1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 64 return ip->i_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (xfs_need_iread_extents(&ip->i_df)) 115 lock_mode = XFS_ILOCK_EXCL; 116 xfs_ilock(ip, lock_mode); 117 return lock_mode; 118 } 119 120 uint 121 xfs_ilock_attr_map_shared( 122 struct xfs_inode *ip) 123 { 124 uint lock_mode = XFS_ILOCK_SHARED; 125 126 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 127 lock_mode = XFS_ILOCK_EXCL; 128 xfs_ilock(ip, lock_mode); 129 return lock_mode; 130 } 131 132 /* 133 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 134 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 135 * various combinations of the locks to be obtained. 136 * 137 * The 3 locks should always be ordered so that the IO lock is obtained first, 138 * the mmap lock second and the ilock last in order to prevent deadlock. 139 * 140 * Basic locking order: 141 * 142 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 143 * 144 * mmap_lock locking order: 145 * 146 * i_rwsem -> page lock -> mmap_lock 147 * mmap_lock -> i_mmap_lock -> page_lock 148 * 149 * The difference in mmap_lock locking order mean that we cannot hold the 150 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 151 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 152 * in get_user_pages() to map the user pages into the kernel address space for 153 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 154 * page faults already hold the mmap_lock. 155 * 156 * Hence to serialise fully against both syscall and mmap based IO, we need to 157 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 158 * taken in places where we need to invalidate the page cache in a race 159 * free manner (e.g. truncate, hole punch and other extent manipulation 160 * functions). 161 */ 162 void 163 xfs_ilock( 164 xfs_inode_t *ip, 165 uint lock_flags) 166 { 167 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 168 169 /* 170 * You can't set both SHARED and EXCL for the same lock, 171 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 172 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 173 */ 174 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 175 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 176 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 177 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 178 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 179 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 180 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 181 182 if (lock_flags & XFS_IOLOCK_EXCL) { 183 down_write_nested(&VFS_I(ip)->i_rwsem, 184 XFS_IOLOCK_DEP(lock_flags)); 185 } else if (lock_flags & XFS_IOLOCK_SHARED) { 186 down_read_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } 189 190 if (lock_flags & XFS_MMAPLOCK_EXCL) 191 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 192 else if (lock_flags & XFS_MMAPLOCK_SHARED) 193 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 194 195 if (lock_flags & XFS_ILOCK_EXCL) 196 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 197 else if (lock_flags & XFS_ILOCK_SHARED) 198 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 199 } 200 201 /* 202 * This is just like xfs_ilock(), except that the caller 203 * is guaranteed not to sleep. It returns 1 if it gets 204 * the requested locks and 0 otherwise. If the IO lock is 205 * obtained but the inode lock cannot be, then the IO lock 206 * is dropped before returning. 207 * 208 * ip -- the inode being locked 209 * lock_flags -- this parameter indicates the inode's locks to be 210 * to be locked. See the comment for xfs_ilock() for a list 211 * of valid values. 212 */ 213 int 214 xfs_ilock_nowait( 215 xfs_inode_t *ip, 216 uint lock_flags) 217 { 218 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 219 220 /* 221 * You can't set both SHARED and EXCL for the same lock, 222 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 223 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 224 */ 225 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 226 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 227 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 228 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 229 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 230 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 231 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 232 233 if (lock_flags & XFS_IOLOCK_EXCL) { 234 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 235 goto out; 236 } else if (lock_flags & XFS_IOLOCK_SHARED) { 237 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } 240 241 if (lock_flags & XFS_MMAPLOCK_EXCL) { 242 if (!mrtryupdate(&ip->i_mmaplock)) 243 goto out_undo_iolock; 244 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 245 if (!mrtryaccess(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } 248 249 if (lock_flags & XFS_ILOCK_EXCL) { 250 if (!mrtryupdate(&ip->i_lock)) 251 goto out_undo_mmaplock; 252 } else if (lock_flags & XFS_ILOCK_SHARED) { 253 if (!mrtryaccess(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } 256 return 1; 257 258 out_undo_mmaplock: 259 if (lock_flags & XFS_MMAPLOCK_EXCL) 260 mrunlock_excl(&ip->i_mmaplock); 261 else if (lock_flags & XFS_MMAPLOCK_SHARED) 262 mrunlock_shared(&ip->i_mmaplock); 263 out_undo_iolock: 264 if (lock_flags & XFS_IOLOCK_EXCL) 265 up_write(&VFS_I(ip)->i_rwsem); 266 else if (lock_flags & XFS_IOLOCK_SHARED) 267 up_read(&VFS_I(ip)->i_rwsem); 268 out: 269 return 0; 270 } 271 272 /* 273 * xfs_iunlock() is used to drop the inode locks acquired with 274 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 275 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 276 * that we know which locks to drop. 277 * 278 * ip -- the inode being unlocked 279 * lock_flags -- this parameter indicates the inode's locks to be 280 * to be unlocked. See the comment for xfs_ilock() for a list 281 * of valid values for this parameter. 282 * 283 */ 284 void 285 xfs_iunlock( 286 xfs_inode_t *ip, 287 uint lock_flags) 288 { 289 /* 290 * You can't set both SHARED and EXCL for the same lock, 291 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 292 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 293 */ 294 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 295 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 296 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 297 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 298 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 299 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 300 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 301 ASSERT(lock_flags != 0); 302 303 if (lock_flags & XFS_IOLOCK_EXCL) 304 up_write(&VFS_I(ip)->i_rwsem); 305 else if (lock_flags & XFS_IOLOCK_SHARED) 306 up_read(&VFS_I(ip)->i_rwsem); 307 308 if (lock_flags & XFS_MMAPLOCK_EXCL) 309 mrunlock_excl(&ip->i_mmaplock); 310 else if (lock_flags & XFS_MMAPLOCK_SHARED) 311 mrunlock_shared(&ip->i_mmaplock); 312 313 if (lock_flags & XFS_ILOCK_EXCL) 314 mrunlock_excl(&ip->i_lock); 315 else if (lock_flags & XFS_ILOCK_SHARED) 316 mrunlock_shared(&ip->i_lock); 317 318 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 319 } 320 321 /* 322 * give up write locks. the i/o lock cannot be held nested 323 * if it is being demoted. 324 */ 325 void 326 xfs_ilock_demote( 327 xfs_inode_t *ip, 328 uint lock_flags) 329 { 330 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 331 ASSERT((lock_flags & 332 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 333 334 if (lock_flags & XFS_ILOCK_EXCL) 335 mrdemote(&ip->i_lock); 336 if (lock_flags & XFS_MMAPLOCK_EXCL) 337 mrdemote(&ip->i_mmaplock); 338 if (lock_flags & XFS_IOLOCK_EXCL) 339 downgrade_write(&VFS_I(ip)->i_rwsem); 340 341 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 342 } 343 344 #if defined(DEBUG) || defined(XFS_WARN) 345 int 346 xfs_isilocked( 347 xfs_inode_t *ip, 348 uint lock_flags) 349 { 350 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 351 if (!(lock_flags & XFS_ILOCK_SHARED)) 352 return !!ip->i_lock.mr_writer; 353 return rwsem_is_locked(&ip->i_lock.mr_lock); 354 } 355 356 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 357 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 358 return !!ip->i_mmaplock.mr_writer; 359 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 360 } 361 362 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 363 if (!(lock_flags & XFS_IOLOCK_SHARED)) 364 return !debug_locks || 365 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 366 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 367 } 368 369 ASSERT(0); 370 return 0; 371 } 372 #endif 373 374 /* 375 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 376 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 377 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 378 * errors and warnings. 379 */ 380 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 381 static bool 382 xfs_lockdep_subclass_ok( 383 int subclass) 384 { 385 return subclass < MAX_LOCKDEP_SUBCLASSES; 386 } 387 #else 388 #define xfs_lockdep_subclass_ok(subclass) (true) 389 #endif 390 391 /* 392 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 393 * value. This can be called for any type of inode lock combination, including 394 * parent locking. Care must be taken to ensure we don't overrun the subclass 395 * storage fields in the class mask we build. 396 */ 397 static inline int 398 xfs_lock_inumorder(int lock_mode, int subclass) 399 { 400 int class = 0; 401 402 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 403 XFS_ILOCK_RTSUM))); 404 ASSERT(xfs_lockdep_subclass_ok(subclass)); 405 406 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 407 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 408 class += subclass << XFS_IOLOCK_SHIFT; 409 } 410 411 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 412 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 413 class += subclass << XFS_MMAPLOCK_SHIFT; 414 } 415 416 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 417 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 418 class += subclass << XFS_ILOCK_SHIFT; 419 } 420 421 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 422 } 423 424 /* 425 * The following routine will lock n inodes in exclusive mode. We assume the 426 * caller calls us with the inodes in i_ino order. 427 * 428 * We need to detect deadlock where an inode that we lock is in the AIL and we 429 * start waiting for another inode that is locked by a thread in a long running 430 * transaction (such as truncate). This can result in deadlock since the long 431 * running trans might need to wait for the inode we just locked in order to 432 * push the tail and free space in the log. 433 * 434 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 435 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 436 * lock more than one at a time, lockdep will report false positives saying we 437 * have violated locking orders. 438 */ 439 static void 440 xfs_lock_inodes( 441 struct xfs_inode **ips, 442 int inodes, 443 uint lock_mode) 444 { 445 int attempts = 0, i, j, try_lock; 446 struct xfs_log_item *lp; 447 448 /* 449 * Currently supports between 2 and 5 inodes with exclusive locking. We 450 * support an arbitrary depth of locking here, but absolute limits on 451 * inodes depend on the type of locking and the limits placed by 452 * lockdep annotations in xfs_lock_inumorder. These are all checked by 453 * the asserts. 454 */ 455 ASSERT(ips && inodes >= 2 && inodes <= 5); 456 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 457 XFS_ILOCK_EXCL)); 458 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 459 XFS_ILOCK_SHARED))); 460 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 461 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 462 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 463 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 464 465 if (lock_mode & XFS_IOLOCK_EXCL) { 466 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 467 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 468 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 469 470 try_lock = 0; 471 i = 0; 472 again: 473 for (; i < inodes; i++) { 474 ASSERT(ips[i]); 475 476 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 477 continue; 478 479 /* 480 * If try_lock is not set yet, make sure all locked inodes are 481 * not in the AIL. If any are, set try_lock to be used later. 482 */ 483 if (!try_lock) { 484 for (j = (i - 1); j >= 0 && !try_lock; j--) { 485 lp = &ips[j]->i_itemp->ili_item; 486 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 487 try_lock++; 488 } 489 } 490 491 /* 492 * If any of the previous locks we have locked is in the AIL, 493 * we must TRY to get the second and subsequent locks. If 494 * we can't get any, we must release all we have 495 * and try again. 496 */ 497 if (!try_lock) { 498 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 499 continue; 500 } 501 502 /* try_lock means we have an inode locked that is in the AIL. */ 503 ASSERT(i != 0); 504 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 505 continue; 506 507 /* 508 * Unlock all previous guys and try again. xfs_iunlock will try 509 * to push the tail if the inode is in the AIL. 510 */ 511 attempts++; 512 for (j = i - 1; j >= 0; j--) { 513 /* 514 * Check to see if we've already unlocked this one. Not 515 * the first one going back, and the inode ptr is the 516 * same. 517 */ 518 if (j != (i - 1) && ips[j] == ips[j + 1]) 519 continue; 520 521 xfs_iunlock(ips[j], lock_mode); 522 } 523 524 if ((attempts % 5) == 0) { 525 delay(1); /* Don't just spin the CPU */ 526 } 527 i = 0; 528 try_lock = 0; 529 goto again; 530 } 531 } 532 533 /* 534 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 535 * the mmaplock or the ilock, but not more than one type at a time. If we lock 536 * more than one at a time, lockdep will report false positives saying we have 537 * violated locking orders. The iolock must be double-locked separately since 538 * we use i_rwsem for that. We now support taking one lock EXCL and the other 539 * SHARED. 