1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 64 return ip->i_d.di_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_d.di_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && 128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_lock locking order: 148 * 149 * i_rwsem -> page lock -> mmap_lock 150 * mmap_lock -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_lock locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_lock. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 inode->i_mode = mode; 805 set_nlink(inode, nlink); 806 inode->i_uid = current_fsuid(); 807 inode->i_rdev = rdev; 808 ip->i_d.di_projid = prid; 809 810 if (pip && XFS_INHERIT_GID(pip)) { 811 inode->i_gid = VFS_I(pip)->i_gid; 812 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 813 inode->i_mode |= S_ISGID; 814 } else { 815 inode->i_gid = current_fsgid(); 816 } 817 818 /* 819 * If the group ID of the new file does not match the effective group 820 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 821 * (and only if the irix_sgid_inherit compatibility variable is set). 822 */ 823 if (irix_sgid_inherit && 824 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 825 inode->i_mode &= ~S_ISGID; 826 827 ip->i_d.di_size = 0; 828 ip->i_df.if_nextents = 0; 829 ASSERT(ip->i_d.di_nblocks == 0); 830 831 tv = current_time(inode); 832 inode->i_mtime = tv; 833 inode->i_atime = tv; 834 inode->i_ctime = tv; 835 836 ip->i_d.di_extsize = 0; 837 ip->i_d.di_dmevmask = 0; 838 ip->i_d.di_dmstate = 0; 839 ip->i_d.di_flags = 0; 840 841 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 842 inode_set_iversion(inode, 1); 843 ip->i_d.di_flags2 = 0; 844 ip->i_d.di_cowextsize = 0; 845 ip->i_d.di_crtime = tv; 846 } 847 848 flags = XFS_ILOG_CORE; 849 switch (mode & S_IFMT) { 850 case S_IFIFO: 851 case S_IFCHR: 852 case S_IFBLK: 853 case S_IFSOCK: 854 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 855 ip->i_df.if_flags = 0; 856 flags |= XFS_ILOG_DEV; 857 break; 858 case S_IFREG: 859 case S_IFDIR: 860 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 861 uint di_flags = 0; 862 863 if (S_ISDIR(mode)) { 864 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 865 di_flags |= XFS_DIFLAG_RTINHERIT; 866 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 867 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 868 ip->i_d.di_extsize = pip->i_d.di_extsize; 869 } 870 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 871 di_flags |= XFS_DIFLAG_PROJINHERIT; 872 } else if (S_ISREG(mode)) { 873 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 874 di_flags |= XFS_DIFLAG_REALTIME; 875 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 876 di_flags |= XFS_DIFLAG_EXTSIZE; 877 ip->i_d.di_extsize = pip->i_d.di_extsize; 878 } 879 } 880 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 881 xfs_inherit_noatime) 882 di_flags |= XFS_DIFLAG_NOATIME; 883 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 884 xfs_inherit_nodump) 885 di_flags |= XFS_DIFLAG_NODUMP; 886 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 887 xfs_inherit_sync) 888 di_flags |= XFS_DIFLAG_SYNC; 889 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 890 xfs_inherit_nosymlinks) 891 di_flags |= XFS_DIFLAG_NOSYMLINKS; 892 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 893 xfs_inherit_nodefrag) 894 di_flags |= XFS_DIFLAG_NODEFRAG; 895 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 896 di_flags |= XFS_DIFLAG_FILESTREAM; 897 898 ip->i_d.di_flags |= di_flags; 899 } 900 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) { 901 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 902 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 903 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 904 } 905 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 906 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 907 } 908 /* FALLTHROUGH */ 909 case S_IFLNK: 910 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 911 ip->i_df.if_flags = XFS_IFEXTENTS; 912 ip->i_df.if_bytes = 0; 913 ip->i_df.if_u1.if_root = NULL; 914 break; 915 default: 916 ASSERT(0); 917 } 918 919 /* 920 * Log the new values stuffed into the inode. 921 */ 922 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 923 xfs_trans_log_inode(tp, ip, flags); 924 925 /* now that we have an i_mode we can setup the inode structure */ 926 xfs_setup_inode(ip); 927 928 *ipp = ip; 929 return 0; 930 } 931 932 /* 933 * Allocates a new inode from disk and return a pointer to the 934 * incore copy. This routine will internally commit the current 935 * transaction and allocate a new one if the Space Manager needed 936 * to do an allocation to replenish the inode free-list. 937 * 938 * This routine is designed to be called from xfs_create and 939 * xfs_create_dir. 940 * 941 */ 942 int 943 xfs_dir_ialloc( 944 xfs_trans_t **tpp, /* input: current transaction; 945 output: may be a new transaction. */ 946 xfs_inode_t *dp, /* directory within whose allocate 947 the inode. */ 948 umode_t mode, 949 xfs_nlink_t nlink, 950 dev_t rdev, 951 prid_t prid, /* project id */ 952 xfs_inode_t **ipp) /* pointer to inode; it will be 953 locked. */ 954 { 955 xfs_trans_t *tp; 956 xfs_inode_t *ip; 957 xfs_buf_t *ialloc_context = NULL; 958 int code; 959 void *dqinfo; 960 uint tflags; 961 962 tp = *tpp; 963 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 964 965 /* 966 * xfs_ialloc will return a pointer to an incore inode if 967 * the Space Manager has an available inode on the free 968 * list. Otherwise, it will do an allocation and replenish 969 * the freelist. Since we can only do one allocation per 970 * transaction without deadlocks, we will need to commit the 971 * current transaction and start a new one. We will then 972 * need to call xfs_ialloc again to get the inode. 973 * 974 * If xfs_ialloc did an allocation to replenish the freelist, 975 * it returns the bp containing the head of the freelist as 976 * ialloc_context. We will hold a lock on it across the 977 * transaction commit so that no other process can steal 978 * the inode(s) that we've just allocated. 979 */ 980 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 981 &ip); 982 983 /* 984 * Return an error if we were unable to allocate a new inode. 985 * This should only happen if we run out of space on disk or 986 * encounter a disk error. 987 */ 988 if (code) { 989 *ipp = NULL; 990 return code; 991 } 992 if (!ialloc_context && !ip) { 993 *ipp = NULL; 994 return -ENOSPC; 995 } 996 997 /* 998 * If the AGI buffer is non-NULL, then we were unable to get an 999 * inode in one operation. We need to commit the current 1000 * transaction and call xfs_ialloc() again. It is guaranteed 1001 * to succeed the second time. 1002 */ 1003 if (ialloc_context) { 1004 /* 1005 * Normally, xfs_trans_commit releases all the locks. 1006 * We call bhold to hang on to the ialloc_context across 1007 * the commit. Holding this buffer prevents any other 1008 * processes from doing any allocations in this 1009 * allocation group. 1010 */ 1011 xfs_trans_bhold(tp, ialloc_context); 1012 1013 /* 1014 * We want the quota changes to be associated with the next 1015 * transaction, NOT this one. So, detach the dqinfo from this 1016 * and attach it to the next transaction. 1017 */ 1018 dqinfo = NULL; 1019 tflags = 0; 1020 if (tp->t_dqinfo) { 1021 dqinfo = (void *)tp->t_dqinfo; 1022 tp->t_dqinfo = NULL; 1023 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1024 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1025 } 1026 1027 code = xfs_trans_roll(&tp); 1028 1029 /* 1030 * Re-attach the quota info that we detached from prev trx. 1031 */ 1032 if (dqinfo) { 1033 tp->t_dqinfo = dqinfo; 1034 tp->t_flags |= tflags; 1035 } 1036 1037 if (code) { 1038 xfs_buf_relse(ialloc_context); 1039 *tpp = tp; 1040 *ipp = NULL; 1041 return code; 1042 } 1043 xfs_trans_bjoin(tp, ialloc_context); 1044 1045 /* 1046 * Call ialloc again. Since we've locked out all 1047 * other allocations in this allocation group, 1048 * this call should always succeed. 1049 */ 1050 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1051 &ialloc_context, &ip); 1052 1053 /* 1054 * If we get an error at this point, return to the caller 1055 * so that the current transaction can be aborted. 1056 */ 1057 if (code) { 1058 *tpp = tp; 1059 *ipp = NULL; 1060 return code; 1061 } 1062 ASSERT(!ialloc_context && ip); 1063 1064 } 1065 1066 *ipp = ip; 1067 *tpp = tp; 1068 1069 return 0; 1070 } 1071 1072 /* 1073 * Decrement the link count on an inode & log the change. If this causes the 1074 * link count to go to zero, move the inode to AGI unlinked list so that it can 1075 * be freed when the last active reference goes away via xfs_inactive(). 1076 */ 1077 static int /* error */ 1078 xfs_droplink( 1079 xfs_trans_t *tp, 1080 xfs_inode_t *ip) 1081 { 1082 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1083 1084 drop_nlink(VFS_I(ip)); 1085 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1086 1087 if (VFS_I(ip)->i_nlink) 1088 return 0; 1089 1090 return xfs_iunlink(tp, ip); 1091 } 1092 1093 /* 1094 * Increment the link count on an inode & log the change. 1095 */ 1096 static void 1097 xfs_bumplink( 1098 xfs_trans_t *tp, 1099 xfs_inode_t *ip) 1100 { 1101 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1102 1103 inc_nlink(VFS_I(ip)); 1104 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1105 } 1106 1107 int 1108 xfs_create( 1109 xfs_inode_t *dp, 1110 struct xfs_name *name, 1111 umode_t mode, 1112 dev_t rdev, 1113 xfs_inode_t **ipp) 1114 { 1115 int is_dir = S_ISDIR(mode); 1116 struct xfs_mount *mp = dp->i_mount; 1117 struct xfs_inode *ip = NULL; 1118 struct xfs_trans *tp = NULL; 1119 int error; 1120 bool unlock_dp_on_error = false; 1121 prid_t prid; 1122 struct xfs_dquot *udqp = NULL; 1123 struct xfs_dquot *gdqp = NULL; 1124 struct xfs_dquot *pdqp = NULL; 1125 struct xfs_trans_res *tres; 1126 uint resblks; 1127 1128 trace_xfs_create(dp, name); 1129 1130 if (XFS_FORCED_SHUTDOWN(mp)) 1131 return -EIO; 1132 1133 prid = xfs_get_initial_prid(dp); 1134 1135 /* 1136 * Make sure that we have allocated dquot(s) on disk. 1137 */ 1138 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1139 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1140 &udqp, &gdqp, &pdqp); 1141 if (error) 1142 return error; 1143 1144 if (is_dir) { 1145 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1146 tres = &M_RES(mp)->tr_mkdir; 1147 } else { 1148 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1149 tres = &M_RES(mp)->tr_create; 1150 } 1151 1152 /* 1153 * Initially assume that the file does not exist and 1154 * reserve the resources for that case. If that is not 1155 * the case we'll drop the one we have and get a more 1156 * appropriate transaction later. 1157 */ 1158 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1159 if (error == -ENOSPC) { 1160 /* flush outstanding delalloc blocks and retry */ 1161 xfs_flush_inodes(mp); 1162 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1163 } 1164 if (error) 1165 goto out_release_inode; 1166 1167 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1168 unlock_dp_on_error = true; 1169 1170 /* 1171 * Reserve disk quota and the inode. 1172 */ 1173 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1174 pdqp, resblks, 1, 0); 1175 if (error) 1176 goto out_trans_cancel; 1177 1178 /* 1179 * A newly created regular or special file just has one directory 1180 * entry pointing to them, but a directory also the "." entry 1181 * pointing to itself. 