1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 #include <linux/iversion.h> 20 21 #include "xfs.h" 22 #include "xfs_fs.h" 23 #include "xfs_shared.h" 24 #include "xfs_format.h" 25 #include "xfs_log_format.h" 26 #include "xfs_trans_resv.h" 27 #include "xfs_sb.h" 28 #include "xfs_mount.h" 29 #include "xfs_defer.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_errortag.h" 44 #include "xfs_error.h" 45 #include "xfs_quota.h" 46 #include "xfs_filestream.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 #include "xfs_symlink.h" 51 #include "xfs_trans_priv.h" 52 #include "xfs_log.h" 53 #include "xfs_bmap_btree.h" 54 #include "xfs_reflink.h" 55 #include "xfs_dir2_priv.h" 56 57 kmem_zone_t *xfs_inode_zone; 58 59 /* 60 * Used in xfs_itruncate_extents(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 66 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 67 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 68 69 /* 70 * helper function to extract extent size hint from inode 71 */ 72 xfs_extlen_t 73 xfs_get_extsz_hint( 74 struct xfs_inode *ip) 75 { 76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 77 return ip->i_d.di_extsize; 78 if (XFS_IS_REALTIME_INODE(ip)) 79 return ip->i_mount->m_sb.sb_rextsize; 80 return 0; 81 } 82 83 /* 84 * Helper function to extract CoW extent size hint from inode. 85 * Between the extent size hint and the CoW extent size hint, we 86 * return the greater of the two. If the value is zero (automatic), 87 * use the default size. 88 */ 89 xfs_extlen_t 90 xfs_get_cowextsz_hint( 91 struct xfs_inode *ip) 92 { 93 xfs_extlen_t a, b; 94 95 a = 0; 96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 97 a = ip->i_d.di_cowextsize; 98 b = xfs_get_extsz_hint(ip); 99 100 a = max(a, b); 101 if (a == 0) 102 return XFS_DEFAULT_COWEXTSZ_HINT; 103 return a; 104 } 105 106 /* 107 * These two are wrapper routines around the xfs_ilock() routine used to 108 * centralize some grungy code. They are used in places that wish to lock the 109 * inode solely for reading the extents. The reason these places can't just 110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 111 * bringing in of the extents from disk for a file in b-tree format. If the 112 * inode is in b-tree format, then we need to lock the inode exclusively until 113 * the extents are read in. Locking it exclusively all the time would limit 114 * our parallelism unnecessarily, though. What we do instead is check to see 115 * if the extents have been read in yet, and only lock the inode exclusively 116 * if they have not. 117 * 118 * The functions return a value which should be given to the corresponding 119 * xfs_iunlock() call. 120 */ 121 uint 122 xfs_ilock_data_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 129 lock_mode = XFS_ILOCK_EXCL; 130 xfs_ilock(ip, lock_mode); 131 return lock_mode; 132 } 133 134 uint 135 xfs_ilock_attr_map_shared( 136 struct xfs_inode *ip) 137 { 138 uint lock_mode = XFS_ILOCK_SHARED; 139 140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 142 lock_mode = XFS_ILOCK_EXCL; 143 xfs_ilock(ip, lock_mode); 144 return lock_mode; 145 } 146 147 /* 148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 150 * various combinations of the locks to be obtained. 151 * 152 * The 3 locks should always be ordered so that the IO lock is obtained first, 153 * the mmap lock second and the ilock last in order to prevent deadlock. 154 * 155 * Basic locking order: 156 * 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 158 * 159 * mmap_sem locking order: 160 * 161 * i_rwsem -> page lock -> mmap_sem 162 * mmap_sem -> i_mmap_lock -> page_lock 163 * 164 * The difference in mmap_sem locking order mean that we cannot hold the 165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 167 * in get_user_pages() to map the user pages into the kernel address space for 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 169 * page faults already hold the mmap_sem. 170 * 171 * Hence to serialise fully against both syscall and mmap based IO, we need to 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 173 * taken in places where we need to invalidate the page cache in a race 174 * free manner (e.g. truncate, hole punch and other extent manipulation 175 * functions). 176 */ 177 void 178 xfs_ilock( 179 xfs_inode_t *ip, 180 uint lock_flags) 181 { 182 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 183 184 /* 185 * You can't set both SHARED and EXCL for the same lock, 186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 188 */ 189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 196 197 if (lock_flags & XFS_IOLOCK_EXCL) { 198 down_write_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } else if (lock_flags & XFS_IOLOCK_SHARED) { 201 down_read_nested(&VFS_I(ip)->i_rwsem, 202 XFS_IOLOCK_DEP(lock_flags)); 203 } 204 205 if (lock_flags & XFS_MMAPLOCK_EXCL) 206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 207 else if (lock_flags & XFS_MMAPLOCK_SHARED) 208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 /* 236 * You can't set both SHARED and EXCL for the same lock, 237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 239 */ 240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 247 248 if (lock_flags & XFS_IOLOCK_EXCL) { 249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 250 goto out; 251 } else if (lock_flags & XFS_IOLOCK_SHARED) { 252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 253 goto out; 254 } 255 256 if (lock_flags & XFS_MMAPLOCK_EXCL) { 257 if (!mrtryupdate(&ip->i_mmaplock)) 258 goto out_undo_iolock; 259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 260 if (!mrtryaccess(&ip->i_mmaplock)) 261 goto out_undo_iolock; 262 } 263 264 if (lock_flags & XFS_ILOCK_EXCL) { 265 if (!mrtryupdate(&ip->i_lock)) 266 goto out_undo_mmaplock; 267 } else if (lock_flags & XFS_ILOCK_SHARED) { 268 if (!mrtryaccess(&ip->i_lock)) 269 goto out_undo_mmaplock; 270 } 271 return 1; 272 273 out_undo_mmaplock: 274 if (lock_flags & XFS_MMAPLOCK_EXCL) 275 mrunlock_excl(&ip->i_mmaplock); 276 else if (lock_flags & XFS_MMAPLOCK_SHARED) 277 mrunlock_shared(&ip->i_mmaplock); 278 out_undo_iolock: 279 if (lock_flags & XFS_IOLOCK_EXCL) 280 up_write(&VFS_I(ip)->i_rwsem); 281 else if (lock_flags & XFS_IOLOCK_SHARED) 282 up_read(&VFS_I(ip)->i_rwsem); 283 out: 284 return 0; 285 } 286 287 /* 288 * xfs_iunlock() is used to drop the inode locks acquired with 289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 291 * that we know which locks to drop. 292 * 293 * ip -- the inode being unlocked 294 * lock_flags -- this parameter indicates the inode's locks to be 295 * to be unlocked. See the comment for xfs_ilock() for a list 296 * of valid values for this parameter. 297 * 298 */ 299 void 300 xfs_iunlock( 301 xfs_inode_t *ip, 302 uint lock_flags) 303 { 304 /* 305 * You can't set both SHARED and EXCL for the same lock, 306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 308 */ 309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 316 ASSERT(lock_flags != 0); 317 318 if (lock_flags & XFS_IOLOCK_EXCL) 319 up_write(&VFS_I(ip)->i_rwsem); 320 else if (lock_flags & XFS_IOLOCK_SHARED) 321 up_read(&VFS_I(ip)->i_rwsem); 322 323 if (lock_flags & XFS_MMAPLOCK_EXCL) 324 mrunlock_excl(&ip->i_mmaplock); 325 else if (lock_flags & XFS_MMAPLOCK_SHARED) 326 mrunlock_shared(&ip->i_mmaplock); 327 328 if (lock_flags & XFS_ILOCK_EXCL) 329 mrunlock_excl(&ip->i_lock); 330 else if (lock_flags & XFS_ILOCK_SHARED) 331 mrunlock_shared(&ip->i_lock); 332 333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 334 } 335 336 /* 337 * give up write locks. the i/o lock cannot be held nested 338 * if it is being demoted. 339 */ 340 void 341 xfs_ilock_demote( 342 xfs_inode_t *ip, 343 uint lock_flags) 344 { 345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 346 ASSERT((lock_flags & 347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 348 349 if (lock_flags & XFS_ILOCK_EXCL) 350 mrdemote(&ip->i_lock); 351 if (lock_flags & XFS_MMAPLOCK_EXCL) 352 mrdemote(&ip->i_mmaplock); 353 if (lock_flags & XFS_IOLOCK_EXCL) 354 downgrade_write(&VFS_I(ip)->i_rwsem); 355 356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 357 } 358 359 #if defined(DEBUG) || defined(XFS_WARN) 360 int 361 xfs_isilocked( 362 xfs_inode_t *ip, 363 uint lock_flags) 364 { 365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 366 if (!(lock_flags & XFS_ILOCK_SHARED)) 367 return !!ip->i_lock.mr_writer; 368 return rwsem_is_locked(&ip->i_lock.mr_lock); 369 } 370 371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 372 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 373 return !!ip->i_mmaplock.mr_writer; 374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 375 } 376 377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 378 if (!(lock_flags & XFS_IOLOCK_SHARED)) 379 return !debug_locks || 380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 382 } 383 384 ASSERT(0); 385 return 0; 386 } 387 #endif 388 389 /* 390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 393 * errors and warnings. 394 */ 395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 396 static bool 397 xfs_lockdep_subclass_ok( 398 int subclass) 399 { 400 return subclass < MAX_LOCKDEP_SUBCLASSES; 401 } 402 #else 403 #define xfs_lockdep_subclass_ok(subclass) (true) 404 #endif 405 406 /* 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 408 * value. This can be called for any type of inode lock combination, including 409 * parent locking. Care must be taken to ensure we don't overrun the subclass 410 * storage fields in the class mask we build. 411 */ 412 static inline int 413 xfs_lock_inumorder(int lock_mode, int subclass) 414 { 415 int class = 0; 416 417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 418 XFS_ILOCK_RTSUM))); 419 ASSERT(xfs_lockdep_subclass_ok(subclass)); 420 421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 423 class += subclass << XFS_IOLOCK_SHIFT; 424 } 425 426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 428 class += subclass << XFS_MMAPLOCK_SHIFT; 429 } 430 431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 433 class += subclass << XFS_ILOCK_SHIFT; 434 } 435 436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 437 } 438 439 /* 440 * The following routine will lock n inodes in exclusive mode. We assume the 441 * caller calls us with the inodes in i_ino order. 442 * 443 * We need to detect deadlock where an inode that we lock is in the AIL and we 444 * start waiting for another inode that is locked by a thread in a long running 445 * transaction (such as truncate). This can result in deadlock since the long 446 * running trans might need to wait for the inode we just locked in order to 447 * push the tail and free space in the log. 448 * 449 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 451 * lock more than one at a time, lockdep will report false positives saying we 452 * have violated locking orders. 453 */ 454 static void 455 xfs_lock_inodes( 456 xfs_inode_t **ips, 457 int inodes, 458 uint lock_mode) 459 { 460 int attempts = 0, i, j, try_lock; 461 xfs_log_item_t *lp; 462 463 /* 464 * Currently supports between 2 and 5 inodes with exclusive locking. We 465 * support an arbitrary depth of locking here, but absolute limits on 466 * inodes depend on the the type of locking and the limits placed by 467 * lockdep annotations in xfs_lock_inumorder. These are all checked by 468 * the asserts. 469 */ 470 ASSERT(ips && inodes >= 2 && inodes <= 5); 471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 472 XFS_ILOCK_EXCL)); 473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 474 XFS_ILOCK_SHARED))); 475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 479 480 if (lock_mode & XFS_IOLOCK_EXCL) { 481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 482 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 484 485 try_lock = 0; 486 i = 0; 487 again: 488 for (; i < inodes; i++) { 489 ASSERT(ips[i]); 490 491 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 492 continue; 493 494 /* 495 * If try_lock is not set yet, make sure all locked inodes are 496 * not in the AIL. If any are, set try_lock to be used later. 497 */ 498 if (!try_lock) { 499 for (j = (i - 1); j >= 0 && !try_lock; j--) { 500 lp = (xfs_log_item_t *)ips[j]->i_itemp; 501 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 502 try_lock++; 503 } 504 } 505 506 /* 507 * If any of the previous locks we have locked is in the AIL, 508 * we must TRY to get the second and subsequent locks. If 509 * we can't get any, we must release all we have 510 * and try again. 