1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/log2.h> 7 #include <linux/iversion.h> 8 9 #include "xfs.h" 10 #include "xfs_fs.h" 11 #include "xfs_shared.h" 12 #include "xfs_format.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans_resv.h" 15 #include "xfs_sb.h" 16 #include "xfs_mount.h" 17 #include "xfs_defer.h" 18 #include "xfs_inode.h" 19 #include "xfs_da_format.h" 20 #include "xfs_da_btree.h" 21 #include "xfs_dir2.h" 22 #include "xfs_attr_sf.h" 23 #include "xfs_attr.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_trans.h" 26 #include "xfs_buf_item.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_ialloc.h" 29 #include "xfs_bmap.h" 30 #include "xfs_bmap_util.h" 31 #include "xfs_errortag.h" 32 #include "xfs_error.h" 33 #include "xfs_quota.h" 34 #include "xfs_filestream.h" 35 #include "xfs_cksum.h" 36 #include "xfs_trace.h" 37 #include "xfs_icache.h" 38 #include "xfs_symlink.h" 39 #include "xfs_trans_priv.h" 40 #include "xfs_log.h" 41 #include "xfs_bmap_btree.h" 42 #include "xfs_reflink.h" 43 #include "xfs_dir2_priv.h" 44 45 kmem_zone_t *xfs_inode_zone; 46 47 /* 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents 49 * freed from a file in a single transaction. 50 */ 51 #define XFS_ITRUNC_MAX_EXTENTS 2 52 53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 56 57 /* 58 * helper function to extract extent size hint from inode 59 */ 60 xfs_extlen_t 61 xfs_get_extsz_hint( 62 struct xfs_inode *ip) 63 { 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 xfs_inode_t **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 xfs_log_item_t *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = (xfs_log_item_t *)ips[j]->i_itemp; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 xfs_log_item_t *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = (xfs_log_item_t *)ip0->i_itemp; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp) /* pointer to inode; it will be 976 locked. */ 977 { 978 xfs_trans_t *tp; 979 xfs_inode_t *ip; 980 xfs_buf_t *ialloc_context = NULL; 981 int code; 982 void *dqinfo; 983 uint tflags; 984 985 tp = *tpp; 986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 987 988 /* 989 * xfs_ialloc will return a pointer to an incore inode if 990 * the Space Manager has an available inode on the free 991 * list. Otherwise, it will do an allocation and replenish 992 * the freelist. Since we can only do one allocation per 993 * transaction without deadlocks, we will need to commit the 994 * current transaction and start a new one. We will then 995 * need to call xfs_ialloc again to get the inode. 996 * 997 * If xfs_ialloc did an allocation to replenish the freelist, 998 * it returns the bp containing the head of the freelist as 999 * ialloc_context. We will hold a lock on it across the 1000 * transaction commit so that no other process can steal 1001 * the inode(s) that we've just allocated. 1002 */ 1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1004 &ip); 1005 1006 /* 1007 * Return an error if we were unable to allocate a new inode. 1008 * This should only happen if we run out of space on disk or 1009 * encounter a disk error. 1010 */ 1011 if (code) { 1012 *ipp = NULL; 1013 return code; 1014 } 1015 if (!ialloc_context && !ip) { 1016 *ipp = NULL; 1017 return -ENOSPC; 1018 } 1019 1020 /* 1021 * If the AGI buffer is non-NULL, then we were unable to get an 1022 * inode in one operation. We need to commit the current 1023 * transaction and call xfs_ialloc() again. It is guaranteed 1024 * to succeed the second time. 1025 */ 1026 if (ialloc_context) { 1027 /* 1028 * Normally, xfs_trans_commit releases all the locks. 1029 * We call bhold to hang on to the ialloc_context across 1030 * the commit. Holding this buffer prevents any other 1031 * processes from doing any allocations in this 1032 * allocation group. 1033 */ 1034 xfs_trans_bhold(tp, ialloc_context); 1035 1036 /* 1037 * We want the quota changes to be associated with the next 1038 * transaction, NOT this one. So, detach the dqinfo from this 1039 * and attach it to the next transaction. 