1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_imap.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_dir2.h" 30 #include "xfs_dmapi.h" 31 #include "xfs_mount.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dir2_sf.h" 36 #include "xfs_attr_sf.h" 37 #include "xfs_dinode.h" 38 #include "xfs_inode.h" 39 #include "xfs_buf_item.h" 40 #include "xfs_inode_item.h" 41 #include "xfs_btree.h" 42 #include "xfs_alloc.h" 43 #include "xfs_ialloc.h" 44 #include "xfs_bmap.h" 45 #include "xfs_rw.h" 46 #include "xfs_error.h" 47 #include "xfs_utils.h" 48 #include "xfs_dir2_trace.h" 49 #include "xfs_quota.h" 50 #include "xfs_acl.h" 51 #include "xfs_filestream.h" 52 53 #include <linux/log2.h> 54 55 kmem_zone_t *xfs_ifork_zone; 56 kmem_zone_t *xfs_inode_zone; 57 kmem_zone_t *xfs_chashlist_zone; 58 59 /* 60 * Used in xfs_itruncate(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 69 70 71 #ifdef DEBUG 72 /* 73 * Make sure that the extents in the given memory buffer 74 * are valid. 75 */ 76 STATIC void 77 xfs_validate_extents( 78 xfs_ifork_t *ifp, 79 int nrecs, 80 int disk, 81 xfs_exntfmt_t fmt) 82 { 83 xfs_bmbt_rec_t *ep; 84 xfs_bmbt_irec_t irec; 85 xfs_bmbt_rec_t rec; 86 int i; 87 88 for (i = 0; i < nrecs; i++) { 89 ep = xfs_iext_get_ext(ifp, i); 90 rec.l0 = get_unaligned((__uint64_t*)&ep->l0); 91 rec.l1 = get_unaligned((__uint64_t*)&ep->l1); 92 if (disk) 93 xfs_bmbt_disk_get_all(&rec, &irec); 94 else 95 xfs_bmbt_get_all(&rec, &irec); 96 if (fmt == XFS_EXTFMT_NOSTATE) 97 ASSERT(irec.br_state == XFS_EXT_NORM); 98 } 99 } 100 #else /* DEBUG */ 101 #define xfs_validate_extents(ifp, nrecs, disk, fmt) 102 #endif /* DEBUG */ 103 104 /* 105 * Check that none of the inode's in the buffer have a next 106 * unlinked field of 0. 107 */ 108 #if defined(DEBUG) 109 void 110 xfs_inobp_check( 111 xfs_mount_t *mp, 112 xfs_buf_t *bp) 113 { 114 int i; 115 int j; 116 xfs_dinode_t *dip; 117 118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 119 120 for (i = 0; i < j; i++) { 121 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 122 i * mp->m_sb.sb_inodesize); 123 if (!dip->di_next_unlinked) { 124 xfs_fs_cmn_err(CE_ALERT, mp, 125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 126 bp); 127 ASSERT(dip->di_next_unlinked); 128 } 129 } 130 } 131 #endif 132 133 /* 134 * This routine is called to map an inode number within a file 135 * system to the buffer containing the on-disk version of the 136 * inode. It returns a pointer to the buffer containing the 137 * on-disk inode in the bpp parameter, and in the dip parameter 138 * it returns a pointer to the on-disk inode within that buffer. 139 * 140 * If a non-zero error is returned, then the contents of bpp and 141 * dipp are undefined. 142 * 143 * Use xfs_imap() to determine the size and location of the 144 * buffer to read from disk. 145 */ 146 STATIC int 147 xfs_inotobp( 148 xfs_mount_t *mp, 149 xfs_trans_t *tp, 150 xfs_ino_t ino, 151 xfs_dinode_t **dipp, 152 xfs_buf_t **bpp, 153 int *offset) 154 { 155 int di_ok; 156 xfs_imap_t imap; 157 xfs_buf_t *bp; 158 int error; 159 xfs_dinode_t *dip; 160 161 /* 162 * Call the space management code to find the location of the 163 * inode on disk. 164 */ 165 imap.im_blkno = 0; 166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); 167 if (error != 0) { 168 cmn_err(CE_WARN, 169 "xfs_inotobp: xfs_imap() returned an " 170 "error %d on %s. Returning error.", error, mp->m_fsname); 171 return error; 172 } 173 174 /* 175 * If the inode number maps to a block outside the bounds of the 176 * file system then return NULL rather than calling read_buf 177 * and panicing when we get an error from the driver. 178 */ 179 if ((imap.im_blkno + imap.im_len) > 180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 181 cmn_err(CE_WARN, 182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " 183 "of the file system %s. Returning EINVAL.", 184 (unsigned long long)imap.im_blkno, 185 imap.im_len, mp->m_fsname); 186 return XFS_ERROR(EINVAL); 187 } 188 189 /* 190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 191 * default to just a read_buf() call. 192 */ 193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 194 (int)imap.im_len, XFS_BUF_LOCK, &bp); 195 196 if (error) { 197 cmn_err(CE_WARN, 198 "xfs_inotobp: xfs_trans_read_buf() returned an " 199 "error %d on %s. Returning error.", error, mp->m_fsname); 200 return error; 201 } 202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); 203 di_ok = 204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, 207 XFS_RANDOM_ITOBP_INOTOBP))) { 208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); 209 xfs_trans_brelse(tp, bp); 210 cmn_err(CE_WARN, 211 "xfs_inotobp: XFS_TEST_ERROR() returned an " 212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); 213 return XFS_ERROR(EFSCORRUPTED); 214 } 215 216 xfs_inobp_check(mp, bp); 217 218 /* 219 * Set *dipp to point to the on-disk inode in the buffer. 220 */ 221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 222 *bpp = bp; 223 *offset = imap.im_boffset; 224 return 0; 225 } 226 227 228 /* 229 * This routine is called to map an inode to the buffer containing 230 * the on-disk version of the inode. It returns a pointer to the 231 * buffer containing the on-disk inode in the bpp parameter, and in 232 * the dip parameter it returns a pointer to the on-disk inode within 233 * that buffer. 234 * 235 * If a non-zero error is returned, then the contents of bpp and 236 * dipp are undefined. 237 * 238 * If the inode is new and has not yet been initialized, use xfs_imap() 239 * to determine the size and location of the buffer to read from disk. 240 * If the inode has already been mapped to its buffer and read in once, 241 * then use the mapping information stored in the inode rather than 242 * calling xfs_imap(). This allows us to avoid the overhead of looking 243 * at the inode btree for small block file systems (see xfs_dilocate()). 244 * We can tell whether the inode has been mapped in before by comparing 245 * its disk block address to 0. Only uninitialized inodes will have 246 * 0 for the disk block address. 247 */ 248 int 249 xfs_itobp( 250 xfs_mount_t *mp, 251 xfs_trans_t *tp, 252 xfs_inode_t *ip, 253 xfs_dinode_t **dipp, 254 xfs_buf_t **bpp, 255 xfs_daddr_t bno, 256 uint imap_flags) 257 { 258 xfs_imap_t imap; 259 xfs_buf_t *bp; 260 int error; 261 int i; 262 int ni; 263 264 if (ip->i_blkno == (xfs_daddr_t)0) { 265 /* 266 * Call the space management code to find the location of the 267 * inode on disk. 268 */ 269 imap.im_blkno = bno; 270 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap, 271 XFS_IMAP_LOOKUP | imap_flags))) 272 return error; 273 274 /* 275 * If the inode number maps to a block outside the bounds 276 * of the file system then return NULL rather than calling 277 * read_buf and panicing when we get an error from the 278 * driver. 279 */ 280 if ((imap.im_blkno + imap.im_len) > 281 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { 282 #ifdef DEBUG 283 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 284 "(imap.im_blkno (0x%llx) " 285 "+ imap.im_len (0x%llx)) > " 286 " XFS_FSB_TO_BB(mp, " 287 "mp->m_sb.sb_dblocks) (0x%llx)", 288 (unsigned long long) imap.im_blkno, 289 (unsigned long long) imap.im_len, 290 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); 291 #endif /* DEBUG */ 292 return XFS_ERROR(EINVAL); 293 } 294 295 /* 296 * Fill in the fields in the inode that will be used to 297 * map the inode to its buffer from now on. 298 */ 299 ip->i_blkno = imap.im_blkno; 300 ip->i_len = imap.im_len; 301 ip->i_boffset = imap.im_boffset; 302 } else { 303 /* 304 * We've already mapped the inode once, so just use the 305 * mapping that we saved the first time. 306 */ 307 imap.im_blkno = ip->i_blkno; 308 imap.im_len = ip->i_len; 309 imap.im_boffset = ip->i_boffset; 310 } 311 ASSERT(bno == 0 || bno == imap.im_blkno); 312 313 /* 314 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will 315 * default to just a read_buf() call. 316 */ 317 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, 318 (int)imap.im_len, XFS_BUF_LOCK, &bp); 319 if (error) { 320 #ifdef DEBUG 321 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " 322 "xfs_trans_read_buf() returned error %d, " 323 "imap.im_blkno 0x%llx, imap.im_len 0x%llx", 324 error, (unsigned long long) imap.im_blkno, 325 (unsigned long long) imap.im_len); 326 #endif /* DEBUG */ 327 return error; 328 } 329 330 /* 331 * Validate the magic number and version of every inode in the buffer 332 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 333 * No validation is done here in userspace (xfs_repair). 334 */ 335 #if !defined(__KERNEL__) 336 ni = 0; 337 #elif defined(DEBUG) 338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; 339 #else /* usual case */ 340 ni = 1; 341 #endif 342 343 for (i = 0; i < ni; i++) { 344 int di_ok; 345 xfs_dinode_t *dip; 346 347 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 348 (i << mp->m_sb.sb_inodelog)); 349 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && 350 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); 351 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 352 XFS_ERRTAG_ITOBP_INOTOBP, 353 XFS_RANDOM_ITOBP_INOTOBP))) { 354 if (imap_flags & XFS_IMAP_BULKSTAT) { 355 xfs_trans_brelse(tp, bp); 356 return XFS_ERROR(EINVAL); 357 } 358 #ifdef DEBUG 359 cmn_err(CE_ALERT, 360 "Device %s - bad inode magic/vsn " 361 "daddr %lld #%d (magic=%x)", 362 XFS_BUFTARG_NAME(mp->m_ddev_targp), 363 (unsigned long long)imap.im_blkno, i, 364 INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); 365 #endif 366 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, 367 mp, dip); 368 xfs_trans_brelse(tp, bp); 369 return XFS_ERROR(EFSCORRUPTED); 370 } 371 } 372 373 xfs_inobp_check(mp, bp); 374 375 /* 376 * Mark the buffer as an inode buffer now that it looks good 377 */ 378 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 379 380 /* 381 * Set *dipp to point to the on-disk inode in the buffer. 382 */ 383 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 384 *bpp = bp; 385 return 0; 386 } 387 388 /* 389 * Move inode type and inode format specific information from the 390 * on-disk inode to the in-core inode. For fifos, devs, and sockets 391 * this means set if_rdev to the proper value. For files, directories, 392 * and symlinks this means to bring in the in-line data or extent 393 * pointers. For a file in B-tree format, only the root is immediately 394 * brought in-core. The rest will be in-lined in if_extents when it 395 * is first referenced (see xfs_iread_extents()). 396 */ 397 STATIC int 398 xfs_iformat( 399 xfs_inode_t *ip, 400 xfs_dinode_t *dip) 401 { 402 xfs_attr_shortform_t *atp; 403 int size; 404 int error; 405 xfs_fsize_t di_size; 406 ip->i_df.if_ext_max = 407 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 408 error = 0; 409 410 if (unlikely( 411 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + 412 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > 413 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { 414 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 415 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 416 (unsigned long long)ip->i_ino, 417 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) 418 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), 419 (unsigned long long) 420 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); 421 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 422 ip->i_mount, dip); 423 return XFS_ERROR(EFSCORRUPTED); 424 } 425 426 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { 427 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 428 "corrupt dinode %Lu, forkoff = 0x%x.", 429 (unsigned long long)ip->i_ino, 430 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); 431 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 432 ip->i_mount, dip); 433 return XFS_ERROR(EFSCORRUPTED); 434 } 435 436 switch (ip->i_d.di_mode & S_IFMT) { 437 case S_IFIFO: 438 case S_IFCHR: 439 case S_IFBLK: 440 case S_IFSOCK: 441 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { 442 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 443 ip->i_mount, dip); 444 return XFS_ERROR(EFSCORRUPTED); 445 } 446 ip->i_d.di_size = 0; 447 ip->i_size = 0; 448 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); 449 break; 450 451 case S_IFREG: 452 case S_IFLNK: 453 case S_IFDIR: 454 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { 455 case XFS_DINODE_FMT_LOCAL: 456 /* 457 * no local regular files yet 458 */ 459 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { 460 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 461 "corrupt inode %Lu " 462 "(local format for regular file).", 463 (unsigned long long) ip->i_ino); 464 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 465 XFS_ERRLEVEL_LOW, 466 ip->i_mount, dip); 467 return XFS_ERROR(EFSCORRUPTED); 468 } 469 470 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); 471 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 472 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 473 "corrupt inode %Lu " 474 "(bad size %Ld for local inode).", 475 (unsigned long long) ip->i_ino, 476 (long long) di_size); 477 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 478 XFS_ERRLEVEL_LOW, 479 ip->i_mount, dip); 480 return XFS_ERROR(EFSCORRUPTED); 481 } 482 483 size = (int)di_size; 484 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 485 break; 486 case XFS_DINODE_FMT_EXTENTS: 487 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 488 break; 489 case XFS_DINODE_FMT_BTREE: 490 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 491 break; 492 default: 493 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 494 ip->i_mount); 495 return XFS_ERROR(EFSCORRUPTED); 496 } 497 break; 498 499 default: 500 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 501 return XFS_ERROR(EFSCORRUPTED); 502 } 503 if (error) { 504 return error; 505 } 506 if (!XFS_DFORK_Q(dip)) 507 return 0; 508 ASSERT(ip->i_afp == NULL); 509 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 510 ip->i_afp->if_ext_max = 511 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 512 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { 513 case XFS_DINODE_FMT_LOCAL: 514 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 515 size = be16_to_cpu(atp->hdr.totsize); 516 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 517 break; 518 case XFS_DINODE_FMT_EXTENTS: 519 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 520 break; 521 case XFS_DINODE_FMT_BTREE: 522 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 523 break; 524 default: 525 error = XFS_ERROR(EFSCORRUPTED); 526 break; 527 } 528 if (error) { 529 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 530 ip->i_afp = NULL; 531 xfs_idestroy_fork(ip, XFS_DATA_FORK); 532 } 533 return error; 534 } 535 536 /* 537 * The file is in-lined in the on-disk inode. 538 * If it fits into if_inline_data, then copy 539 * it there, otherwise allocate a buffer for it 540 * and copy the data there. Either way, set 541 * if_data to point at the data. 542 * If we allocate a buffer for the data, make 543 * sure that its size is a multiple of 4 and 544 * record the real size in i_real_bytes. 545 */ 546 STATIC int 547 xfs_iformat_local( 548 xfs_inode_t *ip, 549 xfs_dinode_t *dip, 550 int whichfork, 551 int size) 552 { 553 xfs_ifork_t *ifp; 554 int real_size; 555 556 /* 557 * If the size is unreasonable, then something 558 * is wrong and we just bail out rather than crash in 559 * kmem_alloc() or memcpy() below. 560 */ 561 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 562 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 563 "corrupt inode %Lu " 564 "(bad size %d for local fork, size = %d).", 565 (unsigned long long) ip->i_ino, size, 566 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 567 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 568 ip->i_mount, dip); 569 return XFS_ERROR(EFSCORRUPTED); 570 } 571 ifp = XFS_IFORK_PTR(ip, whichfork); 572 real_size = 0; 573 if (size == 0) 574 ifp->if_u1.if_data = NULL; 575 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 576 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 577 else { 578 real_size = roundup(size, 4); 579 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 580 } 581 ifp->if_bytes = size; 582 ifp->if_real_bytes = real_size; 583 if (size) 584 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 585 ifp->if_flags &= ~XFS_IFEXTENTS; 586 ifp->if_flags |= XFS_IFINLINE; 587 return 0; 588 } 589 590 /* 591 * The file consists of a set of extents all 592 * of which fit into the on-disk inode. 593 * If there are few enough extents to fit into 594 * the if_inline_ext, then copy them there. 595 * Otherwise allocate a buffer for them and copy 596 * them into it. Either way, set if_extents 597 * to point at the extents. 598 */ 599 STATIC int 600 xfs_iformat_extents( 601 xfs_inode_t *ip, 602 xfs_dinode_t *dip, 603 int whichfork) 604 { 605 xfs_bmbt_rec_t *ep, *dp; 606 xfs_ifork_t *ifp; 607 int nex; 608 int size; 609 int i; 610 611 ifp = XFS_IFORK_PTR(ip, whichfork); 612 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 613 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 614 615 /* 616 * If the number of extents is unreasonable, then something 617 * is wrong and we just bail out rather than crash in 618 * kmem_alloc() or memcpy() below. 619 */ 620 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 622 "corrupt inode %Lu ((a)extents = %d).", 623 (unsigned long long) ip->i_ino, nex); 624 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 625 ip->i_mount, dip); 626 return XFS_ERROR(EFSCORRUPTED); 627 } 628 629 ifp->if_real_bytes = 0; 630 if (nex == 0) 631 ifp->if_u1.if_extents = NULL; 632 else if (nex <= XFS_INLINE_EXTS) 633 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 634 else 635 xfs_iext_add(ifp, 0, nex); 636 637 ifp->if_bytes = size; 638 if (size) { 639 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 640 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip)); 641 for (i = 0; i < nex; i++, dp++) { 642 ep = xfs_iext_get_ext(ifp, i); 643 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), 644 ARCH_CONVERT); 645 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), 646 ARCH_CONVERT); 647 } 648 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 649 if (whichfork != XFS_DATA_FORK || 650 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 651 if (unlikely(xfs_check_nostate_extents( 652 ifp, 0, nex))) { 653 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 654 XFS_ERRLEVEL_LOW, 655 ip->i_mount); 656 return XFS_ERROR(EFSCORRUPTED); 657 } 658 } 659 ifp->if_flags |= XFS_IFEXTENTS; 660 return 0; 661 } 662 663 /* 664 * The file has too many extents to fit into 665 * the inode, so they are in B-tree format. 666 * Allocate a buffer for the root of the B-tree 667 * and copy the root into it. The i_extents 668 * field will remain NULL until all of the 669 * extents are read in (when they are needed). 