511 */ 512 if (!try_lock) { 513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 514 continue; 515 } 516 517 /* try_lock means we have an inode locked that is in the AIL. */ 518 ASSERT(i != 0); 519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 520 continue; 521 522 /* 523 * Unlock all previous guys and try again. xfs_iunlock will try 524 * to push the tail if the inode is in the AIL. 525 */ 526 attempts++; 527 for (j = i - 1; j >= 0; j--) { 528 /* 529 * Check to see if we've already unlocked this one. Not 530 * the first one going back, and the inode ptr is the 531 * same. 532 */ 533 if (j != (i - 1) && ips[j] == ips[j + 1]) 534 continue; 535 536 xfs_iunlock(ips[j], lock_mode); 537 } 538 539 if ((attempts % 5) == 0) { 540 delay(1); /* Don't just spin the CPU */ 541 } 542 i = 0; 543 try_lock = 0; 544 goto again; 545 } 546 } 547 548 /* 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 550 * the mmaplock or the ilock, but not more than one type at a time. If we lock 551 * more than one at a time, lockdep will report false positives saying we have 552 * violated locking orders. The iolock must be double-locked separately since 553 * we use i_rwsem for that. We now support taking one lock EXCL and the other 554 * SHARED. 555 */ 556 void 557 xfs_lock_two_inodes( 558 struct xfs_inode *ip0, 559 uint ip0_mode, 560 struct xfs_inode *ip1, 561 uint ip1_mode) 562 { 563 struct xfs_inode *temp; 564 uint mode_temp; 565 int attempts = 0; 566 xfs_log_item_t *lp; 567 568 ASSERT(hweight32(ip0_mode) == 1); 569 ASSERT(hweight32(ip1_mode) == 1); 570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 580 581 ASSERT(ip0->i_ino != ip1->i_ino); 582 583 if (ip0->i_ino > ip1->i_ino) { 584 temp = ip0; 585 ip0 = ip1; 586 ip1 = temp; 587 mode_temp = ip0_mode; 588 ip0_mode = ip1_mode; 589 ip1_mode = mode_temp; 590 } 591 592 again: 593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 594 595 /* 596 * If the first lock we have locked is in the AIL, we must TRY to get 597 * the second lock. If we can't get it, we must release the first one 598 * and try again. 599 */ 600 lp = (xfs_log_item_t *)ip0->i_itemp; 601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 603 xfs_iunlock(ip0, ip0_mode); 604 if ((++attempts % 5) == 0) 605 delay(1); /* Don't just spin the CPU */ 606 goto again; 607 } 608 } else { 609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 610 } 611 } 612 613 void 614 __xfs_iflock( 615 struct xfs_inode *ip) 616 { 617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 619 620 do { 621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 622 if (xfs_isiflocked(ip)) 623 io_schedule(); 624 } while (!xfs_iflock_nowait(ip)); 625 626 finish_wait(wq, &wait.wq_entry); 627 } 628 629 STATIC uint 630 _xfs_dic2xflags( 631 uint16_t di_flags, 632 uint64_t di_flags2, 633 bool has_attr) 634 { 635 uint flags = 0; 636 637 if (di_flags & XFS_DIFLAG_ANY) { 638 if (di_flags & XFS_DIFLAG_REALTIME) 639 flags |= FS_XFLAG_REALTIME; 640 if (di_flags & XFS_DIFLAG_PREALLOC) 641 flags |= FS_XFLAG_PREALLOC; 642 if (di_flags & XFS_DIFLAG_IMMUTABLE) 643 flags |= FS_XFLAG_IMMUTABLE; 644 if (di_flags & XFS_DIFLAG_APPEND) 645 flags |= FS_XFLAG_APPEND; 646 if (di_flags & XFS_DIFLAG_SYNC) 647 flags |= FS_XFLAG_SYNC; 648 if (di_flags & XFS_DIFLAG_NOATIME) 649 flags |= FS_XFLAG_NOATIME; 650 if (di_flags & XFS_DIFLAG_NODUMP) 651 flags |= FS_XFLAG_NODUMP; 652 if (di_flags & XFS_DIFLAG_RTINHERIT) 653 flags |= FS_XFLAG_RTINHERIT; 654 if (di_flags & XFS_DIFLAG_PROJINHERIT) 655 flags |= FS_XFLAG_PROJINHERIT; 656 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 657 flags |= FS_XFLAG_NOSYMLINKS; 658 if (di_flags & XFS_DIFLAG_EXTSIZE) 659 flags |= FS_XFLAG_EXTSIZE; 660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 661 flags |= FS_XFLAG_EXTSZINHERIT; 662 if (di_flags & XFS_DIFLAG_NODEFRAG) 663 flags |= FS_XFLAG_NODEFRAG; 664 if (di_flags & XFS_DIFLAG_FILESTREAM) 665 flags |= FS_XFLAG_FILESTREAM; 666 } 667 668 if (di_flags2 & XFS_DIFLAG2_ANY) { 669 if (di_flags2 & XFS_DIFLAG2_DAX) 670 flags |= FS_XFLAG_DAX; 671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 672 flags |= FS_XFLAG_COWEXTSIZE; 673 } 674 675 if (has_attr) 676 flags |= FS_XFLAG_HASATTR; 677 678 return flags; 679 } 680 681 uint 682 xfs_ip2xflags( 683 struct xfs_inode *ip) 684 { 685 struct xfs_icdinode *dic = &ip->i_d; 686 687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 688 } 689 690 /* 691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 692 * is allowed, otherwise it has to be an exact match. If a CI match is found, 693 * ci_name->name will point to a the actual name (caller must free) or 694 * will be set to NULL if an exact match is found. 695 */ 696 int 697 xfs_lookup( 698 xfs_inode_t *dp, 699 struct xfs_name *name, 700 xfs_inode_t **ipp, 701 struct xfs_name *ci_name) 702 { 703 xfs_ino_t inum; 704 int error; 705 706 trace_xfs_lookup(dp, name); 707 708 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 709 return -EIO; 710 711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 712 if (error) 713 goto out_unlock; 714 715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 716 if (error) 717 goto out_free_name; 718 719 return 0; 720 721 out_free_name: 722 if (ci_name) 723 kmem_free(ci_name->name); 724 out_unlock: 725 *ipp = NULL; 726 return error; 727 } 728 729 /* 730 * Allocate an inode on disk and return a copy of its in-core version. 731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 732 * appropriately within the inode. The uid and gid for the inode are 733 * set according to the contents of the given cred structure. 734 * 735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 736 * has a free inode available, call xfs_iget() to obtain the in-core 737 * version of the allocated inode. Finally, fill in the inode and 738 * log its initial contents. In this case, ialloc_context would be 739 * set to NULL. 740 * 741 * If xfs_dialloc() does not have an available inode, it will replenish 742 * its supply by doing an allocation. Since we can only do one 743 * allocation within a transaction without deadlocks, we must commit 744 * the current transaction before returning the inode itself. 745 * In this case, therefore, we will set ialloc_context and return. 746 * The caller should then commit the current transaction, start a new 747 * transaction, and call xfs_ialloc() again to actually get the inode. 748 * 749 * To ensure that some other process does not grab the inode that 750 * was allocated during the first call to xfs_ialloc(), this routine 751 * also returns the [locked] bp pointing to the head of the freelist 752 * as ialloc_context. The caller should hold this buffer across 753 * the commit and pass it back into this routine on the second call. 754 * 755 * If we are allocating quota inodes, we do not have a parent inode 756 * to attach to or associate with (i.e. pip == NULL) because they 757 * are not linked into the directory structure - they are attached 758 * directly to the superblock - and so have no parent. 759 */ 760 static int 761 xfs_ialloc( 762 xfs_trans_t *tp, 763 xfs_inode_t *pip, 764 umode_t mode, 765 xfs_nlink_t nlink, 766 dev_t rdev, 767 prid_t prid, 768 xfs_buf_t **ialloc_context, 769 xfs_inode_t **ipp) 770 { 771 struct xfs_mount *mp = tp->t_mountp; 772 xfs_ino_t ino; 773 xfs_inode_t *ip; 774 uint flags; 775 int error; 776 struct timespec tv; 777 struct inode *inode; 778 779 /* 780 * Call the space management code to pick 781 * the on-disk inode to be allocated. 782 */ 783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 784 ialloc_context, &ino); 785 if (error) 786 return error; 787 if (*ialloc_context || ino == NULLFSINO) { 788 *ipp = NULL; 789 return 0; 790 } 791 ASSERT(*ialloc_context == NULL); 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp) /* pointer to inode; it will be 976 locked. */ 977 { 978 xfs_trans_t *tp; 979 xfs_inode_t *ip; 980 xfs_buf_t *ialloc_context = NULL; 981 int code; 982 void *dqinfo; 983 uint tflags; 984 985 tp = *tpp; 986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 987 988 /* 989 * xfs_ialloc will return a pointer to an incore inode if 990 * the Space Manager has an available inode on the free 991 * list. Otherwise, it will do an allocation and replenish 992 * the freelist. Since we can only do one allocation per 993 * transaction without deadlocks, we will need to commit the 994 * current transaction and start a new one. We will then 995 * need to call xfs_ialloc again to get the inode. 996 * 997 * If xfs_ialloc did an allocation to replenish the freelist, 998 * it returns the bp containing the head of the freelist as 999 * ialloc_context. We will hold a lock on it across the 1000 * transaction commit so that no other process can steal 1001 * the inode(s) that we've just allocated. 1002 */ 1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1004 &ip); 1005 1006 /* 1007 * Return an error if we were unable to allocate a new inode. 1008 * This should only happen if we run out of space on disk or 1009 * encounter a disk error. 1010 */ 1011 if (code) { 1012 *ipp = NULL; 1013 return code; 1014 } 1015 if (!ialloc_context && !ip) { 1016 *ipp = NULL; 1017 return -ENOSPC; 1018 } 1019 1020 /* 1021 * If the AGI buffer is non-NULL, then we were unable to get an 1022 * inode in one operation. We need to commit the current 1023 * transaction and call xfs_ialloc() again. It is guaranteed 1024 * to succeed the second time. 1025 */ 1026 if (ialloc_context) { 1027 /* 1028 * Normally, xfs_trans_commit releases all the locks. 1029 * We call bhold to hang on to the ialloc_context across 1030 * the commit. Holding this buffer prevents any other 1031 * processes from doing any allocations in this 1032 * allocation group. 1033 */ 1034 xfs_trans_bhold(tp, ialloc_context); 1035 1036 /* 1037 * We want the quota changes to be associated with the next 1038 * transaction, NOT this one. So, detach the dqinfo from this 1039 * and attach it to the next transaction. 1040 */ 1041 dqinfo = NULL; 1042 tflags = 0; 1043 if (tp->t_dqinfo) { 1044 dqinfo = (void *)tp->t_dqinfo; 1045 tp->t_dqinfo = NULL; 1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1048 } 1049 1050 code = xfs_trans_roll(&tp); 1051 1052 /* 1053 * Re-attach the quota info that we detached from prev trx. 1054 */ 1055 if (dqinfo) { 1056 tp->t_dqinfo = dqinfo; 1057 tp->t_flags |= tflags; 1058 } 1059 1060 if (code) { 1061 xfs_buf_relse(ialloc_context); 1062 *tpp = tp; 1063 *ipp = NULL; 1064 return code; 1065 } 1066 xfs_trans_bjoin(tp, ialloc_context); 1067 1068 /* 1069 * Call ialloc again. Since we've locked out all 1070 * other allocations in this allocation group, 1071 * this call should always succeed. 1072 */ 1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1074 &ialloc_context, &ip); 1075 1076 /* 1077 * If we get an error at this point, return to the caller 1078 * so that the current transaction can be aborted. 1079 */ 1080 if (code) { 1081 *tpp = tp; 1082 *ipp = NULL; 1083 return code; 1084 } 1085 ASSERT(!ialloc_context && ip); 1086 1087 } 1088 1089 *ipp = ip; 1090 *tpp = tp; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Decrement the link count on an inode & log the change. If this causes the 1097 * link count to go to zero, move the inode to AGI unlinked list so that it can 1098 * be freed when the last active reference goes away via xfs_inactive(). 1099 */ 1100 static int /* error */ 1101 xfs_droplink( 1102 xfs_trans_t *tp, 1103 xfs_inode_t *ip) 1104 { 1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1106 1107 drop_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 1110 if (VFS_I(ip)->i_nlink) 1111 return 0; 1112 1113 return xfs_iunlink(tp, ip); 1114 } 1115 1116 /* 1117 * Increment the link count on an inode & log the change. 1118 */ 1119 static int 1120 xfs_bumplink( 1121 xfs_trans_t *tp, 1122 xfs_inode_t *ip) 1123 { 1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1125 1126 ASSERT(ip->i_d.di_version > 1); 1127 inc_nlink(VFS_I(ip)); 1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1129 return 0; 1130 } 1131 1132 int 1133 xfs_create( 1134 xfs_inode_t *dp, 1135 struct xfs_name *name, 1136 umode_t mode, 1137 dev_t rdev, 1138 xfs_inode_t **ipp) 1139 { 1140 int is_dir = S_ISDIR(mode); 1141 struct xfs_mount *mp = dp->i_mount; 1142 struct xfs_inode *ip = NULL; 1143 struct xfs_trans *tp = NULL; 1144 int error; 1145 struct xfs_defer_ops dfops; 1146 xfs_fsblock_t first_block; 1147 bool unlock_dp_on_error = false; 1148 prid_t prid; 1149 struct xfs_dquot *udqp = NULL; 1150 struct xfs_dquot *gdqp = NULL; 1151 struct xfs_dquot *pdqp = NULL; 1152 struct xfs_trans_res *tres; 1153 uint resblks; 1154 1155 trace_xfs_create(dp, name); 1156 1157 if (XFS_FORCED_SHUTDOWN(mp)) 1158 return -EIO; 1159 1160 prid = xfs_get_initial_prid(dp); 1161 1162 /* 1163 * Make sure that we have allocated dquot(s) on disk. 1164 */ 1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1166 xfs_kgid_to_gid(current_fsgid()), prid, 1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1168 &udqp, &gdqp, &pdqp); 1169 if (error) 1170 return error; 1171 1172 if (is_dir) { 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1174 tres = &M_RES(mp)->tr_mkdir; 1175 } else { 1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1177 tres = &M_RES(mp)->tr_create; 1178 } 1179 1180 /* 1181 * Initially assume that the file does not exist and 1182 * reserve the resources for that case. If that is not 1183 * the case we'll drop the one we have and get a more 1184 * appropriate transaction later. 