
848 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 				di_flags |= XFS_DIFLAG_FILESTREAM;
850 			ip->i_d.di_flags |= di_flags;
851 		}
852 		/* FALLTHROUGH */
853 	case S_IFLNK:
854 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 		ip->i_df.if_flags = XFS_IFEXTENTS;
856 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 		ip->i_df.if_u1.if_extents = NULL;
858 		break;
859 	default:
860 		ASSERT(0);
861 	}
862 	/*
863 	 * Attribute fork settings for new inode.
864 	 */
865 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 	ip->i_d.di_anextents = 0;
867 
868 	/*
869 	 * Log the new values stuffed into the inode.
870 	 */
871 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872 	xfs_trans_log_inode(tp, ip, flags);
873 
874 	/* now that we have an i_mode we can setup the inode structure */
875 	xfs_setup_inode(ip);
876 
877 	*ipp = ip;
878 	return 0;
879 }
880 
881 /*
882  * Allocates a new inode from disk and return a pointer to the
883  * incore copy. This routine will internally commit the current
884  * transaction and allocate a new one if the Space Manager needed
885  * to do an allocation to replenish the inode free-list.
886  *
887  * This routine is designed to be called from xfs_create and
888  * xfs_create_dir.
889  *
890  */
891 int
892 xfs_dir_ialloc(
893 	xfs_trans_t	**tpp,		/* input: current transaction;
894 					   output: may be a new transaction. */
895 	xfs_inode_t	*dp,		/* directory within whose allocate
896 					   the inode. */
897 	umode_t		mode,
898 	xfs_nlink_t	nlink,
899 	xfs_dev_t	rdev,
900 	prid_t		prid,		/* project id */
901 	int		okalloc,	/* ok to allocate new space */
902 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
903 					   locked. */
904 	int		*committed)
905 
906 {
907 	xfs_trans_t	*tp;
908 	xfs_inode_t	*ip;
909 	xfs_buf_t	*ialloc_context = NULL;
910 	int		code;
911 	void		*dqinfo;
912 	uint		tflags;
913 
914 	tp = *tpp;
915 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
916 
917 	/*
918 	 * xfs_ialloc will return a pointer to an incore inode if
919 	 * the Space Manager has an available inode on the free
920 	 * list. Otherwise, it will do an allocation and replenish
921 	 * the freelist.  Since we can only do one allocation per
922 	 * transaction without deadlocks, we will need to commit the
923 	 * current transaction and start a new one.  We will then
924 	 * need to call xfs_ialloc again to get the inode.
925 	 *
926 	 * If xfs_ialloc did an allocation to replenish the freelist,
927 	 * it returns the bp containing the head of the freelist as
928 	 * ialloc_context. We will hold a lock on it across the
929 	 * transaction commit so that no other process can steal
930 	 * the inode(s) that we've just allocated.
931 	 */
932 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
933 			  &ialloc_context, &ip);
934 
935 	/*
936 	 * Return an error if we were unable to allocate a new inode.
937 	 * This should only happen if we run out of space on disk or
938 	 * encounter a disk error.
939 	 */
940 	if (code) {
941 		*ipp = NULL;
942 		return code;
943 	}
944 	if (!ialloc_context && !ip) {
945 		*ipp = NULL;
946 		return -ENOSPC;
947 	}
948 
949 	/*
950 	 * If the AGI buffer is non-NULL, then we were unable to get an
951 	 * inode in one operation.  We need to commit the current
952 	 * transaction and call xfs_ialloc() again.  It is guaranteed
953 	 * to succeed the second time.
954 	 */
955 	if (ialloc_context) {
956 		/*
957 		 * Normally, xfs_trans_commit releases all the locks.
958 		 * We call bhold to hang on to the ialloc_context across
959 		 * the commit.  Holding this buffer prevents any other
960 		 * processes from doing any allocations in this
961 		 * allocation group.
962 		 */
963 		xfs_trans_bhold(tp, ialloc_context);
964 
965 		/*
966 		 * We want the quota changes to be associated with the next
967 		 * transaction, NOT this one. So, detach the dqinfo from this
968 		 * and attach it to the next transaction.
969 		 */
970 		dqinfo = NULL;
971 		tflags = 0;
972 		if (tp->t_dqinfo) {
973 			dqinfo = (void *)tp->t_dqinfo;
974 			tp->t_dqinfo = NULL;
975 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
976 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
977 		}
978 
979 		code = xfs_trans_roll(&tp, 0);
980 		if (committed != NULL)
981 			*committed = 1;
982 
983 		/*
984 		 * Re-attach the quota info that we detached from prev trx.
985 		 */
986 		if (dqinfo) {
987 			tp->t_dqinfo = dqinfo;
988 			tp->t_flags |= tflags;
989 		}
990 
991 		if (code) {
992 			xfs_buf_relse(ialloc_context);
993 			*tpp = tp;
994 			*ipp = NULL;
995 			return code;
996 		}
997 		xfs_trans_bjoin(tp, ialloc_context);
998 
999 		/*
1000 		 * Call ialloc again. Since we've locked out all
1001 		 * other allocations in this allocation group,
1002 		 * this call should always succeed.
1003 		 */
1004 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1005 				  okalloc, &ialloc_context, &ip);
1006 
1007 		/*
1008 		 * If we get an error at this point, return to the caller
1009 		 * so that the current transaction can be aborted.
1010 		 */
1011 		if (code) {
1012 			*tpp = tp;
1013 			*ipp = NULL;
1014 			return code;
1015 		}
1016 		ASSERT(!ialloc_context && ip);
1017 
1018 	} else {
1019 		if (committed != NULL)
1020 			*committed = 0;
1021 	}
1022 
1023 	*ipp = ip;
1024 	*tpp = tp;
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Decrement the link count on an inode & log the change.
1031  * If this causes the link count to go to zero, initiate the
1032  * logging activity required to truncate a file.
1033  */
1034 int				/* error */
1035 xfs_droplink(
1036 	xfs_trans_t *tp,
1037 	xfs_inode_t *ip)
1038 {
1039 	int	error;
1040 
1041 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1042 
1043 	ASSERT (ip->i_d.di_nlink > 0);
1044 	ip->i_d.di_nlink--;
1045 	drop_nlink(VFS_I(ip));
1046 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1047 
1048 	error = 0;
1049 	if (ip->i_d.di_nlink == 0) {
1050 		/*
1051 		 * We're dropping the last link to this file.
1052 		 * Move the on-disk inode to the AGI unlinked list.
1053 		 * From xfs_inactive() we will pull the inode from
1054 		 * the list and free it.
1055 		 */
1056 		error = xfs_iunlink(tp, ip);
1057 	}
1058 	return error;
1059 }
1060 
1061 /*
1062  * Increment the link count on an inode & log the change.
1063  */
1064 int
1065 xfs_bumplink(
1066 	xfs_trans_t *tp,
1067 	xfs_inode_t *ip)
1068 {
1069 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1070 
1071 	ASSERT(ip->i_d.di_version > 1);
1072 	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1073 	ip->i_d.di_nlink++;
1074 	inc_nlink(VFS_I(ip));
1075 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1076 	return 0;
1077 }
1078 
1079 int
1080 xfs_create(
1081 	xfs_inode_t		*dp,
1082 	struct xfs_name		*name,
1083 	umode_t			mode,
1084 	xfs_dev_t		rdev,
1085 	xfs_inode_t		**ipp)
1086 {
1087 	int			is_dir = S_ISDIR(mode);
1088 	struct xfs_mount	*mp = dp->i_mount;
1089 	struct xfs_inode	*ip = NULL;
1090 	struct xfs_trans	*tp = NULL;
1091 	int			error;
1092 	xfs_bmap_free_t		free_list;
1093 	xfs_fsblock_t		first_block;
1094 	bool                    unlock_dp_on_error = false;
1095 	int			committed;
1096 	prid_t			prid;
1097 	struct xfs_dquot	*udqp = NULL;
1098 	struct xfs_dquot	*gdqp = NULL;
1099 	struct xfs_dquot	*pdqp = NULL;
1100 	struct xfs_trans_res	*tres;
1101 	uint			resblks;
1102 
1103 	trace_xfs_create(dp, name);
1104 
1105 	if (XFS_FORCED_SHUTDOWN(mp))
1106 		return -EIO;
1107 
1108 	prid = xfs_get_initial_prid(dp);
1109 
1110 	/*
1111 	 * Make sure that we have allocated dquot(s) on disk.
1112 	 */
1113 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1114 					xfs_kgid_to_gid(current_fsgid()), prid,
1115 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1116 					&udqp, &gdqp, &pdqp);
1117 	if (error)
1118 		return error;
1119 
1120 	if (is_dir) {
1121 		rdev = 0;
1122 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1123 		tres = &M_RES(mp)->tr_mkdir;
1124 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1125 	} else {
1126 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1127 		tres = &M_RES(mp)->tr_create;
1128 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1129 	}
1130 
1131 	/*
1132 	 * Initially assume that the file does not exist and
1133 	 * reserve the resources for that case.  If that is not
1134 	 * the case we'll drop the one we have and get a more
1135 	 * appropriate transaction later.
1136 	 */
1137 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1138 	if (error == -ENOSPC) {
1139 		/* flush outstanding delalloc blocks and retry */
1140 		xfs_flush_inodes(mp);
1141 		error = xfs_trans_reserve(tp, tres, resblks, 0);
1142 	}
1143 	if (error == -ENOSPC) {
1144 		/* No space at all so try a "no-allocation" reservation */
1145 		resblks = 0;
1146 		error = xfs_trans_reserve(tp, tres, 0, 0);
1147 	}
1148 	if (error)
1149 		goto out_trans_cancel;
1150 
1151 
1152 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1153 	unlock_dp_on_error = true;
1154 
1155 	xfs_bmap_init(&free_list, &first_block);
1156 
1157 	/*
1158 	 * Reserve disk quota and the inode.
1159 	 */
1160 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1161 						pdqp, resblks, 1, 0);
1162 	if (error)
1163 		goto out_trans_cancel;
1164 
1165 	if (!resblks) {
1166 		error = xfs_dir_canenter(tp, dp, name);
1167 		if (error)
1168 			goto out_trans_cancel;
1169 	}
1170 
1171 	/*
1172 	 * A newly created regular or special file just has one directory
1173 	 * entry pointing to them, but a directory also the "." entry
1174 	 * pointing to itself.
1175 	 */
1176 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1177 			       prid, resblks > 0, &ip, &committed);
1178 	if (error) {
1179 		if (error == -ENOSPC)
1180 			goto out_trans_cancel;
1181 		goto out_trans_cancel;
1182 	}
1183 
1184 	/*
1185 	 * Now we join the directory inode to the transaction.  We do not do it
1186 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1187 	 * (and release all the locks).  An error from here on will result in
1188 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1189 	 * error path.