670 */ 671 STATIC int 672 xfs_iformat_btree( 673 xfs_inode_t *ip, 674 xfs_dinode_t *dip, 675 int whichfork) 676 { 677 xfs_bmdr_block_t *dfp; 678 xfs_ifork_t *ifp; 679 /* REFERENCED */ 680 int nrecs; 681 int size; 682 683 ifp = XFS_IFORK_PTR(ip, whichfork); 684 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 685 size = XFS_BMAP_BROOT_SPACE(dfp); 686 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); 687 688 /* 689 * blow out if -- fork has less extents than can fit in 690 * fork (fork shouldn't be a btree format), root btree 691 * block has more records than can fit into the fork, 692 * or the number of extents is greater than the number of 693 * blocks. 694 */ 695 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 696 || XFS_BMDR_SPACE_CALC(nrecs) > 697 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 698 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 699 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 700 "corrupt inode %Lu (btree).", 701 (unsigned long long) ip->i_ino); 702 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 703 ip->i_mount); 704 return XFS_ERROR(EFSCORRUPTED); 705 } 706 707 ifp->if_broot_bytes = size; 708 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 709 ASSERT(ifp->if_broot != NULL); 710 /* 711 * Copy and convert from the on-disk structure 712 * to the in-memory structure. 713 */ 714 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 715 ifp->if_broot, size); 716 ifp->if_flags &= ~XFS_IFEXTENTS; 717 ifp->if_flags |= XFS_IFBROOT; 718 719 return 0; 720 } 721 722 /* 723 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk 724 * and native format 725 * 726 * buf = on-disk representation 727 * dip = native representation 728 * dir = direction - +ve -> disk to native 729 * -ve -> native to disk 730 */ 731 void 732 xfs_xlate_dinode_core( 733 xfs_caddr_t buf, 734 xfs_dinode_core_t *dip, 735 int dir) 736 { 737 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; 738 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; 739 xfs_arch_t arch = ARCH_CONVERT; 740 741 ASSERT(dir); 742 743 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); 744 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); 745 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); 746 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); 747 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); 748 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); 749 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); 750 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); 751 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); 752 753 if (dir > 0) { 754 memcpy(mem_core->di_pad, buf_core->di_pad, 755 sizeof(buf_core->di_pad)); 756 } else { 757 memcpy(buf_core->di_pad, mem_core->di_pad, 758 sizeof(buf_core->di_pad)); 759 } 760 761 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); 762 763 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, 764 dir, arch); 765 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, 766 dir, arch); 767 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, 768 dir, arch); 769 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, 770 dir, arch); 771 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, 772 dir, arch); 773 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, 774 dir, arch); 775 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); 776 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); 777 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); 778 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); 779 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); 780 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); 781 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); 782 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); 783 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); 784 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); 785 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); 786 } 787 788 STATIC uint 789 _xfs_dic2xflags( 790 __uint16_t di_flags) 791 { 792 uint flags = 0; 793 794 if (di_flags & XFS_DIFLAG_ANY) { 795 if (di_flags & XFS_DIFLAG_REALTIME) 796 flags |= XFS_XFLAG_REALTIME; 797 if (di_flags & XFS_DIFLAG_PREALLOC) 798 flags |= XFS_XFLAG_PREALLOC; 799 if (di_flags & XFS_DIFLAG_IMMUTABLE) 800 flags |= XFS_XFLAG_IMMUTABLE; 801 if (di_flags & XFS_DIFLAG_APPEND) 802 flags |= XFS_XFLAG_APPEND; 803 if (di_flags & XFS_DIFLAG_SYNC) 804 flags |= XFS_XFLAG_SYNC; 805 if (di_flags & XFS_DIFLAG_NOATIME) 806 flags |= XFS_XFLAG_NOATIME; 807 if (di_flags & XFS_DIFLAG_NODUMP) 808 flags |= XFS_XFLAG_NODUMP; 809 if (di_flags & XFS_DIFLAG_RTINHERIT) 810 flags |= XFS_XFLAG_RTINHERIT; 811 if (di_flags & XFS_DIFLAG_PROJINHERIT) 812 flags |= XFS_XFLAG_PROJINHERIT; 813 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 814 flags |= XFS_XFLAG_NOSYMLINKS; 815 if (di_flags & XFS_DIFLAG_EXTSIZE) 816 flags |= XFS_XFLAG_EXTSIZE; 817 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 818 flags |= XFS_XFLAG_EXTSZINHERIT; 819 if (di_flags & XFS_DIFLAG_NODEFRAG) 820 flags |= XFS_XFLAG_NODEFRAG; 821 if (di_flags & XFS_DIFLAG_FILESTREAM) 822 flags |= XFS_XFLAG_FILESTREAM; 823 } 824 825 return flags; 826 } 827 828 uint 829 xfs_ip2xflags( 830 xfs_inode_t *ip) 831 { 832 xfs_dinode_core_t *dic = &ip->i_d; 833 834 return _xfs_dic2xflags(dic->di_flags) | 835 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); 836 } 837 838 uint 839 xfs_dic2xflags( 840 xfs_dinode_core_t *dic) 841 { 842 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) | 843 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); 844 } 845 846 /* 847 * Given a mount structure and an inode number, return a pointer 848 * to a newly allocated in-core inode corresponding to the given 849 * inode number. 850 * 851 * Initialize the inode's attributes and extent pointers if it 852 * already has them (it will not if the inode has no links). 853 */ 854 int 855 xfs_iread( 856 xfs_mount_t *mp, 857 xfs_trans_t *tp, 858 xfs_ino_t ino, 859 xfs_inode_t **ipp, 860 xfs_daddr_t bno, 861 uint imap_flags) 862 { 863 xfs_buf_t *bp; 864 xfs_dinode_t *dip; 865 xfs_inode_t *ip; 866 int error; 867 868 ASSERT(xfs_inode_zone != NULL); 869 870 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); 871 ip->i_ino = ino; 872 ip->i_mount = mp; 873 spin_lock_init(&ip->i_flags_lock); 874 875 /* 876 * Get pointer's to the on-disk inode and the buffer containing it. 877 * If the inode number refers to a block outside the file system 878 * then xfs_itobp() will return NULL. In this case we should 879 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will 880 * know that this is a new incore inode. 881 */ 882 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags); 883 if (error) { 884 kmem_zone_free(xfs_inode_zone, ip); 885 return error; 886 } 887 888 /* 889 * Initialize inode's trace buffers. 890 * Do this before xfs_iformat in case it adds entries. 891 */ 892 #ifdef XFS_BMAP_TRACE 893 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); 894 #endif 895 #ifdef XFS_BMBT_TRACE 896 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); 897 #endif 898 #ifdef XFS_RW_TRACE 899 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); 900 #endif 901 #ifdef XFS_ILOCK_TRACE 902 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); 903 #endif 904 #ifdef XFS_DIR2_TRACE 905 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); 906 #endif 907 908 /* 909 * If we got something that isn't an inode it means someone 910 * (nfs or dmi) has a stale handle. 911 */ 912 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { 913 kmem_zone_free(xfs_inode_zone, ip); 914 xfs_trans_brelse(tp, bp); 915 #ifdef DEBUG 916 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 917 "dip->di_core.di_magic (0x%x) != " 918 "XFS_DINODE_MAGIC (0x%x)", 919 INT_GET(dip->di_core.di_magic, ARCH_CONVERT), 920 XFS_DINODE_MAGIC); 921 #endif /* DEBUG */ 922 return XFS_ERROR(EINVAL); 923 } 924 925 /* 926 * If the on-disk inode is already linked to a directory 927 * entry, copy all of the inode into the in-core inode. 928 * xfs_iformat() handles copying in the inode format 929 * specific information. 930 * Otherwise, just get the truly permanent information. 931 */ 932 if (dip->di_core.di_mode) { 933 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 934 &(ip->i_d), 1); 935 error = xfs_iformat(ip, dip); 936 if (error) { 937 kmem_zone_free(xfs_inode_zone, ip); 938 xfs_trans_brelse(tp, bp); 939 #ifdef DEBUG 940 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 941 "xfs_iformat() returned error %d", 942 error); 943 #endif /* DEBUG */ 944 return error; 945 } 946 } else { 947 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); 948 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); 949 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); 950 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); 951 /* 952 * Make sure to pull in the mode here as well in 953 * case the inode is released without being used. 954 * This ensures that xfs_inactive() will see that 955 * the inode is already free and not try to mess 956 * with the uninitialized part of it. 957 */ 958 ip->i_d.di_mode = 0; 959 /* 960 * Initialize the per-fork minima and maxima for a new 961 * inode here. xfs_iformat will do it for old inodes. 962 */ 963 ip->i_df.if_ext_max = 964 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 965 } 966 967 INIT_LIST_HEAD(&ip->i_reclaim); 968 969 /* 970 * The inode format changed when we moved the link count and 971 * made it 32 bits long. If this is an old format inode, 972 * convert it in memory to look like a new one. If it gets 973 * flushed to disk we will convert back before flushing or 974 * logging it. We zero out the new projid field and the old link 975 * count field. We'll handle clearing the pad field (the remains 976 * of the old uuid field) when we actually convert the inode to 977 * the new format. We don't change the version number so that we 978 * can distinguish this from a real new format inode. 979 */ 980 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 981 ip->i_d.di_nlink = ip->i_d.di_onlink; 982 ip->i_d.di_onlink = 0; 983 ip->i_d.di_projid = 0; 984 } 985 986 ip->i_delayed_blks = 0; 987 ip->i_size = ip->i_d.di_size; 988 989 /* 990 * Mark the buffer containing the inode as something to keep 991 * around for a while. This helps to keep recently accessed 992 * meta-data in-core longer. 993 */ 994 XFS_BUF_SET_REF(bp, XFS_INO_REF); 995 996 /* 997 * Use xfs_trans_brelse() to release the buffer containing the 998 * on-disk inode, because it was acquired with xfs_trans_read_buf() 999 * in xfs_itobp() above. If tp is NULL, this is just a normal 1000 * brelse(). If we're within a transaction, then xfs_trans_brelse() 1001 * will only release the buffer if it is not dirty within the 1002 * transaction. It will be OK to release the buffer in this case, 1003 * because inodes on disk are never destroyed and we will be 1004 * locking the new in-core inode before putting it in the hash 1005 * table where other processes can find it. Thus we don't have 1006 * to worry about the inode being changed just because we released 1007 * the buffer. 1008 */ 1009 xfs_trans_brelse(tp, bp); 1010 *ipp = ip; 1011 return 0; 1012 } 1013 1014 /* 1015 * Read in extents from a btree-format inode. 1016 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 1017 */ 1018 int 1019 xfs_iread_extents( 1020 xfs_trans_t *tp, 1021 xfs_inode_t *ip, 1022 int whichfork) 1023 { 1024 int error; 1025 xfs_ifork_t *ifp; 1026 xfs_extnum_t nextents; 1027 size_t size; 1028 1029 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 1031 ip->i_mount); 1032 return XFS_ERROR(EFSCORRUPTED); 1033 } 1034 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 1035 size = nextents * sizeof(xfs_bmbt_rec_t); 1036 ifp = XFS_IFORK_PTR(ip, whichfork); 1037 1038 /* 1039 * We know that the size is valid (it's checked in iformat_btree) 1040 */ 1041 ifp->if_lastex = NULLEXTNUM; 1042 ifp->if_bytes = ifp->if_real_bytes = 0; 1043 ifp->if_flags |= XFS_IFEXTENTS; 1044 xfs_iext_add(ifp, 0, nextents); 1045 error = xfs_bmap_read_extents(tp, ip, whichfork); 1046 if (error) { 1047 xfs_iext_destroy(ifp); 1048 ifp->if_flags &= ~XFS_IFEXTENTS; 1049 return error; 1050 } 1051 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip)); 1052 return 0; 1053 } 1054 1055 /* 1056 * Allocate an inode on disk and return a copy of its in-core version. 1057 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 1058 * appropriately within the inode. The uid and gid for the inode are 1059 * set according to the contents of the given cred structure. 1060 * 1061 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 1062 * has a free inode available, call xfs_iget() 1063 * to obtain the in-core version of the allocated inode. Finally, 1064 * fill in the inode and log its initial contents. In this case, 1065 * ialloc_context would be set to NULL and call_again set to false. 1066 * 1067 * If xfs_dialloc() does not have an available inode, 1068 * it will replenish its supply by doing an allocation. Since we can 1069 * only do one allocation within a transaction without deadlocks, we 1070 * must commit the current transaction before returning the inode itself. 1071 * In this case, therefore, we will set call_again to true and return. 1072 * The caller should then commit the current transaction, start a new 1073 * transaction, and call xfs_ialloc() again to actually get the inode. 1074 * 1075 * To ensure that some other process does not grab the inode that 1076 * was allocated during the first call to xfs_ialloc(), this routine 1077 * also returns the [locked] bp pointing to the head of the freelist 1078 * as ialloc_context. The caller should hold this buffer across 1079 * the commit and pass it back into this routine on the second call. 1080 * 1081 * If we are allocating quota inodes, we do not have a parent inode 1082 * to attach to or associate with (i.e. pip == NULL) because they 1083 * are not linked into the directory structure - they are attached 1084 * directly to the superblock - and so have no parent. 1085 */ 1086 int 1087 xfs_ialloc( 1088 xfs_trans_t *tp, 1089 xfs_inode_t *pip, 1090 mode_t mode, 1091 xfs_nlink_t nlink, 1092 xfs_dev_t rdev, 1093 cred_t *cr, 1094 xfs_prid_t prid, 1095 int okalloc, 1096 xfs_buf_t **ialloc_context, 1097 boolean_t *call_again, 1098 xfs_inode_t **ipp) 1099 { 1100 xfs_ino_t ino; 1101 xfs_inode_t *ip; 1102 bhv_vnode_t *vp; 1103 uint flags; 1104 int error; 1105 1106 /* 1107 * Call the space management code to pick 1108 * the on-disk inode to be allocated. 1109 */ 1110 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1111 ialloc_context, call_again, &ino); 1112 if (error != 0) { 1113 return error; 1114 } 1115 if (*call_again || ino == NULLFSINO) { 1116 *ipp = NULL; 1117 return 0; 1118 } 1119 ASSERT(*ialloc_context == NULL); 1120 1121 /* 1122 * Get the in-core inode with the lock held exclusively. 1123 * This is because we're setting fields here we need 1124 * to prevent others from looking at until we're done. 1125 */ 1126 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1127 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1128 if (error != 0) { 1129 return error; 1130 } 1131 ASSERT(ip != NULL); 1132 1133 vp = XFS_ITOV(ip); 1134 ip->i_d.di_mode = (__uint16_t)mode; 1135 ip->i_d.di_onlink = 0; 1136 ip->i_d.di_nlink = nlink; 1137 ASSERT(ip->i_d.di_nlink == nlink); 1138 ip->i_d.di_uid = current_fsuid(cr); 1139 ip->i_d.di_gid = current_fsgid(cr); 1140 ip->i_d.di_projid = prid; 1141 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1142 1143 /* 1144 * If the superblock version is up to where we support new format 1145 * inodes and this is currently an old format inode, then change 1146 * the inode version number now. This way we only do the conversion 1147 * here rather than here and in the flush/logging code. 1148 */ 1149 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && 1150 ip->i_d.di_version == XFS_DINODE_VERSION_1) { 1151 ip->i_d.di_version = XFS_DINODE_VERSION_2; 1152 /* 1153 * We've already zeroed the old link count, the projid field, 1154 * and the pad field. 1155 */ 1156 } 1157 1158 /* 1159 * Project ids won't be stored on disk if we are using a version 1 inode. 1160 */ 1161 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) 1162 xfs_bump_ino_vers2(tp, ip); 1163 1164 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) { 1165 ip->i_d.di_gid = pip->i_d.di_gid; 1166 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1167 ip->i_d.di_mode |= S_ISGID; 1168 } 1169 } 1170 1171 /* 1172 * If the group ID of the new file does not match the effective group 1173 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1174 * (and only if the irix_sgid_inherit compatibility variable is set). 1175 */ 1176 if ((irix_sgid_inherit) && 1177 (ip->i_d.di_mode & S_ISGID) && 1178 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1179 ip->i_d.di_mode &= ~S_ISGID; 1180 } 1181 1182 ip->i_d.di_size = 0; 1183 ip->i_size = 0; 1184 ip->i_d.di_nextents = 0; 1185 ASSERT(ip->i_d.di_nblocks == 0); 1186 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); 1187 /* 1188 * di_gen will have been taken care of in xfs_iread. 1189 */ 1190 ip->i_d.di_extsize = 0; 1191 ip->i_d.di_dmevmask = 0; 1192 ip->i_d.di_dmstate = 0; 1193 ip->i_d.di_flags = 0; 1194 flags = XFS_ILOG_CORE; 1195 switch (mode & S_IFMT) { 1196 case S_IFIFO: 1197 case S_IFCHR: 1198 case S_IFBLK: 1199 case S_IFSOCK: 1200 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1201 ip->i_df.if_u2.if_rdev = rdev; 1202 ip->i_df.if_flags = 0; 1203 flags |= XFS_ILOG_DEV; 1204 break; 1205 case S_IFREG: 1206 if (pip && xfs_inode_is_filestream(pip)) { 1207 error = xfs_filestream_associate(pip, ip); 1208 if (error < 0) 1209 return -error; 1210 if (!error) 1211 xfs_iflags_set(ip, XFS_IFILESTREAM); 1212 } 1213 /* fall through */ 1214 case S_IFDIR: 1215 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1216 uint di_flags = 0; 1217 1218 if ((mode & S_IFMT) == S_IFDIR) { 1219 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1220 di_flags |= XFS_DIFLAG_RTINHERIT; 1221 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1222 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1223 ip->i_d.di_extsize = pip->i_d.di_extsize; 1224 } 1225 } else if ((mode & S_IFMT) == S_IFREG) { 1226 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { 1227 di_flags |= XFS_DIFLAG_REALTIME; 1228 ip->i_iocore.io_flags |= XFS_IOCORE_RT; 1229 } 1230 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1231 di_flags |= XFS_DIFLAG_EXTSIZE; 1232 ip->i_d.di_extsize = pip->i_d.di_extsize; 1233 } 1234 } 1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1236 xfs_inherit_noatime) 1237 di_flags |= XFS_DIFLAG_NOATIME; 1238 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1239 xfs_inherit_nodump) 1240 di_flags |= XFS_DIFLAG_NODUMP; 1241 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1242 xfs_inherit_sync) 1243 di_flags |= XFS_DIFLAG_SYNC; 1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1245 xfs_inherit_nosymlinks) 1246 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1247 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1248 di_flags |= XFS_DIFLAG_PROJINHERIT; 1249 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1250 xfs_inherit_nodefrag) 1251 di_flags |= XFS_DIFLAG_NODEFRAG; 1252 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1253 di_flags |= XFS_DIFLAG_FILESTREAM; 1254 ip->i_d.di_flags |= di_flags; 1255 } 1256 /* FALLTHROUGH */ 1257 case S_IFLNK: 1258 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1259 ip->i_df.if_flags = XFS_IFEXTENTS; 1260 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1261 ip->i_df.if_u1.if_extents = NULL; 1262 break; 1263 default: 1264 ASSERT(0); 1265 } 1266 /* 1267 * Attribute fork settings for new inode. 