1185 */ 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1187 if (error == -ENOSPC) { 1188 /* flush outstanding delalloc blocks and retry */ 1189 xfs_flush_inodes(mp); 1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1191 } 1192 if (error) 1193 goto out_release_inode; 1194 1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1196 unlock_dp_on_error = true; 1197 1198 xfs_defer_init(&dfops, &first_block); 1199 1200 /* 1201 * Reserve disk quota and the inode. 1202 */ 1203 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1204 pdqp, resblks, 1, 0); 1205 if (error) 1206 goto out_trans_cancel; 1207 1208 /* 1209 * A newly created regular or special file just has one directory 1210 * entry pointing to them, but a directory also the "." entry 1211 * pointing to itself. 1212 */ 1213 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1214 if (error) 1215 goto out_trans_cancel; 1216 1217 /* 1218 * Now we join the directory inode to the transaction. We do not do it 1219 * earlier because xfs_dir_ialloc might commit the previous transaction 1220 * (and release all the locks). An error from here on will result in 1221 * the transaction cancel unlocking dp so don't do it explicitly in the 1222 * error path. 1223 */ 1224 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1225 unlock_dp_on_error = false; 1226 1227 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1228 &first_block, &dfops, resblks ? 1229 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1230 if (error) { 1231 ASSERT(error != -ENOSPC); 1232 goto out_trans_cancel; 1233 } 1234 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1235 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1236 1237 if (is_dir) { 1238 error = xfs_dir_init(tp, ip, dp); 1239 if (error) 1240 goto out_bmap_cancel; 1241 1242 error = xfs_bumplink(tp, dp); 1243 if (error) 1244 goto out_bmap_cancel; 1245 } 1246 1247 /* 1248 * If this is a synchronous mount, make sure that the 1249 * create transaction goes to disk before returning to 1250 * the user. 1251 */ 1252 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1253 xfs_trans_set_sync(tp); 1254 1255 /* 1256 * Attach the dquot(s) to the inodes and modify them incore. 1257 * These ids of the inode couldn't have changed since the new 1258 * inode has been locked ever since it was created. 1259 */ 1260 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1261 1262 error = xfs_defer_finish(&tp, &dfops); 1263 if (error) 1264 goto out_bmap_cancel; 1265 1266 error = xfs_trans_commit(tp); 1267 if (error) 1268 goto out_release_inode; 1269 1270 xfs_qm_dqrele(udqp); 1271 xfs_qm_dqrele(gdqp); 1272 xfs_qm_dqrele(pdqp); 1273 1274 *ipp = ip; 1275 return 0; 1276 1277 out_bmap_cancel: 1278 xfs_defer_cancel(&dfops); 1279 out_trans_cancel: 1280 xfs_trans_cancel(tp); 1281 out_release_inode: 1282 /* 1283 * Wait until after the current transaction is aborted to finish the 1284 * setup of the inode and release the inode. This prevents recursive 1285 * transactions and deadlocks from xfs_inactive. 1286 */ 1287 if (ip) { 1288 xfs_finish_inode_setup(ip); 1289 IRELE(ip); 1290 } 1291 1292 xfs_qm_dqrele(udqp); 1293 xfs_qm_dqrele(gdqp); 1294 xfs_qm_dqrele(pdqp); 1295 1296 if (unlock_dp_on_error) 1297 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1298 return error; 1299 } 1300 1301 int 1302 xfs_create_tmpfile( 1303 struct xfs_inode *dp, 1304 umode_t mode, 1305 struct xfs_inode **ipp) 1306 { 1307 struct xfs_mount *mp = dp->i_mount; 1308 struct xfs_inode *ip = NULL; 1309 struct xfs_trans *tp = NULL; 1310 int error; 1311 prid_t prid; 1312 struct xfs_dquot *udqp = NULL; 1313 struct xfs_dquot *gdqp = NULL; 1314 struct xfs_dquot *pdqp = NULL; 1315 struct xfs_trans_res *tres; 1316 uint resblks; 1317 1318 if (XFS_FORCED_SHUTDOWN(mp)) 1319 return -EIO; 1320 1321 prid = xfs_get_initial_prid(dp); 1322 1323 /* 1324 * Make sure that we have allocated dquot(s) on disk. 1325 */ 1326 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1327 xfs_kgid_to_gid(current_fsgid()), prid, 1328 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1329 &udqp, &gdqp, &pdqp); 1330 if (error) 1331 return error; 1332 1333 resblks = XFS_IALLOC_SPACE_RES(mp); 1334 tres = &M_RES(mp)->tr_create_tmpfile; 1335 1336 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1337 if (error) 1338 goto out_release_inode; 1339 1340 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1341 pdqp, resblks, 1, 0); 1342 if (error) 1343 goto out_trans_cancel; 1344 1345 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip); 1346 if (error) 1347 goto out_trans_cancel; 1348 1349 if (mp->m_flags & XFS_MOUNT_WSYNC) 1350 xfs_trans_set_sync(tp); 1351 1352 /* 1353 * Attach the dquot(s) to the inodes and modify them incore. 1354 * These ids of the inode couldn't have changed since the new 1355 * inode has been locked ever since it was created. 1356 */ 1357 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1358 1359 error = xfs_iunlink(tp, ip); 1360 if (error) 1361 goto out_trans_cancel; 1362 1363 error = xfs_trans_commit(tp); 1364 if (error) 1365 goto out_release_inode; 1366 1367 xfs_qm_dqrele(udqp); 1368 xfs_qm_dqrele(gdqp); 1369 xfs_qm_dqrele(pdqp); 1370 1371 *ipp = ip; 1372 return 0; 1373 1374 out_trans_cancel: 1375 xfs_trans_cancel(tp); 1376 out_release_inode: 1377 /* 1378 * Wait until after the current transaction is aborted to finish the 1379 * setup of the inode and release the inode. This prevents recursive 1380 * transactions and deadlocks from xfs_inactive. 1381 */ 1382 if (ip) { 1383 xfs_finish_inode_setup(ip); 1384 IRELE(ip); 1385 } 1386 1387 xfs_qm_dqrele(udqp); 1388 xfs_qm_dqrele(gdqp); 1389 xfs_qm_dqrele(pdqp); 1390 1391 return error; 1392 } 1393 1394 int 1395 xfs_link( 1396 xfs_inode_t *tdp, 1397 xfs_inode_t *sip, 1398 struct xfs_name *target_name) 1399 { 1400 xfs_mount_t *mp = tdp->i_mount; 1401 xfs_trans_t *tp; 1402 int error; 1403 struct xfs_defer_ops dfops; 1404 xfs_fsblock_t first_block; 1405 int resblks; 1406 1407 trace_xfs_link(tdp, target_name); 1408 1409 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1410 1411 if (XFS_FORCED_SHUTDOWN(mp)) 1412 return -EIO; 1413 1414 error = xfs_qm_dqattach(sip, 0); 1415 if (error) 1416 goto std_return; 1417 1418 error = xfs_qm_dqattach(tdp, 0); 1419 if (error) 1420 goto std_return; 1421 1422 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1423 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1424 if (error == -ENOSPC) { 1425 resblks = 0; 1426 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1427 } 1428 if (error) 1429 goto std_return; 1430 1431 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1432 1433 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1434 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1435 1436 /* 1437 * If we are using project inheritance, we only allow hard link 1438 * creation in our tree when the project IDs are the same; else 1439 * the tree quota mechanism could be circumvented. 1440 */ 1441 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1442 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1443 error = -EXDEV; 1444 goto error_return; 1445 } 1446 1447 if (!resblks) { 1448 error = xfs_dir_canenter(tp, tdp, target_name); 1449 if (error) 1450 goto error_return; 1451 } 1452 1453 xfs_defer_init(&dfops, &first_block); 1454 1455 /* 1456 * Handle initial link state of O_TMPFILE inode 1457 */ 1458 if (VFS_I(sip)->i_nlink == 0) { 1459 error = xfs_iunlink_remove(tp, sip); 1460 if (error) 1461 goto error_return; 1462 } 1463 1464 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1465 &first_block, &dfops, resblks); 1466 if (error) 1467 goto error_return; 1468 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1469 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1470 1471 error = xfs_bumplink(tp, sip); 1472 if (error) 1473 goto error_return; 1474 1475 /* 1476 * If this is a synchronous mount, make sure that the 1477 * link transaction goes to disk before returning to 1478 * the user. 1479 */ 1480 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1481 xfs_trans_set_sync(tp); 1482 1483 error = xfs_defer_finish(&tp, &dfops); 1484 if (error) { 1485 xfs_defer_cancel(&dfops); 1486 goto error_return; 1487 } 1488 1489 return xfs_trans_commit(tp); 1490 1491 error_return: 1492 xfs_trans_cancel(tp); 1493 std_return: 1494 return error; 1495 } 1496 1497 /* Clear the reflink flag and the cowblocks tag if possible. */ 1498 static void 1499 xfs_itruncate_clear_reflink_flags( 1500 struct xfs_inode *ip) 1501 { 1502 struct xfs_ifork *dfork; 1503 struct xfs_ifork *cfork; 1504 1505 if (!xfs_is_reflink_inode(ip)) 1506 return; 1507 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1508 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1509 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1510 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1511 if (cfork->if_bytes == 0) 1512 xfs_inode_clear_cowblocks_tag(ip); 1513 } 1514 1515 /* 1516 * Free up the underlying blocks past new_size. The new size must be smaller 1517 * than the current size. This routine can be used both for the attribute and 1518 * data fork, and does not modify the inode size, which is left to the caller. 1519 * 1520 * The transaction passed to this routine must have made a permanent log 1521 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1522 * given transaction and start new ones, so make sure everything involved in 1523 * the transaction is tidy before calling here. Some transaction will be 1524 * returned to the caller to be committed. The incoming transaction must 1525 * already include the inode, and both inode locks must be held exclusively. 1526 * The inode must also be "held" within the transaction. On return the inode 1527 * will be "held" within the returned transaction. This routine does NOT 1528 * require any disk space to be reserved for it within the transaction. 1529 * 1530 * If we get an error, we must return with the inode locked and linked into the 1531 * current transaction. This keeps things simple for the higher level code, 1532 * because it always knows that the inode is locked and held in the transaction 1533 * that returns to it whether errors occur or not. We don't mark the inode 1534 * dirty on error so that transactions can be easily aborted if possible. 1535 */ 1536 int 1537 xfs_itruncate_extents( 1538 struct xfs_trans **tpp, 1539 struct xfs_inode *ip, 1540 int whichfork, 1541 xfs_fsize_t new_size) 1542 { 1543 struct xfs_mount *mp = ip->i_mount; 1544 struct xfs_trans *tp = *tpp; 1545 struct xfs_defer_ops dfops; 1546 xfs_fsblock_t first_block; 1547 xfs_fileoff_t first_unmap_block; 1548 xfs_fileoff_t last_block; 1549 xfs_filblks_t unmap_len; 1550 int error = 0; 1551 int done = 0; 1552 1553 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1554 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1555 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1556 ASSERT(new_size <= XFS_ISIZE(ip)); 1557 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1558 ASSERT(ip->i_itemp != NULL); 1559 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1560 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1561 1562 trace_xfs_itruncate_extents_start(ip, new_size); 1563 1564 /* 1565 * Since it is possible for space to become allocated beyond 1566 * the end of the file (in a crash where the space is allocated 1567 * but the inode size is not yet updated), simply remove any 1568 * blocks which show up between the new EOF and the maximum 1569 * possible file size. If the first block to be removed is 1570 * beyond the maximum file size (ie it is the same as last_block), 1571 * then there is nothing to do. 1572 */ 1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1574 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1575 if (first_unmap_block == last_block) 1576 return 0; 1577 1578 ASSERT(first_unmap_block < last_block); 1579 unmap_len = last_block - first_unmap_block + 1; 1580 while (!done) { 1581 xfs_defer_init(&dfops, &first_block); 1582 error = xfs_bunmapi(tp, ip, 1583 first_unmap_block, unmap_len, 1584 xfs_bmapi_aflag(whichfork), 1585 XFS_ITRUNC_MAX_EXTENTS, 1586 &first_block, &dfops, 1587 &done); 1588 if (error) 1589 goto out_bmap_cancel; 1590 1591 /* 1592 * Duplicate the transaction that has the permanent 1593 * reservation and commit the old transaction. 