1190 	 */
1191 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1192 	unlock_dp_on_error = false;
1193 
1194 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1195 					&first_block, &free_list, resblks ?
1196 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1197 	if (error) {
1198 		ASSERT(error != -ENOSPC);
1199 		goto out_trans_cancel;
1200 	}
1201 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1202 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1203 
1204 	if (is_dir) {
1205 		error = xfs_dir_init(tp, ip, dp);
1206 		if (error)
1207 			goto out_bmap_cancel;
1208 
1209 		error = xfs_bumplink(tp, dp);
1210 		if (error)
1211 			goto out_bmap_cancel;
1212 	}
1213 
1214 	/*
1215 	 * If this is a synchronous mount, make sure that the
1216 	 * create transaction goes to disk before returning to
1217 	 * the user.
1218 	 */
1219 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1220 		xfs_trans_set_sync(tp);
1221 
1222 	/*
1223 	 * Attach the dquot(s) to the inodes and modify them incore.
1224 	 * These ids of the inode couldn't have changed since the new
1225 	 * inode has been locked ever since it was created.
1226 	 */
1227 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1228 
1229 	error = xfs_bmap_finish(&tp, &free_list, &committed);
1230 	if (error)
1231 		goto out_bmap_cancel;
1232 
1233 	error = xfs_trans_commit(tp);
1234 	if (error)
1235 		goto out_release_inode;
1236 
1237 	xfs_qm_dqrele(udqp);
1238 	xfs_qm_dqrele(gdqp);
1239 	xfs_qm_dqrele(pdqp);
1240 
1241 	*ipp = ip;
1242 	return 0;
1243 
1244  out_bmap_cancel:
1245 	xfs_bmap_cancel(&free_list);
1246  out_trans_cancel:
1247 	xfs_trans_cancel(tp);
1248  out_release_inode:
1249 	/*
1250 	 * Wait until after the current transaction is aborted to finish the
1251 	 * setup of the inode and release the inode.  This prevents recursive
1252 	 * transactions and deadlocks from xfs_inactive.
1253 	 */
1254 	if (ip) {
1255 		xfs_finish_inode_setup(ip);
1256 		IRELE(ip);
1257 	}
1258 
1259 	xfs_qm_dqrele(udqp);
1260 	xfs_qm_dqrele(gdqp);
1261 	xfs_qm_dqrele(pdqp);
1262 
1263 	if (unlock_dp_on_error)
1264 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1265 	return error;
1266 }
1267 
1268 int
1269 xfs_create_tmpfile(
1270 	struct xfs_inode	*dp,
1271 	struct dentry		*dentry,
1272 	umode_t			mode,
1273 	struct xfs_inode	**ipp)
1274 {
1275 	struct xfs_mount	*mp = dp->i_mount;
1276 	struct xfs_inode	*ip = NULL;
1277 	struct xfs_trans	*tp = NULL;
1278 	int			error;
1279 	prid_t                  prid;
1280 	struct xfs_dquot	*udqp = NULL;
1281 	struct xfs_dquot	*gdqp = NULL;
1282 	struct xfs_dquot	*pdqp = NULL;
1283 	struct xfs_trans_res	*tres;
1284 	uint			resblks;
1285 
1286 	if (XFS_FORCED_SHUTDOWN(mp))
1287 		return -EIO;
1288 
1289 	prid = xfs_get_initial_prid(dp);
1290 
1291 	/*
1292 	 * Make sure that we have allocated dquot(s) on disk.
1293 	 */
1294 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1295 				xfs_kgid_to_gid(current_fsgid()), prid,
1296 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1297 				&udqp, &gdqp, &pdqp);
1298 	if (error)
1299 		return error;
1300 
1301 	resblks = XFS_IALLOC_SPACE_RES(mp);
1302 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1303 
1304 	tres = &M_RES(mp)->tr_create_tmpfile;
1305 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1306 	if (error == -ENOSPC) {
1307 		/* No space at all so try a "no-allocation" reservation */
1308 		resblks = 0;
1309 		error = xfs_trans_reserve(tp, tres, 0, 0);
1310 	}
1311 	if (error)
1312 		goto out_trans_cancel;
1313 
1314 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1315 						pdqp, resblks, 1, 0);
1316 	if (error)
1317 		goto out_trans_cancel;
1318 
1319 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1320 				prid, resblks > 0, &ip, NULL);
1321 	if (error) {
1322 		if (error == -ENOSPC)
1323 			goto out_trans_cancel;
1324 		goto out_trans_cancel;
1325 	}
1326 
1327 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1328 		xfs_trans_set_sync(tp);
1329 
1330 	/*
1331 	 * Attach the dquot(s) to the inodes and modify them incore.
1332 	 * These ids of the inode couldn't have changed since the new
1333 	 * inode has been locked ever since it was created.
1334 	 */
1335 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1336 
1337 	ip->i_d.di_nlink--;
1338 	error = xfs_iunlink(tp, ip);
1339 	if (error)
1340 		goto out_trans_cancel;
1341 
1342 	error = xfs_trans_commit(tp);
1343 	if (error)
1344 		goto out_release_inode;
1345 
1346 	xfs_qm_dqrele(udqp);
1347 	xfs_qm_dqrele(gdqp);
1348 	xfs_qm_dqrele(pdqp);
1349 
1350 	*ipp = ip;
1351 	return 0;
1352 
1353  out_trans_cancel:
1354 	xfs_trans_cancel(tp);
1355  out_release_inode:
1356 	/*
1357 	 * Wait until after the current transaction is aborted to finish the
1358 	 * setup of the inode and release the inode.  This prevents recursive
1359 	 * transactions and deadlocks from xfs_inactive.
1360 	 */
1361 	if (ip) {
1362 		xfs_finish_inode_setup(ip);
1363 		IRELE(ip);
1364 	}
1365 
1366 	xfs_qm_dqrele(udqp);
1367 	xfs_qm_dqrele(gdqp);
1368 	xfs_qm_dqrele(pdqp);
1369 
1370 	return error;
1371 }
1372 
1373 int
1374 xfs_link(
1375 	xfs_inode_t		*tdp,
1376 	xfs_inode_t		*sip,
1377 	struct xfs_name		*target_name)
1378 {
1379 	xfs_mount_t		*mp = tdp->i_mount;
1380 	xfs_trans_t		*tp;
1381 	int			error;
1382 	xfs_bmap_free_t         free_list;
1383 	xfs_fsblock_t           first_block;
1384 	int			committed;
1385 	int			resblks;
1386 
1387 	trace_xfs_link(tdp, target_name);
1388 
1389 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1390 
1391 	if (XFS_FORCED_SHUTDOWN(mp))
1392 		return -EIO;
1393 
1394 	error = xfs_qm_dqattach(sip, 0);
1395 	if (error)
1396 		goto std_return;
1397 
1398 	error = xfs_qm_dqattach(tdp, 0);
1399 	if (error)
1400 		goto std_return;
1401 
1402 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1403 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1404 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1405 	if (error == -ENOSPC) {
1406 		resblks = 0;
1407 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1408 	}
1409 	if (error)
1410 		goto error_return;
1411 
1412 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1413 
1414 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1415 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1416 
1417 	/*
1418 	 * If we are using project inheritance, we only allow hard link
1419 	 * creation in our tree when the project IDs are the same; else
1420 	 * the tree quota mechanism could be circumvented.
1421 	 */
1422 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1423 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1424 		error = -EXDEV;
1425 		goto error_return;
1426 	}
1427 
1428 	if (!resblks) {
1429 		error = xfs_dir_canenter(tp, tdp, target_name);
1430 		if (error)
1431 			goto error_return;
1432 	}
1433 
1434 	xfs_bmap_init(&free_list, &first_block);
1435 
1436 	if (sip->i_d.di_nlink == 0) {
1437 		error = xfs_iunlink_remove(tp, sip);
1438 		if (error)
1439 			goto error_return;
1440 	}
1441 
1442 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1443 					&first_block, &free_list, resblks);
1444 	if (error)
1445 		goto error_return;
1446 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1447 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1448 
1449 	error = xfs_bumplink(tp, sip);
1450 	if (error)
1451 		goto error_return;
1452 
1453 	/*
1454 	 * If this is a synchronous mount, make sure that the
1455 	 * link transaction goes to disk before returning to
1456 	 * the user.
1457 	 */
1458 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1459 		xfs_trans_set_sync(tp);
1460 	}
1461 
1462 	error = xfs_bmap_finish (&tp, &free_list, &committed);
1463 	if (error) {
1464 		xfs_bmap_cancel(&free_list);
1465 		goto error_return;
1466 	}
1467 
1468 	return xfs_trans_commit(tp);
1469 
1470  error_return:
1471 	xfs_trans_cancel(tp);
1472  std_return:
1473 	return error;
1474 }
1475 
1476 /*
1477  * Free up the underlying blocks past new_size.  The new size must be smaller
1478  * than the current size.  This routine can be used both for the attribute and
1479  * data fork, and does not modify the inode size, which is left to the caller.
1480  *
1481  * The transaction passed to this routine must have made a permanent log
1482  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1483  * given transaction and start new ones, so make sure everything involved in
1484  * the transaction is tidy before calling here.  Some transaction will be
1485  * returned to the caller to be committed.  The incoming transaction must
1486  * already include the inode, and both inode locks must be held exclusively.
1487  * The inode must also be "held" within the transaction.  On return the inode
1488  * will be "held" within the returned transaction.  This routine does NOT
1489  * require any disk space to be reserved for it within the transaction.
1490  *
1491  * If we get an error, we must return with the inode locked and linked into the
1492  * current transaction. This keeps things simple for the higher level code,
1493  * because it always knows that the inode is locked and held in the transaction
1494  * that returns to it whether errors occur or not.  We don't mark the inode
1495  * dirty on error so that transactions can be easily aborted if possible.
1496  */
1497 int
1498 xfs_itruncate_extents(
1499 	struct xfs_trans	**tpp,
1500 	struct xfs_inode	*ip,
1501 	int			whichfork,
1502 	xfs_fsize_t		new_size)
1503 {
1504 	struct xfs_mount	*mp = ip->i_mount;
1505 	struct xfs_trans	*tp = *tpp;
1506 	xfs_bmap_free_t		free_list;
1507 	xfs_fsblock_t		first_block;
1508 	xfs_fileoff_t		first_unmap_block;
1509 	xfs_fileoff_t		last_block;
1510 	xfs_filblks_t		unmap_len;
1511 	int			committed;
1512 	int			error = 0;
1513 	int			done = 0;
1514 
1515 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1516 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1517 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1518 	ASSERT(new_size <= XFS_ISIZE(ip));
1519 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1520 	ASSERT(ip->i_itemp != NULL);
1521 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1522 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1523 
1524 	trace_xfs_itruncate_extents_start(ip, new_size);
1525 
1526 	/*
1527 	 * Since it is possible for space to become allocated beyond
1528 	 * the end of the file (in a crash where the space is allocated
1529 	 * but the inode size is not yet updated), simply remove any
1530 	 * blocks which show up between the new EOF and the maximum
1531 	 * possible file size.  If the first block to be removed is
1532 	 * beyond the maximum file size (ie it is the same as last_block),
1533 	 * then there is nothing to do.
