xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision d0b73b48)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_trace.h"
48 #include "xfs_icache.h"
49 
50 kmem_zone_t *xfs_ifork_zone;
51 kmem_zone_t *xfs_inode_zone;
52 
53 /*
54  * Used in xfs_itruncate_extents().  This is the maximum number of extents
55  * freed from a file in a single transaction.
56  */
57 #define	XFS_ITRUNC_MAX_EXTENTS	2
58 
59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * This is a wrapper routine around the xfs_ilock() routine used to centralize
80  * some grungy code.  It is used in places that wish to lock the inode solely
81  * for reading the extents.  The reason these places can't just call
82  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
83  * extents from disk for a file in b-tree format.  If the inode is in b-tree
84  * format, then we need to lock the inode exclusively until the extents are read
85  * in.  Locking it exclusively all the time would limit our parallelism
86  * unnecessarily, though.  What we do instead is check to see if the extents
87  * have been read in yet, and only lock the inode exclusively if they have not.
88  *
89  * The function returns a value which should be given to the corresponding
90  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
91  * actually taken.
92  */
93 uint
94 xfs_ilock_map_shared(
95 	xfs_inode_t	*ip)
96 {
97 	uint	lock_mode;
98 
99 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
100 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
101 		lock_mode = XFS_ILOCK_EXCL;
102 	} else {
103 		lock_mode = XFS_ILOCK_SHARED;
104 	}
105 
106 	xfs_ilock(ip, lock_mode);
107 
108 	return lock_mode;
109 }
110 
111 /*
112  * This is simply the unlock routine to go with xfs_ilock_map_shared().
113  * All it does is call xfs_iunlock() with the given lock_mode.
114  */
115 void
116 xfs_iunlock_map_shared(
117 	xfs_inode_t	*ip,
118 	unsigned int	lock_mode)
119 {
120 	xfs_iunlock(ip, lock_mode);
121 }
122 
123 /*
124  * The xfs inode contains 2 locks: a multi-reader lock called the
125  * i_iolock and a multi-reader lock called the i_lock.  This routine
126  * allows either or both of the locks to be obtained.
127  *
128  * The 2 locks should always be ordered so that the IO lock is
129  * obtained first in order to prevent deadlock.
130  *
131  * ip -- the inode being locked
132  * lock_flags -- this parameter indicates the inode's locks
133  *       to be locked.  It can be:
134  *		XFS_IOLOCK_SHARED,
135  *		XFS_IOLOCK_EXCL,
136  *		XFS_ILOCK_SHARED,
137  *		XFS_ILOCK_EXCL,
138  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
139  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
140  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
141  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
142  */
143 void
144 xfs_ilock(
145 	xfs_inode_t		*ip,
146 	uint			lock_flags)
147 {
148 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149 
150 	/*
151 	 * You can't set both SHARED and EXCL for the same lock,
152 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
153 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
154 	 */
155 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
156 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
157 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
158 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
159 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
160 
161 	if (lock_flags & XFS_IOLOCK_EXCL)
162 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163 	else if (lock_flags & XFS_IOLOCK_SHARED)
164 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165 
166 	if (lock_flags & XFS_ILOCK_EXCL)
167 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 	else if (lock_flags & XFS_ILOCK_SHARED)
169 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170 }
171 
172 /*
173  * This is just like xfs_ilock(), except that the caller
174  * is guaranteed not to sleep.  It returns 1 if it gets
175  * the requested locks and 0 otherwise.  If the IO lock is
176  * obtained but the inode lock cannot be, then the IO lock
177  * is dropped before returning.
178  *
179  * ip -- the inode being locked
180  * lock_flags -- this parameter indicates the inode's locks to be
181  *       to be locked.  See the comment for xfs_ilock() for a list
182  *	 of valid values.
183  */
184 int
185 xfs_ilock_nowait(
186 	xfs_inode_t		*ip,
187 	uint			lock_flags)
188 {
189 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190 
191 	/*
192 	 * You can't set both SHARED and EXCL for the same lock,
193 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
194 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
195 	 */
196 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
197 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
198 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
199 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
200 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
201 
202 	if (lock_flags & XFS_IOLOCK_EXCL) {
203 		if (!mrtryupdate(&ip->i_iolock))
204 			goto out;
205 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
206 		if (!mrtryaccess(&ip->i_iolock))
207 			goto out;
208 	}
209 	if (lock_flags & XFS_ILOCK_EXCL) {
210 		if (!mrtryupdate(&ip->i_lock))
211 			goto out_undo_iolock;
212 	} else if (lock_flags & XFS_ILOCK_SHARED) {
213 		if (!mrtryaccess(&ip->i_lock))
214 			goto out_undo_iolock;
215 	}
216 	return 1;
217 
218  out_undo_iolock:
219 	if (lock_flags & XFS_IOLOCK_EXCL)
220 		mrunlock_excl(&ip->i_iolock);
221 	else if (lock_flags & XFS_IOLOCK_SHARED)
222 		mrunlock_shared(&ip->i_iolock);
223  out:
224 	return 0;
225 }
226 
227 /*
228  * xfs_iunlock() is used to drop the inode locks acquired with
229  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
230  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
231  * that we know which locks to drop.
232  *
233  * ip -- the inode being unlocked
234  * lock_flags -- this parameter indicates the inode's locks to be
235  *       to be unlocked.  See the comment for xfs_ilock() for a list
236  *	 of valid values for this parameter.
237  *
238  */
239 void
240 xfs_iunlock(
241 	xfs_inode_t		*ip,
242 	uint			lock_flags)
243 {
244 	/*
245 	 * You can't set both SHARED and EXCL for the same lock,
246 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
247 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
248 	 */
249 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
250 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
251 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
252 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
253 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
254 	ASSERT(lock_flags != 0);
255 
256 	if (lock_flags & XFS_IOLOCK_EXCL)
257 		mrunlock_excl(&ip->i_iolock);
258 	else if (lock_flags & XFS_IOLOCK_SHARED)
259 		mrunlock_shared(&ip->i_iolock);
260 
261 	if (lock_flags & XFS_ILOCK_EXCL)
262 		mrunlock_excl(&ip->i_lock);
263 	else if (lock_flags & XFS_ILOCK_SHARED)
264 		mrunlock_shared(&ip->i_lock);
265 
266 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
267 }
268 
269 /*
270  * give up write locks.  the i/o lock cannot be held nested
271  * if it is being demoted.
272  */
273 void
274 xfs_ilock_demote(
275 	xfs_inode_t		*ip,
276 	uint			lock_flags)
277 {
278 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
279 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
280 
281 	if (lock_flags & XFS_ILOCK_EXCL)
282 		mrdemote(&ip->i_lock);
283 	if (lock_flags & XFS_IOLOCK_EXCL)
284 		mrdemote(&ip->i_iolock);
285 
286 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287 }
288 
289 #ifdef DEBUG
290 int
291 xfs_isilocked(
292 	xfs_inode_t		*ip,
293 	uint			lock_flags)
294 {
295 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
296 		if (!(lock_flags & XFS_ILOCK_SHARED))
297 			return !!ip->i_lock.mr_writer;
298 		return rwsem_is_locked(&ip->i_lock.mr_lock);
299 	}
300 
301 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
302 		if (!(lock_flags & XFS_IOLOCK_SHARED))
303 			return !!ip->i_iolock.mr_writer;
304 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 	}
306 
307 	ASSERT(0);
308 	return 0;
309 }
310 #endif
311 
312 void
313 __xfs_iflock(
314 	struct xfs_inode	*ip)
315 {
316 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
317 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
318 
319 	do {
320 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
321 		if (xfs_isiflocked(ip))
322 			io_schedule();
323 	} while (!xfs_iflock_nowait(ip));
324 
325 	finish_wait(wq, &wait.wait);
326 }
327 
328 #ifdef DEBUG
329 /*
330  * Make sure that the extents in the given memory buffer
331  * are valid.
332  */
333 STATIC void
334 xfs_validate_extents(
335 	xfs_ifork_t		*ifp,
336 	int			nrecs,
337 	xfs_exntfmt_t		fmt)
338 {
339 	xfs_bmbt_irec_t		irec;
340 	xfs_bmbt_rec_host_t	rec;
341 	int			i;
342 
343 	for (i = 0; i < nrecs; i++) {
344 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
345 		rec.l0 = get_unaligned(&ep->l0);
346 		rec.l1 = get_unaligned(&ep->l1);
347 		xfs_bmbt_get_all(&rec, &irec);
348 		if (fmt == XFS_EXTFMT_NOSTATE)
349 			ASSERT(irec.br_state == XFS_EXT_NORM);
350 	}
351 }
352 #else /* DEBUG */
353 #define xfs_validate_extents(ifp, nrecs, fmt)
354 #endif /* DEBUG */
355 
356 /*
357  * Check that none of the inode's in the buffer have a next
358  * unlinked field of 0.
359  */
360 #if defined(DEBUG)
361 void
362 xfs_inobp_check(
363 	xfs_mount_t	*mp,
364 	xfs_buf_t	*bp)
365 {
366 	int		i;
367 	int		j;
368 	xfs_dinode_t	*dip;
369 
370 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
371 
372 	for (i = 0; i < j; i++) {
373 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
374 					i * mp->m_sb.sb_inodesize);
375 		if (!dip->di_next_unlinked)  {
376 			xfs_alert(mp,
377 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
378 				bp);
379 			ASSERT(dip->di_next_unlinked);
380 		}
381 	}
382 }
383 #endif
384 
385 static void
386 xfs_inode_buf_verify(
387 	struct xfs_buf	*bp)
388 {
389 	struct xfs_mount *mp = bp->b_target->bt_mount;
390 	int		i;
391 	int		ni;
392 
393 	/*
394 	 * Validate the magic number and version of every inode in the buffer
395 	 */
396 	ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
397 	for (i = 0; i < ni; i++) {
398 		int		di_ok;
399 		xfs_dinode_t	*dip;
400 
401 		dip = (struct xfs_dinode *)xfs_buf_offset(bp,
402 					(i << mp->m_sb.sb_inodelog));
403 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
404 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
405 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
406 						XFS_ERRTAG_ITOBP_INOTOBP,
407 						XFS_RANDOM_ITOBP_INOTOBP))) {
408 			xfs_buf_ioerror(bp, EFSCORRUPTED);
409 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
410 					     mp, dip);
411 #ifdef DEBUG
412 			xfs_emerg(mp,
413 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
414 				(unsigned long long)bp->b_bn, i,
415 				be16_to_cpu(dip->di_magic));
416 			ASSERT(0);
417 #endif
418 		}
419 	}
420 	xfs_inobp_check(mp, bp);
421 }
422 
423 
424 static void
425 xfs_inode_buf_read_verify(
426 	struct xfs_buf	*bp)
427 {
428 	xfs_inode_buf_verify(bp);
429 }
430 
431 static void
432 xfs_inode_buf_write_verify(
433 	struct xfs_buf	*bp)
434 {
435 	xfs_inode_buf_verify(bp);
436 }
437 
438 const struct xfs_buf_ops xfs_inode_buf_ops = {
439 	.verify_read = xfs_inode_buf_read_verify,
440 	.verify_write = xfs_inode_buf_write_verify,
441 };
442 
443 
444 /*
445  * This routine is called to map an inode to the buffer containing the on-disk
446  * version of the inode.  It returns a pointer to the buffer containing the
447  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
448  * pointer to the on-disk inode within that buffer.
449  *
450  * If a non-zero error is returned, then the contents of bpp and dipp are
451  * undefined.
452  */
453 int
454 xfs_imap_to_bp(
455 	struct xfs_mount	*mp,
456 	struct xfs_trans	*tp,
457 	struct xfs_imap		*imap,
458 	struct xfs_dinode       **dipp,
459 	struct xfs_buf		**bpp,
460 	uint			buf_flags,
461 	uint			iget_flags)
462 {
463 	struct xfs_buf		*bp;
464 	int			error;
465 
466 	buf_flags |= XBF_UNMAPPED;
467 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
468 				   (int)imap->im_len, buf_flags, &bp,
469 				   &xfs_inode_buf_ops);
470 	if (error) {
471 		if (error == EAGAIN) {
472 			ASSERT(buf_flags & XBF_TRYLOCK);
473 			return error;
474 		}
475 
476 		if (error == EFSCORRUPTED &&
477 		    (iget_flags & XFS_IGET_UNTRUSTED))
478 			return XFS_ERROR(EINVAL);
479 
480 		xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
481 			__func__, error);
482 		return error;
483 	}
484 
485 	*bpp = bp;
486 	*dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
487 	return 0;
488 }
489 
490 /*
491  * Move inode type and inode format specific information from the
492  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
493  * this means set if_rdev to the proper value.  For files, directories,
494  * and symlinks this means to bring in the in-line data or extent
495  * pointers.  For a file in B-tree format, only the root is immediately
496  * brought in-core.  The rest will be in-lined in if_extents when it
497  * is first referenced (see xfs_iread_extents()).
498  */
499 STATIC int
500 xfs_iformat(
501 	xfs_inode_t		*ip,
502 	xfs_dinode_t		*dip)
503 {
504 	xfs_attr_shortform_t	*atp;
505 	int			size;
506 	int			error = 0;
507 	xfs_fsize_t             di_size;
508 
509 	if (unlikely(be32_to_cpu(dip->di_nextents) +
510 		     be16_to_cpu(dip->di_anextents) >
511 		     be64_to_cpu(dip->di_nblocks))) {
512 		xfs_warn(ip->i_mount,
513 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
514 			(unsigned long long)ip->i_ino,
515 			(int)(be32_to_cpu(dip->di_nextents) +
516 			      be16_to_cpu(dip->di_anextents)),
517 			(unsigned long long)
518 				be64_to_cpu(dip->di_nblocks));
519 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
520 				     ip->i_mount, dip);
521 		return XFS_ERROR(EFSCORRUPTED);
522 	}
523 
524 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
525 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
526 			(unsigned long long)ip->i_ino,
527 			dip->di_forkoff);
528 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
529 				     ip->i_mount, dip);
530 		return XFS_ERROR(EFSCORRUPTED);
531 	}
532 
533 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
534 		     !ip->i_mount->m_rtdev_targp)) {
535 		xfs_warn(ip->i_mount,
536 			"corrupt dinode %Lu, has realtime flag set.",
537 			ip->i_ino);
538 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
539 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
540 		return XFS_ERROR(EFSCORRUPTED);
541 	}
542 
543 	switch (ip->i_d.di_mode & S_IFMT) {
544 	case S_IFIFO:
545 	case S_IFCHR:
546 	case S_IFBLK:
547 	case S_IFSOCK:
548 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
549 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
550 					      ip->i_mount, dip);
551 			return XFS_ERROR(EFSCORRUPTED);
552 		}
553 		ip->i_d.di_size = 0;
554 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
555 		break;
556 
557 	case S_IFREG:
558 	case S_IFLNK:
559 	case S_IFDIR:
560 		switch (dip->di_format) {
561 		case XFS_DINODE_FMT_LOCAL:
562 			/*
563 			 * no local regular files yet
564 			 */
565 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
566 				xfs_warn(ip->i_mount,
567 			"corrupt inode %Lu (local format for regular file).",
568 					(unsigned long long) ip->i_ino);
569 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
570 						     XFS_ERRLEVEL_LOW,
571 						     ip->i_mount, dip);
572 				return XFS_ERROR(EFSCORRUPTED);
573 			}
574 
575 			di_size = be64_to_cpu(dip->di_size);
576 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
577 				xfs_warn(ip->i_mount,
578 			"corrupt inode %Lu (bad size %Ld for local inode).",
579 					(unsigned long long) ip->i_ino,
580 					(long long) di_size);
581 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
582 						     XFS_ERRLEVEL_LOW,
583 						     ip->i_mount, dip);
584 				return XFS_ERROR(EFSCORRUPTED);
585 			}
586 
587 			size = (int)di_size;
588 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
589 			break;
590 		case XFS_DINODE_FMT_EXTENTS:
591 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
592 			break;
593 		case XFS_DINODE_FMT_BTREE:
594 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
595 			break;
596 		default:
597 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
598 					 ip->i_mount);
599 			return XFS_ERROR(EFSCORRUPTED);
600 		}
601 		break;
602 
603 	default:
604 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
605 		return XFS_ERROR(EFSCORRUPTED);
606 	}
607 	if (error) {
608 		return error;
609 	}
610 	if (!XFS_DFORK_Q(dip))
611 		return 0;
612 
613 	ASSERT(ip->i_afp == NULL);
614 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
615 
616 	switch (dip->di_aformat) {
617 	case XFS_DINODE_FMT_LOCAL:
618 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
619 		size = be16_to_cpu(atp->hdr.totsize);
620 
621 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
622 			xfs_warn(ip->i_mount,
623 				"corrupt inode %Lu (bad attr fork size %Ld).",
624 				(unsigned long long) ip->i_ino,
625 				(long long) size);
626 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
627 					     XFS_ERRLEVEL_LOW,
628 					     ip->i_mount, dip);
629 			return XFS_ERROR(EFSCORRUPTED);
630 		}
631 
632 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
633 		break;
634 	case XFS_DINODE_FMT_EXTENTS:
635 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
636 		break;
637 	case XFS_DINODE_FMT_BTREE:
638 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
639 		break;
640 	default:
641 		error = XFS_ERROR(EFSCORRUPTED);
642 		break;
643 	}
644 	if (error) {
645 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
646 		ip->i_afp = NULL;
647 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
648 	}
649 	return error;
650 }
651 
652 /*
653  * The file is in-lined in the on-disk inode.