1594 */ 1595 xfs_defer_ijoin(&dfops, ip); 1596 error = xfs_defer_finish(&tp, &dfops); 1597 if (error) 1598 goto out_bmap_cancel; 1599 1600 error = xfs_trans_roll_inode(&tp, ip); 1601 if (error) 1602 goto out; 1603 } 1604 1605 if (whichfork == XFS_DATA_FORK) { 1606 /* Remove all pending CoW reservations. */ 1607 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1608 first_unmap_block, last_block, true); 1609 if (error) 1610 goto out; 1611 1612 xfs_itruncate_clear_reflink_flags(ip); 1613 } 1614 1615 /* 1616 * Always re-log the inode so that our permanent transaction can keep 1617 * on rolling it forward in the log. 1618 */ 1619 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1620 1621 trace_xfs_itruncate_extents_end(ip, new_size); 1622 1623 out: 1624 *tpp = tp; 1625 return error; 1626 out_bmap_cancel: 1627 /* 1628 * If the bunmapi call encounters an error, return to the caller where 1629 * the transaction can be properly aborted. We just need to make sure 1630 * we're not holding any resources that we were not when we came in. 1631 */ 1632 xfs_defer_cancel(&dfops); 1633 goto out; 1634 } 1635 1636 int 1637 xfs_release( 1638 xfs_inode_t *ip) 1639 { 1640 xfs_mount_t *mp = ip->i_mount; 1641 int error; 1642 1643 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1644 return 0; 1645 1646 /* If this is a read-only mount, don't do this (would generate I/O) */ 1647 if (mp->m_flags & XFS_MOUNT_RDONLY) 1648 return 0; 1649 1650 if (!XFS_FORCED_SHUTDOWN(mp)) { 1651 int truncated; 1652 1653 /* 1654 * If we previously truncated this file and removed old data 1655 * in the process, we want to initiate "early" writeout on 1656 * the last close. This is an attempt to combat the notorious 1657 * NULL files problem which is particularly noticeable from a 1658 * truncate down, buffered (re-)write (delalloc), followed by 1659 * a crash. What we are effectively doing here is 1660 * significantly reducing the time window where we'd otherwise 1661 * be exposed to that problem. 1662 */ 1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1664 if (truncated) { 1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1666 if (ip->i_delayed_blks > 0) { 1667 error = filemap_flush(VFS_I(ip)->i_mapping); 1668 if (error) 1669 return error; 1670 } 1671 } 1672 } 1673 1674 if (VFS_I(ip)->i_nlink == 0) 1675 return 0; 1676 1677 if (xfs_can_free_eofblocks(ip, false)) { 1678 1679 /* 1680 * Check if the inode is being opened, written and closed 1681 * frequently and we have delayed allocation blocks outstanding 1682 * (e.g. streaming writes from the NFS server), truncating the 1683 * blocks past EOF will cause fragmentation to occur. 1684 * 1685 * In this case don't do the truncation, but we have to be 1686 * careful how we detect this case. Blocks beyond EOF show up as 1687 * i_delayed_blks even when the inode is clean, so we need to 1688 * truncate them away first before checking for a dirty release. 1689 * Hence on the first dirty close we will still remove the 1690 * speculative allocation, but after that we will leave it in 1691 * place. 1692 */ 1693 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1694 return 0; 1695 /* 1696 * If we can't get the iolock just skip truncating the blocks 1697 * past EOF because we could deadlock with the mmap_sem 1698 * otherwise. We'll get another chance to drop them once the 1699 * last reference to the inode is dropped, so we'll never leak 1700 * blocks permanently. 1701 */ 1702 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1703 error = xfs_free_eofblocks(ip); 1704 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1705 if (error) 1706 return error; 1707 } 1708 1709 /* delalloc blocks after truncation means it really is dirty */ 1710 if (ip->i_delayed_blks) 1711 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1712 } 1713 return 0; 1714 } 1715 1716 /* 1717 * xfs_inactive_truncate 1718 * 1719 * Called to perform a truncate when an inode becomes unlinked. 1720 */ 1721 STATIC int 1722 xfs_inactive_truncate( 1723 struct xfs_inode *ip) 1724 { 1725 struct xfs_mount *mp = ip->i_mount; 1726 struct xfs_trans *tp; 1727 int error; 1728 1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1730 if (error) { 1731 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1732 return error; 1733 } 1734 1735 xfs_ilock(ip, XFS_ILOCK_EXCL); 1736 xfs_trans_ijoin(tp, ip, 0); 1737 1738 /* 1739 * Log the inode size first to prevent stale data exposure in the event 1740 * of a system crash before the truncate completes. See the related 1741 * comment in xfs_vn_setattr_size() for details. 1742 */ 1743 ip->i_d.di_size = 0; 1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1745 1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1747 if (error) 1748 goto error_trans_cancel; 1749 1750 ASSERT(ip->i_d.di_nextents == 0); 1751 1752 error = xfs_trans_commit(tp); 1753 if (error) 1754 goto error_unlock; 1755 1756 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1757 return 0; 1758 1759 error_trans_cancel: 1760 xfs_trans_cancel(tp); 1761 error_unlock: 1762 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1763 return error; 1764 } 1765 1766 /* 1767 * xfs_inactive_ifree() 1768 * 1769 * Perform the inode free when an inode is unlinked. 1770 */ 1771 STATIC int 1772 xfs_inactive_ifree( 1773 struct xfs_inode *ip) 1774 { 1775 struct xfs_defer_ops dfops; 1776 xfs_fsblock_t first_block; 1777 struct xfs_mount *mp = ip->i_mount; 1778 struct xfs_trans *tp; 1779 int error; 1780 1781 /* 1782 * We try to use a per-AG reservation for any block needed by the finobt 1783 * tree, but as the finobt feature predates the per-AG reservation 1784 * support a degraded file system might not have enough space for the 1785 * reservation at mount time. In that case try to dip into the reserved 1786 * pool and pray. 1787 * 1788 * Send a warning if the reservation does happen to fail, as the inode 1789 * now remains allocated and sits on the unlinked list until the fs is 1790 * repaired. 1791 */ 1792 if (unlikely(mp->m_inotbt_nores)) { 1793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1794 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1795 &tp); 1796 } else { 1797 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1798 } 1799 if (error) { 1800 if (error == -ENOSPC) { 1801 xfs_warn_ratelimited(mp, 1802 "Failed to remove inode(s) from unlinked list. " 1803 "Please free space, unmount and run xfs_repair."); 1804 } else { 1805 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1806 } 1807 return error; 1808 } 1809 1810 xfs_ilock(ip, XFS_ILOCK_EXCL); 1811 xfs_trans_ijoin(tp, ip, 0); 1812 1813 xfs_defer_init(&dfops, &first_block); 1814 error = xfs_ifree(tp, ip, &dfops); 1815 if (error) { 1816 /* 1817 * If we fail to free the inode, shut down. The cancel 1818 * might do that, we need to make sure. Otherwise the 1819 * inode might be lost for a long time or forever. 1820 */ 1821 if (!XFS_FORCED_SHUTDOWN(mp)) { 1822 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1823 __func__, error); 1824 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1825 } 1826 xfs_trans_cancel(tp); 1827 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1828 return error; 1829 } 1830 1831 /* 1832 * Credit the quota account(s). The inode is gone. 1833 */ 1834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1835 1836 /* 1837 * Just ignore errors at this point. There is nothing we can do except 1838 * to try to keep going. Make sure it's not a silent error. 1839 */ 1840 error = xfs_defer_finish(&tp, &dfops); 1841 if (error) { 1842 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1843 __func__, error); 1844 xfs_defer_cancel(&dfops); 1845 } 1846 error = xfs_trans_commit(tp); 1847 if (error) 1848 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1849 __func__, error); 1850 1851 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1852 return 0; 1853 } 1854 1855 /* 1856 * xfs_inactive 1857 * 1858 * This is called when the vnode reference count for the vnode 1859 * goes to zero. If the file has been unlinked, then it must 1860 * now be truncated. Also, we clear all of the read-ahead state 1861 * kept for the inode here since the file is now closed. 1862 */ 1863 void 1864 xfs_inactive( 1865 xfs_inode_t *ip) 1866 { 1867 struct xfs_mount *mp; 1868 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1869 int error; 1870 int truncate = 0; 1871 1872 /* 1873 * If the inode is already free, then there can be nothing 1874 * to clean up here. 1875 */ 1876 if (VFS_I(ip)->i_mode == 0) { 1877 ASSERT(ip->i_df.if_real_bytes == 0); 1878 ASSERT(ip->i_df.if_broot_bytes == 0); 1879 return; 1880 } 1881 1882 mp = ip->i_mount; 1883 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1884 1885 /* If this is a read-only mount, don't do this (would generate I/O) */ 1886 if (mp->m_flags & XFS_MOUNT_RDONLY) 1887 return; 1888 1889 /* Try to clean out the cow blocks if there are any. */ 1890 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0) 1891 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1892 1893 if (VFS_I(ip)->i_nlink != 0) { 1894 /* 1895 * force is true because we are evicting an inode from the 1896 * cache. Post-eof blocks must be freed, lest we end up with 1897 * broken free space accounting. 1898 * 1899 * Note: don't bother with iolock here since lockdep complains 1900 * about acquiring it in reclaim context. We have the only 1901 * reference to the inode at this point anyways. 1902 */ 1903 if (xfs_can_free_eofblocks(ip, true)) 1904 xfs_free_eofblocks(ip); 1905 1906 return; 1907 } 1908 1909 if (S_ISREG(VFS_I(ip)->i_mode) && 1910 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1911 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1912 truncate = 1; 1913 1914 error = xfs_qm_dqattach(ip, 0); 1915 if (error) 1916 return; 1917 1918 if (S_ISLNK(VFS_I(ip)->i_mode)) 1919 error = xfs_inactive_symlink(ip); 1920 else if (truncate) 1921 error = xfs_inactive_truncate(ip); 1922 if (error) 1923 return; 1924 1925 /* 1926 * If there are attributes associated with the file then blow them away 1927 * now. The code calls a routine that recursively deconstructs the 1928 * attribute fork. If also blows away the in-core attribute fork. 1929 */ 1930 if (XFS_IFORK_Q(ip)) { 1931 error = xfs_attr_inactive(ip); 1932 if (error) 1933 return; 1934 } 1935 1936 ASSERT(!ip->i_afp); 1937 ASSERT(ip->i_d.di_anextents == 0); 1938 ASSERT(ip->i_d.di_forkoff == 0); 1939 1940 /* 1941 * Free the inode. 1942 */ 1943 error = xfs_inactive_ifree(ip); 1944 if (error) 1945 return; 1946 1947 /* 1948 * Release the dquots held by inode, if any. 1949 */ 1950 xfs_qm_dqdetach(ip); 1951 } 1952 1953 /* 1954 * This is called when the inode's link count goes to 0 or we are creating a 1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1956 * set to true as the link count is dropped to zero by the VFS after we've 1957 * created the file successfully, so we have to add it to the unlinked list 1958 * while the link count is non-zero. 1959 * 1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1961 * list when the inode is freed. 1962 */ 1963 STATIC int 1964 xfs_iunlink( 1965 struct xfs_trans *tp, 1966 struct xfs_inode *ip) 1967 { 1968 xfs_mount_t *mp = tp->t_mountp; 1969 xfs_agi_t *agi; 1970 xfs_dinode_t *dip; 1971 xfs_buf_t *agibp; 1972 xfs_buf_t *ibp; 1973 xfs_agino_t agino; 1974 short bucket_index; 1975 int offset; 1976 int error; 1977 1978 ASSERT(VFS_I(ip)->i_mode != 0); 1979 1980 /* 1981 * Get the agi buffer first. It ensures lock ordering 1982 * on the list. 1983 */ 1984 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1985 if (error) 1986 return error; 1987 agi = XFS_BUF_TO_AGI(agibp); 1988 1989 /* 1990 * Get the index into the agi hash table for the 1991 * list this inode will go on. 1992 */ 1993 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1994 ASSERT(agino != 0); 1995 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1996 ASSERT(agi->agi_unlinked[bucket_index]); 1997 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1998 1999 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2000 /* 2001 * There is already another inode in the bucket we need 2002 * to add ourselves to. Add us at the front of the list. 2003 * Here we put the head pointer into our next pointer, 2004 * and then we fall through to point the head at us. 2005 */ 2006 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2007 0, 0); 2008 if (error) 2009 return error; 2010 2011 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2012 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2013 offset = ip->i_imap.im_boffset + 2014 offsetof(xfs_dinode_t, di_next_unlinked); 2015 2016 /* need to recalc the inode CRC if appropriate */ 2017 xfs_dinode_calc_crc(mp, dip); 2018 2019 xfs_trans_inode_buf(tp, ibp); 2020 xfs_trans_log_buf(tp, ibp, offset, 2021 (offset + sizeof(xfs_agino_t) - 1)); 2022 xfs_inobp_check(mp, ibp); 2023 } 2024 2025 /* 2026 * Point the bucket head pointer at the inode being inserted. 