1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_inum.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_error.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_cksum.h" 47 #include "xfs_trace.h" 48 #include "xfs_icache.h" 49 #include "xfs_symlink.h" 50 #include "xfs_trans_priv.h" 51 #include "xfs_log.h" 52 #include "xfs_bmap_btree.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 63 64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * These two are wrapper routines around the xfs_ilock() routine used to 82 * centralize some grungy code. They are used in places that wish to lock the 83 * inode solely for reading the extents. The reason these places can't just 84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 85 * bringing in of the extents from disk for a file in b-tree format. If the 86 * inode is in b-tree format, then we need to lock the inode exclusively until 87 * the extents are read in. Locking it exclusively all the time would limit 88 * our parallelism unnecessarily, though. What we do instead is check to see 89 * if the extents have been read in yet, and only lock the inode exclusively 90 * if they have not. 91 * 92 * The functions return a value which should be given to the corresponding 93 * xfs_iunlock() call. 94 */ 95 uint 96 xfs_ilock_data_map_shared( 97 struct xfs_inode *ip) 98 { 99 uint lock_mode = XFS_ILOCK_SHARED; 100 101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 103 lock_mode = XFS_ILOCK_EXCL; 104 xfs_ilock(ip, lock_mode); 105 return lock_mode; 106 } 107 108 uint 109 xfs_ilock_attr_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 /* 122 * The xfs inode contains 2 locks: a multi-reader lock called the 123 * i_iolock and a multi-reader lock called the i_lock. This routine 124 * allows either or both of the locks to be obtained. 125 * 126 * The 2 locks should always be ordered so that the IO lock is 127 * obtained first in order to prevent deadlock. 128 * 129 * ip -- the inode being locked 130 * lock_flags -- this parameter indicates the inode's locks 131 * to be locked. It can be: 132 * XFS_IOLOCK_SHARED, 133 * XFS_IOLOCK_EXCL, 134 * XFS_ILOCK_SHARED, 135 * XFS_ILOCK_EXCL, 136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 140 */ 141 void 142 xfs_ilock( 143 xfs_inode_t *ip, 144 uint lock_flags) 145 { 146 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 147 148 /* 149 * You can't set both SHARED and EXCL for the same lock, 150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 152 */ 153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 158 159 if (lock_flags & XFS_IOLOCK_EXCL) 160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 161 else if (lock_flags & XFS_IOLOCK_SHARED) 162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 /* 190 * You can't set both SHARED and EXCL for the same lock, 191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 193 */ 194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 199 200 if (lock_flags & XFS_IOLOCK_EXCL) { 201 if (!mrtryupdate(&ip->i_iolock)) 202 goto out; 203 } else if (lock_flags & XFS_IOLOCK_SHARED) { 204 if (!mrtryaccess(&ip->i_iolock)) 205 goto out; 206 } 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!mrtryupdate(&ip->i_lock)) 209 goto out_undo_iolock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!mrtryaccess(&ip->i_lock)) 212 goto out_undo_iolock; 213 } 214 return 1; 215 216 out_undo_iolock: 217 if (lock_flags & XFS_IOLOCK_EXCL) 218 mrunlock_excl(&ip->i_iolock); 219 else if (lock_flags & XFS_IOLOCK_SHARED) 220 mrunlock_shared(&ip->i_iolock); 221 out: 222 return 0; 223 } 224 225 /* 226 * xfs_iunlock() is used to drop the inode locks acquired with 227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 229 * that we know which locks to drop. 230 * 231 * ip -- the inode being unlocked 232 * lock_flags -- this parameter indicates the inode's locks to be 233 * to be unlocked. See the comment for xfs_ilock() for a list 234 * of valid values for this parameter. 235 * 236 */ 237 void 238 xfs_iunlock( 239 xfs_inode_t *ip, 240 uint lock_flags) 241 { 242 /* 243 * You can't set both SHARED and EXCL for the same lock, 244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 246 */ 247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 252 ASSERT(lock_flags != 0); 253 254 if (lock_flags & XFS_IOLOCK_EXCL) 255 mrunlock_excl(&ip->i_iolock); 256 else if (lock_flags & XFS_IOLOCK_SHARED) 257 mrunlock_shared(&ip->i_iolock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 mrunlock_excl(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 mrunlock_shared(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 mrdemote(&ip->i_lock); 281 if (lock_flags & XFS_IOLOCK_EXCL) 282 mrdemote(&ip->i_iolock); 283 284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 285 } 286 287 #if defined(DEBUG) || defined(XFS_WARN) 288 int 289 xfs_isilocked( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 294 if (!(lock_flags & XFS_ILOCK_SHARED)) 295 return !!ip->i_lock.mr_writer; 296 return rwsem_is_locked(&ip->i_lock.mr_lock); 297 } 298 299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 300 if (!(lock_flags & XFS_IOLOCK_SHARED)) 301 return !!ip->i_iolock.mr_writer; 302 return rwsem_is_locked(&ip->i_iolock.mr_lock); 303 } 304 305 ASSERT(0); 306 return 0; 307 } 308 #endif 309 310 #ifdef DEBUG 311 int xfs_locked_n; 312 int xfs_small_retries; 313 int xfs_middle_retries; 314 int xfs_lots_retries; 315 int xfs_lock_delays; 316 #endif 317 318 /* 319 * Bump the subclass so xfs_lock_inodes() acquires each lock with 320 * a different value 321 */ 322 static inline int 323 xfs_lock_inumorder(int lock_mode, int subclass) 324 { 325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 329 330 return lock_mode; 331 } 332 333 /* 334 * The following routine will lock n inodes in exclusive mode. 335 * We assume the caller calls us with the inodes in i_ino order. 336 * 337 * We need to detect deadlock where an inode that we lock 338 * is in the AIL and we start waiting for another inode that is locked 339 * by a thread in a long running transaction (such as truncate). This can 340 * result in deadlock since the long running trans might need to wait 341 * for the inode we just locked in order to push the tail and free space 342 * in the log. 343 */ 344 void 345 xfs_lock_inodes( 346 xfs_inode_t **ips, 347 int inodes, 348 uint lock_mode) 349 { 350 int attempts = 0, i, j, try_lock; 351 xfs_log_item_t *lp; 352 353 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 354 355 try_lock = 0; 356 i = 0; 357 358 again: 359 for (; i < inodes; i++) { 360 ASSERT(ips[i]); 361 362 if (i && (ips[i] == ips[i-1])) /* Already locked */ 363 continue; 364 365 /* 366 * If try_lock is not set yet, make sure all locked inodes 367 * are not in the AIL. 368 * If any are, set try_lock to be used later. 369 */ 370 371 if (!try_lock) { 372 for (j = (i - 1); j >= 0 && !try_lock; j--) { 373 lp = (xfs_log_item_t *)ips[j]->i_itemp; 374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 375 try_lock++; 376 } 377 } 378 } 379 380 /* 381 * If any of the previous locks we have locked is in the AIL, 382 * we must TRY to get the second and subsequent locks. If 383 * we can't get any, we must release all we have 384 * and try again. 385 */ 386 387 if (try_lock) { 388 /* try_lock must be 0 if i is 0. */ 389 /* 390 * try_lock means we have an inode locked 391 * that is in the AIL. 392 */ 393 ASSERT(i != 0); 394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 395 attempts++; 396 397 /* 398 * Unlock all previous guys and try again. 399 * xfs_iunlock will try to push the tail 400 * if the inode is in the AIL. 401 */ 402 403 for(j = i - 1; j >= 0; j--) { 404 405 /* 406 * Check to see if we've already 407 * unlocked this one. 408 * Not the first one going back, 409 * and the inode ptr is the same. 410 */ 411 if ((j != (i - 1)) && ips[j] == 412 ips[j+1]) 413 continue; 414 415 xfs_iunlock(ips[j], lock_mode); 416 } 417 418 if ((attempts % 5) == 0) { 419 delay(1); /* Don't just spin the CPU */ 420 #ifdef DEBUG 421 xfs_lock_delays++; 422 #endif 423 } 424 i = 0; 425 try_lock = 0; 426 goto again; 427 } 428 } else { 429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 430 } 431 } 432 433 #ifdef DEBUG 434 if (attempts) { 435 if (attempts < 5) xfs_small_retries++; 436 else if (attempts < 100) xfs_middle_retries++; 437 else xfs_lots_retries++; 438 } else { 439 xfs_locked_n++; 440 } 441 #endif 442 } 443 444 /* 445 * xfs_lock_two_inodes() can only be used to lock one type of lock 446 * at a time - the iolock or the ilock, but not both at once. If 447 * we lock both at once, lockdep will report false positives saying 448 * we have violated locking orders. 449 */ 450 void 451 xfs_lock_two_inodes( 452 xfs_inode_t *ip0, 453 xfs_inode_t *ip1, 454 uint lock_mode) 455 { 456 xfs_inode_t *temp; 457 int attempts = 0; 458 xfs_log_item_t *lp; 459 460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 462 ASSERT(ip0->i_ino != ip1->i_ino); 463 464 if (ip0->i_ino > ip1->i_ino) { 465 temp = ip0; 466 ip0 = ip1; 467 ip1 = temp; 468 } 469 470 again: 471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 472 473 /* 474 * If the first lock we have locked is in the AIL, we must TRY to get 475 * the second lock. If we can't get it, we must release the first one 476 * and try again. 477 */ 478 lp = (xfs_log_item_t *)ip0->i_itemp; 479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 481 xfs_iunlock(ip0, lock_mode); 482 if ((++attempts % 5) == 0) 483 delay(1); /* Don't just spin the CPU */ 484 goto again; 485 } 486 } else { 487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 488 } 489 } 490 491 492 void 493 __xfs_iflock( 494 struct xfs_inode *ip) 495 { 496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 498 499 do { 500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 501 if (xfs_isiflocked(ip)) 502 io_schedule(); 503 } while (!xfs_iflock_nowait(ip)); 504 505 finish_wait(wq, &wait.wait); 506 } 507 508 STATIC uint 509 _xfs_dic2xflags( 510 __uint16_t di_flags) 511 { 512 uint flags = 0; 513 514 if (di_flags & XFS_DIFLAG_ANY) { 515 if (di_flags & XFS_DIFLAG_REALTIME) 516 flags |= XFS_XFLAG_REALTIME; 517 if (di_flags & XFS_DIFLAG_PREALLOC) 518 flags |= XFS_XFLAG_PREALLOC; 519 if (di_flags & XFS_DIFLAG_IMMUTABLE) 520 flags |= XFS_XFLAG_IMMUTABLE; 521 if (di_flags & XFS_DIFLAG_APPEND) 522 flags |= XFS_XFLAG_APPEND; 523 if (di_flags & XFS_DIFLAG_SYNC) 524 flags |= XFS_XFLAG_SYNC; 525 if (di_flags & XFS_DIFLAG_NOATIME) 526 flags |= XFS_XFLAG_NOATIME; 527 if (di_flags & XFS_DIFLAG_NODUMP) 528 flags |= XFS_XFLAG_NODUMP; 529 if (di_flags & XFS_DIFLAG_RTINHERIT) 530 flags |= XFS_XFLAG_RTINHERIT; 531 if (di_flags & XFS_DIFLAG_PROJINHERIT) 532 flags |= XFS_XFLAG_PROJINHERIT; 533 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 534 flags |= XFS_XFLAG_NOSYMLINKS; 535 if (di_flags & XFS_DIFLAG_EXTSIZE) 536 flags |= XFS_XFLAG_EXTSIZE; 537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 538 flags |= XFS_XFLAG_EXTSZINHERIT; 539 if (di_flags & XFS_DIFLAG_NODEFRAG) 540 flags |= XFS_XFLAG_NODEFRAG; 541 if (di_flags & XFS_DIFLAG_FILESTREAM) 542 flags |= XFS_XFLAG_FILESTREAM; 543 } 544 545 return flags; 546 } 547 548 uint 549 xfs_ip2xflags( 550 xfs_inode_t *ip) 551 { 552 xfs_icdinode_t *dic = &ip->i_d; 553 554 return _xfs_dic2xflags(dic->di_flags) | 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 556 } 557 558 uint 559 xfs_dic2xflags( 560 xfs_dinode_t *dip) 561 { 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 564 } 565 566 /* 567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 568 * is allowed, otherwise it has to be an exact match. If a CI match is found, 569 * ci_name->name will point to a the actual name (caller must free) or 570 * will be set to NULL if an exact match is found. 