654  * If it fits into if_inline_data, then copy
655  * it there, otherwise allocate a buffer for it
656  * and copy the data there.  Either way, set
657  * if_data to point at the data.
658  * If we allocate a buffer for the data, make
659  * sure that its size is a multiple of 4 and
660  * record the real size in i_real_bytes.
661  */
662 STATIC int
663 xfs_iformat_local(
664 	xfs_inode_t	*ip,
665 	xfs_dinode_t	*dip,
666 	int		whichfork,
667 	int		size)
668 {
669 	xfs_ifork_t	*ifp;
670 	int		real_size;
671 
672 	/*
673 	 * If the size is unreasonable, then something
674 	 * is wrong and we just bail out rather than crash in
675 	 * kmem_alloc() or memcpy() below.
676 	 */
677 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
678 		xfs_warn(ip->i_mount,
679 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
680 			(unsigned long long) ip->i_ino, size,
681 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
682 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
683 				     ip->i_mount, dip);
684 		return XFS_ERROR(EFSCORRUPTED);
685 	}
686 	ifp = XFS_IFORK_PTR(ip, whichfork);
687 	real_size = 0;
688 	if (size == 0)
689 		ifp->if_u1.if_data = NULL;
690 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
691 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
692 	else {
693 		real_size = roundup(size, 4);
694 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
695 	}
696 	ifp->if_bytes = size;
697 	ifp->if_real_bytes = real_size;
698 	if (size)
699 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
700 	ifp->if_flags &= ~XFS_IFEXTENTS;
701 	ifp->if_flags |= XFS_IFINLINE;
702 	return 0;
703 }
704 
705 /*
706  * The file consists of a set of extents all
707  * of which fit into the on-disk inode.
708  * If there are few enough extents to fit into
709  * the if_inline_ext, then copy them there.
710  * Otherwise allocate a buffer for them and copy
711  * them into it.  Either way, set if_extents
712  * to point at the extents.
713  */
714 STATIC int
715 xfs_iformat_extents(
716 	xfs_inode_t	*ip,
717 	xfs_dinode_t	*dip,
718 	int		whichfork)
719 {
720 	xfs_bmbt_rec_t	*dp;
721 	xfs_ifork_t	*ifp;
722 	int		nex;
723 	int		size;
724 	int		i;
725 
726 	ifp = XFS_IFORK_PTR(ip, whichfork);
727 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
728 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
729 
730 	/*
731 	 * If the number of extents is unreasonable, then something
732 	 * is wrong and we just bail out rather than crash in
733 	 * kmem_alloc() or memcpy() below.
734 	 */
735 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
736 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
737 			(unsigned long long) ip->i_ino, nex);
738 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
739 				     ip->i_mount, dip);
740 		return XFS_ERROR(EFSCORRUPTED);
741 	}
742 
743 	ifp->if_real_bytes = 0;
744 	if (nex == 0)
745 		ifp->if_u1.if_extents = NULL;
746 	else if (nex <= XFS_INLINE_EXTS)
747 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
748 	else
749 		xfs_iext_add(ifp, 0, nex);
750 
751 	ifp->if_bytes = size;
752 	if (size) {
753 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
754 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
755 		for (i = 0; i < nex; i++, dp++) {
756 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
757 			ep->l0 = get_unaligned_be64(&dp->l0);
758 			ep->l1 = get_unaligned_be64(&dp->l1);
759 		}
760 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
761 		if (whichfork != XFS_DATA_FORK ||
762 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
763 				if (unlikely(xfs_check_nostate_extents(
764 				    ifp, 0, nex))) {
765 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
766 							 XFS_ERRLEVEL_LOW,
767 							 ip->i_mount);
768 					return XFS_ERROR(EFSCORRUPTED);
769 				}
770 	}
771 	ifp->if_flags |= XFS_IFEXTENTS;
772 	return 0;
773 }
774 
775 /*
776  * The file has too many extents to fit into
777  * the inode, so they are in B-tree format.
778  * Allocate a buffer for the root of the B-tree
779  * and copy the root into it.  The i_extents
780  * field will remain NULL until all of the
781  * extents are read in (when they are needed).
782  */
783 STATIC int
784 xfs_iformat_btree(
785 	xfs_inode_t		*ip,
786 	xfs_dinode_t		*dip,
787 	int			whichfork)
788 {
789 	xfs_bmdr_block_t	*dfp;
790 	xfs_ifork_t		*ifp;
791 	/* REFERENCED */
792 	int			nrecs;
793 	int			size;
794 
795 	ifp = XFS_IFORK_PTR(ip, whichfork);
796 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
797 	size = XFS_BMAP_BROOT_SPACE(dfp);
798 	nrecs = be16_to_cpu(dfp->bb_numrecs);
799 
800 	/*
801 	 * blow out if -- fork has less extents than can fit in
802 	 * fork (fork shouldn't be a btree format), root btree
803 	 * block has more records than can fit into the fork,
804 	 * or the number of extents is greater than the number of
805 	 * blocks.
806 	 */
807 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
808 			XFS_IFORK_MAXEXT(ip, whichfork) ||
809 		     XFS_BMDR_SPACE_CALC(nrecs) >
810 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
811 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
812 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
813 			(unsigned long long) ip->i_ino);
814 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
815 				 ip->i_mount, dip);
816 		return XFS_ERROR(EFSCORRUPTED);
817 	}
818 
819 	ifp->if_broot_bytes = size;
820 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
821 	ASSERT(ifp->if_broot != NULL);
822 	/*
823 	 * Copy and convert from the on-disk structure
824 	 * to the in-memory structure.
825 	 */
826 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
827 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
828 			 ifp->if_broot, size);
829 	ifp->if_flags &= ~XFS_IFEXTENTS;
830 	ifp->if_flags |= XFS_IFBROOT;
831 
832 	return 0;
833 }
834 
835 STATIC void
836 xfs_dinode_from_disk(
837 	xfs_icdinode_t		*to,
838 	xfs_dinode_t		*from)
839 {
840 	to->di_magic = be16_to_cpu(from->di_magic);
841 	to->di_mode = be16_to_cpu(from->di_mode);
842 	to->di_version = from ->di_version;
843 	to->di_format = from->di_format;
844 	to->di_onlink = be16_to_cpu(from->di_onlink);
845 	to->di_uid = be32_to_cpu(from->di_uid);
846 	to->di_gid = be32_to_cpu(from->di_gid);
847 	to->di_nlink = be32_to_cpu(from->di_nlink);
848 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
849 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
850 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
851 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
852 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
853 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
854 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
855 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
856 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
857 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
858 	to->di_size = be64_to_cpu(from->di_size);
859 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
860 	to->di_extsize = be32_to_cpu(from->di_extsize);
861 	to->di_nextents = be32_to_cpu(from->di_nextents);
862 	to->di_anextents = be16_to_cpu(from->di_anextents);
863 	to->di_forkoff = from->di_forkoff;
864 	to->di_aformat	= from->di_aformat;
865 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
866 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
867 	to->di_flags	= be16_to_cpu(from->di_flags);
868 	to->di_gen	= be32_to_cpu(from->di_gen);
869 }
870 
871 void
872 xfs_dinode_to_disk(
873 	xfs_dinode_t		*to,
874 	xfs_icdinode_t		*from)
875 {
876 	to->di_magic = cpu_to_be16(from->di_magic);
877 	to->di_mode = cpu_to_be16(from->di_mode);
878 	to->di_version = from ->di_version;
879 	to->di_format = from->di_format;
880 	to->di_onlink = cpu_to_be16(from->di_onlink);
881 	to->di_uid = cpu_to_be32(from->di_uid);
882 	to->di_gid = cpu_to_be32(from->di_gid);
883 	to->di_nlink = cpu_to_be32(from->di_nlink);
884 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
885 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
886 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
887 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
888 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
889 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
890 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
891 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
892 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
893 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
894 	to->di_size = cpu_to_be64(from->di_size);
895 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
896 	to->di_extsize = cpu_to_be32(from->di_extsize);
897 	to->di_nextents = cpu_to_be32(from->di_nextents);
898 	to->di_anextents = cpu_to_be16(from->di_anextents);
899 	to->di_forkoff = from->di_forkoff;
900 	to->di_aformat = from->di_aformat;
901 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
902 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
903 	to->di_flags = cpu_to_be16(from->di_flags);
904 	to->di_gen = cpu_to_be32(from->di_gen);
905 }
906 
907 STATIC uint
908 _xfs_dic2xflags(
909 	__uint16_t		di_flags)
910 {
911 	uint			flags = 0;
912 
913 	if (di_flags & XFS_DIFLAG_ANY) {
914 		if (di_flags & XFS_DIFLAG_REALTIME)
915 			flags |= XFS_XFLAG_REALTIME;
916 		if (di_flags & XFS_DIFLAG_PREALLOC)
917 			flags |= XFS_XFLAG_PREALLOC;
918 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
919 			flags |= XFS_XFLAG_IMMUTABLE;
920 		if (di_flags & XFS_DIFLAG_APPEND)
921 			flags |= XFS_XFLAG_APPEND;
922 		if (di_flags & XFS_DIFLAG_SYNC)
923 			flags |= XFS_XFLAG_SYNC;
924 		if (di_flags & XFS_DIFLAG_NOATIME)
925 			flags |= XFS_XFLAG_NOATIME;
926 		if (di_flags & XFS_DIFLAG_NODUMP)
927 			flags |= XFS_XFLAG_NODUMP;
928 		if (di_flags & XFS_DIFLAG_RTINHERIT)
929 			flags |= XFS_XFLAG_RTINHERIT;
930 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
931 			flags |= XFS_XFLAG_PROJINHERIT;
932 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
933 			flags |= XFS_XFLAG_NOSYMLINKS;
934 		if (di_flags & XFS_DIFLAG_EXTSIZE)
935 			flags |= XFS_XFLAG_EXTSIZE;
936 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
937 			flags |= XFS_XFLAG_EXTSZINHERIT;
938 		if (di_flags & XFS_DIFLAG_NODEFRAG)
939 			flags |= XFS_XFLAG_NODEFRAG;
940 		if (di_flags & XFS_DIFLAG_FILESTREAM)
941 			flags |= XFS_XFLAG_FILESTREAM;
942 	}
943 
944 	return flags;
945 }
946 
947 uint
948 xfs_ip2xflags(
949 	xfs_inode_t		*ip)
950 {
951 	xfs_icdinode_t		*dic = &ip->i_d;
952 
953 	return _xfs_dic2xflags(dic->di_flags) |
954 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
955 }
956 
957 uint
958 xfs_dic2xflags(
959 	xfs_dinode_t		*dip)
960 {
961 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
962 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
963 }
964 
965 /*
966  * Read the disk inode attributes into the in-core inode structure.
967  */
968 int
969 xfs_iread(
970 	xfs_mount_t	*mp,
971 	xfs_trans_t	*tp,
972 	xfs_inode_t	*ip,
973 	uint		iget_flags)
974 {
975 	xfs_buf_t	*bp;
976 	xfs_dinode_t	*dip;
977 	int		error;
978 
979 	/*
980 	 * Fill in the location information in the in-core inode.
981 	 */
982 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
983 	if (error)
984 		return error;
985 
986 	/*
987 	 * Get pointers to the on-disk inode and the buffer containing it.
988 	 */
989 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
990 	if (error)
991 		return error;
992 
993 	/*
994 	 * If we got something that isn't an inode it means someone
995 	 * (nfs or dmi) has a stale handle.
996 	 */
997 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
998 #ifdef DEBUG
999 		xfs_alert(mp,
1000 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
1001 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1002 #endif /* DEBUG */
1003 		error = XFS_ERROR(EINVAL);
1004 		goto out_brelse;
1005 	}
1006 
1007 	/*
1008 	 * If the on-disk inode is already linked to a directory
1009 	 * entry, copy all of the inode into the in-core inode.
1010 	 * xfs_iformat() handles copying in the inode format
1011 	 * specific information.
1012 	 * Otherwise, just get the truly permanent information.
1013 	 */
1014 	if (dip->di_mode) {
1015 		xfs_dinode_from_disk(&ip->i_d, dip);
1016 		error = xfs_iformat(ip, dip);
1017 		if (error)  {
1018 #ifdef DEBUG
1019 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1020 				__func__, error);
1021 #endif /* DEBUG */
1022 			goto out_brelse;
1023 		}
1024 	} else {
1025 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1026 		ip->i_d.di_version = dip->di_version;
1027 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1028 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1029 		/*
1030 		 * Make sure to pull in the mode here as well in
1031 		 * case the inode is released without being used.
1032 		 * This ensures that xfs_inactive() will see that
1033 		 * the inode is already free and not try to mess
1034 		 * with the uninitialized part of it.
1035 		 */
1036 		ip->i_d.di_mode = 0;
1037 	}
1038 
1039 	/*
1040 	 * The inode format changed when we moved the link count and
1041 	 * made it 32 bits long.  If this is an old format inode,
1042 	 * convert it in memory to look like a new one.  If it gets
1043 	 * flushed to disk we will convert back before flushing or
1044 	 * logging it.  We zero out the new projid field and the old link
1045 	 * count field.  We'll handle clearing the pad field (the remains
1046 	 * of the old uuid field) when we actually convert the inode to
1047 	 * the new format. We don't change the version number so that we
1048 	 * can distinguish this from a real new format inode.
1049 	 */
1050 	if (ip->i_d.di_version == 1) {
1051 		ip->i_d.di_nlink = ip->i_d.di_onlink;
1052 		ip->i_d.di_onlink = 0;
1053 		xfs_set_projid(ip, 0);
1054 	}
1055 
1056 	ip->i_delayed_blks = 0;
1057 
1058 	/*
1059 	 * Mark the buffer containing the inode as something to keep
1060 	 * around for a while.  This helps to keep recently accessed
1061 	 * meta-data in-core longer.
1062 	 */
1063 	xfs_buf_set_ref(bp, XFS_INO_REF);
1064 
1065 	/*
1066 	 * Use xfs_trans_brelse() to release the buffer containing the
1067 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1068 	 * in xfs_imap_to_bp() above.  If tp is NULL, this is just a normal
1069 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
1070 	 * will only release the buffer if it is not dirty within the
1071 	 * transaction.  It will be OK to release the buffer in this case,
1072 	 * because inodes on disk are never destroyed and we will be
1073 	 * locking the new in-core inode before putting it in the hash
1074 	 * table where other processes can find it.  Thus we don't have
1075 	 * to worry about the inode being changed just because we released
1076 	 * the buffer.