1534 	 */
1535 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1536 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1537 	if (first_unmap_block == last_block)
1538 		return 0;
1539 
1540 	ASSERT(first_unmap_block < last_block);
1541 	unmap_len = last_block - first_unmap_block + 1;
1542 	while (!done) {
1543 		xfs_bmap_init(&free_list, &first_block);
1544 		error = xfs_bunmapi(tp, ip,
1545 				    first_unmap_block, unmap_len,
1546 				    xfs_bmapi_aflag(whichfork),
1547 				    XFS_ITRUNC_MAX_EXTENTS,
1548 				    &first_block, &free_list,
1549 				    &done);
1550 		if (error)
1551 			goto out_bmap_cancel;
1552 
1553 		/*
1554 		 * Duplicate the transaction that has the permanent
1555 		 * reservation and commit the old transaction.
1556 		 */
1557 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1558 		if (committed)
1559 			xfs_trans_ijoin(tp, ip, 0);
1560 		if (error)
1561 			goto out_bmap_cancel;
1562 
1563 		error = xfs_trans_roll(&tp, ip);
1564 		if (error)
1565 			goto out;
1566 	}
1567 
1568 	/*
1569 	 * Always re-log the inode so that our permanent transaction can keep
1570 	 * on rolling it forward in the log.
1571 	 */
1572 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1573 
1574 	trace_xfs_itruncate_extents_end(ip, new_size);
1575 
1576 out:
1577 	*tpp = tp;
1578 	return error;
1579 out_bmap_cancel:
1580 	/*
1581 	 * If the bunmapi call encounters an error, return to the caller where
1582 	 * the transaction can be properly aborted.  We just need to make sure
1583 	 * we're not holding any resources that we were not when we came in.
1584 	 */
1585 	xfs_bmap_cancel(&free_list);
1586 	goto out;
1587 }
1588 
1589 int
1590 xfs_release(
1591 	xfs_inode_t	*ip)
1592 {
1593 	xfs_mount_t	*mp = ip->i_mount;
1594 	int		error;
1595 
1596 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1597 		return 0;
1598 
1599 	/* If this is a read-only mount, don't do this (would generate I/O) */
1600 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1601 		return 0;
1602 
1603 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1604 		int truncated;
1605 
1606 		/*
1607 		 * If we previously truncated this file and removed old data
1608 		 * in the process, we want to initiate "early" writeout on
1609 		 * the last close.  This is an attempt to combat the notorious
1610 		 * NULL files problem which is particularly noticeable from a
1611 		 * truncate down, buffered (re-)write (delalloc), followed by
1612 		 * a crash.  What we are effectively doing here is
1613 		 * significantly reducing the time window where we'd otherwise
1614 		 * be exposed to that problem.
1615 		 */
1616 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1617 		if (truncated) {
1618 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1619 			if (ip->i_delayed_blks > 0) {
1620 				error = filemap_flush(VFS_I(ip)->i_mapping);
1621 				if (error)
1622 					return error;
1623 			}
1624 		}
1625 	}
1626 
1627 	if (ip->i_d.di_nlink == 0)
1628 		return 0;
1629 
1630 	if (xfs_can_free_eofblocks(ip, false)) {
1631 
1632 		/*
1633 		 * If we can't get the iolock just skip truncating the blocks
1634 		 * past EOF because we could deadlock with the mmap_sem
1635 		 * otherwise.  We'll get another chance to drop them once the
1636 		 * last reference to the inode is dropped, so we'll never leak
1637 		 * blocks permanently.
1638 		 *
1639 		 * Further, check if the inode is being opened, written and
1640 		 * closed frequently and we have delayed allocation blocks
1641 		 * outstanding (e.g. streaming writes from the NFS server),
1642 		 * truncating the blocks past EOF will cause fragmentation to
1643 		 * occur.
1644 		 *
1645 		 * In this case don't do the truncation, either, but we have to
1646 		 * be careful how we detect this case. Blocks beyond EOF show
1647 		 * up as i_delayed_blks even when the inode is clean, so we
1648 		 * need to truncate them away first before checking for a dirty
1649 		 * release. Hence on the first dirty close we will still remove
1650 		 * the speculative allocation, but after that we will leave it
1651 		 * in place.
1652 		 */
1653 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1654 			return 0;
1655 
1656 		error = xfs_free_eofblocks(mp, ip, true);
1657 		if (error && error != -EAGAIN)
1658 			return error;
1659 
1660 		/* delalloc blocks after truncation means it really is dirty */
1661 		if (ip->i_delayed_blks)
1662 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1663 	}
1664 	return 0;
1665 }
1666 
1667 /*
1668  * xfs_inactive_truncate
1669  *
1670  * Called to perform a truncate when an inode becomes unlinked.
1671  */
1672 STATIC int
1673 xfs_inactive_truncate(
1674 	struct xfs_inode *ip)
1675 {
1676 	struct xfs_mount	*mp = ip->i_mount;
1677 	struct xfs_trans	*tp;
1678 	int			error;
1679 
1680 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1681 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1682 	if (error) {
1683 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1684 		xfs_trans_cancel(tp);
1685 		return error;
1686 	}
1687 
1688 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1689 	xfs_trans_ijoin(tp, ip, 0);
1690 
1691 	/*
1692 	 * Log the inode size first to prevent stale data exposure in the event
1693 	 * of a system crash before the truncate completes. See the related
1694 	 * comment in xfs_setattr_size() for details.
1695 	 */
1696 	ip->i_d.di_size = 0;
1697 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1698 
1699 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1700 	if (error)
1701 		goto error_trans_cancel;
1702 
1703 	ASSERT(ip->i_d.di_nextents == 0);
1704 
1705 	error = xfs_trans_commit(tp);
1706 	if (error)
1707 		goto error_unlock;
1708 
1709 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1710 	return 0;
1711 
1712 error_trans_cancel:
1713 	xfs_trans_cancel(tp);
1714 error_unlock:
1715 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1716 	return error;
1717 }
1718 
1719 /*
1720  * xfs_inactive_ifree()
1721  *
1722  * Perform the inode free when an inode is unlinked.
1723  */
1724 STATIC int
1725 xfs_inactive_ifree(
1726 	struct xfs_inode *ip)
1727 {
1728 	xfs_bmap_free_t		free_list;
1729 	xfs_fsblock_t		first_block;
1730 	int			committed;
1731 	struct xfs_mount	*mp = ip->i_mount;
1732 	struct xfs_trans	*tp;
1733 	int			error;
1734 
1735 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1736 
1737 	/*
1738 	 * The ifree transaction might need to allocate blocks for record
1739 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1740 	 * allow ifree to dip into the reserved block pool if necessary.
1741 	 *
1742 	 * Freeing large sets of inodes generally means freeing inode chunks,
1743 	 * directory and file data blocks, so this should be relatively safe.
1744 	 * Only under severe circumstances should it be possible to free enough
1745 	 * inodes to exhaust the reserve block pool via finobt expansion while
1746 	 * at the same time not creating free space in the filesystem.
1747 	 *
1748 	 * Send a warning if the reservation does happen to fail, as the inode
1749 	 * now remains allocated and sits on the unlinked list until the fs is
1750 	 * repaired.
1751 	 */
1752 	tp->t_flags |= XFS_TRANS_RESERVE;
1753 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1754 				  XFS_IFREE_SPACE_RES(mp), 0);
1755 	if (error) {
1756 		if (error == -ENOSPC) {
1757 			xfs_warn_ratelimited(mp,
1758 			"Failed to remove inode(s) from unlinked list. "
1759 			"Please free space, unmount and run xfs_repair.");
1760 		} else {
1761 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1762 		}
1763 		xfs_trans_cancel(tp);
1764 		return error;
1765 	}
1766 
1767 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1768 	xfs_trans_ijoin(tp, ip, 0);
1769 
1770 	xfs_bmap_init(&free_list, &first_block);
1771 	error = xfs_ifree(tp, ip, &free_list);
1772 	if (error) {
1773 		/*
1774 		 * If we fail to free the inode, shut down.  The cancel
1775 		 * might do that, we need to make sure.  Otherwise the
1776 		 * inode might be lost for a long time or forever.
1777 		 */
1778 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1779 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1780 				__func__, error);
1781 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1782 		}
1783 		xfs_trans_cancel(tp);
1784 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 		return error;
1786 	}
1787 
1788 	/*
1789 	 * Credit the quota account(s). The inode is gone.
1790 	 */
1791 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1792 
1793 	/*
1794 	 * Just ignore errors at this point.  There is nothing we can
1795 	 * do except to try to keep going. Make sure it's not a silent
1796 	 * error.
1797 	 */
1798 	error = xfs_bmap_finish(&tp,  &free_list, &committed);
1799 	if (error)
1800 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1801 			__func__, error);
1802 	error = xfs_trans_commit(tp);
1803 	if (error)
1804 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1805 			__func__, error);
1806 
1807 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1808 	return 0;
1809 }
1810 
1811 /*
1812  * xfs_inactive
1813  *
1814  * This is called when the vnode reference count for the vnode
1815  * goes to zero.  If the file has been unlinked, then it must
1816  * now be truncated.  Also, we clear all of the read-ahead state
1817  * kept for the inode here since the file is now closed.
1818  */
1819 void
1820 xfs_inactive(
1821 	xfs_inode_t	*ip)
1822 {
1823 	struct xfs_mount	*mp;
1824 	int			error;
1825 	int			truncate = 0;
1826 
1827 	/*
1828 	 * If the inode is already free, then there can be nothing
1829 	 * to clean up here.
1830 	 */
1831 	if (ip->i_d.di_mode == 0) {
1832 		ASSERT(ip->i_df.if_real_bytes == 0);
1833 		ASSERT(ip->i_df.if_broot_bytes == 0);
1834 		return;
1835 	}
1836 
1837 	mp = ip->i_mount;
1838 
1839 	/* If this is a read-only mount, don't do this (would generate I/O) */
1840 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1841 		return;
1842 
1843 	if (ip->i_d.di_nlink != 0) {
1844 		/*
1845 		 * force is true because we are evicting an inode from the
1846 		 * cache. Post-eof blocks must be freed, lest we end up with
1847 		 * broken free space accounting.