1040 */ 1041 dqinfo = NULL; 1042 tflags = 0; 1043 if (tp->t_dqinfo) { 1044 dqinfo = (void *)tp->t_dqinfo; 1045 tp->t_dqinfo = NULL; 1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1048 } 1049 1050 code = xfs_trans_roll(&tp); 1051 1052 /* 1053 * Re-attach the quota info that we detached from prev trx. 1054 */ 1055 if (dqinfo) { 1056 tp->t_dqinfo = dqinfo; 1057 tp->t_flags |= tflags; 1058 } 1059 1060 if (code) { 1061 xfs_buf_relse(ialloc_context); 1062 *tpp = tp; 1063 *ipp = NULL; 1064 return code; 1065 } 1066 xfs_trans_bjoin(tp, ialloc_context); 1067 1068 /* 1069 * Call ialloc again. Since we've locked out all 1070 * other allocations in this allocation group, 1071 * this call should always succeed. 1072 */ 1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1074 &ialloc_context, &ip); 1075 1076 /* 1077 * If we get an error at this point, return to the caller 1078 * so that the current transaction can be aborted. 1079 */ 1080 if (code) { 1081 *tpp = tp; 1082 *ipp = NULL; 1083 return code; 1084 } 1085 ASSERT(!ialloc_context && ip); 1086 1087 } 1088 1089 *ipp = ip; 1090 *tpp = tp; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Decrement the link count on an inode & log the change. If this causes the 1097 * link count to go to zero, move the inode to AGI unlinked list so that it can 1098 * be freed when the last active reference goes away via xfs_inactive(). 1099 */ 1100 static int /* error */ 1101 xfs_droplink( 1102 xfs_trans_t *tp, 1103 xfs_inode_t *ip) 1104 { 1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1106 1107 drop_nlink(VFS_I(ip)); 1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1109 1110 if (VFS_I(ip)->i_nlink) 1111 return 0; 1112 1113 return xfs_iunlink(tp, ip); 1114 } 1115 1116 /* 1117 * Increment the link count on an inode & log the change. 1118 */ 1119 static int 1120 xfs_bumplink( 1121 xfs_trans_t *tp, 1122 xfs_inode_t *ip) 1123 { 1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1125 1126 ASSERT(ip->i_d.di_version > 1); 1127 inc_nlink(VFS_I(ip)); 1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1129 return 0; 1130 } 1131 1132 int 1133 xfs_create( 1134 xfs_inode_t *dp, 1135 struct xfs_name *name, 1136 umode_t mode, 1137 dev_t rdev, 1138 xfs_inode_t **ipp) 1139 { 1140 int is_dir = S_ISDIR(mode); 1141 struct xfs_mount *mp = dp->i_mount; 1142 struct xfs_inode *ip = NULL; 1143 struct xfs_trans *tp = NULL; 1144 int error; 1145 struct xfs_defer_ops dfops; 1146 xfs_fsblock_t first_block; 1147 bool unlock_dp_on_error = false; 1148 prid_t prid; 1149 struct xfs_dquot *udqp = NULL; 1150 struct xfs_dquot *gdqp = NULL; 1151 struct xfs_dquot *pdqp = NULL; 1152 struct xfs_trans_res *tres; 1153 uint resblks; 1154 1155 trace_xfs_create(dp, name); 1156 1157 if (XFS_FORCED_SHUTDOWN(mp)) 1158 return -EIO; 1159 1160 prid = xfs_get_initial_prid(dp); 1161 1162 /* 1163 * Make sure that we have allocated dquot(s) on disk. 1164 */ 1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1166 xfs_kgid_to_gid(current_fsgid()), prid, 1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1168 &udqp, &gdqp, &pdqp); 1169 if (error) 1170 return error; 1171 1172 if (is_dir) { 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1174 tres = &M_RES(mp)->tr_mkdir; 1175 } else { 1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1177 tres = &M_RES(mp)->tr_create; 1178 } 1179 1180 /* 1181 * Initially assume that the file does not exist and 1182 * reserve the resources for that case. If that is not 1183 * the case we'll drop the one we have and get a more 1184 * appropriate transaction later. 1185 */ 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1187 if (error == -ENOSPC) { 1188 /* flush outstanding delalloc blocks and retry */ 1189 xfs_flush_inodes(mp); 1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1191 } 1192 if (error) 1193 goto out_release_inode; 1194 1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1196 unlock_dp_on_error = true; 1197 1198 xfs_defer_init(&dfops, &first_block); 1199 tp->t_agfl_dfops = &dfops; 1200 1201 /* 1202 * Reserve disk quota and the inode. 1203 */ 1204 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1205 pdqp, resblks, 1, 0); 1206 if (error) 1207 goto out_trans_cancel; 1208 1209 /* 1210 * A newly created regular or special file just has one directory 1211 * entry pointing to them, but a directory also the "." entry 1212 * pointing to itself. 