540 */ 541 void 542 xfs_lock_two_inodes( 543 struct xfs_inode *ip0, 544 uint ip0_mode, 545 struct xfs_inode *ip1, 546 uint ip1_mode) 547 { 548 struct xfs_inode *temp; 549 uint mode_temp; 550 int attempts = 0; 551 struct xfs_log_item *lp; 552 553 ASSERT(hweight32(ip0_mode) == 1); 554 ASSERT(hweight32(ip1_mode) == 1); 555 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 556 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 557 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 558 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 560 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 561 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 562 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 563 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 564 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 565 566 ASSERT(ip0->i_ino != ip1->i_ino); 567 568 if (ip0->i_ino > ip1->i_ino) { 569 temp = ip0; 570 ip0 = ip1; 571 ip1 = temp; 572 mode_temp = ip0_mode; 573 ip0_mode = ip1_mode; 574 ip1_mode = mode_temp; 575 } 576 577 again: 578 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 579 580 /* 581 * If the first lock we have locked is in the AIL, we must TRY to get 582 * the second lock. If we can't get it, we must release the first one 583 * and try again. 584 */ 585 lp = &ip0->i_itemp->ili_item; 586 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 587 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 588 xfs_iunlock(ip0, ip0_mode); 589 if ((++attempts % 5) == 0) 590 delay(1); /* Don't just spin the CPU */ 591 goto again; 592 } 593 } else { 594 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 595 } 596 } 597 598 uint 599 xfs_ip2xflags( 600 struct xfs_inode *ip) 601 { 602 uint flags = 0; 603 604 if (ip->i_diflags & XFS_DIFLAG_ANY) { 605 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 606 flags |= FS_XFLAG_REALTIME; 607 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 608 flags |= FS_XFLAG_PREALLOC; 609 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 610 flags |= FS_XFLAG_IMMUTABLE; 611 if (ip->i_diflags & XFS_DIFLAG_APPEND) 612 flags |= FS_XFLAG_APPEND; 613 if (ip->i_diflags & XFS_DIFLAG_SYNC) 614 flags |= FS_XFLAG_SYNC; 615 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 616 flags |= FS_XFLAG_NOATIME; 617 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 618 flags |= FS_XFLAG_NODUMP; 619 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 620 flags |= FS_XFLAG_RTINHERIT; 621 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 622 flags |= FS_XFLAG_PROJINHERIT; 623 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 624 flags |= FS_XFLAG_NOSYMLINKS; 625 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 626 flags |= FS_XFLAG_EXTSIZE; 627 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 628 flags |= FS_XFLAG_EXTSZINHERIT; 629 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 630 flags |= FS_XFLAG_NODEFRAG; 631 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 632 flags |= FS_XFLAG_FILESTREAM; 633 } 634 635 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 636 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 637 flags |= FS_XFLAG_DAX; 638 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 639 flags |= FS_XFLAG_COWEXTSIZE; 640 } 641 642 if (XFS_IFORK_Q(ip)) 643 flags |= FS_XFLAG_HASATTR; 644 return flags; 645 } 646 647 /* 648 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 649 * is allowed, otherwise it has to be an exact match. If a CI match is found, 650 * ci_name->name will point to a the actual name (caller must free) or 651 * will be set to NULL if an exact match is found. 652 */ 653 int 654 xfs_lookup( 655 xfs_inode_t *dp, 656 struct xfs_name *name, 657 xfs_inode_t **ipp, 658 struct xfs_name *ci_name) 659 { 660 xfs_ino_t inum; 661 int error; 662 663 trace_xfs_lookup(dp, name); 664 665 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 666 return -EIO; 667 668 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 669 if (error) 670 goto out_unlock; 671 672 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 673 if (error) 674 goto out_free_name; 675 676 return 0; 677 678 out_free_name: 679 if (ci_name) 680 kmem_free(ci_name->name); 681 out_unlock: 682 *ipp = NULL; 683 return error; 684 } 685 686 /* Propagate di_flags from a parent inode to a child inode. */ 687 static void 688 xfs_inode_inherit_flags( 689 struct xfs_inode *ip, 690 const struct xfs_inode *pip) 691 { 692 unsigned int di_flags = 0; 693 xfs_failaddr_t failaddr; 694 umode_t mode = VFS_I(ip)->i_mode; 695 696 if (S_ISDIR(mode)) { 697 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 698 di_flags |= XFS_DIFLAG_RTINHERIT; 699 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 700 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 701 ip->i_extsize = pip->i_extsize; 702 } 703 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 704 di_flags |= XFS_DIFLAG_PROJINHERIT; 705 } else if (S_ISREG(mode)) { 706 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 707 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) 708 di_flags |= XFS_DIFLAG_REALTIME; 709 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 710 di_flags |= XFS_DIFLAG_EXTSIZE; 711 ip->i_extsize = pip->i_extsize; 712 } 713 } 714 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 715 xfs_inherit_noatime) 716 di_flags |= XFS_DIFLAG_NOATIME; 717 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 718 xfs_inherit_nodump) 719 di_flags |= XFS_DIFLAG_NODUMP; 720 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 721 xfs_inherit_sync) 722 di_flags |= XFS_DIFLAG_SYNC; 723 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 724 xfs_inherit_nosymlinks) 725 di_flags |= XFS_DIFLAG_NOSYMLINKS; 726 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 727 xfs_inherit_nodefrag) 728 di_flags |= XFS_DIFLAG_NODEFRAG; 729 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 730 di_flags |= XFS_DIFLAG_FILESTREAM; 731 732 ip->i_diflags |= di_flags; 733 734 /* 735 * Inode verifiers on older kernels only check that the extent size 736 * hint is an integer multiple of the rt extent size on realtime files. 737 * They did not check the hint alignment on a directory with both 738 * rtinherit and extszinherit flags set. If the misaligned hint is 739 * propagated from a directory into a new realtime file, new file 740 * allocations will fail due to math errors in the rt allocator and/or 741 * trip the verifiers. Validate the hint settings in the new file so 742 * that we don't let broken hints propagate. 743 */ 744 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 745 VFS_I(ip)->i_mode, ip->i_diflags); 746 if (failaddr) { 747 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 748 XFS_DIFLAG_EXTSZINHERIT); 749 ip->i_extsize = 0; 750 } 751 } 752 753 /* Propagate di_flags2 from a parent inode to a child inode. */ 754 static void 755 xfs_inode_inherit_flags2( 756 struct xfs_inode *ip, 757 const struct xfs_inode *pip) 758 { 759 xfs_failaddr_t failaddr; 760 761 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 762 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 763 ip->i_cowextsize = pip->i_cowextsize; 764 } 765 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 766 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 767 768 /* Don't let invalid cowextsize hints propagate. */ 769 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 770 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 771 if (failaddr) { 772 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 773 ip->i_cowextsize = 0; 774 } 775 } 776 777 /* 778 * Initialise a newly allocated inode and return the in-core inode to the 779 * caller locked exclusively. 780 */ 781 static int 782 xfs_init_new_inode( 783 struct user_namespace *mnt_userns, 784 struct xfs_trans *tp, 785 struct xfs_inode *pip, 786 xfs_ino_t ino, 787 umode_t mode, 788 xfs_nlink_t nlink, 789 dev_t rdev, 790 prid_t prid, 791 bool init_xattrs, 792 struct xfs_inode **ipp) 793 { 794 struct inode *dir = pip ? VFS_I(pip) : NULL; 795 struct xfs_mount *mp = tp->t_mountp; 796 struct xfs_inode *ip; 797 unsigned int flags; 798 int error; 799 struct timespec64 tv; 800 struct inode *inode; 801 802 /* 803 * Protect against obviously corrupt allocation btree records. Later 804 * xfs_iget checks will catch re-allocation of other active in-memory 805 * and on-disk inodes. If we don't catch reallocating the parent inode 806 * here we will deadlock in xfs_iget() so we have to do these checks 807 * first. 808 */ 809 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 810 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 811 return -EFSCORRUPTED; 812 } 813 814 /* 815 * Get the in-core inode with the lock held exclusively to prevent 816 * others from looking at until we're done. 817 */ 818 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 819 if (error) 820 return error; 821 822 ASSERT(ip != NULL); 823 inode = VFS_I(ip); 824 set_nlink(inode, nlink); 825 inode->i_rdev = rdev; 826 ip->i_projid = prid; 827 828 if (dir && !(dir->i_mode & S_ISGID) && 829 (mp->m_flags & XFS_MOUNT_GRPID)) { 830 inode_fsuid_set(inode, mnt_userns); 831 inode->i_gid = dir->i_gid; 832 inode->i_mode = mode; 833 } else { 834 inode_init_owner(mnt_userns, inode, dir, mode); 835 } 836 837 /* 838 * If the group ID of the new file does not match the effective group 839 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 840 * (and only if the irix_sgid_inherit compatibility variable is set). 841 */ 842 if (irix_sgid_inherit && 843 (inode->i_mode & S_ISGID) && 844 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 845 inode->i_mode &= ~S_ISGID; 846 847 ip->i_disk_size = 0; 848 ip->i_df.if_nextents = 0; 849 ASSERT(ip->i_nblocks == 0); 850 851 tv = current_time(inode); 852 inode->i_mtime = tv; 853 inode->i_atime = tv; 854 inode->i_ctime = tv; 855 856 ip->i_extsize = 0; 857 ip->i_diflags = 0; 858 859 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 860 inode_set_iversion(inode, 1); 861 ip->i_cowextsize = 0; 862 ip->i_crtime = tv; 863 } 864 865 flags = XFS_ILOG_CORE; 866 switch (mode & S_IFMT) { 867 case S_IFIFO: 868 case S_IFCHR: 869 case S_IFBLK: 870 case S_IFSOCK: 871 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 872 flags |= XFS_ILOG_DEV; 873 break; 874 case S_IFREG: 875 case S_IFDIR: 876 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 877 xfs_inode_inherit_flags(ip, pip); 878 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 879 xfs_inode_inherit_flags2(ip, pip); 880 /* FALLTHROUGH */ 881 case S_IFLNK: 882 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 883 ip->i_df.if_bytes = 0; 884 ip->i_df.if_u1.if_root = NULL; 885 break; 886 default: 887 ASSERT(0); 888 } 889 890 /* 891 * If we need to create attributes immediately after allocating the 892 * inode, initialise an empty attribute fork right now. We use the 893 * default fork offset for attributes here as we don't know exactly what 894 * size or how many attributes we might be adding. We can do this 895 * safely here because we know the data fork is completely empty and 896 * this saves us from needing to run a separate transaction to set the 897 * fork offset in the immediate future. 898 */ 899 if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) { 900 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 901 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 902 } 903 904 /* 905 * Log the new values stuffed into the inode. 906 */ 907 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 908 xfs_trans_log_inode(tp, ip, flags); 909 910 /* now that we have an i_mode we can setup the inode structure */ 911 xfs_setup_inode(ip); 912 913 *ipp = ip; 914 return 0; 915 } 916 917 /* 918 * Allocates a new inode from disk and return a pointer to the incore copy. This 919 * routine will internally commit the current transaction and allocate a new one 920 * if we needed to allocate more on-disk free inodes to perform the requested 921 * operation. 922 * 923 * If we are allocating quota inodes, we do not have a parent inode to attach to 924 * or associate with (i.e. dp == NULL) because they are not linked into the 925 * directory structure - they are attached directly to the superblock - and so 926 * have no parent. 927 */ 928 int 929 xfs_dir_ialloc( 930 struct user_namespace *mnt_userns, 931 struct xfs_trans **tpp, 932 struct xfs_inode *dp, 933 umode_t mode, 934 xfs_nlink_t nlink, 935 dev_t rdev, 936 prid_t prid, 937 bool init_xattrs, 938 struct xfs_inode **ipp) 939 { 940 struct xfs_buf *agibp; 941 xfs_ino_t parent_ino = dp ? dp->i_ino : 0; 942 xfs_ino_t ino; 943 int error; 944 945 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 946 947 /* 948 * Call the space management code to pick the on-disk inode to be 949 * allocated. 950 */ 951 error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp); 952 if (error) 953 return error; 954 955 if (!agibp) 956 return -ENOSPC; 957 958 /* Allocate an inode from the selected AG */ 959 error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino); 960 if (error) 961 return error; 962 ASSERT(ino != NULLFSINO); 963 964 return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev, 965 prid, init_xattrs, ipp); 966 } 967 968 /* 969 * Decrement the link count on an inode & log the change. If this causes the 970 * link count to go to zero, move the inode to AGI unlinked list so that it can 971 * be freed when the last active reference goes away via xfs_inactive(). 972 */ 973 static int /* error */ 974 xfs_droplink( 975 xfs_trans_t *tp, 976 xfs_inode_t *ip) 977 { 978 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 979 980 drop_nlink(VFS_I(ip)); 981 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 982 983 if (VFS_I(ip)->i_nlink) 984 return 0; 985 986 return xfs_iunlink(tp, ip); 987 } 988 989 /* 990 * Increment the link count on an inode & log the change. 