1268 */ 1269 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1270 ip->i_d.di_anextents = 0; 1271 1272 /* 1273 * Log the new values stuffed into the inode. 1274 */ 1275 xfs_trans_log_inode(tp, ip, flags); 1276 1277 /* now that we have an i_mode we can setup inode ops and unlock */ 1278 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); 1279 1280 *ipp = ip; 1281 return 0; 1282 } 1283 1284 /* 1285 * Check to make sure that there are no blocks allocated to the 1286 * file beyond the size of the file. We don't check this for 1287 * files with fixed size extents or real time extents, but we 1288 * at least do it for regular files. 1289 */ 1290 #ifdef DEBUG 1291 void 1292 xfs_isize_check( 1293 xfs_mount_t *mp, 1294 xfs_inode_t *ip, 1295 xfs_fsize_t isize) 1296 { 1297 xfs_fileoff_t map_first; 1298 int nimaps; 1299 xfs_bmbt_irec_t imaps[2]; 1300 1301 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1302 return; 1303 1304 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) 1305 return; 1306 1307 nimaps = 2; 1308 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1309 /* 1310 * The filesystem could be shutting down, so bmapi may return 1311 * an error. 1312 */ 1313 if (xfs_bmapi(NULL, ip, map_first, 1314 (XFS_B_TO_FSB(mp, 1315 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1316 map_first), 1317 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1318 NULL, NULL)) 1319 return; 1320 ASSERT(nimaps == 1); 1321 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1322 } 1323 #endif /* DEBUG */ 1324 1325 /* 1326 * Calculate the last possible buffered byte in a file. This must 1327 * include data that was buffered beyond the EOF by the write code. 1328 * This also needs to deal with overflowing the xfs_fsize_t type 1329 * which can happen for sizes near the limit. 1330 * 1331 * We also need to take into account any blocks beyond the EOF. It 1332 * may be the case that they were buffered by a write which failed. 1333 * In that case the pages will still be in memory, but the inode size 1334 * will never have been updated. 1335 */ 1336 xfs_fsize_t 1337 xfs_file_last_byte( 1338 xfs_inode_t *ip) 1339 { 1340 xfs_mount_t *mp; 1341 xfs_fsize_t last_byte; 1342 xfs_fileoff_t last_block; 1343 xfs_fileoff_t size_last_block; 1344 int error; 1345 1346 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); 1347 1348 mp = ip->i_mount; 1349 /* 1350 * Only check for blocks beyond the EOF if the extents have 1351 * been read in. This eliminates the need for the inode lock, 1352 * and it also saves us from looking when it really isn't 1353 * necessary. 1354 */ 1355 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1356 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1357 XFS_DATA_FORK); 1358 if (error) { 1359 last_block = 0; 1360 } 1361 } else { 1362 last_block = 0; 1363 } 1364 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1365 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1366 1367 last_byte = XFS_FSB_TO_B(mp, last_block); 1368 if (last_byte < 0) { 1369 return XFS_MAXIOFFSET(mp); 1370 } 1371 last_byte += (1 << mp->m_writeio_log); 1372 if (last_byte < 0) { 1373 return XFS_MAXIOFFSET(mp); 1374 } 1375 return last_byte; 1376 } 1377 1378 #if defined(XFS_RW_TRACE) 1379 STATIC void 1380 xfs_itrunc_trace( 1381 int tag, 1382 xfs_inode_t *ip, 1383 int flag, 1384 xfs_fsize_t new_size, 1385 xfs_off_t toss_start, 1386 xfs_off_t toss_finish) 1387 { 1388 if (ip->i_rwtrace == NULL) { 1389 return; 1390 } 1391 1392 ktrace_enter(ip->i_rwtrace, 1393 (void*)((long)tag), 1394 (void*)ip, 1395 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1396 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1397 (void*)((long)flag), 1398 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1399 (void*)(unsigned long)(new_size & 0xffffffff), 1400 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1401 (void*)(unsigned long)(toss_start & 0xffffffff), 1402 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1403 (void*)(unsigned long)(toss_finish & 0xffffffff), 1404 (void*)(unsigned long)current_cpu(), 1405 (void*)(unsigned long)current_pid(), 1406 (void*)NULL, 1407 (void*)NULL, 1408 (void*)NULL); 1409 } 1410 #else 1411 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1412 #endif 1413 1414 /* 1415 * Start the truncation of the file to new_size. The new size 1416 * must be smaller than the current size. This routine will 1417 * clear the buffer and page caches of file data in the removed 1418 * range, and xfs_itruncate_finish() will remove the underlying 1419 * disk blocks. 1420 * 1421 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1422 * must NOT have the inode lock held at all. This is because we're 1423 * calling into the buffer/page cache code and we can't hold the 1424 * inode lock when we do so. 1425 * 1426 * We need to wait for any direct I/Os in flight to complete before we 1427 * proceed with the truncate. This is needed to prevent the extents 1428 * being read or written by the direct I/Os from being removed while the 1429 * I/O is in flight as there is no other method of synchronising 1430 * direct I/O with the truncate operation. Also, because we hold 1431 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1432 * started until the truncate completes and drops the lock. Essentially, 1433 * the vn_iowait() call forms an I/O barrier that provides strict ordering 1434 * between direct I/Os and the truncate operation. 1435 * 1436 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1437 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1438 * in the case that the caller is locking things out of order and 1439 * may not be able to call xfs_itruncate_finish() with the inode lock 1440 * held without dropping the I/O lock. If the caller must drop the 1441 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1442 * must be called again with all the same restrictions as the initial 1443 * call. 1444 */ 1445 int 1446 xfs_itruncate_start( 1447 xfs_inode_t *ip, 1448 uint flags, 1449 xfs_fsize_t new_size) 1450 { 1451 xfs_fsize_t last_byte; 1452 xfs_off_t toss_start; 1453 xfs_mount_t *mp; 1454 bhv_vnode_t *vp; 1455 int error = 0; 1456 1457 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1458 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1459 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1460 (flags == XFS_ITRUNC_MAYBE)); 1461 1462 mp = ip->i_mount; 1463 vp = XFS_ITOV(ip); 1464 1465 vn_iowait(vp); /* wait for the completion of any pending DIOs */ 1466 1467 /* 1468 * Call toss_pages or flushinval_pages to get rid of pages 1469 * overlapping the region being removed. We have to use 1470 * the less efficient flushinval_pages in the case that the 1471 * caller may not be able to finish the truncate without 1472 * dropping the inode's I/O lock. Make sure 1473 * to catch any pages brought in by buffers overlapping 1474 * the EOF by searching out beyond the isize by our 1475 * block size. We round new_size up to a block boundary 1476 * so that we don't toss things on the same block as 1477 * new_size but before it. 1478 * 1479 * Before calling toss_page or flushinval_pages, make sure to 1480 * call remapf() over the same region if the file is mapped. 1481 * This frees up mapped file references to the pages in the 1482 * given range and for the flushinval_pages case it ensures 1483 * that we get the latest mapped changes flushed out. 1484 */ 1485 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1486 toss_start = XFS_FSB_TO_B(mp, toss_start); 1487 if (toss_start < 0) { 1488 /* 1489 * The place to start tossing is beyond our maximum 1490 * file size, so there is no way that the data extended 1491 * out there. 1492 */ 1493 return 0; 1494 } 1495 last_byte = xfs_file_last_byte(ip); 1496 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1497 last_byte); 1498 if (last_byte > toss_start) { 1499 if (flags & XFS_ITRUNC_DEFINITE) { 1500 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1501 } else { 1502 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED); 1503 } 1504 } 1505 1506 #ifdef DEBUG 1507 if (new_size == 0) { 1508 ASSERT(VN_CACHED(vp) == 0); 1509 } 1510 #endif 1511 return error; 1512 } 1513 1514 /* 1515 * Shrink the file to the given new_size. The new 1516 * size must be smaller than the current size. 1517 * This will free up the underlying blocks 1518 * in the removed range after a call to xfs_itruncate_start() 1519 * or xfs_atruncate_start(). 1520 * 1521 * The transaction passed to this routine must have made 1522 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. 1523 * This routine may commit the given transaction and 1524 * start new ones, so make sure everything involved in 1525 * the transaction is tidy before calling here. 1526 * Some transaction will be returned to the caller to be 1527 * committed. The incoming transaction must already include 1528 * the inode, and both inode locks must be held exclusively. 1529 * The inode must also be "held" within the transaction. On 1530 * return the inode will be "held" within the returned transaction. 1531 * This routine does NOT require any disk space to be reserved 1532 * for it within the transaction. 1533 * 1534 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, 1535 * and it indicates the fork which is to be truncated. For the 1536 * attribute fork we only support truncation to size 0. 1537 * 1538 * We use the sync parameter to indicate whether or not the first 1539 * transaction we perform might have to be synchronous. For the attr fork, 1540 * it needs to be so if the unlink of the inode is not yet known to be 1541 * permanent in the log. This keeps us from freeing and reusing the 1542 * blocks of the attribute fork before the unlink of the inode becomes 1543 * permanent. 1544 * 1545 * For the data fork, we normally have to run synchronously if we're 1546 * being called out of the inactive path or we're being called 1547 * out of the create path where we're truncating an existing file. 1548 * Either way, the truncate needs to be sync so blocks don't reappear 1549 * in the file with altered data in case of a crash. wsync filesystems 1550 * can run the first case async because anything that shrinks the inode 1551 * has to run sync so by the time we're called here from inactive, the 1552 * inode size is permanently set to 0. 1553 * 1554 * Calls from the truncate path always need to be sync unless we're 1555 * in a wsync filesystem and the file has already been unlinked. 1556 * 1557 * The caller is responsible for correctly setting the sync parameter. 1558 * It gets too hard for us to guess here which path we're being called 1559 * out of just based on inode state. 1560 */ 1561 int 1562 xfs_itruncate_finish( 1563 xfs_trans_t **tp, 1564 xfs_inode_t *ip, 1565 xfs_fsize_t new_size, 1566 int fork, 1567 int sync) 1568 { 1569 xfs_fsblock_t first_block; 1570 xfs_fileoff_t first_unmap_block; 1571 xfs_fileoff_t last_block; 1572 xfs_filblks_t unmap_len=0; 1573 xfs_mount_t *mp; 1574 xfs_trans_t *ntp; 1575 int done; 1576 int committed; 1577 xfs_bmap_free_t free_list; 1578 int error; 1579 1580 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); 1581 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); 1582 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1583 ASSERT(*tp != NULL); 1584 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1585 ASSERT(ip->i_transp == *tp); 1586 ASSERT(ip->i_itemp != NULL); 1587 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1588 1589 1590 ntp = *tp; 1591 mp = (ntp)->t_mountp; 1592 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1593 1594 /* 1595 * We only support truncating the entire attribute fork. 1596 */ 1597 if (fork == XFS_ATTR_FORK) { 1598 new_size = 0LL; 1599 } 1600 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1601 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1602 /* 1603 * The first thing we do is set the size to new_size permanently 1604 * on disk. This way we don't have to worry about anyone ever 1605 * being able to look at the data being freed even in the face 1606 * of a crash. What we're getting around here is the case where 1607 * we free a block, it is allocated to another file, it is written 1608 * to, and then we crash. If the new data gets written to the 1609 * file but the log buffers containing the free and reallocation 1610 * don't, then we'd end up with garbage in the blocks being freed. 1611 * As long as we make the new_size permanent before actually 1612 * freeing any blocks it doesn't matter if they get writtten to. 1613 * 1614 * The callers must signal into us whether or not the size 1615 * setting here must be synchronous. There are a few cases 1616 * where it doesn't have to be synchronous. Those cases 1617 * occur if the file is unlinked and we know the unlink is 1618 * permanent or if the blocks being truncated are guaranteed 1619 * to be beyond the inode eof (regardless of the link count) 1620 * and the eof value is permanent. Both of these cases occur 1621 * only on wsync-mounted filesystems. In those cases, we're 1622 * guaranteed that no user will ever see the data in the blocks 1623 * that are being truncated so the truncate can run async. 1624 * In the free beyond eof case, the file may wind up with 1625 * more blocks allocated to it than it needs if we crash 1626 * and that won't get fixed until the next time the file 1627 * is re-opened and closed but that's ok as that shouldn't 1628 * be too many blocks. 1629 * 1630 * However, we can't just make all wsync xactions run async 1631 * because there's one call out of the create path that needs 1632 * to run sync where it's truncating an existing file to size 1633 * 0 whose size is > 0. 1634 * 1635 * It's probably possible to come up with a test in this 1636 * routine that would correctly distinguish all the above 1637 * cases from the values of the function parameters and the 1638 * inode state but for sanity's sake, I've decided to let the 1639 * layers above just tell us. It's simpler to correctly figure 1640 * out in the layer above exactly under what conditions we 1641 * can run async and I think it's easier for others read and 1642 * follow the logic in case something has to be changed. 1643 * cscope is your friend -- rcc. 1644 * 1645 * The attribute fork is much simpler. 1646 * 1647 * For the attribute fork we allow the caller to tell us whether 1648 * the unlink of the inode that led to this call is yet permanent 1649 * in the on disk log. If it is not and we will be freeing extents 1650 * in this inode then we make the first transaction synchronous 1651 * to make sure that the unlink is permanent by the time we free 1652 * the blocks. 1653 */ 1654 if (fork == XFS_DATA_FORK) { 1655 if (ip->i_d.di_nextents > 0) { 1656 /* 1657 * If we are not changing the file size then do 1658 * not update the on-disk file size - we may be 1659 * called from xfs_inactive_free_eofblocks(). If we 1660 * update the on-disk file size and then the system 1661 * crashes before the contents of the file are 1662 * flushed to disk then the files may be full of 1663 * holes (ie NULL files bug). 1664 */ 1665 if (ip->i_size != new_size) { 1666 ip->i_d.di_size = new_size; 1667 ip->i_size = new_size; 1668 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1669 } 1670 } 1671 } else if (sync) { 1672 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1673 if (ip->i_d.di_anextents > 0) 1674 xfs_trans_set_sync(ntp); 1675 } 1676 ASSERT(fork == XFS_DATA_FORK || 1677 (fork == XFS_ATTR_FORK && 1678 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1679 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1680 1681 /* 1682 * Since it is possible for space to become allocated beyond 1683 * the end of the file (in a crash where the space is allocated 1684 * but the inode size is not yet updated), simply remove any 1685 * blocks which show up between the new EOF and the maximum 1686 * possible file size. If the first block to be removed is 1687 * beyond the maximum file size (ie it is the same as last_block), 1688 * then there is nothing to do. 1689 */ 1690 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1691 ASSERT(first_unmap_block <= last_block); 1692 done = 0; 1693 if (last_block == first_unmap_block) { 1694 done = 1; 1695 } else { 1696 unmap_len = last_block - first_unmap_block + 1; 1697 } 1698 while (!done) { 1699 /* 1700 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1701 * will tell us whether it freed the entire range or 1702 * not. If this is a synchronous mount (wsync), 1703 * then we can tell bunmapi to keep all the 1704 * transactions asynchronous since the unlink 1705 * transaction that made this inode inactive has 1706 * already hit the disk. There's no danger of 1707 * the freed blocks being reused, there being a 1708 * crash, and the reused blocks suddenly reappearing 1709 * in this file with garbage in them once recovery 1710 * runs. 1711 */ 1712 XFS_BMAP_INIT(&free_list, &first_block); 1713 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore, 1714 first_unmap_block, unmap_len, 1715 XFS_BMAPI_AFLAG(fork) | 1716 (sync ? 0 : XFS_BMAPI_ASYNC), 1717 XFS_ITRUNC_MAX_EXTENTS, 1718 &first_block, &free_list, 1719 NULL, &done); 1720 if (error) { 1721 /* 1722 * If the bunmapi call encounters an error, 1723 * return to the caller where the transaction 1724 * can be properly aborted. We just need to 1725 * make sure we're not holding any resources 1726 * that we were not when we came in. 1727 */ 1728 xfs_bmap_cancel(&free_list); 1729 return error; 1730 } 1731 1732 /* 1733 * Duplicate the transaction that has the permanent 1734 * reservation and commit the old transaction. 1735 */ 1736 error = xfs_bmap_finish(tp, &free_list, &committed); 1737 ntp = *tp; 1738 if (error) { 1739 /* 1740 * If the bmap finish call encounters an error, 1741 * return to the caller where the transaction 1742 * can be properly aborted. We just need to 1743 * make sure we're not holding any resources 1744 * that we were not when we came in. 1745 * 1746 * Aborting from this point might lose some 1747 * blocks in the file system, but oh well. 1748 */ 1749 xfs_bmap_cancel(&free_list); 1750 if (committed) { 1751 /* 1752 * If the passed in transaction committed 1753 * in xfs_bmap_finish(), then we want to 1754 * add the inode to this one before returning. 1755 * This keeps things simple for the higher 1756 * level code, because it always knows that 1757 * the inode is locked and held in the 1758 * transaction that returns to it whether 1759 * errors occur or not. We don't mark the 1760 * inode dirty so that this transaction can 1761 * be easily aborted if possible. 1762 */ 1763 xfs_trans_ijoin(ntp, ip, 1764 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1765 xfs_trans_ihold(ntp, ip); 1766 } 1767 return error; 1768 } 1769 1770 if (committed) { 1771 /* 1772 * The first xact was committed, 1773 * so add the inode to the new one. 1774 * Mark it dirty so it will be logged 1775 * and moved forward in the log as 1776 * part of every commit. 