1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 #include <linux/iversion.h> 8 9 #include "xfs.h" 10 #include "xfs_fs.h" 11 #include "xfs_shared.h" 12 #include "xfs_format.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans_resv.h" 15 #include "xfs_sb.h" 16 #include "xfs_mount.h" 17 #include "xfs_defer.h" 18 #include "xfs_inode.h" 19 #include "xfs_da_format.h" 20 #include "xfs_da_btree.h" 21 #include "xfs_dir2.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_attr.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_trans.h" 26 #include "xfs_buf_item.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_bmap.h" 30 #include "xfs_bmap_util.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "xfs_filestream.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trace.h" 37 #include "xfs_icache.h" 38 #include "xfs_symlink.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_log.h" 41 #include "xfs_bmap_btree.h" 42 #include "xfs_reflink.h" 43 #include "xfs_dir2_priv.h" 44 45 kmem_zone_t *xfs_inode_zone; 46 47 /* 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents 49 * freed from a file in a single transaction. 50 */ 51 #define XFS_ITRUNC_MAX_EXTENTS 2 52 53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 56 57 /* 58 * helper function to extract extent size hint from inode 59 */ 60 xfs_extlen_t 61 xfs_get_extsz_hint( 62 struct xfs_inode *ip) 63 { 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 xfs_inode_t **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 xfs_log_item_t *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = (xfs_log_item_t *)ips[j]->i_itemp; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 xfs_log_item_t *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = (xfs_log_item_t *)ip0->i_itemp; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp) /* pointer to inode; it will be 976 locked. */ 977 { 978 xfs_trans_t *tp; 979 xfs_inode_t *ip; 980 xfs_buf_t *ialloc_context = NULL; 981 int code; 982 void *dqinfo; 983 uint tflags; 984 985 tp = *tpp; 986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 987 988 /* 989 * xfs_ialloc will return a pointer to an incore inode if 990 * the Space Manager has an available inode on the free 991 * list. Otherwise, it will do an allocation and replenish 992 * the freelist. Since we can only do one allocation per 993 * transaction without deadlocks, we will need to commit the 994 * current transaction and start a new one. We will then 995 * need to call xfs_ialloc again to get the inode. 996 * 997 * If xfs_ialloc did an allocation to replenish the freelist, 998 * it returns the bp containing the head of the freelist as 999 * ialloc_context. We will hold a lock on it across the 1000 * transaction commit so that no other process can steal 1001 * the inode(s) that we've just allocated. 1002 */ 1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1004 &ip); 1005 1006 /* 1007 * Return an error if we were unable to allocate a new inode. 1008 * This should only happen if we run out of space on disk or 1009 * encounter a disk error. 1010 */ 1011 if (code) { 1012 *ipp = NULL; 1013 return code; 1014 } 1015 if (!ialloc_context && !ip) { 1016 *ipp = NULL; 1017 return -ENOSPC; 1018 } 1019 1020 /* 1021 * If the AGI buffer is non-NULL, then we were unable to get an 1022 * inode in one operation. We need to commit the current 1023 * transaction and call xfs_ialloc() again. It is guaranteed 1024 * to succeed the second time. 1025 */ 1026 if (ialloc_context) { 1027 /* 1028 * Normally, xfs_trans_commit releases all the locks. 1029 * We call bhold to hang on to the ialloc_context across 1030 * the commit. Holding this buffer prevents any other 1031 * processes from doing any allocations in this 1032 * allocation group. 1033 */ 1034 xfs_trans_bhold(tp, ialloc_context); 1035 1036 /* 1037 * We want the quota changes to be associated with the next 1038 * transaction, NOT this one. So, detach the dqinfo from this 1039 * and attach it to the next transaction. 1040 */ 1041 dqinfo = NULL; 1042 tflags = 0; 1043 if (tp->t_dqinfo) { 1044 dqinfo = (void *)tp->t_dqinfo; 1045 tp->t_dqinfo = NULL; 1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1048 } 1049 1050 code = xfs_trans_roll(&tp); 1051 1052 /* 1053 * Re-attach the quota info that we detached from prev trx. 1054 */ 1055 if (dqinfo) { 1056 tp->t_dqinfo = dqinfo; 1057 tp->t_flags |= tflags; 1058 } 1059 1060 if (code) { 1061 xfs_buf_relse(ialloc_context); 1062 *tpp = tp; 1063 *ipp = NULL; 1064 return code; 1065 } 1066 xfs_trans_bjoin(tp, ialloc_context); 1067 1068 /* 1069 * Call ialloc again. Since we've locked out all 1070 * other allocations in this allocation group, 1071 * this call should always succeed. 1072 */ 1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1074 &ialloc_context, &ip); 1075 1076 /* 1077 * If we get an error at this point, return to the caller 1078 * so that the current transaction can be aborted. 1079 */ 1080 if (code) { 1081 *tpp = tp; 1082 *ipp = NULL; 1083 return code; 1084 } 1085 ASSERT(!ialloc_context && ip); 1086 1087 } 1088 1089 *ipp = ip; 1090 *tpp = tp; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Decrement the link count on an inode & log the change. If this causes the 1097 * link count to go to zero, move the inode to AGI unlinked list so that it can 1098 * be freed when the last active reference goes away via xfs_inactive(). 1099 */ 1100 static int /* error */ 1101 xfs_droplink( 1102 xfs_trans_t *tp, 1103 xfs_inode_t *ip) 1104 { 1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1106 1107 drop_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 1110 if (VFS_I(ip)->i_nlink) 1111 return 0; 1112 1113 return xfs_iunlink(tp, ip); 1114 } 1115 1116 /* 1117 * Increment the link count on an inode & log the change. 1118 */ 1119 static void 1120 xfs_bumplink( 1121 xfs_trans_t *tp, 1122 xfs_inode_t *ip) 1123 { 1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1125 1126 ASSERT(ip->i_d.di_version > 1); 1127 inc_nlink(VFS_I(ip)); 1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1129 } 1130 1131 int 1132 xfs_create( 1133 xfs_inode_t *dp, 1134 struct xfs_name *name, 1135 umode_t mode, 1136 dev_t rdev, 1137 xfs_inode_t **ipp) 1138 { 1139 int is_dir = S_ISDIR(mode); 1140 struct xfs_mount *mp = dp->i_mount; 1141 struct xfs_inode *ip = NULL; 1142 struct xfs_trans *tp = NULL; 1143 int error; 1144 bool unlock_dp_on_error = false; 1145 prid_t prid; 1146 struct xfs_dquot *udqp = NULL; 1147 struct xfs_dquot *gdqp = NULL; 1148 struct xfs_dquot *pdqp = NULL; 1149 struct xfs_trans_res *tres; 1150 uint resblks; 1151 1152 trace_xfs_create(dp, name); 1153 1154 if (XFS_FORCED_SHUTDOWN(mp)) 1155 return -EIO; 1156 1157 prid = xfs_get_initial_prid(dp); 1158 1159 /* 1160 * Make sure that we have allocated dquot(s) on disk. 1161 */ 1162 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1163 xfs_kgid_to_gid(current_fsgid()), prid, 1164 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1165 &udqp, &gdqp, &pdqp); 1166 if (error) 1167 return error; 1168 1169 if (is_dir) { 1170 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1171 tres = &M_RES(mp)->tr_mkdir; 1172 } else { 1173 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1174 tres = &M_RES(mp)->tr_create; 1175 } 1176 1177 /* 1178 * Initially assume that the file does not exist and 1179 * reserve the resources for that case. If that is not 1180 * the case we'll drop the one we have and get a more 1181 * appropriate transaction later. 1182 */ 1183 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1184 if (error == -ENOSPC) { 1185 /* flush outstanding delalloc blocks and retry */ 1186 xfs_flush_inodes(mp); 1187 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1188 } 1189 if (error) 1190 goto out_release_inode; 1191 1192 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1193 unlock_dp_on_error = true; 1194 1195 /* 1196 * Reserve disk quota and the inode. 1197 */ 1198 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1199 pdqp, resblks, 1, 0); 1200 if (error) 1201 goto out_trans_cancel; 1202 1203 /* 1204 * A newly created regular or special file just has one directory 1205 * entry pointing to them, but a directory also the "." entry 1206 * pointing to itself. 1207 */ 1208 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1209 if (error) 1210 goto out_trans_cancel; 1211 1212 /* 1213 * Now we join the directory inode to the transaction. We do not do it 1214 * earlier because xfs_dir_ialloc might commit the previous transaction 1215 * (and release all the locks). An error from here on will result in 1216 * the transaction cancel unlocking dp so don't do it explicitly in the 1217 * error path. 1218 */ 1219 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1220 unlock_dp_on_error = false; 1221 1222 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1223 resblks ? 1224 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1225 if (error) { 1226 ASSERT(error != -ENOSPC); 1227 goto out_trans_cancel; 1228 } 1229 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1230 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1231 1232 if (is_dir) { 1233 error = xfs_dir_init(tp, ip, dp); 1234 if (error) 1235 goto out_trans_cancel; 1236 1237 xfs_bumplink(tp, dp); 1238 } 1239 1240 /* 1241 * If this is a synchronous mount, make sure that the 1242 * create transaction goes to disk before returning to 1243 * the user. 1244 */ 1245 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1246 xfs_trans_set_sync(tp); 1247 1248 /* 1249 * Attach the dquot(s) to the inodes and modify them incore. 1250 * These ids of the inode couldn't have changed since the new 1251 * inode has been locked ever since it was created. 1252 */ 1253 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1254 1255 error = xfs_trans_commit(tp); 1256 if (error) 1257 goto out_release_inode; 1258 1259 xfs_qm_dqrele(udqp); 1260 xfs_qm_dqrele(gdqp); 1261 xfs_qm_dqrele(pdqp); 1262 1263 *ipp = ip; 1264 return 0; 1265 1266 out_trans_cancel: 1267 xfs_trans_cancel(tp); 1268 out_release_inode: 1269 /* 1270 * Wait until after the current transaction is aborted to finish the 1271 * setup of the inode and release the inode. This prevents recursive 1272 * transactions and deadlocks from xfs_inactive. 1273 */ 1274 if (ip) { 1275 xfs_finish_inode_setup(ip); 1276 xfs_irele(ip); 1277 } 1278 1279 xfs_qm_dqrele(udqp); 1280 xfs_qm_dqrele(gdqp); 1281 xfs_qm_dqrele(pdqp); 1282 1283 if (unlock_dp_on_error) 1284 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1285 return error; 1286 } 1287 1288 int 1289 xfs_create_tmpfile( 1290 struct xfs_inode *dp, 1291 umode_t mode, 1292 struct xfs_inode **ipp) 1293 { 1294 struct xfs_mount *mp = dp->i_mount; 1295 struct xfs_inode *ip = NULL; 1296 struct xfs_trans *tp = NULL; 1297 int error; 1298 prid_t prid; 1299 struct xfs_dquot *udqp = NULL; 1300 struct xfs_dquot *gdqp = NULL; 1301 struct xfs_dquot *pdqp = NULL; 1302 struct xfs_trans_res *tres; 1303 uint resblks; 1304 1305 if (XFS_FORCED_SHUTDOWN(mp)) 1306 return -EIO; 1307 1308 prid = xfs_get_initial_prid(dp); 1309 1310 /* 1311 * Make sure that we have allocated dquot(s) on disk. 1312 */ 1313 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1314 xfs_kgid_to_gid(current_fsgid()), prid, 1315 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1316 &udqp, &gdqp, &pdqp); 1317 if (error) 1318 return error; 1319 1320 resblks = XFS_IALLOC_SPACE_RES(mp); 1321 tres = &M_RES(mp)->tr_create_tmpfile; 1322 1323 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1324 if (error) 1325 goto out_release_inode; 1326 1327 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1328 pdqp, resblks, 1, 0); 1329 if (error) 1330 goto out_trans_cancel; 1331 1332 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1333 if (error) 1334 goto out_trans_cancel; 1335 1336 if (mp->m_flags & XFS_MOUNT_WSYNC) 1337 xfs_trans_set_sync(tp); 1338 1339 /* 1340 * Attach the dquot(s) to the inodes and modify them incore. 