2027 */ 2028 ASSERT(agino != 0); 2029 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2030 offset = offsetof(xfs_agi_t, agi_unlinked) + 2031 (sizeof(xfs_agino_t) * bucket_index); 2032 xfs_trans_log_buf(tp, agibp, offset, 2033 (offset + sizeof(xfs_agino_t) - 1)); 2034 return 0; 2035 } 2036 2037 /* 2038 * Pull the on-disk inode from the AGI unlinked list. 2039 */ 2040 STATIC int 2041 xfs_iunlink_remove( 2042 xfs_trans_t *tp, 2043 xfs_inode_t *ip) 2044 { 2045 xfs_ino_t next_ino; 2046 xfs_mount_t *mp; 2047 xfs_agi_t *agi; 2048 xfs_dinode_t *dip; 2049 xfs_buf_t *agibp; 2050 xfs_buf_t *ibp; 2051 xfs_agnumber_t agno; 2052 xfs_agino_t agino; 2053 xfs_agino_t next_agino; 2054 xfs_buf_t *last_ibp; 2055 xfs_dinode_t *last_dip = NULL; 2056 short bucket_index; 2057 int offset, last_offset = 0; 2058 int error; 2059 2060 mp = tp->t_mountp; 2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2062 2063 /* 2064 * Get the agi buffer first. It ensures lock ordering 2065 * on the list. 2066 */ 2067 error = xfs_read_agi(mp, tp, agno, &agibp); 2068 if (error) 2069 return error; 2070 2071 agi = XFS_BUF_TO_AGI(agibp); 2072 2073 /* 2074 * Get the index into the agi hash table for the 2075 * list this inode will go on. 2076 */ 2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2078 ASSERT(agino != 0); 2079 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2080 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2081 ASSERT(agi->agi_unlinked[bucket_index]); 2082 2083 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2084 /* 2085 * We're at the head of the list. Get the inode's on-disk 2086 * buffer to see if there is anyone after us on the list. 2087 * Only modify our next pointer if it is not already NULLAGINO. 2088 * This saves us the overhead of dealing with the buffer when 2089 * there is no need to change it. 2090 */ 2091 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2092 0, 0); 2093 if (error) { 2094 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2095 __func__, error); 2096 return error; 2097 } 2098 next_agino = be32_to_cpu(dip->di_next_unlinked); 2099 ASSERT(next_agino != 0); 2100 if (next_agino != NULLAGINO) { 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2102 offset = ip->i_imap.im_boffset + 2103 offsetof(xfs_dinode_t, di_next_unlinked); 2104 2105 /* need to recalc the inode CRC if appropriate */ 2106 xfs_dinode_calc_crc(mp, dip); 2107 2108 xfs_trans_inode_buf(tp, ibp); 2109 xfs_trans_log_buf(tp, ibp, offset, 2110 (offset + sizeof(xfs_agino_t) - 1)); 2111 xfs_inobp_check(mp, ibp); 2112 } else { 2113 xfs_trans_brelse(tp, ibp); 2114 } 2115 /* 2116 * Point the bucket head pointer at the next inode. 2117 */ 2118 ASSERT(next_agino != 0); 2119 ASSERT(next_agino != agino); 2120 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2121 offset = offsetof(xfs_agi_t, agi_unlinked) + 2122 (sizeof(xfs_agino_t) * bucket_index); 2123 xfs_trans_log_buf(tp, agibp, offset, 2124 (offset + sizeof(xfs_agino_t) - 1)); 2125 } else { 2126 /* 2127 * We need to search the list for the inode being freed. 2128 */ 2129 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2130 last_ibp = NULL; 2131 while (next_agino != agino) { 2132 struct xfs_imap imap; 2133 2134 if (last_ibp) 2135 xfs_trans_brelse(tp, last_ibp); 2136 2137 imap.im_blkno = 0; 2138 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2139 2140 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2141 if (error) { 2142 xfs_warn(mp, 2143 "%s: xfs_imap returned error %d.", 2144 __func__, error); 2145 return error; 2146 } 2147 2148 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2149 &last_ibp, 0, 0); 2150 if (error) { 2151 xfs_warn(mp, 2152 "%s: xfs_imap_to_bp returned error %d.", 2153 __func__, error); 2154 return error; 2155 } 2156 2157 last_offset = imap.im_boffset; 2158 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2159 ASSERT(next_agino != NULLAGINO); 2160 ASSERT(next_agino != 0); 2161 } 2162 2163 /* 2164 * Now last_ibp points to the buffer previous to us on the 2165 * unlinked list. Pull us from the list. 2166 */ 2167 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2168 0, 0); 2169 if (error) { 2170 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2171 __func__, error); 2172 return error; 2173 } 2174 next_agino = be32_to_cpu(dip->di_next_unlinked); 2175 ASSERT(next_agino != 0); 2176 ASSERT(next_agino != agino); 2177 if (next_agino != NULLAGINO) { 2178 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2179 offset = ip->i_imap.im_boffset + 2180 offsetof(xfs_dinode_t, di_next_unlinked); 2181 2182 /* need to recalc the inode CRC if appropriate */ 2183 xfs_dinode_calc_crc(mp, dip); 2184 2185 xfs_trans_inode_buf(tp, ibp); 2186 xfs_trans_log_buf(tp, ibp, offset, 2187 (offset + sizeof(xfs_agino_t) - 1)); 2188 xfs_inobp_check(mp, ibp); 2189 } else { 2190 xfs_trans_brelse(tp, ibp); 2191 } 2192 /* 2193 * Point the previous inode on the list to the next inode. 2194 */ 2195 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2196 ASSERT(next_agino != 0); 2197 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2198 2199 /* need to recalc the inode CRC if appropriate */ 2200 xfs_dinode_calc_crc(mp, last_dip); 2201 2202 xfs_trans_inode_buf(tp, last_ibp); 2203 xfs_trans_log_buf(tp, last_ibp, offset, 2204 (offset + sizeof(xfs_agino_t) - 1)); 2205 xfs_inobp_check(mp, last_ibp); 2206 } 2207 return 0; 2208 } 2209 2210 /* 2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2212 * inodes that are in memory - they all must be marked stale and attached to 2213 * the cluster buffer. 2214 */ 2215 STATIC int 2216 xfs_ifree_cluster( 2217 xfs_inode_t *free_ip, 2218 xfs_trans_t *tp, 2219 struct xfs_icluster *xic) 2220 { 2221 xfs_mount_t *mp = free_ip->i_mount; 2222 int blks_per_cluster; 2223 int inodes_per_cluster; 2224 int nbufs; 2225 int i, j; 2226 int ioffset; 2227 xfs_daddr_t blkno; 2228 xfs_buf_t *bp; 2229 xfs_inode_t *ip; 2230 xfs_inode_log_item_t *iip; 2231 struct xfs_log_item *lip; 2232 struct xfs_perag *pag; 2233 xfs_ino_t inum; 2234 2235 inum = xic->first_ino; 2236 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2237 blks_per_cluster = xfs_icluster_size_fsb(mp); 2238 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2239 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2240 2241 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2242 /* 2243 * The allocation bitmap tells us which inodes of the chunk were 2244 * physically allocated. Skip the cluster if an inode falls into 2245 * a sparse region. 2246 */ 2247 ioffset = inum - xic->first_ino; 2248 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2249 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2250 continue; 2251 } 2252 2253 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2254 XFS_INO_TO_AGBNO(mp, inum)); 2255 2256 /* 2257 * We obtain and lock the backing buffer first in the process 2258 * here, as we have to ensure that any dirty inode that we 2259 * can't get the flush lock on is attached to the buffer. 2260 * If we scan the in-memory inodes first, then buffer IO can 2261 * complete before we get a lock on it, and hence we may fail 2262 * to mark all the active inodes on the buffer stale. 2263 */ 2264 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2265 mp->m_bsize * blks_per_cluster, 2266 XBF_UNMAPPED); 2267 2268 if (!bp) 2269 return -ENOMEM; 2270 2271 /* 2272 * This buffer may not have been correctly initialised as we 2273 * didn't read it from disk. That's not important because we are 2274 * only using to mark the buffer as stale in the log, and to 2275 * attach stale cached inodes on it. That means it will never be 2276 * dispatched for IO. If it is, we want to know about it, and we 2277 * want it to fail. We can acheive this by adding a write 2278 * verifier to the buffer. 2279 */ 2280 bp->b_ops = &xfs_inode_buf_ops; 2281 2282 /* 2283 * Walk the inodes already attached to the buffer and mark them 2284 * stale. These will all have the flush locks held, so an 2285 * in-memory inode walk can't lock them. By marking them all 2286 * stale first, we will not attempt to lock them in the loop 2287 * below as the XFS_ISTALE flag will be set. 2288 */ 2289 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2290 if (lip->li_type == XFS_LI_INODE) { 2291 iip = (xfs_inode_log_item_t *)lip; 2292 ASSERT(iip->ili_logged == 1); 2293 lip->li_cb = xfs_istale_done; 2294 xfs_trans_ail_copy_lsn(mp->m_ail, 2295 &iip->ili_flush_lsn, 2296 &iip->ili_item.li_lsn); 2297 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2298 } 2299 } 2300 2301 2302 /* 2303 * For each inode in memory attempt to add it to the inode 2304 * buffer and set it up for being staled on buffer IO 2305 * completion. This is safe as we've locked out tail pushing 2306 * and flushing by locking the buffer. 2307 * 2308 * We have already marked every inode that was part of a 2309 * transaction stale above, which means there is no point in 2310 * even trying to lock them. 2311 */ 2312 for (i = 0; i < inodes_per_cluster; i++) { 2313 retry: 2314 rcu_read_lock(); 2315 ip = radix_tree_lookup(&pag->pag_ici_root, 2316 XFS_INO_TO_AGINO(mp, (inum + i))); 2317 2318 /* Inode not in memory, nothing to do */ 2319 if (!ip) { 2320 rcu_read_unlock(); 2321 continue; 2322 } 2323 2324 /* 2325 * because this is an RCU protected lookup, we could 2326 * find a recently freed or even reallocated inode 2327 * during the lookup. We need to check under the 2328 * i_flags_lock for a valid inode here. Skip it if it 2329 * is not valid, the wrong inode or stale. 2330 */ 2331 spin_lock(&ip->i_flags_lock); 2332 if (ip->i_ino != inum + i || 2333 __xfs_iflags_test(ip, XFS_ISTALE)) { 2334 spin_unlock(&ip->i_flags_lock); 2335 rcu_read_unlock(); 2336 continue; 2337 } 2338 spin_unlock(&ip->i_flags_lock); 2339 2340 /* 2341 * Don't try to lock/unlock the current inode, but we 2342 * _cannot_ skip the other inodes that we did not find 2343 * in the list attached to the buffer and are not 2344 * already marked stale. If we can't lock it, back off 2345 * and retry. 2346 */ 2347 if (ip != free_ip) { 2348 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2349 rcu_read_unlock(); 2350 delay(1); 2351 goto retry; 2352 } 2353 2354 /* 2355 * Check the inode number again in case we're 2356 * racing with freeing in xfs_reclaim_inode(). 2357 * See the comments in that function for more 2358 * information as to why the initial check is 2359 * not sufficient. 2360 */ 2361 if (ip->i_ino != inum + i) { 2362 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2363 rcu_read_unlock(); 2364 continue; 2365 } 2366 } 2367 rcu_read_unlock(); 2368 2369 xfs_iflock(ip); 2370 xfs_iflags_set(ip, XFS_ISTALE); 2371 2372 /* 2373 * we don't need to attach clean inodes or those only 2374 * with unlogged changes (which we throw away, anyway). 2375 */ 2376 iip = ip->i_itemp; 2377 if (!iip || xfs_inode_clean(ip)) { 2378 ASSERT(ip != free_ip); 2379 xfs_ifunlock(ip); 2380 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2381 continue; 2382 } 2383 2384 iip->ili_last_fields = iip->ili_fields; 2385 iip->ili_fields = 0; 2386 iip->ili_fsync_fields = 0; 2387 iip->ili_logged = 1; 2388 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2389 &iip->ili_item.li_lsn); 2390 2391 xfs_buf_attach_iodone(bp, xfs_istale_done, 2392 &iip->ili_item); 2393 2394 if (ip != free_ip) 2395 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2396 } 2397 2398 xfs_trans_stale_inode_buf(tp, bp); 2399 xfs_trans_binval(tp, bp); 2400 } 2401 2402 xfs_perag_put(pag); 2403 return 0; 2404 } 2405 2406 /* 2407 * Free any local-format buffers sitting around before we reset to 2408 * extents format. 2409 */ 2410 static inline void 2411 xfs_ifree_local_data( 2412 struct xfs_inode *ip, 2413 int whichfork) 2414 { 2415 struct xfs_ifork *ifp; 2416 2417 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2418 return; 2419 2420 ifp = XFS_IFORK_PTR(ip, whichfork); 2421 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2422 } 2423 2424 /* 2425 * This is called to return an inode to the inode free list. 2426 * The inode should already be truncated to 0 length and have 2427 * no pages associated with it. This routine also assumes that 2428 * the inode is already a part of the transaction. 