1777 */ 1778 xfs_trans_ijoin(ntp, ip, 1779 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1780 xfs_trans_ihold(ntp, ip); 1781 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1782 } 1783 ntp = xfs_trans_dup(ntp); 1784 (void) xfs_trans_commit(*tp, 0); 1785 *tp = ntp; 1786 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 1787 XFS_TRANS_PERM_LOG_RES, 1788 XFS_ITRUNCATE_LOG_COUNT); 1789 /* 1790 * Add the inode being truncated to the next chained 1791 * transaction. 1792 */ 1793 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1794 xfs_trans_ihold(ntp, ip); 1795 if (error) 1796 return (error); 1797 } 1798 /* 1799 * Only update the size in the case of the data fork, but 1800 * always re-log the inode so that our permanent transaction 1801 * can keep on rolling it forward in the log. 1802 */ 1803 if (fork == XFS_DATA_FORK) { 1804 xfs_isize_check(mp, ip, new_size); 1805 /* 1806 * If we are not changing the file size then do 1807 * not update the on-disk file size - we may be 1808 * called from xfs_inactive_free_eofblocks(). If we 1809 * update the on-disk file size and then the system 1810 * crashes before the contents of the file are 1811 * flushed to disk then the files may be full of 1812 * holes (ie NULL files bug). 1813 */ 1814 if (ip->i_size != new_size) { 1815 ip->i_d.di_size = new_size; 1816 ip->i_size = new_size; 1817 } 1818 } 1819 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1820 ASSERT((new_size != 0) || 1821 (fork == XFS_ATTR_FORK) || 1822 (ip->i_delayed_blks == 0)); 1823 ASSERT((new_size != 0) || 1824 (fork == XFS_ATTR_FORK) || 1825 (ip->i_d.di_nextents == 0)); 1826 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1827 return 0; 1828 } 1829 1830 1831 /* 1832 * xfs_igrow_start 1833 * 1834 * Do the first part of growing a file: zero any data in the last 1835 * block that is beyond the old EOF. We need to do this before 1836 * the inode is joined to the transaction to modify the i_size. 1837 * That way we can drop the inode lock and call into the buffer 1838 * cache to get the buffer mapping the EOF. 1839 */ 1840 int 1841 xfs_igrow_start( 1842 xfs_inode_t *ip, 1843 xfs_fsize_t new_size, 1844 cred_t *credp) 1845 { 1846 int error; 1847 1848 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1849 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1850 ASSERT(new_size > ip->i_size); 1851 1852 /* 1853 * Zero any pages that may have been created by 1854 * xfs_write_file() beyond the end of the file 1855 * and any blocks between the old and new file sizes. 1856 */ 1857 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, 1858 ip->i_size); 1859 return error; 1860 } 1861 1862 /* 1863 * xfs_igrow_finish 1864 * 1865 * This routine is called to extend the size of a file. 1866 * The inode must have both the iolock and the ilock locked 1867 * for update and it must be a part of the current transaction. 1868 * The xfs_igrow_start() function must have been called previously. 1869 * If the change_flag is not zero, the inode change timestamp will 1870 * be updated. 1871 */ 1872 void 1873 xfs_igrow_finish( 1874 xfs_trans_t *tp, 1875 xfs_inode_t *ip, 1876 xfs_fsize_t new_size, 1877 int change_flag) 1878 { 1879 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); 1880 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); 1881 ASSERT(ip->i_transp == tp); 1882 ASSERT(new_size > ip->i_size); 1883 1884 /* 1885 * Update the file size. Update the inode change timestamp 1886 * if change_flag set. 1887 */ 1888 ip->i_d.di_size = new_size; 1889 ip->i_size = new_size; 1890 if (change_flag) 1891 xfs_ichgtime(ip, XFS_ICHGTIME_CHG); 1892 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1893 1894 } 1895 1896 1897 /* 1898 * This is called when the inode's link count goes to 0. 1899 * We place the on-disk inode on a list in the AGI. It 1900 * will be pulled from this list when the inode is freed. 1901 */ 1902 int 1903 xfs_iunlink( 1904 xfs_trans_t *tp, 1905 xfs_inode_t *ip) 1906 { 1907 xfs_mount_t *mp; 1908 xfs_agi_t *agi; 1909 xfs_dinode_t *dip; 1910 xfs_buf_t *agibp; 1911 xfs_buf_t *ibp; 1912 xfs_agnumber_t agno; 1913 xfs_daddr_t agdaddr; 1914 xfs_agino_t agino; 1915 short bucket_index; 1916 int offset; 1917 int error; 1918 int agi_ok; 1919 1920 ASSERT(ip->i_d.di_nlink == 0); 1921 ASSERT(ip->i_d.di_mode != 0); 1922 ASSERT(ip->i_transp == tp); 1923 1924 mp = tp->t_mountp; 1925 1926 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1927 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 1928 1929 /* 1930 * Get the agi buffer first. It ensures lock ordering 1931 * on the list. 1932 */ 1933 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 1934 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 1935 if (error) { 1936 return error; 1937 } 1938 /* 1939 * Validate the magic number of the agi block. 1940 */ 1941 agi = XFS_BUF_TO_AGI(agibp); 1942 agi_ok = 1943 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 1944 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 1945 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, 1946 XFS_RANDOM_IUNLINK))) { 1947 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); 1948 xfs_trans_brelse(tp, agibp); 1949 return XFS_ERROR(EFSCORRUPTED); 1950 } 1951 /* 1952 * Get the index into the agi hash table for the 1953 * list this inode will go on. 1954 */ 1955 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1956 ASSERT(agino != 0); 1957 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1958 ASSERT(agi->agi_unlinked[bucket_index]); 1959 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1960 1961 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1962 /* 1963 * There is already another inode in the bucket we need 1964 * to add ourselves to. Add us at the front of the list. 1965 * Here we put the head pointer into our next pointer, 1966 * and then we fall through to point the head at us. 1967 */ 1968 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 1969 if (error) { 1970 return error; 1971 } 1972 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); 1973 ASSERT(dip->di_next_unlinked); 1974 /* both on-disk, don't endian flip twice */ 1975 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1976 offset = ip->i_boffset + 1977 offsetof(xfs_dinode_t, di_next_unlinked); 1978 xfs_trans_inode_buf(tp, ibp); 1979 xfs_trans_log_buf(tp, ibp, offset, 1980 (offset + sizeof(xfs_agino_t) - 1)); 1981 xfs_inobp_check(mp, ibp); 1982 } 1983 1984 /* 1985 * Point the bucket head pointer at the inode being inserted. 1986 */ 1987 ASSERT(agino != 0); 1988 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1989 offset = offsetof(xfs_agi_t, agi_unlinked) + 1990 (sizeof(xfs_agino_t) * bucket_index); 1991 xfs_trans_log_buf(tp, agibp, offset, 1992 (offset + sizeof(xfs_agino_t) - 1)); 1993 return 0; 1994 } 1995 1996 /* 1997 * Pull the on-disk inode from the AGI unlinked list. 1998 */ 1999 STATIC int 2000 xfs_iunlink_remove( 2001 xfs_trans_t *tp, 2002 xfs_inode_t *ip) 2003 { 2004 xfs_ino_t next_ino; 2005 xfs_mount_t *mp; 2006 xfs_agi_t *agi; 2007 xfs_dinode_t *dip; 2008 xfs_buf_t *agibp; 2009 xfs_buf_t *ibp; 2010 xfs_agnumber_t agno; 2011 xfs_daddr_t agdaddr; 2012 xfs_agino_t agino; 2013 xfs_agino_t next_agino; 2014 xfs_buf_t *last_ibp; 2015 xfs_dinode_t *last_dip = NULL; 2016 short bucket_index; 2017 int offset, last_offset = 0; 2018 int error; 2019 int agi_ok; 2020 2021 /* 2022 * First pull the on-disk inode from the AGI unlinked list. 2023 */ 2024 mp = tp->t_mountp; 2025 2026 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2027 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 2028 2029 /* 2030 * Get the agi buffer first. It ensures lock ordering 2031 * on the list. 2032 */ 2033 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, 2034 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 2035 if (error) { 2036 cmn_err(CE_WARN, 2037 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", 2038 error, mp->m_fsname); 2039 return error; 2040 } 2041 /* 2042 * Validate the magic number of the agi block. 2043 */ 2044 agi = XFS_BUF_TO_AGI(agibp); 2045 agi_ok = 2046 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && 2047 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); 2048 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, 2049 XFS_RANDOM_IUNLINK_REMOVE))) { 2050 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, 2051 mp, agi); 2052 xfs_trans_brelse(tp, agibp); 2053 cmn_err(CE_WARN, 2054 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", 2055 mp->m_fsname); 2056 return XFS_ERROR(EFSCORRUPTED); 2057 } 2058 /* 2059 * Get the index into the agi hash table for the 2060 * list this inode will go on. 2061 */ 2062 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2063 ASSERT(agino != 0); 2064 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2065 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 2066 ASSERT(agi->agi_unlinked[bucket_index]); 2067 2068 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2069 /* 2070 * We're at the head of the list. Get the inode's 2071 * on-disk buffer to see if there is anyone after us 2072 * on the list. Only modify our next pointer if it 2073 * is not already NULLAGINO. This saves us the overhead 2074 * of dealing with the buffer when there is no need to 2075 * change it. 2076 */ 2077 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2078 if (error) { 2079 cmn_err(CE_WARN, 2080 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2081 error, mp->m_fsname); 2082 return error; 2083 } 2084 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2085 ASSERT(next_agino != 0); 2086 if (next_agino != NULLAGINO) { 2087 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2088 offset = ip->i_boffset + 2089 offsetof(xfs_dinode_t, di_next_unlinked); 2090 xfs_trans_inode_buf(tp, ibp); 2091 xfs_trans_log_buf(tp, ibp, offset, 2092 (offset + sizeof(xfs_agino_t) - 1)); 2093 xfs_inobp_check(mp, ibp); 2094 } else { 2095 xfs_trans_brelse(tp, ibp); 2096 } 2097 /* 2098 * Point the bucket head pointer at the next inode. 2099 */ 2100 ASSERT(next_agino != 0); 2101 ASSERT(next_agino != agino); 2102 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2103 offset = offsetof(xfs_agi_t, agi_unlinked) + 2104 (sizeof(xfs_agino_t) * bucket_index); 2105 xfs_trans_log_buf(tp, agibp, offset, 2106 (offset + sizeof(xfs_agino_t) - 1)); 2107 } else { 2108 /* 2109 * We need to search the list for the inode being freed. 2110 */ 2111 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2112 last_ibp = NULL; 2113 while (next_agino != agino) { 2114 /* 2115 * If the last inode wasn't the one pointing to 2116 * us, then release its buffer since we're not 2117 * going to do anything with it. 2118 */ 2119 if (last_ibp != NULL) { 2120 xfs_trans_brelse(tp, last_ibp); 2121 } 2122 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2123 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 2124 &last_ibp, &last_offset); 2125 if (error) { 2126 cmn_err(CE_WARN, 2127 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 2128 error, mp->m_fsname); 2129 return error; 2130 } 2131 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); 2132 ASSERT(next_agino != NULLAGINO); 2133 ASSERT(next_agino != 0); 2134 } 2135 /* 2136 * Now last_ibp points to the buffer previous to us on 2137 * the unlinked list. Pull us from the list. 2138 */ 2139 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); 2140 if (error) { 2141 cmn_err(CE_WARN, 2142 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 2143 error, mp->m_fsname); 2144 return error; 2145 } 2146 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); 2147 ASSERT(next_agino != 0); 2148 ASSERT(next_agino != agino); 2149 if (next_agino != NULLAGINO) { 2150 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); 2151 offset = ip->i_boffset + 2152 offsetof(xfs_dinode_t, di_next_unlinked); 2153 xfs_trans_inode_buf(tp, ibp); 2154 xfs_trans_log_buf(tp, ibp, offset, 2155 (offset + sizeof(xfs_agino_t) - 1)); 2156 xfs_inobp_check(mp, ibp); 2157 } else { 2158 xfs_trans_brelse(tp, ibp); 2159 } 2160 /* 2161 * Point the previous inode on the list to the next inode. 2162 */ 2163 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); 2164 ASSERT(next_agino != 0); 2165 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2166 xfs_trans_inode_buf(tp, last_ibp); 2167 xfs_trans_log_buf(tp, last_ibp, offset, 2168 (offset + sizeof(xfs_agino_t) - 1)); 2169 xfs_inobp_check(mp, last_ibp); 2170 } 2171 return 0; 2172 } 2173 2174 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip) 2175 { 2176 return (((ip->i_itemp == NULL) || 2177 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && 2178 (ip->i_update_core == 0)); 2179 } 2180 2181 STATIC void 2182 xfs_ifree_cluster( 2183 xfs_inode_t *free_ip, 2184 xfs_trans_t *tp, 2185 xfs_ino_t inum) 2186 { 2187 xfs_mount_t *mp = free_ip->i_mount; 2188 int blks_per_cluster; 2189 int nbufs; 2190 int ninodes; 2191 int i, j, found, pre_flushed; 2192 xfs_daddr_t blkno; 2193 xfs_buf_t *bp; 2194 xfs_ihash_t *ih; 2195 xfs_inode_t *ip, **ip_found; 2196 xfs_inode_log_item_t *iip; 2197 xfs_log_item_t *lip; 2198 SPLDECL(s); 2199 2200 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2201 blks_per_cluster = 1; 2202 ninodes = mp->m_sb.sb_inopblock; 2203 nbufs = XFS_IALLOC_BLOCKS(mp); 2204 } else { 2205 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2206 mp->m_sb.sb_blocksize; 2207 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2208 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2209 } 2210 2211 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 2212 2213 for (j = 0; j < nbufs; j++, inum += ninodes) { 2214 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2215 XFS_INO_TO_AGBNO(mp, inum)); 2216 2217 2218 /* 2219 * Look for each inode in memory and attempt to lock it, 2220 * we can be racing with flush and tail pushing here. 2221 * any inode we get the locks on, add to an array of 2222 * inode items to process later. 2223 * 2224 * The get the buffer lock, we could beat a flush 2225 * or tail pushing thread to the lock here, in which 2226 * case they will go looking for the inode buffer 2227 * and fail, we need some other form of interlock 2228 * here. 2229 */ 2230 found = 0; 2231 for (i = 0; i < ninodes; i++) { 2232 ih = XFS_IHASH(mp, inum + i); 2233 read_lock(&ih->ih_lock); 2234 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { 2235 if (ip->i_ino == inum + i) 2236 break; 2237 } 2238 2239 /* Inode not in memory or we found it already, 2240 * nothing to do 2241 */ 2242 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2243 read_unlock(&ih->ih_lock); 2244 continue; 2245 } 2246 2247 if (xfs_inode_clean(ip)) { 2248 read_unlock(&ih->ih_lock); 2249 continue; 2250 } 2251 2252 /* If we can get the locks then add it to the 2253 * list, otherwise by the time we get the bp lock 2254 * below it will already be attached to the 2255 * inode buffer. 2256 */ 2257 2258 /* This inode will already be locked - by us, lets 2259 * keep it that way. 2260 */ 2261 2262 if (ip == free_ip) { 2263 if (xfs_iflock_nowait(ip)) { 2264 xfs_iflags_set(ip, XFS_ISTALE); 2265 if (xfs_inode_clean(ip)) { 2266 xfs_ifunlock(ip); 2267 } else { 2268 ip_found[found++] = ip; 2269 } 2270 } 2271 read_unlock(&ih->ih_lock); 2272 continue; 2273 } 2274 2275 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2276 if (xfs_iflock_nowait(ip)) { 2277 xfs_iflags_set(ip, XFS_ISTALE); 2278 2279 if (xfs_inode_clean(ip)) { 2280 xfs_ifunlock(ip); 2281 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2282 } else { 2283 ip_found[found++] = ip; 2284 } 2285 } else { 2286 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2287 } 2288 } 2289 2290 read_unlock(&ih->ih_lock); 2291 } 2292 2293 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2294 mp->m_bsize * blks_per_cluster, 2295 XFS_BUF_LOCK); 2296 2297 pre_flushed = 0; 2298 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2299 while (lip) { 2300 if (lip->li_type == XFS_LI_INODE) { 2301 iip = (xfs_inode_log_item_t *)lip; 2302 ASSERT(iip->ili_logged == 1); 2303 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2304 AIL_LOCK(mp,s); 2305 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2306 AIL_UNLOCK(mp, s); 2307 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2308 pre_flushed++; 2309 } 2310 lip = lip->li_bio_list; 2311 } 2312 2313 for (i = 0; i < found; i++) { 2314 ip = ip_found[i]; 2315 iip = ip->i_itemp; 2316 2317 if (!iip) { 2318 ip->i_update_core = 0; 2319 xfs_ifunlock(ip); 2320 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2321 continue; 2322 } 2323 2324 iip->ili_last_fields = iip->ili_format.ilf_fields; 2325 iip->ili_format.ilf_fields = 0; 2326 iip->ili_logged = 1; 2327 AIL_LOCK(mp,s); 2328 iip->ili_flush_lsn = iip->ili_item.li_lsn; 2329 AIL_UNLOCK(mp, s); 2330 2331 xfs_buf_attach_iodone(bp, 2332 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2333 xfs_istale_done, (xfs_log_item_t *)iip); 2334 if (ip != free_ip) { 2335 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2336 } 2337 } 2338 2339 if (found || pre_flushed) 2340 xfs_trans_stale_inode_buf(tp, bp); 2341 xfs_trans_binval(tp, bp); 2342 } 2343 2344 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); 2345 } 2346 2347 /* 2348 * This is called to return an inode to the inode free list. 2349 * The inode should already be truncated to 0 length and have 2350 * no pages associated with it. This routine also assumes that 2351 * the inode is already a part of the transaction. 2352 * 2353 * The on-disk copy of the inode will have been added to the list 2354 * of unlinked inodes in the AGI. We need to remove the inode from 2355 * that list atomically with respect to freeing it here. 2356 */ 2357 int 2358 xfs_ifree( 2359 xfs_trans_t *tp, 2360 xfs_inode_t *ip, 2361 xfs_bmap_free_t *flist) 2362 { 2363 int error; 2364 int delete; 2365 xfs_ino_t first_ino; 2366 2367 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2368 ASSERT(ip->i_transp == tp); 2369 ASSERT(ip->i_d.di_nlink == 0); 2370 ASSERT(ip->i_d.di_nextents == 0); 2371 ASSERT(ip->i_d.di_anextents == 0); 2372 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2373 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2374 ASSERT(ip->i_d.di_nblocks == 0); 2375 2376 /* 2377 * Pull the on-disk inode from the AGI unlinked list. 2378 */ 2379 error = xfs_iunlink_remove(tp, ip); 2380 if (error != 0) { 2381 return error; 2382 } 2383 2384 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2385 if (error != 0) { 2386 return error; 2387 } 2388 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2389 ip->i_d.di_flags = 0; 2390 ip->i_d.di_dmevmask = 0; 2391 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2392 ip->i_df.if_ext_max = 2393 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2394 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2395 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2396 /* 2397 * Bump the generation count so no one will be confused 2398 * by reincarnations of this inode. 2399 */ 2400 ip->i_d.di_gen++; 2401 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2402 2403 if (delete) { 2404 xfs_ifree_cluster(ip, tp, first_ino); 2405 } 2406 2407 return 0; 2408 } 2409 2410 /* 2411 * Reallocate the space for if_broot based on the number of records 2412 * being added or deleted as indicated in rec_diff. Move the records 2413 * and pointers in if_broot to fit the new size. When shrinking this 2414 * will eliminate holes between the records and pointers created by 2415 * the caller. When growing this will create holes to be filled in 2416 * by the caller. 