1341 * These ids of the inode couldn't have changed since the new 1342 * inode has been locked ever since it was created. 1343 */ 1344 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1345 1346 error = xfs_iunlink(tp, ip); 1347 if (error) 1348 goto out_trans_cancel; 1349 1350 error = xfs_trans_commit(tp); 1351 if (error) 1352 goto out_release_inode; 1353 1354 xfs_qm_dqrele(udqp); 1355 xfs_qm_dqrele(gdqp); 1356 xfs_qm_dqrele(pdqp); 1357 1358 *ipp = ip; 1359 return 0; 1360 1361 out_trans_cancel: 1362 xfs_trans_cancel(tp); 1363 out_release_inode: 1364 /* 1365 * Wait until after the current transaction is aborted to finish the 1366 * setup of the inode and release the inode. This prevents recursive 1367 * transactions and deadlocks from xfs_inactive. 1368 */ 1369 if (ip) { 1370 xfs_finish_inode_setup(ip); 1371 xfs_irele(ip); 1372 } 1373 1374 xfs_qm_dqrele(udqp); 1375 xfs_qm_dqrele(gdqp); 1376 xfs_qm_dqrele(pdqp); 1377 1378 return error; 1379 } 1380 1381 int 1382 xfs_link( 1383 xfs_inode_t *tdp, 1384 xfs_inode_t *sip, 1385 struct xfs_name *target_name) 1386 { 1387 xfs_mount_t *mp = tdp->i_mount; 1388 xfs_trans_t *tp; 1389 int error; 1390 int resblks; 1391 1392 trace_xfs_link(tdp, target_name); 1393 1394 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1395 1396 if (XFS_FORCED_SHUTDOWN(mp)) 1397 return -EIO; 1398 1399 error = xfs_qm_dqattach(sip); 1400 if (error) 1401 goto std_return; 1402 1403 error = xfs_qm_dqattach(tdp); 1404 if (error) 1405 goto std_return; 1406 1407 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1408 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1409 if (error == -ENOSPC) { 1410 resblks = 0; 1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1412 } 1413 if (error) 1414 goto std_return; 1415 1416 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1417 1418 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1419 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1420 1421 /* 1422 * If we are using project inheritance, we only allow hard link 1423 * creation in our tree when the project IDs are the same; else 1424 * the tree quota mechanism could be circumvented. 1425 */ 1426 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1427 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1428 error = -EXDEV; 1429 goto error_return; 1430 } 1431 1432 if (!resblks) { 1433 error = xfs_dir_canenter(tp, tdp, target_name); 1434 if (error) 1435 goto error_return; 1436 } 1437 1438 /* 1439 * Handle initial link state of O_TMPFILE inode 1440 */ 1441 if (VFS_I(sip)->i_nlink == 0) { 1442 error = xfs_iunlink_remove(tp, sip); 1443 if (error) 1444 goto error_return; 1445 } 1446 1447 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1448 resblks); 1449 if (error) 1450 goto error_return; 1451 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1452 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1453 1454 xfs_bumplink(tp, sip); 1455 1456 /* 1457 * If this is a synchronous mount, make sure that the 1458 * link transaction goes to disk before returning to 1459 * the user. 1460 */ 1461 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1462 xfs_trans_set_sync(tp); 1463 1464 return xfs_trans_commit(tp); 1465 1466 error_return: 1467 xfs_trans_cancel(tp); 1468 std_return: 1469 return error; 1470 } 1471 1472 /* Clear the reflink flag and the cowblocks tag if possible. */ 1473 static void 1474 xfs_itruncate_clear_reflink_flags( 1475 struct xfs_inode *ip) 1476 { 1477 struct xfs_ifork *dfork; 1478 struct xfs_ifork *cfork; 1479 1480 if (!xfs_is_reflink_inode(ip)) 1481 return; 1482 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1483 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1484 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1485 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1486 if (cfork->if_bytes == 0) 1487 xfs_inode_clear_cowblocks_tag(ip); 1488 } 1489 1490 /* 1491 * Free up the underlying blocks past new_size. The new size must be smaller 1492 * than the current size. This routine can be used both for the attribute and 1493 * data fork, and does not modify the inode size, which is left to the caller. 1494 * 1495 * The transaction passed to this routine must have made a permanent log 1496 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1497 * given transaction and start new ones, so make sure everything involved in 1498 * the transaction is tidy before calling here. Some transaction will be 1499 * returned to the caller to be committed. The incoming transaction must 1500 * already include the inode, and both inode locks must be held exclusively. 1501 * The inode must also be "held" within the transaction. On return the inode 1502 * will be "held" within the returned transaction. This routine does NOT 1503 * require any disk space to be reserved for it within the transaction. 1504 * 1505 * If we get an error, we must return with the inode locked and linked into the 1506 * current transaction. This keeps things simple for the higher level code, 1507 * because it always knows that the inode is locked and held in the transaction 1508 * that returns to it whether errors occur or not. We don't mark the inode 1509 * dirty on error so that transactions can be easily aborted if possible. 1510 */ 1511 int 1512 xfs_itruncate_extents_flags( 1513 struct xfs_trans **tpp, 1514 struct xfs_inode *ip, 1515 int whichfork, 1516 xfs_fsize_t new_size, 1517 int flags) 1518 { 1519 struct xfs_mount *mp = ip->i_mount; 1520 struct xfs_trans *tp = *tpp; 1521 xfs_fileoff_t first_unmap_block; 1522 xfs_fileoff_t last_block; 1523 xfs_filblks_t unmap_len; 1524 int error = 0; 1525 int done = 0; 1526 1527 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1528 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1529 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1530 ASSERT(new_size <= XFS_ISIZE(ip)); 1531 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1532 ASSERT(ip->i_itemp != NULL); 1533 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1534 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1535 1536 trace_xfs_itruncate_extents_start(ip, new_size); 1537 1538 flags |= xfs_bmapi_aflag(whichfork); 1539 1540 /* 1541 * Since it is possible for space to become allocated beyond 1542 * the end of the file (in a crash where the space is allocated 1543 * but the inode size is not yet updated), simply remove any 1544 * blocks which show up between the new EOF and the maximum 1545 * possible file size. If the first block to be removed is 1546 * beyond the maximum file size (ie it is the same as last_block), 1547 * then there is nothing to do. 1548 */ 1549 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1550 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1551 if (first_unmap_block == last_block) 1552 return 0; 1553 1554 ASSERT(first_unmap_block < last_block); 1555 unmap_len = last_block - first_unmap_block + 1; 1556 while (!done) { 1557 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1558 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1559 XFS_ITRUNC_MAX_EXTENTS, &done); 1560 if (error) 1561 goto out; 1562 1563 /* 1564 * Duplicate the transaction that has the permanent 1565 * reservation and commit the old transaction. 1566 */ 1567 error = xfs_defer_finish(&tp); 1568 if (error) 1569 goto out; 1570 1571 error = xfs_trans_roll_inode(&tp, ip); 1572 if (error) 1573 goto out; 1574 } 1575 1576 if (whichfork == XFS_DATA_FORK) { 1577 /* Remove all pending CoW reservations. */ 1578 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1579 first_unmap_block, last_block, true); 1580 if (error) 1581 goto out; 1582 1583 xfs_itruncate_clear_reflink_flags(ip); 1584 } 1585 1586 /* 1587 * Always re-log the inode so that our permanent transaction can keep 1588 * on rolling it forward in the log. 1589 */ 1590 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1591 1592 trace_xfs_itruncate_extents_end(ip, new_size); 1593 1594 out: 1595 *tpp = tp; 1596 return error; 1597 } 1598 1599 int 1600 xfs_release( 1601 xfs_inode_t *ip) 1602 { 1603 xfs_mount_t *mp = ip->i_mount; 1604 int error; 1605 1606 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1607 return 0; 1608 1609 /* If this is a read-only mount, don't do this (would generate I/O) */ 1610 if (mp->m_flags & XFS_MOUNT_RDONLY) 1611 return 0; 1612 1613 if (!XFS_FORCED_SHUTDOWN(mp)) { 1614 int truncated; 1615 1616 /* 1617 * If we previously truncated this file and removed old data 1618 * in the process, we want to initiate "early" writeout on 1619 * the last close. This is an attempt to combat the notorious 1620 * NULL files problem which is particularly noticeable from a 1621 * truncate down, buffered (re-)write (delalloc), followed by 1622 * a crash. What we are effectively doing here is 1623 * significantly reducing the time window where we'd otherwise 1624 * be exposed to that problem. 1625 */ 1626 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1627 if (truncated) { 1628 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1629 if (ip->i_delayed_blks > 0) { 1630 error = filemap_flush(VFS_I(ip)->i_mapping); 1631 if (error) 1632 return error; 1633 } 1634 } 1635 } 1636 1637 if (VFS_I(ip)->i_nlink == 0) 1638 return 0; 1639 1640 if (xfs_can_free_eofblocks(ip, false)) { 1641 1642 /* 1643 * Check if the inode is being opened, written and closed 1644 * frequently and we have delayed allocation blocks outstanding 1645 * (e.g. streaming writes from the NFS server), truncating the 1646 * blocks past EOF will cause fragmentation to occur. 1647 * 1648 * In this case don't do the truncation, but we have to be 1649 * careful how we detect this case. Blocks beyond EOF show up as 1650 * i_delayed_blks even when the inode is clean, so we need to 1651 * truncate them away first before checking for a dirty release. 1652 * Hence on the first dirty close we will still remove the 1653 * speculative allocation, but after that we will leave it in 1654 * place. 1655 */ 1656 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1657 return 0; 1658 /* 1659 * If we can't get the iolock just skip truncating the blocks 1660 * past EOF because we could deadlock with the mmap_sem 1661 * otherwise. We'll get another chance to drop them once the 1662 * last reference to the inode is dropped, so we'll never leak 1663 * blocks permanently. 1664 */ 1665 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1666 error = xfs_free_eofblocks(ip); 1667 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1668 if (error) 1669 return error; 1670 } 1671 1672 /* delalloc blocks after truncation means it really is dirty */ 1673 if (ip->i_delayed_blks) 1674 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1675 } 1676 return 0; 1677 } 1678 1679 /* 1680 * xfs_inactive_truncate 1681 * 1682 * Called to perform a truncate when an inode becomes unlinked. 