991 */ 992 static void 993 xfs_bumplink( 994 xfs_trans_t *tp, 995 xfs_inode_t *ip) 996 { 997 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 998 999 inc_nlink(VFS_I(ip)); 1000 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1001 } 1002 1003 int 1004 xfs_create( 1005 struct user_namespace *mnt_userns, 1006 xfs_inode_t *dp, 1007 struct xfs_name *name, 1008 umode_t mode, 1009 dev_t rdev, 1010 bool init_xattrs, 1011 xfs_inode_t **ipp) 1012 { 1013 int is_dir = S_ISDIR(mode); 1014 struct xfs_mount *mp = dp->i_mount; 1015 struct xfs_inode *ip = NULL; 1016 struct xfs_trans *tp = NULL; 1017 int error; 1018 bool unlock_dp_on_error = false; 1019 prid_t prid; 1020 struct xfs_dquot *udqp = NULL; 1021 struct xfs_dquot *gdqp = NULL; 1022 struct xfs_dquot *pdqp = NULL; 1023 struct xfs_trans_res *tres; 1024 uint resblks; 1025 1026 trace_xfs_create(dp, name); 1027 1028 if (XFS_FORCED_SHUTDOWN(mp)) 1029 return -EIO; 1030 1031 prid = xfs_get_initial_prid(dp); 1032 1033 /* 1034 * Make sure that we have allocated dquot(s) on disk. 1035 */ 1036 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 1037 mapped_fsgid(mnt_userns), prid, 1038 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1039 &udqp, &gdqp, &pdqp); 1040 if (error) 1041 return error; 1042 1043 if (is_dir) { 1044 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1045 tres = &M_RES(mp)->tr_mkdir; 1046 } else { 1047 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1048 tres = &M_RES(mp)->tr_create; 1049 } 1050 1051 /* 1052 * Initially assume that the file does not exist and 1053 * reserve the resources for that case. If that is not 1054 * the case we'll drop the one we have and get a more 1055 * appropriate transaction later. 1056 */ 1057 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1058 &tp); 1059 if (error == -ENOSPC) { 1060 /* flush outstanding delalloc blocks and retry */ 1061 xfs_flush_inodes(mp); 1062 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1063 resblks, &tp); 1064 } 1065 if (error) 1066 goto out_release_dquots; 1067 1068 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1069 unlock_dp_on_error = true; 1070 1071 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1072 XFS_IEXT_DIR_MANIP_CNT(mp)); 1073 if (error) 1074 goto out_trans_cancel; 1075 1076 /* 1077 * A newly created regular or special file just has one directory 1078 * entry pointing to them, but a directory also the "." entry 1079 * pointing to itself. 1080 */ 1081 error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev, 1082 prid, init_xattrs, &ip); 1083 if (error) 1084 goto out_trans_cancel; 1085 1086 /* 1087 * Now we join the directory inode to the transaction. We do not do it 1088 * earlier because xfs_dir_ialloc might commit the previous transaction 1089 * (and release all the locks). An error from here on will result in 1090 * the transaction cancel unlocking dp so don't do it explicitly in the 1091 * error path. 1092 */ 1093 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1094 unlock_dp_on_error = false; 1095 1096 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1097 resblks - XFS_IALLOC_SPACE_RES(mp)); 1098 if (error) { 1099 ASSERT(error != -ENOSPC); 1100 goto out_trans_cancel; 1101 } 1102 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1103 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1104 1105 if (is_dir) { 1106 error = xfs_dir_init(tp, ip, dp); 1107 if (error) 1108 goto out_trans_cancel; 1109 1110 xfs_bumplink(tp, dp); 1111 } 1112 1113 /* 1114 * If this is a synchronous mount, make sure that the 1115 * create transaction goes to disk before returning to 1116 * the user. 1117 */ 1118 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1119 xfs_trans_set_sync(tp); 1120 1121 /* 1122 * Attach the dquot(s) to the inodes and modify them incore. 1123 * These ids of the inode couldn't have changed since the new 1124 * inode has been locked ever since it was created. 1125 */ 1126 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1127 1128 error = xfs_trans_commit(tp); 1129 if (error) 1130 goto out_release_inode; 1131 1132 xfs_qm_dqrele(udqp); 1133 xfs_qm_dqrele(gdqp); 1134 xfs_qm_dqrele(pdqp); 1135 1136 *ipp = ip; 1137 return 0; 1138 1139 out_trans_cancel: 1140 xfs_trans_cancel(tp); 1141 out_release_inode: 1142 /* 1143 * Wait until after the current transaction is aborted to finish the 1144 * setup of the inode and release the inode. This prevents recursive 1145 * transactions and deadlocks from xfs_inactive. 1146 */ 1147 if (ip) { 1148 xfs_finish_inode_setup(ip); 1149 xfs_irele(ip); 1150 } 1151 out_release_dquots: 1152 xfs_qm_dqrele(udqp); 1153 xfs_qm_dqrele(gdqp); 1154 xfs_qm_dqrele(pdqp); 1155 1156 if (unlock_dp_on_error) 1157 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1158 return error; 1159 } 1160 1161 int 1162 xfs_create_tmpfile( 1163 struct user_namespace *mnt_userns, 1164 struct xfs_inode *dp, 1165 umode_t mode, 1166 struct xfs_inode **ipp) 1167 { 1168 struct xfs_mount *mp = dp->i_mount; 1169 struct xfs_inode *ip = NULL; 1170 struct xfs_trans *tp = NULL; 1171 int error; 1172 prid_t prid; 1173 struct xfs_dquot *udqp = NULL; 1174 struct xfs_dquot *gdqp = NULL; 1175 struct xfs_dquot *pdqp = NULL; 1176 struct xfs_trans_res *tres; 1177 uint resblks; 1178 1179 if (XFS_FORCED_SHUTDOWN(mp)) 1180 return -EIO; 1181 1182 prid = xfs_get_initial_prid(dp); 1183 1184 /* 1185 * Make sure that we have allocated dquot(s) on disk. 1186 */ 1187 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 1188 mapped_fsgid(mnt_userns), prid, 1189 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1190 &udqp, &gdqp, &pdqp); 1191 if (error) 1192 return error; 1193 1194 resblks = XFS_IALLOC_SPACE_RES(mp); 1195 tres = &M_RES(mp)->tr_create_tmpfile; 1196 1197 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1198 &tp); 1199 if (error) 1200 goto out_release_dquots; 1201 1202 error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid, 1203 false, &ip); 1204 if (error) 1205 goto out_trans_cancel; 1206 1207 if (mp->m_flags & XFS_MOUNT_WSYNC) 1208 xfs_trans_set_sync(tp); 1209 1210 /* 1211 * Attach the dquot(s) to the inodes and modify them incore. 1212 * These ids of the inode couldn't have changed since the new 1213 * inode has been locked ever since it was created. 1214 */ 1215 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1216 1217 error = xfs_iunlink(tp, ip); 1218 if (error) 1219 goto out_trans_cancel; 1220 1221 error = xfs_trans_commit(tp); 1222 if (error) 1223 goto out_release_inode; 1224 1225 xfs_qm_dqrele(udqp); 1226 xfs_qm_dqrele(gdqp); 1227 xfs_qm_dqrele(pdqp); 1228 1229 *ipp = ip; 1230 return 0; 1231 1232 out_trans_cancel: 1233 xfs_trans_cancel(tp); 1234 out_release_inode: 1235 /* 1236 * Wait until after the current transaction is aborted to finish the 1237 * setup of the inode and release the inode. This prevents recursive 1238 * transactions and deadlocks from xfs_inactive. 1239 */ 1240 if (ip) { 1241 xfs_finish_inode_setup(ip); 1242 xfs_irele(ip); 1243 } 1244 out_release_dquots: 1245 xfs_qm_dqrele(udqp); 1246 xfs_qm_dqrele(gdqp); 1247 xfs_qm_dqrele(pdqp); 1248 1249 return error; 1250 } 1251 1252 int 1253 xfs_link( 1254 xfs_inode_t *tdp, 1255 xfs_inode_t *sip, 1256 struct xfs_name *target_name) 1257 { 1258 xfs_mount_t *mp = tdp->i_mount; 1259 xfs_trans_t *tp; 1260 int error; 1261 int resblks; 1262 1263 trace_xfs_link(tdp, target_name); 1264 1265 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1266 1267 if (XFS_FORCED_SHUTDOWN(mp)) 1268 return -EIO; 1269 1270 error = xfs_qm_dqattach(sip); 1271 if (error) 1272 goto std_return; 1273 1274 error = xfs_qm_dqattach(tdp); 1275 if (error) 1276 goto std_return; 1277 1278 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1279 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1280 if (error == -ENOSPC) { 1281 resblks = 0; 1282 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1283 } 1284 if (error) 1285 goto std_return; 1286 1287 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1288 1289 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1290 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1291 1292 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1293 XFS_IEXT_DIR_MANIP_CNT(mp)); 1294 if (error) 1295 goto error_return; 1296 1297 /* 1298 * If we are using project inheritance, we only allow hard link 1299 * creation in our tree when the project IDs are the same; else 1300 * the tree quota mechanism could be circumvented. 1301 */ 1302 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1303 tdp->i_projid != sip->i_projid)) { 1304 error = -EXDEV; 1305 goto error_return; 1306 } 1307 1308 if (!resblks) { 1309 error = xfs_dir_canenter(tp, tdp, target_name); 1310 if (error) 1311 goto error_return; 1312 } 1313 1314 /* 1315 * Handle initial link state of O_TMPFILE inode 1316 */ 1317 if (VFS_I(sip)->i_nlink == 0) { 1318 error = xfs_iunlink_remove(tp, sip); 1319 if (error) 1320 goto error_return; 1321 } 1322 1323 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1324 resblks); 1325 if (error) 1326 goto error_return; 1327 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1328 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1329 1330 xfs_bumplink(tp, sip); 1331 1332 /* 1333 * If this is a synchronous mount, make sure that the 1334 * link transaction goes to disk before returning to 1335 * the user. 1336 */ 1337 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1338 xfs_trans_set_sync(tp); 1339 1340 return xfs_trans_commit(tp); 1341 1342 error_return: 1343 xfs_trans_cancel(tp); 1344 std_return: 1345 return error; 1346 } 1347 1348 /* Clear the reflink flag and the cowblocks tag if possible. */ 1349 static void 1350 xfs_itruncate_clear_reflink_flags( 1351 struct xfs_inode *ip) 1352 { 1353 struct xfs_ifork *dfork; 1354 struct xfs_ifork *cfork; 1355 1356 if (!xfs_is_reflink_inode(ip)) 1357 return; 1358 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1359 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1360 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1361 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1362 if (cfork->if_bytes == 0) 1363 xfs_inode_clear_cowblocks_tag(ip); 1364 } 1365 1366 /* 1367 * Free up the underlying blocks past new_size. The new size must be smaller 1368 * than the current size. This routine can be used both for the attribute and 1369 * data fork, and does not modify the inode size, which is left to the caller. 1370 * 1371 * The transaction passed to this routine must have made a permanent log 1372 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1373 * given transaction and start new ones, so make sure everything involved in 1374 * the transaction is tidy before calling here. Some transaction will be 1375 * returned to the caller to be committed. The incoming transaction must 1376 * already include the inode, and both inode locks must be held exclusively. 1377 * The inode must also be "held" within the transaction. On return the inode 1378 * will be "held" within the returned transaction. This routine does NOT 1379 * require any disk space to be reserved for it within the transaction. 1380 * 1381 * If we get an error, we must return with the inode locked and linked into the 1382 * current transaction. This keeps things simple for the higher level code, 1383 * because it always knows that the inode is locked and held in the transaction 1384 * that returns to it whether errors occur or not. We don't mark the inode 1385 * dirty on error so that transactions can be easily aborted if possible. 1386 */ 1387 int 1388 xfs_itruncate_extents_flags( 1389 struct xfs_trans **tpp, 1390 struct xfs_inode *ip, 1391 int whichfork, 1392 xfs_fsize_t new_size, 1393 int flags) 1394 { 1395 struct xfs_mount *mp = ip->i_mount; 1396 struct xfs_trans *tp = *tpp; 1397 xfs_fileoff_t first_unmap_block; 1398 xfs_filblks_t unmap_len; 1399 int error = 0; 1400 1401 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1402 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1403 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1404 ASSERT(new_size <= XFS_ISIZE(ip)); 1405 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1406 ASSERT(ip->i_itemp != NULL); 1407 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1408 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1409 1410 trace_xfs_itruncate_extents_start(ip, new_size); 1411 1412 flags |= xfs_bmapi_aflag(whichfork); 1413 1414 /* 1415 * Since it is possible for space to become allocated beyond 1416 * the end of the file (in a crash where the space is allocated 1417 * but the inode size is not yet updated), simply remove any 1418 * blocks which show up between the new EOF and the maximum 1419 * possible file size. 1420 * 1421 * We have to free all the blocks to the bmbt maximum offset, even if 1422 * the page cache can't scale that far. 1423 */ 1424 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1425 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1426 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1427 return 0; 1428 } 1429 1430 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1431 while (unmap_len > 0) { 1432 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1433 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1434 flags, XFS_ITRUNC_MAX_EXTENTS); 1435 if (error) 1436 goto out; 1437 1438 /* free the just unmapped extents */ 1439 error = xfs_defer_finish(&tp); 1440 if (error) 1441 goto out; 1442 } 1443 1444 if (whichfork == XFS_DATA_FORK) { 1445 /* Remove all pending CoW reservations. */ 1446 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1447 first_unmap_block, XFS_MAX_FILEOFF, true); 1448 if (error) 1449 goto out; 1450 1451 xfs_itruncate_clear_reflink_flags(ip); 1452 } 1453 1454 /* 1455 * Always re-log the inode so that our permanent transaction can keep 1456 * on rolling it forward in the log. 1457 */ 1458 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1459 1460 trace_xfs_itruncate_extents_end(ip, new_size); 1461 1462 out: 1463 *tpp = tp; 1464 return error; 1465 } 1466 1467 int 1468 xfs_release( 1469 xfs_inode_t *ip) 1470 { 1471 xfs_mount_t *mp = ip->i_mount; 1472 int error = 0; 1473 1474 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1475 return 0; 1476 1477 /* If this is a read-only mount, don't do this (would generate I/O) */ 1478 if (mp->m_flags & XFS_MOUNT_RDONLY) 1479 return 0; 1480 1481 if (!XFS_FORCED_SHUTDOWN(mp)) { 1482 int truncated; 1483 1484 /* 1485 * If we previously truncated this file and removed old data 1486 * in the process, we want to initiate "early" writeout on 1487 * the last close. This is an attempt to combat the notorious 1488 * NULL files problem which is particularly noticeable from a 1489 * truncate down, buffered (re-)write (delalloc), followed by 1490 * a crash. What we are effectively doing here is 1491 * significantly reducing the time window where we'd otherwise 1492 * be exposed to that problem. 