1182 */ 1183 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1184 if (error) 1185 goto out_trans_cancel; 1186 1187 /* 1188 * Now we join the directory inode to the transaction. We do not do it 1189 * earlier because xfs_dir_ialloc might commit the previous transaction 1190 * (and release all the locks). An error from here on will result in 1191 * the transaction cancel unlocking dp so don't do it explicitly in the 1192 * error path. 1193 */ 1194 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1195 unlock_dp_on_error = false; 1196 1197 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1198 resblks - XFS_IALLOC_SPACE_RES(mp)); 1199 if (error) { 1200 ASSERT(error != -ENOSPC); 1201 goto out_trans_cancel; 1202 } 1203 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1204 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1205 1206 if (is_dir) { 1207 error = xfs_dir_init(tp, ip, dp); 1208 if (error) 1209 goto out_trans_cancel; 1210 1211 xfs_bumplink(tp, dp); 1212 } 1213 1214 /* 1215 * If this is a synchronous mount, make sure that the 1216 * create transaction goes to disk before returning to 1217 * the user. 1218 */ 1219 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1220 xfs_trans_set_sync(tp); 1221 1222 /* 1223 * Attach the dquot(s) to the inodes and modify them incore. 1224 * These ids of the inode couldn't have changed since the new 1225 * inode has been locked ever since it was created. 1226 */ 1227 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1228 1229 error = xfs_trans_commit(tp); 1230 if (error) 1231 goto out_release_inode; 1232 1233 xfs_qm_dqrele(udqp); 1234 xfs_qm_dqrele(gdqp); 1235 xfs_qm_dqrele(pdqp); 1236 1237 *ipp = ip; 1238 return 0; 1239 1240 out_trans_cancel: 1241 xfs_trans_cancel(tp); 1242 out_release_inode: 1243 /* 1244 * Wait until after the current transaction is aborted to finish the 1245 * setup of the inode and release the inode. This prevents recursive 1246 * transactions and deadlocks from xfs_inactive. 1247 */ 1248 if (ip) { 1249 xfs_finish_inode_setup(ip); 1250 xfs_irele(ip); 1251 } 1252 1253 xfs_qm_dqrele(udqp); 1254 xfs_qm_dqrele(gdqp); 1255 xfs_qm_dqrele(pdqp); 1256 1257 if (unlock_dp_on_error) 1258 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1259 return error; 1260 } 1261 1262 int 1263 xfs_create_tmpfile( 1264 struct xfs_inode *dp, 1265 umode_t mode, 1266 struct xfs_inode **ipp) 1267 { 1268 struct xfs_mount *mp = dp->i_mount; 1269 struct xfs_inode *ip = NULL; 1270 struct xfs_trans *tp = NULL; 1271 int error; 1272 prid_t prid; 1273 struct xfs_dquot *udqp = NULL; 1274 struct xfs_dquot *gdqp = NULL; 1275 struct xfs_dquot *pdqp = NULL; 1276 struct xfs_trans_res *tres; 1277 uint resblks; 1278 1279 if (XFS_FORCED_SHUTDOWN(mp)) 1280 return -EIO; 1281 1282 prid = xfs_get_initial_prid(dp); 1283 1284 /* 1285 * Make sure that we have allocated dquot(s) on disk. 1286 */ 1287 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1288 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1289 &udqp, &gdqp, &pdqp); 1290 if (error) 1291 return error; 1292 1293 resblks = XFS_IALLOC_SPACE_RES(mp); 1294 tres = &M_RES(mp)->tr_create_tmpfile; 1295 1296 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1297 if (error) 1298 goto out_release_inode; 1299 1300 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1301 pdqp, resblks, 1, 0); 1302 if (error) 1303 goto out_trans_cancel; 1304 1305 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1306 if (error) 1307 goto out_trans_cancel; 1308 1309 if (mp->m_flags & XFS_MOUNT_WSYNC) 1310 xfs_trans_set_sync(tp); 1311 1312 /* 1313 * Attach the dquot(s) to the inodes and modify them incore. 1314 * These ids of the inode couldn't have changed since the new 1315 * inode has been locked ever since it was created. 1316 */ 1317 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1318 1319 error = xfs_iunlink(tp, ip); 1320 if (error) 1321 goto out_trans_cancel; 1322 1323 error = xfs_trans_commit(tp); 1324 if (error) 1325 goto out_release_inode; 1326 1327 xfs_qm_dqrele(udqp); 1328 xfs_qm_dqrele(gdqp); 1329 xfs_qm_dqrele(pdqp); 1330 1331 *ipp = ip; 1332 return 0; 1333 1334 out_trans_cancel: 1335 xfs_trans_cancel(tp); 1336 out_release_inode: 1337 /* 1338 * Wait until after the current transaction is aborted to finish the 1339 * setup of the inode and release the inode. This prevents recursive 1340 * transactions and deadlocks from xfs_inactive. 1341 */ 1342 if (ip) { 1343 xfs_finish_inode_setup(ip); 1344 xfs_irele(ip); 1345 } 1346 1347 xfs_qm_dqrele(udqp); 1348 xfs_qm_dqrele(gdqp); 1349 xfs_qm_dqrele(pdqp); 1350 1351 return error; 1352 } 1353 1354 int 1355 xfs_link( 1356 xfs_inode_t *tdp, 1357 xfs_inode_t *sip, 1358 struct xfs_name *target_name) 1359 { 1360 xfs_mount_t *mp = tdp->i_mount; 1361 xfs_trans_t *tp; 1362 int error; 1363 int resblks; 1364 1365 trace_xfs_link(tdp, target_name); 1366 1367 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1368 1369 if (XFS_FORCED_SHUTDOWN(mp)) 1370 return -EIO; 1371 1372 error = xfs_qm_dqattach(sip); 1373 if (error) 1374 goto std_return; 1375 1376 error = xfs_qm_dqattach(tdp); 1377 if (error) 1378 goto std_return; 1379 1380 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1381 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1382 if (error == -ENOSPC) { 1383 resblks = 0; 1384 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1385 } 1386 if (error) 1387 goto std_return; 1388 1389 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1390 1391 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1392 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1393 1394 /* 1395 * If we are using project inheritance, we only allow hard link 1396 * creation in our tree when the project IDs are the same; else 1397 * the tree quota mechanism could be circumvented. 1398 */ 1399 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1400 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1401 error = -EXDEV; 1402 goto error_return; 1403 } 1404 1405 if (!resblks) { 1406 error = xfs_dir_canenter(tp, tdp, target_name); 1407 if (error) 1408 goto error_return; 1409 } 1410 1411 /* 1412 * Handle initial link state of O_TMPFILE inode 1413 */ 1414 if (VFS_I(sip)->i_nlink == 0) { 1415 error = xfs_iunlink_remove(tp, sip); 1416 if (error) 1417 goto error_return; 1418 } 1419 1420 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1421 resblks); 1422 if (error) 1423 goto error_return; 1424 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1425 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1426 1427 xfs_bumplink(tp, sip); 1428 1429 /* 1430 * If this is a synchronous mount, make sure that the 1431 * link transaction goes to disk before returning to 1432 * the user. 1433 */ 1434 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1435 xfs_trans_set_sync(tp); 1436 1437 return xfs_trans_commit(tp); 1438 1439 error_return: 1440 xfs_trans_cancel(tp); 1441 std_return: 1442 return error; 1443 } 1444 1445 /* Clear the reflink flag and the cowblocks tag if possible. */ 1446 static void 1447 xfs_itruncate_clear_reflink_flags( 1448 struct xfs_inode *ip) 1449 { 1450 struct xfs_ifork *dfork; 1451 struct xfs_ifork *cfork; 1452 1453 if (!xfs_is_reflink_inode(ip)) 1454 return; 1455 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1456 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1457 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1458 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1459 if (cfork->if_bytes == 0) 1460 xfs_inode_clear_cowblocks_tag(ip); 1461 } 1462 1463 /* 1464 * Free up the underlying blocks past new_size. The new size must be smaller 1465 * than the current size. This routine can be used both for the attribute and 1466 * data fork, and does not modify the inode size, which is left to the caller. 1467 * 1468 * The transaction passed to this routine must have made a permanent log 1469 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1470 * given transaction and start new ones, so make sure everything involved in 1471 * the transaction is tidy before calling here. Some transaction will be 1472 * returned to the caller to be committed. The incoming transaction must 1473 * already include the inode, and both inode locks must be held exclusively. 1474 * The inode must also be "held" within the transaction. On return the inode 1475 * will be "held" within the returned transaction. This routine does NOT 1476 * require any disk space to be reserved for it within the transaction. 1477 * 1478 * If we get an error, we must return with the inode locked and linked into the 1479 * current transaction. This keeps things simple for the higher level code, 1480 * because it always knows that the inode is locked and held in the transaction 1481 * that returns to it whether errors occur or not. We don't mark the inode 1482 * dirty on error so that transactions can be easily aborted if possible. 1483 */ 1484 int 1485 xfs_itruncate_extents_flags( 1486 struct xfs_trans **tpp, 1487 struct xfs_inode *ip, 1488 int whichfork, 1489 xfs_fsize_t new_size, 1490 int flags) 1491 { 1492 struct xfs_mount *mp = ip->i_mount; 1493 struct xfs_trans *tp = *tpp; 1494 xfs_fileoff_t first_unmap_block; 1495 xfs_filblks_t unmap_len; 1496 int error = 0; 1497 1498 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1499 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1500 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1501 ASSERT(new_size <= XFS_ISIZE(ip)); 1502 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1503 ASSERT(ip->i_itemp != NULL); 1504 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1505 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1506 1507 trace_xfs_itruncate_extents_start(ip, new_size); 1508 1509 flags |= xfs_bmapi_aflag(whichfork); 1510 1511 /* 1512 * Since it is possible for space to become allocated beyond 1513 * the end of the file (in a crash where the space is allocated 1514 * but the inode size is not yet updated), simply remove any 1515 * blocks which show up between the new EOF and the maximum 1516 * possible file size. 1517 * 1518 * We have to free all the blocks to the bmbt maximum offset, even if 1519 * the page cache can't scale that far. 1520 */ 1521 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1522 if (first_unmap_block >= XFS_MAX_FILEOFF) { 1523 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1524 return 0; 1525 } 1526 1527 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1528 while (unmap_len > 0) { 1529 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1530 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1531 flags, XFS_ITRUNC_MAX_EXTENTS); 1532 if (error) 1533 goto out; 1534 1535 /* 1536 * Duplicate the transaction that has the permanent 1537 * reservation and commit the old transaction. 1538 */ 1539 error = xfs_defer_finish(&tp); 1540 if (error) 1541 goto out; 1542 1543 error = xfs_trans_roll_inode(&tp, ip); 1544 if (error) 1545 goto out; 1546 } 1547 1548 if (whichfork == XFS_DATA_FORK) { 1549 /* Remove all pending CoW reservations. */ 1550 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1551 first_unmap_block, XFS_MAX_FILEOFF, true); 1552 if (error) 1553 goto out; 1554 1555 xfs_itruncate_clear_reflink_flags(ip); 1556 } 1557 1558 /* 1559 * Always re-log the inode so that our permanent transaction can keep 1560 * on rolling it forward in the log. 1561 */ 1562 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1563 1564 trace_xfs_itruncate_extents_end(ip, new_size); 1565 1566 out: 1567 *tpp = tp; 1568 return error; 1569 } 1570 1571 int 1572 xfs_release( 1573 xfs_inode_t *ip) 1574 { 1575 xfs_mount_t *mp = ip->i_mount; 1576 int error; 1577 1578 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1579 return 0; 1580 1581 /* If this is a read-only mount, don't do this (would generate I/O) */ 1582 if (mp->m_flags & XFS_MOUNT_RDONLY) 1583 return 0; 1584 1585 if (!XFS_FORCED_SHUTDOWN(mp)) { 1586 int truncated; 1587 1588 /* 1589 * If we previously truncated this file and removed old data 1590 * in the process, we want to initiate "early" writeout on 1591 * the last close. This is an attempt to combat the notorious 1592 * NULL files problem which is particularly noticeable from a 1593 * truncate down, buffered (re-)write (delalloc), followed by 1594 * a crash. What we are effectively doing here is 1595 * significantly reducing the time window where we'd otherwise 1596 * be exposed to that problem. 