571 */ 572 int 573 xfs_lookup( 574 xfs_inode_t *dp, 575 struct xfs_name *name, 576 xfs_inode_t **ipp, 577 struct xfs_name *ci_name) 578 { 579 xfs_ino_t inum; 580 int error; 581 uint lock_mode; 582 583 trace_xfs_lookup(dp, name); 584 585 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 586 return XFS_ERROR(EIO); 587 588 lock_mode = xfs_ilock_data_map_shared(dp); 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 590 xfs_iunlock(dp, lock_mode); 591 592 if (error) 593 goto out; 594 595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 596 if (error) 597 goto out_free_name; 598 599 return 0; 600 601 out_free_name: 602 if (ci_name) 603 kmem_free(ci_name->name); 604 out: 605 *ipp = NULL; 606 return error; 607 } 608 609 /* 610 * Allocate an inode on disk and return a copy of its in-core version. 611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 612 * appropriately within the inode. The uid and gid for the inode are 613 * set according to the contents of the given cred structure. 614 * 615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 616 * has a free inode available, call xfs_iget() to obtain the in-core 617 * version of the allocated inode. Finally, fill in the inode and 618 * log its initial contents. In this case, ialloc_context would be 619 * set to NULL. 620 * 621 * If xfs_dialloc() does not have an available inode, it will replenish 622 * its supply by doing an allocation. Since we can only do one 623 * allocation within a transaction without deadlocks, we must commit 624 * the current transaction before returning the inode itself. 625 * In this case, therefore, we will set ialloc_context and return. 626 * The caller should then commit the current transaction, start a new 627 * transaction, and call xfs_ialloc() again to actually get the inode. 628 * 629 * To ensure that some other process does not grab the inode that 630 * was allocated during the first call to xfs_ialloc(), this routine 631 * also returns the [locked] bp pointing to the head of the freelist 632 * as ialloc_context. The caller should hold this buffer across 633 * the commit and pass it back into this routine on the second call. 634 * 635 * If we are allocating quota inodes, we do not have a parent inode 636 * to attach to or associate with (i.e. pip == NULL) because they 637 * are not linked into the directory structure - they are attached 638 * directly to the superblock - and so have no parent. 639 */ 640 int 641 xfs_ialloc( 642 xfs_trans_t *tp, 643 xfs_inode_t *pip, 644 umode_t mode, 645 xfs_nlink_t nlink, 646 xfs_dev_t rdev, 647 prid_t prid, 648 int okalloc, 649 xfs_buf_t **ialloc_context, 650 xfs_inode_t **ipp) 651 { 652 struct xfs_mount *mp = tp->t_mountp; 653 xfs_ino_t ino; 654 xfs_inode_t *ip; 655 uint flags; 656 int error; 657 timespec_t tv; 658 659 /* 660 * Call the space management code to pick 661 * the on-disk inode to be allocated. 662 */ 663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 664 ialloc_context, &ino); 665 if (error) 666 return error; 667 if (*ialloc_context || ino == NULLFSINO) { 668 *ipp = NULL; 669 return 0; 670 } 671 ASSERT(*ialloc_context == NULL); 672 673 /* 674 * Get the in-core inode with the lock held exclusively. 675 * This is because we're setting fields here we need 676 * to prevent others from looking at until we're done. 677 */ 678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 679 XFS_ILOCK_EXCL, &ip); 680 if (error) 681 return error; 682 ASSERT(ip != NULL); 683 684 /* 685 * We always convert v1 inodes to v2 now - we only support filesystems 686 * with >= v2 inode capability, so there is no reason for ever leaving 687 * an inode in v1 format. 688 */ 689 if (ip->i_d.di_version == 1) 690 ip->i_d.di_version = 2; 691 692 ip->i_d.di_mode = mode; 693 ip->i_d.di_onlink = 0; 694 ip->i_d.di_nlink = nlink; 695 ASSERT(ip->i_d.di_nlink == nlink); 696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 698 xfs_set_projid(ip, prid); 699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 700 701 if (pip && XFS_INHERIT_GID(pip)) { 702 ip->i_d.di_gid = pip->i_d.di_gid; 703 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 704 ip->i_d.di_mode |= S_ISGID; 705 } 706 } 707 708 /* 709 * If the group ID of the new file does not match the effective group 710 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 711 * (and only if the irix_sgid_inherit compatibility variable is set). 712 */ 713 if ((irix_sgid_inherit) && 714 (ip->i_d.di_mode & S_ISGID) && 715 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 716 ip->i_d.di_mode &= ~S_ISGID; 717 } 718 719 ip->i_d.di_size = 0; 720 ip->i_d.di_nextents = 0; 721 ASSERT(ip->i_d.di_nblocks == 0); 722 723 nanotime(&tv); 724 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 725 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 726 ip->i_d.di_atime = ip->i_d.di_mtime; 727 ip->i_d.di_ctime = ip->i_d.di_mtime; 728 729 /* 730 * di_gen will have been taken care of in xfs_iread. 731 */ 732 ip->i_d.di_extsize = 0; 733 ip->i_d.di_dmevmask = 0; 734 ip->i_d.di_dmstate = 0; 735 ip->i_d.di_flags = 0; 736 737 if (ip->i_d.di_version == 3) { 738 ASSERT(ip->i_d.di_ino == ino); 739 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 740 ip->i_d.di_crc = 0; 741 ip->i_d.di_changecount = 1; 742 ip->i_d.di_lsn = 0; 743 ip->i_d.di_flags2 = 0; 744 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 745 ip->i_d.di_crtime = ip->i_d.di_mtime; 746 } 747 748 749 flags = XFS_ILOG_CORE; 750 switch (mode & S_IFMT) { 751 case S_IFIFO: 752 case S_IFCHR: 753 case S_IFBLK: 754 case S_IFSOCK: 755 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 756 ip->i_df.if_u2.if_rdev = rdev; 757 ip->i_df.if_flags = 0; 758 flags |= XFS_ILOG_DEV; 759 break; 760 case S_IFREG: 761 case S_IFDIR: 762 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 763 uint di_flags = 0; 764 765 if (S_ISDIR(mode)) { 766 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 767 di_flags |= XFS_DIFLAG_RTINHERIT; 768 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 769 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 770 ip->i_d.di_extsize = pip->i_d.di_extsize; 771 } 772 } else if (S_ISREG(mode)) { 773 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 774 di_flags |= XFS_DIFLAG_REALTIME; 775 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 776 di_flags |= XFS_DIFLAG_EXTSIZE; 777 ip->i_d.di_extsize = pip->i_d.di_extsize; 778 } 779 } 780 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 781 xfs_inherit_noatime) 782 di_flags |= XFS_DIFLAG_NOATIME; 783 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 784 xfs_inherit_nodump) 785 di_flags |= XFS_DIFLAG_NODUMP; 786 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 787 xfs_inherit_sync) 788 di_flags |= XFS_DIFLAG_SYNC; 789 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 790 xfs_inherit_nosymlinks) 791 di_flags |= XFS_DIFLAG_NOSYMLINKS; 792 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 793 di_flags |= XFS_DIFLAG_PROJINHERIT; 794 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 795 xfs_inherit_nodefrag) 796 di_flags |= XFS_DIFLAG_NODEFRAG; 797 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 798 di_flags |= XFS_DIFLAG_FILESTREAM; 799 ip->i_d.di_flags |= di_flags; 800 } 801 /* FALLTHROUGH */ 802 case S_IFLNK: 803 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 804 ip->i_df.if_flags = XFS_IFEXTENTS; 805 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 806 ip->i_df.if_u1.if_extents = NULL; 807 break; 808 default: 809 ASSERT(0); 810 } 811 /* 812 * Attribute fork settings for new inode. 813 */ 814 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 815 ip->i_d.di_anextents = 0; 816 817 /* 818 * Log the new values stuffed into the inode. 819 */ 820 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 821 xfs_trans_log_inode(tp, ip, flags); 822 823 /* now that we have an i_mode we can setup inode ops and unlock */ 824 xfs_setup_inode(ip); 825 826 *ipp = ip; 827 return 0; 828 } 829 830 /* 831 * Allocates a new inode from disk and return a pointer to the 832 * incore copy. This routine will internally commit the current 833 * transaction and allocate a new one if the Space Manager needed 834 * to do an allocation to replenish the inode free-list. 835 * 836 * This routine is designed to be called from xfs_create and 837 * xfs_create_dir. 838 * 839 */ 840 int 841 xfs_dir_ialloc( 842 xfs_trans_t **tpp, /* input: current transaction; 843 output: may be a new transaction. */ 844 xfs_inode_t *dp, /* directory within whose allocate 845 the inode. */ 846 umode_t mode, 847 xfs_nlink_t nlink, 848 xfs_dev_t rdev, 849 prid_t prid, /* project id */ 850 int okalloc, /* ok to allocate new space */ 851 xfs_inode_t **ipp, /* pointer to inode; it will be 852 locked. */ 853 int *committed) 854 855 { 856 xfs_trans_t *tp; 857 xfs_trans_t *ntp; 858 xfs_inode_t *ip; 859 xfs_buf_t *ialloc_context = NULL; 860 int code; 861 void *dqinfo; 862 uint tflags; 863 864 tp = *tpp; 865 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 866 867 /* 868 * xfs_ialloc will return a pointer to an incore inode if 869 * the Space Manager has an available inode on the free 870 * list. Otherwise, it will do an allocation and replenish 871 * the freelist. Since we can only do one allocation per 872 * transaction without deadlocks, we will need to commit the 873 * current transaction and start a new one. We will then 874 * need to call xfs_ialloc again to get the inode. 875 * 876 * If xfs_ialloc did an allocation to replenish the freelist, 877 * it returns the bp containing the head of the freelist as 878 * ialloc_context. We will hold a lock on it across the 879 * transaction commit so that no other process can steal 880 * the inode(s) that we've just allocated. 881 */ 882 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 883 &ialloc_context, &ip); 884 885 /* 886 * Return an error if we were unable to allocate a new inode. 887 * This should only happen if we run out of space on disk or 888 * encounter a disk error. 889 */ 890 if (code) { 891 *ipp = NULL; 892 return code; 893 } 894 if (!ialloc_context && !ip) { 895 *ipp = NULL; 896 return XFS_ERROR(ENOSPC); 897 } 898 899 /* 900 * If the AGI buffer is non-NULL, then we were unable to get an 901 * inode in one operation. We need to commit the current 902 * transaction and call xfs_ialloc() again. It is guaranteed 903 * to succeed the second time. 904 */ 905 if (ialloc_context) { 906 struct xfs_trans_res tres; 907 908 /* 909 * Normally, xfs_trans_commit releases all the locks. 910 * We call bhold to hang on to the ialloc_context across 911 * the commit. Holding this buffer prevents any other 912 * processes from doing any allocations in this 913 * allocation group. 914 */ 915 xfs_trans_bhold(tp, ialloc_context); 916 /* 917 * Save the log reservation so we can use 918 * them in the next transaction. 919 */ 920 tres.tr_logres = xfs_trans_get_log_res(tp); 921 tres.tr_logcount = xfs_trans_get_log_count(tp); 922 923 /* 924 * We want the quota changes to be associated with the next 925 * transaction, NOT this one. So, detach the dqinfo from this 926 * and attach it to the next transaction. 927 */ 928 dqinfo = NULL; 929 tflags = 0; 930 if (tp->t_dqinfo) { 931 dqinfo = (void *)tp->t_dqinfo; 932 tp->t_dqinfo = NULL; 933 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 934 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 935 } 936 937 ntp = xfs_trans_dup(tp); 938 code = xfs_trans_commit(tp, 0); 939 tp = ntp; 940 if (committed != NULL) { 941 *committed = 1; 942 } 943 /* 944 * If we get an error during the commit processing, 945 * release the buffer that is still held and return 946 * to the caller. 947 */ 948 if (code) { 949 xfs_buf_relse(ialloc_context); 950 if (dqinfo) { 951 tp->t_dqinfo = dqinfo; 952 xfs_trans_free_dqinfo(tp); 953 } 954 *tpp = ntp; 955 *ipp = NULL; 956 return code; 957 } 958 959 /* 960 * transaction commit worked ok so we can drop the extra ticket 961 * reference that we gained in xfs_trans_dup() 962 */ 963 xfs_log_ticket_put(tp->t_ticket); 964 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 965 code = xfs_trans_reserve(tp, &tres, 0, 0); 966 967 /* 968 * Re-attach the quota info that we detached from prev trx. 969 */ 970 if (dqinfo) { 971 tp->t_dqinfo = dqinfo; 972 tp->t_flags |= tflags; 973 } 974 975 if (code) { 976 xfs_buf_relse(ialloc_context); 977 *tpp = ntp; 978 *ipp = NULL; 979 return code; 980 } 981 xfs_trans_bjoin(tp, ialloc_context); 982 983 /* 984 * Call ialloc again. Since we've locked out all 985 * other allocations in this allocation group, 986 * this call should always succeed. 