1493 */ 1494 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1495 if (truncated) { 1496 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1497 if (ip->i_delayed_blks > 0) { 1498 error = filemap_flush(VFS_I(ip)->i_mapping); 1499 if (error) 1500 return error; 1501 } 1502 } 1503 } 1504 1505 if (VFS_I(ip)->i_nlink == 0) 1506 return 0; 1507 1508 /* 1509 * If we can't get the iolock just skip truncating the blocks past EOF 1510 * because we could deadlock with the mmap_lock otherwise. We'll get 1511 * another chance to drop them once the last reference to the inode is 1512 * dropped, so we'll never leak blocks permanently. 1513 */ 1514 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1515 return 0; 1516 1517 if (xfs_can_free_eofblocks(ip, false)) { 1518 /* 1519 * Check if the inode is being opened, written and closed 1520 * frequently and we have delayed allocation blocks outstanding 1521 * (e.g. streaming writes from the NFS server), truncating the 1522 * blocks past EOF will cause fragmentation to occur. 1523 * 1524 * In this case don't do the truncation, but we have to be 1525 * careful how we detect this case. Blocks beyond EOF show up as 1526 * i_delayed_blks even when the inode is clean, so we need to 1527 * truncate them away first before checking for a dirty release. 1528 * Hence on the first dirty close we will still remove the 1529 * speculative allocation, but after that we will leave it in 1530 * place. 1531 */ 1532 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1533 goto out_unlock; 1534 1535 error = xfs_free_eofblocks(ip); 1536 if (error) 1537 goto out_unlock; 1538 1539 /* delalloc blocks after truncation means it really is dirty */ 1540 if (ip->i_delayed_blks) 1541 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1542 } 1543 1544 out_unlock: 1545 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1546 return error; 1547 } 1548 1549 /* 1550 * xfs_inactive_truncate 1551 * 1552 * Called to perform a truncate when an inode becomes unlinked. 1553 */ 1554 STATIC int 1555 xfs_inactive_truncate( 1556 struct xfs_inode *ip) 1557 { 1558 struct xfs_mount *mp = ip->i_mount; 1559 struct xfs_trans *tp; 1560 int error; 1561 1562 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1563 if (error) { 1564 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1565 return error; 1566 } 1567 xfs_ilock(ip, XFS_ILOCK_EXCL); 1568 xfs_trans_ijoin(tp, ip, 0); 1569 1570 /* 1571 * Log the inode size first to prevent stale data exposure in the event 1572 * of a system crash before the truncate completes. See the related 1573 * comment in xfs_vn_setattr_size() for details. 1574 */ 1575 ip->i_disk_size = 0; 1576 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1577 1578 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1579 if (error) 1580 goto error_trans_cancel; 1581 1582 ASSERT(ip->i_df.if_nextents == 0); 1583 1584 error = xfs_trans_commit(tp); 1585 if (error) 1586 goto error_unlock; 1587 1588 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1589 return 0; 1590 1591 error_trans_cancel: 1592 xfs_trans_cancel(tp); 1593 error_unlock: 1594 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1595 return error; 1596 } 1597 1598 /* 1599 * xfs_inactive_ifree() 1600 * 1601 * Perform the inode free when an inode is unlinked. 1602 */ 1603 STATIC int 1604 xfs_inactive_ifree( 1605 struct xfs_inode *ip) 1606 { 1607 struct xfs_mount *mp = ip->i_mount; 1608 struct xfs_trans *tp; 1609 int error; 1610 1611 /* 1612 * We try to use a per-AG reservation for any block needed by the finobt 1613 * tree, but as the finobt feature predates the per-AG reservation 1614 * support a degraded file system might not have enough space for the 1615 * reservation at mount time. In that case try to dip into the reserved 1616 * pool and pray. 1617 * 1618 * Send a warning if the reservation does happen to fail, as the inode 1619 * now remains allocated and sits on the unlinked list until the fs is 1620 * repaired. 1621 */ 1622 if (unlikely(mp->m_finobt_nores)) { 1623 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1624 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1625 &tp); 1626 } else { 1627 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1628 } 1629 if (error) { 1630 if (error == -ENOSPC) { 1631 xfs_warn_ratelimited(mp, 1632 "Failed to remove inode(s) from unlinked list. " 1633 "Please free space, unmount and run xfs_repair."); 1634 } else { 1635 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1636 } 1637 return error; 1638 } 1639 1640 /* 1641 * We do not hold the inode locked across the entire rolling transaction 1642 * here. We only need to hold it for the first transaction that 1643 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1644 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1645 * here breaks the relationship between cluster buffer invalidation and 1646 * stale inode invalidation on cluster buffer item journal commit 1647 * completion, and can result in leaving dirty stale inodes hanging 1648 * around in memory. 1649 * 1650 * We have no need for serialising this inode operation against other 1651 * operations - we freed the inode and hence reallocation is required 1652 * and that will serialise on reallocating the space the deferops need 1653 * to free. Hence we can unlock the inode on the first commit of 1654 * the transaction rather than roll it right through the deferops. This 1655 * avoids relogging the XFS_ISTALE inode. 1656 * 1657 * We check that xfs_ifree() hasn't grown an internal transaction roll 1658 * by asserting that the inode is still locked when it returns. 1659 */ 1660 xfs_ilock(ip, XFS_ILOCK_EXCL); 1661 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1662 1663 error = xfs_ifree(tp, ip); 1664 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1665 if (error) { 1666 /* 1667 * If we fail to free the inode, shut down. The cancel 1668 * might do that, we need to make sure. Otherwise the 1669 * inode might be lost for a long time or forever. 1670 */ 1671 if (!XFS_FORCED_SHUTDOWN(mp)) { 1672 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1673 __func__, error); 1674 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1675 } 1676 xfs_trans_cancel(tp); 1677 return error; 1678 } 1679 1680 /* 1681 * Credit the quota account(s). The inode is gone. 1682 */ 1683 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1684 1685 /* 1686 * Just ignore errors at this point. There is nothing we can do except 1687 * to try to keep going. Make sure it's not a silent error. 1688 */ 1689 error = xfs_trans_commit(tp); 1690 if (error) 1691 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1692 __func__, error); 1693 1694 return 0; 1695 } 1696 1697 /* 1698 * xfs_inactive 1699 * 1700 * This is called when the vnode reference count for the vnode 1701 * goes to zero. If the file has been unlinked, then it must 1702 * now be truncated. Also, we clear all of the read-ahead state 1703 * kept for the inode here since the file is now closed. 1704 */ 1705 void 1706 xfs_inactive( 1707 xfs_inode_t *ip) 1708 { 1709 struct xfs_mount *mp; 1710 int error; 1711 int truncate = 0; 1712 1713 /* 1714 * If the inode is already free, then there can be nothing 1715 * to clean up here. 1716 */ 1717 if (VFS_I(ip)->i_mode == 0) { 1718 ASSERT(ip->i_df.if_broot_bytes == 0); 1719 return; 1720 } 1721 1722 mp = ip->i_mount; 1723 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1724 1725 /* If this is a read-only mount, don't do this (would generate I/O) */ 1726 if (mp->m_flags & XFS_MOUNT_RDONLY) 1727 return; 1728 1729 /* Metadata inodes require explicit resource cleanup. */ 1730 if (xfs_is_metadata_inode(ip)) 1731 return; 1732 1733 /* Try to clean out the cow blocks if there are any. */ 1734 if (xfs_inode_has_cow_data(ip)) 1735 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1736 1737 if (VFS_I(ip)->i_nlink != 0) { 1738 /* 1739 * force is true because we are evicting an inode from the 1740 * cache. Post-eof blocks must be freed, lest we end up with 1741 * broken free space accounting. 1742 * 1743 * Note: don't bother with iolock here since lockdep complains 1744 * about acquiring it in reclaim context. We have the only 1745 * reference to the inode at this point anyways. 1746 */ 1747 if (xfs_can_free_eofblocks(ip, true)) 1748 xfs_free_eofblocks(ip); 1749 1750 return; 1751 } 1752 1753 if (S_ISREG(VFS_I(ip)->i_mode) && 1754 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1755 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1756 truncate = 1; 1757 1758 error = xfs_qm_dqattach(ip); 1759 if (error) 1760 return; 1761 1762 if (S_ISLNK(VFS_I(ip)->i_mode)) 1763 error = xfs_inactive_symlink(ip); 1764 else if (truncate) 1765 error = xfs_inactive_truncate(ip); 1766 if (error) 1767 return; 1768 1769 /* 1770 * If there are attributes associated with the file then blow them away 1771 * now. The code calls a routine that recursively deconstructs the 1772 * attribute fork. If also blows away the in-core attribute fork. 1773 */ 1774 if (XFS_IFORK_Q(ip)) { 1775 error = xfs_attr_inactive(ip); 1776 if (error) 1777 return; 1778 } 1779 1780 ASSERT(!ip->i_afp); 1781 ASSERT(ip->i_forkoff == 0); 1782 1783 /* 1784 * Free the inode. 1785 */ 1786 error = xfs_inactive_ifree(ip); 1787 if (error) 1788 return; 1789 1790 /* 1791 * Release the dquots held by inode, if any. 1792 */ 1793 xfs_qm_dqdetach(ip); 1794 } 1795 1796 /* 1797 * In-Core Unlinked List Lookups 1798 * ============================= 1799 * 1800 * Every inode is supposed to be reachable from some other piece of metadata 1801 * with the exception of the root directory. Inodes with a connection to a 1802 * file descriptor but not linked from anywhere in the on-disk directory tree 1803 * are collectively known as unlinked inodes, though the filesystem itself 1804 * maintains links to these inodes so that on-disk metadata are consistent. 1805 * 1806 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1807 * header contains a number of buckets that point to an inode, and each inode 1808 * record has a pointer to the next inode in the hash chain. This 1809 * singly-linked list causes scaling problems in the iunlink remove function 1810 * because we must walk that list to find the inode that points to the inode 1811 * being removed from the unlinked hash bucket list. 1812 * 1813 * What if we modelled the unlinked list as a collection of records capturing 1814 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1815 * have a fast way to look up unlinked list predecessors, which avoids the 1816 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1817 * rhashtable. 1818 * 1819 * Because this is a backref cache, we ignore operational failures since the 1820 * iunlink code can fall back to the slow bucket walk. The only errors that 1821 * should bubble out are for obviously incorrect situations. 1822 * 1823 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1824 * access or have otherwise provided for concurrency control. 1825 */ 1826 1827 /* Capture a "X.next_unlinked = Y" relationship. */ 1828 struct xfs_iunlink { 1829 struct rhash_head iu_rhash_head; 1830 xfs_agino_t iu_agino; /* X */ 1831 xfs_agino_t iu_next_unlinked; /* Y */ 1832 }; 1833 1834 /* Unlinked list predecessor lookup hashtable construction */ 1835 static int 1836 xfs_iunlink_obj_cmpfn( 1837 struct rhashtable_compare_arg *arg, 1838 const void *obj) 1839 { 1840 const xfs_agino_t *key = arg->key; 1841 const struct xfs_iunlink *iu = obj; 1842 1843 if (iu->iu_next_unlinked != *key) 1844 return 1; 1845 return 0; 1846 } 1847 1848 static const struct rhashtable_params xfs_iunlink_hash_params = { 1849 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1850 .key_len = sizeof(xfs_agino_t), 1851 .key_offset = offsetof(struct xfs_iunlink, 1852 iu_next_unlinked), 1853 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1854 .automatic_shrinking = true, 1855 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1856 }; 1857 1858 /* 1859 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1860 * relation is found. 1861 */ 1862 static xfs_agino_t 1863 xfs_iunlink_lookup_backref( 1864 struct xfs_perag *pag, 1865 xfs_agino_t agino) 1866 { 1867 struct xfs_iunlink *iu; 1868 1869 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1870 xfs_iunlink_hash_params); 1871 return iu ? iu->iu_agino : NULLAGINO; 1872 } 1873 1874 /* 1875 * Take ownership of an iunlink cache entry and insert it into the hash table. 1876 * If successful, the entry will be owned by the cache; if not, it is freed. 1877 * Either way, the caller does not own @iu after this call. 1878 */ 1879 static int 1880 xfs_iunlink_insert_backref( 1881 struct xfs_perag *pag, 1882 struct xfs_iunlink *iu) 1883 { 1884 int error; 1885 1886 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1887 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1888 /* 1889 * Fail loudly if there already was an entry because that's a sign of 1890 * corruption of in-memory data. Also fail loudly if we see an error 1891 * code we didn't anticipate from the rhashtable code. Currently we 1892 * only anticipate ENOMEM. 1893 */ 1894 if (error) { 1895 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1896 kmem_free(iu); 1897 } 1898 /* 1899 * Absorb any runtime errors that aren't a result of corruption because 1900 * this is a cache and we can always fall back to bucket list scanning. 1901 */ 1902 if (error != 0 && error != -EEXIST) 1903 error = 0; 1904 return error; 1905 } 1906 1907 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1908 static int 1909 xfs_iunlink_add_backref( 1910 struct xfs_perag *pag, 1911 xfs_agino_t prev_agino, 1912 xfs_agino_t this_agino) 1913 { 1914 struct xfs_iunlink *iu; 1915 1916 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1917 return 0; 1918 1919 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1920 iu->iu_agino = prev_agino; 1921 iu->iu_next_unlinked = this_agino; 1922 1923 return xfs_iunlink_insert_backref(pag, iu); 1924 } 1925 1926 /* 1927 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1928 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1929 * wasn't any such entry then we don't bother. 