2417 * 2418 * The caller must not request to add more records than would fit in 2419 * the on-disk inode root. If the if_broot is currently NULL, then 2420 * if we adding records one will be allocated. The caller must also 2421 * not request that the number of records go below zero, although 2422 * it can go to zero. 2423 * 2424 * ip -- the inode whose if_broot area is changing 2425 * ext_diff -- the change in the number of records, positive or negative, 2426 * requested for the if_broot array. 2427 */ 2428 void 2429 xfs_iroot_realloc( 2430 xfs_inode_t *ip, 2431 int rec_diff, 2432 int whichfork) 2433 { 2434 int cur_max; 2435 xfs_ifork_t *ifp; 2436 xfs_bmbt_block_t *new_broot; 2437 int new_max; 2438 size_t new_size; 2439 char *np; 2440 char *op; 2441 2442 /* 2443 * Handle the degenerate case quietly. 2444 */ 2445 if (rec_diff == 0) { 2446 return; 2447 } 2448 2449 ifp = XFS_IFORK_PTR(ip, whichfork); 2450 if (rec_diff > 0) { 2451 /* 2452 * If there wasn't any memory allocated before, just 2453 * allocate it now and get out. 2454 */ 2455 if (ifp->if_broot_bytes == 0) { 2456 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2457 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, 2458 KM_SLEEP); 2459 ifp->if_broot_bytes = (int)new_size; 2460 return; 2461 } 2462 2463 /* 2464 * If there is already an existing if_broot, then we need 2465 * to realloc() it and shift the pointers to their new 2466 * location. The records don't change location because 2467 * they are kept butted up against the btree block header. 2468 */ 2469 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2470 new_max = cur_max + rec_diff; 2471 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2472 ifp->if_broot = (xfs_bmbt_block_t *) 2473 kmem_realloc(ifp->if_broot, 2474 new_size, 2475 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2476 KM_SLEEP); 2477 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2478 ifp->if_broot_bytes); 2479 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2480 (int)new_size); 2481 ifp->if_broot_bytes = (int)new_size; 2482 ASSERT(ifp->if_broot_bytes <= 2483 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2484 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2485 return; 2486 } 2487 2488 /* 2489 * rec_diff is less than 0. In this case, we are shrinking the 2490 * if_broot buffer. It must already exist. If we go to zero 2491 * records, just get rid of the root and clear the status bit. 2492 */ 2493 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2494 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); 2495 new_max = cur_max + rec_diff; 2496 ASSERT(new_max >= 0); 2497 if (new_max > 0) 2498 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2499 else 2500 new_size = 0; 2501 if (new_size > 0) { 2502 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); 2503 /* 2504 * First copy over the btree block header. 2505 */ 2506 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); 2507 } else { 2508 new_broot = NULL; 2509 ifp->if_flags &= ~XFS_IFBROOT; 2510 } 2511 2512 /* 2513 * Only copy the records and pointers if there are any. 2514 */ 2515 if (new_max > 0) { 2516 /* 2517 * First copy the records. 2518 */ 2519 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, 2520 ifp->if_broot_bytes); 2521 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, 2522 (int)new_size); 2523 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2524 2525 /* 2526 * Then copy the pointers. 2527 */ 2528 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, 2529 ifp->if_broot_bytes); 2530 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, 2531 (int)new_size); 2532 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2533 } 2534 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2535 ifp->if_broot = new_broot; 2536 ifp->if_broot_bytes = (int)new_size; 2537 ASSERT(ifp->if_broot_bytes <= 2538 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2539 return; 2540 } 2541 2542 2543 /* 2544 * This is called when the amount of space needed for if_data 2545 * is increased or decreased. The change in size is indicated by 2546 * the number of bytes that need to be added or deleted in the 2547 * byte_diff parameter. 2548 * 2549 * If the amount of space needed has decreased below the size of the 2550 * inline buffer, then switch to using the inline buffer. Otherwise, 2551 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2552 * to what is needed. 2553 * 2554 * ip -- the inode whose if_data area is changing 2555 * byte_diff -- the change in the number of bytes, positive or negative, 2556 * requested for the if_data array. 2557 */ 2558 void 2559 xfs_idata_realloc( 2560 xfs_inode_t *ip, 2561 int byte_diff, 2562 int whichfork) 2563 { 2564 xfs_ifork_t *ifp; 2565 int new_size; 2566 int real_size; 2567 2568 if (byte_diff == 0) { 2569 return; 2570 } 2571 2572 ifp = XFS_IFORK_PTR(ip, whichfork); 2573 new_size = (int)ifp->if_bytes + byte_diff; 2574 ASSERT(new_size >= 0); 2575 2576 if (new_size == 0) { 2577 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2578 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2579 } 2580 ifp->if_u1.if_data = NULL; 2581 real_size = 0; 2582 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2583 /* 2584 * If the valid extents/data can fit in if_inline_ext/data, 2585 * copy them from the malloc'd vector and free it. 2586 */ 2587 if (ifp->if_u1.if_data == NULL) { 2588 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2589 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2590 ASSERT(ifp->if_real_bytes != 0); 2591 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2592 new_size); 2593 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2594 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2595 } 2596 real_size = 0; 2597 } else { 2598 /* 2599 * Stuck with malloc/realloc. 2600 * For inline data, the underlying buffer must be 2601 * a multiple of 4 bytes in size so that it can be 2602 * logged and stay on word boundaries. We enforce 2603 * that here. 2604 */ 2605 real_size = roundup(new_size, 4); 2606 if (ifp->if_u1.if_data == NULL) { 2607 ASSERT(ifp->if_real_bytes == 0); 2608 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2609 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2610 /* 2611 * Only do the realloc if the underlying size 2612 * is really changing. 2613 */ 2614 if (ifp->if_real_bytes != real_size) { 2615 ifp->if_u1.if_data = 2616 kmem_realloc(ifp->if_u1.if_data, 2617 real_size, 2618 ifp->if_real_bytes, 2619 KM_SLEEP); 2620 } 2621 } else { 2622 ASSERT(ifp->if_real_bytes == 0); 2623 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2624 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2625 ifp->if_bytes); 2626 } 2627 } 2628 ifp->if_real_bytes = real_size; 2629 ifp->if_bytes = new_size; 2630 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2631 } 2632 2633 2634 2635 2636 /* 2637 * Map inode to disk block and offset. 2638 * 2639 * mp -- the mount point structure for the current file system 2640 * tp -- the current transaction 2641 * ino -- the inode number of the inode to be located 2642 * imap -- this structure is filled in with the information necessary 2643 * to retrieve the given inode from disk 2644 * flags -- flags to pass to xfs_dilocate indicating whether or not 2645 * lookups in the inode btree were OK or not 2646 */ 2647 int 2648 xfs_imap( 2649 xfs_mount_t *mp, 2650 xfs_trans_t *tp, 2651 xfs_ino_t ino, 2652 xfs_imap_t *imap, 2653 uint flags) 2654 { 2655 xfs_fsblock_t fsbno; 2656 int len; 2657 int off; 2658 int error; 2659 2660 fsbno = imap->im_blkno ? 2661 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; 2662 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); 2663 if (error != 0) { 2664 return error; 2665 } 2666 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); 2667 imap->im_len = XFS_FSB_TO_BB(mp, len); 2668 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); 2669 imap->im_ioffset = (ushort)off; 2670 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); 2671 return 0; 2672 } 2673 2674 void 2675 xfs_idestroy_fork( 2676 xfs_inode_t *ip, 2677 int whichfork) 2678 { 2679 xfs_ifork_t *ifp; 2680 2681 ifp = XFS_IFORK_PTR(ip, whichfork); 2682 if (ifp->if_broot != NULL) { 2683 kmem_free(ifp->if_broot, ifp->if_broot_bytes); 2684 ifp->if_broot = NULL; 2685 } 2686 2687 /* 2688 * If the format is local, then we can't have an extents 2689 * array so just look for an inline data array. If we're 2690 * not local then we may or may not have an extents list, 2691 * so check and free it up if we do. 2692 */ 2693 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2694 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2695 (ifp->if_u1.if_data != NULL)) { 2696 ASSERT(ifp->if_real_bytes != 0); 2697 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); 2698 ifp->if_u1.if_data = NULL; 2699 ifp->if_real_bytes = 0; 2700 } 2701 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2702 ((ifp->if_flags & XFS_IFEXTIREC) || 2703 ((ifp->if_u1.if_extents != NULL) && 2704 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2705 ASSERT(ifp->if_real_bytes != 0); 2706 xfs_iext_destroy(ifp); 2707 } 2708 ASSERT(ifp->if_u1.if_extents == NULL || 2709 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2710 ASSERT(ifp->if_real_bytes == 0); 2711 if (whichfork == XFS_ATTR_FORK) { 2712 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2713 ip->i_afp = NULL; 2714 } 2715 } 2716 2717 /* 2718 * This is called free all the memory associated with an inode. 2719 * It must free the inode itself and any buffers allocated for 2720 * if_extents/if_data and if_broot. It must also free the lock 2721 * associated with the inode. 2722 */ 2723 void 2724 xfs_idestroy( 2725 xfs_inode_t *ip) 2726 { 2727 2728 switch (ip->i_d.di_mode & S_IFMT) { 2729 case S_IFREG: 2730 case S_IFDIR: 2731 case S_IFLNK: 2732 xfs_idestroy_fork(ip, XFS_DATA_FORK); 2733 break; 2734 } 2735 if (ip->i_afp) 2736 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 2737 mrfree(&ip->i_lock); 2738 mrfree(&ip->i_iolock); 2739 freesema(&ip->i_flock); 2740 #ifdef XFS_BMAP_TRACE 2741 ktrace_free(ip->i_xtrace); 2742 #endif 2743 #ifdef XFS_BMBT_TRACE 2744 ktrace_free(ip->i_btrace); 2745 #endif 2746 #ifdef XFS_RW_TRACE 2747 ktrace_free(ip->i_rwtrace); 2748 #endif 2749 #ifdef XFS_ILOCK_TRACE 2750 ktrace_free(ip->i_lock_trace); 2751 #endif 2752 #ifdef XFS_DIR2_TRACE 2753 ktrace_free(ip->i_dir_trace); 2754 #endif 2755 if (ip->i_itemp) { 2756 /* 2757 * Only if we are shutting down the fs will we see an 2758 * inode still in the AIL. If it is there, we should remove 2759 * it to prevent a use-after-free from occurring. 2760 */ 2761 xfs_mount_t *mp = ip->i_mount; 2762 xfs_log_item_t *lip = &ip->i_itemp->ili_item; 2763 int s; 2764 2765 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) || 2766 XFS_FORCED_SHUTDOWN(ip->i_mount)); 2767 if (lip->li_flags & XFS_LI_IN_AIL) { 2768 AIL_LOCK(mp, s); 2769 if (lip->li_flags & XFS_LI_IN_AIL) 2770 xfs_trans_delete_ail(mp, lip, s); 2771 else 2772 AIL_UNLOCK(mp, s); 2773 } 2774 xfs_inode_item_destroy(ip); 2775 } 2776 kmem_zone_free(xfs_inode_zone, ip); 2777 } 2778 2779 2780 /* 2781 * Increment the pin count of the given buffer. 2782 * This value is protected by ipinlock spinlock in the mount structure. 2783 */ 2784 void 2785 xfs_ipin( 2786 xfs_inode_t *ip) 2787 { 2788 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); 2789 2790 atomic_inc(&ip->i_pincount); 2791 } 2792 2793 /* 2794 * Decrement the pin count of the given inode, and wake up 2795 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2796 * inode must have been previously pinned with a call to xfs_ipin(). 2797 */ 2798 void 2799 xfs_iunpin( 2800 xfs_inode_t *ip) 2801 { 2802 ASSERT(atomic_read(&ip->i_pincount) > 0); 2803 2804 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) { 2805 2806 /* 2807 * If the inode is currently being reclaimed, the link between 2808 * the bhv_vnode and the xfs_inode will be broken after the 2809 * XFS_IRECLAIM* flag is set. Hence, if these flags are not 2810 * set, then we can move forward and mark the linux inode dirty 2811 * knowing that it is still valid as it won't freed until after 2812 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The 2813 * i_flags_lock is used to synchronise the setting of the 2814 * XFS_IRECLAIM* flags and the breaking of the link, and so we 2815 * can execute atomically w.r.t to reclaim by holding this lock 2816 * here. 2817 * 2818 * However, we still need to issue the unpin wakeup call as the 2819 * inode reclaim may be blocked waiting for the inode to become 2820 * unpinned. 2821 */ 2822 2823 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) { 2824 bhv_vnode_t *vp = XFS_ITOV_NULL(ip); 2825 struct inode *inode = NULL; 2826 2827 BUG_ON(vp == NULL); 2828 inode = vn_to_inode(vp); 2829 BUG_ON(inode->i_state & I_CLEAR); 2830 2831 /* make sync come back and flush this inode */ 2832 if (!(inode->i_state & (I_NEW|I_FREEING))) 2833 mark_inode_dirty_sync(inode); 2834 } 2835 spin_unlock(&ip->i_flags_lock); 2836 wake_up(&ip->i_ipin_wait); 2837 } 2838 } 2839 2840 /* 2841 * This is called to wait for the given inode to be unpinned. 2842 * It will sleep until this happens. The caller must have the 2843 * inode locked in at least shared mode so that the buffer cannot 2844 * be subsequently pinned once someone is waiting for it to be 2845 * unpinned. 2846 */ 2847 STATIC void 2848 xfs_iunpin_wait( 2849 xfs_inode_t *ip) 2850 { 2851 xfs_inode_log_item_t *iip; 2852 xfs_lsn_t lsn; 2853 2854 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); 2855 2856 if (atomic_read(&ip->i_pincount) == 0) { 2857 return; 2858 } 2859 2860 iip = ip->i_itemp; 2861 if (iip && iip->ili_last_lsn) { 2862 lsn = iip->ili_last_lsn; 2863 } else { 2864 lsn = (xfs_lsn_t)0; 2865 } 2866 2867 /* 2868 * Give the log a push so we don't wait here too long. 2869 */ 2870 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); 2871 2872 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2873 } 2874 2875 2876 /* 2877 * xfs_iextents_copy() 2878 * 2879 * This is called to copy the REAL extents (as opposed to the delayed 2880 * allocation extents) from the inode into the given buffer. It 2881 * returns the number of bytes copied into the buffer. 2882 * 2883 * If there are no delayed allocation extents, then we can just 2884 * memcpy() the extents into the buffer. Otherwise, we need to 2885 * examine each extent in turn and skip those which are delayed. 2886 */ 2887 int 2888 xfs_iextents_copy( 2889 xfs_inode_t *ip, 2890 xfs_bmbt_rec_t *buffer, 2891 int whichfork) 2892 { 2893 int copied; 2894 xfs_bmbt_rec_t *dest_ep; 2895 xfs_bmbt_rec_t *ep; 2896 int i; 2897 xfs_ifork_t *ifp; 2898 int nrecs; 2899 xfs_fsblock_t start_block; 2900 2901 ifp = XFS_IFORK_PTR(ip, whichfork); 2902 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 2903 ASSERT(ifp->if_bytes > 0); 2904 2905 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2906 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2907 ASSERT(nrecs > 0); 2908 2909 /* 2910 * There are some delayed allocation extents in the 2911 * inode, so copy the extents one at a time and skip 2912 * the delayed ones. There must be at least one 2913 * non-delayed extent. 2914 */ 2915 dest_ep = buffer; 2916 copied = 0; 2917 for (i = 0; i < nrecs; i++) { 2918 ep = xfs_iext_get_ext(ifp, i); 2919 start_block = xfs_bmbt_get_startblock(ep); 2920 if (ISNULLSTARTBLOCK(start_block)) { 2921 /* 2922 * It's a delayed allocation extent, so skip it. 2923 */ 2924 continue; 2925 } 2926 2927 /* Translate to on disk format */ 2928 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), 2929 (__uint64_t*)&dest_ep->l0); 2930 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), 2931 (__uint64_t*)&dest_ep->l1); 2932 dest_ep++; 2933 copied++; 2934 } 2935 ASSERT(copied != 0); 2936 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip)); 2937 2938 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2939 } 2940 2941 /* 2942 * Each of the following cases stores data into the same region 2943 * of the on-disk inode, so only one of them can be valid at 2944 * any given time. While it is possible to have conflicting formats 2945 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2946 * in EXTENTS format, this can only happen when the fork has 2947 * changed formats after being modified but before being flushed. 2948 * In these cases, the format always takes precedence, because the 2949 * format indicates the current state of the fork. 2950 */ 2951 /*ARGSUSED*/ 2952 STATIC int 2953 xfs_iflush_fork( 2954 xfs_inode_t *ip, 2955 xfs_dinode_t *dip, 2956 xfs_inode_log_item_t *iip, 2957 int whichfork, 2958 xfs_buf_t *bp) 2959 { 2960 char *cp; 2961 xfs_ifork_t *ifp; 2962 xfs_mount_t *mp; 2963 #ifdef XFS_TRANS_DEBUG 2964 int first; 2965 #endif 2966 static const short brootflag[2] = 2967 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2968 static const short dataflag[2] = 2969 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2970 static const short extflag[2] = 2971 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2972 2973 if (iip == NULL) 2974 return 0; 2975 ifp = XFS_IFORK_PTR(ip, whichfork); 2976 /* 2977 * This can happen if we gave up in iformat in an error path, 2978 * for the attribute fork. 2979 */ 2980 if (ifp == NULL) { 2981 ASSERT(whichfork == XFS_ATTR_FORK); 2982 return 0; 2983 } 2984 cp = XFS_DFORK_PTR(dip, whichfork); 2985 mp = ip->i_mount; 2986 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2987 case XFS_DINODE_FMT_LOCAL: 2988 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2989 (ifp->if_bytes > 0)) { 2990 ASSERT(ifp->if_u1.if_data != NULL); 2991 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2992 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2993 } 2994 break; 2995 2996 case XFS_DINODE_FMT_EXTENTS: 2997 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2998 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2999 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 3000 (ifp->if_bytes == 0)); 3001 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 3002 (ifp->if_bytes > 0)); 3003 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 3004 (ifp->if_bytes > 0)) { 3005 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 3006 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 3007 whichfork); 3008 } 3009 break; 3010 3011 case XFS_DINODE_FMT_BTREE: 3012 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 3013 (ifp->if_broot_bytes > 0)) { 3014 ASSERT(ifp->if_broot != NULL); 3015 ASSERT(ifp->if_broot_bytes <= 3016 (XFS_IFORK_SIZE(ip, whichfork) + 3017 XFS_BROOT_SIZE_ADJ)); 3018 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, 3019 (xfs_bmdr_block_t *)cp, 3020 XFS_DFORK_SIZE(dip, mp, whichfork)); 3021 } 3022 break; 3023 3024 case XFS_DINODE_FMT_DEV: 3025 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 3026 ASSERT(whichfork == XFS_DATA_FORK); 3027 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); 3028 } 3029 break; 3030 3031 case XFS_DINODE_FMT_UUID: 3032 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 3033 ASSERT(whichfork == XFS_DATA_FORK); 3034 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, 3035 sizeof(uuid_t)); 3036 } 3037 break; 3038 3039 default: 3040 ASSERT(0); 3041 break; 3042 } 3043 3044 return 0; 3045 } 3046 3047 /* 3048 * xfs_iflush() will write a modified inode's changes out to the 3049 * inode's on disk home. The caller must have the inode lock held 3050 * in at least shared mode and the inode flush semaphore must be 3051 * held as well. The inode lock will still be held upon return from 3052 * the call and the caller is free to unlock it. 3053 * The inode flush lock will be unlocked when the inode reaches the disk. 3054 * The flags indicate how the inode's buffer should be written out. 3055 */ 3056 int 3057 xfs_iflush( 3058 xfs_inode_t *ip, 3059 uint flags) 3060 { 3061 xfs_inode_log_item_t *iip; 3062 xfs_buf_t *bp; 3063 xfs_dinode_t *dip; 3064 xfs_mount_t *mp; 3065 int error; 3066 /* REFERENCED */ 3067 xfs_chash_t *ch; 3068 xfs_inode_t *iq; 3069 int clcount; /* count of inodes clustered */ 3070 int bufwasdelwri; 3071 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 3072 SPLDECL(s); 3073 3074 XFS_STATS_INC(xs_iflush_count); 3075 3076 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3077 ASSERT(issemalocked(&(ip->i_flock))); 3078 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3079 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3080 3081 iip = ip->i_itemp; 3082 mp = ip->i_mount; 3083 3084 /* 3085 * If the inode isn't dirty, then just release the inode 3086 * flush lock and do nothing. 