987 */ 988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 989 okalloc, &ialloc_context, &ip); 990 991 /* 992 * If we get an error at this point, return to the caller 993 * so that the current transaction can be aborted. 994 */ 995 if (code) { 996 *tpp = tp; 997 *ipp = NULL; 998 return code; 999 } 1000 ASSERT(!ialloc_context && ip); 1001 1002 } else { 1003 if (committed != NULL) 1004 *committed = 0; 1005 } 1006 1007 *ipp = ip; 1008 *tpp = tp; 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * Decrement the link count on an inode & log the change. 1015 * If this causes the link count to go to zero, initiate the 1016 * logging activity required to truncate a file. 1017 */ 1018 int /* error */ 1019 xfs_droplink( 1020 xfs_trans_t *tp, 1021 xfs_inode_t *ip) 1022 { 1023 int error; 1024 1025 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1026 1027 ASSERT (ip->i_d.di_nlink > 0); 1028 ip->i_d.di_nlink--; 1029 drop_nlink(VFS_I(ip)); 1030 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1031 1032 error = 0; 1033 if (ip->i_d.di_nlink == 0) { 1034 /* 1035 * We're dropping the last link to this file. 1036 * Move the on-disk inode to the AGI unlinked list. 1037 * From xfs_inactive() we will pull the inode from 1038 * the list and free it. 1039 */ 1040 error = xfs_iunlink(tp, ip); 1041 } 1042 return error; 1043 } 1044 1045 /* 1046 * Increment the link count on an inode & log the change. 1047 */ 1048 int 1049 xfs_bumplink( 1050 xfs_trans_t *tp, 1051 xfs_inode_t *ip) 1052 { 1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1054 1055 ASSERT(ip->i_d.di_version > 1); 1056 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1057 ip->i_d.di_nlink++; 1058 inc_nlink(VFS_I(ip)); 1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1060 return 0; 1061 } 1062 1063 int 1064 xfs_create( 1065 xfs_inode_t *dp, 1066 struct xfs_name *name, 1067 umode_t mode, 1068 xfs_dev_t rdev, 1069 xfs_inode_t **ipp) 1070 { 1071 int is_dir = S_ISDIR(mode); 1072 struct xfs_mount *mp = dp->i_mount; 1073 struct xfs_inode *ip = NULL; 1074 struct xfs_trans *tp = NULL; 1075 int error; 1076 xfs_bmap_free_t free_list; 1077 xfs_fsblock_t first_block; 1078 bool unlock_dp_on_error = false; 1079 uint cancel_flags; 1080 int committed; 1081 prid_t prid; 1082 struct xfs_dquot *udqp = NULL; 1083 struct xfs_dquot *gdqp = NULL; 1084 struct xfs_dquot *pdqp = NULL; 1085 struct xfs_trans_res tres; 1086 uint resblks; 1087 1088 trace_xfs_create(dp, name); 1089 1090 if (XFS_FORCED_SHUTDOWN(mp)) 1091 return XFS_ERROR(EIO); 1092 1093 prid = xfs_get_initial_prid(dp); 1094 1095 /* 1096 * Make sure that we have allocated dquot(s) on disk. 1097 */ 1098 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1099 xfs_kgid_to_gid(current_fsgid()), prid, 1100 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1101 &udqp, &gdqp, &pdqp); 1102 if (error) 1103 return error; 1104 1105 if (is_dir) { 1106 rdev = 0; 1107 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1108 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres; 1109 tres.tr_logcount = XFS_MKDIR_LOG_COUNT; 1110 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1111 } else { 1112 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1113 tres.tr_logres = M_RES(mp)->tr_create.tr_logres; 1114 tres.tr_logcount = XFS_CREATE_LOG_COUNT; 1115 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1116 } 1117 1118 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1119 1120 /* 1121 * Initially assume that the file does not exist and 1122 * reserve the resources for that case. If that is not 1123 * the case we'll drop the one we have and get a more 1124 * appropriate transaction later. 1125 */ 1126 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1127 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1128 if (error == ENOSPC) { 1129 /* flush outstanding delalloc blocks and retry */ 1130 xfs_flush_inodes(mp); 1131 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1132 } 1133 if (error == ENOSPC) { 1134 /* No space at all so try a "no-allocation" reservation */ 1135 resblks = 0; 1136 error = xfs_trans_reserve(tp, &tres, 0, 0); 1137 } 1138 if (error) { 1139 cancel_flags = 0; 1140 goto out_trans_cancel; 1141 } 1142 1143 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1144 unlock_dp_on_error = true; 1145 1146 xfs_bmap_init(&free_list, &first_block); 1147 1148 /* 1149 * Reserve disk quota and the inode. 1150 */ 1151 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1152 pdqp, resblks, 1, 0); 1153 if (error) 1154 goto out_trans_cancel; 1155 1156 error = xfs_dir_canenter(tp, dp, name, resblks); 1157 if (error) 1158 goto out_trans_cancel; 1159 1160 /* 1161 * A newly created regular or special file just has one directory 1162 * entry pointing to them, but a directory also the "." entry 1163 * pointing to itself. 1164 */ 1165 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1166 prid, resblks > 0, &ip, &committed); 1167 if (error) { 1168 if (error == ENOSPC) 1169 goto out_trans_cancel; 1170 goto out_trans_abort; 1171 } 1172 1173 /* 1174 * Now we join the directory inode to the transaction. We do not do it 1175 * earlier because xfs_dir_ialloc might commit the previous transaction 1176 * (and release all the locks). An error from here on will result in 1177 * the transaction cancel unlocking dp so don't do it explicitly in the 1178 * error path. 1179 */ 1180 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1181 unlock_dp_on_error = false; 1182 1183 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1184 &first_block, &free_list, resblks ? 1185 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1186 if (error) { 1187 ASSERT(error != ENOSPC); 1188 goto out_trans_abort; 1189 } 1190 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1191 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1192 1193 if (is_dir) { 1194 error = xfs_dir_init(tp, ip, dp); 1195 if (error) 1196 goto out_bmap_cancel; 1197 1198 error = xfs_bumplink(tp, dp); 1199 if (error) 1200 goto out_bmap_cancel; 1201 } 1202 1203 /* 1204 * If this is a synchronous mount, make sure that the 1205 * create transaction goes to disk before returning to 1206 * the user. 1207 */ 1208 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1209 xfs_trans_set_sync(tp); 1210 1211 /* 1212 * Attach the dquot(s) to the inodes and modify them incore. 1213 * These ids of the inode couldn't have changed since the new 1214 * inode has been locked ever since it was created. 1215 */ 1216 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1217 1218 error = xfs_bmap_finish(&tp, &free_list, &committed); 1219 if (error) 1220 goto out_bmap_cancel; 1221 1222 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1223 if (error) 1224 goto out_release_inode; 1225 1226 xfs_qm_dqrele(udqp); 1227 xfs_qm_dqrele(gdqp); 1228 xfs_qm_dqrele(pdqp); 1229 1230 *ipp = ip; 1231 return 0; 1232 1233 out_bmap_cancel: 1234 xfs_bmap_cancel(&free_list); 1235 out_trans_abort: 1236 cancel_flags |= XFS_TRANS_ABORT; 1237 out_trans_cancel: 1238 xfs_trans_cancel(tp, cancel_flags); 1239 out_release_inode: 1240 /* 1241 * Wait until after the current transaction is aborted to 1242 * release the inode. This prevents recursive transactions 1243 * and deadlocks from xfs_inactive. 1244 */ 1245 if (ip) 1246 IRELE(ip); 1247 1248 xfs_qm_dqrele(udqp); 1249 xfs_qm_dqrele(gdqp); 1250 xfs_qm_dqrele(pdqp); 1251 1252 if (unlock_dp_on_error) 1253 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1254 return error; 1255 } 1256 1257 int 1258 xfs_create_tmpfile( 1259 struct xfs_inode *dp, 1260 struct dentry *dentry, 1261 umode_t mode, 1262 struct xfs_inode **ipp) 1263 { 1264 struct xfs_mount *mp = dp->i_mount; 1265 struct xfs_inode *ip = NULL; 1266 struct xfs_trans *tp = NULL; 1267 int error; 1268 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1269 prid_t prid; 1270 struct xfs_dquot *udqp = NULL; 1271 struct xfs_dquot *gdqp = NULL; 1272 struct xfs_dquot *pdqp = NULL; 1273 struct xfs_trans_res *tres; 1274 uint resblks; 1275 1276 if (XFS_FORCED_SHUTDOWN(mp)) 1277 return XFS_ERROR(EIO); 1278 1279 prid = xfs_get_initial_prid(dp); 1280 1281 /* 1282 * Make sure that we have allocated dquot(s) on disk. 1283 */ 1284 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1285 xfs_kgid_to_gid(current_fsgid()), prid, 1286 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1287 &udqp, &gdqp, &pdqp); 1288 if (error) 1289 return error; 1290 1291 resblks = XFS_IALLOC_SPACE_RES(mp); 1292 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1293 1294 tres = &M_RES(mp)->tr_create_tmpfile; 1295 error = xfs_trans_reserve(tp, tres, resblks, 0); 1296 if (error == ENOSPC) { 1297 /* No space at all so try a "no-allocation" reservation */ 1298 resblks = 0; 1299 error = xfs_trans_reserve(tp, tres, 0, 0); 1300 } 1301 if (error) { 1302 cancel_flags = 0; 1303 goto out_trans_cancel; 1304 } 1305 1306 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1307 pdqp, resblks, 1, 0); 1308 if (error) 1309 goto out_trans_cancel; 1310 1311 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1312 prid, resblks > 0, &ip, NULL); 1313 if (error) { 1314 if (error == ENOSPC) 1315 goto out_trans_cancel; 1316 goto out_trans_abort; 1317 } 1318 1319 if (mp->m_flags & XFS_MOUNT_WSYNC) 1320 xfs_trans_set_sync(tp); 1321 1322 /* 1323 * Attach the dquot(s) to the inodes and modify them incore. 1324 * These ids of the inode couldn't have changed since the new 1325 * inode has been locked ever since it was created. 1326 */ 1327 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1328 1329 ip->i_d.di_nlink--; 1330 error = xfs_iunlink(tp, ip); 1331 if (error) 1332 goto out_trans_abort; 1333 1334 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1335 if (error) 1336 goto out_release_inode; 1337 1338 xfs_qm_dqrele(udqp); 1339 xfs_qm_dqrele(gdqp); 1340 xfs_qm_dqrele(pdqp); 1341 1342 *ipp = ip; 1343 return 0; 1344 1345 out_trans_abort: 1346 cancel_flags |= XFS_TRANS_ABORT; 1347 out_trans_cancel: 1348 xfs_trans_cancel(tp, cancel_flags); 1349 out_release_inode: 1350 /* 1351 * Wait until after the current transaction is aborted to 1352 * release the inode. This prevents recursive transactions 1353 * and deadlocks from xfs_inactive. 1354 */ 1355 if (ip) 1356 IRELE(ip); 1357 1358 xfs_qm_dqrele(udqp); 1359 xfs_qm_dqrele(gdqp); 1360 xfs_qm_dqrele(pdqp); 1361 1362 return error; 1363 } 1364 1365 int 1366 xfs_link( 1367 xfs_inode_t *tdp, 1368 xfs_inode_t *sip, 1369 struct xfs_name *target_name) 1370 { 1371 xfs_mount_t *mp = tdp->i_mount; 1372 xfs_trans_t *tp; 1373 int error; 1374 xfs_bmap_free_t free_list; 1375 xfs_fsblock_t first_block; 1376 int cancel_flags; 1377 int committed; 1378 int resblks; 1379 1380 trace_xfs_link(tdp, target_name); 1381 1382 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1383 1384 if (XFS_FORCED_SHUTDOWN(mp)) 1385 return XFS_ERROR(EIO); 1386 1387 error = xfs_qm_dqattach(sip, 0); 1388 if (error) 1389 goto std_return; 1390 1391 error = xfs_qm_dqattach(tdp, 0); 1392 if (error) 1393 goto std_return; 1394 1395 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1396 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1397 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1398 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1399 if (error == ENOSPC) { 1400 resblks = 0; 1401 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1402 } 1403 if (error) { 1404 cancel_flags = 0; 1405 goto error_return; 1406 } 1407 1408 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1409 1410 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1411 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1412 1413 /* 1414 * If we are using project inheritance, we only allow hard link 1415 * creation in our tree when the project IDs are the same; else 1416 * the tree quota mechanism could be circumvented. 