1597 */ 1598 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1599 if (truncated) { 1600 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1601 if (ip->i_delayed_blks > 0) { 1602 error = filemap_flush(VFS_I(ip)->i_mapping); 1603 if (error) 1604 return error; 1605 } 1606 } 1607 } 1608 1609 if (VFS_I(ip)->i_nlink == 0) 1610 return 0; 1611 1612 if (xfs_can_free_eofblocks(ip, false)) { 1613 1614 /* 1615 * Check if the inode is being opened, written and closed 1616 * frequently and we have delayed allocation blocks outstanding 1617 * (e.g. streaming writes from the NFS server), truncating the 1618 * blocks past EOF will cause fragmentation to occur. 1619 * 1620 * In this case don't do the truncation, but we have to be 1621 * careful how we detect this case. Blocks beyond EOF show up as 1622 * i_delayed_blks even when the inode is clean, so we need to 1623 * truncate them away first before checking for a dirty release. 1624 * Hence on the first dirty close we will still remove the 1625 * speculative allocation, but after that we will leave it in 1626 * place. 1627 */ 1628 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1629 return 0; 1630 /* 1631 * If we can't get the iolock just skip truncating the blocks 1632 * past EOF because we could deadlock with the mmap_lock 1633 * otherwise. We'll get another chance to drop them once the 1634 * last reference to the inode is dropped, so we'll never leak 1635 * blocks permanently. 1636 */ 1637 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1638 error = xfs_free_eofblocks(ip); 1639 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1640 if (error) 1641 return error; 1642 } 1643 1644 /* delalloc blocks after truncation means it really is dirty */ 1645 if (ip->i_delayed_blks) 1646 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1647 } 1648 return 0; 1649 } 1650 1651 /* 1652 * xfs_inactive_truncate 1653 * 1654 * Called to perform a truncate when an inode becomes unlinked. 1655 */ 1656 STATIC int 1657 xfs_inactive_truncate( 1658 struct xfs_inode *ip) 1659 { 1660 struct xfs_mount *mp = ip->i_mount; 1661 struct xfs_trans *tp; 1662 int error; 1663 1664 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1665 if (error) { 1666 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1667 return error; 1668 } 1669 xfs_ilock(ip, XFS_ILOCK_EXCL); 1670 xfs_trans_ijoin(tp, ip, 0); 1671 1672 /* 1673 * Log the inode size first to prevent stale data exposure in the event 1674 * of a system crash before the truncate completes. See the related 1675 * comment in xfs_vn_setattr_size() for details. 1676 */ 1677 ip->i_d.di_size = 0; 1678 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1679 1680 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1681 if (error) 1682 goto error_trans_cancel; 1683 1684 ASSERT(ip->i_df.if_nextents == 0); 1685 1686 error = xfs_trans_commit(tp); 1687 if (error) 1688 goto error_unlock; 1689 1690 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1691 return 0; 1692 1693 error_trans_cancel: 1694 xfs_trans_cancel(tp); 1695 error_unlock: 1696 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1697 return error; 1698 } 1699 1700 /* 1701 * xfs_inactive_ifree() 1702 * 1703 * Perform the inode free when an inode is unlinked. 1704 */ 1705 STATIC int 1706 xfs_inactive_ifree( 1707 struct xfs_inode *ip) 1708 { 1709 struct xfs_mount *mp = ip->i_mount; 1710 struct xfs_trans *tp; 1711 int error; 1712 1713 /* 1714 * We try to use a per-AG reservation for any block needed by the finobt 1715 * tree, but as the finobt feature predates the per-AG reservation 1716 * support a degraded file system might not have enough space for the 1717 * reservation at mount time. In that case try to dip into the reserved 1718 * pool and pray. 1719 * 1720 * Send a warning if the reservation does happen to fail, as the inode 1721 * now remains allocated and sits on the unlinked list until the fs is 1722 * repaired. 1723 */ 1724 if (unlikely(mp->m_finobt_nores)) { 1725 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1726 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1727 &tp); 1728 } else { 1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1730 } 1731 if (error) { 1732 if (error == -ENOSPC) { 1733 xfs_warn_ratelimited(mp, 1734 "Failed to remove inode(s) from unlinked list. " 1735 "Please free space, unmount and run xfs_repair."); 1736 } else { 1737 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1738 } 1739 return error; 1740 } 1741 1742 /* 1743 * We do not hold the inode locked across the entire rolling transaction 1744 * here. We only need to hold it for the first transaction that 1745 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1746 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1747 * here breaks the relationship between cluster buffer invalidation and 1748 * stale inode invalidation on cluster buffer item journal commit 1749 * completion, and can result in leaving dirty stale inodes hanging 1750 * around in memory. 1751 * 1752 * We have no need for serialising this inode operation against other 1753 * operations - we freed the inode and hence reallocation is required 1754 * and that will serialise on reallocating the space the deferops need 1755 * to free. Hence we can unlock the inode on the first commit of 1756 * the transaction rather than roll it right through the deferops. This 1757 * avoids relogging the XFS_ISTALE inode. 1758 * 1759 * We check that xfs_ifree() hasn't grown an internal transaction roll 1760 * by asserting that the inode is still locked when it returns. 1761 */ 1762 xfs_ilock(ip, XFS_ILOCK_EXCL); 1763 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1764 1765 error = xfs_ifree(tp, ip); 1766 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1767 if (error) { 1768 /* 1769 * If we fail to free the inode, shut down. The cancel 1770 * might do that, we need to make sure. Otherwise the 1771 * inode might be lost for a long time or forever. 1772 */ 1773 if (!XFS_FORCED_SHUTDOWN(mp)) { 1774 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1775 __func__, error); 1776 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1777 } 1778 xfs_trans_cancel(tp); 1779 return error; 1780 } 1781 1782 /* 1783 * Credit the quota account(s). The inode is gone. 1784 */ 1785 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1786 1787 /* 1788 * Just ignore errors at this point. There is nothing we can do except 1789 * to try to keep going. Make sure it's not a silent error. 1790 */ 1791 error = xfs_trans_commit(tp); 1792 if (error) 1793 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1794 __func__, error); 1795 1796 return 0; 1797 } 1798 1799 /* 1800 * xfs_inactive 1801 * 1802 * This is called when the vnode reference count for the vnode 1803 * goes to zero. If the file has been unlinked, then it must 1804 * now be truncated. Also, we clear all of the read-ahead state 1805 * kept for the inode here since the file is now closed. 1806 */ 1807 void 1808 xfs_inactive( 1809 xfs_inode_t *ip) 1810 { 1811 struct xfs_mount *mp; 1812 int error; 1813 int truncate = 0; 1814 1815 /* 1816 * If the inode is already free, then there can be nothing 1817 * to clean up here. 1818 */ 1819 if (VFS_I(ip)->i_mode == 0) { 1820 ASSERT(ip->i_df.if_broot_bytes == 0); 1821 return; 1822 } 1823 1824 mp = ip->i_mount; 1825 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1826 1827 /* If this is a read-only mount, don't do this (would generate I/O) */ 1828 if (mp->m_flags & XFS_MOUNT_RDONLY) 1829 return; 1830 1831 /* Try to clean out the cow blocks if there are any. */ 1832 if (xfs_inode_has_cow_data(ip)) 1833 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1834 1835 if (VFS_I(ip)->i_nlink != 0) { 1836 /* 1837 * force is true because we are evicting an inode from the 1838 * cache. Post-eof blocks must be freed, lest we end up with 1839 * broken free space accounting. 1840 * 1841 * Note: don't bother with iolock here since lockdep complains 1842 * about acquiring it in reclaim context. We have the only 1843 * reference to the inode at this point anyways. 1844 */ 1845 if (xfs_can_free_eofblocks(ip, true)) 1846 xfs_free_eofblocks(ip); 1847 1848 return; 1849 } 1850 1851 if (S_ISREG(VFS_I(ip)->i_mode) && 1852 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1853 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1854 truncate = 1; 1855 1856 error = xfs_qm_dqattach(ip); 1857 if (error) 1858 return; 1859 1860 if (S_ISLNK(VFS_I(ip)->i_mode)) 1861 error = xfs_inactive_symlink(ip); 1862 else if (truncate) 1863 error = xfs_inactive_truncate(ip); 1864 if (error) 1865 return; 1866 1867 /* 1868 * If there are attributes associated with the file then blow them away 1869 * now. The code calls a routine that recursively deconstructs the 1870 * attribute fork. If also blows away the in-core attribute fork. 1871 */ 1872 if (XFS_IFORK_Q(ip)) { 1873 error = xfs_attr_inactive(ip); 1874 if (error) 1875 return; 1876 } 1877 1878 ASSERT(!ip->i_afp); 1879 ASSERT(ip->i_d.di_forkoff == 0); 1880 1881 /* 1882 * Free the inode. 1883 */ 1884 error = xfs_inactive_ifree(ip); 1885 if (error) 1886 return; 1887 1888 /* 1889 * Release the dquots held by inode, if any. 1890 */ 1891 xfs_qm_dqdetach(ip); 1892 } 1893 1894 /* 1895 * In-Core Unlinked List Lookups 1896 * ============================= 1897 * 1898 * Every inode is supposed to be reachable from some other piece of metadata 1899 * with the exception of the root directory. Inodes with a connection to a 1900 * file descriptor but not linked from anywhere in the on-disk directory tree 1901 * are collectively known as unlinked inodes, though the filesystem itself 1902 * maintains links to these inodes so that on-disk metadata are consistent. 1903 * 1904 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1905 * header contains a number of buckets that point to an inode, and each inode 1906 * record has a pointer to the next inode in the hash chain. This 1907 * singly-linked list causes scaling problems in the iunlink remove function 1908 * because we must walk that list to find the inode that points to the inode 1909 * being removed from the unlinked hash bucket list. 1910 * 1911 * What if we modelled the unlinked list as a collection of records capturing 1912 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1913 * have a fast way to look up unlinked list predecessors, which avoids the 1914 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1915 * rhashtable. 1916 * 1917 * Because this is a backref cache, we ignore operational failures since the 1918 * iunlink code can fall back to the slow bucket walk. The only errors that 1919 * should bubble out are for obviously incorrect situations. 1920 * 1921 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1922 * access or have otherwise provided for concurrency control. 