1683 */ 1684 STATIC int 1685 xfs_inactive_truncate( 1686 struct xfs_inode *ip) 1687 { 1688 struct xfs_mount *mp = ip->i_mount; 1689 struct xfs_trans *tp; 1690 int error; 1691 1692 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1693 if (error) { 1694 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1695 return error; 1696 } 1697 xfs_ilock(ip, XFS_ILOCK_EXCL); 1698 xfs_trans_ijoin(tp, ip, 0); 1699 1700 /* 1701 * Log the inode size first to prevent stale data exposure in the event 1702 * of a system crash before the truncate completes. See the related 1703 * comment in xfs_vn_setattr_size() for details. 1704 */ 1705 ip->i_d.di_size = 0; 1706 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1707 1708 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1709 if (error) 1710 goto error_trans_cancel; 1711 1712 ASSERT(ip->i_d.di_nextents == 0); 1713 1714 error = xfs_trans_commit(tp); 1715 if (error) 1716 goto error_unlock; 1717 1718 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1719 return 0; 1720 1721 error_trans_cancel: 1722 xfs_trans_cancel(tp); 1723 error_unlock: 1724 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1725 return error; 1726 } 1727 1728 /* 1729 * xfs_inactive_ifree() 1730 * 1731 * Perform the inode free when an inode is unlinked. 1732 */ 1733 STATIC int 1734 xfs_inactive_ifree( 1735 struct xfs_inode *ip) 1736 { 1737 struct xfs_mount *mp = ip->i_mount; 1738 struct xfs_trans *tp; 1739 int error; 1740 1741 /* 1742 * We try to use a per-AG reservation for any block needed by the finobt 1743 * tree, but as the finobt feature predates the per-AG reservation 1744 * support a degraded file system might not have enough space for the 1745 * reservation at mount time. In that case try to dip into the reserved 1746 * pool and pray. 1747 * 1748 * Send a warning if the reservation does happen to fail, as the inode 1749 * now remains allocated and sits on the unlinked list until the fs is 1750 * repaired. 1751 */ 1752 if (unlikely(mp->m_finobt_nores)) { 1753 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1754 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1755 &tp); 1756 } else { 1757 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1758 } 1759 if (error) { 1760 if (error == -ENOSPC) { 1761 xfs_warn_ratelimited(mp, 1762 "Failed to remove inode(s) from unlinked list. " 1763 "Please free space, unmount and run xfs_repair."); 1764 } else { 1765 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1766 } 1767 return error; 1768 } 1769 1770 xfs_ilock(ip, XFS_ILOCK_EXCL); 1771 xfs_trans_ijoin(tp, ip, 0); 1772 1773 error = xfs_ifree(tp, ip); 1774 if (error) { 1775 /* 1776 * If we fail to free the inode, shut down. The cancel 1777 * might do that, we need to make sure. Otherwise the 1778 * inode might be lost for a long time or forever. 1779 */ 1780 if (!XFS_FORCED_SHUTDOWN(mp)) { 1781 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1782 __func__, error); 1783 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1784 } 1785 xfs_trans_cancel(tp); 1786 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1787 return error; 1788 } 1789 1790 /* 1791 * Credit the quota account(s). The inode is gone. 1792 */ 1793 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1794 1795 /* 1796 * Just ignore errors at this point. There is nothing we can do except 1797 * to try to keep going. Make sure it's not a silent error. 1798 */ 1799 error = xfs_trans_commit(tp); 1800 if (error) 1801 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1802 __func__, error); 1803 1804 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1805 return 0; 1806 } 1807 1808 /* 1809 * xfs_inactive 1810 * 1811 * This is called when the vnode reference count for the vnode 1812 * goes to zero. If the file has been unlinked, then it must 1813 * now be truncated. Also, we clear all of the read-ahead state 1814 * kept for the inode here since the file is now closed. 1815 */ 1816 void 1817 xfs_inactive( 1818 xfs_inode_t *ip) 1819 { 1820 struct xfs_mount *mp; 1821 int error; 1822 int truncate = 0; 1823 1824 /* 1825 * If the inode is already free, then there can be nothing 1826 * to clean up here. 1827 */ 1828 if (VFS_I(ip)->i_mode == 0) { 1829 ASSERT(ip->i_df.if_broot_bytes == 0); 1830 return; 1831 } 1832 1833 mp = ip->i_mount; 1834 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1835 1836 /* If this is a read-only mount, don't do this (would generate I/O) */ 1837 if (mp->m_flags & XFS_MOUNT_RDONLY) 1838 return; 1839 1840 /* Try to clean out the cow blocks if there are any. */ 1841 if (xfs_inode_has_cow_data(ip)) 1842 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1843 1844 if (VFS_I(ip)->i_nlink != 0) { 1845 /* 1846 * force is true because we are evicting an inode from the 1847 * cache. Post-eof blocks must be freed, lest we end up with 1848 * broken free space accounting. 1849 * 1850 * Note: don't bother with iolock here since lockdep complains 1851 * about acquiring it in reclaim context. We have the only 1852 * reference to the inode at this point anyways. 1853 */ 1854 if (xfs_can_free_eofblocks(ip, true)) 1855 xfs_free_eofblocks(ip); 1856 1857 return; 1858 } 1859 1860 if (S_ISREG(VFS_I(ip)->i_mode) && 1861 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1862 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1863 truncate = 1; 1864 1865 error = xfs_qm_dqattach(ip); 1866 if (error) 1867 return; 1868 1869 if (S_ISLNK(VFS_I(ip)->i_mode)) 1870 error = xfs_inactive_symlink(ip); 1871 else if (truncate) 1872 error = xfs_inactive_truncate(ip); 1873 if (error) 1874 return; 1875 1876 /* 1877 * If there are attributes associated with the file then blow them away 1878 * now. The code calls a routine that recursively deconstructs the 1879 * attribute fork. If also blows away the in-core attribute fork. 1880 */ 1881 if (XFS_IFORK_Q(ip)) { 1882 error = xfs_attr_inactive(ip); 1883 if (error) 1884 return; 1885 } 1886 1887 ASSERT(!ip->i_afp); 1888 ASSERT(ip->i_d.di_anextents == 0); 1889 ASSERT(ip->i_d.di_forkoff == 0); 1890 1891 /* 1892 * Free the inode. 1893 */ 1894 error = xfs_inactive_ifree(ip); 1895 if (error) 1896 return; 1897 1898 /* 1899 * Release the dquots held by inode, if any. 1900 */ 1901 xfs_qm_dqdetach(ip); 1902 } 1903 1904 /* 1905 * In-Core Unlinked List Lookups 1906 * ============================= 1907 * 1908 * Every inode is supposed to be reachable from some other piece of metadata 1909 * with the exception of the root directory. Inodes with a connection to a 1910 * file descriptor but not linked from anywhere in the on-disk directory tree 1911 * are collectively known as unlinked inodes, though the filesystem itself 1912 * maintains links to these inodes so that on-disk metadata are consistent. 1913 * 1914 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1915 * header contains a number of buckets that point to an inode, and each inode 1916 * record has a pointer to the next inode in the hash chain. This 1917 * singly-linked list causes scaling problems in the iunlink remove function 1918 * because we must walk that list to find the inode that points to the inode 1919 * being removed from the unlinked hash bucket list. 1920 * 1921 * What if we modelled the unlinked list as a collection of records capturing 1922 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1923 * have a fast way to look up unlinked list predecessors, which avoids the 1924 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1925 * rhashtable. 1926 * 1927 * Because this is a backref cache, we ignore operational failures since the 1928 * iunlink code can fall back to the slow bucket walk. The only errors that 1929 * should bubble out are for obviously incorrect situations. 1930 * 1931 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1932 * access or have otherwise provided for concurrency control. 1933 */ 1934 1935 /* Capture a "X.next_unlinked = Y" relationship. */ 1936 struct xfs_iunlink { 1937 struct rhash_head iu_rhash_head; 1938 xfs_agino_t iu_agino; /* X */ 1939 xfs_agino_t iu_next_unlinked; /* Y */ 1940 }; 1941 1942 /* Unlinked list predecessor lookup hashtable construction */ 1943 static int 1944 xfs_iunlink_obj_cmpfn( 1945 struct rhashtable_compare_arg *arg, 1946 const void *obj) 1947 { 1948 const xfs_agino_t *key = arg->key; 1949 const struct xfs_iunlink *iu = obj; 1950 1951 if (iu->iu_next_unlinked != *key) 1952 return 1; 1953 return 0; 1954 } 1955 1956 static const struct rhashtable_params xfs_iunlink_hash_params = { 1957 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1958 .key_len = sizeof(xfs_agino_t), 1959 .key_offset = offsetof(struct xfs_iunlink, 1960 iu_next_unlinked), 1961 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1962 .automatic_shrinking = true, 1963 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1964 }; 1965 1966 /* 1967 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1968 * relation is found. 1969 */ 1970 static xfs_agino_t 1971 xfs_iunlink_lookup_backref( 1972 struct xfs_perag *pag, 1973 xfs_agino_t agino) 1974 { 1975 struct xfs_iunlink *iu; 1976 1977 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1978 xfs_iunlink_hash_params); 1979 return iu ? iu->iu_agino : NULLAGINO; 1980 } 1981 1982 /* 1983 * Take ownership of an iunlink cache entry and insert it into the hash table. 1984 * If successful, the entry will be owned by the cache; if not, it is freed. 1985 * Either way, the caller does not own @iu after this call. 1986 */ 1987 static int 1988 xfs_iunlink_insert_backref( 1989 struct xfs_perag *pag, 1990 struct xfs_iunlink *iu) 1991 { 1992 int error; 1993 1994 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1995 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1996 /* 1997 * Fail loudly if there already was an entry because that's a sign of 1998 * corruption of in-memory data. Also fail loudly if we see an error 1999 * code we didn't anticipate from the rhashtable code. Currently we 2000 * only anticipate ENOMEM. 2001 */ 2002 if (error) { 2003 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 2004 kmem_free(iu); 2005 } 2006 /* 2007 * Absorb any runtime errors that aren't a result of corruption because 2008 * this is a cache and we can always fall back to bucket list scanning. 2009 */ 2010 if (error != 0 && error != -EEXIST) 2011 error = 0; 2012 return error; 2013 } 2014 2015 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 2016 static int 2017 xfs_iunlink_add_backref( 2018 struct xfs_perag *pag, 2019 xfs_agino_t prev_agino, 2020 xfs_agino_t this_agino) 2021 { 2022 struct xfs_iunlink *iu; 2023 2024 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2025 return 0; 2026 2027 iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS); 2028 iu->iu_agino = prev_agino; 2029 iu->iu_next_unlinked = this_agino; 2030 2031 return xfs_iunlink_insert_backref(pag, iu); 2032 } 2033 2034 /* 2035 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2036 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2037 * wasn't any such entry then we don't bother. 2038 */ 2039 static int 2040 xfs_iunlink_change_backref( 2041 struct xfs_perag *pag, 2042 xfs_agino_t agino, 2043 xfs_agino_t next_unlinked) 2044 { 2045 struct xfs_iunlink *iu; 2046 int error; 2047 2048 /* Look up the old entry; if there wasn't one then exit. */ 2049 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2050 xfs_iunlink_hash_params); 2051 if (!iu) 2052 return 0; 2053 2054 /* 2055 * Remove the entry. This shouldn't ever return an error, but if we 2056 * couldn't remove the old entry we don't want to add it again to the 2057 * hash table, and if the entry disappeared on us then someone's 2058 * violated the locking rules and we need to fail loudly. Either way 2059 * we cannot remove the inode because internal state is or would have 2060 * been corrupt. 