3087 */ 3088 if ((ip->i_update_core == 0) && 3089 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3090 ASSERT((iip != NULL) ? 3091 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); 3092 xfs_ifunlock(ip); 3093 return 0; 3094 } 3095 3096 /* 3097 * We can't flush the inode until it is unpinned, so 3098 * wait for it. We know noone new can pin it, because 3099 * we are holding the inode lock shared and you need 3100 * to hold it exclusively to pin the inode. 3101 */ 3102 xfs_iunpin_wait(ip); 3103 3104 /* 3105 * This may have been unpinned because the filesystem is shutting 3106 * down forcibly. If that's the case we must not write this inode 3107 * to disk, because the log record didn't make it to disk! 3108 */ 3109 if (XFS_FORCED_SHUTDOWN(mp)) { 3110 ip->i_update_core = 0; 3111 if (iip) 3112 iip->ili_format.ilf_fields = 0; 3113 xfs_ifunlock(ip); 3114 return XFS_ERROR(EIO); 3115 } 3116 3117 /* 3118 * Get the buffer containing the on-disk inode. 3119 */ 3120 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); 3121 if (error) { 3122 xfs_ifunlock(ip); 3123 return error; 3124 } 3125 3126 /* 3127 * Decide how buffer will be flushed out. This is done before 3128 * the call to xfs_iflush_int because this field is zeroed by it. 3129 */ 3130 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3131 /* 3132 * Flush out the inode buffer according to the directions 3133 * of the caller. In the cases where the caller has given 3134 * us a choice choose the non-delwri case. This is because 3135 * the inode is in the AIL and we need to get it out soon. 3136 */ 3137 switch (flags) { 3138 case XFS_IFLUSH_SYNC: 3139 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3140 flags = 0; 3141 break; 3142 case XFS_IFLUSH_ASYNC: 3143 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3144 flags = INT_ASYNC; 3145 break; 3146 case XFS_IFLUSH_DELWRI: 3147 flags = INT_DELWRI; 3148 break; 3149 default: 3150 ASSERT(0); 3151 flags = 0; 3152 break; 3153 } 3154 } else { 3155 switch (flags) { 3156 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 3157 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 3158 case XFS_IFLUSH_DELWRI: 3159 flags = INT_DELWRI; 3160 break; 3161 case XFS_IFLUSH_ASYNC: 3162 flags = INT_ASYNC; 3163 break; 3164 case XFS_IFLUSH_SYNC: 3165 flags = 0; 3166 break; 3167 default: 3168 ASSERT(0); 3169 flags = 0; 3170 break; 3171 } 3172 } 3173 3174 /* 3175 * First flush out the inode that xfs_iflush was called with. 3176 */ 3177 error = xfs_iflush_int(ip, bp); 3178 if (error) { 3179 goto corrupt_out; 3180 } 3181 3182 /* 3183 * inode clustering: 3184 * see if other inodes can be gathered into this write 3185 */ 3186 3187 ip->i_chash->chl_buf = bp; 3188 3189 ch = XFS_CHASH(mp, ip->i_blkno); 3190 s = mutex_spinlock(&ch->ch_lock); 3191 3192 clcount = 0; 3193 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { 3194 /* 3195 * Do an un-protected check to see if the inode is dirty and 3196 * is a candidate for flushing. These checks will be repeated 3197 * later after the appropriate locks are acquired. 3198 */ 3199 iip = iq->i_itemp; 3200 if ((iq->i_update_core == 0) && 3201 ((iip == NULL) || 3202 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && 3203 xfs_ipincount(iq) == 0) { 3204 continue; 3205 } 3206 3207 /* 3208 * Try to get locks. If any are unavailable, 3209 * then this inode cannot be flushed and is skipped. 3210 */ 3211 3212 /* get inode locks (just i_lock) */ 3213 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { 3214 /* get inode flush lock */ 3215 if (xfs_iflock_nowait(iq)) { 3216 /* check if pinned */ 3217 if (xfs_ipincount(iq) == 0) { 3218 /* arriving here means that 3219 * this inode can be flushed. 3220 * first re-check that it's 3221 * dirty 3222 */ 3223 iip = iq->i_itemp; 3224 if ((iq->i_update_core != 0)|| 3225 ((iip != NULL) && 3226 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3227 clcount++; 3228 error = xfs_iflush_int(iq, bp); 3229 if (error) { 3230 xfs_iunlock(iq, 3231 XFS_ILOCK_SHARED); 3232 goto cluster_corrupt_out; 3233 } 3234 } else { 3235 xfs_ifunlock(iq); 3236 } 3237 } else { 3238 xfs_ifunlock(iq); 3239 } 3240 } 3241 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3242 } 3243 } 3244 mutex_spinunlock(&ch->ch_lock, s); 3245 3246 if (clcount) { 3247 XFS_STATS_INC(xs_icluster_flushcnt); 3248 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3249 } 3250 3251 /* 3252 * If the buffer is pinned then push on the log so we won't 3253 * get stuck waiting in the write for too long. 3254 */ 3255 if (XFS_BUF_ISPINNED(bp)){ 3256 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 3257 } 3258 3259 if (flags & INT_DELWRI) { 3260 xfs_bdwrite(mp, bp); 3261 } else if (flags & INT_ASYNC) { 3262 xfs_bawrite(mp, bp); 3263 } else { 3264 error = xfs_bwrite(mp, bp); 3265 } 3266 return error; 3267 3268 corrupt_out: 3269 xfs_buf_relse(bp); 3270 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3271 xfs_iflush_abort(ip); 3272 /* 3273 * Unlocks the flush lock 3274 */ 3275 return XFS_ERROR(EFSCORRUPTED); 3276 3277 cluster_corrupt_out: 3278 /* Corruption detected in the clustering loop. Invalidate the 3279 * inode buffer and shut down the filesystem. 3280 */ 3281 mutex_spinunlock(&ch->ch_lock, s); 3282 3283 /* 3284 * Clean up the buffer. If it was B_DELWRI, just release it -- 3285 * brelse can handle it with no problems. If not, shut down the 3286 * filesystem before releasing the buffer. 3287 */ 3288 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { 3289 xfs_buf_relse(bp); 3290 } 3291 3292 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3293 3294 if(!bufwasdelwri) { 3295 /* 3296 * Just like incore_relse: if we have b_iodone functions, 3297 * mark the buffer as an error and call them. Otherwise 3298 * mark it as stale and brelse. 3299 */ 3300 if (XFS_BUF_IODONE_FUNC(bp)) { 3301 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 3302 XFS_BUF_UNDONE(bp); 3303 XFS_BUF_STALE(bp); 3304 XFS_BUF_SHUT(bp); 3305 XFS_BUF_ERROR(bp,EIO); 3306 xfs_biodone(bp); 3307 } else { 3308 XFS_BUF_STALE(bp); 3309 xfs_buf_relse(bp); 3310 } 3311 } 3312 3313 xfs_iflush_abort(iq); 3314 /* 3315 * Unlocks the flush lock 3316 */ 3317 return XFS_ERROR(EFSCORRUPTED); 3318 } 3319 3320 3321 STATIC int 3322 xfs_iflush_int( 3323 xfs_inode_t *ip, 3324 xfs_buf_t *bp) 3325 { 3326 xfs_inode_log_item_t *iip; 3327 xfs_dinode_t *dip; 3328 xfs_mount_t *mp; 3329 #ifdef XFS_TRANS_DEBUG 3330 int first; 3331 #endif 3332 SPLDECL(s); 3333 3334 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); 3335 ASSERT(issemalocked(&(ip->i_flock))); 3336 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3337 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3338 3339 iip = ip->i_itemp; 3340 mp = ip->i_mount; 3341 3342 3343 /* 3344 * If the inode isn't dirty, then just release the inode 3345 * flush lock and do nothing. 3346 */ 3347 if ((ip->i_update_core == 0) && 3348 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { 3349 xfs_ifunlock(ip); 3350 return 0; 3351 } 3352 3353 /* set *dip = inode's place in the buffer */ 3354 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); 3355 3356 /* 3357 * Clear i_update_core before copying out the data. 3358 * This is for coordination with our timestamp updates 3359 * that don't hold the inode lock. They will always 3360 * update the timestamps BEFORE setting i_update_core, 3361 * so if we clear i_update_core after they set it we 3362 * are guaranteed to see their updates to the timestamps. 3363 * I believe that this depends on strongly ordered memory 3364 * semantics, but we have that. We use the SYNCHRONIZE 3365 * macro to make sure that the compiler does not reorder 3366 * the i_update_core access below the data copy below. 3367 */ 3368 ip->i_update_core = 0; 3369 SYNCHRONIZE(); 3370 3371 /* 3372 * Make sure to get the latest atime from the Linux inode. 3373 */ 3374 xfs_synchronize_atime(ip); 3375 3376 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, 3377 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3378 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3379 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3380 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); 3381 goto corrupt_out; 3382 } 3383 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3384 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3385 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3386 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3387 ip->i_ino, ip, ip->i_d.di_magic); 3388 goto corrupt_out; 3389 } 3390 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3391 if (XFS_TEST_ERROR( 3392 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3393 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3394 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3395 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3396 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3397 ip->i_ino, ip); 3398 goto corrupt_out; 3399 } 3400 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3401 if (XFS_TEST_ERROR( 3402 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3403 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3404 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3405 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3406 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3407 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3408 ip->i_ino, ip); 3409 goto corrupt_out; 3410 } 3411 } 3412 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3413 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3414 XFS_RANDOM_IFLUSH_5)) { 3415 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3416 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3417 ip->i_ino, 3418 ip->i_d.di_nextents + ip->i_d.di_anextents, 3419 ip->i_d.di_nblocks, 3420 ip); 3421 goto corrupt_out; 3422 } 3423 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3424 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3425 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3426 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3427 ip->i_ino, ip->i_d.di_forkoff, ip); 3428 goto corrupt_out; 3429 } 3430 /* 3431 * bump the flush iteration count, used to detect flushes which 3432 * postdate a log record during recovery. 3433 */ 3434 3435 ip->i_d.di_flushiter++; 3436 3437 /* 3438 * Copy the dirty parts of the inode into the on-disk 3439 * inode. We always copy out the core of the inode, 3440 * because if the inode is dirty at all the core must 3441 * be. 3442 */ 3443 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); 3444 3445 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3446 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3447 ip->i_d.di_flushiter = 0; 3448 3449 /* 3450 * If this is really an old format inode and the superblock version 3451 * has not been updated to support only new format inodes, then 3452 * convert back to the old inode format. If the superblock version 3453 * has been updated, then make the conversion permanent. 3454 */ 3455 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || 3456 XFS_SB_VERSION_HASNLINK(&mp->m_sb)); 3457 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { 3458 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { 3459 /* 3460 * Convert it back. 3461 */ 3462 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3463 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); 3464 } else { 3465 /* 3466 * The superblock version has already been bumped, 3467 * so just make the conversion to the new inode 3468 * format permanent. 3469 */ 3470 ip->i_d.di_version = XFS_DINODE_VERSION_2; 3471 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); 3472 ip->i_d.di_onlink = 0; 3473 dip->di_core.di_onlink = 0; 3474 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3475 memset(&(dip->di_core.di_pad[0]), 0, 3476 sizeof(dip->di_core.di_pad)); 3477 ASSERT(ip->i_d.di_projid == 0); 3478 } 3479 } 3480 3481 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { 3482 goto corrupt_out; 3483 } 3484 3485 if (XFS_IFORK_Q(ip)) { 3486 /* 3487 * The only error from xfs_iflush_fork is on the data fork. 3488 */ 3489 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3490 } 3491 xfs_inobp_check(mp, bp); 3492 3493 /* 3494 * We've recorded everything logged in the inode, so we'd 3495 * like to clear the ilf_fields bits so we don't log and 3496 * flush things unnecessarily. However, we can't stop 3497 * logging all this information until the data we've copied 3498 * into the disk buffer is written to disk. If we did we might 3499 * overwrite the copy of the inode in the log with all the 3500 * data after re-logging only part of it, and in the face of 3501 * a crash we wouldn't have all the data we need to recover. 3502 * 3503 * What we do is move the bits to the ili_last_fields field. 3504 * When logging the inode, these bits are moved back to the 3505 * ilf_fields field. In the xfs_iflush_done() routine we 3506 * clear ili_last_fields, since we know that the information 3507 * those bits represent is permanently on disk. As long as 3508 * the flush completes before the inode is logged again, then 3509 * both ilf_fields and ili_last_fields will be cleared. 3510 * 3511 * We can play with the ilf_fields bits here, because the inode 3512 * lock must be held exclusively in order to set bits there 3513 * and the flush lock protects the ili_last_fields bits. 3514 * Set ili_logged so the flush done 3515 * routine can tell whether or not to look in the AIL. 3516 * Also, store the current LSN of the inode so that we can tell 3517 * whether the item has moved in the AIL from xfs_iflush_done(). 3518 * In order to read the lsn we need the AIL lock, because 3519 * it is a 64 bit value that cannot be read atomically. 3520 */ 3521 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3522 iip->ili_last_fields = iip->ili_format.ilf_fields; 3523 iip->ili_format.ilf_fields = 0; 3524 iip->ili_logged = 1; 3525 3526 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ 3527 AIL_LOCK(mp,s); 3528 iip->ili_flush_lsn = iip->ili_item.li_lsn; 3529 AIL_UNLOCK(mp, s); 3530 3531 /* 3532 * Attach the function xfs_iflush_done to the inode's 3533 * buffer. This will remove the inode from the AIL 3534 * and unlock the inode's flush lock when the inode is 3535 * completely written to disk. 3536 */ 3537 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3538 xfs_iflush_done, (xfs_log_item_t *)iip); 3539 3540 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3541 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3542 } else { 3543 /* 3544 * We're flushing an inode which is not in the AIL and has 3545 * not been logged but has i_update_core set. For this 3546 * case we can use a B_DELWRI flush and immediately drop 3547 * the inode flush lock because we can avoid the whole 3548 * AIL state thing. It's OK to drop the flush lock now, 3549 * because we've already locked the buffer and to do anything 3550 * you really need both. 3551 */ 3552 if (iip != NULL) { 3553 ASSERT(iip->ili_logged == 0); 3554 ASSERT(iip->ili_last_fields == 0); 3555 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3556 } 3557 xfs_ifunlock(ip); 3558 } 3559 3560 return 0; 3561 3562 corrupt_out: 3563 return XFS_ERROR(EFSCORRUPTED); 3564 } 3565 3566 3567 /* 3568 * Flush all inactive inodes in mp. 3569 */ 3570 void 3571 xfs_iflush_all( 3572 xfs_mount_t *mp) 3573 { 3574 xfs_inode_t *ip; 3575 bhv_vnode_t *vp; 3576 3577 again: 3578 XFS_MOUNT_ILOCK(mp); 3579 ip = mp->m_inodes; 3580 if (ip == NULL) 3581 goto out; 3582 3583 do { 3584 /* Make sure we skip markers inserted by sync */ 3585 if (ip->i_mount == NULL) { 3586 ip = ip->i_mnext; 3587 continue; 3588 } 3589 3590 vp = XFS_ITOV_NULL(ip); 3591 if (!vp) { 3592 XFS_MOUNT_IUNLOCK(mp); 3593 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); 3594 goto again; 3595 } 3596 3597 ASSERT(vn_count(vp) == 0); 3598 3599 ip = ip->i_mnext; 3600 } while (ip != mp->m_inodes); 3601 out: 3602 XFS_MOUNT_IUNLOCK(mp); 3603 } 3604 3605 /* 3606 * xfs_iaccess: check accessibility of inode for mode. 3607 */ 3608 int 3609 xfs_iaccess( 3610 xfs_inode_t *ip, 3611 mode_t mode, 3612 cred_t *cr) 3613 { 3614 int error; 3615 mode_t orgmode = mode; 3616 struct inode *inode = vn_to_inode(XFS_ITOV(ip)); 3617 3618 if (mode & S_IWUSR) { 3619 umode_t imode = inode->i_mode; 3620 3621 if (IS_RDONLY(inode) && 3622 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) 3623 return XFS_ERROR(EROFS); 3624 3625 if (IS_IMMUTABLE(inode)) 3626 return XFS_ERROR(EACCES); 3627 } 3628 3629 /* 3630 * If there's an Access Control List it's used instead of 3631 * the mode bits. 3632 */ 3633 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) 3634 return error ? XFS_ERROR(error) : 0; 3635 3636 if (current_fsuid(cr) != ip->i_d.di_uid) { 3637 mode >>= 3; 3638 if (!in_group_p((gid_t)ip->i_d.di_gid)) 3639 mode >>= 3; 3640 } 3641 3642 /* 3643 * If the DACs are ok we don't need any capability check. 3644 */ 3645 if ((ip->i_d.di_mode & mode) == mode) 3646 return 0; 3647 /* 3648 * Read/write DACs are always overridable. 3649 * Executable DACs are overridable if at least one exec bit is set. 3650 */ 3651 if (!