1417 */ 1418 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1419 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1420 error = XFS_ERROR(EXDEV); 1421 goto error_return; 1422 } 1423 1424 error = xfs_dir_canenter(tp, tdp, target_name, resblks); 1425 if (error) 1426 goto error_return; 1427 1428 xfs_bmap_init(&free_list, &first_block); 1429 1430 if (sip->i_d.di_nlink == 0) { 1431 error = xfs_iunlink_remove(tp, sip); 1432 if (error) 1433 goto abort_return; 1434 } 1435 1436 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1437 &first_block, &free_list, resblks); 1438 if (error) 1439 goto abort_return; 1440 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1441 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1442 1443 error = xfs_bumplink(tp, sip); 1444 if (error) 1445 goto abort_return; 1446 1447 /* 1448 * If this is a synchronous mount, make sure that the 1449 * link transaction goes to disk before returning to 1450 * the user. 1451 */ 1452 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1453 xfs_trans_set_sync(tp); 1454 } 1455 1456 error = xfs_bmap_finish (&tp, &free_list, &committed); 1457 if (error) { 1458 xfs_bmap_cancel(&free_list); 1459 goto abort_return; 1460 } 1461 1462 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1463 1464 abort_return: 1465 cancel_flags |= XFS_TRANS_ABORT; 1466 error_return: 1467 xfs_trans_cancel(tp, cancel_flags); 1468 std_return: 1469 return error; 1470 } 1471 1472 /* 1473 * Free up the underlying blocks past new_size. The new size must be smaller 1474 * than the current size. This routine can be used both for the attribute and 1475 * data fork, and does not modify the inode size, which is left to the caller. 1476 * 1477 * The transaction passed to this routine must have made a permanent log 1478 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1479 * given transaction and start new ones, so make sure everything involved in 1480 * the transaction is tidy before calling here. Some transaction will be 1481 * returned to the caller to be committed. The incoming transaction must 1482 * already include the inode, and both inode locks must be held exclusively. 1483 * The inode must also be "held" within the transaction. On return the inode 1484 * will be "held" within the returned transaction. This routine does NOT 1485 * require any disk space to be reserved for it within the transaction. 1486 * 1487 * If we get an error, we must return with the inode locked and linked into the 1488 * current transaction. This keeps things simple for the higher level code, 1489 * because it always knows that the inode is locked and held in the transaction 1490 * that returns to it whether errors occur or not. We don't mark the inode 1491 * dirty on error so that transactions can be easily aborted if possible. 1492 */ 1493 int 1494 xfs_itruncate_extents( 1495 struct xfs_trans **tpp, 1496 struct xfs_inode *ip, 1497 int whichfork, 1498 xfs_fsize_t new_size) 1499 { 1500 struct xfs_mount *mp = ip->i_mount; 1501 struct xfs_trans *tp = *tpp; 1502 struct xfs_trans *ntp; 1503 xfs_bmap_free_t free_list; 1504 xfs_fsblock_t first_block; 1505 xfs_fileoff_t first_unmap_block; 1506 xfs_fileoff_t last_block; 1507 xfs_filblks_t unmap_len; 1508 int committed; 1509 int error = 0; 1510 int done = 0; 1511 1512 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1513 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1514 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1515 ASSERT(new_size <= XFS_ISIZE(ip)); 1516 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1517 ASSERT(ip->i_itemp != NULL); 1518 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1519 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1520 1521 trace_xfs_itruncate_extents_start(ip, new_size); 1522 1523 /* 1524 * Since it is possible for space to become allocated beyond 1525 * the end of the file (in a crash where the space is allocated 1526 * but the inode size is not yet updated), simply remove any 1527 * blocks which show up between the new EOF and the maximum 1528 * possible file size. If the first block to be removed is 1529 * beyond the maximum file size (ie it is the same as last_block), 1530 * then there is nothing to do. 1531 */ 1532 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1533 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1534 if (first_unmap_block == last_block) 1535 return 0; 1536 1537 ASSERT(first_unmap_block < last_block); 1538 unmap_len = last_block - first_unmap_block + 1; 1539 while (!done) { 1540 xfs_bmap_init(&free_list, &first_block); 1541 error = xfs_bunmapi(tp, ip, 1542 first_unmap_block, unmap_len, 1543 xfs_bmapi_aflag(whichfork), 1544 XFS_ITRUNC_MAX_EXTENTS, 1545 &first_block, &free_list, 1546 &done); 1547 if (error) 1548 goto out_bmap_cancel; 1549 1550 /* 1551 * Duplicate the transaction that has the permanent 1552 * reservation and commit the old transaction. 1553 */ 1554 error = xfs_bmap_finish(&tp, &free_list, &committed); 1555 if (committed) 1556 xfs_trans_ijoin(tp, ip, 0); 1557 if (error) 1558 goto out_bmap_cancel; 1559 1560 if (committed) { 1561 /* 1562 * Mark the inode dirty so it will be logged and 1563 * moved forward in the log as part of every commit. 1564 */ 1565 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1566 } 1567 1568 ntp = xfs_trans_dup(tp); 1569 error = xfs_trans_commit(tp, 0); 1570 tp = ntp; 1571 1572 xfs_trans_ijoin(tp, ip, 0); 1573 1574 if (error) 1575 goto out; 1576 1577 /* 1578 * Transaction commit worked ok so we can drop the extra ticket 1579 * reference that we gained in xfs_trans_dup() 1580 */ 1581 xfs_log_ticket_put(tp->t_ticket); 1582 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1583 if (error) 1584 goto out; 1585 } 1586 1587 /* 1588 * Always re-log the inode so that our permanent transaction can keep 1589 * on rolling it forward in the log. 1590 */ 1591 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1592 1593 trace_xfs_itruncate_extents_end(ip, new_size); 1594 1595 out: 1596 *tpp = tp; 1597 return error; 1598 out_bmap_cancel: 1599 /* 1600 * If the bunmapi call encounters an error, return to the caller where 1601 * the transaction can be properly aborted. We just need to make sure 1602 * we're not holding any resources that we were not when we came in. 1603 */ 1604 xfs_bmap_cancel(&free_list); 1605 goto out; 1606 } 1607 1608 int 1609 xfs_release( 1610 xfs_inode_t *ip) 1611 { 1612 xfs_mount_t *mp = ip->i_mount; 1613 int error; 1614 1615 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1616 return 0; 1617 1618 /* If this is a read-only mount, don't do this (would generate I/O) */ 1619 if (mp->m_flags & XFS_MOUNT_RDONLY) 1620 return 0; 1621 1622 if (!XFS_FORCED_SHUTDOWN(mp)) { 1623 int truncated; 1624 1625 /* 1626 * If we previously truncated this file and removed old data 1627 * in the process, we want to initiate "early" writeout on 1628 * the last close. This is an attempt to combat the notorious 1629 * NULL files problem which is particularly noticeable from a 1630 * truncate down, buffered (re-)write (delalloc), followed by 1631 * a crash. What we are effectively doing here is 1632 * significantly reducing the time window where we'd otherwise 1633 * be exposed to that problem. 1634 */ 1635 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1636 if (truncated) { 1637 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1638 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) { 1639 error = -filemap_flush(VFS_I(ip)->i_mapping); 1640 if (error) 1641 return error; 1642 } 1643 } 1644 } 1645 1646 if (ip->i_d.di_nlink == 0) 1647 return 0; 1648 1649 if (xfs_can_free_eofblocks(ip, false)) { 1650 1651 /* 1652 * If we can't get the iolock just skip truncating the blocks 1653 * past EOF because we could deadlock with the mmap_sem 1654 * otherwise. We'll get another chance to drop them once the 1655 * last reference to the inode is dropped, so we'll never leak 1656 * blocks permanently. 1657 * 1658 * Further, check if the inode is being opened, written and 1659 * closed frequently and we have delayed allocation blocks 1660 * outstanding (e.g. streaming writes from the NFS server), 1661 * truncating the blocks past EOF will cause fragmentation to 1662 * occur. 1663 * 1664 * In this case don't do the truncation, either, but we have to 1665 * be careful how we detect this case. Blocks beyond EOF show 1666 * up as i_delayed_blks even when the inode is clean, so we 1667 * need to truncate them away first before checking for a dirty 1668 * release. Hence on the first dirty close we will still remove 1669 * the speculative allocation, but after that we will leave it 1670 * in place. 1671 */ 1672 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1673 return 0; 1674 1675 error = xfs_free_eofblocks(mp, ip, true); 1676 if (error && error != EAGAIN) 1677 return error; 1678 1679 /* delalloc blocks after truncation means it really is dirty */ 1680 if (ip->i_delayed_blks) 1681 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1682 } 1683 return 0; 1684 } 1685 1686 /* 1687 * xfs_inactive_truncate 1688 * 1689 * Called to perform a truncate when an inode becomes unlinked. 1690 */ 1691 STATIC int 1692 xfs_inactive_truncate( 1693 struct xfs_inode *ip) 1694 { 1695 struct xfs_mount *mp = ip->i_mount; 1696 struct xfs_trans *tp; 1697 int error; 1698 1699 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1700 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1701 if (error) { 1702 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1703 xfs_trans_cancel(tp, 0); 1704 return error; 1705 } 1706 1707 xfs_ilock(ip, XFS_ILOCK_EXCL); 1708 xfs_trans_ijoin(tp, ip, 0); 1709 1710 /* 1711 * Log the inode size first to prevent stale data exposure in the event 1712 * of a system crash before the truncate completes. See the related 1713 * comment in xfs_setattr_size() for details. 1714 */ 1715 ip->i_d.di_size = 0; 1716 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1717 1718 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1719 if (error) 1720 goto error_trans_cancel; 1721 1722 ASSERT(ip->i_d.di_nextents == 0); 1723 1724 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1725 if (error) 1726 goto error_unlock; 1727 1728 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1729 return 0; 1730 1731 error_trans_cancel: 1732 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1733 error_unlock: 1734 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1735 return error; 1736 } 1737 1738 /* 1739 * xfs_inactive_ifree() 1740 * 1741 * Perform the inode free when an inode is unlinked. 1742 */ 1743 STATIC int 1744 xfs_inactive_ifree( 1745 struct xfs_inode *ip) 1746 { 1747 xfs_bmap_free_t free_list; 1748 xfs_fsblock_t first_block; 1749 int committed; 1750 struct xfs_mount *mp = ip->i_mount; 1751 struct xfs_trans *tp; 1752 int error; 1753 1754 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1755 1756 /* 1757 * The ifree transaction might need to allocate blocks for record 1758 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1759 * allow ifree to dip into the reserved block pool if necessary. 1760 * 1761 * Freeing large sets of inodes generally means freeing inode chunks, 1762 * directory and file data blocks, so this should be relatively safe. 1763 * Only under severe circumstances should it be possible to free enough 1764 * inodes to exhaust the reserve block pool via finobt expansion while 1765 * at the same time not creating free space in the filesystem. 1766 * 1767 * Send a warning if the reservation does happen to fail, as the inode 1768 * now remains allocated and sits on the unlinked list until the fs is 1769 * repaired. 