1213 */ 1214 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1215 if (error) 1216 goto out_trans_cancel; 1217 1218 /* 1219 * Now we join the directory inode to the transaction. We do not do it 1220 * earlier because xfs_dir_ialloc might commit the previous transaction 1221 * (and release all the locks). An error from here on will result in 1222 * the transaction cancel unlocking dp so don't do it explicitly in the 1223 * error path. 1224 */ 1225 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1226 unlock_dp_on_error = false; 1227 1228 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1229 &first_block, &dfops, resblks ? 1230 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1231 if (error) { 1232 ASSERT(error != -ENOSPC); 1233 goto out_trans_cancel; 1234 } 1235 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1236 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1237 1238 if (is_dir) { 1239 error = xfs_dir_init(tp, ip, dp); 1240 if (error) 1241 goto out_bmap_cancel; 1242 1243 error = xfs_bumplink(tp, dp); 1244 if (error) 1245 goto out_bmap_cancel; 1246 } 1247 1248 /* 1249 * If this is a synchronous mount, make sure that the 1250 * create transaction goes to disk before returning to 1251 * the user. 1252 */ 1253 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1254 xfs_trans_set_sync(tp); 1255 1256 /* 1257 * Attach the dquot(s) to the inodes and modify them incore. 1258 * These ids of the inode couldn't have changed since the new 1259 * inode has been locked ever since it was created. 1260 */ 1261 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1262 1263 error = xfs_defer_finish(&tp, &dfops); 1264 if (error) 1265 goto out_bmap_cancel; 1266 1267 error = xfs_trans_commit(tp); 1268 if (error) 1269 goto out_release_inode; 1270 1271 xfs_qm_dqrele(udqp); 1272 xfs_qm_dqrele(gdqp); 1273 xfs_qm_dqrele(pdqp); 1274 1275 *ipp = ip; 1276 return 0; 1277 1278 out_bmap_cancel: 1279 xfs_defer_cancel(&dfops); 1280 out_trans_cancel: 1281 xfs_trans_cancel(tp); 1282 out_release_inode: 1283 /* 1284 * Wait until after the current transaction is aborted to finish the 1285 * setup of the inode and release the inode. This prevents recursive 1286 * transactions and deadlocks from xfs_inactive. 1287 */ 1288 if (ip) { 1289 xfs_finish_inode_setup(ip); 1290 IRELE(ip); 1291 } 1292 1293 xfs_qm_dqrele(udqp); 1294 xfs_qm_dqrele(gdqp); 1295 xfs_qm_dqrele(pdqp); 1296 1297 if (unlock_dp_on_error) 1298 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1299 return error; 1300 } 1301 1302 int 1303 xfs_create_tmpfile( 1304 struct xfs_inode *dp, 1305 umode_t mode, 1306 struct xfs_inode **ipp) 1307 { 1308 struct xfs_mount *mp = dp->i_mount; 1309 struct xfs_inode *ip = NULL; 1310 struct xfs_trans *tp = NULL; 1311 int error; 1312 prid_t prid; 1313 struct xfs_dquot *udqp = NULL; 1314 struct xfs_dquot *gdqp = NULL; 1315 struct xfs_dquot *pdqp = NULL; 1316 struct xfs_trans_res *tres; 1317 uint resblks; 1318 1319 if (XFS_FORCED_SHUTDOWN(mp)) 1320 return -EIO; 1321 1322 prid = xfs_get_initial_prid(dp); 1323 1324 /* 1325 * Make sure that we have allocated dquot(s) on disk. 1326 */ 1327 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1328 xfs_kgid_to_gid(current_fsgid()), prid, 1329 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1330 &udqp, &gdqp, &pdqp); 1331 if (error) 1332 return error; 1333 1334 resblks = XFS_IALLOC_SPACE_RES(mp); 1335 tres = &M_RES(mp)->tr_create_tmpfile; 1336 1337 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1338 if (error) 1339 goto out_release_inode; 1340 1341 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1342 pdqp, resblks, 1, 0); 1343 if (error) 1344 goto out_trans_cancel; 1345 1346 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip); 1347 if (error) 1348 goto out_trans_cancel; 1349 1350 if (mp->m_flags & XFS_MOUNT_WSYNC) 1351 xfs_trans_set_sync(tp); 1352 1353 /* 1354 * Attach the dquot(s) to the inodes and modify them incore. 1355 * These ids of the inode couldn't have changed since the new 1356 * inode has been locked ever since it was created. 