1077 	 */
1078  out_brelse:
1079 	xfs_trans_brelse(tp, bp);
1080 	return error;
1081 }
1082 
1083 /*
1084  * Read in extents from a btree-format inode.
1085  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1086  */
1087 int
1088 xfs_iread_extents(
1089 	xfs_trans_t	*tp,
1090 	xfs_inode_t	*ip,
1091 	int		whichfork)
1092 {
1093 	int		error;
1094 	xfs_ifork_t	*ifp;
1095 	xfs_extnum_t	nextents;
1096 
1097 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1098 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1099 				 ip->i_mount);
1100 		return XFS_ERROR(EFSCORRUPTED);
1101 	}
1102 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1103 	ifp = XFS_IFORK_PTR(ip, whichfork);
1104 
1105 	/*
1106 	 * We know that the size is valid (it's checked in iformat_btree)
1107 	 */
1108 	ifp->if_bytes = ifp->if_real_bytes = 0;
1109 	ifp->if_flags |= XFS_IFEXTENTS;
1110 	xfs_iext_add(ifp, 0, nextents);
1111 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1112 	if (error) {
1113 		xfs_iext_destroy(ifp);
1114 		ifp->if_flags &= ~XFS_IFEXTENTS;
1115 		return error;
1116 	}
1117 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Allocate an inode on disk and return a copy of its in-core version.
1123  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1124  * appropriately within the inode.  The uid and gid for the inode are
1125  * set according to the contents of the given cred structure.
1126  *
1127  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1128  * has a free inode available, call xfs_iget() to obtain the in-core
1129  * version of the allocated inode.  Finally, fill in the inode and
1130  * log its initial contents.  In this case, ialloc_context would be
1131  * set to NULL.
1132  *
1133  * If xfs_dialloc() does not have an available inode, it will replenish
1134  * its supply by doing an allocation. Since we can only do one
1135  * allocation within a transaction without deadlocks, we must commit
1136  * the current transaction before returning the inode itself.
1137  * In this case, therefore, we will set ialloc_context and return.
1138  * The caller should then commit the current transaction, start a new
1139  * transaction, and call xfs_ialloc() again to actually get the inode.
1140  *
1141  * To ensure that some other process does not grab the inode that
1142  * was allocated during the first call to xfs_ialloc(), this routine
1143  * also returns the [locked] bp pointing to the head of the freelist
1144  * as ialloc_context.  The caller should hold this buffer across
1145  * the commit and pass it back into this routine on the second call.
1146  *
1147  * If we are allocating quota inodes, we do not have a parent inode
1148  * to attach to or associate with (i.e. pip == NULL) because they
1149  * are not linked into the directory structure - they are attached
1150  * directly to the superblock - and so have no parent.
1151  */
1152 int
1153 xfs_ialloc(
1154 	xfs_trans_t	*tp,
1155 	xfs_inode_t	*pip,
1156 	umode_t		mode,
1157 	xfs_nlink_t	nlink,
1158 	xfs_dev_t	rdev,
1159 	prid_t		prid,
1160 	int		okalloc,
1161 	xfs_buf_t	**ialloc_context,
1162 	xfs_inode_t	**ipp)
1163 {
1164 	xfs_ino_t	ino;
1165 	xfs_inode_t	*ip;
1166 	uint		flags;
1167 	int		error;
1168 	timespec_t	tv;
1169 	int		filestreams = 0;
1170 
1171 	/*
1172 	 * Call the space management code to pick
1173 	 * the on-disk inode to be allocated.
1174 	 */
1175 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1176 			    ialloc_context, &ino);
1177 	if (error)
1178 		return error;
1179 	if (*ialloc_context || ino == NULLFSINO) {
1180 		*ipp = NULL;
1181 		return 0;
1182 	}
1183 	ASSERT(*ialloc_context == NULL);
1184 
1185 	/*
1186 	 * Get the in-core inode with the lock held exclusively.
1187 	 * This is because we're setting fields here we need
1188 	 * to prevent others from looking at until we're done.
1189 	 */
1190 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1191 			 XFS_ILOCK_EXCL, &ip);
1192 	if (error)
1193 		return error;
1194 	ASSERT(ip != NULL);
1195 
1196 	ip->i_d.di_mode = mode;
1197 	ip->i_d.di_onlink = 0;
1198 	ip->i_d.di_nlink = nlink;
1199 	ASSERT(ip->i_d.di_nlink == nlink);
1200 	ip->i_d.di_uid = current_fsuid();
1201 	ip->i_d.di_gid = current_fsgid();
1202 	xfs_set_projid(ip, prid);
1203 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1204 
1205 	/*
1206 	 * If the superblock version is up to where we support new format
1207 	 * inodes and this is currently an old format inode, then change
1208 	 * the inode version number now.  This way we only do the conversion
1209 	 * here rather than here and in the flush/logging code.
1210 	 */
1211 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1212 	    ip->i_d.di_version == 1) {
1213 		ip->i_d.di_version = 2;
1214 		/*
1215 		 * We've already zeroed the old link count, the projid field,
1216 		 * and the pad field.
1217 		 */
1218 	}
1219 
1220 	/*
1221 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1222 	 */
1223 	if ((prid != 0) && (ip->i_d.di_version == 1))
1224 		xfs_bump_ino_vers2(tp, ip);
1225 
1226 	if (pip && XFS_INHERIT_GID(pip)) {
1227 		ip->i_d.di_gid = pip->i_d.di_gid;
1228 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1229 			ip->i_d.di_mode |= S_ISGID;
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * If the group ID of the new file does not match the effective group
1235 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1236 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1237 	 */
1238 	if ((irix_sgid_inherit) &&
1239 	    (ip->i_d.di_mode & S_ISGID) &&
1240 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1241 		ip->i_d.di_mode &= ~S_ISGID;
1242 	}
1243 
1244 	ip->i_d.di_size = 0;
1245 	ip->i_d.di_nextents = 0;
1246 	ASSERT(ip->i_d.di_nblocks == 0);
1247 
1248 	nanotime(&tv);
1249 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1250 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1251 	ip->i_d.di_atime = ip->i_d.di_mtime;
1252 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1253 
1254 	/*
1255 	 * di_gen will have been taken care of in xfs_iread.
1256 	 */
1257 	ip->i_d.di_extsize = 0;
1258 	ip->i_d.di_dmevmask = 0;
1259 	ip->i_d.di_dmstate = 0;
1260 	ip->i_d.di_flags = 0;
1261 	flags = XFS_ILOG_CORE;
1262 	switch (mode & S_IFMT) {
1263 	case S_IFIFO:
1264 	case S_IFCHR:
1265 	case S_IFBLK:
1266 	case S_IFSOCK:
1267 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1268 		ip->i_df.if_u2.if_rdev = rdev;
1269 		ip->i_df.if_flags = 0;
1270 		flags |= XFS_ILOG_DEV;
1271 		break;
1272 	case S_IFREG:
1273 		/*
1274 		 * we can't set up filestreams until after the VFS inode
1275 		 * is set up properly.
1276 		 */
1277 		if (pip && xfs_inode_is_filestream(pip))
1278 			filestreams = 1;
1279 		/* fall through */
1280 	case S_IFDIR:
1281 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1282 			uint	di_flags = 0;
1283 
1284 			if (S_ISDIR(mode)) {
1285 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1286 					di_flags |= XFS_DIFLAG_RTINHERIT;
1287 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1288 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1289 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1290 				}
1291 			} else if (S_ISREG(mode)) {
1292 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1293 					di_flags |= XFS_DIFLAG_REALTIME;
1294 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1295 					di_flags |= XFS_DIFLAG_EXTSIZE;
1296 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1297 				}
1298 			}
1299 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1300 			    xfs_inherit_noatime)
1301 				di_flags |= XFS_DIFLAG_NOATIME;
1302 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1303 			    xfs_inherit_nodump)
1304 				di_flags |= XFS_DIFLAG_NODUMP;
1305 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1306 			    xfs_inherit_sync)
1307 				di_flags |= XFS_DIFLAG_SYNC;
1308 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1309 			    xfs_inherit_nosymlinks)
1310 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1311 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1312 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1313 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1314 			    xfs_inherit_nodefrag)
1315 				di_flags |= XFS_DIFLAG_NODEFRAG;
1316 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1317 				di_flags |= XFS_DIFLAG_FILESTREAM;
1318 			ip->i_d.di_flags |= di_flags;
1319 		}
1320 		/* FALLTHROUGH */
1321 	case S_IFLNK:
1322 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1323 		ip->i_df.if_flags = XFS_IFEXTENTS;
1324 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1325 		ip->i_df.if_u1.if_extents = NULL;
1326 		break;
1327 	default:
1328 		ASSERT(0);
1329 	}
1330 	/*
1331 	 * Attribute fork settings for new inode.
1332 	 */
1333 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1334 	ip->i_d.di_anextents = 0;
1335 
1336 	/*
1337 	 * Log the new values stuffed into the inode.
1338 	 */
1339 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1340 	xfs_trans_log_inode(tp, ip, flags);
1341 
1342 	/* now that we have an i_mode we can setup inode ops and unlock */
1343 	xfs_setup_inode(ip);
1344 
1345 	/* now we have set up the vfs inode we can associate the filestream */
1346 	if (filestreams) {
1347 		error = xfs_filestream_associate(pip, ip);
1348 		if (error < 0)
1349 			return -error;
1350 		if (!error)
1351 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1352 	}
1353 
1354 	*ipp = ip;
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Free up the underlying blocks past new_size.  The new size must be smaller
1360  * than the current size.  This routine can be used both for the attribute and
1361  * data fork, and does not modify the inode size, which is left to the caller.
1362  *
1363  * The transaction passed to this routine must have made a permanent log
1364  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1365  * given transaction and start new ones, so make sure everything involved in
1366  * the transaction is tidy before calling here.  Some transaction will be
1367  * returned to the caller to be committed.  The incoming transaction must
1368  * already include the inode, and both inode locks must be held exclusively.
1369  * The inode must also be "held" within the transaction.  On return the inode
1370  * will be "held" within the returned transaction.  This routine does NOT
1371  * require any disk space to be reserved for it within the transaction.
1372  *
1373  * If we get an error, we must return with the inode locked and linked into the
1374  * current transaction. This keeps things simple for the higher level code,
1375  * because it always knows that the inode is locked and held in the transaction
1376  * that returns to it whether errors occur or not.  We don't mark the inode
1377  * dirty on error so that transactions can be easily aborted if possible.
1378  */
1379 int
1380 xfs_itruncate_extents(
1381 	struct xfs_trans	**tpp,
1382 	struct xfs_inode	*ip,
1383 	int			whichfork,
1384 	xfs_fsize_t		new_size)
1385 {
1386 	struct xfs_mount	*mp = ip->i_mount;
1387 	struct xfs_trans	*tp = *tpp;
1388 	struct xfs_trans	*ntp;
1389 	xfs_bmap_free_t		free_list;
1390 	xfs_fsblock_t		first_block;
1391 	xfs_fileoff_t		first_unmap_block;
1392 	xfs_fileoff_t		last_block;
1393 	xfs_filblks_t		unmap_len;
1394 	int			committed;
1395 	int			error = 0;
1396 	int			done = 0;
1397 
1398 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1399 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1400 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1401 	ASSERT(new_size <= XFS_ISIZE(ip));
1402 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1403 	ASSERT(ip->i_itemp != NULL);
1404 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1405 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1406 
1407 	trace_xfs_itruncate_extents_start(ip, new_size);
1408 
1409 	/*
1410 	 * Since it is possible for space to become allocated beyond
1411 	 * the end of the file (in a crash where the space is allocated
1412 	 * but the inode size is not yet updated), simply remove any
1413 	 * blocks which show up between the new EOF and the maximum
1414 	 * possible file size.  If the first block to be removed is
1415 	 * beyond the maximum file size (ie it is the same as last_block),
1416 	 * then there is nothing to do.
1417 	 */
1418 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1419 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1420 	if (first_unmap_block == last_block)
1421 		return 0;
1422 
1423 	ASSERT(first_unmap_block < last_block);
1424 	unmap_len = last_block - first_unmap_block + 1;
1425 	while (!done) {
1426 		xfs_bmap_init(&free_list, &first_block);
1427 		error = xfs_bunmapi(tp, ip,
1428 				    first_unmap_block, unmap_len,
1429 				    xfs_bmapi_aflag(whichfork),
1430 				    XFS_ITRUNC_MAX_EXTENTS,
1431 				    &first_block, &free_list,
1432 				    &done);
1433 		if (error)
1434 			goto out_bmap_cancel;
1435 
1436 		/*
1437 		 * Duplicate the transaction that has the permanent
1438 		 * reservation and commit the old transaction.
1439 		 */
1440 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1441 		if (committed)
1442 			xfs_trans_ijoin(tp, ip, 0);
1443 		if (error)
1444 			goto out_bmap_cancel;
1445 
1446 		if (committed) {
1447 			/*
1448 			 * Mark the inode dirty so it will be logged and
1449 			 * moved forward in the log as part of every commit.
1450 			 */
1451 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1452 		}
1453 
1454 		ntp = xfs_trans_dup(tp);
1455 		error = xfs_trans_commit(tp, 0);
1456 		tp = ntp;
1457 
1458 		xfs_trans_ijoin(tp, ip, 0);
1459 
1460 		if (error)
1461 			goto out;
1462 
1463 		/*
1464 		 * Transaction commit worked ok so we can drop the extra ticket
1465 		 * reference that we gained in xfs_trans_dup()
1466 		 */
1467 		xfs_log_ticket_put(tp->t_ticket);
1468 		error = xfs_trans_reserve(tp, 0,
1469 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1470 					XFS_TRANS_PERM_LOG_RES,
1471 					XFS_ITRUNCATE_LOG_COUNT);
1472 		if (error)
1473 			goto out;
1474 	}
1475 
1476 	/*
1477 	 * Always re-log the inode so that our permanent transaction can keep
1478 	 * on rolling it forward in the log.
1479 	 */
1480 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1481 
1482 	trace_xfs_itruncate_extents_end(ip, new_size);
1483 
1484 out:
1485 	*tpp = tp;
1486 	return error;
1487 out_bmap_cancel:
1488 	/*
1489 	 * If the bunmapi call encounters an error, return to the caller where
1490 	 * the transaction can be properly aborted.  We just need to make sure
1491 	 * we're not holding any resources that we were not when we came in.
1492 	 */
1493 	xfs_bmap_cancel(&free_list);
1494 	goto out;
1495 }
1496 
1497 /*
1498  * This is called when the inode's link count goes to 0.
1499  * We place the on-disk inode on a list in the AGI.  It
1500  * will be pulled from this list when the inode is freed.
1501  */
1502 int
1503 xfs_iunlink(
1504 	xfs_trans_t	*tp,
1505 	xfs_inode_t	*ip)
1506 {
1507 	xfs_mount_t	*mp;
1508 	xfs_agi_t	*agi;
1509 	xfs_dinode_t	*dip;
1510 	xfs_buf_t	*agibp;
1511 	xfs_buf_t	*ibp;
1512 	xfs_agino_t	agino;
1513 	short		bucket_index;
1514 	int		offset;
1515 	int		error;
1516 
1517 	ASSERT(ip->i_d.di_nlink == 0);
1518 	ASSERT(ip->i_d.di_mode != 0);
1519 
1520 	mp = tp->t_mountp;
1521 
1522 	/*
1523 	 * Get the agi buffer first.  It ensures lock ordering
1524 	 * on the list.
1525 	 */
1526 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1527 	if (error)
1528 		return error;
1529 	agi = XFS_BUF_TO_AGI(agibp);
1530 
1531 	/*
1532 	 * Get the index into the agi hash table for the
1533 	 * list this inode will go on.