2061 */ 2062 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2063 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2064 if (error) 2065 return error; 2066 2067 /* If there is no new next entry just free our item and return. */ 2068 if (next_unlinked == NULLAGINO) { 2069 kmem_free(iu); 2070 return 0; 2071 } 2072 2073 /* Update the entry and re-add it to the hash table. */ 2074 iu->iu_next_unlinked = next_unlinked; 2075 return xfs_iunlink_insert_backref(pag, iu); 2076 } 2077 2078 /* Set up the in-core predecessor structures. */ 2079 int 2080 xfs_iunlink_init( 2081 struct xfs_perag *pag) 2082 { 2083 return rhashtable_init(&pag->pagi_unlinked_hash, 2084 &xfs_iunlink_hash_params); 2085 } 2086 2087 /* Free the in-core predecessor structures. */ 2088 static void 2089 xfs_iunlink_free_item( 2090 void *ptr, 2091 void *arg) 2092 { 2093 struct xfs_iunlink *iu = ptr; 2094 bool *freed_anything = arg; 2095 2096 *freed_anything = true; 2097 kmem_free(iu); 2098 } 2099 2100 void 2101 xfs_iunlink_destroy( 2102 struct xfs_perag *pag) 2103 { 2104 bool freed_anything = false; 2105 2106 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2107 xfs_iunlink_free_item, &freed_anything); 2108 2109 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2110 } 2111 2112 /* 2113 * Point the AGI unlinked bucket at an inode and log the results. The caller 2114 * is responsible for validating the old value. 2115 */ 2116 STATIC int 2117 xfs_iunlink_update_bucket( 2118 struct xfs_trans *tp, 2119 xfs_agnumber_t agno, 2120 struct xfs_buf *agibp, 2121 unsigned int bucket_index, 2122 xfs_agino_t new_agino) 2123 { 2124 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 2125 xfs_agino_t old_value; 2126 int offset; 2127 2128 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2129 2130 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2131 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2132 old_value, new_agino); 2133 2134 /* 2135 * We should never find the head of the list already set to the value 2136 * passed in because either we're adding or removing ourselves from the 2137 * head of the list. 2138 */ 2139 if (old_value == new_agino) 2140 return -EFSCORRUPTED; 2141 2142 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2143 offset = offsetof(struct xfs_agi, agi_unlinked) + 2144 (sizeof(xfs_agino_t) * bucket_index); 2145 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2146 return 0; 2147 } 2148 2149 /* Set an on-disk inode's next_unlinked pointer. */ 2150 STATIC void 2151 xfs_iunlink_update_dinode( 2152 struct xfs_trans *tp, 2153 xfs_agnumber_t agno, 2154 xfs_agino_t agino, 2155 struct xfs_buf *ibp, 2156 struct xfs_dinode *dip, 2157 struct xfs_imap *imap, 2158 xfs_agino_t next_agino) 2159 { 2160 struct xfs_mount *mp = tp->t_mountp; 2161 int offset; 2162 2163 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2164 2165 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2166 be32_to_cpu(dip->di_next_unlinked), next_agino); 2167 2168 dip->di_next_unlinked = cpu_to_be32(next_agino); 2169 offset = imap->im_boffset + 2170 offsetof(struct xfs_dinode, di_next_unlinked); 2171 2172 /* need to recalc the inode CRC if appropriate */ 2173 xfs_dinode_calc_crc(mp, dip); 2174 xfs_trans_inode_buf(tp, ibp); 2175 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2176 xfs_inobp_check(mp, ibp); 2177 } 2178 2179 /* Set an in-core inode's unlinked pointer and return the old value. */ 2180 STATIC int 2181 xfs_iunlink_update_inode( 2182 struct xfs_trans *tp, 2183 struct xfs_inode *ip, 2184 xfs_agnumber_t agno, 2185 xfs_agino_t next_agino, 2186 xfs_agino_t *old_next_agino) 2187 { 2188 struct xfs_mount *mp = tp->t_mountp; 2189 struct xfs_dinode *dip; 2190 struct xfs_buf *ibp; 2191 xfs_agino_t old_value; 2192 int error; 2193 2194 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2195 2196 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); 2197 if (error) 2198 return error; 2199 2200 /* Make sure the old pointer isn't garbage. */ 2201 old_value = be32_to_cpu(dip->di_next_unlinked); 2202 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2203 error = -EFSCORRUPTED; 2204 goto out; 2205 } 2206 2207 /* 2208 * Since we're updating a linked list, we should never find that the 2209 * current pointer is the same as the new value, unless we're 2210 * terminating the list. 2211 */ 2212 *old_next_agino = old_value; 2213 if (old_value == next_agino) { 2214 if (next_agino != NULLAGINO) 2215 error = -EFSCORRUPTED; 2216 goto out; 2217 } 2218 2219 /* Ok, update the new pointer. */ 2220 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2221 ibp, dip, &ip->i_imap, next_agino); 2222 return 0; 2223 out: 2224 xfs_trans_brelse(tp, ibp); 2225 return error; 2226 } 2227 2228 /* 2229 * This is called when the inode's link count has gone to 0 or we are creating 2230 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2231 * 2232 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2233 * list when the inode is freed. 2234 */ 2235 STATIC int 2236 xfs_iunlink( 2237 struct xfs_trans *tp, 2238 struct xfs_inode *ip) 2239 { 2240 struct xfs_mount *mp = tp->t_mountp; 2241 struct xfs_agi *agi; 2242 struct xfs_buf *agibp; 2243 xfs_agino_t next_agino; 2244 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2245 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2246 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2247 int error; 2248 2249 ASSERT(VFS_I(ip)->i_nlink == 0); 2250 ASSERT(VFS_I(ip)->i_mode != 0); 2251 trace_xfs_iunlink(ip); 2252 2253 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2254 error = xfs_read_agi(mp, tp, agno, &agibp); 2255 if (error) 2256 return error; 2257 agi = XFS_BUF_TO_AGI(agibp); 2258 2259 /* 2260 * Get the index into the agi hash table for the list this inode will 2261 * go on. Make sure the pointer isn't garbage and that this inode 2262 * isn't already on the list. 2263 */ 2264 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2265 if (next_agino == agino || 2266 !xfs_verify_agino_or_null(mp, agno, next_agino)) 2267 return -EFSCORRUPTED; 2268 2269 if (next_agino != NULLAGINO) { 2270 struct xfs_perag *pag; 2271 xfs_agino_t old_agino; 2272 2273 /* 2274 * There is already another inode in the bucket, so point this 2275 * inode to the current head of the list. 2276 */ 2277 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2278 &old_agino); 2279 if (error) 2280 return error; 2281 ASSERT(old_agino == NULLAGINO); 2282 2283 /* 2284 * agino has been unlinked, add a backref from the next inode 2285 * back to agino. 2286 */ 2287 pag = xfs_perag_get(mp, agno); 2288 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2289 xfs_perag_put(pag); 2290 if (error) 2291 return error; 2292 } 2293 2294 /* Point the head of the list to point to this inode. */ 2295 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2296 } 2297 2298 /* Return the imap, dinode pointer, and buffer for an inode. */ 2299 STATIC int 2300 xfs_iunlink_map_ino( 2301 struct xfs_trans *tp, 2302 xfs_agnumber_t agno, 2303 xfs_agino_t agino, 2304 struct xfs_imap *imap, 2305 struct xfs_dinode **dipp, 2306 struct xfs_buf **bpp) 2307 { 2308 struct xfs_mount *mp = tp->t_mountp; 2309 int error; 2310 2311 imap->im_blkno = 0; 2312 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2313 if (error) { 2314 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2315 __func__, error); 2316 return error; 2317 } 2318 2319 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); 2320 if (error) { 2321 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2322 __func__, error); 2323 return error; 2324 } 2325 2326 return 0; 2327 } 2328 2329 /* 2330 * Walk the unlinked chain from @head_agino until we find the inode that 2331 * points to @target_agino. Return the inode number, map, dinode pointer, 2332 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2333 * 2334 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2335 * @agino, @imap, @dipp, and @bpp are all output parameters. 2336 * 2337 * Do not call this function if @target_agino is the head of the list. 2338 */ 2339 STATIC int 2340 xfs_iunlink_map_prev( 2341 struct xfs_trans *tp, 2342 xfs_agnumber_t agno, 2343 xfs_agino_t head_agino, 2344 xfs_agino_t target_agino, 2345 xfs_agino_t *agino, 2346 struct xfs_imap *imap, 2347 struct xfs_dinode **dipp, 2348 struct xfs_buf **bpp, 2349 struct xfs_perag *pag) 2350 { 2351 struct xfs_mount *mp = tp->t_mountp; 2352 xfs_agino_t next_agino; 2353 int error; 2354 2355 ASSERT(head_agino != target_agino); 2356 *bpp = NULL; 2357 2358 /* See if our backref cache can find it faster. */ 2359 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2360 if (*agino != NULLAGINO) { 2361 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2362 if (error) 2363 return error; 2364 2365 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2366 return 0; 2367 2368 /* 2369 * If we get here the cache contents were corrupt, so drop the 2370 * buffer and fall back to walking the bucket list. 2371 */ 2372 xfs_trans_brelse(tp, *bpp); 2373 *bpp = NULL; 2374 WARN_ON_ONCE(1); 2375 } 2376 2377 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2378 2379 /* Otherwise, walk the entire bucket until we find it. */ 2380 next_agino = head_agino; 2381 while (next_agino != target_agino) { 2382 xfs_agino_t unlinked_agino; 2383 2384 if (*bpp) 2385 xfs_trans_brelse(tp, *bpp); 2386 2387 *agino = next_agino; 2388 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2389 bpp); 2390 if (error) 2391 return error; 2392 2393 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2394 /* 2395 * Make sure this pointer is valid and isn't an obvious 2396 * infinite loop. 2397 */ 2398 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2399 next_agino == unlinked_agino) { 2400 XFS_CORRUPTION_ERROR(__func__, 2401 XFS_ERRLEVEL_LOW, mp, 2402 *dipp, sizeof(**dipp)); 2403 error = -EFSCORRUPTED; 2404 return error; 2405 } 2406 next_agino = unlinked_agino; 2407 } 2408 2409 return 0; 2410 } 2411 2412 /* 2413 * Pull the on-disk inode from the AGI unlinked list. 2414 */ 2415 STATIC int 2416 xfs_iunlink_remove( 2417 struct xfs_trans *tp, 2418 struct xfs_inode *ip) 2419 { 2420 struct xfs_mount *mp = tp->t_mountp; 2421 struct xfs_agi *agi; 2422 struct xfs_buf *agibp; 2423 struct xfs_buf *last_ibp; 2424 struct xfs_dinode *last_dip = NULL; 2425 struct xfs_perag *pag = NULL; 2426 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2427 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2428 xfs_agino_t next_agino; 2429 xfs_agino_t head_agino; 2430 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2431 int error; 2432 2433 trace_xfs_iunlink_remove(ip); 2434 2435 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2436 error = xfs_read_agi(mp, tp, agno, &agibp); 2437 if (error) 2438 return error; 2439 agi = XFS_BUF_TO_AGI(agibp); 2440 2441 /* 2442 * Get the index into the agi hash table for the list this inode will 2443 * go on. Make sure the head pointer isn't garbage. 2444 */ 2445 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2446 if (!xfs_verify_agino(mp, agno, head_agino)) { 2447 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2448 agi, sizeof(*agi)); 2449 return -EFSCORRUPTED; 2450 } 2451 2452 /* 2453 * Set our inode's next_unlinked pointer to NULL and then return 2454 * the old pointer value so that we can update whatever was previous 2455 * to us in the list to point to whatever was next in the list. 2456 */ 2457 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2458 if (error) 2459 return error; 2460 2461 /* 2462 * If there was a backref pointing from the next inode back to this 2463 * one, remove it because we've removed this inode from the list. 2464 * 2465 * Later, if this inode was in the middle of the list we'll update 2466 * this inode's backref to point from the next inode. 