1923 */ 1924 1925 /* Capture a "X.next_unlinked = Y" relationship. */ 1926 struct xfs_iunlink { 1927 struct rhash_head iu_rhash_head; 1928 xfs_agino_t iu_agino; /* X */ 1929 xfs_agino_t iu_next_unlinked; /* Y */ 1930 }; 1931 1932 /* Unlinked list predecessor lookup hashtable construction */ 1933 static int 1934 xfs_iunlink_obj_cmpfn( 1935 struct rhashtable_compare_arg *arg, 1936 const void *obj) 1937 { 1938 const xfs_agino_t *key = arg->key; 1939 const struct xfs_iunlink *iu = obj; 1940 1941 if (iu->iu_next_unlinked != *key) 1942 return 1; 1943 return 0; 1944 } 1945 1946 static const struct rhashtable_params xfs_iunlink_hash_params = { 1947 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1948 .key_len = sizeof(xfs_agino_t), 1949 .key_offset = offsetof(struct xfs_iunlink, 1950 iu_next_unlinked), 1951 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1952 .automatic_shrinking = true, 1953 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1954 }; 1955 1956 /* 1957 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1958 * relation is found. 1959 */ 1960 static xfs_agino_t 1961 xfs_iunlink_lookup_backref( 1962 struct xfs_perag *pag, 1963 xfs_agino_t agino) 1964 { 1965 struct xfs_iunlink *iu; 1966 1967 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1968 xfs_iunlink_hash_params); 1969 return iu ? iu->iu_agino : NULLAGINO; 1970 } 1971 1972 /* 1973 * Take ownership of an iunlink cache entry and insert it into the hash table. 1974 * If successful, the entry will be owned by the cache; if not, it is freed. 1975 * Either way, the caller does not own @iu after this call. 1976 */ 1977 static int 1978 xfs_iunlink_insert_backref( 1979 struct xfs_perag *pag, 1980 struct xfs_iunlink *iu) 1981 { 1982 int error; 1983 1984 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1985 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1986 /* 1987 * Fail loudly if there already was an entry because that's a sign of 1988 * corruption of in-memory data. Also fail loudly if we see an error 1989 * code we didn't anticipate from the rhashtable code. Currently we 1990 * only anticipate ENOMEM. 1991 */ 1992 if (error) { 1993 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1994 kmem_free(iu); 1995 } 1996 /* 1997 * Absorb any runtime errors that aren't a result of corruption because 1998 * this is a cache and we can always fall back to bucket list scanning. 1999 */ 2000 if (error != 0 && error != -EEXIST) 2001 error = 0; 2002 return error; 2003 } 2004 2005 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 2006 static int 2007 xfs_iunlink_add_backref( 2008 struct xfs_perag *pag, 2009 xfs_agino_t prev_agino, 2010 xfs_agino_t this_agino) 2011 { 2012 struct xfs_iunlink *iu; 2013 2014 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2015 return 0; 2016 2017 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2018 iu->iu_agino = prev_agino; 2019 iu->iu_next_unlinked = this_agino; 2020 2021 return xfs_iunlink_insert_backref(pag, iu); 2022 } 2023 2024 /* 2025 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2026 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2027 * wasn't any such entry then we don't bother. 2028 */ 2029 static int 2030 xfs_iunlink_change_backref( 2031 struct xfs_perag *pag, 2032 xfs_agino_t agino, 2033 xfs_agino_t next_unlinked) 2034 { 2035 struct xfs_iunlink *iu; 2036 int error; 2037 2038 /* Look up the old entry; if there wasn't one then exit. */ 2039 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2040 xfs_iunlink_hash_params); 2041 if (!iu) 2042 return 0; 2043 2044 /* 2045 * Remove the entry. This shouldn't ever return an error, but if we 2046 * couldn't remove the old entry we don't want to add it again to the 2047 * hash table, and if the entry disappeared on us then someone's 2048 * violated the locking rules and we need to fail loudly. Either way 2049 * we cannot remove the inode because internal state is or would have 2050 * been corrupt. 2051 */ 2052 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2053 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2054 if (error) 2055 return error; 2056 2057 /* If there is no new next entry just free our item and return. */ 2058 if (next_unlinked == NULLAGINO) { 2059 kmem_free(iu); 2060 return 0; 2061 } 2062 2063 /* Update the entry and re-add it to the hash table. */ 2064 iu->iu_next_unlinked = next_unlinked; 2065 return xfs_iunlink_insert_backref(pag, iu); 2066 } 2067 2068 /* Set up the in-core predecessor structures. */ 2069 int 2070 xfs_iunlink_init( 2071 struct xfs_perag *pag) 2072 { 2073 return rhashtable_init(&pag->pagi_unlinked_hash, 2074 &xfs_iunlink_hash_params); 2075 } 2076 2077 /* Free the in-core predecessor structures. */ 2078 static void 2079 xfs_iunlink_free_item( 2080 void *ptr, 2081 void *arg) 2082 { 2083 struct xfs_iunlink *iu = ptr; 2084 bool *freed_anything = arg; 2085 2086 *freed_anything = true; 2087 kmem_free(iu); 2088 } 2089 2090 void 2091 xfs_iunlink_destroy( 2092 struct xfs_perag *pag) 2093 { 2094 bool freed_anything = false; 2095 2096 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2097 xfs_iunlink_free_item, &freed_anything); 2098 2099 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2100 } 2101 2102 /* 2103 * Point the AGI unlinked bucket at an inode and log the results. The caller 2104 * is responsible for validating the old value. 2105 */ 2106 STATIC int 2107 xfs_iunlink_update_bucket( 2108 struct xfs_trans *tp, 2109 xfs_agnumber_t agno, 2110 struct xfs_buf *agibp, 2111 unsigned int bucket_index, 2112 xfs_agino_t new_agino) 2113 { 2114 struct xfs_agi *agi = agibp->b_addr; 2115 xfs_agino_t old_value; 2116 int offset; 2117 2118 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2119 2120 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2121 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2122 old_value, new_agino); 2123 2124 /* 2125 * We should never find the head of the list already set to the value 2126 * passed in because either we're adding or removing ourselves from the 2127 * head of the list. 2128 */ 2129 if (old_value == new_agino) { 2130 xfs_buf_mark_corrupt(agibp); 2131 return -EFSCORRUPTED; 2132 } 2133 2134 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2135 offset = offsetof(struct xfs_agi, agi_unlinked) + 2136 (sizeof(xfs_agino_t) * bucket_index); 2137 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2138 return 0; 2139 } 2140 2141 /* Set an on-disk inode's next_unlinked pointer. */ 2142 STATIC void 2143 xfs_iunlink_update_dinode( 2144 struct xfs_trans *tp, 2145 xfs_agnumber_t agno, 2146 xfs_agino_t agino, 2147 struct xfs_buf *ibp, 2148 struct xfs_dinode *dip, 2149 struct xfs_imap *imap, 2150 xfs_agino_t next_agino) 2151 { 2152 struct xfs_mount *mp = tp->t_mountp; 2153 int offset; 2154 2155 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2156 2157 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2158 be32_to_cpu(dip->di_next_unlinked), next_agino); 2159 2160 dip->di_next_unlinked = cpu_to_be32(next_agino); 2161 offset = imap->im_boffset + 2162 offsetof(struct xfs_dinode, di_next_unlinked); 2163 2164 /* need to recalc the inode CRC if appropriate */ 2165 xfs_dinode_calc_crc(mp, dip); 2166 xfs_trans_inode_buf(tp, ibp); 2167 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2168 } 2169 2170 /* Set an in-core inode's unlinked pointer and return the old value. */ 2171 STATIC int 2172 xfs_iunlink_update_inode( 2173 struct xfs_trans *tp, 2174 struct xfs_inode *ip, 2175 xfs_agnumber_t agno, 2176 xfs_agino_t next_agino, 2177 xfs_agino_t *old_next_agino) 2178 { 2179 struct xfs_mount *mp = tp->t_mountp; 2180 struct xfs_dinode *dip; 2181 struct xfs_buf *ibp; 2182 xfs_agino_t old_value; 2183 int error; 2184 2185 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2186 2187 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2188 if (error) 2189 return error; 2190 2191 /* Make sure the old pointer isn't garbage. */ 2192 old_value = be32_to_cpu(dip->di_next_unlinked); 2193 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2194 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2195 sizeof(*dip), __this_address); 2196 error = -EFSCORRUPTED; 2197 goto out; 2198 } 2199 2200 /* 2201 * Since we're updating a linked list, we should never find that the 2202 * current pointer is the same as the new value, unless we're 2203 * terminating the list. 2204 */ 2205 *old_next_agino = old_value; 2206 if (old_value == next_agino) { 2207 if (next_agino != NULLAGINO) { 2208 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2209 dip, sizeof(*dip), __this_address); 2210 error = -EFSCORRUPTED; 2211 } 2212 goto out; 2213 } 2214 2215 /* Ok, update the new pointer. */ 2216 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2217 ibp, dip, &ip->i_imap, next_agino); 2218 return 0; 2219 out: 2220 xfs_trans_brelse(tp, ibp); 2221 return error; 2222 } 2223 2224 /* 2225 * This is called when the inode's link count has gone to 0 or we are creating 2226 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2227 * 2228 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2229 * list when the inode is freed. 2230 */ 2231 STATIC int 2232 xfs_iunlink( 2233 struct xfs_trans *tp, 2234 struct xfs_inode *ip) 2235 { 2236 struct xfs_mount *mp = tp->t_mountp; 2237 struct xfs_agi *agi; 2238 struct xfs_buf *agibp; 2239 xfs_agino_t next_agino; 2240 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2241 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2242 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2243 int error; 2244 2245 ASSERT(VFS_I(ip)->i_nlink == 0); 2246 ASSERT(VFS_I(ip)->i_mode != 0); 2247 trace_xfs_iunlink(ip); 2248 2249 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2250 error = xfs_read_agi(mp, tp, agno, &agibp); 2251 if (error) 2252 return error; 2253 agi = agibp->b_addr; 2254 2255 /* 2256 * Get the index into the agi hash table for the list this inode will 2257 * go on. Make sure the pointer isn't garbage and that this inode 2258 * isn't already on the list. 2259 */ 2260 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2261 if (next_agino == agino || 2262 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2263 xfs_buf_mark_corrupt(agibp); 2264 return -EFSCORRUPTED; 2265 } 2266 2267 if (next_agino != NULLAGINO) { 2268 xfs_agino_t old_agino; 2269 2270 /* 2271 * There is already another inode in the bucket, so point this 2272 * inode to the current head of the list. 2273 */ 2274 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2275 &old_agino); 2276 if (error) 2277 return error; 2278 ASSERT(old_agino == NULLAGINO); 2279 2280 /* 2281 * agino has been unlinked, add a backref from the next inode 2282 * back to agino. 2283 */ 2284 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2285 if (error) 2286 return error; 2287 } 2288 2289 /* Point the head of the list to point to this inode. */ 2290 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2291 } 2292 2293 /* Return the imap, dinode pointer, and buffer for an inode. */ 2294 STATIC int 2295 xfs_iunlink_map_ino( 2296 struct xfs_trans *tp, 2297 xfs_agnumber_t agno, 2298 xfs_agino_t agino, 2299 struct xfs_imap *imap, 2300 struct xfs_dinode **dipp, 2301 struct xfs_buf **bpp) 2302 { 2303 struct xfs_mount *mp = tp->t_mountp; 2304 int error; 2305 2306 imap->im_blkno = 0; 2307 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2308 if (error) { 2309 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2310 __func__, error); 2311 return error; 2312 } 2313 2314 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2315 if (error) { 2316 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2317 __func__, error); 2318 return error; 2319 } 2320 2321 return 0; 2322 } 2323 2324 /* 2325 * Walk the unlinked chain from @head_agino until we find the inode that 2326 * points to @target_agino. Return the inode number, map, dinode pointer, 2327 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2328 * 2329 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2330 * @agino, @imap, @dipp, and @bpp are all output parameters. 