1534 	 */
1535 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1536 	ASSERT(agino != 0);
1537 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1538 	ASSERT(agi->agi_unlinked[bucket_index]);
1539 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1540 
1541 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1542 		/*
1543 		 * There is already another inode in the bucket we need
1544 		 * to add ourselves to.  Add us at the front of the list.
1545 		 * Here we put the head pointer into our next pointer,
1546 		 * and then we fall through to point the head at us.
1547 		 */
1548 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1549 				       0, 0);
1550 		if (error)
1551 			return error;
1552 
1553 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1554 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1555 		offset = ip->i_imap.im_boffset +
1556 			offsetof(xfs_dinode_t, di_next_unlinked);
1557 		xfs_trans_inode_buf(tp, ibp);
1558 		xfs_trans_log_buf(tp, ibp, offset,
1559 				  (offset + sizeof(xfs_agino_t) - 1));
1560 		xfs_inobp_check(mp, ibp);
1561 	}
1562 
1563 	/*
1564 	 * Point the bucket head pointer at the inode being inserted.
1565 	 */
1566 	ASSERT(agino != 0);
1567 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1568 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1569 		(sizeof(xfs_agino_t) * bucket_index);
1570 	xfs_trans_log_buf(tp, agibp, offset,
1571 			  (offset + sizeof(xfs_agino_t) - 1));
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Pull the on-disk inode from the AGI unlinked list.
1577  */
1578 STATIC int
1579 xfs_iunlink_remove(
1580 	xfs_trans_t	*tp,
1581 	xfs_inode_t	*ip)
1582 {
1583 	xfs_ino_t	next_ino;
1584 	xfs_mount_t	*mp;
1585 	xfs_agi_t	*agi;
1586 	xfs_dinode_t	*dip;
1587 	xfs_buf_t	*agibp;
1588 	xfs_buf_t	*ibp;
1589 	xfs_agnumber_t	agno;
1590 	xfs_agino_t	agino;
1591 	xfs_agino_t	next_agino;
1592 	xfs_buf_t	*last_ibp;
1593 	xfs_dinode_t	*last_dip = NULL;
1594 	short		bucket_index;
1595 	int		offset, last_offset = 0;
1596 	int		error;
1597 
1598 	mp = tp->t_mountp;
1599 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1600 
1601 	/*
1602 	 * Get the agi buffer first.  It ensures lock ordering
1603 	 * on the list.
1604 	 */
1605 	error = xfs_read_agi(mp, tp, agno, &agibp);
1606 	if (error)
1607 		return error;
1608 
1609 	agi = XFS_BUF_TO_AGI(agibp);
1610 
1611 	/*
1612 	 * Get the index into the agi hash table for the
1613 	 * list this inode will go on.
1614 	 */
1615 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1616 	ASSERT(agino != 0);
1617 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1618 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1619 	ASSERT(agi->agi_unlinked[bucket_index]);
1620 
1621 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1622 		/*
1623 		 * We're at the head of the list.  Get the inode's on-disk
1624 		 * buffer to see if there is anyone after us on the list.
1625 		 * Only modify our next pointer if it is not already NULLAGINO.
1626 		 * This saves us the overhead of dealing with the buffer when
1627 		 * there is no need to change it.
1628 		 */
1629 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1630 				       0, 0);
1631 		if (error) {
1632 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1633 				__func__, error);
1634 			return error;
1635 		}
1636 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1637 		ASSERT(next_agino != 0);
1638 		if (next_agino != NULLAGINO) {
1639 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1640 			offset = ip->i_imap.im_boffset +
1641 				offsetof(xfs_dinode_t, di_next_unlinked);
1642 			xfs_trans_inode_buf(tp, ibp);
1643 			xfs_trans_log_buf(tp, ibp, offset,
1644 					  (offset + sizeof(xfs_agino_t) - 1));
1645 			xfs_inobp_check(mp, ibp);
1646 		} else {
1647 			xfs_trans_brelse(tp, ibp);
1648 		}
1649 		/*
1650 		 * Point the bucket head pointer at the next inode.
1651 		 */
1652 		ASSERT(next_agino != 0);
1653 		ASSERT(next_agino != agino);
1654 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1655 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1656 			(sizeof(xfs_agino_t) * bucket_index);
1657 		xfs_trans_log_buf(tp, agibp, offset,
1658 				  (offset + sizeof(xfs_agino_t) - 1));
1659 	} else {
1660 		/*
1661 		 * We need to search the list for the inode being freed.
1662 		 */
1663 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1664 		last_ibp = NULL;
1665 		while (next_agino != agino) {
1666 			struct xfs_imap	imap;
1667 
1668 			if (last_ibp)
1669 				xfs_trans_brelse(tp, last_ibp);
1670 
1671 			imap.im_blkno = 0;
1672 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1673 
1674 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
1675 			if (error) {
1676 				xfs_warn(mp,
1677 	"%s: xfs_imap returned error %d.",
1678 					 __func__, error);
1679 				return error;
1680 			}
1681 
1682 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1683 					       &last_ibp, 0, 0);
1684 			if (error) {
1685 				xfs_warn(mp,
1686 	"%s: xfs_imap_to_bp returned error %d.",
1687 					__func__, error);
1688 				return error;
1689 			}
1690 
1691 			last_offset = imap.im_boffset;
1692 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1693 			ASSERT(next_agino != NULLAGINO);
1694 			ASSERT(next_agino != 0);
1695 		}
1696 
1697 		/*
1698 		 * Now last_ibp points to the buffer previous to us on the
1699 		 * unlinked list.  Pull us from the list.
1700 		 */
1701 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1702 				       0, 0);
1703 		if (error) {
1704 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1705 				__func__, error);
1706 			return error;
1707 		}
1708 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1709 		ASSERT(next_agino != 0);
1710 		ASSERT(next_agino != agino);
1711 		if (next_agino != NULLAGINO) {
1712 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1713 			offset = ip->i_imap.im_boffset +
1714 				offsetof(xfs_dinode_t, di_next_unlinked);
1715 			xfs_trans_inode_buf(tp, ibp);
1716 			xfs_trans_log_buf(tp, ibp, offset,
1717 					  (offset + sizeof(xfs_agino_t) - 1));
1718 			xfs_inobp_check(mp, ibp);
1719 		} else {
1720 			xfs_trans_brelse(tp, ibp);
1721 		}
1722 		/*
1723 		 * Point the previous inode on the list to the next inode.
1724 		 */
1725 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1726 		ASSERT(next_agino != 0);
1727 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1728 		xfs_trans_inode_buf(tp, last_ibp);
1729 		xfs_trans_log_buf(tp, last_ibp, offset,
1730 				  (offset + sizeof(xfs_agino_t) - 1));
1731 		xfs_inobp_check(mp, last_ibp);
1732 	}
1733 	return 0;
1734 }
1735 
1736 /*
1737  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1738  * inodes that are in memory - they all must be marked stale and attached to
1739  * the cluster buffer.
1740  */
1741 STATIC int
1742 xfs_ifree_cluster(
1743 	xfs_inode_t	*free_ip,
1744 	xfs_trans_t	*tp,
1745 	xfs_ino_t	inum)
1746 {
1747 	xfs_mount_t		*mp = free_ip->i_mount;
1748 	int			blks_per_cluster;
1749 	int			nbufs;
1750 	int			ninodes;
1751 	int			i, j;
1752 	xfs_daddr_t		blkno;
1753 	xfs_buf_t		*bp;
1754 	xfs_inode_t		*ip;
1755 	xfs_inode_log_item_t	*iip;
1756 	xfs_log_item_t		*lip;
1757 	struct xfs_perag	*pag;
1758 
1759 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1760 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1761 		blks_per_cluster = 1;
1762 		ninodes = mp->m_sb.sb_inopblock;
1763 		nbufs = XFS_IALLOC_BLOCKS(mp);
1764 	} else {
1765 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1766 					mp->m_sb.sb_blocksize;
1767 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1768 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1769 	}
1770 
1771 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1772 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1773 					 XFS_INO_TO_AGBNO(mp, inum));
1774 
1775 		/*
1776 		 * We obtain and lock the backing buffer first in the process
1777 		 * here, as we have to ensure that any dirty inode that we
1778 		 * can't get the flush lock on is attached to the buffer.
1779 		 * If we scan the in-memory inodes first, then buffer IO can
1780 		 * complete before we get a lock on it, and hence we may fail
1781 		 * to mark all the active inodes on the buffer stale.
1782 		 */
1783 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1784 					mp->m_bsize * blks_per_cluster,
1785 					XBF_UNMAPPED);
1786 
1787 		if (!bp)
1788 			return ENOMEM;
1789 
1790 		/*
1791 		 * This buffer may not have been correctly initialised as we
1792 		 * didn't read it from disk. That's not important because we are
1793 		 * only using to mark the buffer as stale in the log, and to
1794 		 * attach stale cached inodes on it. That means it will never be
1795 		 * dispatched for IO. If it is, we want to know about it, and we
1796 		 * want it to fail. We can acheive this by adding a write
1797 		 * verifier to the buffer.
1798 		 */
1799 		 bp->b_ops = &xfs_inode_buf_ops;
1800 
1801 		/*
1802 		 * Walk the inodes already attached to the buffer and mark them
1803 		 * stale. These will all have the flush locks held, so an
1804 		 * in-memory inode walk can't lock them. By marking them all
1805 		 * stale first, we will not attempt to lock them in the loop
1806 		 * below as the XFS_ISTALE flag will be set.
1807 		 */
1808 		lip = bp->b_fspriv;
1809 		while (lip) {
1810 			if (lip->li_type == XFS_LI_INODE) {
1811 				iip = (xfs_inode_log_item_t *)lip;
1812 				ASSERT(iip->ili_logged == 1);
1813 				lip->li_cb = xfs_istale_done;
1814 				xfs_trans_ail_copy_lsn(mp->m_ail,
1815 							&iip->ili_flush_lsn,
1816 							&iip->ili_item.li_lsn);
1817 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1818 			}
1819 			lip = lip->li_bio_list;
1820 		}
1821 
1822 
1823 		/*
1824 		 * For each inode in memory attempt to add it to the inode
1825 		 * buffer and set it up for being staled on buffer IO
1826 		 * completion.  This is safe as we've locked out tail pushing
1827 		 * and flushing by locking the buffer.
1828 		 *
1829 		 * We have already marked every inode that was part of a
1830 		 * transaction stale above, which means there is no point in
1831 		 * even trying to lock them.
1832 		 */
1833 		for (i = 0; i < ninodes; i++) {
1834 retry:
1835 			rcu_read_lock();
1836 			ip = radix_tree_lookup(&pag->pag_ici_root,
1837 					XFS_INO_TO_AGINO(mp, (inum + i)));
1838 
1839 			/* Inode not in memory, nothing to do */
1840 			if (!ip) {
1841 				rcu_read_unlock();
1842 				continue;
1843 			}
1844 
1845 			/*
1846 			 * because this is an RCU protected lookup, we could
1847 			 * find a recently freed or even reallocated inode
1848 			 * during the lookup. We need to check under the
1849 			 * i_flags_lock for a valid inode here. Skip it if it
1850 			 * is not valid, the wrong inode or stale.
1851 			 */
1852 			spin_lock(&ip->i_flags_lock);
1853 			if (ip->i_ino != inum + i ||
1854 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1855 				spin_unlock(&ip->i_flags_lock);
1856 				rcu_read_unlock();
1857 				continue;
1858 			}
1859 			spin_unlock(&ip->i_flags_lock);
1860 
1861 			/*
1862 			 * Don't try to lock/unlock the current inode, but we
1863 			 * _cannot_ skip the other inodes that we did not find
1864 			 * in the list attached to the buffer and are not
1865 			 * already marked stale. If we can't lock it, back off
1866 			 * and retry.
1867 			 */
1868 			if (ip != free_ip &&
1869 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1870 				rcu_read_unlock();
1871 				delay(1);
1872 				goto retry;
1873 			}
1874 			rcu_read_unlock();
1875 
1876 			xfs_iflock(ip);
1877 			xfs_iflags_set(ip, XFS_ISTALE);
1878 
1879 			/*
1880 			 * we don't need to attach clean inodes or those only
1881 			 * with unlogged changes (which we throw away, anyway).
1882 			 */
1883 			iip = ip->i_itemp;
1884 			if (!iip || xfs_inode_clean(ip)) {
1885 				ASSERT(ip != free_ip);
1886 				xfs_ifunlock(ip);
1887 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1888 				continue;
1889 			}
1890 
1891 			iip->ili_last_fields = iip->ili_fields;
1892 			iip->ili_fields = 0;
1893 			iip->ili_logged = 1;
1894 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1895 						&iip->ili_item.li_lsn);
1896 
1897 			xfs_buf_attach_iodone(bp, xfs_istale_done,
1898 						  &iip->ili_item);
1899 
1900 			if (ip != free_ip)
1901 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1902 		}
1903 
1904 		xfs_trans_stale_inode_buf(tp, bp);
1905 		xfs_trans_binval(tp, bp);
1906 	}
1907 
1908 	xfs_perag_put(pag);
1909 	return 0;
1910 }
1911 
1912 /*
1913  * This is called to return an inode to the inode free list.
1914  * The inode should already be truncated to 0 length and have
1915  * no pages associated with it.  This routine also assumes that
1916  * the inode is already a part of the transaction.
1917  *
1918  * The on-disk copy of the inode will have been added to the list
1919  * of unlinked inodes in the AGI. We need to remove the inode from
1920  * that list atomically with respect to freeing it here.
1921  */
1922 int
1923 xfs_ifree(
1924 	xfs_trans_t	*tp,
1925 	xfs_inode_t	*ip,
1926 	xfs_bmap_free_t	*flist)
1927 {
1928 	int			error;
1929 	int			delete;
1930 	xfs_ino_t		first_ino;
1931 	xfs_dinode_t    	*dip;
1932 	xfs_buf_t       	*ibp;
1933 
1934 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1935 	ASSERT(ip->i_d.di_nlink == 0);
1936 	ASSERT(ip->i_d.di_nextents == 0);
1937 	ASSERT(ip->i_d.di_anextents == 0);
1938 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1939 	ASSERT(ip->i_d.di_nblocks == 0);
1940 
1941 	/*
1942 	 * Pull the on-disk inode from the AGI unlinked list.
1943 	 */
1944 	error = xfs_iunlink_remove(tp, ip);
1945 	if (error != 0) {
1946 		return error;
1947 	}
1948 
1949 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1950 	if (error != 0) {
1951 		return error;
1952 	}
1953 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1954 	ip->i_d.di_flags = 0;
1955 	ip->i_d.di_dmevmask = 0;
1956 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1957 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1958 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1959 	/*
1960 	 * Bump the generation count so no one will be confused
1961 	 * by reincarnations of this inode.
1962 	 */
1963 	ip->i_d.di_gen++;
1964 
1965 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1966 
1967 	error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1968 			       0, 0);
1969 	if (error)
1970 		return error;
1971 
1972         /*
1973 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1974 	* from picking up this inode when it is reclaimed (its incore state
1975 	* initialzed but not flushed to disk yet). The in-core di_mode is
1976 	* already cleared  and a corresponding transaction logged.
1977 	* The hack here just synchronizes the in-core to on-disk
1978 	* di_mode value in advance before the actual inode sync to disk.
1979 	* This is OK because the inode is already unlinked and would never
1980 	* change its di_mode again for this inode generation.
1981 	* This is a temporary hack that would require a proper fix
1982 	* in the future.
1983 	*/
1984 	dip->di_mode = 0;
1985 
1986 	if (delete) {
1987 		error = xfs_ifree_cluster(ip, tp, first_ino);
1988 	}
1989 
1990 	return error;
1991 }
1992 
1993 /*
1994  * Reallocate the space for if_broot based on the number of records
1995  * being added or deleted as indicated in rec_diff.  Move the records
1996  * and pointers in if_broot to fit the new size.  When shrinking this
1997  * will eliminate holes between the records and pointers created by
1998  * the caller.  When growing this will create holes to be filled in
1999  * by the caller.