2467 */ 2468 if (next_agino != NULLAGINO) { 2469 pag = xfs_perag_get(mp, agno); 2470 error = xfs_iunlink_change_backref(pag, next_agino, 2471 NULLAGINO); 2472 if (error) 2473 goto out; 2474 } 2475 2476 if (head_agino == agino) { 2477 /* Point the head of the list to the next unlinked inode. */ 2478 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2479 next_agino); 2480 if (error) 2481 goto out; 2482 } else { 2483 struct xfs_imap imap; 2484 xfs_agino_t prev_agino; 2485 2486 if (!pag) 2487 pag = xfs_perag_get(mp, agno); 2488 2489 /* We need to search the list for the inode being freed. */ 2490 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2491 &prev_agino, &imap, &last_dip, &last_ibp, 2492 pag); 2493 if (error) 2494 goto out; 2495 2496 /* Point the previous inode on the list to the next inode. */ 2497 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2498 last_dip, &imap, next_agino); 2499 2500 /* 2501 * Now we deal with the backref for this inode. If this inode 2502 * pointed at a real inode, change the backref that pointed to 2503 * us to point to our old next. If this inode was the end of 2504 * the list, delete the backref that pointed to us. Note that 2505 * change_backref takes care of deleting the backref if 2506 * next_agino is NULLAGINO. 2507 */ 2508 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2509 if (error) 2510 goto out; 2511 } 2512 2513 out: 2514 if (pag) 2515 xfs_perag_put(pag); 2516 return error; 2517 } 2518 2519 /* 2520 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2521 * inodes that are in memory - they all must be marked stale and attached to 2522 * the cluster buffer. 2523 */ 2524 STATIC int 2525 xfs_ifree_cluster( 2526 xfs_inode_t *free_ip, 2527 xfs_trans_t *tp, 2528 struct xfs_icluster *xic) 2529 { 2530 xfs_mount_t *mp = free_ip->i_mount; 2531 int nbufs; 2532 int i, j; 2533 int ioffset; 2534 xfs_daddr_t blkno; 2535 xfs_buf_t *bp; 2536 xfs_inode_t *ip; 2537 xfs_inode_log_item_t *iip; 2538 struct xfs_log_item *lip; 2539 struct xfs_perag *pag; 2540 xfs_ino_t inum; 2541 2542 inum = xic->first_ino; 2543 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2544 nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster; 2545 2546 for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) { 2547 /* 2548 * The allocation bitmap tells us which inodes of the chunk were 2549 * physically allocated. Skip the cluster if an inode falls into 2550 * a sparse region. 2551 */ 2552 ioffset = inum - xic->first_ino; 2553 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2554 ASSERT(ioffset % mp->m_inodes_per_cluster == 0); 2555 continue; 2556 } 2557 2558 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2559 XFS_INO_TO_AGBNO(mp, inum)); 2560 2561 /* 2562 * We obtain and lock the backing buffer first in the process 2563 * here, as we have to ensure that any dirty inode that we 2564 * can't get the flush lock on is attached to the buffer. 2565 * If we scan the in-memory inodes first, then buffer IO can 2566 * complete before we get a lock on it, and hence we may fail 2567 * to mark all the active inodes on the buffer stale. 2568 */ 2569 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2570 mp->m_bsize * mp->m_blocks_per_cluster, 2571 XBF_UNMAPPED); 2572 2573 if (!bp) 2574 return -ENOMEM; 2575 2576 /* 2577 * This buffer may not have been correctly initialised as we 2578 * didn't read it from disk. That's not important because we are 2579 * only using to mark the buffer as stale in the log, and to 2580 * attach stale cached inodes on it. That means it will never be 2581 * dispatched for IO. If it is, we want to know about it, and we 2582 * want it to fail. We can acheive this by adding a write 2583 * verifier to the buffer. 2584 */ 2585 bp->b_ops = &xfs_inode_buf_ops; 2586 2587 /* 2588 * Walk the inodes already attached to the buffer and mark them 2589 * stale. These will all have the flush locks held, so an 2590 * in-memory inode walk can't lock them. By marking them all 2591 * stale first, we will not attempt to lock them in the loop 2592 * below as the XFS_ISTALE flag will be set. 2593 */ 2594 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2595 if (lip->li_type == XFS_LI_INODE) { 2596 iip = (xfs_inode_log_item_t *)lip; 2597 ASSERT(iip->ili_logged == 1); 2598 lip->li_cb = xfs_istale_done; 2599 xfs_trans_ail_copy_lsn(mp->m_ail, 2600 &iip->ili_flush_lsn, 2601 &iip->ili_item.li_lsn); 2602 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2603 } 2604 } 2605 2606 2607 /* 2608 * For each inode in memory attempt to add it to the inode 2609 * buffer and set it up for being staled on buffer IO 2610 * completion. This is safe as we've locked out tail pushing 2611 * and flushing by locking the buffer. 2612 * 2613 * We have already marked every inode that was part of a 2614 * transaction stale above, which means there is no point in 2615 * even trying to lock them. 2616 */ 2617 for (i = 0; i < mp->m_inodes_per_cluster; i++) { 2618 retry: 2619 rcu_read_lock(); 2620 ip = radix_tree_lookup(&pag->pag_ici_root, 2621 XFS_INO_TO_AGINO(mp, (inum + i))); 2622 2623 /* Inode not in memory, nothing to do */ 2624 if (!ip) { 2625 rcu_read_unlock(); 2626 continue; 2627 } 2628 2629 /* 2630 * because this is an RCU protected lookup, we could 2631 * find a recently freed or even reallocated inode 2632 * during the lookup. We need to check under the 2633 * i_flags_lock for a valid inode here. Skip it if it 2634 * is not valid, the wrong inode or stale. 2635 */ 2636 spin_lock(&ip->i_flags_lock); 2637 if (ip->i_ino != inum + i || 2638 __xfs_iflags_test(ip, XFS_ISTALE)) { 2639 spin_unlock(&ip->i_flags_lock); 2640 rcu_read_unlock(); 2641 continue; 2642 } 2643 spin_unlock(&ip->i_flags_lock); 2644 2645 /* 2646 * Don't try to lock/unlock the current inode, but we 2647 * _cannot_ skip the other inodes that we did not find 2648 * in the list attached to the buffer and are not 2649 * already marked stale. If we can't lock it, back off 2650 * and retry. 2651 */ 2652 if (ip != free_ip) { 2653 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2654 rcu_read_unlock(); 2655 delay(1); 2656 goto retry; 2657 } 2658 2659 /* 2660 * Check the inode number again in case we're 2661 * racing with freeing in xfs_reclaim_inode(). 2662 * See the comments in that function for more 2663 * information as to why the initial check is 2664 * not sufficient. 2665 */ 2666 if (ip->i_ino != inum + i) { 2667 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2668 rcu_read_unlock(); 2669 continue; 2670 } 2671 } 2672 rcu_read_unlock(); 2673 2674 xfs_iflock(ip); 2675 xfs_iflags_set(ip, XFS_ISTALE); 2676 2677 /* 2678 * we don't need to attach clean inodes or those only 2679 * with unlogged changes (which we throw away, anyway). 2680 */ 2681 iip = ip->i_itemp; 2682 if (!iip || xfs_inode_clean(ip)) { 2683 ASSERT(ip != free_ip); 2684 xfs_ifunlock(ip); 2685 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2686 continue; 2687 } 2688 2689 iip->ili_last_fields = iip->ili_fields; 2690 iip->ili_fields = 0; 2691 iip->ili_fsync_fields = 0; 2692 iip->ili_logged = 1; 2693 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2694 &iip->ili_item.li_lsn); 2695 2696 xfs_buf_attach_iodone(bp, xfs_istale_done, 2697 &iip->ili_item); 2698 2699 if (ip != free_ip) 2700 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2701 } 2702 2703 xfs_trans_stale_inode_buf(tp, bp); 2704 xfs_trans_binval(tp, bp); 2705 } 2706 2707 xfs_perag_put(pag); 2708 return 0; 2709 } 2710 2711 /* 2712 * Free any local-format buffers sitting around before we reset to 2713 * extents format. 2714 */ 2715 static inline void 2716 xfs_ifree_local_data( 2717 struct xfs_inode *ip, 2718 int whichfork) 2719 { 2720 struct xfs_ifork *ifp; 2721 2722 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2723 return; 2724 2725 ifp = XFS_IFORK_PTR(ip, whichfork); 2726 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2727 } 2728 2729 /* 2730 * This is called to return an inode to the inode free list. 2731 * The inode should already be truncated to 0 length and have 2732 * no pages associated with it. This routine also assumes that 2733 * the inode is already a part of the transaction. 2734 * 2735 * The on-disk copy of the inode will have been added to the list 2736 * of unlinked inodes in the AGI. We need to remove the inode from 2737 * that list atomically with respect to freeing it here. 2738 */ 2739 int 2740 xfs_ifree( 2741 struct xfs_trans *tp, 2742 struct xfs_inode *ip) 2743 { 2744 int error; 2745 struct xfs_icluster xic = { 0 }; 2746 2747 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2748 ASSERT(VFS_I(ip)->i_nlink == 0); 2749 ASSERT(ip->i_d.di_nextents == 0); 2750 ASSERT(ip->i_d.di_anextents == 0); 2751 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2752 ASSERT(ip->i_d.di_nblocks == 0); 2753 2754 /* 2755 * Pull the on-disk inode from the AGI unlinked list. 2756 */ 2757 error = xfs_iunlink_remove(tp, ip); 2758 if (error) 2759 return error; 2760 2761 error = xfs_difree(tp, ip->i_ino, &xic); 2762 if (error) 2763 return error; 2764 2765 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2766 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2767 2768 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2769 ip->i_d.di_flags = 0; 2770 ip->i_d.di_flags2 = 0; 2771 ip->i_d.di_dmevmask = 0; 2772 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2773 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2774 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2775 2776 /* Don't attempt to replay owner changes for a deleted inode */ 2777 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2778 2779 /* 2780 * Bump the generation count so no one will be confused 2781 * by reincarnations of this inode. 2782 */ 2783 VFS_I(ip)->i_generation++; 2784 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2785 2786 if (xic.deleted) 2787 error = xfs_ifree_cluster(ip, tp, &xic); 2788 2789 return error; 2790 } 2791 2792 /* 2793 * This is called to unpin an inode. The caller must have the inode locked 2794 * in at least shared mode so that the buffer cannot be subsequently pinned 2795 * once someone is waiting for it to be unpinned. 