2331 * 2332 * Do not call this function if @target_agino is the head of the list. 2333 */ 2334 STATIC int 2335 xfs_iunlink_map_prev( 2336 struct xfs_trans *tp, 2337 xfs_agnumber_t agno, 2338 xfs_agino_t head_agino, 2339 xfs_agino_t target_agino, 2340 xfs_agino_t *agino, 2341 struct xfs_imap *imap, 2342 struct xfs_dinode **dipp, 2343 struct xfs_buf **bpp, 2344 struct xfs_perag *pag) 2345 { 2346 struct xfs_mount *mp = tp->t_mountp; 2347 xfs_agino_t next_agino; 2348 int error; 2349 2350 ASSERT(head_agino != target_agino); 2351 *bpp = NULL; 2352 2353 /* See if our backref cache can find it faster. */ 2354 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2355 if (*agino != NULLAGINO) { 2356 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2357 if (error) 2358 return error; 2359 2360 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2361 return 0; 2362 2363 /* 2364 * If we get here the cache contents were corrupt, so drop the 2365 * buffer and fall back to walking the bucket list. 2366 */ 2367 xfs_trans_brelse(tp, *bpp); 2368 *bpp = NULL; 2369 WARN_ON_ONCE(1); 2370 } 2371 2372 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2373 2374 /* Otherwise, walk the entire bucket until we find it. */ 2375 next_agino = head_agino; 2376 while (next_agino != target_agino) { 2377 xfs_agino_t unlinked_agino; 2378 2379 if (*bpp) 2380 xfs_trans_brelse(tp, *bpp); 2381 2382 *agino = next_agino; 2383 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2384 bpp); 2385 if (error) 2386 return error; 2387 2388 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2389 /* 2390 * Make sure this pointer is valid and isn't an obvious 2391 * infinite loop. 2392 */ 2393 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2394 next_agino == unlinked_agino) { 2395 XFS_CORRUPTION_ERROR(__func__, 2396 XFS_ERRLEVEL_LOW, mp, 2397 *dipp, sizeof(**dipp)); 2398 error = -EFSCORRUPTED; 2399 return error; 2400 } 2401 next_agino = unlinked_agino; 2402 } 2403 2404 return 0; 2405 } 2406 2407 /* 2408 * Pull the on-disk inode from the AGI unlinked list. 2409 */ 2410 STATIC int 2411 xfs_iunlink_remove( 2412 struct xfs_trans *tp, 2413 struct xfs_inode *ip) 2414 { 2415 struct xfs_mount *mp = tp->t_mountp; 2416 struct xfs_agi *agi; 2417 struct xfs_buf *agibp; 2418 struct xfs_buf *last_ibp; 2419 struct xfs_dinode *last_dip = NULL; 2420 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2421 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2422 xfs_agino_t next_agino; 2423 xfs_agino_t head_agino; 2424 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2425 int error; 2426 2427 trace_xfs_iunlink_remove(ip); 2428 2429 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2430 error = xfs_read_agi(mp, tp, agno, &agibp); 2431 if (error) 2432 return error; 2433 agi = agibp->b_addr; 2434 2435 /* 2436 * Get the index into the agi hash table for the list this inode will 2437 * go on. Make sure the head pointer isn't garbage. 2438 */ 2439 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2440 if (!xfs_verify_agino(mp, agno, head_agino)) { 2441 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2442 agi, sizeof(*agi)); 2443 return -EFSCORRUPTED; 2444 } 2445 2446 /* 2447 * Set our inode's next_unlinked pointer to NULL and then return 2448 * the old pointer value so that we can update whatever was previous 2449 * to us in the list to point to whatever was next in the list. 2450 */ 2451 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2452 if (error) 2453 return error; 2454 2455 /* 2456 * If there was a backref pointing from the next inode back to this 2457 * one, remove it because we've removed this inode from the list. 2458 * 2459 * Later, if this inode was in the middle of the list we'll update 2460 * this inode's backref to point from the next inode. 2461 */ 2462 if (next_agino != NULLAGINO) { 2463 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2464 NULLAGINO); 2465 if (error) 2466 return error; 2467 } 2468 2469 if (head_agino != agino) { 2470 struct xfs_imap imap; 2471 xfs_agino_t prev_agino; 2472 2473 /* We need to search the list for the inode being freed. */ 2474 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2475 &prev_agino, &imap, &last_dip, &last_ibp, 2476 agibp->b_pag); 2477 if (error) 2478 return error; 2479 2480 /* Point the previous inode on the list to the next inode. */ 2481 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2482 last_dip, &imap, next_agino); 2483 2484 /* 2485 * Now we deal with the backref for this inode. If this inode 2486 * pointed at a real inode, change the backref that pointed to 2487 * us to point to our old next. If this inode was the end of 2488 * the list, delete the backref that pointed to us. Note that 2489 * change_backref takes care of deleting the backref if 2490 * next_agino is NULLAGINO. 2491 */ 2492 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2493 next_agino); 2494 } 2495 2496 /* Point the head of the list to the next unlinked inode. */ 2497 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2498 next_agino); 2499 } 2500 2501 /* 2502 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2503 * mark it stale. We should only find clean inodes in this lookup that aren't 2504 * already stale. 2505 */ 2506 static void 2507 xfs_ifree_mark_inode_stale( 2508 struct xfs_buf *bp, 2509 struct xfs_inode *free_ip, 2510 xfs_ino_t inum) 2511 { 2512 struct xfs_mount *mp = bp->b_mount; 2513 struct xfs_perag *pag = bp->b_pag; 2514 struct xfs_inode_log_item *iip; 2515 struct xfs_inode *ip; 2516 2517 retry: 2518 rcu_read_lock(); 2519 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2520 2521 /* Inode not in memory, nothing to do */ 2522 if (!ip) { 2523 rcu_read_unlock(); 2524 return; 2525 } 2526 2527 /* 2528 * because this is an RCU protected lookup, we could find a recently 2529 * freed or even reallocated inode during the lookup. We need to check 2530 * under the i_flags_lock for a valid inode here. Skip it if it is not 2531 * valid, the wrong inode or stale. 2532 */ 2533 spin_lock(&ip->i_flags_lock); 2534 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) { 2535 spin_unlock(&ip->i_flags_lock); 2536 rcu_read_unlock(); 2537 return; 2538 } 2539 2540 /* 2541 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2542 * other inodes that we did not find in the list attached to the buffer 2543 * and are not already marked stale. If we can't lock it, back off and 2544 * retry. 2545 */ 2546 if (ip != free_ip) { 2547 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2548 spin_unlock(&ip->i_flags_lock); 2549 rcu_read_unlock(); 2550 delay(1); 2551 goto retry; 2552 } 2553 } 2554 ip->i_flags |= XFS_ISTALE; 2555 spin_unlock(&ip->i_flags_lock); 2556 rcu_read_unlock(); 2557 2558 /* 2559 * If we can't get the flush lock, the inode is already attached. All 2560 * we needed to do here is mark the inode stale so buffer IO completion 2561 * will remove it from the AIL. 2562 */ 2563 iip = ip->i_itemp; 2564 if (!xfs_iflock_nowait(ip)) { 2565 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2566 ASSERT(iip->ili_last_fields); 2567 goto out_iunlock; 2568 } 2569 2570 /* 2571 * Inodes not attached to the buffer can be released immediately. 2572 * Everything else has to go through xfs_iflush_abort() on journal 2573 * commit as the flock synchronises removal of the inode from the 2574 * cluster buffer against inode reclaim. 2575 */ 2576 if (!iip || list_empty(&iip->ili_item.li_bio_list)) { 2577 xfs_ifunlock(ip); 2578 goto out_iunlock; 2579 } 2580 2581 /* we have a dirty inode in memory that has not yet been flushed. */ 2582 spin_lock(&iip->ili_lock); 2583 iip->ili_last_fields = iip->ili_fields; 2584 iip->ili_fields = 0; 2585 iip->ili_fsync_fields = 0; 2586 spin_unlock(&iip->ili_lock); 2587 ASSERT(iip->ili_last_fields); 2588 2589 out_iunlock: 2590 if (ip != free_ip) 2591 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2592 } 2593 2594 /* 2595 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2596 * inodes that are in memory - they all must be marked stale and attached to 2597 * the cluster buffer. 2598 */ 2599 STATIC int 2600 xfs_ifree_cluster( 2601 struct xfs_inode *free_ip, 2602 struct xfs_trans *tp, 2603 struct xfs_icluster *xic) 2604 { 2605 struct xfs_mount *mp = free_ip->i_mount; 2606 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2607 struct xfs_buf *bp; 2608 xfs_daddr_t blkno; 2609 xfs_ino_t inum = xic->first_ino; 2610 int nbufs; 2611 int i, j; 2612 int ioffset; 2613 int error; 2614 2615 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2616 2617 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2618 /* 2619 * The allocation bitmap tells us which inodes of the chunk were 2620 * physically allocated. Skip the cluster if an inode falls into 2621 * a sparse region. 2622 */ 2623 ioffset = inum - xic->first_ino; 2624 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2625 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2626 continue; 2627 } 2628 2629 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2630 XFS_INO_TO_AGBNO(mp, inum)); 2631 2632 /* 2633 * We obtain and lock the backing buffer first in the process 2634 * here, as we have to ensure that any dirty inode that we 2635 * can't get the flush lock on is attached to the buffer. 2636 * If we scan the in-memory inodes first, then buffer IO can 2637 * complete before we get a lock on it, and hence we may fail 2638 * to mark all the active inodes on the buffer stale. 2639 */ 2640 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2641 mp->m_bsize * igeo->blocks_per_cluster, 2642 XBF_UNMAPPED, &bp); 2643 if (error) 2644 return error; 2645 2646 /* 2647 * This buffer may not have been correctly initialised as we 2648 * didn't read it from disk. That's not important because we are 2649 * only using to mark the buffer as stale in the log, and to 2650 * attach stale cached inodes on it. That means it will never be 2651 * dispatched for IO. If it is, we want to know about it, and we 2652 * want it to fail. We can acheive this by adding a write 2653 * verifier to the buffer. 2654 */ 2655 bp->b_ops = &xfs_inode_buf_ops; 2656 2657 /* 2658 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2659 * too. This requires lookups, and will skip inodes that we've 2660 * already marked XFS_ISTALE. 2661 */ 2662 for (i = 0; i < igeo->inodes_per_cluster; i++) 2663 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2664 2665 xfs_trans_stale_inode_buf(tp, bp); 2666 xfs_trans_binval(tp, bp); 2667 } 2668 return 0; 2669 } 2670 2671 /* 2672 * This is called to return an inode to the inode free list. 2673 * The inode should already be truncated to 0 length and have 2674 * no pages associated with it. This routine also assumes that 2675 * the inode is already a part of the transaction. 2676 * 2677 * The on-disk copy of the inode will have been added to the list 2678 * of unlinked inodes in the AGI. We need to remove the inode from 2679 * that list atomically with respect to freeing it here. 2680 */ 2681 int 2682 xfs_ifree( 2683 struct xfs_trans *tp, 2684 struct xfs_inode *ip) 2685 { 2686 int error; 2687 struct xfs_icluster xic = { 0 }; 2688 struct xfs_inode_log_item *iip = ip->i_itemp; 2689 2690 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2691 ASSERT(VFS_I(ip)->i_nlink == 0); 2692 ASSERT(ip->i_df.if_nextents == 0); 2693 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2694 ASSERT(ip->i_d.di_nblocks == 0); 2695 2696 /* 2697 * Pull the on-disk inode from the AGI unlinked list. 2698 */ 2699 error = xfs_iunlink_remove(tp, ip); 2700 if (error) 2701 return error; 2702 2703 error = xfs_difree(tp, ip->i_ino, &xic); 2704 if (error) 2705 return error; 2706 2707 /* 2708 * Free any local-format data sitting around before we reset the 2709 * data fork to extents format. Note that the attr fork data has 2710 * already been freed by xfs_attr_inactive. 