2000  *
2001  * The caller must not request to add more records than would fit in
2002  * the on-disk inode root.  If the if_broot is currently NULL, then
2003  * if we adding records one will be allocated.  The caller must also
2004  * not request that the number of records go below zero, although
2005  * it can go to zero.
2006  *
2007  * ip -- the inode whose if_broot area is changing
2008  * ext_diff -- the change in the number of records, positive or negative,
2009  *	 requested for the if_broot array.
2010  */
2011 void
2012 xfs_iroot_realloc(
2013 	xfs_inode_t		*ip,
2014 	int			rec_diff,
2015 	int			whichfork)
2016 {
2017 	struct xfs_mount	*mp = ip->i_mount;
2018 	int			cur_max;
2019 	xfs_ifork_t		*ifp;
2020 	struct xfs_btree_block	*new_broot;
2021 	int			new_max;
2022 	size_t			new_size;
2023 	char			*np;
2024 	char			*op;
2025 
2026 	/*
2027 	 * Handle the degenerate case quietly.
2028 	 */
2029 	if (rec_diff == 0) {
2030 		return;
2031 	}
2032 
2033 	ifp = XFS_IFORK_PTR(ip, whichfork);
2034 	if (rec_diff > 0) {
2035 		/*
2036 		 * If there wasn't any memory allocated before, just
2037 		 * allocate it now and get out.
2038 		 */
2039 		if (ifp->if_broot_bytes == 0) {
2040 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2041 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2042 			ifp->if_broot_bytes = (int)new_size;
2043 			return;
2044 		}
2045 
2046 		/*
2047 		 * If there is already an existing if_broot, then we need
2048 		 * to realloc() it and shift the pointers to their new
2049 		 * location.  The records don't change location because
2050 		 * they are kept butted up against the btree block header.
2051 		 */
2052 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2053 		new_max = cur_max + rec_diff;
2054 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2055 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2056 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2057 				KM_SLEEP | KM_NOFS);
2058 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2059 						     ifp->if_broot_bytes);
2060 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2061 						     (int)new_size);
2062 		ifp->if_broot_bytes = (int)new_size;
2063 		ASSERT(ifp->if_broot_bytes <=
2064 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2065 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * rec_diff is less than 0.  In this case, we are shrinking the
2071 	 * if_broot buffer.  It must already exist.  If we go to zero
2072 	 * records, just get rid of the root and clear the status bit.
2073 	 */
2074 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2075 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2076 	new_max = cur_max + rec_diff;
2077 	ASSERT(new_max >= 0);
2078 	if (new_max > 0)
2079 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2080 	else
2081 		new_size = 0;
2082 	if (new_size > 0) {
2083 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2084 		/*
2085 		 * First copy over the btree block header.
2086 		 */
2087 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2088 	} else {
2089 		new_broot = NULL;
2090 		ifp->if_flags &= ~XFS_IFBROOT;
2091 	}
2092 
2093 	/*
2094 	 * Only copy the records and pointers if there are any.
2095 	 */
2096 	if (new_max > 0) {
2097 		/*
2098 		 * First copy the records.
2099 		 */
2100 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2101 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2102 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2103 
2104 		/*
2105 		 * Then copy the pointers.
2106 		 */
2107 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2108 						     ifp->if_broot_bytes);
2109 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2110 						     (int)new_size);
2111 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2112 	}
2113 	kmem_free(ifp->if_broot);
2114 	ifp->if_broot = new_broot;
2115 	ifp->if_broot_bytes = (int)new_size;
2116 	ASSERT(ifp->if_broot_bytes <=
2117 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2118 	return;
2119 }
2120 
2121 
2122 /*
2123  * This is called when the amount of space needed for if_data
2124  * is increased or decreased.  The change in size is indicated by
2125  * the number of bytes that need to be added or deleted in the
2126  * byte_diff parameter.
2127  *
2128  * If the amount of space needed has decreased below the size of the
2129  * inline buffer, then switch to using the inline buffer.  Otherwise,
2130  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2131  * to what is needed.
2132  *
2133  * ip -- the inode whose if_data area is changing
2134  * byte_diff -- the change in the number of bytes, positive or negative,
2135  *	 requested for the if_data array.
2136  */
2137 void
2138 xfs_idata_realloc(
2139 	xfs_inode_t	*ip,
2140 	int		byte_diff,
2141 	int		whichfork)
2142 {
2143 	xfs_ifork_t	*ifp;
2144 	int		new_size;
2145 	int		real_size;
2146 
2147 	if (byte_diff == 0) {
2148 		return;
2149 	}
2150 
2151 	ifp = XFS_IFORK_PTR(ip, whichfork);
2152 	new_size = (int)ifp->if_bytes + byte_diff;
2153 	ASSERT(new_size >= 0);
2154 
2155 	if (new_size == 0) {
2156 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2157 			kmem_free(ifp->if_u1.if_data);
2158 		}
2159 		ifp->if_u1.if_data = NULL;
2160 		real_size = 0;
2161 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2162 		/*
2163 		 * If the valid extents/data can fit in if_inline_ext/data,
2164 		 * copy them from the malloc'd vector and free it.
2165 		 */
2166 		if (ifp->if_u1.if_data == NULL) {
2167 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2168 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2169 			ASSERT(ifp->if_real_bytes != 0);
2170 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2171 			      new_size);
2172 			kmem_free(ifp->if_u1.if_data);
2173 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2174 		}
2175 		real_size = 0;
2176 	} else {
2177 		/*
2178 		 * Stuck with malloc/realloc.
2179 		 * For inline data, the underlying buffer must be
2180 		 * a multiple of 4 bytes in size so that it can be
2181 		 * logged and stay on word boundaries.  We enforce
2182 		 * that here.
2183 		 */
2184 		real_size = roundup(new_size, 4);
2185 		if (ifp->if_u1.if_data == NULL) {
2186 			ASSERT(ifp->if_real_bytes == 0);
2187 			ifp->if_u1.if_data = kmem_alloc(real_size,
2188 							KM_SLEEP | KM_NOFS);
2189 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2190 			/*
2191 			 * Only do the realloc if the underlying size
2192 			 * is really changing.
2193 			 */
2194 			if (ifp->if_real_bytes != real_size) {
2195 				ifp->if_u1.if_data =
2196 					kmem_realloc(ifp->if_u1.if_data,
2197 							real_size,
2198 							ifp->if_real_bytes,
2199 							KM_SLEEP | KM_NOFS);
2200 			}
2201 		} else {
2202 			ASSERT(ifp->if_real_bytes == 0);
2203 			ifp->if_u1.if_data = kmem_alloc(real_size,
2204 							KM_SLEEP | KM_NOFS);
2205 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2206 				ifp->if_bytes);
2207 		}
2208 	}
2209 	ifp->if_real_bytes = real_size;
2210 	ifp->if_bytes = new_size;
2211 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2212 }
2213 
2214 void
2215 xfs_idestroy_fork(
2216 	xfs_inode_t	*ip,
2217 	int		whichfork)
2218 {
2219 	xfs_ifork_t	*ifp;
2220 
2221 	ifp = XFS_IFORK_PTR(ip, whichfork);
2222 	if (ifp->if_broot != NULL) {
2223 		kmem_free(ifp->if_broot);
2224 		ifp->if_broot = NULL;
2225 	}
2226 
2227 	/*
2228 	 * If the format is local, then we can't have an extents
2229 	 * array so just look for an inline data array.  If we're
2230 	 * not local then we may or may not have an extents list,
2231 	 * so check and free it up if we do.
2232 	 */
2233 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2234 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2235 		    (ifp->if_u1.if_data != NULL)) {
2236 			ASSERT(ifp->if_real_bytes != 0);
2237 			kmem_free(ifp->if_u1.if_data);
2238 			ifp->if_u1.if_data = NULL;
2239 			ifp->if_real_bytes = 0;
2240 		}
2241 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2242 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2243 		    ((ifp->if_u1.if_extents != NULL) &&
2244 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2245 		ASSERT(ifp->if_real_bytes != 0);
2246 		xfs_iext_destroy(ifp);
2247 	}
2248 	ASSERT(ifp->if_u1.if_extents == NULL ||
2249 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2250 	ASSERT(ifp->if_real_bytes == 0);
2251 	if (whichfork == XFS_ATTR_FORK) {
2252 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2253 		ip->i_afp = NULL;
2254 	}
2255 }
2256 
2257 /*
2258  * This is called to unpin an inode.  The caller must have the inode locked
2259  * in at least shared mode so that the buffer cannot be subsequently pinned
2260  * once someone is waiting for it to be unpinned.
2261  */
2262 static void
2263 xfs_iunpin(
2264 	struct xfs_inode	*ip)
2265 {
2266 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2267 
2268 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2269 
2270 	/* Give the log a push to start the unpinning I/O */
2271 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2272 
2273 }
2274 
2275 static void
2276 __xfs_iunpin_wait(
2277 	struct xfs_inode	*ip)
2278 {
2279 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2280 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2281 
2282 	xfs_iunpin(ip);
2283 
2284 	do {
2285 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2286 		if (xfs_ipincount(ip))
2287 			io_schedule();
2288 	} while (xfs_ipincount(ip));
2289 	finish_wait(wq, &wait.wait);
2290 }
2291 
2292 void
2293 xfs_iunpin_wait(
2294 	struct xfs_inode	*ip)
2295 {
2296 	if (xfs_ipincount(ip))
2297 		__xfs_iunpin_wait(ip);
2298 }
2299 
2300 /*
2301  * xfs_iextents_copy()
2302  *
2303  * This is called to copy the REAL extents (as opposed to the delayed
2304  * allocation extents) from the inode into the given buffer.  It
2305  * returns the number of bytes copied into the buffer.
2306  *
2307  * If there are no delayed allocation extents, then we can just
2308  * memcpy() the extents into the buffer.  Otherwise, we need to
2309  * examine each extent in turn and skip those which are delayed.
2310  */
2311 int
2312 xfs_iextents_copy(
2313 	xfs_inode_t		*ip,
2314 	xfs_bmbt_rec_t		*dp,
2315 	int			whichfork)
2316 {
2317 	int			copied;
2318 	int			i;
2319 	xfs_ifork_t		*ifp;
2320 	int			nrecs;
2321 	xfs_fsblock_t		start_block;
2322 
2323 	ifp = XFS_IFORK_PTR(ip, whichfork);
2324 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2325 	ASSERT(ifp->if_bytes > 0);
2326 
2327 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2328 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2329 	ASSERT(nrecs > 0);
2330 
2331 	/*
2332 	 * There are some delayed allocation extents in the
2333 	 * inode, so copy the extents one at a time and skip
2334 	 * the delayed ones.  There must be at least one
2335 	 * non-delayed extent.
2336 	 */
2337 	copied = 0;
2338 	for (i = 0; i < nrecs; i++) {
2339 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2340 		start_block = xfs_bmbt_get_startblock(ep);
2341 		if (isnullstartblock(start_block)) {
2342 			/*
2343 			 * It's a delayed allocation extent, so skip it.
2344 			 */
2345 			continue;
2346 		}
2347 
2348 		/* Translate to on disk format */
2349 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2350 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2351 		dp++;
2352 		copied++;
2353 	}
2354 	ASSERT(copied != 0);
2355 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2356 
2357 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2358 }
2359 
2360 /*
2361  * Each of the following cases stores data into the same region
2362  * of the on-disk inode, so only one of them can be valid at
2363  * any given time. While it is possible to have conflicting formats
2364  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2365  * in EXTENTS format, this can only happen when the fork has
2366  * changed formats after being modified but before being flushed.
2367  * In these cases, the format always takes precedence, because the
2368  * format indicates the current state of the fork.
2369  */
2370 /*ARGSUSED*/
2371 STATIC void
2372 xfs_iflush_fork(
2373 	xfs_inode_t		*ip,
2374 	xfs_dinode_t		*dip,
2375 	xfs_inode_log_item_t	*iip,
2376 	int			whichfork,
2377 	xfs_buf_t		*bp)
2378 {
2379 	char			*cp;
2380 	xfs_ifork_t		*ifp;
2381 	xfs_mount_t		*mp;
2382 #ifdef XFS_TRANS_DEBUG
2383 	int			first;
2384 #endif
2385 	static const short	brootflag[2] =
2386 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2387 	static const short	dataflag[2] =
2388 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2389 	static const short	extflag[2] =
2390 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2391 
2392 	if (!iip)
2393 		return;
2394 	ifp = XFS_IFORK_PTR(ip, whichfork);
2395 	/*
2396 	 * This can happen if we gave up in iformat in an error path,
2397 	 * for the attribute fork.
2398 	 */
2399 	if (!ifp) {
2400 		ASSERT(whichfork == XFS_ATTR_FORK);
2401 		return;
2402 	}
2403 	cp = XFS_DFORK_PTR(dip, whichfork);
2404 	mp = ip->i_mount;
2405 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2406 	case XFS_DINODE_FMT_LOCAL:
2407 		if ((iip->ili_fields & dataflag[whichfork]) &&
2408 		    (ifp->if_bytes > 0)) {
2409 			ASSERT(ifp->if_u1.if_data != NULL);
2410 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2411 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2412 		}
2413 		break;
2414 
2415 	case XFS_DINODE_FMT_EXTENTS:
2416 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2417 		       !(iip->ili_fields & extflag[whichfork]));
2418 		if ((iip->ili_fields & extflag[whichfork]) &&
2419 		    (ifp->if_bytes > 0)) {
2420 			ASSERT(xfs_iext_get_ext(ifp, 0));
2421 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2422 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2423 				whichfork);
2424 		}
2425 		break;
2426 
2427 	case XFS_DINODE_FMT_BTREE:
2428 		if ((iip->ili_fields & brootflag[whichfork]) &&
2429 		    (ifp->if_broot_bytes > 0)) {
2430 			ASSERT(ifp->if_broot != NULL);
2431 			ASSERT(ifp->if_broot_bytes <=
2432 			       (XFS_IFORK_SIZE(ip, whichfork) +
2433 				XFS_BROOT_SIZE_ADJ));
2434 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2435 				(xfs_bmdr_block_t *)cp,
2436 				XFS_DFORK_SIZE(dip, mp, whichfork));
2437 		}
2438 		break;
2439 
2440 	case XFS_DINODE_FMT_DEV:
2441 		if (iip->ili_fields & XFS_ILOG_DEV) {
2442 			ASSERT(whichfork == XFS_DATA_FORK);
2443 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2444 		}
2445 		break;
2446 
2447 	case XFS_DINODE_FMT_UUID:
2448 		if (iip->ili_fields & XFS_ILOG_UUID) {
2449 			ASSERT(whichfork == XFS_DATA_FORK);
2450 			memcpy(XFS_DFORK_DPTR(dip),
2451 			       &ip->i_df.if_u2.if_uuid,
2452 			       sizeof(uuid_t));
2453 		}
2454 		break;
2455 
2456 	default:
2457 		ASSERT(0);
2458 		break;
2459 	}
2460 }
2461 
2462 STATIC int
2463 xfs_iflush_cluster(
2464 	xfs_inode_t	*ip,
2465 	xfs_buf_t	*bp)
2466 {
2467 	xfs_mount_t		*mp = ip->i_mount;
2468 	struct xfs_perag	*pag;
2469 	unsigned long		first_index, mask;
2470 	unsigned long		inodes_per_cluster;
2471 	int			ilist_size;
2472 	xfs_inode_t		**ilist;
2473 	xfs_inode_t		*iq;
2474 	int			nr_found;
2475 	int			clcount = 0;
2476 	int			bufwasdelwri;
2477 	int			i;
2478 
2479 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2480 
2481 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2482 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2483 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2484 	if (!ilist)
2485 		goto out_put;
2486 
2487 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2488 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2489 	rcu_read_lock();
2490 	/* really need a gang lookup range call here */
2491 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2492 					first_index, inodes_per_cluster);
2493 	if (nr_found == 0)
2494 		goto out_free;
2495 
2496 	for (i = 0; i < nr_found; i++) {
2497 		iq = ilist[i];
2498 		if (iq == ip)
2499 			continue;
2500 
2501 		/*
2502 		 * because this is an RCU protected lookup, we could find a
2503 		 * recently freed or even reallocated inode during the lookup.