2429 * 2430 * The on-disk copy of the inode will have been added to the list 2431 * of unlinked inodes in the AGI. We need to remove the inode from 2432 * that list atomically with respect to freeing it here. 2433 */ 2434 int 2435 xfs_ifree( 2436 xfs_trans_t *tp, 2437 xfs_inode_t *ip, 2438 struct xfs_defer_ops *dfops) 2439 { 2440 int error; 2441 struct xfs_icluster xic = { 0 }; 2442 2443 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2444 ASSERT(VFS_I(ip)->i_nlink == 0); 2445 ASSERT(ip->i_d.di_nextents == 0); 2446 ASSERT(ip->i_d.di_anextents == 0); 2447 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2448 ASSERT(ip->i_d.di_nblocks == 0); 2449 2450 /* 2451 * Pull the on-disk inode from the AGI unlinked list. 2452 */ 2453 error = xfs_iunlink_remove(tp, ip); 2454 if (error) 2455 return error; 2456 2457 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2458 if (error) 2459 return error; 2460 2461 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2462 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2463 2464 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2465 ip->i_d.di_flags = 0; 2466 ip->i_d.di_flags2 = 0; 2467 ip->i_d.di_dmevmask = 0; 2468 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2469 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2470 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2471 2472 /* Don't attempt to replay owner changes for a deleted inode */ 2473 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2474 2475 /* 2476 * Bump the generation count so no one will be confused 2477 * by reincarnations of this inode. 2478 */ 2479 VFS_I(ip)->i_generation++; 2480 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2481 2482 if (xic.deleted) 2483 error = xfs_ifree_cluster(ip, tp, &xic); 2484 2485 return error; 2486 } 2487 2488 /* 2489 * This is called to unpin an inode. The caller must have the inode locked 2490 * in at least shared mode so that the buffer cannot be subsequently pinned 2491 * once someone is waiting for it to be unpinned. 2492 */ 2493 static void 2494 xfs_iunpin( 2495 struct xfs_inode *ip) 2496 { 2497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2498 2499 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2500 2501 /* Give the log a push to start the unpinning I/O */ 2502 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2503 2504 } 2505 2506 static void 2507 __xfs_iunpin_wait( 2508 struct xfs_inode *ip) 2509 { 2510 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2511 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2512 2513 xfs_iunpin(ip); 2514 2515 do { 2516 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2517 if (xfs_ipincount(ip)) 2518 io_schedule(); 2519 } while (xfs_ipincount(ip)); 2520 finish_wait(wq, &wait.wq_entry); 2521 } 2522 2523 void 2524 xfs_iunpin_wait( 2525 struct xfs_inode *ip) 2526 { 2527 if (xfs_ipincount(ip)) 2528 __xfs_iunpin_wait(ip); 2529 } 2530 2531 /* 2532 * Removing an inode from the namespace involves removing the directory entry 2533 * and dropping the link count on the inode. Removing the directory entry can 2534 * result in locking an AGF (directory blocks were freed) and removing a link 2535 * count can result in placing the inode on an unlinked list which results in 2536 * locking an AGI. 2537 * 2538 * The big problem here is that we have an ordering constraint on AGF and AGI 2539 * locking - inode allocation locks the AGI, then can allocate a new extent for 2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2541 * removes the inode from the unlinked list, requiring that we lock the AGI 2542 * first, and then freeing the inode can result in an inode chunk being freed 2543 * and hence freeing disk space requiring that we lock an AGF. 2544 * 2545 * Hence the ordering that is imposed by other parts of the code is AGI before 2546 * AGF. This means we cannot remove the directory entry before we drop the inode 2547 * reference count and put it on the unlinked list as this results in a lock 2548 * order of AGF then AGI, and this can deadlock against inode allocation and 2549 * freeing. Therefore we must drop the link counts before we remove the 2550 * directory entry. 2551 * 2552 * This is still safe from a transactional point of view - it is not until we 2553 * get to xfs_defer_finish() that we have the possibility of multiple 2554 * transactions in this operation. Hence as long as we remove the directory 2555 * entry and drop the link count in the first transaction of the remove 2556 * operation, there are no transactional constraints on the ordering here. 2557 */ 2558 int 2559 xfs_remove( 2560 xfs_inode_t *dp, 2561 struct xfs_name *name, 2562 xfs_inode_t *ip) 2563 { 2564 xfs_mount_t *mp = dp->i_mount; 2565 xfs_trans_t *tp = NULL; 2566 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2567 int error = 0; 2568 struct xfs_defer_ops dfops; 2569 xfs_fsblock_t first_block; 2570 uint resblks; 2571 2572 trace_xfs_remove(dp, name); 2573 2574 if (XFS_FORCED_SHUTDOWN(mp)) 2575 return -EIO; 2576 2577 error = xfs_qm_dqattach(dp, 0); 2578 if (error) 2579 goto std_return; 2580 2581 error = xfs_qm_dqattach(ip, 0); 2582 if (error) 2583 goto std_return; 2584 2585 /* 2586 * We try to get the real space reservation first, 2587 * allowing for directory btree deletion(s) implying 2588 * possible bmap insert(s). If we can't get the space 2589 * reservation then we use 0 instead, and avoid the bmap 2590 * btree insert(s) in the directory code by, if the bmap 2591 * insert tries to happen, instead trimming the LAST 2592 * block from the directory. 2593 */ 2594 resblks = XFS_REMOVE_SPACE_RES(mp); 2595 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2596 if (error == -ENOSPC) { 2597 resblks = 0; 2598 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2599 &tp); 2600 } 2601 if (error) { 2602 ASSERT(error != -ENOSPC); 2603 goto std_return; 2604 } 2605 2606 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2607 2608 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2609 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2610 2611 /* 2612 * If we're removing a directory perform some additional validation. 2613 */ 2614 if (is_dir) { 2615 ASSERT(VFS_I(ip)->i_nlink >= 2); 2616 if (VFS_I(ip)->i_nlink != 2) { 2617 error = -ENOTEMPTY; 2618 goto out_trans_cancel; 2619 } 2620 if (!xfs_dir_isempty(ip)) { 2621 error = -ENOTEMPTY; 2622 goto out_trans_cancel; 2623 } 2624 2625 /* Drop the link from ip's "..". */ 2626 error = xfs_droplink(tp, dp); 2627 if (error) 2628 goto out_trans_cancel; 2629 2630 /* Drop the "." link from ip to self. */ 2631 error = xfs_droplink(tp, ip); 2632 if (error) 2633 goto out_trans_cancel; 2634 } else { 2635 /* 2636 * When removing a non-directory we need to log the parent 2637 * inode here. For a directory this is done implicitly 2638 * by the xfs_droplink call for the ".." entry. 2639 */ 2640 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2641 } 2642 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2643 2644 /* Drop the link from dp to ip. */ 2645 error = xfs_droplink(tp, ip); 2646 if (error) 2647 goto out_trans_cancel; 2648 2649 xfs_defer_init(&dfops, &first_block); 2650 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2651 &first_block, &dfops, resblks); 2652 if (error) { 2653 ASSERT(error != -ENOENT); 2654 goto out_bmap_cancel; 2655 } 2656 2657 /* 2658 * If this is a synchronous mount, make sure that the 2659 * remove transaction goes to disk before returning to 2660 * the user. 2661 */ 2662 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2663 xfs_trans_set_sync(tp); 2664 2665 error = xfs_defer_finish(&tp, &dfops); 2666 if (error) 2667 goto out_bmap_cancel; 2668 2669 error = xfs_trans_commit(tp); 2670 if (error) 2671 goto std_return; 2672 2673 if (is_dir && xfs_inode_is_filestream(ip)) 2674 xfs_filestream_deassociate(ip); 2675 2676 return 0; 2677 2678 out_bmap_cancel: 2679 xfs_defer_cancel(&dfops); 2680 out_trans_cancel: 2681 xfs_trans_cancel(tp); 2682 std_return: 2683 return error; 2684 } 2685 2686 /* 2687 * Enter all inodes for a rename transaction into a sorted array. 2688 */ 2689 #define __XFS_SORT_INODES 5 2690 STATIC void 2691 xfs_sort_for_rename( 2692 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2693 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2694 struct xfs_inode *ip1, /* in: inode of old entry */ 2695 struct xfs_inode *ip2, /* in: inode of new entry */ 2696 struct xfs_inode *wip, /* in: whiteout inode */ 2697 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2698 int *num_inodes) /* in/out: inodes in array */ 2699 { 2700 int i, j; 2701 2702 ASSERT(*num_inodes == __XFS_SORT_INODES); 2703 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2704 2705 /* 2706 * i_tab contains a list of pointers to inodes. We initialize 2707 * the table here & we'll sort it. We will then use it to 2708 * order the acquisition of the inode locks. 2709 * 2710 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2711 */ 2712 i = 0; 2713 i_tab[i++] = dp1; 2714 i_tab[i++] = dp2; 2715 i_tab[i++] = ip1; 2716 if (ip2) 2717 i_tab[i++] = ip2; 2718 if (wip) 2719 i_tab[i++] = wip; 2720 *num_inodes = i; 2721 2722 /* 2723 * Sort the elements via bubble sort. (Remember, there are at 2724 * most 5 elements to sort, so this is adequate.) 2725 */ 2726 for (i = 0; i < *num_inodes; i++) { 2727 for (j = 1; j < *num_inodes; j++) { 2728 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2729 struct xfs_inode *temp = i_tab[j]; 2730 i_tab[j] = i_tab[j-1]; 2731 i_tab[j-1] = temp; 2732 } 2733 } 2734 } 2735 } 2736 2737 static int 2738 xfs_finish_rename( 2739 struct xfs_trans *tp, 2740 struct xfs_defer_ops *dfops) 2741 { 2742 int error; 2743 2744 /* 2745 * If this is a synchronous mount, make sure that the rename transaction 2746 * goes to disk before returning to the user. 2747 */ 2748 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2749 xfs_trans_set_sync(tp); 2750 2751 error = xfs_defer_finish(&tp, dfops); 2752 if (error) { 2753 xfs_defer_cancel(dfops); 2754 xfs_trans_cancel(tp); 2755 return error; 2756 } 2757 2758 return xfs_trans_commit(tp); 2759 } 2760 2761 /* 2762 * xfs_cross_rename() 2763 * 2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2765 */ 2766 STATIC int 2767 xfs_cross_rename( 2768 struct xfs_trans *tp, 2769 struct xfs_inode *dp1, 2770 struct xfs_name *name1, 2771 struct xfs_inode *ip1, 2772 struct xfs_inode *dp2, 2773 struct xfs_name *name2, 2774 struct xfs_inode *ip2, 2775 struct xfs_defer_ops *dfops, 2776 xfs_fsblock_t *first_block, 2777 int spaceres) 2778 { 2779 int error = 0; 2780 int ip1_flags = 0; 2781 int ip2_flags = 0; 2782 int dp2_flags = 0; 2783 2784 /* Swap inode number for dirent in first parent */ 2785 error = xfs_dir_replace(tp, dp1, name1, 2786 ip2->i_ino, 2787 first_block, dfops, spaceres); 2788 if (error) 2789 goto out_trans_abort; 2790 2791 /* Swap inode number for dirent in second parent */ 2792 error = xfs_dir_replace(tp, dp2, name2, 2793 ip1->i_ino, 2794 first_block, dfops, spaceres); 2795 if (error) 2796 goto out_trans_abort; 2797 2798 /* 2799 * If we're renaming one or more directories across different parents, 2800 * update the respective ".." entries (and link counts) to match the new 2801 * parents. 2802 */ 2803 if (dp1 != dp2) { 2804 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2805 2806 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2807 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2808 dp1->i_ino, first_block, 2809 dfops, spaceres); 2810 if (error) 2811 goto out_trans_abort; 2812 2813 /* transfer ip2 ".." reference to dp1 */ 2814 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2815 error = xfs_droplink(tp, dp2); 2816 if (error) 2817 goto out_trans_abort; 2818 error = xfs_bumplink(tp, dp1); 2819 if (error) 2820 goto out_trans_abort; 2821 } 2822 2823 /* 2824 * Although ip1 isn't changed here, userspace needs 2825 * to be warned about the change, so that applications 2826 * relying on it (like backup ones), will properly 2827 * notify the change 2828 */ 2829 ip1_flags |= XFS_ICHGTIME_CHG; 2830 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2831 } 2832 2833 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2834 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2835 dp2->i_ino, first_block, 2836 dfops, spaceres); 2837 if (error) 2838 goto out_trans_abort; 2839 2840 /* transfer ip1 ".." reference to dp2 */ 2841 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2842 error = xfs_droplink(tp, dp1); 2843 if (error) 2844 goto out_trans_abort; 2845 error = xfs_bumplink(tp, dp2); 2846 if (error) 2847 goto out_trans_abort; 2848 } 2849 2850 /* 2851 * Although ip2 isn't changed here, userspace needs 2852 * to be warned about the change, so that applications 2853 * relying on it (like backup ones), will properly 2854 * notify the change 2855 */ 2856 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2857 ip2_flags |= XFS_ICHGTIME_CHG; 2858 } 2859 } 2860 2861 if (ip1_flags) { 2862 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2863 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2864 } 2865 if (ip2_flags) { 2866 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2867 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2868 } 2869 if (dp2_flags) { 2870 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2871 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2872 } 2873 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2874 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2875 return xfs_finish_rename(tp, dfops); 2876 2877 out_trans_abort: 2878 xfs_defer_cancel(dfops); 2879 xfs_trans_cancel(tp); 2880 return error; 2881 } 2882 2883 /* 2884 * xfs_rename_alloc_whiteout() 2885 * 2886 * Return a referenced, unlinked, unlocked inode that that can be used as a 2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2888 * crash between allocating the inode and linking it into the rename transaction 2889 * recovery will free the inode and we won't leak it. 2890 */ 2891 static int 2892 xfs_rename_alloc_whiteout( 2893 struct xfs_inode *dp, 2894 struct xfs_inode **wip) 2895 { 2896 struct xfs_inode *tmpfile; 2897 int error; 2898 2899 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2900 if (error) 2901 return error; 2902 2903 /* 2904 * Prepare the tmpfile inode as if it were created through the VFS. 2905 * Otherwise, the link increment paths will complain about nlink 0->1. 