1930 */ 1931 static int 1932 xfs_iunlink_change_backref( 1933 struct xfs_perag *pag, 1934 xfs_agino_t agino, 1935 xfs_agino_t next_unlinked) 1936 { 1937 struct xfs_iunlink *iu; 1938 int error; 1939 1940 /* Look up the old entry; if there wasn't one then exit. */ 1941 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1942 xfs_iunlink_hash_params); 1943 if (!iu) 1944 return 0; 1945 1946 /* 1947 * Remove the entry. This shouldn't ever return an error, but if we 1948 * couldn't remove the old entry we don't want to add it again to the 1949 * hash table, and if the entry disappeared on us then someone's 1950 * violated the locking rules and we need to fail loudly. Either way 1951 * we cannot remove the inode because internal state is or would have 1952 * been corrupt. 1953 */ 1954 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1955 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1956 if (error) 1957 return error; 1958 1959 /* If there is no new next entry just free our item and return. */ 1960 if (next_unlinked == NULLAGINO) { 1961 kmem_free(iu); 1962 return 0; 1963 } 1964 1965 /* Update the entry and re-add it to the hash table. */ 1966 iu->iu_next_unlinked = next_unlinked; 1967 return xfs_iunlink_insert_backref(pag, iu); 1968 } 1969 1970 /* Set up the in-core predecessor structures. */ 1971 int 1972 xfs_iunlink_init( 1973 struct xfs_perag *pag) 1974 { 1975 return rhashtable_init(&pag->pagi_unlinked_hash, 1976 &xfs_iunlink_hash_params); 1977 } 1978 1979 /* Free the in-core predecessor structures. */ 1980 static void 1981 xfs_iunlink_free_item( 1982 void *ptr, 1983 void *arg) 1984 { 1985 struct xfs_iunlink *iu = ptr; 1986 bool *freed_anything = arg; 1987 1988 *freed_anything = true; 1989 kmem_free(iu); 1990 } 1991 1992 void 1993 xfs_iunlink_destroy( 1994 struct xfs_perag *pag) 1995 { 1996 bool freed_anything = false; 1997 1998 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1999 xfs_iunlink_free_item, &freed_anything); 2000 2001 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2002 } 2003 2004 /* 2005 * Point the AGI unlinked bucket at an inode and log the results. The caller 2006 * is responsible for validating the old value. 2007 */ 2008 STATIC int 2009 xfs_iunlink_update_bucket( 2010 struct xfs_trans *tp, 2011 xfs_agnumber_t agno, 2012 struct xfs_buf *agibp, 2013 unsigned int bucket_index, 2014 xfs_agino_t new_agino) 2015 { 2016 struct xfs_agi *agi = agibp->b_addr; 2017 xfs_agino_t old_value; 2018 int offset; 2019 2020 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2021 2022 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2023 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2024 old_value, new_agino); 2025 2026 /* 2027 * We should never find the head of the list already set to the value 2028 * passed in because either we're adding or removing ourselves from the 2029 * head of the list. 2030 */ 2031 if (old_value == new_agino) { 2032 xfs_buf_mark_corrupt(agibp); 2033 return -EFSCORRUPTED; 2034 } 2035 2036 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2037 offset = offsetof(struct xfs_agi, agi_unlinked) + 2038 (sizeof(xfs_agino_t) * bucket_index); 2039 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2040 return 0; 2041 } 2042 2043 /* Set an on-disk inode's next_unlinked pointer. */ 2044 STATIC void 2045 xfs_iunlink_update_dinode( 2046 struct xfs_trans *tp, 2047 xfs_agnumber_t agno, 2048 xfs_agino_t agino, 2049 struct xfs_buf *ibp, 2050 struct xfs_dinode *dip, 2051 struct xfs_imap *imap, 2052 xfs_agino_t next_agino) 2053 { 2054 struct xfs_mount *mp = tp->t_mountp; 2055 int offset; 2056 2057 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2058 2059 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2060 be32_to_cpu(dip->di_next_unlinked), next_agino); 2061 2062 dip->di_next_unlinked = cpu_to_be32(next_agino); 2063 offset = imap->im_boffset + 2064 offsetof(struct xfs_dinode, di_next_unlinked); 2065 2066 /* need to recalc the inode CRC if appropriate */ 2067 xfs_dinode_calc_crc(mp, dip); 2068 xfs_trans_inode_buf(tp, ibp); 2069 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2070 } 2071 2072 /* Set an in-core inode's unlinked pointer and return the old value. */ 2073 STATIC int 2074 xfs_iunlink_update_inode( 2075 struct xfs_trans *tp, 2076 struct xfs_inode *ip, 2077 xfs_agnumber_t agno, 2078 xfs_agino_t next_agino, 2079 xfs_agino_t *old_next_agino) 2080 { 2081 struct xfs_mount *mp = tp->t_mountp; 2082 struct xfs_dinode *dip; 2083 struct xfs_buf *ibp; 2084 xfs_agino_t old_value; 2085 int error; 2086 2087 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2088 2089 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2090 if (error) 2091 return error; 2092 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2093 2094 /* Make sure the old pointer isn't garbage. */ 2095 old_value = be32_to_cpu(dip->di_next_unlinked); 2096 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2097 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2098 sizeof(*dip), __this_address); 2099 error = -EFSCORRUPTED; 2100 goto out; 2101 } 2102 2103 /* 2104 * Since we're updating a linked list, we should never find that the 2105 * current pointer is the same as the new value, unless we're 2106 * terminating the list. 2107 */ 2108 *old_next_agino = old_value; 2109 if (old_value == next_agino) { 2110 if (next_agino != NULLAGINO) { 2111 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2112 dip, sizeof(*dip), __this_address); 2113 error = -EFSCORRUPTED; 2114 } 2115 goto out; 2116 } 2117 2118 /* Ok, update the new pointer. */ 2119 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2120 ibp, dip, &ip->i_imap, next_agino); 2121 return 0; 2122 out: 2123 xfs_trans_brelse(tp, ibp); 2124 return error; 2125 } 2126 2127 /* 2128 * This is called when the inode's link count has gone to 0 or we are creating 2129 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2130 * 2131 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2132 * list when the inode is freed. 2133 */ 2134 STATIC int 2135 xfs_iunlink( 2136 struct xfs_trans *tp, 2137 struct xfs_inode *ip) 2138 { 2139 struct xfs_mount *mp = tp->t_mountp; 2140 struct xfs_agi *agi; 2141 struct xfs_buf *agibp; 2142 xfs_agino_t next_agino; 2143 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2144 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2145 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2146 int error; 2147 2148 ASSERT(VFS_I(ip)->i_nlink == 0); 2149 ASSERT(VFS_I(ip)->i_mode != 0); 2150 trace_xfs_iunlink(ip); 2151 2152 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2153 error = xfs_read_agi(mp, tp, agno, &agibp); 2154 if (error) 2155 return error; 2156 agi = agibp->b_addr; 2157 2158 /* 2159 * Get the index into the agi hash table for the list this inode will 2160 * go on. Make sure the pointer isn't garbage and that this inode 2161 * isn't already on the list. 2162 */ 2163 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2164 if (next_agino == agino || 2165 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2166 xfs_buf_mark_corrupt(agibp); 2167 return -EFSCORRUPTED; 2168 } 2169 2170 if (next_agino != NULLAGINO) { 2171 xfs_agino_t old_agino; 2172 2173 /* 2174 * There is already another inode in the bucket, so point this 2175 * inode to the current head of the list. 2176 */ 2177 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2178 &old_agino); 2179 if (error) 2180 return error; 2181 ASSERT(old_agino == NULLAGINO); 2182 2183 /* 2184 * agino has been unlinked, add a backref from the next inode 2185 * back to agino. 2186 */ 2187 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2188 if (error) 2189 return error; 2190 } 2191 2192 /* Point the head of the list to point to this inode. */ 2193 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2194 } 2195 2196 /* Return the imap, dinode pointer, and buffer for an inode. */ 2197 STATIC int 2198 xfs_iunlink_map_ino( 2199 struct xfs_trans *tp, 2200 xfs_agnumber_t agno, 2201 xfs_agino_t agino, 2202 struct xfs_imap *imap, 2203 struct xfs_dinode **dipp, 2204 struct xfs_buf **bpp) 2205 { 2206 struct xfs_mount *mp = tp->t_mountp; 2207 int error; 2208 2209 imap->im_blkno = 0; 2210 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2211 if (error) { 2212 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2213 __func__, error); 2214 return error; 2215 } 2216 2217 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2218 if (error) { 2219 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2220 __func__, error); 2221 return error; 2222 } 2223 2224 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2225 return 0; 2226 } 2227 2228 /* 2229 * Walk the unlinked chain from @head_agino until we find the inode that 2230 * points to @target_agino. Return the inode number, map, dinode pointer, 2231 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2232 * 2233 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2234 * @agino, @imap, @dipp, and @bpp are all output parameters. 2235 * 2236 * Do not call this function if @target_agino is the head of the list. 2237 */ 2238 STATIC int 2239 xfs_iunlink_map_prev( 2240 struct xfs_trans *tp, 2241 xfs_agnumber_t agno, 2242 xfs_agino_t head_agino, 2243 xfs_agino_t target_agino, 2244 xfs_agino_t *agino, 2245 struct xfs_imap *imap, 2246 struct xfs_dinode **dipp, 2247 struct xfs_buf **bpp, 2248 struct xfs_perag *pag) 2249 { 2250 struct xfs_mount *mp = tp->t_mountp; 2251 xfs_agino_t next_agino; 2252 int error; 2253 2254 ASSERT(head_agino != target_agino); 2255 *bpp = NULL; 2256 2257 /* See if our backref cache can find it faster. */ 2258 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2259 if (*agino != NULLAGINO) { 2260 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2261 if (error) 2262 return error; 2263 2264 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2265 return 0; 2266 2267 /* 2268 * If we get here the cache contents were corrupt, so drop the 2269 * buffer and fall back to walking the bucket list. 2270 */ 2271 xfs_trans_brelse(tp, *bpp); 2272 *bpp = NULL; 2273 WARN_ON_ONCE(1); 2274 } 2275 2276 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2277 2278 /* Otherwise, walk the entire bucket until we find it. */ 2279 next_agino = head_agino; 2280 while (next_agino != target_agino) { 2281 xfs_agino_t unlinked_agino; 2282 2283 if (*bpp) 2284 xfs_trans_brelse(tp, *bpp); 2285 2286 *agino = next_agino; 2287 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2288 bpp); 2289 if (error) 2290 return error; 2291 2292 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2293 /* 2294 * Make sure this pointer is valid and isn't an obvious 2295 * infinite loop. 2296 */ 2297 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2298 next_agino == unlinked_agino) { 2299 XFS_CORRUPTION_ERROR(__func__, 2300 XFS_ERRLEVEL_LOW, mp, 2301 *dipp, sizeof(**dipp)); 2302 error = -EFSCORRUPTED; 2303 return error; 2304 } 2305 next_agino = unlinked_agino; 2306 } 2307 2308 return 0; 2309 } 2310 2311 /* 2312 * Pull the on-disk inode from the AGI unlinked list. 2313 */ 2314 STATIC int 2315 xfs_iunlink_remove( 2316 struct xfs_trans *tp, 2317 struct xfs_inode *ip) 2318 { 2319 struct xfs_mount *mp = tp->t_mountp; 2320 struct xfs_agi *agi; 2321 struct xfs_buf *agibp; 2322 struct xfs_buf *last_ibp; 2323 struct xfs_dinode *last_dip = NULL; 2324 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2325 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2326 xfs_agino_t next_agino; 2327 xfs_agino_t head_agino; 2328 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2329 int error; 2330 2331 trace_xfs_iunlink_remove(ip); 2332 2333 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2334 error = xfs_read_agi(mp, tp, agno, &agibp); 2335 if (error) 2336 return error; 2337 agi = agibp->b_addr; 2338 2339 /* 2340 * Get the index into the agi hash table for the list this inode will 2341 * go on. Make sure the head pointer isn't garbage. 2342 */ 2343 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2344 if (!xfs_verify_agino(mp, agno, head_agino)) { 2345 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2346 agi, sizeof(*agi)); 2347 return -EFSCORRUPTED; 2348 } 2349 2350 /* 2351 * Set our inode's next_unlinked pointer to NULL and then return 2352 * the old pointer value so that we can update whatever was previous 2353 * to us in the list to point to whatever was next in the list. 2354 */ 2355 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2356 if (error) 2357 return error; 2358 2359 /* 2360 * If there was a backref pointing from the next inode back to this 2361 * one, remove it because we've removed this inode from the list. 2362 * 2363 * Later, if this inode was in the middle of the list we'll update 2364 * this inode's backref to point from the next inode. 2365 */ 2366 if (next_agino != NULLAGINO) { 2367 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2368 NULLAGINO); 2369 if (error) 2370 return error; 2371 } 2372 2373 if (head_agino != agino) { 2374 struct xfs_imap imap; 2375 xfs_agino_t prev_agino; 2376 2377 /* We need to search the list for the inode being freed. */ 2378 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2379 &prev_agino, &imap, &last_dip, &last_ibp, 2380 agibp->b_pag); 2381 if (error) 2382 return error; 2383 2384 /* Point the previous inode on the list to the next inode. */ 2385 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2386 last_dip, &imap, next_agino); 2387 2388 /* 2389 * Now we deal with the backref for this inode. If this inode 2390 * pointed at a real inode, change the backref that pointed to 2391 * us to point to our old next. If this inode was the end of 2392 * the list, delete the backref that pointed to us. Note that 2393 * change_backref takes care of deleting the backref if 2394 * next_agino is NULLAGINO. 2395 */ 2396 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2397 next_agino); 2398 } 2399 2400 /* Point the head of the list to the next unlinked inode. */ 2401 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2402 next_agino); 2403 } 2404 2405 /* 2406 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2407 * mark it stale. We should only find clean inodes in this lookup that aren't 2408 * already stale. 2409 */ 2410 static void 2411 xfs_ifree_mark_inode_stale( 2412 struct xfs_buf *bp, 2413 struct xfs_inode *free_ip, 2414 xfs_ino_t inum) 2415 { 2416 struct xfs_mount *mp = bp->b_mount; 2417 struct xfs_perag *pag = bp->b_pag; 2418 struct xfs_inode_log_item *iip; 2419 struct xfs_inode *ip; 2420 2421 retry: 2422 rcu_read_lock(); 2423 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2424 2425 /* Inode not in memory, nothing to do */ 2426 if (!ip) { 2427 rcu_read_unlock(); 2428 return; 2429 } 2430 2431 /* 2432 * because this is an RCU protected lookup, we could find a recently 2433 * freed or even reallocated inode during the lookup. We need to check 2434 * under the i_flags_lock for a valid inode here. Skip it if it is not 2435 * valid, the wrong inode or stale. 