2796 */ 2797 static void 2798 xfs_iunpin( 2799 struct xfs_inode *ip) 2800 { 2801 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2802 2803 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2804 2805 /* Give the log a push to start the unpinning I/O */ 2806 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2807 2808 } 2809 2810 static void 2811 __xfs_iunpin_wait( 2812 struct xfs_inode *ip) 2813 { 2814 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2815 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2816 2817 xfs_iunpin(ip); 2818 2819 do { 2820 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2821 if (xfs_ipincount(ip)) 2822 io_schedule(); 2823 } while (xfs_ipincount(ip)); 2824 finish_wait(wq, &wait.wq_entry); 2825 } 2826 2827 void 2828 xfs_iunpin_wait( 2829 struct xfs_inode *ip) 2830 { 2831 if (xfs_ipincount(ip)) 2832 __xfs_iunpin_wait(ip); 2833 } 2834 2835 /* 2836 * Removing an inode from the namespace involves removing the directory entry 2837 * and dropping the link count on the inode. Removing the directory entry can 2838 * result in locking an AGF (directory blocks were freed) and removing a link 2839 * count can result in placing the inode on an unlinked list which results in 2840 * locking an AGI. 2841 * 2842 * The big problem here is that we have an ordering constraint on AGF and AGI 2843 * locking - inode allocation locks the AGI, then can allocate a new extent for 2844 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2845 * removes the inode from the unlinked list, requiring that we lock the AGI 2846 * first, and then freeing the inode can result in an inode chunk being freed 2847 * and hence freeing disk space requiring that we lock an AGF. 2848 * 2849 * Hence the ordering that is imposed by other parts of the code is AGI before 2850 * AGF. This means we cannot remove the directory entry before we drop the inode 2851 * reference count and put it on the unlinked list as this results in a lock 2852 * order of AGF then AGI, and this can deadlock against inode allocation and 2853 * freeing. Therefore we must drop the link counts before we remove the 2854 * directory entry. 2855 * 2856 * This is still safe from a transactional point of view - it is not until we 2857 * get to xfs_defer_finish() that we have the possibility of multiple 2858 * transactions in this operation. Hence as long as we remove the directory 2859 * entry and drop the link count in the first transaction of the remove 2860 * operation, there are no transactional constraints on the ordering here. 2861 */ 2862 int 2863 xfs_remove( 2864 xfs_inode_t *dp, 2865 struct xfs_name *name, 2866 xfs_inode_t *ip) 2867 { 2868 xfs_mount_t *mp = dp->i_mount; 2869 xfs_trans_t *tp = NULL; 2870 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2871 int error = 0; 2872 uint resblks; 2873 2874 trace_xfs_remove(dp, name); 2875 2876 if (XFS_FORCED_SHUTDOWN(mp)) 2877 return -EIO; 2878 2879 error = xfs_qm_dqattach(dp); 2880 if (error) 2881 goto std_return; 2882 2883 error = xfs_qm_dqattach(ip); 2884 if (error) 2885 goto std_return; 2886 2887 /* 2888 * We try to get the real space reservation first, 2889 * allowing for directory btree deletion(s) implying 2890 * possible bmap insert(s). If we can't get the space 2891 * reservation then we use 0 instead, and avoid the bmap 2892 * btree insert(s) in the directory code by, if the bmap 2893 * insert tries to happen, instead trimming the LAST 2894 * block from the directory. 2895 */ 2896 resblks = XFS_REMOVE_SPACE_RES(mp); 2897 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2898 if (error == -ENOSPC) { 2899 resblks = 0; 2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2901 &tp); 2902 } 2903 if (error) { 2904 ASSERT(error != -ENOSPC); 2905 goto std_return; 2906 } 2907 2908 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2909 2910 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2911 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2912 2913 /* 2914 * If we're removing a directory perform some additional validation. 2915 */ 2916 if (is_dir) { 2917 ASSERT(VFS_I(ip)->i_nlink >= 2); 2918 if (VFS_I(ip)->i_nlink != 2) { 2919 error = -ENOTEMPTY; 2920 goto out_trans_cancel; 2921 } 2922 if (!xfs_dir_isempty(ip)) { 2923 error = -ENOTEMPTY; 2924 goto out_trans_cancel; 2925 } 2926 2927 /* Drop the link from ip's "..". */ 2928 error = xfs_droplink(tp, dp); 2929 if (error) 2930 goto out_trans_cancel; 2931 2932 /* Drop the "." link from ip to self. */ 2933 error = xfs_droplink(tp, ip); 2934 if (error) 2935 goto out_trans_cancel; 2936 } else { 2937 /* 2938 * When removing a non-directory we need to log the parent 2939 * inode here. For a directory this is done implicitly 2940 * by the xfs_droplink call for the ".." entry. 2941 */ 2942 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2943 } 2944 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2945 2946 /* Drop the link from dp to ip. */ 2947 error = xfs_droplink(tp, ip); 2948 if (error) 2949 goto out_trans_cancel; 2950 2951 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2952 if (error) { 2953 ASSERT(error != -ENOENT); 2954 goto out_trans_cancel; 2955 } 2956 2957 /* 2958 * If this is a synchronous mount, make sure that the 2959 * remove transaction goes to disk before returning to 2960 * the user. 2961 */ 2962 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2963 xfs_trans_set_sync(tp); 2964 2965 error = xfs_trans_commit(tp); 2966 if (error) 2967 goto std_return; 2968 2969 if (is_dir && xfs_inode_is_filestream(ip)) 2970 xfs_filestream_deassociate(ip); 2971 2972 return 0; 2973 2974 out_trans_cancel: 2975 xfs_trans_cancel(tp); 2976 std_return: 2977 return error; 2978 } 2979 2980 /* 2981 * Enter all inodes for a rename transaction into a sorted array. 2982 */ 2983 #define __XFS_SORT_INODES 5 2984 STATIC void 2985 xfs_sort_for_rename( 2986 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2987 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2988 struct xfs_inode *ip1, /* in: inode of old entry */ 2989 struct xfs_inode *ip2, /* in: inode of new entry */ 2990 struct xfs_inode *wip, /* in: whiteout inode */ 2991 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2992 int *num_inodes) /* in/out: inodes in array */ 2993 { 2994 int i, j; 2995 2996 ASSERT(*num_inodes == __XFS_SORT_INODES); 2997 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2998 2999 /* 3000 * i_tab contains a list of pointers to inodes. We initialize 3001 * the table here & we'll sort it. We will then use it to 3002 * order the acquisition of the inode locks. 3003 * 3004 * Note that the table may contain duplicates. e.g., dp1 == dp2. 3005 */ 3006 i = 0; 3007 i_tab[i++] = dp1; 3008 i_tab[i++] = dp2; 3009 i_tab[i++] = ip1; 3010 if (ip2) 3011 i_tab[i++] = ip2; 3012 if (wip) 3013 i_tab[i++] = wip; 3014 *num_inodes = i; 3015 3016 /* 3017 * Sort the elements via bubble sort. (Remember, there are at 3018 * most 5 elements to sort, so this is adequate.) 3019 */ 3020 for (i = 0; i < *num_inodes; i++) { 3021 for (j = 1; j < *num_inodes; j++) { 3022 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3023 struct xfs_inode *temp = i_tab[j]; 3024 i_tab[j] = i_tab[j-1]; 3025 i_tab[j-1] = temp; 3026 } 3027 } 3028 } 3029 } 3030 3031 static int 3032 xfs_finish_rename( 3033 struct xfs_trans *tp) 3034 { 3035 /* 3036 * If this is a synchronous mount, make sure that the rename transaction 3037 * goes to disk before returning to the user. 3038 */ 3039 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3040 xfs_trans_set_sync(tp); 3041 3042 return xfs_trans_commit(tp); 3043 } 3044 3045 /* 3046 * xfs_cross_rename() 3047 * 3048 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3049 */ 3050 STATIC int 3051 xfs_cross_rename( 3052 struct xfs_trans *tp, 3053 struct xfs_inode *dp1, 3054 struct xfs_name *name1, 3055 struct xfs_inode *ip1, 3056 struct xfs_inode *dp2, 3057 struct xfs_name *name2, 3058 struct xfs_inode *ip2, 3059 int spaceres) 3060 { 3061 int error = 0; 3062 int ip1_flags = 0; 3063 int ip2_flags = 0; 3064 int dp2_flags = 0; 3065 3066 /* Swap inode number for dirent in first parent */ 3067 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3068 if (error) 3069 goto out_trans_abort; 3070 3071 /* Swap inode number for dirent in second parent */ 3072 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3073 if (error) 3074 goto out_trans_abort; 3075 3076 /* 3077 * If we're renaming one or more directories across different parents, 3078 * update the respective ".." entries (and link counts) to match the new 3079 * parents. 3080 */ 3081 if (dp1 != dp2) { 3082 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3083 3084 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3085 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3086 dp1->i_ino, spaceres); 3087 if (error) 3088 goto out_trans_abort; 3089 3090 /* transfer ip2 ".." reference to dp1 */ 3091 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3092 error = xfs_droplink(tp, dp2); 3093 if (error) 3094 goto out_trans_abort; 3095 xfs_bumplink(tp, dp1); 3096 } 3097 3098 /* 3099 * Although ip1 isn't changed here, userspace needs 3100 * to be warned about the change, so that applications 3101 * relying on it (like backup ones), will properly 3102 * notify the change 3103 */ 3104 ip1_flags |= XFS_ICHGTIME_CHG; 3105 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3106 } 3107 3108 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3109 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3110 dp2->i_ino, spaceres); 3111 if (error) 3112 goto out_trans_abort; 3113 3114 /* transfer ip1 ".." reference to dp2 */ 3115 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3116 error = xfs_droplink(tp, dp1); 3117 if (error) 3118 goto out_trans_abort; 3119 xfs_bumplink(tp, dp2); 3120 } 3121 3122 /* 3123 * Although ip2 isn't changed here, userspace needs 3124 * to be warned about the change, so that applications 3125 * relying on it (like backup ones), will properly 3126 * notify the change 3127 */ 3128 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3129 ip2_flags |= XFS_ICHGTIME_CHG; 3130 } 3131 } 3132 3133 if (ip1_flags) { 3134 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3135 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3136 } 3137 if (ip2_flags) { 3138 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3139 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3140 } 3141 if (dp2_flags) { 3142 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3143 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3144 } 3145 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3146 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3147 return xfs_finish_rename(tp); 3148 3149 out_trans_abort: 3150 xfs_trans_cancel(tp); 3151 return error; 3152 } 3153 3154 /* 3155 * xfs_rename_alloc_whiteout() 3156 * 3157 * Return a referenced, unlinked, unlocked inode that that can be used as a 3158 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3159 * crash between allocating the inode and linking it into the rename transaction 3160 * recovery will free the inode and we won't leak it. 3161 */ 3162 static int 3163 xfs_rename_alloc_whiteout( 3164 struct xfs_inode *dp, 3165 struct xfs_inode **wip) 3166 { 3167 struct xfs_inode *tmpfile; 3168 int error; 3169 3170 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3171 if (error) 3172 return error; 3173 3174 /* 3175 * Prepare the tmpfile inode as if it were created through the VFS. 3176 * Complete the inode setup and flag it as linkable. nlink is already 3177 * zero, so we can skip the drop_nlink. 3178 */ 3179 xfs_setup_iops(tmpfile); 3180 xfs_finish_inode_setup(tmpfile); 3181 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3182 3183 *wip = tmpfile; 3184 return 0; 3185 } 3186 3187 /* 3188 * xfs_rename 3189 */ 3190 int 3191 xfs_rename( 3192 struct xfs_inode *src_dp, 3193 struct xfs_name *src_name, 3194 struct xfs_inode *src_ip, 3195 struct xfs_inode *target_dp, 3196 struct xfs_name *target_name, 3197 struct xfs_inode *target_ip, 3198 unsigned int flags) 3199 { 3200 struct xfs_mount *mp = src_dp->i_mount; 3201 struct xfs_trans *tp; 3202 struct xfs_inode *wip = NULL; /* whiteout inode */ 3203 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3204 int num_inodes = __XFS_SORT_INODES; 3205 bool new_parent = (src_dp != target_dp); 3206 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3207 int spaceres; 3208 int error; 3209 3210 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3211 3212 if ((flags & RENAME_EXCHANGE) && !target_ip) 3213 return -EINVAL; 3214 3215 /* 3216 * If we are doing a whiteout operation, allocate the whiteout inode 3217 * we will be placing at the target and ensure the type is set 3218 * appropriately. 