2711 */ 2712 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2713 kmem_free(ip->i_df.if_u1.if_data); 2714 ip->i_df.if_u1.if_data = NULL; 2715 ip->i_df.if_bytes = 0; 2716 } 2717 2718 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2719 ip->i_d.di_flags = 0; 2720 ip->i_d.di_flags2 = 0; 2721 ip->i_d.di_dmevmask = 0; 2722 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2723 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2724 2725 /* Don't attempt to replay owner changes for a deleted inode */ 2726 spin_lock(&iip->ili_lock); 2727 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2728 spin_unlock(&iip->ili_lock); 2729 2730 /* 2731 * Bump the generation count so no one will be confused 2732 * by reincarnations of this inode. 2733 */ 2734 VFS_I(ip)->i_generation++; 2735 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2736 2737 if (xic.deleted) 2738 error = xfs_ifree_cluster(ip, tp, &xic); 2739 2740 return error; 2741 } 2742 2743 /* 2744 * This is called to unpin an inode. The caller must have the inode locked 2745 * in at least shared mode so that the buffer cannot be subsequently pinned 2746 * once someone is waiting for it to be unpinned. 2747 */ 2748 static void 2749 xfs_iunpin( 2750 struct xfs_inode *ip) 2751 { 2752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2753 2754 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2755 2756 /* Give the log a push to start the unpinning I/O */ 2757 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2758 2759 } 2760 2761 static void 2762 __xfs_iunpin_wait( 2763 struct xfs_inode *ip) 2764 { 2765 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2766 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2767 2768 xfs_iunpin(ip); 2769 2770 do { 2771 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2772 if (xfs_ipincount(ip)) 2773 io_schedule(); 2774 } while (xfs_ipincount(ip)); 2775 finish_wait(wq, &wait.wq_entry); 2776 } 2777 2778 void 2779 xfs_iunpin_wait( 2780 struct xfs_inode *ip) 2781 { 2782 if (xfs_ipincount(ip)) 2783 __xfs_iunpin_wait(ip); 2784 } 2785 2786 /* 2787 * Removing an inode from the namespace involves removing the directory entry 2788 * and dropping the link count on the inode. Removing the directory entry can 2789 * result in locking an AGF (directory blocks were freed) and removing a link 2790 * count can result in placing the inode on an unlinked list which results in 2791 * locking an AGI. 2792 * 2793 * The big problem here is that we have an ordering constraint on AGF and AGI 2794 * locking - inode allocation locks the AGI, then can allocate a new extent for 2795 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2796 * removes the inode from the unlinked list, requiring that we lock the AGI 2797 * first, and then freeing the inode can result in an inode chunk being freed 2798 * and hence freeing disk space requiring that we lock an AGF. 2799 * 2800 * Hence the ordering that is imposed by other parts of the code is AGI before 2801 * AGF. This means we cannot remove the directory entry before we drop the inode 2802 * reference count and put it on the unlinked list as this results in a lock 2803 * order of AGF then AGI, and this can deadlock against inode allocation and 2804 * freeing. Therefore we must drop the link counts before we remove the 2805 * directory entry. 2806 * 2807 * This is still safe from a transactional point of view - it is not until we 2808 * get to xfs_defer_finish() that we have the possibility of multiple 2809 * transactions in this operation. Hence as long as we remove the directory 2810 * entry and drop the link count in the first transaction of the remove 2811 * operation, there are no transactional constraints on the ordering here. 2812 */ 2813 int 2814 xfs_remove( 2815 xfs_inode_t *dp, 2816 struct xfs_name *name, 2817 xfs_inode_t *ip) 2818 { 2819 xfs_mount_t *mp = dp->i_mount; 2820 xfs_trans_t *tp = NULL; 2821 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2822 int error = 0; 2823 uint resblks; 2824 2825 trace_xfs_remove(dp, name); 2826 2827 if (XFS_FORCED_SHUTDOWN(mp)) 2828 return -EIO; 2829 2830 error = xfs_qm_dqattach(dp); 2831 if (error) 2832 goto std_return; 2833 2834 error = xfs_qm_dqattach(ip); 2835 if (error) 2836 goto std_return; 2837 2838 /* 2839 * We try to get the real space reservation first, 2840 * allowing for directory btree deletion(s) implying 2841 * possible bmap insert(s). If we can't get the space 2842 * reservation then we use 0 instead, and avoid the bmap 2843 * btree insert(s) in the directory code by, if the bmap 2844 * insert tries to happen, instead trimming the LAST 2845 * block from the directory. 2846 */ 2847 resblks = XFS_REMOVE_SPACE_RES(mp); 2848 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2849 if (error == -ENOSPC) { 2850 resblks = 0; 2851 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2852 &tp); 2853 } 2854 if (error) { 2855 ASSERT(error != -ENOSPC); 2856 goto std_return; 2857 } 2858 2859 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2860 2861 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2862 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2863 2864 /* 2865 * If we're removing a directory perform some additional validation. 2866 */ 2867 if (is_dir) { 2868 ASSERT(VFS_I(ip)->i_nlink >= 2); 2869 if (VFS_I(ip)->i_nlink != 2) { 2870 error = -ENOTEMPTY; 2871 goto out_trans_cancel; 2872 } 2873 if (!xfs_dir_isempty(ip)) { 2874 error = -ENOTEMPTY; 2875 goto out_trans_cancel; 2876 } 2877 2878 /* Drop the link from ip's "..". */ 2879 error = xfs_droplink(tp, dp); 2880 if (error) 2881 goto out_trans_cancel; 2882 2883 /* Drop the "." link from ip to self. */ 2884 error = xfs_droplink(tp, ip); 2885 if (error) 2886 goto out_trans_cancel; 2887 } else { 2888 /* 2889 * When removing a non-directory we need to log the parent 2890 * inode here. For a directory this is done implicitly 2891 * by the xfs_droplink call for the ".." entry. 2892 */ 2893 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2894 } 2895 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2896 2897 /* Drop the link from dp to ip. */ 2898 error = xfs_droplink(tp, ip); 2899 if (error) 2900 goto out_trans_cancel; 2901 2902 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2903 if (error) { 2904 ASSERT(error != -ENOENT); 2905 goto out_trans_cancel; 2906 } 2907 2908 /* 2909 * If this is a synchronous mount, make sure that the 2910 * remove transaction goes to disk before returning to 2911 * the user. 2912 */ 2913 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2914 xfs_trans_set_sync(tp); 2915 2916 error = xfs_trans_commit(tp); 2917 if (error) 2918 goto std_return; 2919 2920 if (is_dir && xfs_inode_is_filestream(ip)) 2921 xfs_filestream_deassociate(ip); 2922 2923 return 0; 2924 2925 out_trans_cancel: 2926 xfs_trans_cancel(tp); 2927 std_return: 2928 return error; 2929 } 2930 2931 /* 2932 * Enter all inodes for a rename transaction into a sorted array. 2933 */ 2934 #define __XFS_SORT_INODES 5 2935 STATIC void 2936 xfs_sort_for_rename( 2937 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2938 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2939 struct xfs_inode *ip1, /* in: inode of old entry */ 2940 struct xfs_inode *ip2, /* in: inode of new entry */ 2941 struct xfs_inode *wip, /* in: whiteout inode */ 2942 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2943 int *num_inodes) /* in/out: inodes in array */ 2944 { 2945 int i, j; 2946 2947 ASSERT(*num_inodes == __XFS_SORT_INODES); 2948 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2949 2950 /* 2951 * i_tab contains a list of pointers to inodes. We initialize 2952 * the table here & we'll sort it. We will then use it to 2953 * order the acquisition of the inode locks. 2954 * 2955 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2956 */ 2957 i = 0; 2958 i_tab[i++] = dp1; 2959 i_tab[i++] = dp2; 2960 i_tab[i++] = ip1; 2961 if (ip2) 2962 i_tab[i++] = ip2; 2963 if (wip) 2964 i_tab[i++] = wip; 2965 *num_inodes = i; 2966 2967 /* 2968 * Sort the elements via bubble sort. (Remember, there are at 2969 * most 5 elements to sort, so this is adequate.) 2970 */ 2971 for (i = 0; i < *num_inodes; i++) { 2972 for (j = 1; j < *num_inodes; j++) { 2973 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2974 struct xfs_inode *temp = i_tab[j]; 2975 i_tab[j] = i_tab[j-1]; 2976 i_tab[j-1] = temp; 2977 } 2978 } 2979 } 2980 } 2981 2982 static int 2983 xfs_finish_rename( 2984 struct xfs_trans *tp) 2985 { 2986 /* 2987 * If this is a synchronous mount, make sure that the rename transaction 2988 * goes to disk before returning to the user. 2989 */ 2990 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2991 xfs_trans_set_sync(tp); 2992 2993 return xfs_trans_commit(tp); 2994 } 2995 2996 /* 2997 * xfs_cross_rename() 2998 * 2999 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3000 */ 3001 STATIC int 3002 xfs_cross_rename( 3003 struct xfs_trans *tp, 3004 struct xfs_inode *dp1, 3005 struct xfs_name *name1, 3006 struct xfs_inode *ip1, 3007 struct xfs_inode *dp2, 3008 struct xfs_name *name2, 3009 struct xfs_inode *ip2, 3010 int spaceres) 3011 { 3012 int error = 0; 3013 int ip1_flags = 0; 3014 int ip2_flags = 0; 3015 int dp2_flags = 0; 3016 3017 /* Swap inode number for dirent in first parent */ 3018 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3019 if (error) 3020 goto out_trans_abort; 3021 3022 /* Swap inode number for dirent in second parent */ 3023 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3024 if (error) 3025 goto out_trans_abort; 3026 3027 /* 3028 * If we're renaming one or more directories across different parents, 3029 * update the respective ".." entries (and link counts) to match the new 3030 * parents. 