(orgmode & S_IXUSR) || 3652 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 3653 if (capable_cred(cr, CAP_DAC_OVERRIDE)) 3654 return 0; 3655 3656 if ((orgmode == S_IRUSR) || 3657 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { 3658 if (capable_cred(cr, CAP_DAC_READ_SEARCH)) 3659 return 0; 3660 #ifdef NOISE 3661 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); 3662 #endif /* NOISE */ 3663 return XFS_ERROR(EACCES); 3664 } 3665 return XFS_ERROR(EACCES); 3666 } 3667 3668 /* 3669 * xfs_iroundup: round up argument to next power of two 3670 */ 3671 uint 3672 xfs_iroundup( 3673 uint v) 3674 { 3675 int i; 3676 uint m; 3677 3678 if ((v & (v - 1)) == 0) 3679 return v; 3680 ASSERT((v & 0x80000000) == 0); 3681 if ((v & (v + 1)) == 0) 3682 return v + 1; 3683 for (i = 0, m = 1; i < 31; i++, m <<= 1) { 3684 if (v & m) 3685 continue; 3686 v |= m; 3687 if ((v & (v + 1)) == 0) 3688 return v + 1; 3689 } 3690 ASSERT(0); 3691 return( 0 ); 3692 } 3693 3694 #ifdef XFS_ILOCK_TRACE 3695 ktrace_t *xfs_ilock_trace_buf; 3696 3697 void 3698 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3699 { 3700 ktrace_enter(ip->i_lock_trace, 3701 (void *)ip, 3702 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3703 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3704 (void *)ra, /* caller of ilock */ 3705 (void *)(unsigned long)current_cpu(), 3706 (void *)(unsigned long)current_pid(), 3707 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3708 } 3709 #endif 3710 3711 /* 3712 * Return a pointer to the extent record at file index idx. 3713 */ 3714 xfs_bmbt_rec_t * 3715 xfs_iext_get_ext( 3716 xfs_ifork_t *ifp, /* inode fork pointer */ 3717 xfs_extnum_t idx) /* index of target extent */ 3718 { 3719 ASSERT(idx >= 0); 3720 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3721 return ifp->if_u1.if_ext_irec->er_extbuf; 3722 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3723 xfs_ext_irec_t *erp; /* irec pointer */ 3724 int erp_idx = 0; /* irec index */ 3725 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3726 3727 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3728 return &erp->er_extbuf[page_idx]; 3729 } else if (ifp->if_bytes) { 3730 return &ifp->if_u1.if_extents[idx]; 3731 } else { 3732 return NULL; 3733 } 3734 } 3735 3736 /* 3737 * Insert new item(s) into the extent records for incore inode 3738 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3739 */ 3740 void 3741 xfs_iext_insert( 3742 xfs_ifork_t *ifp, /* inode fork pointer */ 3743 xfs_extnum_t idx, /* starting index of new items */ 3744 xfs_extnum_t count, /* number of inserted items */ 3745 xfs_bmbt_irec_t *new) /* items to insert */ 3746 { 3747 xfs_bmbt_rec_t *ep; /* extent record pointer */ 3748 xfs_extnum_t i; /* extent record index */ 3749 3750 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3751 xfs_iext_add(ifp, idx, count); 3752 for (i = idx; i < idx + count; i++, new++) { 3753 ep = xfs_iext_get_ext(ifp, i); 3754 xfs_bmbt_set_all(ep, new); 3755 } 3756 } 3757 3758 /* 3759 * This is called when the amount of space required for incore file 3760 * extents needs to be increased. The ext_diff parameter stores the 3761 * number of new extents being added and the idx parameter contains 3762 * the extent index where the new extents will be added. If the new 3763 * extents are being appended, then we just need to (re)allocate and 3764 * initialize the space. Otherwise, if the new extents are being 3765 * inserted into the middle of the existing entries, a bit more work 3766 * is required to make room for the new extents to be inserted. The 3767 * caller is responsible for filling in the new extent entries upon 3768 * return. 3769 */ 3770 void 3771 xfs_iext_add( 3772 xfs_ifork_t *ifp, /* inode fork pointer */ 3773 xfs_extnum_t idx, /* index to begin adding exts */ 3774 int ext_diff) /* number of extents to add */ 3775 { 3776 int byte_diff; /* new bytes being added */ 3777 int new_size; /* size of extents after adding */ 3778 xfs_extnum_t nextents; /* number of extents in file */ 3779 3780 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3781 ASSERT((idx >= 0) && (idx <= nextents)); 3782 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3783 new_size = ifp->if_bytes + byte_diff; 3784 /* 3785 * If the new number of extents (nextents + ext_diff) 3786 * fits inside the inode, then continue to use the inline 3787 * extent buffer. 3788 */ 3789 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3790 if (idx < nextents) { 3791 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3792 &ifp->if_u2.if_inline_ext[idx], 3793 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3794 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3795 } 3796 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3797 ifp->if_real_bytes = 0; 3798 ifp->if_lastex = nextents + ext_diff; 3799 } 3800 /* 3801 * Otherwise use a linear (direct) extent list. 3802 * If the extents are currently inside the inode, 3803 * xfs_iext_realloc_direct will switch us from 3804 * inline to direct extent allocation mode. 3805 */ 3806 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3807 xfs_iext_realloc_direct(ifp, new_size); 3808 if (idx < nextents) { 3809 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3810 &ifp->if_u1.if_extents[idx], 3811 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3812 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3813 } 3814 } 3815 /* Indirection array */ 3816 else { 3817 xfs_ext_irec_t *erp; 3818 int erp_idx = 0; 3819 int page_idx = idx; 3820 3821 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3822 if (ifp->if_flags & XFS_IFEXTIREC) { 3823 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3824 } else { 3825 xfs_iext_irec_init(ifp); 3826 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3827 erp = ifp->if_u1.if_ext_irec; 3828 } 3829 /* Extents fit in target extent page */ 3830 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3831 if (page_idx < erp->er_extcount) { 3832 memmove(&erp->er_extbuf[page_idx + ext_diff], 3833 &erp->er_extbuf[page_idx], 3834 (erp->er_extcount - page_idx) * 3835 sizeof(xfs_bmbt_rec_t)); 3836 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3837 } 3838 erp->er_extcount += ext_diff; 3839 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3840 } 3841 /* Insert a new extent page */ 3842 else if (erp) { 3843 xfs_iext_add_indirect_multi(ifp, 3844 erp_idx, page_idx, ext_diff); 3845 } 3846 /* 3847 * If extent(s) are being appended to the last page in 3848 * the indirection array and the new extent(s) don't fit 3849 * in the page, then erp is NULL and erp_idx is set to 3850 * the next index needed in the indirection array. 3851 */ 3852 else { 3853 int count = ext_diff; 3854 3855 while (count) { 3856 erp = xfs_iext_irec_new(ifp, erp_idx); 3857 erp->er_extcount = count; 3858 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3859 if (count) { 3860 erp_idx++; 3861 } 3862 } 3863 } 3864 } 3865 ifp->if_bytes = new_size; 3866 } 3867 3868 /* 3869 * This is called when incore extents are being added to the indirection 3870 * array and the new extents do not fit in the target extent list. The 3871 * erp_idx parameter contains the irec index for the target extent list 3872 * in the indirection array, and the idx parameter contains the extent 3873 * index within the list. The number of extents being added is stored 3874 * in the count parameter. 3875 * 3876 * |-------| |-------| 3877 * | | | | idx - number of extents before idx 3878 * | idx | | count | 3879 * | | | | count - number of extents being inserted at idx 3880 * |-------| |-------| 3881 * | count | | nex2 | nex2 - number of extents after idx + count 3882 * |-------| |-------| 3883 */ 3884 void 3885 xfs_iext_add_indirect_multi( 3886 xfs_ifork_t *ifp, /* inode fork pointer */ 3887 int erp_idx, /* target extent irec index */ 3888 xfs_extnum_t idx, /* index within target list */ 3889 int count) /* new extents being added */ 3890 { 3891 int byte_diff; /* new bytes being added */ 3892 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3893 xfs_extnum_t ext_diff; /* number of extents to add */ 3894 xfs_extnum_t ext_cnt; /* new extents still needed */ 3895 xfs_extnum_t nex2; /* extents after idx + count */ 3896 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3897 int nlists; /* number of irec's (lists) */ 3898 3899 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3900 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3901 nex2 = erp->er_extcount - idx; 3902 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3903 3904 /* 3905 * Save second part of target extent list 3906 * (all extents past */ 3907 if (nex2) { 3908 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3909 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP); 3910 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3911 erp->er_extcount -= nex2; 3912 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3913 memset(&erp->er_extbuf[idx], 0, byte_diff); 3914 } 3915 3916 /* 3917 * Add the new extents to the end of the target 3918 * list, then allocate new irec record(s) and 3919 * extent buffer(s) as needed to store the rest 3920 * of the new extents. 3921 */ 3922 ext_cnt = count; 3923 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3924 if (ext_diff) { 3925 erp->er_extcount += ext_diff; 3926 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3927 ext_cnt -= ext_diff; 3928 } 3929 while (ext_cnt) { 3930 erp_idx++; 3931 erp = xfs_iext_irec_new(ifp, erp_idx); 3932 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3933 erp->er_extcount = ext_diff; 3934 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3935 ext_cnt -= ext_diff; 3936 } 3937 3938 /* Add nex2 extents back to indirection array */ 3939 if (nex2) { 3940 xfs_extnum_t ext_avail; 3941 int i; 3942 3943 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3944 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3945 i = 0; 3946 /* 3947 * If nex2 extents fit in the current page, append 3948 * nex2_ep after the new extents. 3949 */ 3950 if (nex2 <= ext_avail) { 3951 i = erp->er_extcount; 3952 } 3953 /* 3954 * Otherwise, check if space is available in the 3955 * next page. 3956 */ 3957 else if ((erp_idx < nlists - 1) && 3958 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3959 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3960 erp_idx++; 3961 erp++; 3962 /* Create a hole for nex2 extents */ 3963 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3964 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3965 } 3966 /* 3967 * Final choice, create a new extent page for 3968 * nex2 extents. 3969 */ 3970 else { 3971 erp_idx++; 3972 erp = xfs_iext_irec_new(ifp, erp_idx); 3973 } 3974 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3975 kmem_free(nex2_ep, byte_diff); 3976 erp->er_extcount += nex2; 3977 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3978 } 3979 } 3980 3981 /* 3982 * This is called when the amount of space required for incore file 3983 * extents needs to be decreased. The ext_diff parameter stores the 3984 * number of extents to be removed and the idx parameter contains 3985 * the extent index where the extents will be removed from. 3986 * 3987 * If the amount of space needed has decreased below the linear 3988 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3989 * extent array. Otherwise, use kmem_realloc() to adjust the 3990 * size to what is needed. 3991 */ 3992 void 3993 xfs_iext_remove( 3994 xfs_ifork_t *ifp, /* inode fork pointer */ 3995 xfs_extnum_t idx, /* index to begin removing exts */ 3996 int ext_diff) /* number of extents to remove */ 3997 { 3998 xfs_extnum_t nextents; /* number of extents in file */ 3999 int new_size; /* size of extents after removal */ 4000 4001 ASSERT(ext_diff > 0); 4002 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4003 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 4004 4005 if (new_size == 0) { 4006 xfs_iext_destroy(ifp); 4007 } else if (ifp->if_flags & XFS_IFEXTIREC) { 4008 xfs_iext_remove_indirect(ifp, idx, ext_diff); 4009 } else if (ifp->if_real_bytes) { 4010 xfs_iext_remove_direct(ifp, idx, ext_diff); 4011 } else { 4012 xfs_iext_remove_inline(ifp, idx, ext_diff); 4013 } 4014 ifp->if_bytes = new_size; 4015 } 4016 4017 /* 4018 * This removes ext_diff extents from the inline buffer, beginning 4019 * at extent index idx. 4020 */ 4021 void 4022 xfs_iext_remove_inline( 4023 xfs_ifork_t *ifp, /* inode fork pointer */ 4024 xfs_extnum_t idx, /* index to begin removing exts */ 4025 int ext_diff) /* number of extents to remove */ 4026 { 4027 int nextents; /* number of extents in file */ 4028 4029 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4030 ASSERT(idx < XFS_INLINE_EXTS); 4031 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4032 ASSERT(((nextents - ext_diff) > 0) && 4033 (nextents - ext_diff) < XFS_INLINE_EXTS); 4034 4035 if (idx + ext_diff < nextents) { 4036 memmove(&ifp->if_u2.if_inline_ext[idx], 4037 &ifp->if_u2.if_inline_ext[idx + ext_diff], 4038 (nextents - (idx + ext_diff)) * 4039 sizeof(xfs_bmbt_rec_t)); 4040 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 4041 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4042 } else { 4043 memset(&ifp->if_u2.if_inline_ext[idx], 0, 4044 ext_diff * sizeof(xfs_bmbt_rec_t)); 4045 } 4046 } 4047 4048 /* 4049 * This removes ext_diff extents from a linear (direct) extent list, 4050 * beginning at extent index idx. If the extents are being removed 4051 * from the end of the list (ie. truncate) then we just need to re- 4052 * allocate the list to remove the extra space. Otherwise, if the 4053 * extents are being removed from the middle of the existing extent 4054 * entries, then we first need to move the extent records beginning 4055 * at idx + ext_diff up in the list to overwrite the records being 4056 * removed, then remove the extra space via kmem_realloc. 4057 */ 4058 void 4059 xfs_iext_remove_direct( 4060 xfs_ifork_t *ifp, /* inode fork pointer */ 4061 xfs_extnum_t idx, /* index to begin removing exts */ 4062 int ext_diff) /* number of extents to remove */ 4063 { 4064 xfs_extnum_t nextents; /* number of extents in file */ 4065 int new_size; /* size of extents after removal */ 4066 4067 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4068 new_size = ifp->if_bytes - 4069 (ext_diff * sizeof(xfs_bmbt_rec_t)); 4070 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4071 4072 if (new_size == 0) { 4073 xfs_iext_destroy(ifp); 4074 return; 4075 } 4076 /* Move extents up in the list (if needed) */ 4077 if (idx + ext_diff < nextents) { 4078 memmove(&ifp->if_u1.if_extents[idx], 4079 &ifp->if_u1.if_extents[idx + ext_diff], 4080 (nextents - (idx + ext_diff)) * 4081 sizeof(xfs_bmbt_rec_t)); 4082 } 4083 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 4084 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 4085 /* 4086 * Reallocate the direct extent list. If the extents 4087 * will fit inside the inode then xfs_iext_realloc_direct 4088 * will switch from direct to inline extent allocation 4089 * mode for us. 4090 */ 4091 xfs_iext_realloc_direct(ifp, new_size); 4092 ifp->if_bytes = new_size; 4093 } 4094 4095 /* 4096 * This is called when incore extents are being removed from the 4097 * indirection array and the extents being removed span multiple extent 4098 * buffers. The idx parameter contains the file extent index where we 4099 * want to begin removing extents, and the count parameter contains 4100 * how many extents need to be removed. 4101 * 4102 * |-------| |-------| 4103 * | nex1 | | | nex1 - number of extents before idx 4104 * |-------| | count | 4105 * | | | | count - number of extents being removed at idx 4106 * | count | |-------| 4107 * | | | nex2 | nex2 - number of extents after idx + count 4108 * |-------| |-------| 4109 */ 4110 void 4111 xfs_iext_remove_indirect( 4112 xfs_ifork_t *ifp, /* inode fork pointer */ 4113 xfs_extnum_t idx, /* index to begin removing extents */ 4114 int count) /* number of extents to remove */ 4115 { 4116 xfs_ext_irec_t *erp; /* indirection array pointer */ 4117 int erp_idx = 0; /* indirection array index */ 4118 xfs_extnum_t ext_cnt; /* extents left to remove */ 4119 xfs_extnum_t ext_diff; /* extents to remove in current list */ 4120 xfs_extnum_t nex1; /* number of extents before idx */ 4121 xfs_extnum_t nex2; /* extents after idx + count */ 4122 int nlists; /* entries in indirection array */ 4123 int page_idx = idx; /* index in target extent list */ 4124 4125 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4126 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 4127 ASSERT(erp != NULL); 4128 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4129 nex1 = page_idx; 4130 ext_cnt = count; 4131 while (ext_cnt) { 4132 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 4133 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 4134 /* 4135 * Check for deletion of entire list; 4136 * xfs_iext_irec_remove() updates extent offsets. 4137 */ 4138 if (ext_diff == erp->er_extcount) { 4139 xfs_iext_irec_remove(ifp, erp_idx); 4140 ext_cnt -= ext_diff; 4141 nex1 = 0; 4142 if (ext_cnt) { 4143 ASSERT(erp_idx < ifp->if_real_bytes / 4144 XFS_IEXT_BUFSZ); 4145 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4146 nex1 = 0; 4147 continue; 4148 } else { 4149 break; 4150 } 4151 } 4152 /* Move extents up (if needed) */ 4153 if (nex2) { 4154 memmove(&erp->er_extbuf[nex1], 4155 &erp->er_extbuf[nex1 + ext_diff], 4156 nex2 * sizeof(xfs_bmbt_rec_t)); 4157 } 4158 /* Zero out rest of page */ 4159 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 4160 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 4161 /* Update remaining counters */ 4162 erp->er_extcount -= ext_diff; 4163 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 4164 ext_cnt -= ext_diff; 4165 nex1 = 0; 4166 erp_idx++; 4167 erp++; 4168 } 4169 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 4170 xfs_iext_irec_compact(ifp); 4171 } 4172 4173 /* 4174 * Create, destroy, or resize a linear (direct) block of extents. 4175 */ 4176 void 4177 xfs_iext_realloc_direct( 4178 xfs_ifork_t *ifp, /* inode fork pointer */ 4179 int new_size) /* new size of extents */ 4180 { 4181 int rnew_size; /* real new size of extents */ 4182 4183 rnew_size = new_size; 4184 4185 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 4186 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 4187 (new_size != ifp->if_real_bytes))); 4188 4189 /* Free extent records */ 4190 if (new_size == 0) { 4191 xfs_iext_destroy(ifp); 4192 } 4193 /* Resize direct extent list and zero any new bytes */ 4194 else if (ifp->if_real_bytes) { 4195 /* Check if extents will fit inside the inode */ 4196 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 4197 xfs_iext_direct_to_inline(ifp, new_size / 4198 (uint)sizeof(xfs_bmbt_rec_t)); 4199 ifp->if_bytes = new_size; 4200 return; 4201 } 4202 if (!is_power_of_2(new_size)){ 4203 rnew_size = xfs_iroundup(new_size); 4204 } 4205 if (rnew_size != ifp->if_real_bytes) { 4206 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4207 kmem_realloc(ifp->if_u1.if_extents, 4208 rnew_size, 4209 ifp->if_real_bytes, 4210 KM_SLEEP); 4211 } 4212 if (rnew_size > ifp->if_real_bytes) { 4213 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 4214 (uint)sizeof(xfs_bmbt_rec_t)], 0, 4215 rnew_size - ifp->if_real_bytes); 4216 } 4217 } 4218 /* 4219 * Switch from the inline extent buffer to a direct 4220 * extent list. Be sure to include the inline extent 4221 * bytes in new_size. 4222 */ 4223 else { 4224 new_size += ifp->if_bytes; 4225 if (!is_power_of_2(new_size)) { 4226 rnew_size = xfs_iroundup(new_size); 4227 } 4228 xfs_iext_inline_to_direct(ifp, rnew_size); 4229 } 4230 ifp->if_real_bytes = rnew_size; 4231 ifp->if_bytes = new_size; 4232 } 4233 4234 /* 4235 * Switch from linear (direct) extent records to inline buffer. 