2504 		 * We need to check under the i_flags_lock for a valid inode
2505 		 * here. Skip it if it is not valid or the wrong inode.
2506 		 */
2507 		spin_lock(&ip->i_flags_lock);
2508 		if (!ip->i_ino ||
2509 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2510 			spin_unlock(&ip->i_flags_lock);
2511 			continue;
2512 		}
2513 		spin_unlock(&ip->i_flags_lock);
2514 
2515 		/*
2516 		 * Do an un-protected check to see if the inode is dirty and
2517 		 * is a candidate for flushing.  These checks will be repeated
2518 		 * later after the appropriate locks are acquired.
2519 		 */
2520 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2521 			continue;
2522 
2523 		/*
2524 		 * Try to get locks.  If any are unavailable or it is pinned,
2525 		 * then this inode cannot be flushed and is skipped.
2526 		 */
2527 
2528 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2529 			continue;
2530 		if (!xfs_iflock_nowait(iq)) {
2531 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2532 			continue;
2533 		}
2534 		if (xfs_ipincount(iq)) {
2535 			xfs_ifunlock(iq);
2536 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2537 			continue;
2538 		}
2539 
2540 		/*
2541 		 * arriving here means that this inode can be flushed.  First
2542 		 * re-check that it's dirty before flushing.
2543 		 */
2544 		if (!xfs_inode_clean(iq)) {
2545 			int	error;
2546 			error = xfs_iflush_int(iq, bp);
2547 			if (error) {
2548 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2549 				goto cluster_corrupt_out;
2550 			}
2551 			clcount++;
2552 		} else {
2553 			xfs_ifunlock(iq);
2554 		}
2555 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2556 	}
2557 
2558 	if (clcount) {
2559 		XFS_STATS_INC(xs_icluster_flushcnt);
2560 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2561 	}
2562 
2563 out_free:
2564 	rcu_read_unlock();
2565 	kmem_free(ilist);
2566 out_put:
2567 	xfs_perag_put(pag);
2568 	return 0;
2569 
2570 
2571 cluster_corrupt_out:
2572 	/*
2573 	 * Corruption detected in the clustering loop.  Invalidate the
2574 	 * inode buffer and shut down the filesystem.
2575 	 */
2576 	rcu_read_unlock();
2577 	/*
2578 	 * Clean up the buffer.  If it was delwri, just release it --
2579 	 * brelse can handle it with no problems.  If not, shut down the
2580 	 * filesystem before releasing the buffer.
2581 	 */
2582 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2583 	if (bufwasdelwri)
2584 		xfs_buf_relse(bp);
2585 
2586 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2587 
2588 	if (!bufwasdelwri) {
2589 		/*
2590 		 * Just like incore_relse: if we have b_iodone functions,
2591 		 * mark the buffer as an error and call them.  Otherwise
2592 		 * mark it as stale and brelse.
2593 		 */
2594 		if (bp->b_iodone) {
2595 			XFS_BUF_UNDONE(bp);
2596 			xfs_buf_stale(bp);
2597 			xfs_buf_ioerror(bp, EIO);
2598 			xfs_buf_ioend(bp, 0);
2599 		} else {
2600 			xfs_buf_stale(bp);
2601 			xfs_buf_relse(bp);
2602 		}
2603 	}
2604 
2605 	/*
2606 	 * Unlocks the flush lock
2607 	 */
2608 	xfs_iflush_abort(iq, false);
2609 	kmem_free(ilist);
2610 	xfs_perag_put(pag);
2611 	return XFS_ERROR(EFSCORRUPTED);
2612 }
2613 
2614 /*
2615  * Flush dirty inode metadata into the backing buffer.
2616  *
2617  * The caller must have the inode lock and the inode flush lock held.  The
2618  * inode lock will still be held upon return to the caller, and the inode
2619  * flush lock will be released after the inode has reached the disk.
2620  *
2621  * The caller must write out the buffer returned in *bpp and release it.
2622  */
2623 int
2624 xfs_iflush(
2625 	struct xfs_inode	*ip,
2626 	struct xfs_buf		**bpp)
2627 {
2628 	struct xfs_mount	*mp = ip->i_mount;
2629 	struct xfs_buf		*bp;
2630 	struct xfs_dinode	*dip;
2631 	int			error;
2632 
2633 	XFS_STATS_INC(xs_iflush_count);
2634 
2635 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2636 	ASSERT(xfs_isiflocked(ip));
2637 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2638 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2639 
2640 	*bpp = NULL;
2641 
2642 	xfs_iunpin_wait(ip);
2643 
2644 	/*
2645 	 * For stale inodes we cannot rely on the backing buffer remaining
2646 	 * stale in cache for the remaining life of the stale inode and so
2647 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
2648 	 * inodes below. We have to check this after ensuring the inode is
2649 	 * unpinned so that it is safe to reclaim the stale inode after the
2650 	 * flush call.
2651 	 */
2652 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2653 		xfs_ifunlock(ip);
2654 		return 0;
2655 	}
2656 
2657 	/*
2658 	 * This may have been unpinned because the filesystem is shutting
2659 	 * down forcibly. If that's the case we must not write this inode
2660 	 * to disk, because the log record didn't make it to disk.
2661 	 *
2662 	 * We also have to remove the log item from the AIL in this case,
2663 	 * as we wait for an empty AIL as part of the unmount process.
2664 	 */
2665 	if (XFS_FORCED_SHUTDOWN(mp)) {
2666 		error = XFS_ERROR(EIO);
2667 		goto abort_out;
2668 	}
2669 
2670 	/*
2671 	 * Get the buffer containing the on-disk inode.
2672 	 */
2673 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2674 			       0);
2675 	if (error || !bp) {
2676 		xfs_ifunlock(ip);
2677 		return error;
2678 	}
2679 
2680 	/*
2681 	 * First flush out the inode that xfs_iflush was called with.
2682 	 */
2683 	error = xfs_iflush_int(ip, bp);
2684 	if (error)
2685 		goto corrupt_out;
2686 
2687 	/*
2688 	 * If the buffer is pinned then push on the log now so we won't
2689 	 * get stuck waiting in the write for too long.
2690 	 */
2691 	if (xfs_buf_ispinned(bp))
2692 		xfs_log_force(mp, 0);
2693 
2694 	/*
2695 	 * inode clustering:
2696 	 * see if other inodes can be gathered into this write
2697 	 */
2698 	error = xfs_iflush_cluster(ip, bp);
2699 	if (error)
2700 		goto cluster_corrupt_out;
2701 
2702 	*bpp = bp;
2703 	return 0;
2704 
2705 corrupt_out:
2706 	xfs_buf_relse(bp);
2707 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2708 cluster_corrupt_out:
2709 	error = XFS_ERROR(EFSCORRUPTED);
2710 abort_out:
2711 	/*
2712 	 * Unlocks the flush lock
2713 	 */
2714 	xfs_iflush_abort(ip, false);
2715 	return error;
2716 }
2717 
2718 
2719 STATIC int
2720 xfs_iflush_int(
2721 	xfs_inode_t		*ip,
2722 	xfs_buf_t		*bp)
2723 {
2724 	xfs_inode_log_item_t	*iip;
2725 	xfs_dinode_t		*dip;
2726 	xfs_mount_t		*mp;
2727 #ifdef XFS_TRANS_DEBUG
2728 	int			first;
2729 #endif
2730 
2731 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2732 	ASSERT(xfs_isiflocked(ip));
2733 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2734 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2735 
2736 	iip = ip->i_itemp;
2737 	mp = ip->i_mount;
2738 
2739 	/* set *dip = inode's place in the buffer */
2740 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2741 
2742 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2743 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2744 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2745 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2746 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2747 		goto corrupt_out;
2748 	}
2749 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2750 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2751 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2752 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2753 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2754 		goto corrupt_out;
2755 	}
2756 	if (S_ISREG(ip->i_d.di_mode)) {
2757 		if (XFS_TEST_ERROR(
2758 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2759 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2760 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2761 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2762 				"%s: Bad regular inode %Lu, ptr 0x%p",
2763 				__func__, ip->i_ino, ip);
2764 			goto corrupt_out;
2765 		}
2766 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2767 		if (XFS_TEST_ERROR(
2768 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2769 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2770 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2771 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2772 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2773 				"%s: Bad directory inode %Lu, ptr 0x%p",
2774 				__func__, ip->i_ino, ip);
2775 			goto corrupt_out;
2776 		}
2777 	}
2778 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2779 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2780 				XFS_RANDOM_IFLUSH_5)) {
2781 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2782 			"%s: detected corrupt incore inode %Lu, "
2783 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2784 			__func__, ip->i_ino,
2785 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2786 			ip->i_d.di_nblocks, ip);
2787 		goto corrupt_out;
2788 	}
2789 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2790 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2791 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2792 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2793 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2794 		goto corrupt_out;
2795 	}
2796 	/*
2797 	 * bump the flush iteration count, used to detect flushes which
2798 	 * postdate a log record during recovery.
2799 	 */
2800 
2801 	ip->i_d.di_flushiter++;
2802 
2803 	/*
2804 	 * Copy the dirty parts of the inode into the on-disk
2805 	 * inode.  We always copy out the core of the inode,
2806 	 * because if the inode is dirty at all the core must
2807 	 * be.
2808 	 */
2809 	xfs_dinode_to_disk(dip, &ip->i_d);
2810 
2811 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2812 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2813 		ip->i_d.di_flushiter = 0;
2814 
2815 	/*
2816 	 * If this is really an old format inode and the superblock version
2817 	 * has not been updated to support only new format inodes, then
2818 	 * convert back to the old inode format.  If the superblock version
2819 	 * has been updated, then make the conversion permanent.
2820 	 */
2821 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2822 	if (ip->i_d.di_version == 1) {
2823 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2824 			/*
2825 			 * Convert it back.
2826 			 */
2827 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2828 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2829 		} else {
2830 			/*
2831 			 * The superblock version has already been bumped,
2832 			 * so just make the conversion to the new inode
2833 			 * format permanent.
2834 			 */
2835 			ip->i_d.di_version = 2;
2836 			dip->di_version = 2;
2837 			ip->i_d.di_onlink = 0;
2838 			dip->di_onlink = 0;
2839 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2840 			memset(&(dip->di_pad[0]), 0,
2841 			      sizeof(dip->di_pad));
2842 			ASSERT(xfs_get_projid(ip) == 0);
2843 		}
2844 	}
2845 
2846 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2847 	if (XFS_IFORK_Q(ip))
2848 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2849 	xfs_inobp_check(mp, bp);
2850 
2851 	/*
2852 	 * We've recorded everything logged in the inode, so we'd like to clear
2853 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2854 	 * However, we can't stop logging all this information until the data
2855 	 * we've copied into the disk buffer is written to disk.  If we did we
2856 	 * might overwrite the copy of the inode in the log with all the data
2857 	 * after re-logging only part of it, and in the face of a crash we
2858 	 * wouldn't have all the data we need to recover.
2859 	 *
2860 	 * What we do is move the bits to the ili_last_fields field.  When
2861 	 * logging the inode, these bits are moved back to the ili_fields field.
2862 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2863 	 * know that the information those bits represent is permanently on
2864 	 * disk.  As long as the flush completes before the inode is logged
2865 	 * again, then both ili_fields and ili_last_fields will be cleared.
2866 	 *
2867 	 * We can play with the ili_fields bits here, because the inode lock
2868 	 * must be held exclusively in order to set bits there and the flush
2869 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2870 	 * done routine can tell whether or not to look in the AIL.  Also, store
2871 	 * the current LSN of the inode so that we can tell whether the item has
2872 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2873 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2874 	 * atomically.
2875 	 */
2876 	if (iip != NULL && iip->ili_fields != 0) {
2877 		iip->ili_last_fields = iip->ili_fields;
2878 		iip->ili_fields = 0;
2879 		iip->ili_logged = 1;
2880 
2881 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2882 					&iip->ili_item.li_lsn);
2883 
2884 		/*
2885 		 * Attach the function xfs_iflush_done to the inode's
2886 		 * buffer.  This will remove the inode from the AIL
2887 		 * and unlock the inode's flush lock when the inode is
2888 		 * completely written to disk.
2889 		 */
2890 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2891 
2892 		ASSERT(bp->b_fspriv != NULL);
2893 		ASSERT(bp->b_iodone != NULL);
2894 	} else {
2895 		/*
2896 		 * We're flushing an inode which is not in the AIL and has
2897 		 * not been logged.  For this case we can immediately drop
2898 		 * the inode flush lock because we can avoid the whole
2899 		 * AIL state thing.  It's OK to drop the flush lock now,
2900 		 * because we've already locked the buffer and to do anything
2901 		 * you really need both.
2902 		 */
2903 		if (iip != NULL) {
2904 			ASSERT(iip->ili_logged == 0);
2905 			ASSERT(iip->ili_last_fields == 0);
2906 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2907 		}
2908 		xfs_ifunlock(ip);
2909 	}
2910 
2911 	return 0;
2912 
2913 corrupt_out:
2914 	return XFS_ERROR(EFSCORRUPTED);
2915 }
2916 
2917 /*
2918  * Return a pointer to the extent record at file index idx.
2919  */
2920 xfs_bmbt_rec_host_t *
2921 xfs_iext_get_ext(
2922 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2923 	xfs_extnum_t	idx)		/* index of target extent */
2924 {
2925 	ASSERT(idx >= 0);
2926 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2927 
2928 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2929 		return ifp->if_u1.if_ext_irec->er_extbuf;
2930 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2931 		xfs_ext_irec_t	*erp;		/* irec pointer */
2932 		int		erp_idx = 0;	/* irec index */
2933 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2934 
2935 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2936 		return &erp->er_extbuf[page_idx];
2937 	} else if (ifp->if_bytes) {
2938 		return &ifp->if_u1.if_extents[idx];
2939 	} else {
2940 		return NULL;
2941 	}
2942 }
2943 
2944 /*
2945  * Insert new item(s) into the extent records for incore inode
2946  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2947  */
2948 void
2949 xfs_iext_insert(
2950 	xfs_inode_t	*ip,		/* incore inode pointer */
2951 	xfs_extnum_t	idx,		/* starting index of new items */
2952 	xfs_extnum_t	count,		/* number of inserted items */
2953 	xfs_bmbt_irec_t	*new,		/* items to insert */
2954 	int		state)		/* type of extent conversion */
2955 {
2956 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2957 	xfs_extnum_t	i;		/* extent record index */
2958 
2959 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2960 
2961 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2962 	xfs_iext_add(ifp, idx, count);
2963 	for (i = idx; i < idx + count; i++, new++)
2964 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2965 }
2966 
2967 /*
2968  * This is called when the amount of space required for incore file
2969  * extents needs to be increased. The ext_diff parameter stores the
2970  * number of new extents being added and the idx parameter contains
2971  * the extent index where the new extents will be added. If the new
2972  * extents are being appended, then we just need to (re)allocate and
2973  * initialize the space. Otherwise, if the new extents are being
2974  * inserted into the middle of the existing entries, a bit more work
2975  * is required to make room for the new extents to be inserted. The
2976  * caller is responsible for filling in the new extent entries upon
2977  * return.
2978  */
2979 void
2980 xfs_iext_add(
2981 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2982 	xfs_extnum_t	idx,		/* index to begin adding exts */
2983 	int		ext_diff)	/* number of extents to add */
2984 {
2985 	int		byte_diff;	/* new bytes being added */
2986 	int		new_size;	/* size of extents after adding */
2987 	xfs_extnum_t	nextents;	/* number of extents in file */
2988 
2989 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2990 	ASSERT((idx >= 0) && (idx <= nextents));
2991 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2992 	new_size = ifp->if_bytes + byte_diff;
2993 	/*
2994 	 * If the new number of extents (nextents + ext_diff)
2995 	 * fits inside the inode, then continue to use the inline
2996 	 * extent buffer.