3031 */ 3032 if (dp1 != dp2) { 3033 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3034 3035 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3036 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3037 dp1->i_ino, spaceres); 3038 if (error) 3039 goto out_trans_abort; 3040 3041 /* transfer ip2 ".." reference to dp1 */ 3042 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3043 error = xfs_droplink(tp, dp2); 3044 if (error) 3045 goto out_trans_abort; 3046 xfs_bumplink(tp, dp1); 3047 } 3048 3049 /* 3050 * Although ip1 isn't changed here, userspace needs 3051 * to be warned about the change, so that applications 3052 * relying on it (like backup ones), will properly 3053 * notify the change 3054 */ 3055 ip1_flags |= XFS_ICHGTIME_CHG; 3056 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3057 } 3058 3059 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3060 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3061 dp2->i_ino, spaceres); 3062 if (error) 3063 goto out_trans_abort; 3064 3065 /* transfer ip1 ".." reference to dp2 */ 3066 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3067 error = xfs_droplink(tp, dp1); 3068 if (error) 3069 goto out_trans_abort; 3070 xfs_bumplink(tp, dp2); 3071 } 3072 3073 /* 3074 * Although ip2 isn't changed here, userspace needs 3075 * to be warned about the change, so that applications 3076 * relying on it (like backup ones), will properly 3077 * notify the change 3078 */ 3079 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3080 ip2_flags |= XFS_ICHGTIME_CHG; 3081 } 3082 } 3083 3084 if (ip1_flags) { 3085 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3086 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3087 } 3088 if (ip2_flags) { 3089 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3090 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3091 } 3092 if (dp2_flags) { 3093 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3094 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3095 } 3096 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3097 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3098 return xfs_finish_rename(tp); 3099 3100 out_trans_abort: 3101 xfs_trans_cancel(tp); 3102 return error; 3103 } 3104 3105 /* 3106 * xfs_rename_alloc_whiteout() 3107 * 3108 * Return a referenced, unlinked, unlocked inode that that can be used as a 3109 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3110 * crash between allocating the inode and linking it into the rename transaction 3111 * recovery will free the inode and we won't leak it. 3112 */ 3113 static int 3114 xfs_rename_alloc_whiteout( 3115 struct xfs_inode *dp, 3116 struct xfs_inode **wip) 3117 { 3118 struct xfs_inode *tmpfile; 3119 int error; 3120 3121 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3122 if (error) 3123 return error; 3124 3125 /* 3126 * Prepare the tmpfile inode as if it were created through the VFS. 3127 * Complete the inode setup and flag it as linkable. nlink is already 3128 * zero, so we can skip the drop_nlink. 3129 */ 3130 xfs_setup_iops(tmpfile); 3131 xfs_finish_inode_setup(tmpfile); 3132 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3133 3134 *wip = tmpfile; 3135 return 0; 3136 } 3137 3138 /* 3139 * xfs_rename 3140 */ 3141 int 3142 xfs_rename( 3143 struct xfs_inode *src_dp, 3144 struct xfs_name *src_name, 3145 struct xfs_inode *src_ip, 3146 struct xfs_inode *target_dp, 3147 struct xfs_name *target_name, 3148 struct xfs_inode *target_ip, 3149 unsigned int flags) 3150 { 3151 struct xfs_mount *mp = src_dp->i_mount; 3152 struct xfs_trans *tp; 3153 struct xfs_inode *wip = NULL; /* whiteout inode */ 3154 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3155 struct xfs_buf *agibp; 3156 int num_inodes = __XFS_SORT_INODES; 3157 bool new_parent = (src_dp != target_dp); 3158 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3159 int spaceres; 3160 int error; 3161 3162 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3163 3164 if ((flags & RENAME_EXCHANGE) && !target_ip) 3165 return -EINVAL; 3166 3167 /* 3168 * If we are doing a whiteout operation, allocate the whiteout inode 3169 * we will be placing at the target and ensure the type is set 3170 * appropriately. 3171 */ 3172 if (flags & RENAME_WHITEOUT) { 3173 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3174 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3175 if (error) 3176 return error; 3177 3178 /* setup target dirent info as whiteout */ 3179 src_name->type = XFS_DIR3_FT_CHRDEV; 3180 } 3181 3182 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3183 inodes, &num_inodes); 3184 3185 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3187 if (error == -ENOSPC) { 3188 spaceres = 0; 3189 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3190 &tp); 3191 } 3192 if (error) 3193 goto out_release_wip; 3194 3195 /* 3196 * Attach the dquots to the inodes 3197 */ 3198 error = xfs_qm_vop_rename_dqattach(inodes); 3199 if (error) 3200 goto out_trans_cancel; 3201 3202 /* 3203 * Lock all the participating inodes. Depending upon whether 3204 * the target_name exists in the target directory, and 3205 * whether the target directory is the same as the source 3206 * directory, we can lock from 2 to 4 inodes. 3207 */ 3208 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3209 3210 /* 3211 * Join all the inodes to the transaction. From this point on, 3212 * we can rely on either trans_commit or trans_cancel to unlock 3213 * them. 3214 */ 3215 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3216 if (new_parent) 3217 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3218 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3219 if (target_ip) 3220 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3221 if (wip) 3222 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3223 3224 /* 3225 * If we are using project inheritance, we only allow renames 3226 * into our tree when the project IDs are the same; else the 3227 * tree quota mechanism would be circumvented. 3228 */ 3229 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3230 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3231 error = -EXDEV; 3232 goto out_trans_cancel; 3233 } 3234 3235 /* RENAME_EXCHANGE is unique from here on. */ 3236 if (flags & RENAME_EXCHANGE) 3237 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3238 target_dp, target_name, target_ip, 3239 spaceres); 3240 3241 /* 3242 * Check for expected errors before we dirty the transaction 3243 * so we can return an error without a transaction abort. 3244 */ 3245 if (target_ip == NULL) { 3246 /* 3247 * If there's no space reservation, check the entry will 3248 * fit before actually inserting it. 3249 */ 3250 if (!spaceres) { 3251 error = xfs_dir_canenter(tp, target_dp, target_name); 3252 if (error) 3253 goto out_trans_cancel; 3254 } 3255 } else { 3256 /* 3257 * If target exists and it's a directory, check that whether 3258 * it can be destroyed. 3259 */ 3260 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3261 (!xfs_dir_isempty(target_ip) || 3262 (VFS_I(target_ip)->i_nlink > 2))) { 3263 error = -EEXIST; 3264 goto out_trans_cancel; 3265 } 3266 } 3267 3268 /* 3269 * Directory entry creation below may acquire the AGF. Remove 3270 * the whiteout from the unlinked list first to preserve correct 3271 * AGI/AGF locking order. This dirties the transaction so failures 3272 * after this point will abort and log recovery will clean up the 3273 * mess. 3274 * 3275 * For whiteouts, we need to bump the link count on the whiteout 3276 * inode. After this point, we have a real link, clear the tmpfile 3277 * state flag from the inode so it doesn't accidentally get misused 3278 * in future. 3279 */ 3280 if (wip) { 3281 ASSERT(VFS_I(wip)->i_nlink == 0); 3282 error = xfs_iunlink_remove(tp, wip); 3283 if (error) 3284 goto out_trans_cancel; 3285 3286 xfs_bumplink(tp, wip); 3287 VFS_I(wip)->i_state &= ~I_LINKABLE; 3288 } 3289 3290 /* 3291 * Set up the target. 3292 */ 3293 if (target_ip == NULL) { 3294 /* 3295 * If target does not exist and the rename crosses 3296 * directories, adjust the target directory link count 3297 * to account for the ".." reference from the new entry. 3298 */ 3299 error = xfs_dir_createname(tp, target_dp, target_name, 3300 src_ip->i_ino, spaceres); 3301 if (error) 3302 goto out_trans_cancel; 3303 3304 xfs_trans_ichgtime(tp, target_dp, 3305 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3306 3307 if (new_parent && src_is_directory) { 3308 xfs_bumplink(tp, target_dp); 3309 } 3310 } else { /* target_ip != NULL */ 3311 /* 3312 * Link the source inode under the target name. 3313 * If the source inode is a directory and we are moving 3314 * it across directories, its ".." entry will be 3315 * inconsistent until we replace that down below. 3316 * 3317 * In case there is already an entry with the same 3318 * name at the destination directory, remove it first. 3319 */ 3320 3321 /* 3322 * Check whether the replace operation will need to allocate 3323 * blocks. This happens when the shortform directory lacks 3324 * space and we have to convert it to a block format directory. 3325 * When more blocks are necessary, we must lock the AGI first 3326 * to preserve locking order (AGI -> AGF). 3327 */ 3328 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3329 error = xfs_read_agi(mp, tp, 3330 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3331 &agibp); 3332 if (error) 3333 goto out_trans_cancel; 3334 } 3335 3336 error = xfs_dir_replace(tp, target_dp, target_name, 3337 src_ip->i_ino, spaceres); 3338 if (error) 3339 goto out_trans_cancel; 3340 3341 xfs_trans_ichgtime(tp, target_dp, 3342 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3343 3344 /* 3345 * Decrement the link count on the target since the target 3346 * dir no longer points to it. 3347 */ 3348 error = xfs_droplink(tp, target_ip); 3349 if (error) 3350 goto out_trans_cancel; 3351 3352 if (src_is_directory) { 3353 /* 3354 * Drop the link from the old "." entry. 3355 */ 3356 error = xfs_droplink(tp, target_ip); 3357 if (error) 3358 goto out_trans_cancel; 3359 } 3360 } /* target_ip != NULL */ 3361 3362 /* 3363 * Remove the source. 3364 */ 3365 if (new_parent && src_is_directory) { 3366 /* 3367 * Rewrite the ".." entry to point to the new 3368 * directory. 3369 */ 3370 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3371 target_dp->i_ino, spaceres); 3372 ASSERT(error != -EEXIST); 3373 if (error) 3374 goto out_trans_cancel; 3375 } 3376 3377 /* 3378 * We always want to hit the ctime on the source inode. 3379 * 3380 * This isn't strictly required by the standards since the source 3381 * inode isn't really being changed, but old unix file systems did 3382 * it and some incremental backup programs won't work without it. 3383 */ 3384 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3385 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3386 3387 /* 3388 * Adjust the link count on src_dp. This is necessary when 3389 * renaming a directory, either within one parent when 3390 * the target existed, or across two parent directories. 3391 */ 3392 if (src_is_directory && (new_parent || target_ip != NULL)) { 3393 3394 /* 3395 * Decrement link count on src_directory since the 3396 * entry that's moved no longer points to it. 3397 */ 3398 error = xfs_droplink(tp, src_dp); 3399 if (error) 3400 goto out_trans_cancel; 3401 } 3402 3403 /* 3404 * For whiteouts, we only need to update the source dirent with the 3405 * inode number of the whiteout inode rather than removing it 3406 * altogether. 3407 */ 3408 if (wip) { 3409 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3410 spaceres); 3411 } else 3412 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3413 spaceres); 3414 if (error) 3415 goto out_trans_cancel; 3416 3417 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3418 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3419 if (new_parent) 3420 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3421 3422 error = xfs_finish_rename(tp); 3423 if (wip) 3424 xfs_irele(wip); 3425 return error; 3426 3427 out_trans_cancel: 3428 xfs_trans_cancel(tp); 3429 out_release_wip: 3430 if (wip) 3431 xfs_irele(wip); 3432 return error; 3433 } 3434 3435 static int 3436 xfs_iflush( 3437 struct xfs_inode *ip, 3438 struct xfs_buf *bp) 3439 { 3440 struct xfs_inode_log_item *iip = ip->i_itemp; 3441 struct xfs_dinode *dip; 3442 struct xfs_mount *mp = ip->i_mount; 3443 int error; 3444 3445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3446 ASSERT(xfs_isiflocked(ip)); 3447 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3448 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3449 ASSERT(iip->ili_item.li_buf == bp); 3450 3451 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3452 3453 /* 3454 * We don't flush the inode if any of the following checks fail, but we 3455 * do still update the log item and attach to the backing buffer as if 3456 * the flush happened. This is a formality to facilitate predictable 3457 * error handling as the caller will shutdown and fail the buffer. 