1770 */ 1771 tp->t_flags |= XFS_TRANS_RESERVE; 1772 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1773 XFS_IFREE_SPACE_RES(mp), 0); 1774 if (error) { 1775 if (error == ENOSPC) { 1776 xfs_warn_ratelimited(mp, 1777 "Failed to remove inode(s) from unlinked list. " 1778 "Please free space, unmount and run xfs_repair."); 1779 } else { 1780 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1781 } 1782 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1783 return error; 1784 } 1785 1786 xfs_ilock(ip, XFS_ILOCK_EXCL); 1787 xfs_trans_ijoin(tp, ip, 0); 1788 1789 xfs_bmap_init(&free_list, &first_block); 1790 error = xfs_ifree(tp, ip, &free_list); 1791 if (error) { 1792 /* 1793 * If we fail to free the inode, shut down. The cancel 1794 * might do that, we need to make sure. Otherwise the 1795 * inode might be lost for a long time or forever. 1796 */ 1797 if (!XFS_FORCED_SHUTDOWN(mp)) { 1798 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1799 __func__, error); 1800 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1801 } 1802 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1803 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1804 return error; 1805 } 1806 1807 /* 1808 * Credit the quota account(s). The inode is gone. 1809 */ 1810 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1811 1812 /* 1813 * Just ignore errors at this point. There is nothing we can 1814 * do except to try to keep going. Make sure it's not a silent 1815 * error. 1816 */ 1817 error = xfs_bmap_finish(&tp, &free_list, &committed); 1818 if (error) 1819 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1820 __func__, error); 1821 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1822 if (error) 1823 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1824 __func__, error); 1825 1826 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1827 return 0; 1828 } 1829 1830 /* 1831 * xfs_inactive 1832 * 1833 * This is called when the vnode reference count for the vnode 1834 * goes to zero. If the file has been unlinked, then it must 1835 * now be truncated. Also, we clear all of the read-ahead state 1836 * kept for the inode here since the file is now closed. 1837 */ 1838 void 1839 xfs_inactive( 1840 xfs_inode_t *ip) 1841 { 1842 struct xfs_mount *mp; 1843 int error; 1844 int truncate = 0; 1845 1846 /* 1847 * If the inode is already free, then there can be nothing 1848 * to clean up here. 1849 */ 1850 if (ip->i_d.di_mode == 0) { 1851 ASSERT(ip->i_df.if_real_bytes == 0); 1852 ASSERT(ip->i_df.if_broot_bytes == 0); 1853 return; 1854 } 1855 1856 mp = ip->i_mount; 1857 1858 /* If this is a read-only mount, don't do this (would generate I/O) */ 1859 if (mp->m_flags & XFS_MOUNT_RDONLY) 1860 return; 1861 1862 if (ip->i_d.di_nlink != 0) { 1863 /* 1864 * force is true because we are evicting an inode from the 1865 * cache. Post-eof blocks must be freed, lest we end up with 1866 * broken free space accounting. 1867 */ 1868 if (xfs_can_free_eofblocks(ip, true)) 1869 xfs_free_eofblocks(mp, ip, false); 1870 1871 return; 1872 } 1873 1874 if (S_ISREG(ip->i_d.di_mode) && 1875 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1876 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1877 truncate = 1; 1878 1879 error = xfs_qm_dqattach(ip, 0); 1880 if (error) 1881 return; 1882 1883 if (S_ISLNK(ip->i_d.di_mode)) 1884 error = xfs_inactive_symlink(ip); 1885 else if (truncate) 1886 error = xfs_inactive_truncate(ip); 1887 if (error) 1888 return; 1889 1890 /* 1891 * If there are attributes associated with the file then blow them away 1892 * now. The code calls a routine that recursively deconstructs the 1893 * attribute fork. We need to just commit the current transaction 1894 * because we can't use it for xfs_attr_inactive(). 1895 */ 1896 if (ip->i_d.di_anextents > 0) { 1897 ASSERT(ip->i_d.di_forkoff != 0); 1898 1899 error = xfs_attr_inactive(ip); 1900 if (error) 1901 return; 1902 } 1903 1904 if (ip->i_afp) 1905 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1906 1907 ASSERT(ip->i_d.di_anextents == 0); 1908 1909 /* 1910 * Free the inode. 1911 */ 1912 error = xfs_inactive_ifree(ip); 1913 if (error) 1914 return; 1915 1916 /* 1917 * Release the dquots held by inode, if any. 1918 */ 1919 xfs_qm_dqdetach(ip); 1920 } 1921 1922 /* 1923 * This is called when the inode's link count goes to 0. 1924 * We place the on-disk inode on a list in the AGI. It 1925 * will be pulled from this list when the inode is freed. 1926 */ 1927 int 1928 xfs_iunlink( 1929 xfs_trans_t *tp, 1930 xfs_inode_t *ip) 1931 { 1932 xfs_mount_t *mp; 1933 xfs_agi_t *agi; 1934 xfs_dinode_t *dip; 1935 xfs_buf_t *agibp; 1936 xfs_buf_t *ibp; 1937 xfs_agino_t agino; 1938 short bucket_index; 1939 int offset; 1940 int error; 1941 1942 ASSERT(ip->i_d.di_nlink == 0); 1943 ASSERT(ip->i_d.di_mode != 0); 1944 1945 mp = tp->t_mountp; 1946 1947 /* 1948 * Get the agi buffer first. It ensures lock ordering 1949 * on the list. 1950 */ 1951 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1952 if (error) 1953 return error; 1954 agi = XFS_BUF_TO_AGI(agibp); 1955 1956 /* 1957 * Get the index into the agi hash table for the 1958 * list this inode will go on. 1959 */ 1960 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1961 ASSERT(agino != 0); 1962 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1963 ASSERT(agi->agi_unlinked[bucket_index]); 1964 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1965 1966 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1967 /* 1968 * There is already another inode in the bucket we need 1969 * to add ourselves to. Add us at the front of the list. 1970 * Here we put the head pointer into our next pointer, 1971 * and then we fall through to point the head at us. 1972 */ 1973 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1974 0, 0); 1975 if (error) 1976 return error; 1977 1978 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1979 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1980 offset = ip->i_imap.im_boffset + 1981 offsetof(xfs_dinode_t, di_next_unlinked); 1982 1983 /* need to recalc the inode CRC if appropriate */ 1984 xfs_dinode_calc_crc(mp, dip); 1985 1986 xfs_trans_inode_buf(tp, ibp); 1987 xfs_trans_log_buf(tp, ibp, offset, 1988 (offset + sizeof(xfs_agino_t) - 1)); 1989 xfs_inobp_check(mp, ibp); 1990 } 1991 1992 /* 1993 * Point the bucket head pointer at the inode being inserted. 1994 */ 1995 ASSERT(agino != 0); 1996 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1997 offset = offsetof(xfs_agi_t, agi_unlinked) + 1998 (sizeof(xfs_agino_t) * bucket_index); 1999 xfs_trans_log_buf(tp, agibp, offset, 2000 (offset + sizeof(xfs_agino_t) - 1)); 2001 return 0; 2002 } 2003 2004 /* 2005 * Pull the on-disk inode from the AGI unlinked list. 2006 */ 2007 STATIC int 2008 xfs_iunlink_remove( 2009 xfs_trans_t *tp, 2010 xfs_inode_t *ip) 2011 { 2012 xfs_ino_t next_ino; 2013 xfs_mount_t *mp; 2014 xfs_agi_t *agi; 2015 xfs_dinode_t *dip; 2016 xfs_buf_t *agibp; 2017 xfs_buf_t *ibp; 2018 xfs_agnumber_t agno; 2019 xfs_agino_t agino; 2020 xfs_agino_t next_agino; 2021 xfs_buf_t *last_ibp; 2022 xfs_dinode_t *last_dip = NULL; 2023 short bucket_index; 2024 int offset, last_offset = 0; 2025 int error; 2026 2027 mp = tp->t_mountp; 2028 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2029 2030 /* 2031 * Get the agi buffer first. It ensures lock ordering 2032 * on the list. 2033 */ 2034 error = xfs_read_agi(mp, tp, agno, &agibp); 2035 if (error) 2036 return error; 2037 2038 agi = XFS_BUF_TO_AGI(agibp); 2039 2040 /* 2041 * Get the index into the agi hash table for the 2042 * list this inode will go on. 2043 */ 2044 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2045 ASSERT(agino != 0); 2046 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2047 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2048 ASSERT(agi->agi_unlinked[bucket_index]); 2049 2050 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2051 /* 2052 * We're at the head of the list. Get the inode's on-disk 2053 * buffer to see if there is anyone after us on the list. 2054 * Only modify our next pointer if it is not already NULLAGINO. 2055 * This saves us the overhead of dealing with the buffer when 2056 * there is no need to change it. 2057 */ 2058 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2059 0, 0); 2060 if (error) { 2061 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2062 __func__, error); 2063 return error; 2064 } 2065 next_agino = be32_to_cpu(dip->di_next_unlinked); 2066 ASSERT(next_agino != 0); 2067 if (next_agino != NULLAGINO) { 2068 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2069 offset = ip->i_imap.im_boffset + 2070 offsetof(xfs_dinode_t, di_next_unlinked); 2071 2072 /* need to recalc the inode CRC if appropriate */ 2073 xfs_dinode_calc_crc(mp, dip); 2074 2075 xfs_trans_inode_buf(tp, ibp); 2076 xfs_trans_log_buf(tp, ibp, offset, 2077 (offset + sizeof(xfs_agino_t) - 1)); 2078 xfs_inobp_check(mp, ibp); 2079 } else { 2080 xfs_trans_brelse(tp, ibp); 2081 } 2082 /* 2083 * Point the bucket head pointer at the next inode. 2084 */ 2085 ASSERT(next_agino != 0); 2086 ASSERT(next_agino != agino); 2087 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2088 offset = offsetof(xfs_agi_t, agi_unlinked) + 2089 (sizeof(xfs_agino_t) * bucket_index); 2090 xfs_trans_log_buf(tp, agibp, offset, 2091 (offset + sizeof(xfs_agino_t) - 1)); 2092 } else { 2093 /* 2094 * We need to search the list for the inode being freed. 2095 */ 2096 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2097 last_ibp = NULL; 2098 while (next_agino != agino) { 2099 struct xfs_imap imap; 2100 2101 if (last_ibp) 2102 xfs_trans_brelse(tp, last_ibp); 2103 2104 imap.im_blkno = 0; 2105 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2106 2107 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2108 if (error) { 2109 xfs_warn(mp, 2110 "%s: xfs_imap returned error %d.", 2111 __func__, error); 2112 return error; 2113 } 2114 2115 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2116 &last_ibp, 0, 0); 2117 if (error) { 2118 xfs_warn(mp, 2119 "%s: xfs_imap_to_bp returned error %d.", 2120 __func__, error); 2121 return error; 2122 } 2123 2124 last_offset = imap.im_boffset; 2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2126 ASSERT(next_agino != NULLAGINO); 2127 ASSERT(next_agino != 0); 2128 } 2129 2130 /* 2131 * Now last_ibp points to the buffer previous to us on the 2132 * unlinked list. Pull us from the list. 2133 */ 2134 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2135 0, 0); 2136 if (error) { 2137 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2138 __func__, error); 2139 return error; 2140 } 2141 next_agino = be32_to_cpu(dip->di_next_unlinked); 2142 ASSERT(next_agino != 0); 2143 ASSERT(next_agino != agino); 2144 if (next_agino != NULLAGINO) { 2145 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2146 offset = ip->i_imap.im_boffset + 2147 offsetof(xfs_dinode_t, di_next_unlinked); 2148 2149 /* need to recalc the inode CRC if appropriate */ 2150 xfs_dinode_calc_crc(mp, dip); 2151 2152 xfs_trans_inode_buf(tp, ibp); 2153 xfs_trans_log_buf(tp, ibp, offset, 2154 (offset + sizeof(xfs_agino_t) - 1)); 2155 xfs_inobp_check(mp, ibp); 2156 } else { 2157 xfs_trans_brelse(tp, ibp); 2158 } 2159 /* 2160 * Point the previous inode on the list to the next inode. 2161 */ 2162 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2163 ASSERT(next_agino != 0); 2164 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2165 2166 /* need to recalc the inode CRC if appropriate */ 2167 xfs_dinode_calc_crc(mp, last_dip); 2168 2169 xfs_trans_inode_buf(tp, last_ibp); 2170 xfs_trans_log_buf(tp, last_ibp, offset, 2171 (offset + sizeof(xfs_agino_t) - 1)); 2172 xfs_inobp_check(mp, last_ibp); 2173 } 2174 return 0; 2175 } 2176 2177 /* 2178 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2179 * inodes that are in memory - they all must be marked stale and attached to 2180 * the cluster buffer. 