2436 */ 2437 spin_lock(&ip->i_flags_lock); 2438 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2439 goto out_iflags_unlock; 2440 2441 /* 2442 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2443 * other inodes that we did not find in the list attached to the buffer 2444 * and are not already marked stale. If we can't lock it, back off and 2445 * retry. 2446 */ 2447 if (ip != free_ip) { 2448 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2449 spin_unlock(&ip->i_flags_lock); 2450 rcu_read_unlock(); 2451 delay(1); 2452 goto retry; 2453 } 2454 } 2455 ip->i_flags |= XFS_ISTALE; 2456 2457 /* 2458 * If the inode is flushing, it is already attached to the buffer. All 2459 * we needed to do here is mark the inode stale so buffer IO completion 2460 * will remove it from the AIL. 2461 */ 2462 iip = ip->i_itemp; 2463 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2464 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2465 ASSERT(iip->ili_last_fields); 2466 goto out_iunlock; 2467 } 2468 2469 /* 2470 * Inodes not attached to the buffer can be released immediately. 2471 * Everything else has to go through xfs_iflush_abort() on journal 2472 * commit as the flock synchronises removal of the inode from the 2473 * cluster buffer against inode reclaim. 2474 */ 2475 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2476 goto out_iunlock; 2477 2478 __xfs_iflags_set(ip, XFS_IFLUSHING); 2479 spin_unlock(&ip->i_flags_lock); 2480 rcu_read_unlock(); 2481 2482 /* we have a dirty inode in memory that has not yet been flushed. */ 2483 spin_lock(&iip->ili_lock); 2484 iip->ili_last_fields = iip->ili_fields; 2485 iip->ili_fields = 0; 2486 iip->ili_fsync_fields = 0; 2487 spin_unlock(&iip->ili_lock); 2488 ASSERT(iip->ili_last_fields); 2489 2490 if (ip != free_ip) 2491 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2492 return; 2493 2494 out_iunlock: 2495 if (ip != free_ip) 2496 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2497 out_iflags_unlock: 2498 spin_unlock(&ip->i_flags_lock); 2499 rcu_read_unlock(); 2500 } 2501 2502 /* 2503 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2504 * inodes that are in memory - they all must be marked stale and attached to 2505 * the cluster buffer. 2506 */ 2507 STATIC int 2508 xfs_ifree_cluster( 2509 struct xfs_inode *free_ip, 2510 struct xfs_trans *tp, 2511 struct xfs_icluster *xic) 2512 { 2513 struct xfs_mount *mp = free_ip->i_mount; 2514 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2515 struct xfs_buf *bp; 2516 xfs_daddr_t blkno; 2517 xfs_ino_t inum = xic->first_ino; 2518 int nbufs; 2519 int i, j; 2520 int ioffset; 2521 int error; 2522 2523 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2524 2525 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2526 /* 2527 * The allocation bitmap tells us which inodes of the chunk were 2528 * physically allocated. Skip the cluster if an inode falls into 2529 * a sparse region. 2530 */ 2531 ioffset = inum - xic->first_ino; 2532 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2533 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2534 continue; 2535 } 2536 2537 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2538 XFS_INO_TO_AGBNO(mp, inum)); 2539 2540 /* 2541 * We obtain and lock the backing buffer first in the process 2542 * here to ensure dirty inodes attached to the buffer remain in 2543 * the flushing state while we mark them stale. 2544 * 2545 * If we scan the in-memory inodes first, then buffer IO can 2546 * complete before we get a lock on it, and hence we may fail 2547 * to mark all the active inodes on the buffer stale. 2548 */ 2549 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2550 mp->m_bsize * igeo->blocks_per_cluster, 2551 XBF_UNMAPPED, &bp); 2552 if (error) 2553 return error; 2554 2555 /* 2556 * This buffer may not have been correctly initialised as we 2557 * didn't read it from disk. That's not important because we are 2558 * only using to mark the buffer as stale in the log, and to 2559 * attach stale cached inodes on it. That means it will never be 2560 * dispatched for IO. If it is, we want to know about it, and we 2561 * want it to fail. We can acheive this by adding a write 2562 * verifier to the buffer. 2563 */ 2564 bp->b_ops = &xfs_inode_buf_ops; 2565 2566 /* 2567 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2568 * too. This requires lookups, and will skip inodes that we've 2569 * already marked XFS_ISTALE. 2570 */ 2571 for (i = 0; i < igeo->inodes_per_cluster; i++) 2572 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2573 2574 xfs_trans_stale_inode_buf(tp, bp); 2575 xfs_trans_binval(tp, bp); 2576 } 2577 return 0; 2578 } 2579 2580 /* 2581 * This is called to return an inode to the inode free list. 2582 * The inode should already be truncated to 0 length and have 2583 * no pages associated with it. This routine also assumes that 2584 * the inode is already a part of the transaction. 2585 * 2586 * The on-disk copy of the inode will have been added to the list 2587 * of unlinked inodes in the AGI. We need to remove the inode from 2588 * that list atomically with respect to freeing it here. 2589 */ 2590 int 2591 xfs_ifree( 2592 struct xfs_trans *tp, 2593 struct xfs_inode *ip) 2594 { 2595 int error; 2596 struct xfs_icluster xic = { 0 }; 2597 struct xfs_inode_log_item *iip = ip->i_itemp; 2598 2599 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2600 ASSERT(VFS_I(ip)->i_nlink == 0); 2601 ASSERT(ip->i_df.if_nextents == 0); 2602 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2603 ASSERT(ip->i_nblocks == 0); 2604 2605 /* 2606 * Pull the on-disk inode from the AGI unlinked list. 2607 */ 2608 error = xfs_iunlink_remove(tp, ip); 2609 if (error) 2610 return error; 2611 2612 error = xfs_difree(tp, ip->i_ino, &xic); 2613 if (error) 2614 return error; 2615 2616 /* 2617 * Free any local-format data sitting around before we reset the 2618 * data fork to extents format. Note that the attr fork data has 2619 * already been freed by xfs_attr_inactive. 2620 */ 2621 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2622 kmem_free(ip->i_df.if_u1.if_data); 2623 ip->i_df.if_u1.if_data = NULL; 2624 ip->i_df.if_bytes = 0; 2625 } 2626 2627 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2628 ip->i_diflags = 0; 2629 ip->i_diflags2 = ip->i_mount->m_ino_geo.new_diflags2; 2630 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2631 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2632 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2633 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2634 2635 /* Don't attempt to replay owner changes for a deleted inode */ 2636 spin_lock(&iip->ili_lock); 2637 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2638 spin_unlock(&iip->ili_lock); 2639 2640 /* 2641 * Bump the generation count so no one will be confused 2642 * by reincarnations of this inode. 2643 */ 2644 VFS_I(ip)->i_generation++; 2645 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2646 2647 if (xic.deleted) 2648 error = xfs_ifree_cluster(ip, tp, &xic); 2649 2650 return error; 2651 } 2652 2653 /* 2654 * This is called to unpin an inode. The caller must have the inode locked 2655 * in at least shared mode so that the buffer cannot be subsequently pinned 2656 * once someone is waiting for it to be unpinned. 2657 */ 2658 static void 2659 xfs_iunpin( 2660 struct xfs_inode *ip) 2661 { 2662 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2663 2664 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2665 2666 /* Give the log a push to start the unpinning I/O */ 2667 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2668 2669 } 2670 2671 static void 2672 __xfs_iunpin_wait( 2673 struct xfs_inode *ip) 2674 { 2675 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2676 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2677 2678 xfs_iunpin(ip); 2679 2680 do { 2681 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2682 if (xfs_ipincount(ip)) 2683 io_schedule(); 2684 } while (xfs_ipincount(ip)); 2685 finish_wait(wq, &wait.wq_entry); 2686 } 2687 2688 void 2689 xfs_iunpin_wait( 2690 struct xfs_inode *ip) 2691 { 2692 if (xfs_ipincount(ip)) 2693 __xfs_iunpin_wait(ip); 2694 } 2695 2696 /* 2697 * Removing an inode from the namespace involves removing the directory entry 2698 * and dropping the link count on the inode. Removing the directory entry can 2699 * result in locking an AGF (directory blocks were freed) and removing a link 2700 * count can result in placing the inode on an unlinked list which results in 2701 * locking an AGI. 2702 * 2703 * The big problem here is that we have an ordering constraint on AGF and AGI 2704 * locking - inode allocation locks the AGI, then can allocate a new extent for 2705 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2706 * removes the inode from the unlinked list, requiring that we lock the AGI 2707 * first, and then freeing the inode can result in an inode chunk being freed 2708 * and hence freeing disk space requiring that we lock an AGF. 2709 * 2710 * Hence the ordering that is imposed by other parts of the code is AGI before 2711 * AGF. This means we cannot remove the directory entry before we drop the inode 2712 * reference count and put it on the unlinked list as this results in a lock 2713 * order of AGF then AGI, and this can deadlock against inode allocation and 2714 * freeing. Therefore we must drop the link counts before we remove the 2715 * directory entry. 2716 * 2717 * This is still safe from a transactional point of view - it is not until we 2718 * get to xfs_defer_finish() that we have the possibility of multiple 2719 * transactions in this operation. Hence as long as we remove the directory 2720 * entry and drop the link count in the first transaction of the remove 2721 * operation, there are no transactional constraints on the ordering here. 2722 */ 2723 int 2724 xfs_remove( 2725 xfs_inode_t *dp, 2726 struct xfs_name *name, 2727 xfs_inode_t *ip) 2728 { 2729 xfs_mount_t *mp = dp->i_mount; 2730 xfs_trans_t *tp = NULL; 2731 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2732 int error = 0; 2733 uint resblks; 2734 2735 trace_xfs_remove(dp, name); 2736 2737 if (XFS_FORCED_SHUTDOWN(mp)) 2738 return -EIO; 2739 2740 error = xfs_qm_dqattach(dp); 2741 if (error) 2742 goto std_return; 2743 2744 error = xfs_qm_dqattach(ip); 2745 if (error) 2746 goto std_return; 2747 2748 /* 2749 * We try to get the real space reservation first, 2750 * allowing for directory btree deletion(s) implying 2751 * possible bmap insert(s). If we can't get the space 2752 * reservation then we use 0 instead, and avoid the bmap 2753 * btree insert(s) in the directory code by, if the bmap 2754 * insert tries to happen, instead trimming the LAST 2755 * block from the directory. 2756 */ 2757 resblks = XFS_REMOVE_SPACE_RES(mp); 2758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2759 if (error == -ENOSPC) { 2760 resblks = 0; 2761 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2762 &tp); 2763 } 2764 if (error) { 2765 ASSERT(error != -ENOSPC); 2766 goto std_return; 2767 } 2768 2769 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2770 2771 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2772 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2773 2774 /* 2775 * If we're removing a directory perform some additional validation. 2776 */ 2777 if (is_dir) { 2778 ASSERT(VFS_I(ip)->i_nlink >= 2); 2779 if (VFS_I(ip)->i_nlink != 2) { 2780 error = -ENOTEMPTY; 2781 goto out_trans_cancel; 2782 } 2783 if (!xfs_dir_isempty(ip)) { 2784 error = -ENOTEMPTY; 2785 goto out_trans_cancel; 2786 } 2787 2788 /* Drop the link from ip's "..". */ 2789 error = xfs_droplink(tp, dp); 2790 if (error) 2791 goto out_trans_cancel; 2792 2793 /* Drop the "." link from ip to self. */ 2794 error = xfs_droplink(tp, ip); 2795 if (error) 2796 goto out_trans_cancel; 2797 } else { 2798 /* 2799 * When removing a non-directory we need to log the parent 2800 * inode here. For a directory this is done implicitly 2801 * by the xfs_droplink call for the ".." entry. 2802 */ 2803 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2804 } 2805 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2806 2807 /* Drop the link from dp to ip. */ 2808 error = xfs_droplink(tp, ip); 2809 if (error) 2810 goto out_trans_cancel; 2811 2812 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2813 if (error) { 2814 ASSERT(error != -ENOENT); 2815 goto out_trans_cancel; 2816 } 2817 2818 /* 2819 * If this is a synchronous mount, make sure that the 2820 * remove transaction goes to disk before returning to 2821 * the user. 2822 */ 2823 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2824 xfs_trans_set_sync(tp); 2825 2826 error = xfs_trans_commit(tp); 2827 if (error) 2828 goto std_return; 2829 2830 if (is_dir && xfs_inode_is_filestream(ip)) 2831 xfs_filestream_deassociate(ip); 2832 2833 return 0; 2834 2835 out_trans_cancel: 2836 xfs_trans_cancel(tp); 2837 std_return: 2838 return error; 2839 } 2840 2841 /* 2842 * Enter all inodes for a rename transaction into a sorted array. 2843 */ 2844 #define __XFS_SORT_INODES 5 2845 STATIC void 2846 xfs_sort_for_rename( 2847 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2848 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2849 struct xfs_inode *ip1, /* in: inode of old entry */ 2850 struct xfs_inode *ip2, /* in: inode of new entry */ 2851 struct xfs_inode *wip, /* in: whiteout inode */ 2852 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2853 int *num_inodes) /* in/out: inodes in array */ 2854 { 2855 int i, j; 2856 2857 ASSERT(*num_inodes == __XFS_SORT_INODES); 2858 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2859 2860 /* 2861 * i_tab contains a list of pointers to inodes. We initialize 2862 * the table here & we'll sort it. We will then use it to 2863 * order the acquisition of the inode locks. 2864 * 2865 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2866 */ 2867 i = 0; 2868 i_tab[i++] = dp1; 2869 i_tab[i++] = dp2; 2870 i_tab[i++] = ip1; 2871 if (ip2) 2872 i_tab[i++] = ip2; 2873 if (wip) 2874 i_tab[i++] = wip; 2875 *num_inodes = i; 2876 2877 /* 2878 * Sort the elements via bubble sort. (Remember, there are at 2879 * most 5 elements to sort, so this is adequate.) 