1357 */ 1358 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1359 1360 error = xfs_iunlink(tp, ip); 1361 if (error) 1362 goto out_trans_cancel; 1363 1364 error = xfs_trans_commit(tp); 1365 if (error) 1366 goto out_release_inode; 1367 1368 xfs_qm_dqrele(udqp); 1369 xfs_qm_dqrele(gdqp); 1370 xfs_qm_dqrele(pdqp); 1371 1372 *ipp = ip; 1373 return 0; 1374 1375 out_trans_cancel: 1376 xfs_trans_cancel(tp); 1377 out_release_inode: 1378 /* 1379 * Wait until after the current transaction is aborted to finish the 1380 * setup of the inode and release the inode. This prevents recursive 1381 * transactions and deadlocks from xfs_inactive. 1382 */ 1383 if (ip) { 1384 xfs_finish_inode_setup(ip); 1385 IRELE(ip); 1386 } 1387 1388 xfs_qm_dqrele(udqp); 1389 xfs_qm_dqrele(gdqp); 1390 xfs_qm_dqrele(pdqp); 1391 1392 return error; 1393 } 1394 1395 int 1396 xfs_link( 1397 xfs_inode_t *tdp, 1398 xfs_inode_t *sip, 1399 struct xfs_name *target_name) 1400 { 1401 xfs_mount_t *mp = tdp->i_mount; 1402 xfs_trans_t *tp; 1403 int error; 1404 struct xfs_defer_ops dfops; 1405 xfs_fsblock_t first_block; 1406 int resblks; 1407 1408 trace_xfs_link(tdp, target_name); 1409 1410 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1411 1412 if (XFS_FORCED_SHUTDOWN(mp)) 1413 return -EIO; 1414 1415 error = xfs_qm_dqattach(sip); 1416 if (error) 1417 goto std_return; 1418 1419 error = xfs_qm_dqattach(tdp); 1420 if (error) 1421 goto std_return; 1422 1423 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1425 if (error == -ENOSPC) { 1426 resblks = 0; 1427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1428 } 1429 if (error) 1430 goto std_return; 1431 1432 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1433 1434 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1435 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1436 1437 /* 1438 * If we are using project inheritance, we only allow hard link 1439 * creation in our tree when the project IDs are the same; else 1440 * the tree quota mechanism could be circumvented. 1441 */ 1442 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1443 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1444 error = -EXDEV; 1445 goto error_return; 1446 } 1447 1448 if (!resblks) { 1449 error = xfs_dir_canenter(tp, tdp, target_name); 1450 if (error) 1451 goto error_return; 1452 } 1453 1454 xfs_defer_init(&dfops, &first_block); 1455 tp->t_agfl_dfops = &dfops; 1456 1457 /* 1458 * Handle initial link state of O_TMPFILE inode 1459 */ 1460 if (VFS_I(sip)->i_nlink == 0) { 1461 error = xfs_iunlink_remove(tp, sip); 1462 if (error) 1463 goto error_return; 1464 } 1465 1466 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1467 &first_block, &dfops, resblks); 1468 if (error) 1469 goto error_return; 1470 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1471 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1472 1473 error = xfs_bumplink(tp, sip); 1474 if (error) 1475 goto error_return; 1476 1477 /* 1478 * If this is a synchronous mount, make sure that the 1479 * link transaction goes to disk before returning to 1480 * the user. 1481 */ 1482 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1483 xfs_trans_set_sync(tp); 1484 1485 error = xfs_defer_finish(&tp, &dfops); 1486 if (error) { 1487 xfs_defer_cancel(&dfops); 1488 goto error_return; 1489 } 1490 1491 return xfs_trans_commit(tp); 1492 1493 error_return: 1494 xfs_trans_cancel(tp); 1495 std_return: 1496 return error; 1497 } 1498 1499 /* Clear the reflink flag and the cowblocks tag if possible. */ 1500 static void 1501 xfs_itruncate_clear_reflink_flags( 1502 struct xfs_inode *ip) 1503 { 1504 struct xfs_ifork *dfork; 1505 struct xfs_ifork *cfork; 1506 1507 if (!xfs_is_reflink_inode(ip)) 1508 return; 1509 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1510 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1511 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1512 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1513 if (cfork->if_bytes == 0) 1514 xfs_inode_clear_cowblocks_tag(ip); 1515 } 1516 1517 /* 1518 * Free up the underlying blocks past new_size. The new size must be smaller 1519 * than the current size. This routine can be used both for the attribute and 1520 * data fork, and does not modify the inode size, which is left to the caller. 