1848 		 */
1849 		if (xfs_can_free_eofblocks(ip, true))
1850 			xfs_free_eofblocks(mp, ip, false);
1851 
1852 		return;
1853 	}
1854 
1855 	if (S_ISREG(ip->i_d.di_mode) &&
1856 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1857 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1858 		truncate = 1;
1859 
1860 	error = xfs_qm_dqattach(ip, 0);
1861 	if (error)
1862 		return;
1863 
1864 	if (S_ISLNK(ip->i_d.di_mode))
1865 		error = xfs_inactive_symlink(ip);
1866 	else if (truncate)
1867 		error = xfs_inactive_truncate(ip);
1868 	if (error)
1869 		return;
1870 
1871 	/*
1872 	 * If there are attributes associated with the file then blow them away
1873 	 * now.  The code calls a routine that recursively deconstructs the
1874 	 * attribute fork. If also blows away the in-core attribute fork.
1875 	 */
1876 	if (XFS_IFORK_Q(ip)) {
1877 		error = xfs_attr_inactive(ip);
1878 		if (error)
1879 			return;
1880 	}
1881 
1882 	ASSERT(!ip->i_afp);
1883 	ASSERT(ip->i_d.di_anextents == 0);
1884 	ASSERT(ip->i_d.di_forkoff == 0);
1885 
1886 	/*
1887 	 * Free the inode.
1888 	 */
1889 	error = xfs_inactive_ifree(ip);
1890 	if (error)
1891 		return;
1892 
1893 	/*
1894 	 * Release the dquots held by inode, if any.
1895 	 */
1896 	xfs_qm_dqdetach(ip);
1897 }
1898 
1899 /*
1900  * This is called when the inode's link count goes to 0.
1901  * We place the on-disk inode on a list in the AGI.  It
1902  * will be pulled from this list when the inode is freed.
1903  */
1904 int
1905 xfs_iunlink(
1906 	xfs_trans_t	*tp,
1907 	xfs_inode_t	*ip)
1908 {
1909 	xfs_mount_t	*mp;
1910 	xfs_agi_t	*agi;
1911 	xfs_dinode_t	*dip;
1912 	xfs_buf_t	*agibp;
1913 	xfs_buf_t	*ibp;
1914 	xfs_agino_t	agino;
1915 	short		bucket_index;
1916 	int		offset;
1917 	int		error;
1918 
1919 	ASSERT(ip->i_d.di_nlink == 0);
1920 	ASSERT(ip->i_d.di_mode != 0);
1921 
1922 	mp = tp->t_mountp;
1923 
1924 	/*
1925 	 * Get the agi buffer first.  It ensures lock ordering
1926 	 * on the list.
1927 	 */
1928 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1929 	if (error)
1930 		return error;
1931 	agi = XFS_BUF_TO_AGI(agibp);
1932 
1933 	/*
1934 	 * Get the index into the agi hash table for the
1935 	 * list this inode will go on.
1936 	 */
1937 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1938 	ASSERT(agino != 0);
1939 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1940 	ASSERT(agi->agi_unlinked[bucket_index]);
1941 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1942 
1943 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1944 		/*
1945 		 * There is already another inode in the bucket we need
1946 		 * to add ourselves to.  Add us at the front of the list.
1947 		 * Here we put the head pointer into our next pointer,
1948 		 * and then we fall through to point the head at us.
1949 		 */
1950 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1951 				       0, 0);
1952 		if (error)
1953 			return error;
1954 
1955 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1956 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1957 		offset = ip->i_imap.im_boffset +
1958 			offsetof(xfs_dinode_t, di_next_unlinked);
1959 
1960 		/* need to recalc the inode CRC if appropriate */
1961 		xfs_dinode_calc_crc(mp, dip);
1962 
1963 		xfs_trans_inode_buf(tp, ibp);
1964 		xfs_trans_log_buf(tp, ibp, offset,
1965 				  (offset + sizeof(xfs_agino_t) - 1));
1966 		xfs_inobp_check(mp, ibp);
1967 	}
1968 
1969 	/*
1970 	 * Point the bucket head pointer at the inode being inserted.
1971 	 */
1972 	ASSERT(agino != 0);
1973 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1974 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1975 		(sizeof(xfs_agino_t) * bucket_index);
1976 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1977 	xfs_trans_log_buf(tp, agibp, offset,
1978 			  (offset + sizeof(xfs_agino_t) - 1));
1979 	return 0;
1980 }
1981 
1982 /*
1983  * Pull the on-disk inode from the AGI unlinked list.
1984  */
1985 STATIC int
1986 xfs_iunlink_remove(
1987 	xfs_trans_t	*tp,
1988 	xfs_inode_t	*ip)
1989 {
1990 	xfs_ino_t	next_ino;
1991 	xfs_mount_t	*mp;
1992 	xfs_agi_t	*agi;
1993 	xfs_dinode_t	*dip;
1994 	xfs_buf_t	*agibp;
1995 	xfs_buf_t	*ibp;
1996 	xfs_agnumber_t	agno;
1997 	xfs_agino_t	agino;
1998 	xfs_agino_t	next_agino;
1999 	xfs_buf_t	*last_ibp;
2000 	xfs_dinode_t	*last_dip = NULL;
2001 	short		bucket_index;
2002 	int		offset, last_offset = 0;
2003 	int		error;
2004 
2005 	mp = tp->t_mountp;
2006 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2007 
2008 	/*
2009 	 * Get the agi buffer first.  It ensures lock ordering
2010 	 * on the list.
2011 	 */
2012 	error = xfs_read_agi(mp, tp, agno, &agibp);
2013 	if (error)
2014 		return error;
2015 
2016 	agi = XFS_BUF_TO_AGI(agibp);
2017 
2018 	/*
2019 	 * Get the index into the agi hash table for the
2020 	 * list this inode will go on.
2021 	 */
2022 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2023 	ASSERT(agino != 0);
2024 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2025 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2026 	ASSERT(agi->agi_unlinked[bucket_index]);
2027 
2028 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2029 		/*
2030 		 * We're at the head of the list.  Get the inode's on-disk
2031 		 * buffer to see if there is anyone after us on the list.
2032 		 * Only modify our next pointer if it is not already NULLAGINO.
2033 		 * This saves us the overhead of dealing with the buffer when
2034 		 * there is no need to change it.
2035 		 */
2036 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2037 				       0, 0);
2038 		if (error) {
2039 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2040 				__func__, error);
2041 			return error;
2042 		}
2043 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2044 		ASSERT(next_agino != 0);
2045 		if (next_agino != NULLAGINO) {
2046 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2047 			offset = ip->i_imap.im_boffset +
2048 				offsetof(xfs_dinode_t, di_next_unlinked);
2049 
2050 			/* need to recalc the inode CRC if appropriate */
2051 			xfs_dinode_calc_crc(mp, dip);
2052 
2053 			xfs_trans_inode_buf(tp, ibp);
2054 			xfs_trans_log_buf(tp, ibp, offset,
2055 					  (offset + sizeof(xfs_agino_t) - 1));
2056 			xfs_inobp_check(mp, ibp);
2057 		} else {
2058 			xfs_trans_brelse(tp, ibp);
2059 		}
2060 		/*
2061 		 * Point the bucket head pointer at the next inode.
2062 		 */
2063 		ASSERT(next_agino != 0);
2064 		ASSERT(next_agino != agino);
2065 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2066 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2067 			(sizeof(xfs_agino_t) * bucket_index);
2068 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2069 		xfs_trans_log_buf(tp, agibp, offset,
2070 				  (offset + sizeof(xfs_agino_t) - 1));
2071 	} else {
2072 		/*
2073 		 * We need to search the list for the inode being freed.
2074 		 */
2075 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2076 		last_ibp = NULL;
2077 		while (next_agino != agino) {
2078 			struct xfs_imap	imap;
2079 
2080 			if (last_ibp)
2081 				xfs_trans_brelse(tp, last_ibp);
2082 
2083 			imap.im_blkno = 0;
2084 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2085 
2086 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2087 			if (error) {
2088 				xfs_warn(mp,
2089 	"%s: xfs_imap returned error %d.",
2090 					 __func__, error);
2091 				return error;
2092 			}
2093 
2094 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2095 					       &last_ibp, 0, 0);
2096 			if (error) {
2097 				xfs_warn(mp,
2098 	"%s: xfs_imap_to_bp returned error %d.",
2099 					__func__, error);
2100 				return error;
2101 			}
2102 
2103 			last_offset = imap.im_boffset;
2104 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2105 			ASSERT(next_agino != NULLAGINO);
2106 			ASSERT(next_agino != 0);
2107 		}
2108 
2109 		/*
2110 		 * Now last_ibp points to the buffer previous to us on the
2111 		 * unlinked list.  Pull us from the list.
2112 		 */
2113 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2114 				       0, 0);
2115 		if (error) {
2116 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2117 				__func__, error);
2118 			return error;
2119 		}
2120 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2121 		ASSERT(next_agino != 0);
2122 		ASSERT(next_agino != agino);
2123 		if (next_agino != NULLAGINO) {
2124 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2125 			offset = ip->i_imap.im_boffset +
2126 				offsetof(xfs_dinode_t, di_next_unlinked);
2127 
2128 			/* need to recalc the inode CRC if appropriate */
2129 			xfs_dinode_calc_crc(mp, dip);
2130 
2131 			xfs_trans_inode_buf(tp, ibp);
2132 			xfs_trans_log_buf(tp, ibp, offset,
2133 					  (offset + sizeof(xfs_agino_t) - 1));
2134 			xfs_inobp_check(mp, ibp);
2135 		} else {
2136 			xfs_trans_brelse(tp, ibp);
2137 		}
2138 		/*
2139 		 * Point the previous inode on the list to the next inode.
2140 		 */
2141 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2142 		ASSERT(next_agino != 0);
2143 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2144 
2145 		/* need to recalc the inode CRC if appropriate */
2146 		xfs_dinode_calc_crc(mp, last_dip);
2147 
2148 		xfs_trans_inode_buf(tp, last_ibp);
2149 		xfs_trans_log_buf(tp, last_ibp, offset,
2150 				  (offset + sizeof(xfs_agino_t) - 1));
2151 		xfs_inobp_check(mp, last_ibp);
2152 	}
2153 	return 0;
2154 }
2155 
2156 /*
2157  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2158  * inodes that are in memory - they all must be marked stale and attached to
2159  * the cluster buffer.
2160  */
2161 STATIC int
2162 xfs_ifree_cluster(
2163 	xfs_inode_t		*free_ip,
2164 	xfs_trans_t		*tp,
2165 	struct xfs_icluster	*xic)
2166 {
2167 	xfs_mount_t		*mp = free_ip->i_mount;
2168 	int			blks_per_cluster;
2169 	int			inodes_per_cluster;
2170 	int			nbufs;
2171 	int			i, j;
2172 	int			ioffset;
2173 	xfs_daddr_t		blkno;
2174 	xfs_buf_t		*bp;
2175 	xfs_inode_t		*ip;
2176 	xfs_inode_log_item_t	*iip;
2177 	xfs_log_item_t		*lip;
2178 	struct xfs_perag	*pag;
2179 	xfs_ino_t		inum;
2180 
2181 	inum = xic->first_ino;
2182 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2183 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2184 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2185 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2186 
2187 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2188 		/*
2189 		 * The allocation bitmap tells us which inodes of the chunk were
2190 		 * physically allocated. Skip the cluster if an inode falls into
2191 		 * a sparse region.