2181 */ 2182 STATIC int 2183 xfs_ifree_cluster( 2184 xfs_inode_t *free_ip, 2185 xfs_trans_t *tp, 2186 xfs_ino_t inum) 2187 { 2188 xfs_mount_t *mp = free_ip->i_mount; 2189 int blks_per_cluster; 2190 int inodes_per_cluster; 2191 int nbufs; 2192 int i, j; 2193 xfs_daddr_t blkno; 2194 xfs_buf_t *bp; 2195 xfs_inode_t *ip; 2196 xfs_inode_log_item_t *iip; 2197 xfs_log_item_t *lip; 2198 struct xfs_perag *pag; 2199 2200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2201 blks_per_cluster = xfs_icluster_size_fsb(mp); 2202 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2203 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2204 2205 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2206 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2207 XFS_INO_TO_AGBNO(mp, inum)); 2208 2209 /* 2210 * We obtain and lock the backing buffer first in the process 2211 * here, as we have to ensure that any dirty inode that we 2212 * can't get the flush lock on is attached to the buffer. 2213 * If we scan the in-memory inodes first, then buffer IO can 2214 * complete before we get a lock on it, and hence we may fail 2215 * to mark all the active inodes on the buffer stale. 2216 */ 2217 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2218 mp->m_bsize * blks_per_cluster, 2219 XBF_UNMAPPED); 2220 2221 if (!bp) 2222 return ENOMEM; 2223 2224 /* 2225 * This buffer may not have been correctly initialised as we 2226 * didn't read it from disk. That's not important because we are 2227 * only using to mark the buffer as stale in the log, and to 2228 * attach stale cached inodes on it. That means it will never be 2229 * dispatched for IO. If it is, we want to know about it, and we 2230 * want it to fail. We can acheive this by adding a write 2231 * verifier to the buffer. 2232 */ 2233 bp->b_ops = &xfs_inode_buf_ops; 2234 2235 /* 2236 * Walk the inodes already attached to the buffer and mark them 2237 * stale. These will all have the flush locks held, so an 2238 * in-memory inode walk can't lock them. By marking them all 2239 * stale first, we will not attempt to lock them in the loop 2240 * below as the XFS_ISTALE flag will be set. 2241 */ 2242 lip = bp->b_fspriv; 2243 while (lip) { 2244 if (lip->li_type == XFS_LI_INODE) { 2245 iip = (xfs_inode_log_item_t *)lip; 2246 ASSERT(iip->ili_logged == 1); 2247 lip->li_cb = xfs_istale_done; 2248 xfs_trans_ail_copy_lsn(mp->m_ail, 2249 &iip->ili_flush_lsn, 2250 &iip->ili_item.li_lsn); 2251 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2252 } 2253 lip = lip->li_bio_list; 2254 } 2255 2256 2257 /* 2258 * For each inode in memory attempt to add it to the inode 2259 * buffer and set it up for being staled on buffer IO 2260 * completion. This is safe as we've locked out tail pushing 2261 * and flushing by locking the buffer. 2262 * 2263 * We have already marked every inode that was part of a 2264 * transaction stale above, which means there is no point in 2265 * even trying to lock them. 2266 */ 2267 for (i = 0; i < inodes_per_cluster; i++) { 2268 retry: 2269 rcu_read_lock(); 2270 ip = radix_tree_lookup(&pag->pag_ici_root, 2271 XFS_INO_TO_AGINO(mp, (inum + i))); 2272 2273 /* Inode not in memory, nothing to do */ 2274 if (!ip) { 2275 rcu_read_unlock(); 2276 continue; 2277 } 2278 2279 /* 2280 * because this is an RCU protected lookup, we could 2281 * find a recently freed or even reallocated inode 2282 * during the lookup. We need to check under the 2283 * i_flags_lock for a valid inode here. Skip it if it 2284 * is not valid, the wrong inode or stale. 2285 */ 2286 spin_lock(&ip->i_flags_lock); 2287 if (ip->i_ino != inum + i || 2288 __xfs_iflags_test(ip, XFS_ISTALE)) { 2289 spin_unlock(&ip->i_flags_lock); 2290 rcu_read_unlock(); 2291 continue; 2292 } 2293 spin_unlock(&ip->i_flags_lock); 2294 2295 /* 2296 * Don't try to lock/unlock the current inode, but we 2297 * _cannot_ skip the other inodes that we did not find 2298 * in the list attached to the buffer and are not 2299 * already marked stale. If we can't lock it, back off 2300 * and retry. 2301 */ 2302 if (ip != free_ip && 2303 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2304 rcu_read_unlock(); 2305 delay(1); 2306 goto retry; 2307 } 2308 rcu_read_unlock(); 2309 2310 xfs_iflock(ip); 2311 xfs_iflags_set(ip, XFS_ISTALE); 2312 2313 /* 2314 * we don't need to attach clean inodes or those only 2315 * with unlogged changes (which we throw away, anyway). 2316 */ 2317 iip = ip->i_itemp; 2318 if (!iip || xfs_inode_clean(ip)) { 2319 ASSERT(ip != free_ip); 2320 xfs_ifunlock(ip); 2321 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2322 continue; 2323 } 2324 2325 iip->ili_last_fields = iip->ili_fields; 2326 iip->ili_fields = 0; 2327 iip->ili_logged = 1; 2328 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2329 &iip->ili_item.li_lsn); 2330 2331 xfs_buf_attach_iodone(bp, xfs_istale_done, 2332 &iip->ili_item); 2333 2334 if (ip != free_ip) 2335 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2336 } 2337 2338 xfs_trans_stale_inode_buf(tp, bp); 2339 xfs_trans_binval(tp, bp); 2340 } 2341 2342 xfs_perag_put(pag); 2343 return 0; 2344 } 2345 2346 /* 2347 * This is called to return an inode to the inode free list. 2348 * The inode should already be truncated to 0 length and have 2349 * no pages associated with it. This routine also assumes that 2350 * the inode is already a part of the transaction. 2351 * 2352 * The on-disk copy of the inode will have been added to the list 2353 * of unlinked inodes in the AGI. We need to remove the inode from 2354 * that list atomically with respect to freeing it here. 2355 */ 2356 int 2357 xfs_ifree( 2358 xfs_trans_t *tp, 2359 xfs_inode_t *ip, 2360 xfs_bmap_free_t *flist) 2361 { 2362 int error; 2363 int delete; 2364 xfs_ino_t first_ino; 2365 2366 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2367 ASSERT(ip->i_d.di_nlink == 0); 2368 ASSERT(ip->i_d.di_nextents == 0); 2369 ASSERT(ip->i_d.di_anextents == 0); 2370 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2371 ASSERT(ip->i_d.di_nblocks == 0); 2372 2373 /* 2374 * Pull the on-disk inode from the AGI unlinked list. 2375 */ 2376 error = xfs_iunlink_remove(tp, ip); 2377 if (error) 2378 return error; 2379 2380 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2381 if (error) 2382 return error; 2383 2384 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2385 ip->i_d.di_flags = 0; 2386 ip->i_d.di_dmevmask = 0; 2387 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2388 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2389 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2390 /* 2391 * Bump the generation count so no one will be confused 2392 * by reincarnations of this inode. 2393 */ 2394 ip->i_d.di_gen++; 2395 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2396 2397 if (delete) 2398 error = xfs_ifree_cluster(ip, tp, first_ino); 2399 2400 return error; 2401 } 2402 2403 /* 2404 * This is called to unpin an inode. The caller must have the inode locked 2405 * in at least shared mode so that the buffer cannot be subsequently pinned 2406 * once someone is waiting for it to be unpinned. 2407 */ 2408 static void 2409 xfs_iunpin( 2410 struct xfs_inode *ip) 2411 { 2412 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2413 2414 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2415 2416 /* Give the log a push to start the unpinning I/O */ 2417 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2418 2419 } 2420 2421 static void 2422 __xfs_iunpin_wait( 2423 struct xfs_inode *ip) 2424 { 2425 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2426 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2427 2428 xfs_iunpin(ip); 2429 2430 do { 2431 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2432 if (xfs_ipincount(ip)) 2433 io_schedule(); 2434 } while (xfs_ipincount(ip)); 2435 finish_wait(wq, &wait.wait); 2436 } 2437 2438 void 2439 xfs_iunpin_wait( 2440 struct xfs_inode *ip) 2441 { 2442 if (xfs_ipincount(ip)) 2443 __xfs_iunpin_wait(ip); 2444 } 2445 2446 /* 2447 * Removing an inode from the namespace involves removing the directory entry 2448 * and dropping the link count on the inode. Removing the directory entry can 2449 * result in locking an AGF (directory blocks were freed) and removing a link 2450 * count can result in placing the inode on an unlinked list which results in 2451 * locking an AGI. 2452 * 2453 * The big problem here is that we have an ordering constraint on AGF and AGI 2454 * locking - inode allocation locks the AGI, then can allocate a new extent for 2455 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2456 * removes the inode from the unlinked list, requiring that we lock the AGI 2457 * first, and then freeing the inode can result in an inode chunk being freed 2458 * and hence freeing disk space requiring that we lock an AGF. 2459 * 2460 * Hence the ordering that is imposed by other parts of the code is AGI before 2461 * AGF. This means we cannot remove the directory entry before we drop the inode 2462 * reference count and put it on the unlinked list as this results in a lock 2463 * order of AGF then AGI, and this can deadlock against inode allocation and 2464 * freeing. Therefore we must drop the link counts before we remove the 2465 * directory entry. 2466 * 2467 * This is still safe from a transactional point of view - it is not until we 2468 * get to xfs_bmap_finish() that we have the possibility of multiple 2469 * transactions in this operation. Hence as long as we remove the directory 2470 * entry and drop the link count in the first transaction of the remove 2471 * operation, there are no transactional constraints on the ordering here. 2472 */ 2473 int 2474 xfs_remove( 2475 xfs_inode_t *dp, 2476 struct xfs_name *name, 2477 xfs_inode_t *ip) 2478 { 2479 xfs_mount_t *mp = dp->i_mount; 2480 xfs_trans_t *tp = NULL; 2481 int is_dir = S_ISDIR(ip->i_d.di_mode); 2482 int error = 0; 2483 xfs_bmap_free_t free_list; 2484 xfs_fsblock_t first_block; 2485 int cancel_flags; 2486 int committed; 2487 int link_zero; 2488 uint resblks; 2489 uint log_count; 2490 2491 trace_xfs_remove(dp, name); 2492 2493 if (XFS_FORCED_SHUTDOWN(mp)) 2494 return XFS_ERROR(EIO); 2495 2496 error = xfs_qm_dqattach(dp, 0); 2497 if (error) 2498 goto std_return; 2499 2500 error = xfs_qm_dqattach(ip, 0); 2501 if (error) 2502 goto std_return; 2503 2504 if (is_dir) { 2505 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2506 log_count = XFS_DEFAULT_LOG_COUNT; 2507 } else { 2508 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2509 log_count = XFS_REMOVE_LOG_COUNT; 2510 } 2511 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2512 2513 /* 2514 * We try to get the real space reservation first, 2515 * allowing for directory btree deletion(s) implying 2516 * possible bmap insert(s). If we can't get the space 2517 * reservation then we use 0 instead, and avoid the bmap 2518 * btree insert(s) in the directory code by, if the bmap 2519 * insert tries to happen, instead trimming the LAST 2520 * block from the directory. 2521 */ 2522 resblks = XFS_REMOVE_SPACE_RES(mp); 2523 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2524 if (error == ENOSPC) { 2525 resblks = 0; 2526 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2527 } 2528 if (error) { 2529 ASSERT(error != ENOSPC); 2530 cancel_flags = 0; 2531 goto out_trans_cancel; 2532 } 2533 2534 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2535 2536 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2537 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2538 2539 /* 2540 * If we're removing a directory perform some additional validation. 2541 */ 2542 cancel_flags |= XFS_TRANS_ABORT; 2543 if (is_dir) { 2544 ASSERT(ip->i_d.di_nlink >= 2); 2545 if (ip->i_d.di_nlink != 2) { 2546 error = XFS_ERROR(ENOTEMPTY); 2547 goto out_trans_cancel; 2548 } 2549 if (!xfs_dir_isempty(ip)) { 2550 error = XFS_ERROR(ENOTEMPTY); 2551 goto out_trans_cancel; 2552 } 2553 2554 /* Drop the link from ip's "..". */ 2555 error = xfs_droplink(tp, dp); 2556 if (error) 2557 goto out_trans_cancel; 2558 2559 /* Drop the "." link from ip to self. */ 2560 error = xfs_droplink(tp, ip); 2561 if (error) 2562 goto out_trans_cancel; 2563 } else { 2564 /* 2565 * When removing a non-directory we need to log the parent 2566 * inode here. For a directory this is done implicitly 2567 * by the xfs_droplink call for the ".." entry. 