3458 */ 3459 error = -EFSCORRUPTED; 3460 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3461 mp, XFS_ERRTAG_IFLUSH_1)) { 3462 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3463 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3464 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3465 goto flush_out; 3466 } 3467 if (S_ISREG(VFS_I(ip)->i_mode)) { 3468 if (XFS_TEST_ERROR( 3469 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3470 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3471 mp, XFS_ERRTAG_IFLUSH_3)) { 3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3473 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3474 __func__, ip->i_ino, ip); 3475 goto flush_out; 3476 } 3477 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3478 if (XFS_TEST_ERROR( 3479 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3480 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3481 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3482 mp, XFS_ERRTAG_IFLUSH_4)) { 3483 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3484 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3485 __func__, ip->i_ino, ip); 3486 goto flush_out; 3487 } 3488 } 3489 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3490 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3491 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3492 "%s: detected corrupt incore inode %Lu, " 3493 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3494 __func__, ip->i_ino, 3495 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3496 ip->i_d.di_nblocks, ip); 3497 goto flush_out; 3498 } 3499 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3500 mp, XFS_ERRTAG_IFLUSH_6)) { 3501 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3502 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3503 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3504 goto flush_out; 3505 } 3506 3507 /* 3508 * Inode item log recovery for v2 inodes are dependent on the 3509 * di_flushiter count for correct sequencing. We bump the flush 3510 * iteration count so we can detect flushes which postdate a log record 3511 * during recovery. This is redundant as we now log every change and 3512 * hence this can't happen but we need to still do it to ensure 3513 * backwards compatibility with old kernels that predate logging all 3514 * inode changes. 3515 */ 3516 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3517 ip->i_d.di_flushiter++; 3518 3519 /* 3520 * If there are inline format data / attr forks attached to this inode, 3521 * make sure they are not corrupt. 3522 */ 3523 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3524 xfs_ifork_verify_local_data(ip)) 3525 goto flush_out; 3526 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3527 xfs_ifork_verify_local_attr(ip)) 3528 goto flush_out; 3529 3530 /* 3531 * Copy the dirty parts of the inode into the on-disk inode. We always 3532 * copy out the core of the inode, because if the inode is dirty at all 3533 * the core must be. 3534 */ 3535 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3536 3537 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3538 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3539 ip->i_d.di_flushiter = 0; 3540 3541 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3542 if (XFS_IFORK_Q(ip)) 3543 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3544 3545 /* 3546 * We've recorded everything logged in the inode, so we'd like to clear 3547 * the ili_fields bits so we don't log and flush things unnecessarily. 3548 * However, we can't stop logging all this information until the data 3549 * we've copied into the disk buffer is written to disk. If we did we 3550 * might overwrite the copy of the inode in the log with all the data 3551 * after re-logging only part of it, and in the face of a crash we 3552 * wouldn't have all the data we need to recover. 3553 * 3554 * What we do is move the bits to the ili_last_fields field. When 3555 * logging the inode, these bits are moved back to the ili_fields field. 3556 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3557 * know that the information those bits represent is permanently on 3558 * disk. As long as the flush completes before the inode is logged 3559 * again, then both ili_fields and ili_last_fields will be cleared. 3560 */ 3561 error = 0; 3562 flush_out: 3563 spin_lock(&iip->ili_lock); 3564 iip->ili_last_fields = iip->ili_fields; 3565 iip->ili_fields = 0; 3566 iip->ili_fsync_fields = 0; 3567 spin_unlock(&iip->ili_lock); 3568 3569 /* 3570 * Store the current LSN of the inode so that we can tell whether the 3571 * item has moved in the AIL from xfs_iflush_done(). 3572 */ 3573 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3574 &iip->ili_item.li_lsn); 3575 3576 /* generate the checksum. */ 3577 xfs_dinode_calc_crc(mp, dip); 3578 return error; 3579 } 3580 3581 /* 3582 * Non-blocking flush of dirty inode metadata into the backing buffer. 3583 * 3584 * The caller must have a reference to the inode and hold the cluster buffer 3585 * locked. The function will walk across all the inodes on the cluster buffer it 3586 * can find and lock without blocking, and flush them to the cluster buffer. 3587 * 3588 * On successful flushing of at least one inode, the caller must write out the 3589 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3590 * the caller needs to release the buffer. On failure, the filesystem will be 3591 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3592 * will be returned. 3593 */ 3594 int 3595 xfs_iflush_cluster( 3596 struct xfs_buf *bp) 3597 { 3598 struct xfs_mount *mp = bp->b_mount; 3599 struct xfs_log_item *lip, *n; 3600 struct xfs_inode *ip; 3601 struct xfs_inode_log_item *iip; 3602 int clcount = 0; 3603 int error = 0; 3604 3605 /* 3606 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3607 * can remove itself from the list. 3608 */ 3609 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3610 iip = (struct xfs_inode_log_item *)lip; 3611 ip = iip->ili_inode; 3612 3613 /* 3614 * Quick and dirty check to avoid locks if possible. 3615 */ 3616 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) 3617 continue; 3618 if (xfs_ipincount(ip)) 3619 continue; 3620 3621 /* 3622 * The inode is still attached to the buffer, which means it is 3623 * dirty but reclaim might try to grab it. Check carefully for 3624 * that, and grab the ilock while still holding the i_flags_lock 3625 * to guarantee reclaim will not be able to reclaim this inode 3626 * once we drop the i_flags_lock. 3627 */ 3628 spin_lock(&ip->i_flags_lock); 3629 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3630 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) { 3631 spin_unlock(&ip->i_flags_lock); 3632 continue; 3633 } 3634 3635 /* 3636 * ILOCK will pin the inode against reclaim and prevent 3637 * concurrent transactions modifying the inode while we are 3638 * flushing the inode. 3639 */ 3640 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3641 spin_unlock(&ip->i_flags_lock); 3642 continue; 3643 } 3644 spin_unlock(&ip->i_flags_lock); 3645 3646 /* 3647 * Skip inodes that are already flush locked as they have 3648 * already been written to the buffer. 3649 */ 3650 if (!xfs_iflock_nowait(ip)) { 3651 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3652 continue; 3653 } 3654 3655 /* 3656 * Abort flushing this inode if we are shut down because the 3657 * inode may not currently be in the AIL. This can occur when 3658 * log I/O failure unpins the inode without inserting into the 3659 * AIL, leaving a dirty/unpinned inode attached to the buffer 3660 * that otherwise looks like it should be flushed. 3661 */ 3662 if (XFS_FORCED_SHUTDOWN(mp)) { 3663 xfs_iunpin_wait(ip); 3664 /* xfs_iflush_abort() drops the flush lock */ 3665 xfs_iflush_abort(ip); 3666 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3667 error = -EIO; 3668 continue; 3669 } 3670 3671 /* don't block waiting on a log force to unpin dirty inodes */ 3672 if (xfs_ipincount(ip)) { 3673 xfs_ifunlock(ip); 3674 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3675 continue; 3676 } 3677 3678 if (!xfs_inode_clean(ip)) 3679 error = xfs_iflush(ip, bp); 3680 else 3681 xfs_ifunlock(ip); 3682 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3683 if (error) 3684 break; 3685 clcount++; 3686 } 3687 3688 if (error) { 3689 bp->b_flags |= XBF_ASYNC; 3690 xfs_buf_ioend_fail(bp); 3691 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3692 return error; 3693 } 3694 3695 if (!clcount) 3696 return -EAGAIN; 3697 3698 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3699 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3700 return 0; 3701 3702 } 3703 3704 /* Release an inode. */ 3705 void 3706 xfs_irele( 3707 struct xfs_inode *ip) 3708 { 3709 trace_xfs_irele(ip, _RET_IP_); 3710 iput(VFS_I(ip)); 3711 } 3712 3713 /* 3714 * Ensure all commited transactions touching the inode are written to the log. 3715 */ 3716 int 3717 xfs_log_force_inode( 3718 struct xfs_inode *ip) 3719 { 3720 xfs_lsn_t lsn = 0; 3721 3722 xfs_ilock(ip, XFS_ILOCK_SHARED); 3723 if (xfs_ipincount(ip)) 3724 lsn = ip->i_itemp->ili_last_lsn; 3725 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3726 3727 if (!lsn) 3728 return 0; 3729 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3730 } 3731 3732 /* 3733 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3734 * abide vfs locking order (lowest pointer value goes first) and breaking the 3735 * layout leases before proceeding. The loop is needed because we cannot call 3736 * the blocking break_layout() with the iolocks held, and therefore have to 3737 * back out both locks. 3738 */ 3739 static int 3740 xfs_iolock_two_inodes_and_break_layout( 3741 struct inode *src, 3742 struct inode *dest) 3743 { 3744 int error; 3745 3746 if (src > dest) 3747 swap(src, dest); 3748 3749 retry: 3750 /* Wait to break both inodes' layouts before we start locking. */ 3751 error = break_layout(src, true); 3752 if (error) 3753 return error; 3754 if (src != dest) { 3755 error = break_layout(dest, true); 3756 if (error) 3757 return error; 3758 } 3759 3760 /* Lock one inode and make sure nobody got in and leased it. */ 3761 inode_lock(src); 3762 error = break_layout(src, false); 3763 if (error) { 3764 inode_unlock(src); 3765 if (error == -EWOULDBLOCK) 3766 goto retry; 3767 return error; 3768 } 3769 3770 if (src == dest) 3771 return 0; 3772 3773 /* Lock the other inode and make sure nobody got in and leased it. */ 3774 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3775 error = break_layout(dest, false); 3776 if (error) { 3777 inode_unlock(src); 3778 inode_unlock(dest); 3779 if (error == -EWOULDBLOCK) 3780 goto retry; 3781 return error; 3782 } 3783 3784 return 0; 3785 } 3786 3787 /* 3788 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3789 * mmap activity. 3790 */ 3791 int 3792 xfs_ilock2_io_mmap( 3793 struct xfs_inode *ip1, 3794 struct xfs_inode *ip2) 3795 { 3796 int ret; 3797 3798 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3799 if (ret) 3800 return ret; 3801 if (ip1 == ip2) 3802 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3803 else 3804 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3805 ip2, XFS_MMAPLOCK_EXCL); 3806 return 0; 3807 } 3808 3809 /* Unlock both inodes to allow IO and mmap activity. */ 3810 void 3811 xfs_iunlock2_io_mmap( 3812 struct xfs_inode *ip1, 3813 struct xfs_inode *ip2) 3814 { 3815 bool same_inode = (ip1 == ip2); 3816 3817 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3818 if (!same_inode) 3819 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3820 inode_unlock(VFS_I(ip2)); 3821 if (!same_inode) 3822 inode_unlock(VFS_I(ip1)); 3823 } 3824