2192 		 */
2193 		ioffset = inum - xic->first_ino;
2194 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2195 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2196 			continue;
2197 		}
2198 
2199 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2200 					 XFS_INO_TO_AGBNO(mp, inum));
2201 
2202 		/*
2203 		 * We obtain and lock the backing buffer first in the process
2204 		 * here, as we have to ensure that any dirty inode that we
2205 		 * can't get the flush lock on is attached to the buffer.
2206 		 * If we scan the in-memory inodes first, then buffer IO can
2207 		 * complete before we get a lock on it, and hence we may fail
2208 		 * to mark all the active inodes on the buffer stale.
2209 		 */
2210 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2211 					mp->m_bsize * blks_per_cluster,
2212 					XBF_UNMAPPED);
2213 
2214 		if (!bp)
2215 			return -ENOMEM;
2216 
2217 		/*
2218 		 * This buffer may not have been correctly initialised as we
2219 		 * didn't read it from disk. That's not important because we are
2220 		 * only using to mark the buffer as stale in the log, and to
2221 		 * attach stale cached inodes on it. That means it will never be
2222 		 * dispatched for IO. If it is, we want to know about it, and we
2223 		 * want it to fail. We can acheive this by adding a write
2224 		 * verifier to the buffer.
2225 		 */
2226 		 bp->b_ops = &xfs_inode_buf_ops;
2227 
2228 		/*
2229 		 * Walk the inodes already attached to the buffer and mark them
2230 		 * stale. These will all have the flush locks held, so an
2231 		 * in-memory inode walk can't lock them. By marking them all
2232 		 * stale first, we will not attempt to lock them in the loop
2233 		 * below as the XFS_ISTALE flag will be set.
2234 		 */
2235 		lip = bp->b_fspriv;
2236 		while (lip) {
2237 			if (lip->li_type == XFS_LI_INODE) {
2238 				iip = (xfs_inode_log_item_t *)lip;
2239 				ASSERT(iip->ili_logged == 1);
2240 				lip->li_cb = xfs_istale_done;
2241 				xfs_trans_ail_copy_lsn(mp->m_ail,
2242 							&iip->ili_flush_lsn,
2243 							&iip->ili_item.li_lsn);
2244 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2245 			}
2246 			lip = lip->li_bio_list;
2247 		}
2248 
2249 
2250 		/*
2251 		 * For each inode in memory attempt to add it to the inode
2252 		 * buffer and set it up for being staled on buffer IO
2253 		 * completion.  This is safe as we've locked out tail pushing
2254 		 * and flushing by locking the buffer.
2255 		 *
2256 		 * We have already marked every inode that was part of a
2257 		 * transaction stale above, which means there is no point in
2258 		 * even trying to lock them.
2259 		 */
2260 		for (i = 0; i < inodes_per_cluster; i++) {
2261 retry:
2262 			rcu_read_lock();
2263 			ip = radix_tree_lookup(&pag->pag_ici_root,
2264 					XFS_INO_TO_AGINO(mp, (inum + i)));
2265 
2266 			/* Inode not in memory, nothing to do */
2267 			if (!ip) {
2268 				rcu_read_unlock();
2269 				continue;
2270 			}
2271 
2272 			/*
2273 			 * because this is an RCU protected lookup, we could
2274 			 * find a recently freed or even reallocated inode
2275 			 * during the lookup. We need to check under the
2276 			 * i_flags_lock for a valid inode here. Skip it if it
2277 			 * is not valid, the wrong inode or stale.
2278 			 */
2279 			spin_lock(&ip->i_flags_lock);
2280 			if (ip->i_ino != inum + i ||
2281 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2282 				spin_unlock(&ip->i_flags_lock);
2283 				rcu_read_unlock();
2284 				continue;
2285 			}
2286 			spin_unlock(&ip->i_flags_lock);
2287 
2288 			/*
2289 			 * Don't try to lock/unlock the current inode, but we
2290 			 * _cannot_ skip the other inodes that we did not find
2291 			 * in the list attached to the buffer and are not
2292 			 * already marked stale. If we can't lock it, back off
2293 			 * and retry.
2294 			 */
2295 			if (ip != free_ip &&
2296 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2297 				rcu_read_unlock();
2298 				delay(1);
2299 				goto retry;
2300 			}
2301 			rcu_read_unlock();
2302 
2303 			xfs_iflock(ip);
2304 			xfs_iflags_set(ip, XFS_ISTALE);
2305 
2306 			/*
2307 			 * we don't need to attach clean inodes or those only
2308 			 * with unlogged changes (which we throw away, anyway).
2309 			 */
2310 			iip = ip->i_itemp;
2311 			if (!iip || xfs_inode_clean(ip)) {
2312 				ASSERT(ip != free_ip);
2313 				xfs_ifunlock(ip);
2314 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2315 				continue;
2316 			}
2317 
2318 			iip->ili_last_fields = iip->ili_fields;
2319 			iip->ili_fields = 0;
2320 			iip->ili_logged = 1;
2321 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2322 						&iip->ili_item.li_lsn);
2323 
2324 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2325 						  &iip->ili_item);
2326 
2327 			if (ip != free_ip)
2328 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2329 		}
2330 
2331 		xfs_trans_stale_inode_buf(tp, bp);
2332 		xfs_trans_binval(tp, bp);
2333 	}
2334 
2335 	xfs_perag_put(pag);
2336 	return 0;
2337 }
2338 
2339 /*
2340  * This is called to return an inode to the inode free list.
2341  * The inode should already be truncated to 0 length and have
2342  * no pages associated with it.  This routine also assumes that
2343  * the inode is already a part of the transaction.
2344  *
2345  * The on-disk copy of the inode will have been added to the list
2346  * of unlinked inodes in the AGI. We need to remove the inode from
2347  * that list atomically with respect to freeing it here.
2348  */
2349 int
2350 xfs_ifree(
2351 	xfs_trans_t	*tp,
2352 	xfs_inode_t	*ip,
2353 	xfs_bmap_free_t	*flist)
2354 {
2355 	int			error;
2356 	struct xfs_icluster	xic = { 0 };
2357 
2358 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2359 	ASSERT(ip->i_d.di_nlink == 0);
2360 	ASSERT(ip->i_d.di_nextents == 0);
2361 	ASSERT(ip->i_d.di_anextents == 0);
2362 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2363 	ASSERT(ip->i_d.di_nblocks == 0);
2364 
2365 	/*
2366 	 * Pull the on-disk inode from the AGI unlinked list.
2367 	 */
2368 	error = xfs_iunlink_remove(tp, ip);
2369 	if (error)
2370 		return error;
2371 
2372 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2373 	if (error)
2374 		return error;
2375 
2376 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2377 	ip->i_d.di_flags = 0;
2378 	ip->i_d.di_dmevmask = 0;
2379 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2380 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2381 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2382 	/*
2383 	 * Bump the generation count so no one will be confused
2384 	 * by reincarnations of this inode.
2385 	 */
2386 	ip->i_d.di_gen++;
2387 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2388 
2389 	if (xic.deleted)
2390 		error = xfs_ifree_cluster(ip, tp, &xic);
2391 
2392 	return error;
2393 }
2394 
2395 /*
2396  * This is called to unpin an inode.  The caller must have the inode locked
2397  * in at least shared mode so that the buffer cannot be subsequently pinned
2398  * once someone is waiting for it to be unpinned.
2399  */
2400 static void
2401 xfs_iunpin(
2402 	struct xfs_inode	*ip)
2403 {
2404 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2405 
2406 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2407 
2408 	/* Give the log a push to start the unpinning I/O */
2409 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2410 
2411 }
2412 
2413 static void
2414 __xfs_iunpin_wait(
2415 	struct xfs_inode	*ip)
2416 {
2417 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2418 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2419 
2420 	xfs_iunpin(ip);
2421 
2422 	do {
2423 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2424 		if (xfs_ipincount(ip))
2425 			io_schedule();
2426 	} while (xfs_ipincount(ip));
2427 	finish_wait(wq, &wait.wait);
2428 }
2429 
2430 void
2431 xfs_iunpin_wait(
2432 	struct xfs_inode	*ip)
2433 {
2434 	if (xfs_ipincount(ip))
2435 		__xfs_iunpin_wait(ip);
2436 }
2437 
2438 /*
2439  * Removing an inode from the namespace involves removing the directory entry
2440  * and dropping the link count on the inode. Removing the directory entry can
2441  * result in locking an AGF (directory blocks were freed) and removing a link
2442  * count can result in placing the inode on an unlinked list which results in
2443  * locking an AGI.
2444  *
2445  * The big problem here is that we have an ordering constraint on AGF and AGI
2446  * locking - inode allocation locks the AGI, then can allocate a new extent for
2447  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2448  * removes the inode from the unlinked list, requiring that we lock the AGI
2449  * first, and then freeing the inode can result in an inode chunk being freed
2450  * and hence freeing disk space requiring that we lock an AGF.
2451  *
2452  * Hence the ordering that is imposed by other parts of the code is AGI before
2453  * AGF. This means we cannot remove the directory entry before we drop the inode
2454  * reference count and put it on the unlinked list as this results in a lock
2455  * order of AGF then AGI, and this can deadlock against inode allocation and
2456  * freeing. Therefore we must drop the link counts before we remove the
2457  * directory entry.
2458  *
2459  * This is still safe from a transactional point of view - it is not until we
2460  * get to xfs_bmap_finish() that we have the possibility of multiple
2461  * transactions in this operation. Hence as long as we remove the directory
2462  * entry and drop the link count in the first transaction of the remove
2463  * operation, there are no transactional constraints on the ordering here.
2464  */
2465 int
2466 xfs_remove(
2467 	xfs_inode_t             *dp,
2468 	struct xfs_name		*name,
2469 	xfs_inode_t		*ip)
2470 {
2471 	xfs_mount_t		*mp = dp->i_mount;
2472 	xfs_trans_t             *tp = NULL;
2473 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2474 	int                     error = 0;
2475 	xfs_bmap_free_t         free_list;
2476 	xfs_fsblock_t           first_block;
2477 	int			committed;
2478 	uint			resblks;
2479 
2480 	trace_xfs_remove(dp, name);
2481 
2482 	if (XFS_FORCED_SHUTDOWN(mp))
2483 		return -EIO;
2484 
2485 	error = xfs_qm_dqattach(dp, 0);
2486 	if (error)
2487 		goto std_return;
2488 
2489 	error = xfs_qm_dqattach(ip, 0);
2490 	if (error)
2491 		goto std_return;
2492 
2493 	if (is_dir)
2494 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2495 	else
2496 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2497 
2498 	/*
2499 	 * We try to get the real space reservation first,
2500 	 * allowing for directory btree deletion(s) implying
2501 	 * possible bmap insert(s).  If we can't get the space
2502 	 * reservation then we use 0 instead, and avoid the bmap
2503 	 * btree insert(s) in the directory code by, if the bmap
2504 	 * insert tries to happen, instead trimming the LAST
2505 	 * block from the directory.