2568 */ 2569 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2570 } 2571 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2572 2573 /* Drop the link from dp to ip. */ 2574 error = xfs_droplink(tp, ip); 2575 if (error) 2576 goto out_trans_cancel; 2577 2578 /* Determine if this is the last link while the inode is locked */ 2579 link_zero = (ip->i_d.di_nlink == 0); 2580 2581 xfs_bmap_init(&free_list, &first_block); 2582 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2583 &first_block, &free_list, resblks); 2584 if (error) { 2585 ASSERT(error != ENOENT); 2586 goto out_bmap_cancel; 2587 } 2588 2589 /* 2590 * If this is a synchronous mount, make sure that the 2591 * remove transaction goes to disk before returning to 2592 * the user. 2593 */ 2594 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2595 xfs_trans_set_sync(tp); 2596 2597 error = xfs_bmap_finish(&tp, &free_list, &committed); 2598 if (error) 2599 goto out_bmap_cancel; 2600 2601 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2602 if (error) 2603 goto std_return; 2604 2605 if (is_dir && xfs_inode_is_filestream(ip)) 2606 xfs_filestream_deassociate(ip); 2607 2608 return 0; 2609 2610 out_bmap_cancel: 2611 xfs_bmap_cancel(&free_list); 2612 out_trans_cancel: 2613 xfs_trans_cancel(tp, cancel_flags); 2614 std_return: 2615 return error; 2616 } 2617 2618 /* 2619 * Enter all inodes for a rename transaction into a sorted array. 2620 */ 2621 STATIC void 2622 xfs_sort_for_rename( 2623 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2624 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2625 xfs_inode_t *ip1, /* in: inode of old entry */ 2626 xfs_inode_t *ip2, /* in: inode of new entry, if it 2627 already exists, NULL otherwise. */ 2628 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2629 int *num_inodes) /* out: number of inodes in array */ 2630 { 2631 xfs_inode_t *temp; 2632 int i, j; 2633 2634 /* 2635 * i_tab contains a list of pointers to inodes. We initialize 2636 * the table here & we'll sort it. We will then use it to 2637 * order the acquisition of the inode locks. 2638 * 2639 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2640 */ 2641 i_tab[0] = dp1; 2642 i_tab[1] = dp2; 2643 i_tab[2] = ip1; 2644 if (ip2) { 2645 *num_inodes = 4; 2646 i_tab[3] = ip2; 2647 } else { 2648 *num_inodes = 3; 2649 i_tab[3] = NULL; 2650 } 2651 2652 /* 2653 * Sort the elements via bubble sort. (Remember, there are at 2654 * most 4 elements to sort, so this is adequate.) 2655 */ 2656 for (i = 0; i < *num_inodes; i++) { 2657 for (j = 1; j < *num_inodes; j++) { 2658 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2659 temp = i_tab[j]; 2660 i_tab[j] = i_tab[j-1]; 2661 i_tab[j-1] = temp; 2662 } 2663 } 2664 } 2665 } 2666 2667 /* 2668 * xfs_rename 2669 */ 2670 int 2671 xfs_rename( 2672 xfs_inode_t *src_dp, 2673 struct xfs_name *src_name, 2674 xfs_inode_t *src_ip, 2675 xfs_inode_t *target_dp, 2676 struct xfs_name *target_name, 2677 xfs_inode_t *target_ip) 2678 { 2679 xfs_trans_t *tp = NULL; 2680 xfs_mount_t *mp = src_dp->i_mount; 2681 int new_parent; /* moving to a new dir */ 2682 int src_is_directory; /* src_name is a directory */ 2683 int error; 2684 xfs_bmap_free_t free_list; 2685 xfs_fsblock_t first_block; 2686 int cancel_flags; 2687 int committed; 2688 xfs_inode_t *inodes[4]; 2689 int spaceres; 2690 int num_inodes; 2691 2692 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2693 2694 new_parent = (src_dp != target_dp); 2695 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2696 2697 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2698 inodes, &num_inodes); 2699 2700 xfs_bmap_init(&free_list, &first_block); 2701 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2702 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2703 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2704 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2705 if (error == ENOSPC) { 2706 spaceres = 0; 2707 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2708 } 2709 if (error) { 2710 xfs_trans_cancel(tp, 0); 2711 goto std_return; 2712 } 2713 2714 /* 2715 * Attach the dquots to the inodes 2716 */ 2717 error = xfs_qm_vop_rename_dqattach(inodes); 2718 if (error) { 2719 xfs_trans_cancel(tp, cancel_flags); 2720 goto std_return; 2721 } 2722 2723 /* 2724 * Lock all the participating inodes. Depending upon whether 2725 * the target_name exists in the target directory, and 2726 * whether the target directory is the same as the source 2727 * directory, we can lock from 2 to 4 inodes. 2728 */ 2729 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2730 2731 /* 2732 * Join all the inodes to the transaction. From this point on, 2733 * we can rely on either trans_commit or trans_cancel to unlock 2734 * them. 2735 */ 2736 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2737 if (new_parent) 2738 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2739 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2740 if (target_ip) 2741 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2742 2743 /* 2744 * If we are using project inheritance, we only allow renames 2745 * into our tree when the project IDs are the same; else the 2746 * tree quota mechanism would be circumvented. 2747 */ 2748 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2749 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2750 error = XFS_ERROR(EXDEV); 2751 goto error_return; 2752 } 2753 2754 /* 2755 * Set up the target. 2756 */ 2757 if (target_ip == NULL) { 2758 /* 2759 * If there's no space reservation, check the entry will 2760 * fit before actually inserting it. 2761 */ 2762 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres); 2763 if (error) 2764 goto error_return; 2765 /* 2766 * If target does not exist and the rename crosses 2767 * directories, adjust the target directory link count 2768 * to account for the ".." reference from the new entry. 2769 */ 2770 error = xfs_dir_createname(tp, target_dp, target_name, 2771 src_ip->i_ino, &first_block, 2772 &free_list, spaceres); 2773 if (error == ENOSPC) 2774 goto error_return; 2775 if (error) 2776 goto abort_return; 2777 2778 xfs_trans_ichgtime(tp, target_dp, 2779 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2780 2781 if (new_parent && src_is_directory) { 2782 error = xfs_bumplink(tp, target_dp); 2783 if (error) 2784 goto abort_return; 2785 } 2786 } else { /* target_ip != NULL */ 2787 /* 2788 * If target exists and it's a directory, check that both 2789 * target and source are directories and that target can be 2790 * destroyed, or that neither is a directory. 2791 */ 2792 if (S_ISDIR(target_ip->i_d.di_mode)) { 2793 /* 2794 * Make sure target dir is empty. 2795 */ 2796 if (!(xfs_dir_isempty(target_ip)) || 2797 (target_ip->i_d.di_nlink > 2)) { 2798 error = XFS_ERROR(EEXIST); 2799 goto error_return; 2800 } 2801 } 2802 2803 /* 2804 * Link the source inode under the target name. 2805 * If the source inode is a directory and we are moving 2806 * it across directories, its ".." entry will be 2807 * inconsistent until we replace that down below. 2808 * 2809 * In case there is already an entry with the same 2810 * name at the destination directory, remove it first. 2811 */ 2812 error = xfs_dir_replace(tp, target_dp, target_name, 2813 src_ip->i_ino, 2814 &first_block, &free_list, spaceres); 2815 if (error) 2816 goto abort_return; 2817 2818 xfs_trans_ichgtime(tp, target_dp, 2819 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2820 2821 /* 2822 * Decrement the link count on the target since the target 2823 * dir no longer points to it. 2824 */ 2825 error = xfs_droplink(tp, target_ip); 2826 if (error) 2827 goto abort_return; 2828 2829 if (src_is_directory) { 2830 /* 2831 * Drop the link from the old "." entry. 2832 */ 2833 error = xfs_droplink(tp, target_ip); 2834 if (error) 2835 goto abort_return; 2836 } 2837 } /* target_ip != NULL */ 2838 2839 /* 2840 * Remove the source. 2841 */ 2842 if (new_parent && src_is_directory) { 2843 /* 2844 * Rewrite the ".." entry to point to the new 2845 * directory. 2846 */ 2847 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2848 target_dp->i_ino, 2849 &first_block, &free_list, spaceres); 2850 ASSERT(error != EEXIST); 2851 if (error) 2852 goto abort_return; 2853 } 2854 2855 /* 2856 * We always want to hit the ctime on the source inode. 2857 * 2858 * This isn't strictly required by the standards since the source 2859 * inode isn't really being changed, but old unix file systems did 2860 * it and some incremental backup programs won't work without it. 2861 */ 2862 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2863 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2864 2865 /* 2866 * Adjust the link count on src_dp. This is necessary when 2867 * renaming a directory, either within one parent when 2868 * the target existed, or across two parent directories. 2869 */ 2870 if (src_is_directory && (new_parent || target_ip != NULL)) { 2871 2872 /* 2873 * Decrement link count on src_directory since the 2874 * entry that's moved no longer points to it. 2875 */ 2876 error = xfs_droplink(tp, src_dp); 2877 if (error) 2878 goto abort_return; 2879 } 2880 2881 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2882 &first_block, &free_list, spaceres); 2883 if (error) 2884 goto abort_return; 2885 2886 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2887 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2888 if (new_parent) 2889 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2890 2891 /* 2892 * If this is a synchronous mount, make sure that the 2893 * rename transaction goes to disk before returning to 2894 * the user. 2895 */ 2896 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2897 xfs_trans_set_sync(tp); 2898 } 2899 2900 error = xfs_bmap_finish(&tp, &free_list, &committed); 2901 if (error) { 2902 xfs_bmap_cancel(&free_list); 2903 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2904 XFS_TRANS_ABORT)); 2905 goto std_return; 2906 } 2907 2908 /* 2909 * trans_commit will unlock src_ip, target_ip & decrement 2910 * the vnode references. 2911 */ 2912 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2913 2914 abort_return: 2915 cancel_flags |= XFS_TRANS_ABORT; 2916 error_return: 2917 xfs_bmap_cancel(&free_list); 2918 xfs_trans_cancel(tp, cancel_flags); 2919 std_return: 2920 return error; 2921 } 2922 2923 STATIC int 2924 xfs_iflush_cluster( 2925 xfs_inode_t *ip, 2926 xfs_buf_t *bp) 2927 { 2928 xfs_mount_t *mp = ip->i_mount; 2929 struct xfs_perag *pag; 2930 unsigned long first_index, mask; 2931 unsigned long inodes_per_cluster; 2932 int ilist_size; 2933 xfs_inode_t **ilist; 2934 xfs_inode_t *iq; 2935 int nr_found; 2936 int clcount = 0; 2937 int bufwasdelwri; 2938 int i; 2939 2940 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2941 2942 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 2943 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2944 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2945 if (!ilist) 2946 goto out_put; 2947 2948 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 2949 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2950 rcu_read_lock(); 2951 /* really need a gang lookup range call here */ 2952 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2953 first_index, inodes_per_cluster); 2954 if (nr_found == 0) 2955 goto out_free; 2956 2957 for (i = 0; i < nr_found; i++) { 2958 iq = ilist[i]; 2959 if (iq == ip) 2960 continue; 2961 2962 /* 2963 * because this is an RCU protected lookup, we could find a 2964 * recently freed or even reallocated inode during the lookup. 2965 * We need to check under the i_flags_lock for a valid inode 2966 * here. Skip it if it is not valid or the wrong inode. 