3219 */ 3220 if (flags & RENAME_WHITEOUT) { 3221 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3222 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3223 if (error) 3224 return error; 3225 3226 /* setup target dirent info as whiteout */ 3227 src_name->type = XFS_DIR3_FT_CHRDEV; 3228 } 3229 3230 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3231 inodes, &num_inodes); 3232 3233 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3234 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3235 if (error == -ENOSPC) { 3236 spaceres = 0; 3237 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3238 &tp); 3239 } 3240 if (error) 3241 goto out_release_wip; 3242 3243 /* 3244 * Attach the dquots to the inodes 3245 */ 3246 error = xfs_qm_vop_rename_dqattach(inodes); 3247 if (error) 3248 goto out_trans_cancel; 3249 3250 /* 3251 * Lock all the participating inodes. Depending upon whether 3252 * the target_name exists in the target directory, and 3253 * whether the target directory is the same as the source 3254 * directory, we can lock from 2 to 4 inodes. 3255 */ 3256 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3257 3258 /* 3259 * Join all the inodes to the transaction. From this point on, 3260 * we can rely on either trans_commit or trans_cancel to unlock 3261 * them. 3262 */ 3263 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3264 if (new_parent) 3265 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3266 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3267 if (target_ip) 3268 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3269 if (wip) 3270 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3271 3272 /* 3273 * If we are using project inheritance, we only allow renames 3274 * into our tree when the project IDs are the same; else the 3275 * tree quota mechanism would be circumvented. 3276 */ 3277 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3278 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3279 error = -EXDEV; 3280 goto out_trans_cancel; 3281 } 3282 3283 /* RENAME_EXCHANGE is unique from here on. */ 3284 if (flags & RENAME_EXCHANGE) 3285 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3286 target_dp, target_name, target_ip, 3287 spaceres); 3288 3289 /* 3290 * Set up the target. 3291 */ 3292 if (target_ip == NULL) { 3293 /* 3294 * If there's no space reservation, check the entry will 3295 * fit before actually inserting it. 3296 */ 3297 if (!spaceres) { 3298 error = xfs_dir_canenter(tp, target_dp, target_name); 3299 if (error) 3300 goto out_trans_cancel; 3301 } 3302 /* 3303 * If target does not exist and the rename crosses 3304 * directories, adjust the target directory link count 3305 * to account for the ".." reference from the new entry. 3306 */ 3307 error = xfs_dir_createname(tp, target_dp, target_name, 3308 src_ip->i_ino, spaceres); 3309 if (error) 3310 goto out_trans_cancel; 3311 3312 xfs_trans_ichgtime(tp, target_dp, 3313 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3314 3315 if (new_parent && src_is_directory) { 3316 xfs_bumplink(tp, target_dp); 3317 } 3318 } else { /* target_ip != NULL */ 3319 /* 3320 * If target exists and it's a directory, check that both 3321 * target and source are directories and that target can be 3322 * destroyed, or that neither is a directory. 3323 */ 3324 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3325 /* 3326 * Make sure target dir is empty. 3327 */ 3328 if (!(xfs_dir_isempty(target_ip)) || 3329 (VFS_I(target_ip)->i_nlink > 2)) { 3330 error = -EEXIST; 3331 goto out_trans_cancel; 3332 } 3333 } 3334 3335 /* 3336 * Link the source inode under the target name. 3337 * If the source inode is a directory and we are moving 3338 * it across directories, its ".." entry will be 3339 * inconsistent until we replace that down below. 3340 * 3341 * In case there is already an entry with the same 3342 * name at the destination directory, remove it first. 3343 */ 3344 error = xfs_dir_replace(tp, target_dp, target_name, 3345 src_ip->i_ino, spaceres); 3346 if (error) 3347 goto out_trans_cancel; 3348 3349 xfs_trans_ichgtime(tp, target_dp, 3350 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3351 3352 /* 3353 * Decrement the link count on the target since the target 3354 * dir no longer points to it. 3355 */ 3356 error = xfs_droplink(tp, target_ip); 3357 if (error) 3358 goto out_trans_cancel; 3359 3360 if (src_is_directory) { 3361 /* 3362 * Drop the link from the old "." entry. 3363 */ 3364 error = xfs_droplink(tp, target_ip); 3365 if (error) 3366 goto out_trans_cancel; 3367 } 3368 } /* target_ip != NULL */ 3369 3370 /* 3371 * Remove the source. 3372 */ 3373 if (new_parent && src_is_directory) { 3374 /* 3375 * Rewrite the ".." entry to point to the new 3376 * directory. 3377 */ 3378 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3379 target_dp->i_ino, spaceres); 3380 ASSERT(error != -EEXIST); 3381 if (error) 3382 goto out_trans_cancel; 3383 } 3384 3385 /* 3386 * We always want to hit the ctime on the source inode. 3387 * 3388 * This isn't strictly required by the standards since the source 3389 * inode isn't really being changed, but old unix file systems did 3390 * it and some incremental backup programs won't work without it. 3391 */ 3392 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3393 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3394 3395 /* 3396 * Adjust the link count on src_dp. This is necessary when 3397 * renaming a directory, either within one parent when 3398 * the target existed, or across two parent directories. 3399 */ 3400 if (src_is_directory && (new_parent || target_ip != NULL)) { 3401 3402 /* 3403 * Decrement link count on src_directory since the 3404 * entry that's moved no longer points to it. 3405 */ 3406 error = xfs_droplink(tp, src_dp); 3407 if (error) 3408 goto out_trans_cancel; 3409 } 3410 3411 /* 3412 * For whiteouts, we only need to update the source dirent with the 3413 * inode number of the whiteout inode rather than removing it 3414 * altogether. 3415 */ 3416 if (wip) { 3417 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3418 spaceres); 3419 } else 3420 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3421 spaceres); 3422 if (error) 3423 goto out_trans_cancel; 3424 3425 /* 3426 * For whiteouts, we need to bump the link count on the whiteout inode. 3427 * This means that failures all the way up to this point leave the inode 3428 * on the unlinked list and so cleanup is a simple matter of dropping 3429 * the remaining reference to it. If we fail here after bumping the link 3430 * count, we're shutting down the filesystem so we'll never see the 3431 * intermediate state on disk. 3432 */ 3433 if (wip) { 3434 ASSERT(VFS_I(wip)->i_nlink == 0); 3435 xfs_bumplink(tp, wip); 3436 error = xfs_iunlink_remove(tp, wip); 3437 if (error) 3438 goto out_trans_cancel; 3439 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3440 3441 /* 3442 * Now we have a real link, clear the "I'm a tmpfile" state 3443 * flag from the inode so it doesn't accidentally get misused in 3444 * future. 3445 */ 3446 VFS_I(wip)->i_state &= ~I_LINKABLE; 3447 } 3448 3449 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3450 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3451 if (new_parent) 3452 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3453 3454 error = xfs_finish_rename(tp); 3455 if (wip) 3456 xfs_irele(wip); 3457 return error; 3458 3459 out_trans_cancel: 3460 xfs_trans_cancel(tp); 3461 out_release_wip: 3462 if (wip) 3463 xfs_irele(wip); 3464 return error; 3465 } 3466 3467 STATIC int 3468 xfs_iflush_cluster( 3469 struct xfs_inode *ip, 3470 struct xfs_buf *bp) 3471 { 3472 struct xfs_mount *mp = ip->i_mount; 3473 struct xfs_perag *pag; 3474 unsigned long first_index, mask; 3475 unsigned long inodes_per_cluster; 3476 int cilist_size; 3477 struct xfs_inode **cilist; 3478 struct xfs_inode *cip; 3479 int nr_found; 3480 int clcount = 0; 3481 int i; 3482 3483 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3484 3485 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3486 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3487 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3488 if (!cilist) 3489 goto out_put; 3490 3491 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3492 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3493 rcu_read_lock(); 3494 /* really need a gang lookup range call here */ 3495 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3496 first_index, inodes_per_cluster); 3497 if (nr_found == 0) 3498 goto out_free; 3499 3500 for (i = 0; i < nr_found; i++) { 3501 cip = cilist[i]; 3502 if (cip == ip) 3503 continue; 3504 3505 /* 3506 * because this is an RCU protected lookup, we could find a 3507 * recently freed or even reallocated inode during the lookup. 3508 * We need to check under the i_flags_lock for a valid inode 3509 * here. Skip it if it is not valid or the wrong inode. 3510 */ 3511 spin_lock(&cip->i_flags_lock); 3512 if (!cip->i_ino || 3513 __xfs_iflags_test(cip, XFS_ISTALE)) { 3514 spin_unlock(&cip->i_flags_lock); 3515 continue; 3516 } 3517 3518 /* 3519 * Once we fall off the end of the cluster, no point checking 3520 * any more inodes in the list because they will also all be 3521 * outside the cluster. 3522 */ 3523 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3524 spin_unlock(&cip->i_flags_lock); 3525 break; 3526 } 3527 spin_unlock(&cip->i_flags_lock); 3528 3529 /* 3530 * Do an un-protected check to see if the inode is dirty and 3531 * is a candidate for flushing. These checks will be repeated 3532 * later after the appropriate locks are acquired. 3533 */ 3534 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3535 continue; 3536 3537 /* 3538 * Try to get locks. If any are unavailable or it is pinned, 3539 * then this inode cannot be flushed and is skipped. 3540 */ 3541 3542 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3543 continue; 3544 if (!xfs_iflock_nowait(cip)) { 3545 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3546 continue; 3547 } 3548 if (xfs_ipincount(cip)) { 3549 xfs_ifunlock(cip); 3550 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3551 continue; 3552 } 3553 3554 3555 /* 3556 * Check the inode number again, just to be certain we are not 3557 * racing with freeing in xfs_reclaim_inode(). See the comments 3558 * in that function for more information as to why the initial 3559 * check is not sufficient. 3560 */ 3561 if (!cip->i_ino) { 3562 xfs_ifunlock(cip); 3563 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3564 continue; 3565 } 3566 3567 /* 3568 * arriving here means that this inode can be flushed. First 3569 * re-check that it's dirty before flushing. 3570 */ 3571 if (!xfs_inode_clean(cip)) { 3572 int error; 3573 error = xfs_iflush_int(cip, bp); 3574 if (error) { 3575 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3576 goto cluster_corrupt_out; 3577 } 3578 clcount++; 3579 } else { 3580 xfs_ifunlock(cip); 3581 } 3582 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3583 } 3584 3585 if (clcount) { 3586 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3587 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3588 } 3589 3590 out_free: 3591 rcu_read_unlock(); 3592 kmem_free(cilist); 3593 out_put: 3594 xfs_perag_put(pag); 3595 return 0; 3596 3597 3598 cluster_corrupt_out: 3599 /* 3600 * Corruption detected in the clustering loop. Invalidate the 3601 * inode buffer and shut down the filesystem. 