1521 * 1522 * The transaction passed to this routine must have made a permanent log 1523 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1524 * given transaction and start new ones, so make sure everything involved in 1525 * the transaction is tidy before calling here. Some transaction will be 1526 * returned to the caller to be committed. The incoming transaction must 1527 * already include the inode, and both inode locks must be held exclusively. 1528 * The inode must also be "held" within the transaction. On return the inode 1529 * will be "held" within the returned transaction. This routine does NOT 1530 * require any disk space to be reserved for it within the transaction. 1531 * 1532 * If we get an error, we must return with the inode locked and linked into the 1533 * current transaction. This keeps things simple for the higher level code, 1534 * because it always knows that the inode is locked and held in the transaction 1535 * that returns to it whether errors occur or not. We don't mark the inode 1536 * dirty on error so that transactions can be easily aborted if possible. 1537 */ 1538 int 1539 xfs_itruncate_extents_flags( 1540 struct xfs_trans **tpp, 1541 struct xfs_inode *ip, 1542 int whichfork, 1543 xfs_fsize_t new_size, 1544 int flags) 1545 { 1546 struct xfs_mount *mp = ip->i_mount; 1547 struct xfs_trans *tp = *tpp; 1548 struct xfs_defer_ops dfops; 1549 xfs_fsblock_t first_block; 1550 xfs_fileoff_t first_unmap_block; 1551 xfs_fileoff_t last_block; 1552 xfs_filblks_t unmap_len; 1553 int error = 0; 1554 int done = 0; 1555 1556 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1557 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1558 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1559 ASSERT(new_size <= XFS_ISIZE(ip)); 1560 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1561 ASSERT(ip->i_itemp != NULL); 1562 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1563 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1564 1565 trace_xfs_itruncate_extents_start(ip, new_size); 1566 1567 flags |= xfs_bmapi_aflag(whichfork); 1568 1569 /* 1570 * Since it is possible for space to become allocated beyond 1571 * the end of the file (in a crash where the space is allocated 1572 * but the inode size is not yet updated), simply remove any 1573 * blocks which show up between the new EOF and the maximum 1574 * possible file size. If the first block to be removed is 1575 * beyond the maximum file size (ie it is the same as last_block), 1576 * then there is nothing to do. 1577 */ 1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1579 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1580 if (first_unmap_block == last_block) 1581 return 0; 1582 1583 ASSERT(first_unmap_block < last_block); 1584 unmap_len = last_block - first_unmap_block + 1; 1585 while (!done) { 1586 xfs_defer_init(&dfops, &first_block); 1587 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1588 XFS_ITRUNC_MAX_EXTENTS, &first_block, 1589 &dfops, &done); 1590 if (error) 1591 goto out_bmap_cancel; 1592 1593 /* 1594 * Duplicate the transaction that has the permanent 1595 * reservation and commit the old transaction. 1596 */ 1597 xfs_defer_ijoin(&dfops, ip); 1598 error = xfs_defer_finish(&tp, &dfops); 1599 if (error) 1600 goto out_bmap_cancel; 1601 1602 error = xfs_trans_roll_inode(&tp, ip); 1603 if (error) 1604 goto out; 1605 } 1606 1607 if (whichfork == XFS_DATA_FORK) { 1608 /* Remove all pending CoW reservations. */ 1609 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1610 first_unmap_block, last_block, true); 1611 if (error) 1612 goto out; 1613 1614 xfs_itruncate_clear_reflink_flags(ip); 1615 } 1616 1617 /* 1618 * Always re-log the inode so that our permanent transaction can keep 1619 * on rolling it forward in the log. 1620 */ 1621 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1622 1623 trace_xfs_itruncate_extents_end(ip, new_size); 1624 1625 out: 1626 *tpp = tp; 1627 return error; 1628 out_bmap_cancel: 1629 /* 1630 * If the bunmapi call encounters an error, return to the caller where 1631 * the transaction can be properly aborted. We just need to make sure 1632 * we're not holding any resources that we were not when we came in. 1633 */ 1634 xfs_defer_cancel(&dfops); 1635 goto out; 1636 } 1637 1638 int 1639 xfs_release( 1640 xfs_inode_t *ip) 1641 { 1642 xfs_mount_t *mp = ip->i_mount; 1643 int error; 1644 1645 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1646 