2967 */ 2968 spin_lock(&ip->i_flags_lock); 2969 if (!ip->i_ino || 2970 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2971 spin_unlock(&ip->i_flags_lock); 2972 continue; 2973 } 2974 spin_unlock(&ip->i_flags_lock); 2975 2976 /* 2977 * Do an un-protected check to see if the inode is dirty and 2978 * is a candidate for flushing. These checks will be repeated 2979 * later after the appropriate locks are acquired. 2980 */ 2981 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2982 continue; 2983 2984 /* 2985 * Try to get locks. If any are unavailable or it is pinned, 2986 * then this inode cannot be flushed and is skipped. 2987 */ 2988 2989 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2990 continue; 2991 if (!xfs_iflock_nowait(iq)) { 2992 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2993 continue; 2994 } 2995 if (xfs_ipincount(iq)) { 2996 xfs_ifunlock(iq); 2997 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2998 continue; 2999 } 3000 3001 /* 3002 * arriving here means that this inode can be flushed. First 3003 * re-check that it's dirty before flushing. 3004 */ 3005 if (!xfs_inode_clean(iq)) { 3006 int error; 3007 error = xfs_iflush_int(iq, bp); 3008 if (error) { 3009 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3010 goto cluster_corrupt_out; 3011 } 3012 clcount++; 3013 } else { 3014 xfs_ifunlock(iq); 3015 } 3016 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3017 } 3018 3019 if (clcount) { 3020 XFS_STATS_INC(xs_icluster_flushcnt); 3021 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3022 } 3023 3024 out_free: 3025 rcu_read_unlock(); 3026 kmem_free(ilist); 3027 out_put: 3028 xfs_perag_put(pag); 3029 return 0; 3030 3031 3032 cluster_corrupt_out: 3033 /* 3034 * Corruption detected in the clustering loop. Invalidate the 3035 * inode buffer and shut down the filesystem. 3036 */ 3037 rcu_read_unlock(); 3038 /* 3039 * Clean up the buffer. If it was delwri, just release it -- 3040 * brelse can handle it with no problems. If not, shut down the 3041 * filesystem before releasing the buffer. 3042 */ 3043 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3044 if (bufwasdelwri) 3045 xfs_buf_relse(bp); 3046 3047 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3048 3049 if (!bufwasdelwri) { 3050 /* 3051 * Just like incore_relse: if we have b_iodone functions, 3052 * mark the buffer as an error and call them. Otherwise 3053 * mark it as stale and brelse. 3054 */ 3055 if (bp->b_iodone) { 3056 XFS_BUF_UNDONE(bp); 3057 xfs_buf_stale(bp); 3058 xfs_buf_ioerror(bp, EIO); 3059 xfs_buf_ioend(bp, 0); 3060 } else { 3061 xfs_buf_stale(bp); 3062 xfs_buf_relse(bp); 3063 } 3064 } 3065 3066 /* 3067 * Unlocks the flush lock 3068 */ 3069 xfs_iflush_abort(iq, false); 3070 kmem_free(ilist); 3071 xfs_perag_put(pag); 3072 return XFS_ERROR(EFSCORRUPTED); 3073 } 3074 3075 /* 3076 * Flush dirty inode metadata into the backing buffer. 3077 * 3078 * The caller must have the inode lock and the inode flush lock held. The 3079 * inode lock will still be held upon return to the caller, and the inode 3080 * flush lock will be released after the inode has reached the disk. 3081 * 3082 * The caller must write out the buffer returned in *bpp and release it. 3083 */ 3084 int 3085 xfs_iflush( 3086 struct xfs_inode *ip, 3087 struct xfs_buf **bpp) 3088 { 3089 struct xfs_mount *mp = ip->i_mount; 3090 struct xfs_buf *bp; 3091 struct xfs_dinode *dip; 3092 int error; 3093 3094 XFS_STATS_INC(xs_iflush_count); 3095 3096 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3097 ASSERT(xfs_isiflocked(ip)); 3098 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3099 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3100 3101 *bpp = NULL; 3102 3103 xfs_iunpin_wait(ip); 3104 3105 /* 3106 * For stale inodes we cannot rely on the backing buffer remaining 3107 * stale in cache for the remaining life of the stale inode and so 3108 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3109 * inodes below. We have to check this after ensuring the inode is 3110 * unpinned so that it is safe to reclaim the stale inode after the 3111 * flush call. 3112 */ 3113 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3114 xfs_ifunlock(ip); 3115 return 0; 3116 } 3117 3118 /* 3119 * This may have been unpinned because the filesystem is shutting 3120 * down forcibly. If that's the case we must not write this inode 3121 * to disk, because the log record didn't make it to disk. 3122 * 3123 * We also have to remove the log item from the AIL in this case, 3124 * as we wait for an empty AIL as part of the unmount process. 3125 */ 3126 if (XFS_FORCED_SHUTDOWN(mp)) { 3127 error = XFS_ERROR(EIO); 3128 goto abort_out; 3129 } 3130 3131 /* 3132 * Get the buffer containing the on-disk inode. 3133 */ 3134 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3135 0); 3136 if (error || !bp) { 3137 xfs_ifunlock(ip); 3138 return error; 3139 } 3140 3141 /* 3142 * First flush out the inode that xfs_iflush was called with. 3143 */ 3144 error = xfs_iflush_int(ip, bp); 3145 if (error) 3146 goto corrupt_out; 3147 3148 /* 3149 * If the buffer is pinned then push on the log now so we won't 3150 * get stuck waiting in the write for too long. 3151 */ 3152 if (xfs_buf_ispinned(bp)) 3153 xfs_log_force(mp, 0); 3154 3155 /* 3156 * inode clustering: 3157 * see if other inodes can be gathered into this write 3158 */ 3159 error = xfs_iflush_cluster(ip, bp); 3160 if (error) 3161 goto cluster_corrupt_out; 3162 3163 *bpp = bp; 3164 return 0; 3165 3166 corrupt_out: 3167 xfs_buf_relse(bp); 3168 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3169 cluster_corrupt_out: 3170 error = XFS_ERROR(EFSCORRUPTED); 3171 abort_out: 3172 /* 3173 * Unlocks the flush lock 3174 */ 3175 xfs_iflush_abort(ip, false); 3176 return error; 3177 } 3178 3179 STATIC int 3180 xfs_iflush_int( 3181 struct xfs_inode *ip, 3182 struct xfs_buf *bp) 3183 { 3184 struct xfs_inode_log_item *iip = ip->i_itemp; 3185 struct xfs_dinode *dip; 3186 struct xfs_mount *mp = ip->i_mount; 3187 3188 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3189 ASSERT(xfs_isiflocked(ip)); 3190 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3191 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3192 ASSERT(iip != NULL && iip->ili_fields != 0); 3193 ASSERT(ip->i_d.di_version > 1); 3194 3195 /* set *dip = inode's place in the buffer */ 3196 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3197 3198 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3199 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3200 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3201 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3202 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3203 goto corrupt_out; 3204 } 3205 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3206 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3207 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3208 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3209 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3210 goto corrupt_out; 3211 } 3212 if (S_ISREG(ip->i_d.di_mode)) { 3213 if (XFS_TEST_ERROR( 3214 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3215 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3216 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3217 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3218 "%s: Bad regular inode %Lu, ptr 0x%p", 3219 __func__, ip->i_ino, ip); 3220 goto corrupt_out; 3221 } 3222 } else if (S_ISDIR(ip->i_d.di_mode)) { 3223 if (XFS_TEST_ERROR( 3224 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3225 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3226 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3227 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3228 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3229 "%s: Bad directory inode %Lu, ptr 0x%p", 3230 __func__, ip->i_ino, ip); 3231 goto corrupt_out; 3232 } 3233 } 3234 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3235 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3236 XFS_RANDOM_IFLUSH_5)) { 3237 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3238 "%s: detected corrupt incore inode %Lu, " 3239 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3240 __func__, ip->i_ino, 3241 ip->i_d.di_nextents + ip->i_d.di_anextents, 3242 ip->i_d.di_nblocks, ip); 3243 goto corrupt_out; 3244 } 3245 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3246 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3247 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3248 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3249 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3250 goto corrupt_out; 3251 } 3252 3253 /* 3254 * Inode item log recovery for v2 inodes are dependent on the 3255 * di_flushiter count for correct sequencing. We bump the flush 3256 * iteration count so we can detect flushes which postdate a log record 3257 * during recovery. This is redundant as we now log every change and 3258 * hence this can't happen but we need to still do it to ensure 3259 * backwards compatibility with old kernels that predate logging all 3260 * inode changes. 3261 */ 3262 if (ip->i_d.di_version < 3) 3263 ip->i_d.di_flushiter++; 3264 3265 /* 3266 * Copy the dirty parts of the inode into the on-disk 3267 * inode. We always copy out the core of the inode, 3268 * because if the inode is dirty at all the core must 3269 * be. 3270 */ 3271 xfs_dinode_to_disk(dip, &ip->i_d); 3272 3273 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3274 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3275 ip->i_d.di_flushiter = 0; 3276 3277 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3278 if (XFS_IFORK_Q(ip)) 3279 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3280 xfs_inobp_check(mp, bp); 3281 3282 /* 3283 * We've recorded everything logged in the inode, so we'd like to clear 3284 * the ili_fields bits so we don't log and flush things unnecessarily. 3285 * However, we can't stop logging all this information until the data 3286 * we've copied into the disk buffer is written to disk. If we did we 3287 * might overwrite the copy of the inode in the log with all the data 3288 * after re-logging only part of it, and in the face of a crash we 3289 * wouldn't have all the data we need to recover. 3290 * 3291 * What we do is move the bits to the ili_last_fields field. When 3292 * logging the inode, these bits are moved back to the ili_fields field. 3293 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3294 * know that the information those bits represent is permanently on 3295 * disk. As long as the flush completes before the inode is logged 3296 * again, then both ili_fields and ili_last_fields will be cleared. 3297 * 3298 * We can play with the ili_fields bits here, because the inode lock 3299 * must be held exclusively in order to set bits there and the flush 3300 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3301 * done routine can tell whether or not to look in the AIL. Also, store 3302 * the current LSN of the inode so that we can tell whether the item has 3303 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3304 * need the AIL lock, because it is a 64 bit value that cannot be read 3305 * atomically. 3306 */ 3307 iip->ili_last_fields = iip->ili_fields; 3308 iip->ili_fields = 0; 3309 iip->ili_logged = 1; 3310 3311 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3312 &iip->ili_item.li_lsn); 3313 3314 /* 3315 * Attach the function xfs_iflush_done to the inode's 3316 * buffer. This will remove the inode from the AIL 3317 * and unlock the inode's flush lock when the inode is 3318 * completely written to disk. 3319 */ 3320 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3321 3322 /* update the lsn in the on disk inode if required */ 3323 if (ip->i_d.di_version == 3) 3324 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3325 3326 /* generate the checksum. */ 3327 xfs_dinode_calc_crc(mp, dip); 3328 3329 ASSERT(bp->b_fspriv != NULL); 3330 ASSERT(bp->b_iodone != NULL); 3331 return 0; 3332 3333 corrupt_out: 3334 return XFS_ERROR(EFSCORRUPTED); 3335 } 3336