2506 	 */
2507 	resblks = XFS_REMOVE_SPACE_RES(mp);
2508 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2509 	if (error == -ENOSPC) {
2510 		resblks = 0;
2511 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2512 	}
2513 	if (error) {
2514 		ASSERT(error != -ENOSPC);
2515 		goto out_trans_cancel;
2516 	}
2517 
2518 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2519 
2520 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2521 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2522 
2523 	/*
2524 	 * If we're removing a directory perform some additional validation.
2525 	 */
2526 	if (is_dir) {
2527 		ASSERT(ip->i_d.di_nlink >= 2);
2528 		if (ip->i_d.di_nlink != 2) {
2529 			error = -ENOTEMPTY;
2530 			goto out_trans_cancel;
2531 		}
2532 		if (!xfs_dir_isempty(ip)) {
2533 			error = -ENOTEMPTY;
2534 			goto out_trans_cancel;
2535 		}
2536 
2537 		/* Drop the link from ip's "..".  */
2538 		error = xfs_droplink(tp, dp);
2539 		if (error)
2540 			goto out_trans_cancel;
2541 
2542 		/* Drop the "." link from ip to self.  */
2543 		error = xfs_droplink(tp, ip);
2544 		if (error)
2545 			goto out_trans_cancel;
2546 	} else {
2547 		/*
2548 		 * When removing a non-directory we need to log the parent
2549 		 * inode here.  For a directory this is done implicitly
2550 		 * by the xfs_droplink call for the ".." entry.
2551 		 */
2552 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2553 	}
2554 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2555 
2556 	/* Drop the link from dp to ip. */
2557 	error = xfs_droplink(tp, ip);
2558 	if (error)
2559 		goto out_trans_cancel;
2560 
2561 	xfs_bmap_init(&free_list, &first_block);
2562 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2563 					&first_block, &free_list, resblks);
2564 	if (error) {
2565 		ASSERT(error != -ENOENT);
2566 		goto out_bmap_cancel;
2567 	}
2568 
2569 	/*
2570 	 * If this is a synchronous mount, make sure that the
2571 	 * remove transaction goes to disk before returning to
2572 	 * the user.
2573 	 */
2574 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2575 		xfs_trans_set_sync(tp);
2576 
2577 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2578 	if (error)
2579 		goto out_bmap_cancel;
2580 
2581 	error = xfs_trans_commit(tp);
2582 	if (error)
2583 		goto std_return;
2584 
2585 	if (is_dir && xfs_inode_is_filestream(ip))
2586 		xfs_filestream_deassociate(ip);
2587 
2588 	return 0;
2589 
2590  out_bmap_cancel:
2591 	xfs_bmap_cancel(&free_list);
2592  out_trans_cancel:
2593 	xfs_trans_cancel(tp);
2594  std_return:
2595 	return error;
2596 }
2597 
2598 /*
2599  * Enter all inodes for a rename transaction into a sorted array.
2600  */
2601 #define __XFS_SORT_INODES	5
2602 STATIC void
2603 xfs_sort_for_rename(
2604 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2605 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2606 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2607 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2608 	struct xfs_inode	*wip,	/* in: whiteout inode */
2609 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2610 	int			*num_inodes)  /* in/out: inodes in array */
2611 {
2612 	int			i, j;
2613 
2614 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2615 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2616 
2617 	/*
2618 	 * i_tab contains a list of pointers to inodes.  We initialize
2619 	 * the table here & we'll sort it.  We will then use it to
2620 	 * order the acquisition of the inode locks.
2621 	 *
2622 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2623 	 */
2624 	i = 0;
2625 	i_tab[i++] = dp1;
2626 	i_tab[i++] = dp2;
2627 	i_tab[i++] = ip1;
2628 	if (ip2)
2629 		i_tab[i++] = ip2;
2630 	if (wip)
2631 		i_tab[i++] = wip;
2632 	*num_inodes = i;
2633 
2634 	/*
2635 	 * Sort the elements via bubble sort.  (Remember, there are at
2636 	 * most 5 elements to sort, so this is adequate.)
2637 	 */
2638 	for (i = 0; i < *num_inodes; i++) {
2639 		for (j = 1; j < *num_inodes; j++) {
2640 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2641 				struct xfs_inode *temp = i_tab[j];
2642 				i_tab[j] = i_tab[j-1];
2643 				i_tab[j-1] = temp;
2644 			}
2645 		}
2646 	}
2647 }
2648 
2649 static int
2650 xfs_finish_rename(
2651 	struct xfs_trans	*tp,
2652 	struct xfs_bmap_free	*free_list)
2653 {
2654 	int			committed = 0;
2655 	int			error;
2656 
2657 	/*
2658 	 * If this is a synchronous mount, make sure that the rename transaction
2659 	 * goes to disk before returning to the user.
2660 	 */
2661 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2662 		xfs_trans_set_sync(tp);
2663 
2664 	error = xfs_bmap_finish(&tp, free_list, &committed);
2665 	if (error) {
2666 		xfs_bmap_cancel(free_list);
2667 		xfs_trans_cancel(tp);
2668 		return error;
2669 	}
2670 
2671 	return xfs_trans_commit(tp);
2672 }
2673 
2674 /*
2675  * xfs_cross_rename()
2676  *
2677  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2678  */
2679 STATIC int
2680 xfs_cross_rename(
2681 	struct xfs_trans	*tp,
2682 	struct xfs_inode	*dp1,
2683 	struct xfs_name		*name1,
2684 	struct xfs_inode	*ip1,
2685 	struct xfs_inode	*dp2,
2686 	struct xfs_name		*name2,
2687 	struct xfs_inode	*ip2,
2688 	struct xfs_bmap_free	*free_list,
2689 	xfs_fsblock_t		*first_block,
2690 	int			spaceres)
2691 {
2692 	int		error = 0;
2693 	int		ip1_flags = 0;
2694 	int		ip2_flags = 0;
2695 	int		dp2_flags = 0;
2696 
2697 	/* Swap inode number for dirent in first parent */
2698 	error = xfs_dir_replace(tp, dp1, name1,
2699 				ip2->i_ino,
2700 				first_block, free_list, spaceres);
2701 	if (error)
2702 		goto out_trans_abort;
2703 
2704 	/* Swap inode number for dirent in second parent */
2705 	error = xfs_dir_replace(tp, dp2, name2,
2706 				ip1->i_ino,
2707 				first_block, free_list, spaceres);
2708 	if (error)
2709 		goto out_trans_abort;
2710 
2711 	/*
2712 	 * If we're renaming one or more directories across different parents,
2713 	 * update the respective ".." entries (and link counts) to match the new
2714 	 * parents.
2715 	 */
2716 	if (dp1 != dp2) {
2717 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2718 
2719 		if (S_ISDIR(ip2->i_d.di_mode)) {
2720 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2721 						dp1->i_ino, first_block,
2722 						free_list, spaceres);
2723 			if (error)
2724 				goto out_trans_abort;
2725 
2726 			/* transfer ip2 ".." reference to dp1 */
2727 			if (!S_ISDIR(ip1->i_d.di_mode)) {
2728 				error = xfs_droplink(tp, dp2);
2729 				if (error)
2730 					goto out_trans_abort;
2731 				error = xfs_bumplink(tp, dp1);
2732 				if (error)
2733 					goto out_trans_abort;
2734 			}
2735 
2736 			/*
2737 			 * Although ip1 isn't changed here, userspace needs
2738 			 * to be warned about the change, so that applications
2739 			 * relying on it (like backup ones), will properly
2740 			 * notify the change
2741 			 */
2742 			ip1_flags |= XFS_ICHGTIME_CHG;
2743 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2744 		}
2745 
2746 		if (S_ISDIR(ip1->i_d.di_mode)) {
2747 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2748 						dp2->i_ino, first_block,
2749 						free_list, spaceres);
2750 			if (error)
2751 				goto out_trans_abort;
2752 
2753 			/* transfer ip1 ".." reference to dp2 */
2754 			if (!S_ISDIR(ip2->i_d.di_mode)) {
2755 				error = xfs_droplink(tp, dp1);
2756 				if (error)
2757 					goto out_trans_abort;
2758 				error = xfs_bumplink(tp, dp2);
2759 				if (error)
2760 					goto out_trans_abort;
2761 			}
2762 
2763 			/*
2764 			 * Although ip2 isn't changed here, userspace needs
2765 			 * to be warned about the change, so that applications
2766 			 * relying on it (like backup ones), will properly
2767 			 * notify the change
2768 			 */
2769 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2770 			ip2_flags |= XFS_ICHGTIME_CHG;
2771 		}
2772 	}
2773 
2774 	if (ip1_flags) {
2775 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2776 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2777 	}
2778 	if (ip2_flags) {
2779 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2780 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2781 	}
2782 	if (dp2_flags) {
2783 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2784 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2785 	}
2786 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2788 	return xfs_finish_rename(tp, free_list);
2789 
2790 out_trans_abort:
2791 	xfs_bmap_cancel(free_list);
2792 	xfs_trans_cancel(tp);
2793 	return error;
2794 }
2795 
2796 /*
2797  * xfs_rename_alloc_whiteout()
2798  *
2799  * Return a referenced, unlinked, unlocked inode that that can be used as a
2800  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2801  * crash between allocating the inode and linking it into the rename transaction
2802  * recovery will free the inode and we won't leak it.
2803  */
2804 static int
2805 xfs_rename_alloc_whiteout(
2806 	struct xfs_inode	*dp,
2807 	struct xfs_inode	**wip)
2808 {
2809 	struct xfs_inode	*tmpfile;
2810 	int			error;
2811 
2812 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2813 	if (error)
2814 		return error;
2815 
2816 	/*
2817 	 * Prepare the tmpfile inode as if it were created through the VFS.
2818 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2819 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2820 	 * and flag it as linkable.
2821 	 */
2822 	drop_nlink(VFS_I(tmpfile));
2823 	xfs_finish_inode_setup(tmpfile);
2824 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2825 
2826 	*wip = tmpfile;
2827 	return 0;
2828 }
2829 
2830 /*
2831  * xfs_rename
2832  */
2833 int
2834 xfs_rename(
2835 	struct xfs_inode	*src_dp,
2836 	struct xfs_name		*src_name,
2837 	struct xfs_inode	*src_ip,
2838 	struct xfs_inode	*target_dp,
2839 	struct xfs_name		*target_name,
2840 	struct xfs_inode	*target_ip,
2841 	unsigned int		flags)
2842 {
2843 	struct xfs_mount	*mp = src_dp->i_mount;
2844 	struct xfs_trans	*tp;
2845 	struct xfs_bmap_free	free_list;
2846 	xfs_fsblock_t		first_block;
2847 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2848 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2849 	int			num_inodes = __XFS_SORT_INODES;
2850 	bool			new_parent = (src_dp != target_dp);
2851 	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2852 	int			spaceres;
2853 	int			error;
2854 
2855 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2856 
2857 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2858 		return -EINVAL;
2859 
2860 	/*
2861 	 * If we are doing a whiteout operation, allocate the whiteout inode
2862 	 * we will be placing at the target and ensure the type is set
2863 	 * appropriately.