2906 * Drop the link count as done by d_tmpfile(), complete the inode setup 2907 * and flag it as linkable. 2908 */ 2909 drop_nlink(VFS_I(tmpfile)); 2910 xfs_setup_iops(tmpfile); 2911 xfs_finish_inode_setup(tmpfile); 2912 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2913 2914 *wip = tmpfile; 2915 return 0; 2916 } 2917 2918 /* 2919 * xfs_rename 2920 */ 2921 int 2922 xfs_rename( 2923 struct xfs_inode *src_dp, 2924 struct xfs_name *src_name, 2925 struct xfs_inode *src_ip, 2926 struct xfs_inode *target_dp, 2927 struct xfs_name *target_name, 2928 struct xfs_inode *target_ip, 2929 unsigned int flags) 2930 { 2931 struct xfs_mount *mp = src_dp->i_mount; 2932 struct xfs_trans *tp; 2933 struct xfs_defer_ops dfops; 2934 xfs_fsblock_t first_block; 2935 struct xfs_inode *wip = NULL; /* whiteout inode */ 2936 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2937 int num_inodes = __XFS_SORT_INODES; 2938 bool new_parent = (src_dp != target_dp); 2939 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2940 int spaceres; 2941 int error; 2942 2943 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2944 2945 if ((flags & RENAME_EXCHANGE) && !target_ip) 2946 return -EINVAL; 2947 2948 /* 2949 * If we are doing a whiteout operation, allocate the whiteout inode 2950 * we will be placing at the target and ensure the type is set 2951 * appropriately. 2952 */ 2953 if (flags & RENAME_WHITEOUT) { 2954 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2955 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2956 if (error) 2957 return error; 2958 2959 /* setup target dirent info as whiteout */ 2960 src_name->type = XFS_DIR3_FT_CHRDEV; 2961 } 2962 2963 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2964 inodes, &num_inodes); 2965 2966 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2967 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2968 if (error == -ENOSPC) { 2969 spaceres = 0; 2970 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2971 &tp); 2972 } 2973 if (error) 2974 goto out_release_wip; 2975 2976 /* 2977 * Attach the dquots to the inodes 2978 */ 2979 error = xfs_qm_vop_rename_dqattach(inodes); 2980 if (error) 2981 goto out_trans_cancel; 2982 2983 /* 2984 * Lock all the participating inodes. Depending upon whether 2985 * the target_name exists in the target directory, and 2986 * whether the target directory is the same as the source 2987 * directory, we can lock from 2 to 4 inodes. 2988 */ 2989 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2990 2991 /* 2992 * Join all the inodes to the transaction. From this point on, 2993 * we can rely on either trans_commit or trans_cancel to unlock 2994 * them. 2995 */ 2996 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2997 if (new_parent) 2998 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2999 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3000 if (target_ip) 3001 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3002 if (wip) 3003 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3004 3005 /* 3006 * If we are using project inheritance, we only allow renames 3007 * into our tree when the project IDs are the same; else the 3008 * tree quota mechanism would be circumvented. 3009 */ 3010 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3011 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3012 error = -EXDEV; 3013 goto out_trans_cancel; 3014 } 3015 3016 xfs_defer_init(&dfops, &first_block); 3017 3018 /* RENAME_EXCHANGE is unique from here on. */ 3019 if (flags & RENAME_EXCHANGE) 3020 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3021 target_dp, target_name, target_ip, 3022 &dfops, &first_block, spaceres); 3023 3024 /* 3025 * Set up the target. 3026 */ 3027 if (target_ip == NULL) { 3028 /* 3029 * If there's no space reservation, check the entry will 3030 * fit before actually inserting it. 3031 */ 3032 if (!spaceres) { 3033 error = xfs_dir_canenter(tp, target_dp, target_name); 3034 if (error) 3035 goto out_trans_cancel; 3036 } 3037 /* 3038 * If target does not exist and the rename crosses 3039 * directories, adjust the target directory link count 3040 * to account for the ".." reference from the new entry. 3041 */ 3042 error = xfs_dir_createname(tp, target_dp, target_name, 3043 src_ip->i_ino, &first_block, 3044 &dfops, spaceres); 3045 if (error) 3046 goto out_bmap_cancel; 3047 3048 xfs_trans_ichgtime(tp, target_dp, 3049 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3050 3051 if (new_parent && src_is_directory) { 3052 error = xfs_bumplink(tp, target_dp); 3053 if (error) 3054 goto out_bmap_cancel; 3055 } 3056 } else { /* target_ip != NULL */ 3057 /* 3058 * If target exists and it's a directory, check that both 3059 * target and source are directories and that target can be 3060 * destroyed, or that neither is a directory. 3061 */ 3062 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3063 /* 3064 * Make sure target dir is empty. 3065 */ 3066 if (!(xfs_dir_isempty(target_ip)) || 3067 (VFS_I(target_ip)->i_nlink > 2)) { 3068 error = -EEXIST; 3069 goto out_trans_cancel; 3070 } 3071 } 3072 3073 /* 3074 * Link the source inode under the target name. 3075 * If the source inode is a directory and we are moving 3076 * it across directories, its ".." entry will be 3077 * inconsistent until we replace that down below. 3078 * 3079 * In case there is already an entry with the same 3080 * name at the destination directory, remove it first. 3081 */ 3082 error = xfs_dir_replace(tp, target_dp, target_name, 3083 src_ip->i_ino, 3084 &first_block, &dfops, spaceres); 3085 if (error) 3086 goto out_bmap_cancel; 3087 3088 xfs_trans_ichgtime(tp, target_dp, 3089 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3090 3091 /* 3092 * Decrement the link count on the target since the target 3093 * dir no longer points to it. 3094 */ 3095 error = xfs_droplink(tp, target_ip); 3096 if (error) 3097 goto out_bmap_cancel; 3098 3099 if (src_is_directory) { 3100 /* 3101 * Drop the link from the old "." entry. 3102 */ 3103 error = xfs_droplink(tp, target_ip); 3104 if (error) 3105 goto out_bmap_cancel; 3106 } 3107 } /* target_ip != NULL */ 3108 3109 /* 3110 * Remove the source. 3111 */ 3112 if (new_parent && src_is_directory) { 3113 /* 3114 * Rewrite the ".." entry to point to the new 3115 * directory. 3116 */ 3117 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3118 target_dp->i_ino, 3119 &first_block, &dfops, spaceres); 3120 ASSERT(error != -EEXIST); 3121 if (error) 3122 goto out_bmap_cancel; 3123 } 3124 3125 /* 3126 * We always want to hit the ctime on the source inode. 3127 * 3128 * This isn't strictly required by the standards since the source 3129 * inode isn't really being changed, but old unix file systems did 3130 * it and some incremental backup programs won't work without it. 3131 */ 3132 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3133 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3134 3135 /* 3136 * Adjust the link count on src_dp. This is necessary when 3137 * renaming a directory, either within one parent when 3138 * the target existed, or across two parent directories. 3139 */ 3140 if (src_is_directory && (new_parent || target_ip != NULL)) { 3141 3142 /* 3143 * Decrement link count on src_directory since the 3144 * entry that's moved no longer points to it. 3145 */ 3146 error = xfs_droplink(tp, src_dp); 3147 if (error) 3148 goto out_bmap_cancel; 3149 } 3150 3151 /* 3152 * For whiteouts, we only need to update the source dirent with the 3153 * inode number of the whiteout inode rather than removing it 3154 * altogether. 3155 */ 3156 if (wip) { 3157 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3158 &first_block, &dfops, spaceres); 3159 } else 3160 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3161 &first_block, &dfops, spaceres); 3162 if (error) 3163 goto out_bmap_cancel; 3164 3165 /* 3166 * For whiteouts, we need to bump the link count on the whiteout inode. 3167 * This means that failures all the way up to this point leave the inode 3168 * on the unlinked list and so cleanup is a simple matter of dropping 3169 * the remaining reference to it. If we fail here after bumping the link 3170 * count, we're shutting down the filesystem so we'll never see the 3171 * intermediate state on disk. 3172 */ 3173 if (wip) { 3174 ASSERT(VFS_I(wip)->i_nlink == 0); 3175 error = xfs_bumplink(tp, wip); 3176 if (error) 3177 goto out_bmap_cancel; 3178 error = xfs_iunlink_remove(tp, wip); 3179 if (error) 3180 goto out_bmap_cancel; 3181 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3182 3183 /* 3184 * Now we have a real link, clear the "I'm a tmpfile" state 3185 * flag from the inode so it doesn't accidentally get misused in 3186 * future. 3187 */ 3188 VFS_I(wip)->i_state &= ~I_LINKABLE; 3189 } 3190 3191 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3192 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3193 if (new_parent) 3194 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3195 3196 error = xfs_finish_rename(tp, &dfops); 3197 if (wip) 3198 IRELE(wip); 3199 return error; 3200 3201 out_bmap_cancel: 3202 xfs_defer_cancel(&dfops); 3203 out_trans_cancel: 3204 xfs_trans_cancel(tp); 3205 out_release_wip: 3206 if (wip) 3207 IRELE(wip); 3208 return error; 3209 } 3210 3211 STATIC int 3212 xfs_iflush_cluster( 3213 struct xfs_inode *ip, 3214 struct xfs_buf *bp) 3215 { 3216 struct xfs_mount *mp = ip->i_mount; 3217 struct xfs_perag *pag; 3218 unsigned long first_index, mask; 3219 unsigned long inodes_per_cluster; 3220 int cilist_size; 3221 struct xfs_inode **cilist; 3222 struct xfs_inode *cip; 3223 int nr_found; 3224 int clcount = 0; 3225 int bufwasdelwri; 3226 int i; 3227 3228 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3229 3230 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3231 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3232 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3233 if (!cilist) 3234 goto out_put; 3235 3236 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3237 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3238 rcu_read_lock(); 3239 /* really need a gang lookup range call here */ 3240 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3241 first_index, inodes_per_cluster); 3242 if (nr_found == 0) 3243 goto out_free; 3244 3245 for (i = 0; i < nr_found; i++) { 3246 cip = cilist[i]; 3247 if (cip == ip) 3248 continue; 3249 3250 /* 3251 * because this is an RCU protected lookup, we could find a 3252 * recently freed or even reallocated inode during the lookup. 3253 * We need to check under the i_flags_lock for a valid inode 3254 * here. Skip it if it is not valid or the wrong inode. 3255 */ 3256 spin_lock(&cip->i_flags_lock); 3257 if (!cip->i_ino || 3258 __xfs_iflags_test(cip, XFS_ISTALE)) { 3259 spin_unlock(&cip->i_flags_lock); 3260 continue; 3261 } 3262 3263 /* 3264 * Once we fall off the end of the cluster, no point checking 3265 * any more inodes in the list because they will also all be 3266 * outside the cluster. 3267 */ 3268 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3269 spin_unlock(&cip->i_flags_lock); 3270 break; 3271 } 3272 spin_unlock(&cip->i_flags_lock); 3273 3274 /* 3275 * Do an un-protected check to see if the inode is dirty and 3276 * is a candidate for flushing. These checks will be repeated 3277 * later after the appropriate locks are acquired. 3278 */ 3279 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3280 continue; 3281 3282 /* 3283 * Try to get locks. If any are unavailable or it is pinned, 3284 * then this inode cannot be flushed and is skipped. 