return 0; 1647 1648 /* If this is a read-only mount, don't do this (would generate I/O) */ 1649 if (mp->m_flags & XFS_MOUNT_RDONLY) 1650 return 0; 1651 1652 if (!XFS_FORCED_SHUTDOWN(mp)) { 1653 int truncated; 1654 1655 /* 1656 * If we previously truncated this file and removed old data 1657 * in the process, we want to initiate "early" writeout on 1658 * the last close. This is an attempt to combat the notorious 1659 * NULL files problem which is particularly noticeable from a 1660 * truncate down, buffered (re-)write (delalloc), followed by 1661 * a crash. What we are effectively doing here is 1662 * significantly reducing the time window where we'd otherwise 1663 * be exposed to that problem. 1664 */ 1665 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1666 if (truncated) { 1667 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1668 if (ip->i_delayed_blks > 0) { 1669 error = filemap_flush(VFS_I(ip)->i_mapping); 1670 if (error) 1671 return error; 1672 } 1673 } 1674 } 1675 1676 if (VFS_I(ip)->i_nlink == 0) 1677 return 0; 1678 1679 if (xfs_can_free_eofblocks(ip, false)) { 1680 1681 /* 1682 * Check if the inode is being opened, written and closed 1683 * frequently and we have delayed allocation blocks outstanding 1684 * (e.g. streaming writes from the NFS server), truncating the 1685 * blocks past EOF will cause fragmentation to occur. 1686 * 1687 * In this case don't do the truncation, but we have to be 1688 * careful how we detect this case. Blocks beyond EOF show up as 1689 * i_delayed_blks even when the inode is clean, so we need to 1690 * truncate them away first before checking for a dirty release. 1691 * Hence on the first dirty close we will still remove the 1692 * speculative allocation, but after that we will leave it in 1693 * place. 1694 */ 1695 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1696 return 0; 1697 /* 1698 * If we can't get the iolock just skip truncating the blocks 1699 * past EOF because we could deadlock with the mmap_sem 1700 * otherwise. We'll get another chance to drop them once the 1701 * last reference to the inode is dropped, so we'll never leak 1702 * blocks permanently. 1703 */ 1704 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1705 error = xfs_free_eofblocks(ip); 1706 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1707 if (error) 1708 return error; 1709 } 1710 1711 /* delalloc blocks after truncation means it really is dirty */ 1712 if (ip->i_delayed_blks) 1713 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1714 } 1715 return 0; 1716 } 1717 1718 /* 1719 * xfs_inactive_truncate 1720 * 1721 * Called to perform a truncate when an inode becomes unlinked. 1722 */ 1723 STATIC int 1724 xfs_inactive_truncate( 1725 struct xfs_inode *ip) 1726 { 1727 struct xfs_mount *mp = ip->i_mount; 1728 struct xfs_trans *tp; 1729 int error; 1730 1731 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1732 if (error) { 1733 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1734 return error; 1735 } 1736 1737 xfs_ilock(ip, XFS_ILOCK_EXCL); 1738 xfs_trans_ijoin(tp, ip, 0); 1739 1740 /* 1741 * Log the inode size first to prevent stale data exposure in the event 1742 * of a system crash before the truncate completes. See the related 1743 * comment in xfs_vn_setattr_size() for details. 1744 */ 1745 ip->i_d.di_size = 0; 1746 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1747 1748 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1749 if (error) 1750 goto error_trans_cancel; 1751 1752 ASSERT(ip->i_d.di_nextents == 0); 1753 1754 error = xfs_trans_commit(tp); 1755 if (error) 1756 goto error_unlock; 1757 1758 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1759 return 0; 1760 1761 error_trans_cancel: 1762 xfs_trans_cancel(tp); 1763 error_unlock: 1764 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1765 return error; 1766 } 1767 1768 /* 1769 * xfs_inactive_ifree() 1770 * 1771 * Perform the inode free when an inode is unlinked. 