2864 	 */
2865 	if (flags & RENAME_WHITEOUT) {
2866 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2867 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2868 		if (error)
2869 			return error;
2870 
2871 		/* setup target dirent info as whiteout */
2872 		src_name->type = XFS_DIR3_FT_CHRDEV;
2873 	}
2874 
2875 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2876 				inodes, &num_inodes);
2877 
2878 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2879 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2880 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2881 	if (error == -ENOSPC) {
2882 		spaceres = 0;
2883 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2884 	}
2885 	if (error)
2886 		goto out_trans_cancel;
2887 
2888 	/*
2889 	 * Attach the dquots to the inodes
2890 	 */
2891 	error = xfs_qm_vop_rename_dqattach(inodes);
2892 	if (error)
2893 		goto out_trans_cancel;
2894 
2895 	/*
2896 	 * Lock all the participating inodes. Depending upon whether
2897 	 * the target_name exists in the target directory, and
2898 	 * whether the target directory is the same as the source
2899 	 * directory, we can lock from 2 to 4 inodes.
2900 	 */
2901 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2902 
2903 	/*
2904 	 * Join all the inodes to the transaction. From this point on,
2905 	 * we can rely on either trans_commit or trans_cancel to unlock
2906 	 * them.
2907 	 */
2908 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2909 	if (new_parent)
2910 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2911 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2912 	if (target_ip)
2913 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2914 	if (wip)
2915 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2916 
2917 	/*
2918 	 * If we are using project inheritance, we only allow renames
2919 	 * into our tree when the project IDs are the same; else the
2920 	 * tree quota mechanism would be circumvented.
2921 	 */
2922 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2923 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2924 		error = -EXDEV;
2925 		goto out_trans_cancel;
2926 	}
2927 
2928 	xfs_bmap_init(&free_list, &first_block);
2929 
2930 	/* RENAME_EXCHANGE is unique from here on. */
2931 	if (flags & RENAME_EXCHANGE)
2932 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2933 					target_dp, target_name, target_ip,
2934 					&free_list, &first_block, spaceres);
2935 
2936 	/*
2937 	 * Set up the target.
2938 	 */
2939 	if (target_ip == NULL) {
2940 		/*
2941 		 * If there's no space reservation, check the entry will
2942 		 * fit before actually inserting it.
2943 		 */
2944 		if (!spaceres) {
2945 			error = xfs_dir_canenter(tp, target_dp, target_name);
2946 			if (error)
2947 				goto out_trans_cancel;
2948 		}
2949 		/*
2950 		 * If target does not exist and the rename crosses
2951 		 * directories, adjust the target directory link count
2952 		 * to account for the ".." reference from the new entry.
2953 		 */
2954 		error = xfs_dir_createname(tp, target_dp, target_name,
2955 						src_ip->i_ino, &first_block,
2956 						&free_list, spaceres);
2957 		if (error)
2958 			goto out_bmap_cancel;
2959 
2960 		xfs_trans_ichgtime(tp, target_dp,
2961 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2962 
2963 		if (new_parent && src_is_directory) {
2964 			error = xfs_bumplink(tp, target_dp);
2965 			if (error)
2966 				goto out_bmap_cancel;
2967 		}
2968 	} else { /* target_ip != NULL */
2969 		/*
2970 		 * If target exists and it's a directory, check that both
2971 		 * target and source are directories and that target can be
2972 		 * destroyed, or that neither is a directory.
2973 		 */
2974 		if (S_ISDIR(target_ip->i_d.di_mode)) {
2975 			/*
2976 			 * Make sure target dir is empty.
2977 			 */
2978 			if (!(xfs_dir_isempty(target_ip)) ||
2979 			    (target_ip->i_d.di_nlink > 2)) {
2980 				error = -EEXIST;
2981 				goto out_trans_cancel;
2982 			}
2983 		}
2984 
2985 		/*
2986 		 * Link the source inode under the target name.
2987 		 * If the source inode is a directory and we are moving
2988 		 * it across directories, its ".." entry will be
2989 		 * inconsistent until we replace that down below.
2990 		 *
2991 		 * In case there is already an entry with the same
2992 		 * name at the destination directory, remove it first.
2993 		 */
2994 		error = xfs_dir_replace(tp, target_dp, target_name,
2995 					src_ip->i_ino,
2996 					&first_block, &free_list, spaceres);
2997 		if (error)
2998 			goto out_bmap_cancel;
2999 
3000 		xfs_trans_ichgtime(tp, target_dp,
3001 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3002 
3003 		/*
3004 		 * Decrement the link count on the target since the target
3005 		 * dir no longer points to it.
3006 		 */
3007 		error = xfs_droplink(tp, target_ip);
3008 		if (error)
3009 			goto out_bmap_cancel;
3010 
3011 		if (src_is_directory) {
3012 			/*
3013 			 * Drop the link from the old "." entry.
3014 			 */
3015 			error = xfs_droplink(tp, target_ip);
3016 			if (error)
3017 				goto out_bmap_cancel;
3018 		}
3019 	} /* target_ip != NULL */
3020 
3021 	/*
3022 	 * Remove the source.
3023 	 */
3024 	if (new_parent && src_is_directory) {
3025 		/*
3026 		 * Rewrite the ".." entry to point to the new
3027 		 * directory.
3028 		 */
3029 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3030 					target_dp->i_ino,
3031 					&first_block, &free_list, spaceres);
3032 		ASSERT(error != -EEXIST);
3033 		if (error)
3034 			goto out_bmap_cancel;
3035 	}
3036 
3037 	/*
3038 	 * We always want to hit the ctime on the source inode.
3039 	 *
3040 	 * This isn't strictly required by the standards since the source
3041 	 * inode isn't really being changed, but old unix file systems did
3042 	 * it and some incremental backup programs won't work without it.
3043 	 */
3044 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3045 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3046 
3047 	/*
3048 	 * Adjust the link count on src_dp.  This is necessary when
3049 	 * renaming a directory, either within one parent when
3050 	 * the target existed, or across two parent directories.
3051 	 */
3052 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3053 
3054 		/*
3055 		 * Decrement link count on src_directory since the
3056 		 * entry that's moved no longer points to it.
3057 		 */
3058 		error = xfs_droplink(tp, src_dp);
3059 		if (error)
3060 			goto out_bmap_cancel;
3061 	}
3062 
3063 	/*
3064 	 * For whiteouts, we only need to update the source dirent with the
3065 	 * inode number of the whiteout inode rather than removing it
3066 	 * altogether.
3067 	 */
3068 	if (wip) {
3069 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3070 					&first_block, &free_list, spaceres);
3071 	} else
3072 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3073 					   &first_block, &free_list, spaceres);
3074 	if (error)
3075 		goto out_bmap_cancel;
3076 
3077 	/*
3078 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3079 	 * This means that failures all the way up to this point leave the inode
3080 	 * on the unlinked list and so cleanup is a simple matter of dropping
3081 	 * the remaining reference to it. If we fail here after bumping the link
3082 	 * count, we're shutting down the filesystem so we'll never see the
3083 	 * intermediate state on disk.
3084 	 */
3085 	if (wip) {
3086 		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3087 		error = xfs_bumplink(tp, wip);
3088 		if (error)
3089 			goto out_bmap_cancel;
3090 		error = xfs_iunlink_remove(tp, wip);
3091 		if (error)
3092 			goto out_bmap_cancel;
3093 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3094 
3095 		/*
3096 		 * Now we have a real link, clear the "I'm a tmpfile" state
3097 		 * flag from the inode so it doesn't accidentally get misused in
3098 		 * future.
3099 		 */
3100 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3101 	}
3102 
3103 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3104 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3105 	if (new_parent)
3106 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3107 
3108 	error = xfs_finish_rename(tp, &free_list);
3109 	if (wip)
3110 		IRELE(wip);
3111 	return error;
3112 
3113 out_bmap_cancel:
3114 	xfs_bmap_cancel(&free_list);
3115 out_trans_cancel:
3116 	xfs_trans_cancel(tp);
3117 	if (wip)
3118 		IRELE(wip);
3119 	return error;
3120 }
3121 
3122 STATIC int
3123 xfs_iflush_cluster(
3124 	xfs_inode_t	*ip,
3125 	xfs_buf_t	*bp)
3126 {
3127 	xfs_mount_t		*mp = ip->i_mount;
3128 	struct xfs_perag	*pag;
3129 	unsigned long		first_index, mask;
3130 	unsigned long		inodes_per_cluster;
3131 	int			ilist_size;
3132 	xfs_inode_t		**ilist;
3133 	xfs_inode_t		*iq;
3134 	int			nr_found;
3135 	int			clcount = 0;
3136 	int			bufwasdelwri;
3137 	int			i;
3138 
3139 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3140 
3141 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3142 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3143 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3144 	if (!ilist)
3145 		goto out_put;
3146 
3147 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3148 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3149 	rcu_read_lock();
3150 	/* really need a gang lookup range call here */
3151 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3152 					first_index, inodes_per_cluster);
3153 	if (nr_found == 0)
3154 		goto out_free;
3155 
3156 	for (i = 0; i < nr_found; i++) {
3157 		iq = ilist[i];
3158 		if (iq == ip)
3159 			continue;
3160 
3161 		/*
3162 		 * because this is an RCU protected lookup, we could find a
3163 		 * recently freed or even reallocated inode during the lookup.
3164 		 * We need to check under the i_flags_lock for a valid inode
3165 		 * here. Skip it if it is not valid or the wrong inode.
3166 		 */
3167 		spin_lock(&ip->i_flags_lock);
3168 		if (!ip->i_ino ||
3169 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3170 			spin_unlock(&ip->i_flags_lock);
3171 			continue;
3172 		}
3173 		spin_unlock(&ip->i_flags_lock);
3174 
3175 		/*
3176 		 * Do an un-protected check to see if the inode is dirty and
3177 		 * is a candidate for flushing.  These checks will be repeated
3178 		 * later after the appropriate locks are acquired.
3179 		 */
3180 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3181 			continue;
3182 
3183 		/*
3184 		 * Try to get locks.  If any are unavailable or it is pinned,
3185 		 * then this inode cannot be flushed and is skipped.