3285 */ 3286 3287 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3288 continue; 3289 if (!xfs_iflock_nowait(cip)) { 3290 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3291 continue; 3292 } 3293 if (xfs_ipincount(cip)) { 3294 xfs_ifunlock(cip); 3295 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3296 continue; 3297 } 3298 3299 3300 /* 3301 * Check the inode number again, just to be certain we are not 3302 * racing with freeing in xfs_reclaim_inode(). See the comments 3303 * in that function for more information as to why the initial 3304 * check is not sufficient. 3305 */ 3306 if (!cip->i_ino) { 3307 xfs_ifunlock(cip); 3308 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3309 continue; 3310 } 3311 3312 /* 3313 * arriving here means that this inode can be flushed. First 3314 * re-check that it's dirty before flushing. 3315 */ 3316 if (!xfs_inode_clean(cip)) { 3317 int error; 3318 error = xfs_iflush_int(cip, bp); 3319 if (error) { 3320 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3321 goto cluster_corrupt_out; 3322 } 3323 clcount++; 3324 } else { 3325 xfs_ifunlock(cip); 3326 } 3327 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3328 } 3329 3330 if (clcount) { 3331 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3332 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3333 } 3334 3335 out_free: 3336 rcu_read_unlock(); 3337 kmem_free(cilist); 3338 out_put: 3339 xfs_perag_put(pag); 3340 return 0; 3341 3342 3343 cluster_corrupt_out: 3344 /* 3345 * Corruption detected in the clustering loop. Invalidate the 3346 * inode buffer and shut down the filesystem. 3347 */ 3348 rcu_read_unlock(); 3349 /* 3350 * Clean up the buffer. If it was delwri, just release it -- 3351 * brelse can handle it with no problems. If not, shut down the 3352 * filesystem before releasing the buffer. 3353 */ 3354 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3355 if (bufwasdelwri) 3356 xfs_buf_relse(bp); 3357 3358 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3359 3360 if (!bufwasdelwri) { 3361 /* 3362 * Just like incore_relse: if we have b_iodone functions, 3363 * mark the buffer as an error and call them. Otherwise 3364 * mark it as stale and brelse. 3365 */ 3366 if (bp->b_iodone) { 3367 bp->b_flags &= ~XBF_DONE; 3368 xfs_buf_stale(bp); 3369 xfs_buf_ioerror(bp, -EIO); 3370 xfs_buf_ioend(bp); 3371 } else { 3372 xfs_buf_stale(bp); 3373 xfs_buf_relse(bp); 3374 } 3375 } 3376 3377 /* 3378 * Unlocks the flush lock 3379 */ 3380 xfs_iflush_abort(cip, false); 3381 kmem_free(cilist); 3382 xfs_perag_put(pag); 3383 return -EFSCORRUPTED; 3384 } 3385 3386 /* 3387 * Flush dirty inode metadata into the backing buffer. 3388 * 3389 * The caller must have the inode lock and the inode flush lock held. The 3390 * inode lock will still be held upon return to the caller, and the inode 3391 * flush lock will be released after the inode has reached the disk. 3392 * 3393 * The caller must write out the buffer returned in *bpp and release it. 3394 */ 3395 int 3396 xfs_iflush( 3397 struct xfs_inode *ip, 3398 struct xfs_buf **bpp) 3399 { 3400 struct xfs_mount *mp = ip->i_mount; 3401 struct xfs_buf *bp = NULL; 3402 struct xfs_dinode *dip; 3403 int error; 3404 3405 XFS_STATS_INC(mp, xs_iflush_count); 3406 3407 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3408 ASSERT(xfs_isiflocked(ip)); 3409 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3410 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3411 3412 *bpp = NULL; 3413 3414 xfs_iunpin_wait(ip); 3415 3416 /* 3417 * For stale inodes we cannot rely on the backing buffer remaining 3418 * stale in cache for the remaining life of the stale inode and so 3419 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3420 * inodes below. We have to check this after ensuring the inode is 3421 * unpinned so that it is safe to reclaim the stale inode after the 3422 * flush call. 3423 */ 3424 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3425 xfs_ifunlock(ip); 3426 return 0; 3427 } 3428 3429 /* 3430 * This may have been unpinned because the filesystem is shutting 3431 * down forcibly. If that's the case we must not write this inode 3432 * to disk, because the log record didn't make it to disk. 3433 * 3434 * We also have to remove the log item from the AIL in this case, 3435 * as we wait for an empty AIL as part of the unmount process. 3436 */ 3437 if (XFS_FORCED_SHUTDOWN(mp)) { 3438 error = -EIO; 3439 goto abort_out; 3440 } 3441 3442 /* 3443 * Get the buffer containing the on-disk inode. We are doing a try-lock 3444 * operation here, so we may get an EAGAIN error. In that case, we 3445 * simply want to return with the inode still dirty. 3446 * 3447 * If we get any other error, we effectively have a corruption situation 3448 * and we cannot flush the inode, so we treat it the same as failing 3449 * xfs_iflush_int(). 3450 */ 3451 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3452 0); 3453 if (error == -EAGAIN) { 3454 xfs_ifunlock(ip); 3455 return error; 3456 } 3457 if (error) 3458 goto corrupt_out; 3459 3460 /* 3461 * First flush out the inode that xfs_iflush was called with. 3462 */ 3463 error = xfs_iflush_int(ip, bp); 3464 if (error) 3465 goto corrupt_out; 3466 3467 /* 3468 * If the buffer is pinned then push on the log now so we won't 3469 * get stuck waiting in the write for too long. 3470 */ 3471 if (xfs_buf_ispinned(bp)) 3472 xfs_log_force(mp, 0); 3473 3474 /* 3475 * inode clustering: 3476 * see if other inodes can be gathered into this write 3477 */ 3478 error = xfs_iflush_cluster(ip, bp); 3479 if (error) 3480 goto cluster_corrupt_out; 3481 3482 *bpp = bp; 3483 return 0; 3484 3485 corrupt_out: 3486 if (bp) 3487 xfs_buf_relse(bp); 3488 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3489 cluster_corrupt_out: 3490 error = -EFSCORRUPTED; 3491 abort_out: 3492 /* 3493 * Unlocks the flush lock 3494 */ 3495 xfs_iflush_abort(ip, false); 3496 return error; 3497 } 3498 3499 /* 3500 * If there are inline format data / attr forks attached to this inode, 3501 * make sure they're not corrupt. 3502 */ 3503 bool 3504 xfs_inode_verify_forks( 3505 struct xfs_inode *ip) 3506 { 3507 struct xfs_ifork *ifp; 3508 xfs_failaddr_t fa; 3509 3510 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3511 if (fa) { 3512 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3513 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3514 ifp->if_u1.if_data, ifp->if_bytes, fa); 3515 return false; 3516 } 3517 3518 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3519 if (fa) { 3520 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3521 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3522 ifp ? ifp->if_u1.if_data : NULL, 3523 ifp ? ifp->if_bytes : 0, fa); 3524 return false; 3525 } 3526 return true; 3527 } 3528 3529 STATIC int 3530 xfs_iflush_int( 3531 struct xfs_inode *ip, 3532 struct xfs_buf *bp) 3533 { 3534 struct xfs_inode_log_item *iip = ip->i_itemp; 3535 struct xfs_dinode *dip; 3536 struct xfs_mount *mp = ip->i_mount; 3537 3538 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3539 ASSERT(xfs_isiflocked(ip)); 3540 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3541 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3542 ASSERT(iip != NULL && iip->ili_fields != 0); 3543 ASSERT(ip->i_d.di_version > 1); 3544 3545 /* set *dip = inode's place in the buffer */ 3546 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3547 3548 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3549 mp, XFS_ERRTAG_IFLUSH_1)) { 3550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3551 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3552 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3553 goto corrupt_out; 3554 } 3555 if (S_ISREG(VFS_I(ip)->i_mode)) { 3556 if (XFS_TEST_ERROR( 3557 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3558 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3559 mp, XFS_ERRTAG_IFLUSH_3)) { 3560 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3561 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3562 __func__, ip->i_ino, ip); 3563 goto corrupt_out; 3564 } 3565 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3566 if (XFS_TEST_ERROR( 3567 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3568 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3569 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3570 mp, XFS_ERRTAG_IFLUSH_4)) { 3571 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3572 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3573 __func__, ip->i_ino, ip); 3574 goto corrupt_out; 3575 } 3576 } 3577 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3578 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3579 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3580 "%s: detected corrupt incore inode %Lu, " 3581 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3582 __func__, ip->i_ino, 3583 ip->i_d.di_nextents + ip->i_d.di_anextents, 3584 ip->i_d.di_nblocks, ip); 3585 goto corrupt_out; 3586 } 3587 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3588 mp, XFS_ERRTAG_IFLUSH_6)) { 3589 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3590 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3591 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3592 goto corrupt_out; 3593 } 3594 3595 /* 3596 * Inode item log recovery for v2 inodes are dependent on the 3597 * di_flushiter count for correct sequencing. We bump the flush 3598 * iteration count so we can detect flushes which postdate a log record 3599 * during recovery. This is redundant as we now log every change and 3600 * hence this can't happen but we need to still do it to ensure 3601 * backwards compatibility with old kernels that predate logging all 3602 * inode changes. 3603 */ 3604 if (ip->i_d.di_version < 3) 3605 ip->i_d.di_flushiter++; 3606 3607 /* Check the inline fork data before we write out. */ 3608 if (!xfs_inode_verify_forks(ip)) 3609 goto corrupt_out; 3610 3611 /* 3612 * Copy the dirty parts of the inode into the on-disk inode. We always 3613 * copy out the core of the inode, because if the inode is dirty at all 3614 * the core must be. 3615 */ 3616 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3617 3618 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3619 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3620 ip->i_d.di_flushiter = 0; 3621 3622 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3623 if (XFS_IFORK_Q(ip)) 3624 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3625 xfs_inobp_check(mp, bp); 3626 3627 /* 3628 * We've recorded everything logged in the inode, so we'd like to clear 3629 * the ili_fields bits so we don't log and flush things unnecessarily. 3630 * However, we can't stop logging all this information until the data 3631 * we've copied into the disk buffer is written to disk. If we did we 3632 * might overwrite the copy of the inode in the log with all the data 3633 * after re-logging only part of it, and in the face of a crash we 3634 * wouldn't have all the data we need to recover. 3635 * 3636 * What we do is move the bits to the ili_last_fields field. When 3637 * logging the inode, these bits are moved back to the ili_fields field. 3638 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3639 * know that the information those bits represent is permanently on 3640 * disk. As long as the flush completes before the inode is logged 3641 * again, then both ili_fields and ili_last_fields will be cleared. 3642 * 3643 * We can play with the ili_fields bits here, because the inode lock 3644 * must be held exclusively in order to set bits there and the flush 3645 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3646 * done routine can tell whether or not to look in the AIL. Also, store 3647 * the current LSN of the inode so that we can tell whether the item has 3648 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3649 * need the AIL lock, because it is a 64 bit value that cannot be read 3650 * atomically. 3651 */ 3652 iip->ili_last_fields = iip->ili_fields; 3653 iip->ili_fields = 0; 3654 iip->ili_fsync_fields = 0; 3655 iip->ili_logged = 1; 3656 3657 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3658 &iip->ili_item.li_lsn); 3659 3660 /* 3661 * Attach the function xfs_iflush_done to the inode's 3662 * buffer. This will remove the inode from the AIL 3663 * and unlock the inode's flush lock when the inode is 3664 * completely written to disk. 3665 */ 3666 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3667 3668 /* generate the checksum. */ 3669 xfs_dinode_calc_crc(mp, dip); 3670 3671 ASSERT(!list_empty(&bp->b_li_list)); 3672 ASSERT(bp->b_iodone != NULL); 3673 return 0; 3674 3675 corrupt_out: 3676 return -EFSCORRUPTED; 3677 } 3678