2997 	 */
2998 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2999 		if (idx < nextents) {
3000 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3001 				&ifp->if_u2.if_inline_ext[idx],
3002 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3003 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3004 		}
3005 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3006 		ifp->if_real_bytes = 0;
3007 	}
3008 	/*
3009 	 * Otherwise use a linear (direct) extent list.
3010 	 * If the extents are currently inside the inode,
3011 	 * xfs_iext_realloc_direct will switch us from
3012 	 * inline to direct extent allocation mode.
3013 	 */
3014 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3015 		xfs_iext_realloc_direct(ifp, new_size);
3016 		if (idx < nextents) {
3017 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3018 				&ifp->if_u1.if_extents[idx],
3019 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3020 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3021 		}
3022 	}
3023 	/* Indirection array */
3024 	else {
3025 		xfs_ext_irec_t	*erp;
3026 		int		erp_idx = 0;
3027 		int		page_idx = idx;
3028 
3029 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3030 		if (ifp->if_flags & XFS_IFEXTIREC) {
3031 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3032 		} else {
3033 			xfs_iext_irec_init(ifp);
3034 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3035 			erp = ifp->if_u1.if_ext_irec;
3036 		}
3037 		/* Extents fit in target extent page */
3038 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3039 			if (page_idx < erp->er_extcount) {
3040 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3041 					&erp->er_extbuf[page_idx],
3042 					(erp->er_extcount - page_idx) *
3043 					sizeof(xfs_bmbt_rec_t));
3044 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3045 			}
3046 			erp->er_extcount += ext_diff;
3047 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3048 		}
3049 		/* Insert a new extent page */
3050 		else if (erp) {
3051 			xfs_iext_add_indirect_multi(ifp,
3052 				erp_idx, page_idx, ext_diff);
3053 		}
3054 		/*
3055 		 * If extent(s) are being appended to the last page in
3056 		 * the indirection array and the new extent(s) don't fit
3057 		 * in the page, then erp is NULL and erp_idx is set to
3058 		 * the next index needed in the indirection array.
3059 		 */
3060 		else {
3061 			int	count = ext_diff;
3062 
3063 			while (count) {
3064 				erp = xfs_iext_irec_new(ifp, erp_idx);
3065 				erp->er_extcount = count;
3066 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3067 				if (count) {
3068 					erp_idx++;
3069 				}
3070 			}
3071 		}
3072 	}
3073 	ifp->if_bytes = new_size;
3074 }
3075 
3076 /*
3077  * This is called when incore extents are being added to the indirection
3078  * array and the new extents do not fit in the target extent list. The
3079  * erp_idx parameter contains the irec index for the target extent list
3080  * in the indirection array, and the idx parameter contains the extent
3081  * index within the list. The number of extents being added is stored
3082  * in the count parameter.
3083  *
3084  *    |-------|   |-------|
3085  *    |       |   |       |    idx - number of extents before idx
3086  *    |  idx  |   | count |
3087  *    |       |   |       |    count - number of extents being inserted at idx
3088  *    |-------|   |-------|
3089  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3090  *    |-------|   |-------|
3091  */
3092 void
3093 xfs_iext_add_indirect_multi(
3094 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3095 	int		erp_idx,		/* target extent irec index */
3096 	xfs_extnum_t	idx,			/* index within target list */
3097 	int		count)			/* new extents being added */
3098 {
3099 	int		byte_diff;		/* new bytes being added */
3100 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3101 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3102 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3103 	xfs_extnum_t	nex2;			/* extents after idx + count */
3104 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3105 	int		nlists;			/* number of irec's (lists) */
3106 
3107 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3108 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3109 	nex2 = erp->er_extcount - idx;
3110 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3111 
3112 	/*
3113 	 * Save second part of target extent list
3114 	 * (all extents past */
3115 	if (nex2) {
3116 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3117 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3118 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3119 		erp->er_extcount -= nex2;
3120 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3121 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3122 	}
3123 
3124 	/*
3125 	 * Add the new extents to the end of the target
3126 	 * list, then allocate new irec record(s) and
3127 	 * extent buffer(s) as needed to store the rest
3128 	 * of the new extents.
3129 	 */
3130 	ext_cnt = count;
3131 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3132 	if (ext_diff) {
3133 		erp->er_extcount += ext_diff;
3134 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3135 		ext_cnt -= ext_diff;
3136 	}
3137 	while (ext_cnt) {
3138 		erp_idx++;
3139 		erp = xfs_iext_irec_new(ifp, erp_idx);
3140 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3141 		erp->er_extcount = ext_diff;
3142 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3143 		ext_cnt -= ext_diff;
3144 	}
3145 
3146 	/* Add nex2 extents back to indirection array */
3147 	if (nex2) {
3148 		xfs_extnum_t	ext_avail;
3149 		int		i;
3150 
3151 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3152 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3153 		i = 0;
3154 		/*
3155 		 * If nex2 extents fit in the current page, append
3156 		 * nex2_ep after the new extents.
3157 		 */
3158 		if (nex2 <= ext_avail) {
3159 			i = erp->er_extcount;
3160 		}
3161 		/*
3162 		 * Otherwise, check if space is available in the
3163 		 * next page.
3164 		 */
3165 		else if ((erp_idx < nlists - 1) &&
3166 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3167 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3168 			erp_idx++;
3169 			erp++;
3170 			/* Create a hole for nex2 extents */
3171 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3172 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3173 		}
3174 		/*
3175 		 * Final choice, create a new extent page for
3176 		 * nex2 extents.
3177 		 */
3178 		else {
3179 			erp_idx++;
3180 			erp = xfs_iext_irec_new(ifp, erp_idx);
3181 		}
3182 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3183 		kmem_free(nex2_ep);
3184 		erp->er_extcount += nex2;
3185 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3186 	}
3187 }
3188 
3189 /*
3190  * This is called when the amount of space required for incore file
3191  * extents needs to be decreased. The ext_diff parameter stores the
3192  * number of extents to be removed and the idx parameter contains
3193  * the extent index where the extents will be removed from.
3194  *
3195  * If the amount of space needed has decreased below the linear
3196  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3197  * extent array.  Otherwise, use kmem_realloc() to adjust the
3198  * size to what is needed.
3199  */
3200 void
3201 xfs_iext_remove(
3202 	xfs_inode_t	*ip,		/* incore inode pointer */
3203 	xfs_extnum_t	idx,		/* index to begin removing exts */
3204 	int		ext_diff,	/* number of extents to remove */
3205 	int		state)		/* type of extent conversion */
3206 {
3207 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3208 	xfs_extnum_t	nextents;	/* number of extents in file */
3209 	int		new_size;	/* size of extents after removal */
3210 
3211 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3212 
3213 	ASSERT(ext_diff > 0);
3214 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3215 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3216 
3217 	if (new_size == 0) {
3218 		xfs_iext_destroy(ifp);
3219 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3220 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3221 	} else if (ifp->if_real_bytes) {
3222 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3223 	} else {
3224 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3225 	}
3226 	ifp->if_bytes = new_size;
3227 }
3228 
3229 /*
3230  * This removes ext_diff extents from the inline buffer, beginning
3231  * at extent index idx.
3232  */
3233 void
3234 xfs_iext_remove_inline(
3235 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3236 	xfs_extnum_t	idx,		/* index to begin removing exts */
3237 	int		ext_diff)	/* number of extents to remove */
3238 {
3239 	int		nextents;	/* number of extents in file */
3240 
3241 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3242 	ASSERT(idx < XFS_INLINE_EXTS);
3243 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3244 	ASSERT(((nextents - ext_diff) > 0) &&
3245 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3246 
3247 	if (idx + ext_diff < nextents) {
3248 		memmove(&ifp->if_u2.if_inline_ext[idx],
3249 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3250 			(nextents - (idx + ext_diff)) *
3251 			 sizeof(xfs_bmbt_rec_t));
3252 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3253 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3254 	} else {
3255 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3256 			ext_diff * sizeof(xfs_bmbt_rec_t));
3257 	}
3258 }
3259 
3260 /*
3261  * This removes ext_diff extents from a linear (direct) extent list,
3262  * beginning at extent index idx. If the extents are being removed
3263  * from the end of the list (ie. truncate) then we just need to re-
3264  * allocate the list to remove the extra space. Otherwise, if the
3265  * extents are being removed from the middle of the existing extent
3266  * entries, then we first need to move the extent records beginning
3267  * at idx + ext_diff up in the list to overwrite the records being
3268  * removed, then remove the extra space via kmem_realloc.
3269  */
3270 void
3271 xfs_iext_remove_direct(
3272 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3273 	xfs_extnum_t	idx,		/* index to begin removing exts */
3274 	int		ext_diff)	/* number of extents to remove */
3275 {
3276 	xfs_extnum_t	nextents;	/* number of extents in file */
3277 	int		new_size;	/* size of extents after removal */
3278 
3279 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3280 	new_size = ifp->if_bytes -
3281 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3282 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3283 
3284 	if (new_size == 0) {
3285 		xfs_iext_destroy(ifp);
3286 		return;
3287 	}
3288 	/* Move extents up in the list (if needed) */
3289 	if (idx + ext_diff < nextents) {
3290 		memmove(&ifp->if_u1.if_extents[idx],
3291 			&ifp->if_u1.if_extents[idx + ext_diff],
3292 			(nextents - (idx + ext_diff)) *
3293 			 sizeof(xfs_bmbt_rec_t));
3294 	}
3295 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3296 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3297 	/*
3298 	 * Reallocate the direct extent list. If the extents
3299 	 * will fit inside the inode then xfs_iext_realloc_direct
3300 	 * will switch from direct to inline extent allocation
3301 	 * mode for us.
3302 	 */
3303 	xfs_iext_realloc_direct(ifp, new_size);
3304 	ifp->if_bytes = new_size;
3305 }
3306 
3307 /*
3308  * This is called when incore extents are being removed from the
3309  * indirection array and the extents being removed span multiple extent
3310  * buffers. The idx parameter contains the file extent index where we
3311  * want to begin removing extents, and the count parameter contains
3312  * how many extents need to be removed.
3313  *
3314  *    |-------|   |-------|
3315  *    | nex1  |   |       |    nex1 - number of extents before idx
3316  *    |-------|   | count |
3317  *    |       |   |       |    count - number of extents being removed at idx
3318  *    | count |   |-------|
3319  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3320  *    |-------|   |-------|
3321  */
3322 void
3323 xfs_iext_remove_indirect(
3324 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3325 	xfs_extnum_t	idx,		/* index to begin removing extents */
3326 	int		count)		/* number of extents to remove */
3327 {
3328 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3329 	int		erp_idx = 0;	/* indirection array index */
3330 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3331 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3332 	xfs_extnum_t	nex1;		/* number of extents before idx */
3333 	xfs_extnum_t	nex2;		/* extents after idx + count */
3334 	int		page_idx = idx;	/* index in target extent list */
3335 
3336 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3337 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3338 	ASSERT(erp != NULL);
3339 	nex1 = page_idx;
3340 	ext_cnt = count;
3341 	while (ext_cnt) {
3342 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3343 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3344 		/*
3345 		 * Check for deletion of entire list;
3346 		 * xfs_iext_irec_remove() updates extent offsets.
3347 		 */
3348 		if (ext_diff == erp->er_extcount) {
3349 			xfs_iext_irec_remove(ifp, erp_idx);
3350 			ext_cnt -= ext_diff;
3351 			nex1 = 0;
3352 			if (ext_cnt) {
3353 				ASSERT(erp_idx < ifp->if_real_bytes /
3354 					XFS_IEXT_BUFSZ);
3355 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3356 				nex1 = 0;
3357 				continue;
3358 			} else {
3359 				break;
3360 			}
3361 		}
3362 		/* Move extents up (if needed) */
3363 		if (nex2) {
3364 			memmove(&erp->er_extbuf[nex1],
3365 				&erp->er_extbuf[nex1 + ext_diff],
3366 				nex2 * sizeof(xfs_bmbt_rec_t));
3367 		}
3368 		/* Zero out rest of page */
3369 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3370 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3371 		/* Update remaining counters */
3372 		erp->er_extcount -= ext_diff;
3373 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3374 		ext_cnt -= ext_diff;
3375 		nex1 = 0;
3376 		erp_idx++;
3377 		erp++;
3378 	}
3379 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3380 	xfs_iext_irec_compact(ifp);
3381 }
3382 
3383 /*
3384  * Create, destroy, or resize a linear (direct) block of extents.
3385  */
3386 void
3387 xfs_iext_realloc_direct(
3388 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3389 	int		new_size)	/* new size of extents */
3390 {
3391 	int		rnew_size;	/* real new size of extents */
3392 
3393 	rnew_size = new_size;
3394 
3395 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3396 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3397 		 (new_size != ifp->if_real_bytes)));
3398 
3399 	/* Free extent records */
3400 	if (new_size == 0) {
3401 		xfs_iext_destroy(ifp);
3402 	}
3403 	/* Resize direct extent list and zero any new bytes */
3404 	else if (ifp->if_real_bytes) {
3405 		/* Check if extents will fit inside the inode */
3406 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3407 			xfs_iext_direct_to_inline(ifp, new_size /
3408 				(uint)sizeof(xfs_bmbt_rec_t));
3409 			ifp->if_bytes = new_size;
3410 			return;
3411 		}
3412 		if (!is_power_of_2(new_size)){
3413 			rnew_size = roundup_pow_of_two(new_size);
3414 		}
3415 		if (rnew_size != ifp->if_real_bytes) {
3416 			ifp->if_u1.if_extents =
3417 				kmem_realloc(ifp->if_u1.if_extents,
3418 						rnew_size,
3419 						ifp->if_real_bytes, KM_NOFS);
3420 		}
3421 		if (rnew_size > ifp->if_real_bytes) {
3422 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3423 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3424 				rnew_size - ifp->if_real_bytes);
3425 		}
3426 	}
3427 	/*
3428 	 * Switch from the inline extent buffer to a direct
3429 	 * extent list. Be sure to include the inline extent
3430 	 * bytes in new_size.
3431 	 */
3432 	else {
3433 		new_size += ifp->if_bytes;
3434 		if (!is_power_of_2(new_size)) {
3435 			rnew_size = roundup_pow_of_two(new_size);
3436 		}
3437 		xfs_iext_inline_to_direct(ifp, rnew_size);
3438 	}
3439 	ifp->if_real_bytes = rnew_size;
3440 	ifp->if_bytes = new_size;
3441 }
3442 
3443 /*
3444  * Switch from linear (direct) extent records to inline buffer.
3445  */
3446 void
3447 xfs_iext_direct_to_inline(
3448 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3449 	xfs_extnum_t	nextents)	/* number of extents in file */
3450 {
3451 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3452 	ASSERT(nextents <= XFS_INLINE_EXTS);
3453 	/*
3454 	 * The inline buffer was zeroed when we switched
3455 	 * from inline to direct extent allocation mode,
3456 	 * so we don't need to clear it here.
3457 	 */
3458 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3459 		nextents * sizeof(xfs_bmbt_rec_t));
3460 	kmem_free(ifp->if_u1.if_extents);
3461 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3462 	ifp->if_real_bytes = 0;
3463 }
3464 
3465 /*
3466  * Switch from inline buffer to linear (direct) extent records.
3467  * new_size should already be rounded up to the next power of 2
3468  * by the caller (when appropriate), so use new_size as it is.
3469  * However, since new_size may be rounded up, we can't update
3470  * if_bytes here. It is the caller's responsibility to update
3471  * if_bytes upon return.