3186 		 */
3187 
3188 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3189 			continue;
3190 		if (!xfs_iflock_nowait(iq)) {
3191 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3192 			continue;
3193 		}
3194 		if (xfs_ipincount(iq)) {
3195 			xfs_ifunlock(iq);
3196 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3197 			continue;
3198 		}
3199 
3200 		/*
3201 		 * arriving here means that this inode can be flushed.  First
3202 		 * re-check that it's dirty before flushing.
3203 		 */
3204 		if (!xfs_inode_clean(iq)) {
3205 			int	error;
3206 			error = xfs_iflush_int(iq, bp);
3207 			if (error) {
3208 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3209 				goto cluster_corrupt_out;
3210 			}
3211 			clcount++;
3212 		} else {
3213 			xfs_ifunlock(iq);
3214 		}
3215 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3216 	}
3217 
3218 	if (clcount) {
3219 		XFS_STATS_INC(xs_icluster_flushcnt);
3220 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3221 	}
3222 
3223 out_free:
3224 	rcu_read_unlock();
3225 	kmem_free(ilist);
3226 out_put:
3227 	xfs_perag_put(pag);
3228 	return 0;
3229 
3230 
3231 cluster_corrupt_out:
3232 	/*
3233 	 * Corruption detected in the clustering loop.  Invalidate the
3234 	 * inode buffer and shut down the filesystem.
3235 	 */
3236 	rcu_read_unlock();
3237 	/*
3238 	 * Clean up the buffer.  If it was delwri, just release it --
3239 	 * brelse can handle it with no problems.  If not, shut down the
3240 	 * filesystem before releasing the buffer.
3241 	 */
3242 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3243 	if (bufwasdelwri)
3244 		xfs_buf_relse(bp);
3245 
3246 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3247 
3248 	if (!bufwasdelwri) {
3249 		/*
3250 		 * Just like incore_relse: if we have b_iodone functions,
3251 		 * mark the buffer as an error and call them.  Otherwise
3252 		 * mark it as stale and brelse.
3253 		 */
3254 		if (bp->b_iodone) {
3255 			XFS_BUF_UNDONE(bp);
3256 			xfs_buf_stale(bp);
3257 			xfs_buf_ioerror(bp, -EIO);
3258 			xfs_buf_ioend(bp);
3259 		} else {
3260 			xfs_buf_stale(bp);
3261 			xfs_buf_relse(bp);
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * Unlocks the flush lock
3267 	 */
3268 	xfs_iflush_abort(iq, false);
3269 	kmem_free(ilist);
3270 	xfs_perag_put(pag);
3271 	return -EFSCORRUPTED;
3272 }
3273 
3274 /*
3275  * Flush dirty inode metadata into the backing buffer.
3276  *
3277  * The caller must have the inode lock and the inode flush lock held.  The
3278  * inode lock will still be held upon return to the caller, and the inode
3279  * flush lock will be released after the inode has reached the disk.
3280  *
3281  * The caller must write out the buffer returned in *bpp and release it.
3282  */
3283 int
3284 xfs_iflush(
3285 	struct xfs_inode	*ip,
3286 	struct xfs_buf		**bpp)
3287 {
3288 	struct xfs_mount	*mp = ip->i_mount;
3289 	struct xfs_buf		*bp;
3290 	struct xfs_dinode	*dip;
3291 	int			error;
3292 
3293 	XFS_STATS_INC(xs_iflush_count);
3294 
3295 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3296 	ASSERT(xfs_isiflocked(ip));
3297 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3298 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3299 
3300 	*bpp = NULL;
3301 
3302 	xfs_iunpin_wait(ip);
3303 
3304 	/*
3305 	 * For stale inodes we cannot rely on the backing buffer remaining
3306 	 * stale in cache for the remaining life of the stale inode and so
3307 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3308 	 * inodes below. We have to check this after ensuring the inode is
3309 	 * unpinned so that it is safe to reclaim the stale inode after the
3310 	 * flush call.
3311 	 */
3312 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3313 		xfs_ifunlock(ip);
3314 		return 0;
3315 	}
3316 
3317 	/*
3318 	 * This may have been unpinned because the filesystem is shutting
3319 	 * down forcibly. If that's the case we must not write this inode
3320 	 * to disk, because the log record didn't make it to disk.
3321 	 *
3322 	 * We also have to remove the log item from the AIL in this case,
3323 	 * as we wait for an empty AIL as part of the unmount process.
3324 	 */
3325 	if (XFS_FORCED_SHUTDOWN(mp)) {
3326 		error = -EIO;
3327 		goto abort_out;
3328 	}
3329 
3330 	/*
3331 	 * Get the buffer containing the on-disk inode.
3332 	 */
3333 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3334 			       0);
3335 	if (error || !bp) {
3336 		xfs_ifunlock(ip);
3337 		return error;
3338 	}
3339 
3340 	/*
3341 	 * First flush out the inode that xfs_iflush was called with.
3342 	 */
3343 	error = xfs_iflush_int(ip, bp);
3344 	if (error)
3345 		goto corrupt_out;
3346 
3347 	/*
3348 	 * If the buffer is pinned then push on the log now so we won't
3349 	 * get stuck waiting in the write for too long.
3350 	 */
3351 	if (xfs_buf_ispinned(bp))
3352 		xfs_log_force(mp, 0);
3353 
3354 	/*
3355 	 * inode clustering:
3356 	 * see if other inodes can be gathered into this write
3357 	 */
3358 	error = xfs_iflush_cluster(ip, bp);
3359 	if (error)
3360 		goto cluster_corrupt_out;
3361 
3362 	*bpp = bp;
3363 	return 0;
3364 
3365 corrupt_out:
3366 	xfs_buf_relse(bp);
3367 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3368 cluster_corrupt_out:
3369 	error = -EFSCORRUPTED;
3370 abort_out:
3371 	/*
3372 	 * Unlocks the flush lock
3373 	 */
3374 	xfs_iflush_abort(ip, false);
3375 	return error;
3376 }
3377 
3378 STATIC int
3379 xfs_iflush_int(
3380 	struct xfs_inode	*ip,
3381 	struct xfs_buf		*bp)
3382 {
3383 	struct xfs_inode_log_item *iip = ip->i_itemp;
3384 	struct xfs_dinode	*dip;
3385 	struct xfs_mount	*mp = ip->i_mount;
3386 
3387 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3388 	ASSERT(xfs_isiflocked(ip));
3389 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3390 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3391 	ASSERT(iip != NULL && iip->ili_fields != 0);
3392 	ASSERT(ip->i_d.di_version > 1);
3393 
3394 	/* set *dip = inode's place in the buffer */
3395 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3396 
3397 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3398 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3399 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3400 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3401 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3402 		goto corrupt_out;
3403 	}
3404 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3405 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3406 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3407 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3408 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3409 		goto corrupt_out;
3410 	}
3411 	if (S_ISREG(ip->i_d.di_mode)) {
3412 		if (XFS_TEST_ERROR(
3413 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3414 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3415 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3416 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3417 				"%s: Bad regular inode %Lu, ptr 0x%p",
3418 				__func__, ip->i_ino, ip);
3419 			goto corrupt_out;
3420 		}
3421 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3422 		if (XFS_TEST_ERROR(
3423 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3424 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3425 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3426 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3427 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3428 				"%s: Bad directory inode %Lu, ptr 0x%p",
3429 				__func__, ip->i_ino, ip);
3430 			goto corrupt_out;
3431 		}
3432 	}
3433 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3434 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3435 				XFS_RANDOM_IFLUSH_5)) {
3436 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3437 			"%s: detected corrupt incore inode %Lu, "
3438 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3439 			__func__, ip->i_ino,
3440 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3441 			ip->i_d.di_nblocks, ip);
3442 		goto corrupt_out;
3443 	}
3444 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3445 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3446 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3447 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3448 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3449 		goto corrupt_out;
3450 	}
3451 
3452 	/*
3453 	 * Inode item log recovery for v2 inodes are dependent on the
3454 	 * di_flushiter count for correct sequencing. We bump the flush
3455 	 * iteration count so we can detect flushes which postdate a log record
3456 	 * during recovery. This is redundant as we now log every change and
3457 	 * hence this can't happen but we need to still do it to ensure
3458 	 * backwards compatibility with old kernels that predate logging all
3459 	 * inode changes.
3460 	 */
3461 	if (ip->i_d.di_version < 3)
3462 		ip->i_d.di_flushiter++;
3463 
3464 	/*
3465 	 * Copy the dirty parts of the inode into the on-disk
3466 	 * inode.  We always copy out the core of the inode,
3467 	 * because if the inode is dirty at all the core must
3468 	 * be.
3469 	 */
3470 	xfs_dinode_to_disk(dip, &ip->i_d);
3471 
3472 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3473 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3474 		ip->i_d.di_flushiter = 0;
3475 
3476 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3477 	if (XFS_IFORK_Q(ip))
3478 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3479 	xfs_inobp_check(mp, bp);
3480 
3481 	/*
3482 	 * We've recorded everything logged in the inode, so we'd like to clear
3483 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3484 	 * However, we can't stop logging all this information until the data
3485 	 * we've copied into the disk buffer is written to disk.  If we did we
3486 	 * might overwrite the copy of the inode in the log with all the data
3487 	 * after re-logging only part of it, and in the face of a crash we
3488 	 * wouldn't have all the data we need to recover.
3489 	 *
3490 	 * What we do is move the bits to the ili_last_fields field.  When
3491 	 * logging the inode, these bits are moved back to the ili_fields field.
3492 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3493 	 * know that the information those bits represent is permanently on
3494 	 * disk.  As long as the flush completes before the inode is logged
3495 	 * again, then both ili_fields and ili_last_fields will be cleared.
3496 	 *
3497 	 * We can play with the ili_fields bits here, because the inode lock
3498 	 * must be held exclusively in order to set bits there and the flush
3499 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3500 	 * done routine can tell whether or not to look in the AIL.  Also, store
3501 	 * the current LSN of the inode so that we can tell whether the item has
3502 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3503 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3504 	 * atomically.
3505 	 */
3506 	iip->ili_last_fields = iip->ili_fields;
3507 	iip->ili_fields = 0;
3508 	iip->ili_logged = 1;
3509 
3510 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3511 				&iip->ili_item.li_lsn);
3512 
3513 	/*
3514 	 * Attach the function xfs_iflush_done to the inode's
3515 	 * buffer.  This will remove the inode from the AIL
3516 	 * and unlock the inode's flush lock when the inode is
3517 	 * completely written to disk.
3518 	 */
3519 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3520 
3521 	/* update the lsn in the on disk inode if required */
3522 	if (ip->i_d.di_version == 3)
3523 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3524 
3525 	/* generate the checksum. */
3526 	xfs_dinode_calc_crc(mp, dip);
3527 
3528 	ASSERT(bp->b_fspriv != NULL);
3529 	ASSERT(bp->b_iodone != NULL);
3530 	return 0;
3531 
3532 corrupt_out:
3533 	return -EFSCORRUPTED;
3534 }
3535