1772 */ 1773 STATIC int 1774 xfs_inactive_ifree( 1775 struct xfs_inode *ip) 1776 { 1777 struct xfs_defer_ops dfops; 1778 xfs_fsblock_t first_block; 1779 struct xfs_mount *mp = ip->i_mount; 1780 struct xfs_trans *tp; 1781 int error; 1782 1783 /* 1784 * We try to use a per-AG reservation for any block needed by the finobt 1785 * tree, but as the finobt feature predates the per-AG reservation 1786 * support a degraded file system might not have enough space for the 1787 * reservation at mount time. In that case try to dip into the reserved 1788 * pool and pray. 1789 * 1790 * Send a warning if the reservation does happen to fail, as the inode 1791 * now remains allocated and sits on the unlinked list until the fs is 1792 * repaired. 1793 */ 1794 if (unlikely(mp->m_inotbt_nores)) { 1795 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1796 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1797 &tp); 1798 } else { 1799 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1800 } 1801 if (error) { 1802 if (error == -ENOSPC) { 1803 xfs_warn_ratelimited(mp, 1804 "Failed to remove inode(s) from unlinked list. " 1805 "Please free space, unmount and run xfs_repair."); 1806 } else { 1807 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1808 } 1809 return error; 1810 } 1811 1812 xfs_ilock(ip, XFS_ILOCK_EXCL); 1813 xfs_trans_ijoin(tp, ip, 0); 1814 1815 xfs_defer_init(&dfops, &first_block); 1816 tp->t_agfl_dfops = &dfops; 1817 error = xfs_ifree(tp, ip, &dfops); 1818 if (error) { 1819 /* 1820 * If we fail to free the inode, shut down. The cancel 1821 * might do that, we need to make sure. Otherwise the 1822 * inode might be lost for a long time or forever. 1823 */ 1824 if (!XFS_FORCED_SHUTDOWN(mp)) { 1825 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1826 __func__, error); 1827 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1828 } 1829 xfs_trans_cancel(tp); 1830 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1831 return error; 1832 } 1833 1834 /* 1835 * Credit the quota account(s). The inode is gone. 1836 */ 1837 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1838 1839 /* 1840 * Just ignore errors at this point. There is nothing we can do except 1841 * to try to keep going. Make sure it's not a silent error. 1842 */ 1843 error = xfs_defer_finish(&tp, &dfops); 1844 if (error) { 1845 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1846 __func__, error); 1847 xfs_defer_cancel(&dfops); 1848 } 1849 error = xfs_trans_commit(tp); 1850 if (error) 1851 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1852 __func__, error); 1853 1854 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1855 return 0; 1856 } 1857 1858 /* 1859 * xfs_inactive 1860 * 1861 * This is called when the vnode reference count for the vnode 1862 * goes to zero. If the file has been unlinked, then it must 1863 * now be truncated. Also, we clear all of the read-ahead state 1864 * kept for the inode here since the file is now closed. 1865 */ 1866 void 1867 xfs_inactive( 1868 xfs_inode_t *ip) 1869 { 1870 struct xfs_mount *mp; 1871 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1872 int error; 1873 int truncate = 0; 1874 1875 /* 1876 * If the inode is already free, then there can be nothing 1877 * to clean up here. 1878 */ 1879 if (VFS_I(ip)->i_mode == 0) { 1880 ASSERT(ip->i_df.if_real_bytes == 0); 1881 ASSERT(ip->i_df.if_broot_bytes == 0); 1882 return; 1883 } 1884 1885 mp = ip->i_mount; 1886 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1887 1888 /* If this is a read-only mount, don't do this (would generate I/O) */ 1889 if (mp->m_flags & XFS_MOUNT_RDONLY) 1890 return; 1891 1892 /* Try to clean out the cow blocks if there are any. */ 1893 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0) 1894 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1895 1896 if (VFS_I(ip)->i_nlink != 0) { 1897 /* 1898 * force is true because we are evicting an inode from the 1899 * cache. Post-eof blocks must be freed, lest we end up with 1900 * broken free space accounting. 1901 * 1902 * Note: don't bother with iolock here since lockdep complains 1903 * about acquiring it in reclaim context. We have the only 1904 * reference to the inode at this point anyways. 