3472  */
3473 void
3474 xfs_iext_inline_to_direct(
3475 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3476 	int		new_size)	/* number of extents in file */
3477 {
3478 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3479 	memset(ifp->if_u1.if_extents, 0, new_size);
3480 	if (ifp->if_bytes) {
3481 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3482 			ifp->if_bytes);
3483 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3484 			sizeof(xfs_bmbt_rec_t));
3485 	}
3486 	ifp->if_real_bytes = new_size;
3487 }
3488 
3489 /*
3490  * Resize an extent indirection array to new_size bytes.
3491  */
3492 STATIC void
3493 xfs_iext_realloc_indirect(
3494 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3495 	int		new_size)	/* new indirection array size */
3496 {
3497 	int		nlists;		/* number of irec's (ex lists) */
3498 	int		size;		/* current indirection array size */
3499 
3500 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3501 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3502 	size = nlists * sizeof(xfs_ext_irec_t);
3503 	ASSERT(ifp->if_real_bytes);
3504 	ASSERT((new_size >= 0) && (new_size != size));
3505 	if (new_size == 0) {
3506 		xfs_iext_destroy(ifp);
3507 	} else {
3508 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3509 			kmem_realloc(ifp->if_u1.if_ext_irec,
3510 				new_size, size, KM_NOFS);
3511 	}
3512 }
3513 
3514 /*
3515  * Switch from indirection array to linear (direct) extent allocations.
3516  */
3517 STATIC void
3518 xfs_iext_indirect_to_direct(
3519 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3520 {
3521 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3522 	xfs_extnum_t	nextents;	/* number of extents in file */
3523 	int		size;		/* size of file extents */
3524 
3525 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3526 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3527 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3528 	size = nextents * sizeof(xfs_bmbt_rec_t);
3529 
3530 	xfs_iext_irec_compact_pages(ifp);
3531 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3532 
3533 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3534 	kmem_free(ifp->if_u1.if_ext_irec);
3535 	ifp->if_flags &= ~XFS_IFEXTIREC;
3536 	ifp->if_u1.if_extents = ep;
3537 	ifp->if_bytes = size;
3538 	if (nextents < XFS_LINEAR_EXTS) {
3539 		xfs_iext_realloc_direct(ifp, size);
3540 	}
3541 }
3542 
3543 /*
3544  * Free incore file extents.
3545  */
3546 void
3547 xfs_iext_destroy(
3548 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3549 {
3550 	if (ifp->if_flags & XFS_IFEXTIREC) {
3551 		int	erp_idx;
3552 		int	nlists;
3553 
3554 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3555 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3556 			xfs_iext_irec_remove(ifp, erp_idx);
3557 		}
3558 		ifp->if_flags &= ~XFS_IFEXTIREC;
3559 	} else if (ifp->if_real_bytes) {
3560 		kmem_free(ifp->if_u1.if_extents);
3561 	} else if (ifp->if_bytes) {
3562 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3563 			sizeof(xfs_bmbt_rec_t));
3564 	}
3565 	ifp->if_u1.if_extents = NULL;
3566 	ifp->if_real_bytes = 0;
3567 	ifp->if_bytes = 0;
3568 }
3569 
3570 /*
3571  * Return a pointer to the extent record for file system block bno.
3572  */
3573 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3574 xfs_iext_bno_to_ext(
3575 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3576 	xfs_fileoff_t	bno,		/* block number to search for */
3577 	xfs_extnum_t	*idxp)		/* index of target extent */
3578 {
3579 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3580 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3581 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3582 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3583 	int		high;		/* upper boundary in search */
3584 	xfs_extnum_t	idx = 0;	/* index of target extent */
3585 	int		low;		/* lower boundary in search */
3586 	xfs_extnum_t	nextents;	/* number of file extents */
3587 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3588 
3589 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3590 	if (nextents == 0) {
3591 		*idxp = 0;
3592 		return NULL;
3593 	}
3594 	low = 0;
3595 	if (ifp->if_flags & XFS_IFEXTIREC) {
3596 		/* Find target extent list */
3597 		int	erp_idx = 0;
3598 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3599 		base = erp->er_extbuf;
3600 		high = erp->er_extcount - 1;
3601 	} else {
3602 		base = ifp->if_u1.if_extents;
3603 		high = nextents - 1;
3604 	}
3605 	/* Binary search extent records */
3606 	while (low <= high) {
3607 		idx = (low + high) >> 1;
3608 		ep = base + idx;
3609 		startoff = xfs_bmbt_get_startoff(ep);
3610 		blockcount = xfs_bmbt_get_blockcount(ep);
3611 		if (bno < startoff) {
3612 			high = idx - 1;
3613 		} else if (bno >= startoff + blockcount) {
3614 			low = idx + 1;
3615 		} else {
3616 			/* Convert back to file-based extent index */
3617 			if (ifp->if_flags & XFS_IFEXTIREC) {
3618 				idx += erp->er_extoff;
3619 			}
3620 			*idxp = idx;
3621 			return ep;
3622 		}
3623 	}
3624 	/* Convert back to file-based extent index */
3625 	if (ifp->if_flags & XFS_IFEXTIREC) {
3626 		idx += erp->er_extoff;
3627 	}
3628 	if (bno >= startoff + blockcount) {
3629 		if (++idx == nextents) {
3630 			ep = NULL;
3631 		} else {
3632 			ep = xfs_iext_get_ext(ifp, idx);
3633 		}
3634 	}
3635 	*idxp = idx;
3636 	return ep;
3637 }
3638 
3639 /*
3640  * Return a pointer to the indirection array entry containing the
3641  * extent record for filesystem block bno. Store the index of the
3642  * target irec in *erp_idxp.
3643  */
3644 xfs_ext_irec_t *			/* pointer to found extent record */
3645 xfs_iext_bno_to_irec(
3646 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3647 	xfs_fileoff_t	bno,		/* block number to search for */
3648 	int		*erp_idxp)	/* irec index of target ext list */
3649 {
3650 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3651 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3652 	int		erp_idx;	/* indirection array index */
3653 	int		nlists;		/* number of extent irec's (lists) */
3654 	int		high;		/* binary search upper limit */
3655 	int		low;		/* binary search lower limit */
3656 
3657 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3658 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3659 	erp_idx = 0;
3660 	low = 0;
3661 	high = nlists - 1;
3662 	while (low <= high) {
3663 		erp_idx = (low + high) >> 1;
3664 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3665 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3666 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3667 			high = erp_idx - 1;
3668 		} else if (erp_next && bno >=
3669 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3670 			low = erp_idx + 1;
3671 		} else {
3672 			break;
3673 		}
3674 	}
3675 	*erp_idxp = erp_idx;
3676 	return erp;
3677 }
3678 
3679 /*
3680  * Return a pointer to the indirection array entry containing the
3681  * extent record at file extent index *idxp. Store the index of the
3682  * target irec in *erp_idxp and store the page index of the target
3683  * extent record in *idxp.
3684  */
3685 xfs_ext_irec_t *
3686 xfs_iext_idx_to_irec(
3687 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3688 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3689 	int		*erp_idxp,	/* pointer to target irec */
3690 	int		realloc)	/* new bytes were just added */
3691 {
3692 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3693 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3694 	int		erp_idx;	/* indirection array index */
3695 	int		nlists;		/* number of irec's (ex lists) */
3696 	int		high;		/* binary search upper limit */
3697 	int		low;		/* binary search lower limit */
3698 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3699 
3700 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3701 	ASSERT(page_idx >= 0);
3702 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3703 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3704 
3705 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3706 	erp_idx = 0;
3707 	low = 0;
3708 	high = nlists - 1;
3709 
3710 	/* Binary search extent irec's */
3711 	while (low <= high) {
3712 		erp_idx = (low + high) >> 1;
3713 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3714 		prev = erp_idx > 0 ? erp - 1 : NULL;
3715 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3716 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3717 			high = erp_idx - 1;
3718 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3719 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3720 			    !realloc)) {
3721 			low = erp_idx + 1;
3722 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3723 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3724 			ASSERT(realloc);
3725 			page_idx = 0;
3726 			erp_idx++;
3727 			erp = erp_idx < nlists ? erp + 1 : NULL;
3728 			break;
3729 		} else {
3730 			page_idx -= erp->er_extoff;
3731 			break;
3732 		}
3733 	}
3734 	*idxp = page_idx;
3735 	*erp_idxp = erp_idx;
3736 	return(erp);
3737 }
3738 
3739 /*
3740  * Allocate and initialize an indirection array once the space needed
3741  * for incore extents increases above XFS_IEXT_BUFSZ.
3742  */
3743 void
3744 xfs_iext_irec_init(
3745 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3746 {
3747 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3748 	xfs_extnum_t	nextents;	/* number of extents in file */
3749 
3750 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3751 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3752 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3753 
3754 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3755 
3756 	if (nextents == 0) {
3757 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3758 	} else if (!ifp->if_real_bytes) {
3759 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3760 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3761 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3762 	}
3763 	erp->er_extbuf = ifp->if_u1.if_extents;
3764 	erp->er_extcount = nextents;
3765 	erp->er_extoff = 0;
3766 
3767 	ifp->if_flags |= XFS_IFEXTIREC;
3768 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3769 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3770 	ifp->if_u1.if_ext_irec = erp;
3771 
3772 	return;
3773 }
3774 
3775 /*
3776  * Allocate and initialize a new entry in the indirection array.
3777  */
3778 xfs_ext_irec_t *
3779 xfs_iext_irec_new(
3780 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3781 	int		erp_idx)	/* index for new irec */
3782 {
3783 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3784 	int		i;		/* loop counter */
3785 	int		nlists;		/* number of irec's (ex lists) */
3786 
3787 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3788 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3789 
3790 	/* Resize indirection array */
3791 	xfs_iext_realloc_indirect(ifp, ++nlists *
3792 				  sizeof(xfs_ext_irec_t));
3793 	/*
3794 	 * Move records down in the array so the
3795 	 * new page can use erp_idx.
3796 	 */
3797 	erp = ifp->if_u1.if_ext_irec;
3798 	for (i = nlists - 1; i > erp_idx; i--) {
3799 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3800 	}
3801 	ASSERT(i == erp_idx);
3802 
3803 	/* Initialize new extent record */
3804 	erp = ifp->if_u1.if_ext_irec;
3805 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3806 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3807 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3808 	erp[erp_idx].er_extcount = 0;
3809 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3810 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3811 	return (&erp[erp_idx]);
3812 }
3813 
3814 /*
3815  * Remove a record from the indirection array.
3816  */
3817 void
3818 xfs_iext_irec_remove(
3819 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3820 	int		erp_idx)	/* irec index to remove */
3821 {
3822 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3823 	int		i;		/* loop counter */
3824 	int		nlists;		/* number of irec's (ex lists) */
3825 
3826 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3827 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3828 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3829 	if (erp->er_extbuf) {
3830 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3831 			-erp->er_extcount);
3832 		kmem_free(erp->er_extbuf);
3833 	}
3834 	/* Compact extent records */
3835 	erp = ifp->if_u1.if_ext_irec;
3836 	for (i = erp_idx; i < nlists - 1; i++) {
3837 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3838 	}
3839 	/*
3840 	 * Manually free the last extent record from the indirection
3841 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3842 	 * of zero would result in a call to xfs_iext_destroy() which
3843 	 * would in turn call this function again, creating a nasty
3844 	 * infinite loop.
3845 	 */
3846 	if (--nlists) {
3847 		xfs_iext_realloc_indirect(ifp,
3848 			nlists * sizeof(xfs_ext_irec_t));
3849 	} else {
3850 		kmem_free(ifp->if_u1.if_ext_irec);
3851 	}
3852 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3853 }
3854 
3855 /*
3856  * This is called to clean up large amounts of unused memory allocated
3857  * by the indirection array.  Before compacting anything though, verify
3858  * that the indirection array is still needed and switch back to the
3859  * linear extent list (or even the inline buffer) if possible.  The
3860  * compaction policy is as follows:
3861  *
3862  *    Full Compaction: Extents fit into a single page (or inline buffer)
3863  * Partial Compaction: Extents occupy less than 50% of allocated space
3864  *      No Compaction: Extents occupy at least 50% of allocated space
3865  */
3866 void
3867 xfs_iext_irec_compact(
3868 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3869 {
3870 	xfs_extnum_t	nextents;	/* number of extents in file */
3871 	int		nlists;		/* number of irec's (ex lists) */
3872 
3873 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3875 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3876 
3877 	if (nextents == 0) {
3878 		xfs_iext_destroy(ifp);
3879 	} else if (nextents <= XFS_INLINE_EXTS) {
3880 		xfs_iext_indirect_to_direct(ifp);
3881 		xfs_iext_direct_to_inline(ifp, nextents);
3882 	} else if (nextents <= XFS_LINEAR_EXTS) {
3883 		xfs_iext_indirect_to_direct(ifp);
3884 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3885 		xfs_iext_irec_compact_pages(ifp);
3886 	}
3887 }
3888 
3889 /*
3890  * Combine extents from neighboring extent pages.
3891  */
3892 void
3893 xfs_iext_irec_compact_pages(
3894 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3895 {
3896 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3897 	int		erp_idx = 0;	/* indirection array index */
3898 	int		nlists;		/* number of irec's (ex lists) */
3899 
3900 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3901 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3902 	while (erp_idx < nlists - 1) {
3903 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3904 		erp_next = erp + 1;
3905 		if (erp_next->er_extcount <=
3906 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3907 			memcpy(&erp->er_extbuf[erp->er_extcount],
3908 				erp_next->er_extbuf, erp_next->er_extcount *
3909 				sizeof(xfs_bmbt_rec_t));
3910 			erp->er_extcount += erp_next->er_extcount;
3911 			/*
3912 			 * Free page before removing extent record
3913 			 * so er_extoffs don't get modified in
3914 			 * xfs_iext_irec_remove.
3915 			 */
3916 			kmem_free(erp_next->er_extbuf);
3917 			erp_next->er_extbuf = NULL;
3918 			xfs_iext_irec_remove(ifp, erp_idx + 1);
3919 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3920 		} else {
3921 			erp_idx++;
3922 		}
3923 	}
3924 }
3925 
3926 /*
3927  * This is called to update the er_extoff field in the indirection
3928  * array when extents have been added or removed from one of the
3929  * extent lists. erp_idx contains the irec index to begin updating
3930  * at and ext_diff contains the number of extents that were added
3931  * or removed.
3932  */
3933 void
3934 xfs_iext_irec_update_extoffs(
3935 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3936 	int		erp_idx,	/* irec index to update */
3937 	int		ext_diff)	/* number of new extents */
3938 {
3939 	int		i;		/* loop counter */
3940 	int		nlists;		/* number of irec's (ex lists */
3941 
3942 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3943 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3944 	for (i = erp_idx; i < nlists; i++) {
3945 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3946 	}
3947 }
3948 
3949 /*
3950  * Test whether it is appropriate to check an inode for and free post EOF
3951  * blocks. The 'force' parameter determines whether we should also consider
3952  * regular files that are marked preallocated or append-only.
3953  */
3954 bool
3955 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
3956 {
3957 	/* prealloc/delalloc exists only on regular files */
3958 	if (!S_ISREG(ip->i_d.di_mode))
3959 		return false;
3960 
3961 	/*
3962 	 * Zero sized files with no cached pages and delalloc blocks will not
3963 	 * have speculative prealloc/delalloc blocks to remove.
3964 	 */
3965 	if (VFS_I(ip)->i_size == 0 &&
3966 	    VN_CACHED(VFS_I(ip)) == 0 &&
3967 	    ip->i_delayed_blks == 0)
3968 		return false;
3969 
3970 	/* If we haven't read in the extent list, then don't do it now. */
3971 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
3972 		return false;
3973 
3974 	/*
3975 	 * Do not free real preallocated or append-only files unless the file
3976 	 * has delalloc blocks and we are forced to remove them.
3977 	 */
3978 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
3979 		if (!force || ip->i_delayed_blks == 0)
3980 			return false;
3981 
3982 	return true;
3983 }
3984 
3985