4236 */ 4237 void 4238 xfs_iext_direct_to_inline( 4239 xfs_ifork_t *ifp, /* inode fork pointer */ 4240 xfs_extnum_t nextents) /* number of extents in file */ 4241 { 4242 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 4243 ASSERT(nextents <= XFS_INLINE_EXTS); 4244 /* 4245 * The inline buffer was zeroed when we switched 4246 * from inline to direct extent allocation mode, 4247 * so we don't need to clear it here. 4248 */ 4249 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 4250 nextents * sizeof(xfs_bmbt_rec_t)); 4251 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4252 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 4253 ifp->if_real_bytes = 0; 4254 } 4255 4256 /* 4257 * Switch from inline buffer to linear (direct) extent records. 4258 * new_size should already be rounded up to the next power of 2 4259 * by the caller (when appropriate), so use new_size as it is. 4260 * However, since new_size may be rounded up, we can't update 4261 * if_bytes here. It is the caller's responsibility to update 4262 * if_bytes upon return. 4263 */ 4264 void 4265 xfs_iext_inline_to_direct( 4266 xfs_ifork_t *ifp, /* inode fork pointer */ 4267 int new_size) /* number of extents in file */ 4268 { 4269 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4270 kmem_alloc(new_size, KM_SLEEP); 4271 memset(ifp->if_u1.if_extents, 0, new_size); 4272 if (ifp->if_bytes) { 4273 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 4274 ifp->if_bytes); 4275 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4276 sizeof(xfs_bmbt_rec_t)); 4277 } 4278 ifp->if_real_bytes = new_size; 4279 } 4280 4281 /* 4282 * Resize an extent indirection array to new_size bytes. 4283 */ 4284 void 4285 xfs_iext_realloc_indirect( 4286 xfs_ifork_t *ifp, /* inode fork pointer */ 4287 int new_size) /* new indirection array size */ 4288 { 4289 int nlists; /* number of irec's (ex lists) */ 4290 int size; /* current indirection array size */ 4291 4292 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4293 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4294 size = nlists * sizeof(xfs_ext_irec_t); 4295 ASSERT(ifp->if_real_bytes); 4296 ASSERT((new_size >= 0) && (new_size != size)); 4297 if (new_size == 0) { 4298 xfs_iext_destroy(ifp); 4299 } else { 4300 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 4301 kmem_realloc(ifp->if_u1.if_ext_irec, 4302 new_size, size, KM_SLEEP); 4303 } 4304 } 4305 4306 /* 4307 * Switch from indirection array to linear (direct) extent allocations. 4308 */ 4309 void 4310 xfs_iext_indirect_to_direct( 4311 xfs_ifork_t *ifp) /* inode fork pointer */ 4312 { 4313 xfs_bmbt_rec_t *ep; /* extent record pointer */ 4314 xfs_extnum_t nextents; /* number of extents in file */ 4315 int size; /* size of file extents */ 4316 4317 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4318 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4319 ASSERT(nextents <= XFS_LINEAR_EXTS); 4320 size = nextents * sizeof(xfs_bmbt_rec_t); 4321 4322 xfs_iext_irec_compact_full(ifp); 4323 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 4324 4325 ep = ifp->if_u1.if_ext_irec->er_extbuf; 4326 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); 4327 ifp->if_flags &= ~XFS_IFEXTIREC; 4328 ifp->if_u1.if_extents = ep; 4329 ifp->if_bytes = size; 4330 if (nextents < XFS_LINEAR_EXTS) { 4331 xfs_iext_realloc_direct(ifp, size); 4332 } 4333 } 4334 4335 /* 4336 * Free incore file extents. 4337 */ 4338 void 4339 xfs_iext_destroy( 4340 xfs_ifork_t *ifp) /* inode fork pointer */ 4341 { 4342 if (ifp->if_flags & XFS_IFEXTIREC) { 4343 int erp_idx; 4344 int nlists; 4345 4346 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4347 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 4348 xfs_iext_irec_remove(ifp, erp_idx); 4349 } 4350 ifp->if_flags &= ~XFS_IFEXTIREC; 4351 } else if (ifp->if_real_bytes) { 4352 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); 4353 } else if (ifp->if_bytes) { 4354 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 4355 sizeof(xfs_bmbt_rec_t)); 4356 } 4357 ifp->if_u1.if_extents = NULL; 4358 ifp->if_real_bytes = 0; 4359 ifp->if_bytes = 0; 4360 } 4361 4362 /* 4363 * Return a pointer to the extent record for file system block bno. 4364 */ 4365 xfs_bmbt_rec_t * /* pointer to found extent record */ 4366 xfs_iext_bno_to_ext( 4367 xfs_ifork_t *ifp, /* inode fork pointer */ 4368 xfs_fileoff_t bno, /* block number to search for */ 4369 xfs_extnum_t *idxp) /* index of target extent */ 4370 { 4371 xfs_bmbt_rec_t *base; /* pointer to first extent */ 4372 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 4373 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */ 4374 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4375 int high; /* upper boundary in search */ 4376 xfs_extnum_t idx = 0; /* index of target extent */ 4377 int low; /* lower boundary in search */ 4378 xfs_extnum_t nextents; /* number of file extents */ 4379 xfs_fileoff_t startoff = 0; /* start offset of extent */ 4380 4381 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4382 if (nextents == 0) { 4383 *idxp = 0; 4384 return NULL; 4385 } 4386 low = 0; 4387 if (ifp->if_flags & XFS_IFEXTIREC) { 4388 /* Find target extent list */ 4389 int erp_idx = 0; 4390 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 4391 base = erp->er_extbuf; 4392 high = erp->er_extcount - 1; 4393 } else { 4394 base = ifp->if_u1.if_extents; 4395 high = nextents - 1; 4396 } 4397 /* Binary search extent records */ 4398 while (low <= high) { 4399 idx = (low + high) >> 1; 4400 ep = base + idx; 4401 startoff = xfs_bmbt_get_startoff(ep); 4402 blockcount = xfs_bmbt_get_blockcount(ep); 4403 if (bno < startoff) { 4404 high = idx - 1; 4405 } else if (bno >= startoff + blockcount) { 4406 low = idx + 1; 4407 } else { 4408 /* Convert back to file-based extent index */ 4409 if (ifp->if_flags & XFS_IFEXTIREC) { 4410 idx += erp->er_extoff; 4411 } 4412 *idxp = idx; 4413 return ep; 4414 } 4415 } 4416 /* Convert back to file-based extent index */ 4417 if (ifp->if_flags & XFS_IFEXTIREC) { 4418 idx += erp->er_extoff; 4419 } 4420 if (bno >= startoff + blockcount) { 4421 if (++idx == nextents) { 4422 ep = NULL; 4423 } else { 4424 ep = xfs_iext_get_ext(ifp, idx); 4425 } 4426 } 4427 *idxp = idx; 4428 return ep; 4429 } 4430 4431 /* 4432 * Return a pointer to the indirection array entry containing the 4433 * extent record for filesystem block bno. Store the index of the 4434 * target irec in *erp_idxp. 4435 */ 4436 xfs_ext_irec_t * /* pointer to found extent record */ 4437 xfs_iext_bno_to_irec( 4438 xfs_ifork_t *ifp, /* inode fork pointer */ 4439 xfs_fileoff_t bno, /* block number to search for */ 4440 int *erp_idxp) /* irec index of target ext list */ 4441 { 4442 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 4443 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 4444 int erp_idx; /* indirection array index */ 4445 int nlists; /* number of extent irec's (lists) */ 4446 int high; /* binary search upper limit */ 4447 int low; /* binary search lower limit */ 4448 4449 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4450 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4451 erp_idx = 0; 4452 low = 0; 4453 high = nlists - 1; 4454 while (low <= high) { 4455 erp_idx = (low + high) >> 1; 4456 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4457 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4458 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4459 high = erp_idx - 1; 4460 } else if (erp_next && bno >= 4461 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4462 low = erp_idx + 1; 4463 } else { 4464 break; 4465 } 4466 } 4467 *erp_idxp = erp_idx; 4468 return erp; 4469 } 4470 4471 /* 4472 * Return a pointer to the indirection array entry containing the 4473 * extent record at file extent index *idxp. Store the index of the 4474 * target irec in *erp_idxp and store the page index of the target 4475 * extent record in *idxp. 4476 */ 4477 xfs_ext_irec_t * 4478 xfs_iext_idx_to_irec( 4479 xfs_ifork_t *ifp, /* inode fork pointer */ 4480 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4481 int *erp_idxp, /* pointer to target irec */ 4482 int realloc) /* new bytes were just added */ 4483 { 4484 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4485 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4486 int erp_idx; /* indirection array index */ 4487 int nlists; /* number of irec's (ex lists) */ 4488 int high; /* binary search upper limit */ 4489 int low; /* binary search lower limit */ 4490 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4491 4492 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4493 ASSERT(page_idx >= 0 && page_idx <= 4494 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4495 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4496 erp_idx = 0; 4497 low = 0; 4498 high = nlists - 1; 4499 4500 /* Binary search extent irec's */ 4501 while (low <= high) { 4502 erp_idx = (low + high) >> 1; 4503 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4504 prev = erp_idx > 0 ? erp - 1 : NULL; 4505 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4506 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4507 high = erp_idx - 1; 4508 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4509 (page_idx == erp->er_extoff + erp->er_extcount && 4510 !realloc)) { 4511 low = erp_idx + 1; 4512 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4513 erp->er_extcount == XFS_LINEAR_EXTS) { 4514 ASSERT(realloc); 4515 page_idx = 0; 4516 erp_idx++; 4517 erp = erp_idx < nlists ? erp + 1 : NULL; 4518 break; 4519 } else { 4520 page_idx -= erp->er_extoff; 4521 break; 4522 } 4523 } 4524 *idxp = page_idx; 4525 *erp_idxp = erp_idx; 4526 return(erp); 4527 } 4528 4529 /* 4530 * Allocate and initialize an indirection array once the space needed 4531 * for incore extents increases above XFS_IEXT_BUFSZ. 4532 */ 4533 void 4534 xfs_iext_irec_init( 4535 xfs_ifork_t *ifp) /* inode fork pointer */ 4536 { 4537 xfs_ext_irec_t *erp; /* indirection array pointer */ 4538 xfs_extnum_t nextents; /* number of extents in file */ 4539 4540 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4541 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4542 ASSERT(nextents <= XFS_LINEAR_EXTS); 4543 4544 erp = (xfs_ext_irec_t *) 4545 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP); 4546 4547 if (nextents == 0) { 4548 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) 4549 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4550 } else if (!ifp->if_real_bytes) { 4551 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4552 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4553 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4554 } 4555 erp->er_extbuf = ifp->if_u1.if_extents; 4556 erp->er_extcount = nextents; 4557 erp->er_extoff = 0; 4558 4559 ifp->if_flags |= XFS_IFEXTIREC; 4560 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4561 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4562 ifp->if_u1.if_ext_irec = erp; 4563 4564 return; 4565 } 4566 4567 /* 4568 * Allocate and initialize a new entry in the indirection array. 4569 */ 4570 xfs_ext_irec_t * 4571 xfs_iext_irec_new( 4572 xfs_ifork_t *ifp, /* inode fork pointer */ 4573 int erp_idx) /* index for new irec */ 4574 { 4575 xfs_ext_irec_t *erp; /* indirection array pointer */ 4576 int i; /* loop counter */ 4577 int nlists; /* number of irec's (ex lists) */ 4578 4579 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4580 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4581 4582 /* Resize indirection array */ 4583 xfs_iext_realloc_indirect(ifp, ++nlists * 4584 sizeof(xfs_ext_irec_t)); 4585 /* 4586 * Move records down in the array so the 4587 * new page can use erp_idx. 4588 */ 4589 erp = ifp->if_u1.if_ext_irec; 4590 for (i = nlists - 1; i > erp_idx; i--) { 4591 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4592 } 4593 ASSERT(i == erp_idx); 4594 4595 /* Initialize new extent record */ 4596 erp = ifp->if_u1.if_ext_irec; 4597 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *) 4598 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); 4599 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4600 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4601 erp[erp_idx].er_extcount = 0; 4602 erp[erp_idx].er_extoff = erp_idx > 0 ? 4603 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4604 return (&erp[erp_idx]); 4605 } 4606 4607 /* 4608 * Remove a record from the indirection array. 4609 */ 4610 void 4611 xfs_iext_irec_remove( 4612 xfs_ifork_t *ifp, /* inode fork pointer */ 4613 int erp_idx) /* irec index to remove */ 4614 { 4615 xfs_ext_irec_t *erp; /* indirection array pointer */ 4616 int i; /* loop counter */ 4617 int nlists; /* number of irec's (ex lists) */ 4618 4619 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4620 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4621 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4622 if (erp->er_extbuf) { 4623 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4624 -erp->er_extcount); 4625 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ); 4626 } 4627 /* Compact extent records */ 4628 erp = ifp->if_u1.if_ext_irec; 4629 for (i = erp_idx; i < nlists - 1; i++) { 4630 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4631 } 4632 /* 4633 * Manually free the last extent record from the indirection 4634 * array. A call to xfs_iext_realloc_indirect() with a size 4635 * of zero would result in a call to xfs_iext_destroy() which 4636 * would in turn call this function again, creating a nasty 4637 * infinite loop. 4638 */ 4639 if (--nlists) { 4640 xfs_iext_realloc_indirect(ifp, 4641 nlists * sizeof(xfs_ext_irec_t)); 4642 } else { 4643 kmem_free(ifp->if_u1.if_ext_irec, 4644 sizeof(xfs_ext_irec_t)); 4645 } 4646 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4647 } 4648 4649 /* 4650 * This is called to clean up large amounts of unused memory allocated 4651 * by the indirection array. Before compacting anything though, verify 4652 * that the indirection array is still needed and switch back to the 4653 * linear extent list (or even the inline buffer) if possible. The 4654 * compaction policy is as follows: 4655 * 4656 * Full Compaction: Extents fit into a single page (or inline buffer) 4657 * Full Compaction: Extents occupy less than 10% of allocated space 4658 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space 4659 * No Compaction: Extents occupy at least 50% of allocated space 4660 */ 4661 void 4662 xfs_iext_irec_compact( 4663 xfs_ifork_t *ifp) /* inode fork pointer */ 4664 { 4665 xfs_extnum_t nextents; /* number of extents in file */ 4666 int nlists; /* number of irec's (ex lists) */ 4667 4668 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4669 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4670 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4671 4672 if (nextents == 0) { 4673 xfs_iext_destroy(ifp); 4674 } else if (nextents <= XFS_INLINE_EXTS) { 4675 xfs_iext_indirect_to_direct(ifp); 4676 xfs_iext_direct_to_inline(ifp, nextents); 4677 } else if (nextents <= XFS_LINEAR_EXTS) { 4678 xfs_iext_indirect_to_direct(ifp); 4679 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { 4680 xfs_iext_irec_compact_full(ifp); 4681 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4682 xfs_iext_irec_compact_pages(ifp); 4683 } 4684 } 4685 4686 /* 4687 * Combine extents from neighboring extent pages. 4688 */ 4689 void 4690 xfs_iext_irec_compact_pages( 4691 xfs_ifork_t *ifp) /* inode fork pointer */ 4692 { 4693 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4694 int erp_idx = 0; /* indirection array index */ 4695 int nlists; /* number of irec's (ex lists) */ 4696 4697 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4698 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4699 while (erp_idx < nlists - 1) { 4700 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4701 erp_next = erp + 1; 4702 if (erp_next->er_extcount <= 4703 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4704 memmove(&erp->er_extbuf[erp->er_extcount], 4705 erp_next->er_extbuf, erp_next->er_extcount * 4706 sizeof(xfs_bmbt_rec_t)); 4707 erp->er_extcount += erp_next->er_extcount; 4708 /* 4709 * Free page before removing extent record 4710 * so er_extoffs don't get modified in 4711 * xfs_iext_irec_remove. 4712 */ 4713 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ); 4714 erp_next->er_extbuf = NULL; 4715 xfs_iext_irec_remove(ifp, erp_idx + 1); 4716 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4717 } else { 4718 erp_idx++; 4719 } 4720 } 4721 } 4722 4723 /* 4724 * Fully compact the extent records managed by the indirection array. 4725 */ 4726 void 4727 xfs_iext_irec_compact_full( 4728 xfs_ifork_t *ifp) /* inode fork pointer */ 4729 { 4730 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */ 4731 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ 4732 int erp_idx = 0; /* extent irec index */ 4733 int ext_avail; /* empty entries in ex list */ 4734 int ext_diff; /* number of exts to add */ 4735 int nlists; /* number of irec's (ex lists) */ 4736 4737 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4738 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4739 erp = ifp->if_u1.if_ext_irec; 4740 ep = &erp->er_extbuf[erp->er_extcount]; 4741 erp_next = erp + 1; 4742 ep_next = erp_next->er_extbuf; 4743 while (erp_idx < nlists - 1) { 4744 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 4745 ext_diff = MIN(ext_avail, erp_next->er_extcount); 4746 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); 4747 erp->er_extcount += ext_diff; 4748 erp_next->er_extcount -= ext_diff; 4749 /* Remove next page */ 4750 if (erp_next->er_extcount == 0) { 4751 /* 4752 * Free page before removing extent record 4753 * so er_extoffs don't get modified in 4754 * xfs_iext_irec_remove. 4755 */ 4756 kmem_free(erp_next->er_extbuf, 4757 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4758 erp_next->er_extbuf = NULL; 4759 xfs_iext_irec_remove(ifp, erp_idx + 1); 4760 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4761 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4762 /* Update next page */ 4763 } else { 4764 /* Move rest of page up to become next new page */ 4765 memmove(erp_next->er_extbuf, ep_next, 4766 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); 4767 ep_next = erp_next->er_extbuf; 4768 memset(&ep_next[erp_next->er_extcount], 0, 4769 (XFS_LINEAR_EXTS - erp_next->er_extcount) * 4770 sizeof(xfs_bmbt_rec_t)); 4771 } 4772 if (erp->er_extcount == XFS_LINEAR_EXTS) { 4773 erp_idx++; 4774 if (erp_idx < nlists) 4775 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4776 else 4777 break; 4778 } 4779 ep = &erp->er_extbuf[erp->er_extcount]; 4780 erp_next = erp + 1; 4781 ep_next = erp_next->er_extbuf; 4782 } 4783 } 4784 4785 /* 4786 * This is called to update the er_extoff field in the indirection 4787 * array when extents have been added or removed from one of the 4788 * extent lists. erp_idx contains the irec index to begin updating 4789 * at and ext_diff contains the number of extents that were added 4790 * or removed. 4791 */ 4792 void 4793 xfs_iext_irec_update_extoffs( 4794 xfs_ifork_t *ifp, /* inode fork pointer */ 4795 int erp_idx, /* irec index to update */ 4796 int ext_diff) /* number of new extents */ 4797 { 4798 int i; /* loop counter */ 4799 int nlists; /* number of irec's (ex lists */ 4800 4801 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4802 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4803 for (i = erp_idx; i < nlists; i++) { 4804 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4805 } 4806 } 4807