2880 */ 2881 for (i = 0; i < *num_inodes; i++) { 2882 for (j = 1; j < *num_inodes; j++) { 2883 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2884 struct xfs_inode *temp = i_tab[j]; 2885 i_tab[j] = i_tab[j-1]; 2886 i_tab[j-1] = temp; 2887 } 2888 } 2889 } 2890 } 2891 2892 static int 2893 xfs_finish_rename( 2894 struct xfs_trans *tp) 2895 { 2896 /* 2897 * If this is a synchronous mount, make sure that the rename transaction 2898 * goes to disk before returning to the user. 2899 */ 2900 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2901 xfs_trans_set_sync(tp); 2902 2903 return xfs_trans_commit(tp); 2904 } 2905 2906 /* 2907 * xfs_cross_rename() 2908 * 2909 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2910 */ 2911 STATIC int 2912 xfs_cross_rename( 2913 struct xfs_trans *tp, 2914 struct xfs_inode *dp1, 2915 struct xfs_name *name1, 2916 struct xfs_inode *ip1, 2917 struct xfs_inode *dp2, 2918 struct xfs_name *name2, 2919 struct xfs_inode *ip2, 2920 int spaceres) 2921 { 2922 int error = 0; 2923 int ip1_flags = 0; 2924 int ip2_flags = 0; 2925 int dp2_flags = 0; 2926 2927 /* Swap inode number for dirent in first parent */ 2928 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2929 if (error) 2930 goto out_trans_abort; 2931 2932 /* Swap inode number for dirent in second parent */ 2933 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2934 if (error) 2935 goto out_trans_abort; 2936 2937 /* 2938 * If we're renaming one or more directories across different parents, 2939 * update the respective ".." entries (and link counts) to match the new 2940 * parents. 2941 */ 2942 if (dp1 != dp2) { 2943 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2944 2945 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2946 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2947 dp1->i_ino, spaceres); 2948 if (error) 2949 goto out_trans_abort; 2950 2951 /* transfer ip2 ".." reference to dp1 */ 2952 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2953 error = xfs_droplink(tp, dp2); 2954 if (error) 2955 goto out_trans_abort; 2956 xfs_bumplink(tp, dp1); 2957 } 2958 2959 /* 2960 * Although ip1 isn't changed here, userspace needs 2961 * to be warned about the change, so that applications 2962 * relying on it (like backup ones), will properly 2963 * notify the change 2964 */ 2965 ip1_flags |= XFS_ICHGTIME_CHG; 2966 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2967 } 2968 2969 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2970 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2971 dp2->i_ino, spaceres); 2972 if (error) 2973 goto out_trans_abort; 2974 2975 /* transfer ip1 ".." reference to dp2 */ 2976 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2977 error = xfs_droplink(tp, dp1); 2978 if (error) 2979 goto out_trans_abort; 2980 xfs_bumplink(tp, dp2); 2981 } 2982 2983 /* 2984 * Although ip2 isn't changed here, userspace needs 2985 * to be warned about the change, so that applications 2986 * relying on it (like backup ones), will properly 2987 * notify the change 2988 */ 2989 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2990 ip2_flags |= XFS_ICHGTIME_CHG; 2991 } 2992 } 2993 2994 if (ip1_flags) { 2995 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2996 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2997 } 2998 if (ip2_flags) { 2999 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3000 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3001 } 3002 if (dp2_flags) { 3003 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3004 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3005 } 3006 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3007 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3008 return xfs_finish_rename(tp); 3009 3010 out_trans_abort: 3011 xfs_trans_cancel(tp); 3012 return error; 3013 } 3014 3015 /* 3016 * xfs_rename_alloc_whiteout() 3017 * 3018 * Return a referenced, unlinked, unlocked inode that can be used as a 3019 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3020 * crash between allocating the inode and linking it into the rename transaction 3021 * recovery will free the inode and we won't leak it. 3022 */ 3023 static int 3024 xfs_rename_alloc_whiteout( 3025 struct user_namespace *mnt_userns, 3026 struct xfs_inode *dp, 3027 struct xfs_inode **wip) 3028 { 3029 struct xfs_inode *tmpfile; 3030 int error; 3031 3032 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3033 &tmpfile); 3034 if (error) 3035 return error; 3036 3037 /* 3038 * Prepare the tmpfile inode as if it were created through the VFS. 3039 * Complete the inode setup and flag it as linkable. nlink is already 3040 * zero, so we can skip the drop_nlink. 3041 */ 3042 xfs_setup_iops(tmpfile); 3043 xfs_finish_inode_setup(tmpfile); 3044 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3045 3046 *wip = tmpfile; 3047 return 0; 3048 } 3049 3050 /* 3051 * xfs_rename 3052 */ 3053 int 3054 xfs_rename( 3055 struct user_namespace *mnt_userns, 3056 struct xfs_inode *src_dp, 3057 struct xfs_name *src_name, 3058 struct xfs_inode *src_ip, 3059 struct xfs_inode *target_dp, 3060 struct xfs_name *target_name, 3061 struct xfs_inode *target_ip, 3062 unsigned int flags) 3063 { 3064 struct xfs_mount *mp = src_dp->i_mount; 3065 struct xfs_trans *tp; 3066 struct xfs_inode *wip = NULL; /* whiteout inode */ 3067 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3068 int i; 3069 int num_inodes = __XFS_SORT_INODES; 3070 bool new_parent = (src_dp != target_dp); 3071 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3072 int spaceres; 3073 int error; 3074 3075 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3076 3077 if ((flags & RENAME_EXCHANGE) && !target_ip) 3078 return -EINVAL; 3079 3080 /* 3081 * If we are doing a whiteout operation, allocate the whiteout inode 3082 * we will be placing at the target and ensure the type is set 3083 * appropriately. 3084 */ 3085 if (flags & RENAME_WHITEOUT) { 3086 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3087 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3088 if (error) 3089 return error; 3090 3091 /* setup target dirent info as whiteout */ 3092 src_name->type = XFS_DIR3_FT_CHRDEV; 3093 } 3094 3095 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3096 inodes, &num_inodes); 3097 3098 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3099 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3100 if (error == -ENOSPC) { 3101 spaceres = 0; 3102 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3103 &tp); 3104 } 3105 if (error) 3106 goto out_release_wip; 3107 3108 /* 3109 * Attach the dquots to the inodes 3110 */ 3111 error = xfs_qm_vop_rename_dqattach(inodes); 3112 if (error) 3113 goto out_trans_cancel; 3114 3115 /* 3116 * Lock all the participating inodes. Depending upon whether 3117 * the target_name exists in the target directory, and 3118 * whether the target directory is the same as the source 3119 * directory, we can lock from 2 to 4 inodes. 3120 */ 3121 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3122 3123 /* 3124 * Join all the inodes to the transaction. From this point on, 3125 * we can rely on either trans_commit or trans_cancel to unlock 3126 * them. 3127 */ 3128 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3129 if (new_parent) 3130 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3131 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3132 if (target_ip) 3133 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3134 if (wip) 3135 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3136 3137 /* 3138 * If we are using project inheritance, we only allow renames 3139 * into our tree when the project IDs are the same; else the 3140 * tree quota mechanism would be circumvented. 3141 */ 3142 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3143 target_dp->i_projid != src_ip->i_projid)) { 3144 error = -EXDEV; 3145 goto out_trans_cancel; 3146 } 3147 3148 /* RENAME_EXCHANGE is unique from here on. */ 3149 if (flags & RENAME_EXCHANGE) 3150 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3151 target_dp, target_name, target_ip, 3152 spaceres); 3153 3154 /* 3155 * Check for expected errors before we dirty the transaction 3156 * so we can return an error without a transaction abort. 3157 * 3158 * Extent count overflow check: 3159 * 3160 * From the perspective of src_dp, a rename operation is essentially a 3161 * directory entry remove operation. Hence the only place where we check 3162 * for extent count overflow for src_dp is in 3163 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3164 * -ENOSPC when it detects a possible extent count overflow and in 3165 * response, the higher layers of directory handling code do the 3166 * following: 3167 * 1. Data/Free blocks: XFS lets these blocks linger until a 3168 * future remove operation removes them. 3169 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3170 * Leaf space and unmaps the last block. 3171 * 3172 * For target_dp, there are two cases depending on whether the 3173 * destination directory entry exists or not. 3174 * 3175 * When destination directory entry does not exist (i.e. target_ip == 3176 * NULL), extent count overflow check is performed only when transaction 3177 * has a non-zero sized space reservation associated with it. With a 3178 * zero-sized space reservation, XFS allows a rename operation to 3179 * continue only when the directory has sufficient free space in its 3180 * data/leaf/free space blocks to hold the new entry. 3181 * 3182 * When destination directory entry exists (i.e. target_ip != NULL), all 3183 * we need to do is change the inode number associated with the already 3184 * existing entry. Hence there is no need to perform an extent count 3185 * overflow check. 3186 */ 3187 if (target_ip == NULL) { 3188 /* 3189 * If there's no space reservation, check the entry will 3190 * fit before actually inserting it. 3191 */ 3192 if (!spaceres) { 3193 error = xfs_dir_canenter(tp, target_dp, target_name); 3194 if (error) 3195 goto out_trans_cancel; 3196 } else { 3197 error = xfs_iext_count_may_overflow(target_dp, 3198 XFS_DATA_FORK, 3199 XFS_IEXT_DIR_MANIP_CNT(mp)); 3200 if (error) 3201 goto out_trans_cancel; 3202 } 3203 } else { 3204 /* 3205 * If target exists and it's a directory, check that whether 3206 * it can be destroyed. 3207 */ 3208 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3209 (!xfs_dir_isempty(target_ip) || 3210 (VFS_I(target_ip)->i_nlink > 2))) { 3211 error = -EEXIST; 3212 goto out_trans_cancel; 3213 } 3214 } 3215 3216 /* 3217 * Lock the AGI buffers we need to handle bumping the nlink of the 3218 * whiteout inode off the unlinked list and to handle dropping the 3219 * nlink of the target inode. Per locking order rules, do this in 3220 * increasing AG order and before directory block allocation tries to 3221 * grab AGFs because we grab AGIs before AGFs. 3222 * 3223 * The (vfs) caller must ensure that if src is a directory then 3224 * target_ip is either null or an empty directory. 3225 */ 3226 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3227 if (inodes[i] == wip || 3228 (inodes[i] == target_ip && 3229 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3230 struct xfs_buf *bp; 3231 xfs_agnumber_t agno; 3232 3233 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3234 error = xfs_read_agi(mp, tp, agno, &bp); 3235 if (error) 3236 goto out_trans_cancel; 3237 } 3238 } 3239 3240 /* 3241 * Directory entry creation below may acquire the AGF. Remove 3242 * the whiteout from the unlinked list first to preserve correct 3243 * AGI/AGF locking order. This dirties the transaction so failures 3244 * after this point will abort and log recovery will clean up the 3245 * mess. 3246 * 3247 * For whiteouts, we need to bump the link count on the whiteout 3248 * inode. After this point, we have a real link, clear the tmpfile 3249 * state flag from the inode so it doesn't accidentally get misused 3250 * in future. 3251 */ 3252 if (wip) { 3253 ASSERT(VFS_I(wip)->i_nlink == 0); 3254 error = xfs_iunlink_remove(tp, wip); 3255 if (error) 3256 goto out_trans_cancel; 3257 3258 xfs_bumplink(tp, wip); 3259 VFS_I(wip)->i_state &= ~I_LINKABLE; 3260 } 3261 3262 /* 3263 * Set up the target. 3264 */ 3265 if (target_ip == NULL) { 3266 /* 3267 * If target does not exist and the rename crosses 3268 * directories, adjust the target directory link count 3269 * to account for the ".." reference from the new entry. 3270 */ 3271 error = xfs_dir_createname(tp, target_dp, target_name, 3272 src_ip->i_ino, spaceres); 3273 if (error) 3274 goto out_trans_cancel; 3275 3276 xfs_trans_ichgtime(tp, target_dp, 3277 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3278 3279 if (new_parent && src_is_directory) { 3280 xfs_bumplink(tp, target_dp); 3281 } 3282 } else { /* target_ip != NULL */ 3283 /* 3284 * Link the source inode under the target name. 3285 * If the source inode is a directory and we are moving 3286 * it across directories, its ".." entry will be 3287 * inconsistent until we replace that down below. 3288 * 3289 * In case there is already an entry with the same 3290 * name at the destination directory, remove it first. 3291 */ 3292 error = xfs_dir_replace(tp, target_dp, target_name, 3293 src_ip->i_ino, spaceres); 3294 if (error) 3295 goto out_trans_cancel; 3296 3297 xfs_trans_ichgtime(tp, target_dp, 3298 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3299 3300 /* 3301 * Decrement the link count on the target since the target 3302 * dir no longer points to it. 3303 */ 3304 error = xfs_droplink(tp, target_ip); 3305 if (error) 3306 goto out_trans_cancel; 3307 3308 if (src_is_directory) { 3309 /* 3310 * Drop the link from the old "." entry. 3311 */ 3312 error = xfs_droplink(tp, target_ip); 3313 if (error) 3314 goto out_trans_cancel; 3315 } 3316 } /* target_ip != NULL */ 3317 3318 /* 3319 * Remove the source. 3320 */ 3321 if (new_parent && src_is_directory) { 3322 /* 3323 * Rewrite the ".." entry to point to the new 3324 * directory. 3325 */ 3326 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3327 target_dp->i_ino, spaceres); 3328 ASSERT(error != -EEXIST); 3329 if (error) 3330 goto out_trans_cancel; 3331 } 3332 3333 /* 3334 * We always want to hit the ctime on the source inode. 