3602 */ 3603 rcu_read_unlock(); 3604 3605 /* 3606 * We'll always have an inode attached to the buffer for completion 3607 * process by the time we are called from xfs_iflush(). Hence we have 3608 * always need to do IO completion processing to abort the inodes 3609 * attached to the buffer. handle them just like the shutdown case in 3610 * xfs_buf_submit(). 3611 */ 3612 ASSERT(bp->b_iodone); 3613 bp->b_flags |= XBF_ASYNC; 3614 bp->b_flags &= ~XBF_DONE; 3615 xfs_buf_stale(bp); 3616 xfs_buf_ioerror(bp, -EIO); 3617 xfs_buf_ioend(bp); 3618 3619 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3620 3621 /* abort the corrupt inode, as it was not attached to the buffer */ 3622 xfs_iflush_abort(cip, false); 3623 kmem_free(cilist); 3624 xfs_perag_put(pag); 3625 return -EFSCORRUPTED; 3626 } 3627 3628 /* 3629 * Flush dirty inode metadata into the backing buffer. 3630 * 3631 * The caller must have the inode lock and the inode flush lock held. The 3632 * inode lock will still be held upon return to the caller, and the inode 3633 * flush lock will be released after the inode has reached the disk. 3634 * 3635 * The caller must write out the buffer returned in *bpp and release it. 3636 */ 3637 int 3638 xfs_iflush( 3639 struct xfs_inode *ip, 3640 struct xfs_buf **bpp) 3641 { 3642 struct xfs_mount *mp = ip->i_mount; 3643 struct xfs_buf *bp = NULL; 3644 struct xfs_dinode *dip; 3645 int error; 3646 3647 XFS_STATS_INC(mp, xs_iflush_count); 3648 3649 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3650 ASSERT(xfs_isiflocked(ip)); 3651 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3652 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3653 3654 *bpp = NULL; 3655 3656 xfs_iunpin_wait(ip); 3657 3658 /* 3659 * For stale inodes we cannot rely on the backing buffer remaining 3660 * stale in cache for the remaining life of the stale inode and so 3661 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3662 * inodes below. We have to check this after ensuring the inode is 3663 * unpinned so that it is safe to reclaim the stale inode after the 3664 * flush call. 3665 */ 3666 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3667 xfs_ifunlock(ip); 3668 return 0; 3669 } 3670 3671 /* 3672 * This may have been unpinned because the filesystem is shutting 3673 * down forcibly. If that's the case we must not write this inode 3674 * to disk, because the log record didn't make it to disk. 3675 * 3676 * We also have to remove the log item from the AIL in this case, 3677 * as we wait for an empty AIL as part of the unmount process. 3678 */ 3679 if (XFS_FORCED_SHUTDOWN(mp)) { 3680 error = -EIO; 3681 goto abort_out; 3682 } 3683 3684 /* 3685 * Get the buffer containing the on-disk inode. We are doing a try-lock 3686 * operation here, so we may get an EAGAIN error. In that case, we 3687 * simply want to return with the inode still dirty. 3688 * 3689 * If we get any other error, we effectively have a corruption situation 3690 * and we cannot flush the inode, so we treat it the same as failing 3691 * xfs_iflush_int(). 3692 */ 3693 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3694 0); 3695 if (error == -EAGAIN) { 3696 xfs_ifunlock(ip); 3697 return error; 3698 } 3699 if (error) 3700 goto corrupt_out; 3701 3702 /* 3703 * First flush out the inode that xfs_iflush was called with. 3704 */ 3705 error = xfs_iflush_int(ip, bp); 3706 if (error) 3707 goto corrupt_out; 3708 3709 /* 3710 * If the buffer is pinned then push on the log now so we won't 3711 * get stuck waiting in the write for too long. 3712 */ 3713 if (xfs_buf_ispinned(bp)) 3714 xfs_log_force(mp, 0); 3715 3716 /* 3717 * inode clustering: try to gather other inodes into this write 3718 * 3719 * Note: Any error during clustering will result in the filesystem 3720 * being shut down and completion callbacks run on the cluster buffer. 3721 * As we have already flushed and attached this inode to the buffer, 3722 * it has already been aborted and released by xfs_iflush_cluster() and 3723 * so we have no further error handling to do here. 3724 */ 3725 error = xfs_iflush_cluster(ip, bp); 3726 if (error) 3727 return error; 3728 3729 *bpp = bp; 3730 return 0; 3731 3732 corrupt_out: 3733 if (bp) 3734 xfs_buf_relse(bp); 3735 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3736 abort_out: 3737 /* abort the corrupt inode, as it was not attached to the buffer */ 3738 xfs_iflush_abort(ip, false); 3739 return error; 3740 } 3741 3742 /* 3743 * If there are inline format data / attr forks attached to this inode, 3744 * make sure they're not corrupt. 3745 */ 3746 bool 3747 xfs_inode_verify_forks( 3748 struct xfs_inode *ip) 3749 { 3750 struct xfs_ifork *ifp; 3751 xfs_failaddr_t fa; 3752 3753 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3754 if (fa) { 3755 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3756 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3757 ifp->if_u1.if_data, ifp->if_bytes, fa); 3758 return false; 3759 } 3760 3761 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3762 if (fa) { 3763 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3764 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3765 ifp ? ifp->if_u1.if_data : NULL, 3766 ifp ? ifp->if_bytes : 0, fa); 3767 return false; 3768 } 3769 return true; 3770 } 3771 3772 STATIC int 3773 xfs_iflush_int( 3774 struct xfs_inode *ip, 3775 struct xfs_buf *bp) 3776 { 3777 struct xfs_inode_log_item *iip = ip->i_itemp; 3778 struct xfs_dinode *dip; 3779 struct xfs_mount *mp = ip->i_mount; 3780 3781 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3782 ASSERT(xfs_isiflocked(ip)); 3783 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3784 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3785 ASSERT(iip != NULL && iip->ili_fields != 0); 3786 ASSERT(ip->i_d.di_version > 1); 3787 3788 /* set *dip = inode's place in the buffer */ 3789 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3790 3791 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3792 mp, XFS_ERRTAG_IFLUSH_1)) { 3793 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3794 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3795 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3796 goto corrupt_out; 3797 } 3798 if (S_ISREG(VFS_I(ip)->i_mode)) { 3799 if (XFS_TEST_ERROR( 3800 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3801 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3802 mp, XFS_ERRTAG_IFLUSH_3)) { 3803 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3804 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3805 __func__, ip->i_ino, ip); 3806 goto corrupt_out; 3807 } 3808 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3809 if (XFS_TEST_ERROR( 3810 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3811 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3812 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3813 mp, XFS_ERRTAG_IFLUSH_4)) { 3814 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3815 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3816 __func__, ip->i_ino, ip); 3817 goto corrupt_out; 3818 } 3819 } 3820 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3821 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3822 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3823 "%s: detected corrupt incore inode %Lu, " 3824 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3825 __func__, ip->i_ino, 3826 ip->i_d.di_nextents + ip->i_d.di_anextents, 3827 ip->i_d.di_nblocks, ip); 3828 goto corrupt_out; 3829 } 3830 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3831 mp, XFS_ERRTAG_IFLUSH_6)) { 3832 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3833 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3834 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3835 goto corrupt_out; 3836 } 3837 3838 /* 3839 * Inode item log recovery for v2 inodes are dependent on the 3840 * di_flushiter count for correct sequencing. We bump the flush 3841 * iteration count so we can detect flushes which postdate a log record 3842 * during recovery. This is redundant as we now log every change and 3843 * hence this can't happen but we need to still do it to ensure 3844 * backwards compatibility with old kernels that predate logging all 3845 * inode changes. 3846 */ 3847 if (ip->i_d.di_version < 3) 3848 ip->i_d.di_flushiter++; 3849 3850 /* Check the inline fork data before we write out. */ 3851 if (!xfs_inode_verify_forks(ip)) 3852 goto corrupt_out; 3853 3854 /* 3855 * Copy the dirty parts of the inode into the on-disk inode. We always 3856 * copy out the core of the inode, because if the inode is dirty at all 3857 * the core must be. 3858 */ 3859 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3860 3861 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3862 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3863 ip->i_d.di_flushiter = 0; 3864 3865 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3866 if (XFS_IFORK_Q(ip)) 3867 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3868 xfs_inobp_check(mp, bp); 3869 3870 /* 3871 * We've recorded everything logged in the inode, so we'd like to clear 3872 * the ili_fields bits so we don't log and flush things unnecessarily. 3873 * However, we can't stop logging all this information until the data 3874 * we've copied into the disk buffer is written to disk. If we did we 3875 * might overwrite the copy of the inode in the log with all the data 3876 * after re-logging only part of it, and in the face of a crash we 3877 * wouldn't have all the data we need to recover. 3878 * 3879 * What we do is move the bits to the ili_last_fields field. When 3880 * logging the inode, these bits are moved back to the ili_fields field. 3881 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3882 * know that the information those bits represent is permanently on 3883 * disk. As long as the flush completes before the inode is logged 3884 * again, then both ili_fields and ili_last_fields will be cleared. 3885 * 3886 * We can play with the ili_fields bits here, because the inode lock 3887 * must be held exclusively in order to set bits there and the flush 3888 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3889 * done routine can tell whether or not to look in the AIL. Also, store 3890 * the current LSN of the inode so that we can tell whether the item has 3891 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3892 * need the AIL lock, because it is a 64 bit value that cannot be read 3893 * atomically. 3894 */ 3895 iip->ili_last_fields = iip->ili_fields; 3896 iip->ili_fields = 0; 3897 iip->ili_fsync_fields = 0; 3898 iip->ili_logged = 1; 3899 3900 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3901 &iip->ili_item.li_lsn); 3902 3903 /* 3904 * Attach the function xfs_iflush_done to the inode's 3905 * buffer. This will remove the inode from the AIL 3906 * and unlock the inode's flush lock when the inode is 3907 * completely written to disk. 3908 */ 3909 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3910 3911 /* generate the checksum. */ 3912 xfs_dinode_calc_crc(mp, dip); 3913 3914 ASSERT(!list_empty(&bp->b_li_list)); 3915 ASSERT(bp->b_iodone != NULL); 3916 return 0; 3917 3918 corrupt_out: 3919 return -EFSCORRUPTED; 3920 } 3921 3922 /* Release an inode. */ 3923 void 3924 xfs_irele( 3925 struct xfs_inode *ip) 3926 { 3927 trace_xfs_irele(ip, _RET_IP_); 3928 iput(VFS_I(ip)); 3929 } 3930