3335 * 3336 * This isn't strictly required by the standards since the source 3337 * inode isn't really being changed, but old unix file systems did 3338 * it and some incremental backup programs won't work without it. 3339 */ 3340 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3341 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3342 3343 /* 3344 * Adjust the link count on src_dp. This is necessary when 3345 * renaming a directory, either within one parent when 3346 * the target existed, or across two parent directories. 3347 */ 3348 if (src_is_directory && (new_parent || target_ip != NULL)) { 3349 3350 /* 3351 * Decrement link count on src_directory since the 3352 * entry that's moved no longer points to it. 3353 */ 3354 error = xfs_droplink(tp, src_dp); 3355 if (error) 3356 goto out_trans_cancel; 3357 } 3358 3359 /* 3360 * For whiteouts, we only need to update the source dirent with the 3361 * inode number of the whiteout inode rather than removing it 3362 * altogether. 3363 */ 3364 if (wip) { 3365 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3366 spaceres); 3367 } else { 3368 /* 3369 * NOTE: We don't need to check for extent count overflow here 3370 * because the dir remove name code will leave the dir block in 3371 * place if the extent count would overflow. 3372 */ 3373 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3374 spaceres); 3375 } 3376 3377 if (error) 3378 goto out_trans_cancel; 3379 3380 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3381 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3382 if (new_parent) 3383 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3384 3385 error = xfs_finish_rename(tp); 3386 if (wip) 3387 xfs_irele(wip); 3388 return error; 3389 3390 out_trans_cancel: 3391 xfs_trans_cancel(tp); 3392 out_release_wip: 3393 if (wip) 3394 xfs_irele(wip); 3395 return error; 3396 } 3397 3398 static int 3399 xfs_iflush( 3400 struct xfs_inode *ip, 3401 struct xfs_buf *bp) 3402 { 3403 struct xfs_inode_log_item *iip = ip->i_itemp; 3404 struct xfs_dinode *dip; 3405 struct xfs_mount *mp = ip->i_mount; 3406 int error; 3407 3408 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3409 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3410 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3411 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3412 ASSERT(iip->ili_item.li_buf == bp); 3413 3414 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3415 3416 /* 3417 * We don't flush the inode if any of the following checks fail, but we 3418 * do still update the log item and attach to the backing buffer as if 3419 * the flush happened. This is a formality to facilitate predictable 3420 * error handling as the caller will shutdown and fail the buffer. 3421 */ 3422 error = -EFSCORRUPTED; 3423 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3424 mp, XFS_ERRTAG_IFLUSH_1)) { 3425 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3426 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3427 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3428 goto flush_out; 3429 } 3430 if (S_ISREG(VFS_I(ip)->i_mode)) { 3431 if (XFS_TEST_ERROR( 3432 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3433 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3434 mp, XFS_ERRTAG_IFLUSH_3)) { 3435 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3436 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3437 __func__, ip->i_ino, ip); 3438 goto flush_out; 3439 } 3440 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3441 if (XFS_TEST_ERROR( 3442 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3443 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3444 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3445 mp, XFS_ERRTAG_IFLUSH_4)) { 3446 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3447 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3448 __func__, ip->i_ino, ip); 3449 goto flush_out; 3450 } 3451 } 3452 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3453 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3454 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3455 "%s: detected corrupt incore inode %Lu, " 3456 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3457 __func__, ip->i_ino, 3458 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3459 ip->i_nblocks, ip); 3460 goto flush_out; 3461 } 3462 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3463 mp, XFS_ERRTAG_IFLUSH_6)) { 3464 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3465 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3466 __func__, ip->i_ino, ip->i_forkoff, ip); 3467 goto flush_out; 3468 } 3469 3470 /* 3471 * Inode item log recovery for v2 inodes are dependent on the flushiter 3472 * count for correct sequencing. We bump the flush iteration count so 3473 * we can detect flushes which postdate a log record during recovery. 3474 * This is redundant as we now log every change and hence this can't 3475 * happen but we need to still do it to ensure backwards compatibility 3476 * with old kernels that predate logging all inode changes. 3477 */ 3478 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3479 ip->i_flushiter++; 3480 3481 /* 3482 * If there are inline format data / attr forks attached to this inode, 3483 * make sure they are not corrupt. 3484 */ 3485 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3486 xfs_ifork_verify_local_data(ip)) 3487 goto flush_out; 3488 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3489 xfs_ifork_verify_local_attr(ip)) 3490 goto flush_out; 3491 3492 /* 3493 * Copy the dirty parts of the inode into the on-disk inode. We always 3494 * copy out the core of the inode, because if the inode is dirty at all 3495 * the core must be. 3496 */ 3497 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3498 3499 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3500 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) { 3501 if (ip->i_flushiter == DI_MAX_FLUSH) 3502 ip->i_flushiter = 0; 3503 } 3504 3505 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3506 if (XFS_IFORK_Q(ip)) 3507 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3508 3509 /* 3510 * We've recorded everything logged in the inode, so we'd like to clear 3511 * the ili_fields bits so we don't log and flush things unnecessarily. 3512 * However, we can't stop logging all this information until the data 3513 * we've copied into the disk buffer is written to disk. If we did we 3514 * might overwrite the copy of the inode in the log with all the data 3515 * after re-logging only part of it, and in the face of a crash we 3516 * wouldn't have all the data we need to recover. 3517 * 3518 * What we do is move the bits to the ili_last_fields field. When 3519 * logging the inode, these bits are moved back to the ili_fields field. 3520 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3521 * we know that the information those bits represent is permanently on 3522 * disk. As long as the flush completes before the inode is logged 3523 * again, then both ili_fields and ili_last_fields will be cleared. 3524 */ 3525 error = 0; 3526 flush_out: 3527 spin_lock(&iip->ili_lock); 3528 iip->ili_last_fields = iip->ili_fields; 3529 iip->ili_fields = 0; 3530 iip->ili_fsync_fields = 0; 3531 spin_unlock(&iip->ili_lock); 3532 3533 /* 3534 * Store the current LSN of the inode so that we can tell whether the 3535 * item has moved in the AIL from xfs_buf_inode_iodone(). 3536 */ 3537 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3538 &iip->ili_item.li_lsn); 3539 3540 /* generate the checksum. */ 3541 xfs_dinode_calc_crc(mp, dip); 3542 return error; 3543 } 3544 3545 /* 3546 * Non-blocking flush of dirty inode metadata into the backing buffer. 3547 * 3548 * The caller must have a reference to the inode and hold the cluster buffer 3549 * locked. The function will walk across all the inodes on the cluster buffer it 3550 * can find and lock without blocking, and flush them to the cluster buffer. 3551 * 3552 * On successful flushing of at least one inode, the caller must write out the 3553 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3554 * the caller needs to release the buffer. On failure, the filesystem will be 3555 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3556 * will be returned. 3557 */ 3558 int 3559 xfs_iflush_cluster( 3560 struct xfs_buf *bp) 3561 { 3562 struct xfs_mount *mp = bp->b_mount; 3563 struct xfs_log_item *lip, *n; 3564 struct xfs_inode *ip; 3565 struct xfs_inode_log_item *iip; 3566 int clcount = 0; 3567 int error = 0; 3568 3569 /* 3570 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3571 * can remove itself from the list. 3572 */ 3573 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3574 iip = (struct xfs_inode_log_item *)lip; 3575 ip = iip->ili_inode; 3576 3577 /* 3578 * Quick and dirty check to avoid locks if possible. 3579 */ 3580 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3581 continue; 3582 if (xfs_ipincount(ip)) 3583 continue; 3584 3585 /* 3586 * The inode is still attached to the buffer, which means it is 3587 * dirty but reclaim might try to grab it. Check carefully for 3588 * that, and grab the ilock while still holding the i_flags_lock 3589 * to guarantee reclaim will not be able to reclaim this inode 3590 * once we drop the i_flags_lock. 3591 */ 3592 spin_lock(&ip->i_flags_lock); 3593 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3594 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3595 spin_unlock(&ip->i_flags_lock); 3596 continue; 3597 } 3598 3599 /* 3600 * ILOCK will pin the inode against reclaim and prevent 3601 * concurrent transactions modifying the inode while we are 3602 * flushing the inode. If we get the lock, set the flushing 3603 * state before we drop the i_flags_lock. 3604 */ 3605 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3606 spin_unlock(&ip->i_flags_lock); 3607 continue; 3608 } 3609 __xfs_iflags_set(ip, XFS_IFLUSHING); 3610 spin_unlock(&ip->i_flags_lock); 3611 3612 /* 3613 * Abort flushing this inode if we are shut down because the 3614 * inode may not currently be in the AIL. This can occur when 3615 * log I/O failure unpins the inode without inserting into the 3616 * AIL, leaving a dirty/unpinned inode attached to the buffer 3617 * that otherwise looks like it should be flushed. 3618 */ 3619 if (XFS_FORCED_SHUTDOWN(mp)) { 3620 xfs_iunpin_wait(ip); 3621 xfs_iflush_abort(ip); 3622 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3623 error = -EIO; 3624 continue; 3625 } 3626 3627 /* don't block waiting on a log force to unpin dirty inodes */ 3628 if (xfs_ipincount(ip)) { 3629 xfs_iflags_clear(ip, XFS_IFLUSHING); 3630 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3631 continue; 3632 } 3633 3634 if (!xfs_inode_clean(ip)) 3635 error = xfs_iflush(ip, bp); 3636 else 3637 xfs_iflags_clear(ip, XFS_IFLUSHING); 3638 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3639 if (error) 3640 break; 3641 clcount++; 3642 } 3643 3644 if (error) { 3645 bp->b_flags |= XBF_ASYNC; 3646 xfs_buf_ioend_fail(bp); 3647 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3648 return error; 3649 } 3650 3651 if (!clcount) 3652 return -EAGAIN; 3653 3654 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3655 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3656 return 0; 3657 3658 } 3659 3660 /* Release an inode. */ 3661 void 3662 xfs_irele( 3663 struct xfs_inode *ip) 3664 { 3665 trace_xfs_irele(ip, _RET_IP_); 3666 iput(VFS_I(ip)); 3667 } 3668 3669 /* 3670 * Ensure all commited transactions touching the inode are written to the log. 3671 */ 3672 int 3673 xfs_log_force_inode( 3674 struct xfs_inode *ip) 3675 { 3676 xfs_lsn_t lsn = 0; 3677 3678 xfs_ilock(ip, XFS_ILOCK_SHARED); 3679 if (xfs_ipincount(ip)) 3680 lsn = ip->i_itemp->ili_last_lsn; 3681 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3682 3683 if (!lsn) 3684 return 0; 3685 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3686 } 3687 3688 /* 3689 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3690 * abide vfs locking order (lowest pointer value goes first) and breaking the 3691 * layout leases before proceeding. The loop is needed because we cannot call 3692 * the blocking break_layout() with the iolocks held, and therefore have to 3693 * back out both locks. 3694 */ 3695 static int 3696 xfs_iolock_two_inodes_and_break_layout( 3697 struct inode *src, 3698 struct inode *dest) 3699 { 3700 int error; 3701 3702 if (src > dest) 3703 swap(src, dest); 3704 3705 retry: 3706 /* Wait to break both inodes' layouts before we start locking. */ 3707 error = break_layout(src, true); 3708 if (error) 3709 return error; 3710 if (src != dest) { 3711 error = break_layout(dest, true); 3712 if (error) 3713 return error; 3714 } 3715 3716 /* Lock one inode and make sure nobody got in and leased it. */ 3717 inode_lock(src); 3718 error = break_layout(src, false); 3719 if (error) { 3720 inode_unlock(src); 3721 if (error == -EWOULDBLOCK) 3722 goto retry; 3723 return error; 3724 } 3725 3726 if (src == dest) 3727 return 0; 3728 3729 /* Lock the other inode and make sure nobody got in and leased it. */ 3730 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3731 error = break_layout(dest, false); 3732 if (error) { 3733 inode_unlock(src); 3734 inode_unlock(dest); 3735 if (error == -EWOULDBLOCK) 3736 goto retry; 3737 return error; 3738 } 3739 3740 return 0; 3741 } 3742 3743 /* 3744 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3745 * mmap activity. 3746 */ 3747 int 3748 xfs_ilock2_io_mmap( 3749 struct xfs_inode *ip1, 3750 struct xfs_inode *ip2) 3751 { 3752 int ret; 3753 3754 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3755 if (ret) 3756 return ret; 3757 if (ip1 == ip2) 3758 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3759 else 3760 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3761 ip2, XFS_MMAPLOCK_EXCL); 3762 return 0; 3763 } 3764 3765 /* Unlock both inodes to allow IO and mmap activity. */ 3766 void 3767 xfs_iunlock2_io_mmap( 3768 struct xfs_inode *ip1, 3769 struct xfs_inode *ip2) 3770 { 3771 bool same_inode = (ip1 == ip2); 3772 3773 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3774 if (!same_inode) 3775 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3776 inode_unlock(VFS_I(ip2)); 3777 if (!same_inode) 3778 inode_unlock(VFS_I(ip1)); 3779 } 3780