1905 */ 1906 if (xfs_can_free_eofblocks(ip, true)) 1907 xfs_free_eofblocks(ip); 1908 1909 return; 1910 } 1911 1912 if (S_ISREG(VFS_I(ip)->i_mode) && 1913 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1914 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1915 truncate = 1; 1916 1917 error = xfs_qm_dqattach(ip); 1918 if (error) 1919 return; 1920 1921 if (S_ISLNK(VFS_I(ip)->i_mode)) 1922 error = xfs_inactive_symlink(ip); 1923 else if (truncate) 1924 error = xfs_inactive_truncate(ip); 1925 if (error) 1926 return; 1927 1928 /* 1929 * If there are attributes associated with the file then blow them away 1930 * now. The code calls a routine that recursively deconstructs the 1931 * attribute fork. If also blows away the in-core attribute fork. 1932 */ 1933 if (XFS_IFORK_Q(ip)) { 1934 error = xfs_attr_inactive(ip); 1935 if (error) 1936 return; 1937 } 1938 1939 ASSERT(!ip->i_afp); 1940 ASSERT(ip->i_d.di_anextents == 0); 1941 ASSERT(ip->i_d.di_forkoff == 0); 1942 1943 /* 1944 * Free the inode. 1945 */ 1946 error = xfs_inactive_ifree(ip); 1947 if (error) 1948 return; 1949 1950 /* 1951 * Release the dquots held by inode, if any. 1952 */ 1953 xfs_qm_dqdetach(ip); 1954 } 1955 1956 /* 1957 * This is called when the inode's link count goes to 0 or we are creating a 1958 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1959 * set to true as the link count is dropped to zero by the VFS after we've 1960 * created the file successfully, so we have to add it to the unlinked list 1961 * while the link count is non-zero. 1962 * 1963 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1964 * list when the inode is freed. 1965 */ 1966 STATIC int 1967 xfs_iunlink( 1968 struct xfs_trans *tp, 1969 struct xfs_inode *ip) 1970 { 1971 xfs_mount_t *mp = tp->t_mountp; 1972 xfs_agi_t *agi; 1973 xfs_dinode_t *dip; 1974 xfs_buf_t *agibp; 1975 xfs_buf_t *ibp; 1976 xfs_agino_t agino; 1977 short bucket_index; 1978 int offset; 1979 int error; 1980 1981 ASSERT(VFS_I(ip)->i_mode != 0); 1982 1983 /* 1984 * Get the agi buffer first. It ensures lock ordering 1985 * on the list. 1986 */ 1987 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1988 if (error) 1989 return error; 1990 agi = XFS_BUF_TO_AGI(agibp); 1991 1992 /* 1993 * Get the index into the agi hash table for the 1994 * list this inode will go on. 1995 */ 1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1997 ASSERT(agino != 0); 1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1999 ASSERT(agi->agi_unlinked[bucket_index]); 2000 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2001 2002 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2003 /* 2004 * There is already another inode in the bucket we need 2005 * to add ourselves to. Add us at the front of the list. 2006 * Here we put the head pointer into our next pointer, 2007 * and then we fall through to point the head at us. 2008 */ 2009 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2010 0, 0); 2011 if (error) 2012 return error; 2013 2014 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2015 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2016 offset = ip->i_imap.im_boffset + 2017 offsetof(xfs_dinode_t, di_next_unlinked); 2018 2019 /* need to recalc the inode CRC if appropriate */ 2020 xfs_dinode_calc_crc(mp, dip); 2021 2022 xfs_trans_inode_buf(tp, ibp); 2023 xfs_trans_log_buf(tp, ibp, offset, 2024 (offset + sizeof(xfs_agino_t) - 1)); 2025 xfs_inobp_check(mp, ibp); 2026 } 2027 2028 /* 2029 * Point the bucket head pointer at the inode being inserted. 2030 */ 2031 ASSERT(agino != 0); 2032 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2033 offset = offsetof(xfs_agi_t, agi_unlinked) + 2034 (sizeof(xfs_agino_t) * bucket_index); 2035 xfs_trans_log_buf(tp, agibp, offset, 2036 (offset + sizeof(xfs_agino_t) - 1)); 2037 return 0; 2038 } 2039 2040 /* 2041 * Pull the on-disk inode from the AGI unlinked list. 2042 */ 2043 STATIC int 2044 xfs_iunlink_remove( 2045 xfs_trans_t *tp, 2046 xfs_inode_t *ip) 2047 { 2048 xfs_ino_t next_ino; 2049 xfs_mount_t *mp; 2050 xfs_agi_t *agi; 2051 xfs_dinode_t *dip; 2052 xfs_buf_t *agibp; 2053 xfs_buf_t *ibp; 2054 xfs_agnumber_t agno; 2055 xfs_agino_t agino; 2056 xfs_agino_t next_agino; 2057 xfs_buf_t *last_ibp; 2058 xfs_dinode_t *last_dip = NULL; 2059 short bucket_index; 2060 int offset, last_offset = 0; 2061 int error; 2062 2063 mp = tp->t_mountp; 2064 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2065 2066 /* 2067 * Get the agi buffer first. It ensures lock ordering 2068 * on the list. 2069 */ 2070 error = xfs_read_agi(mp, tp, agno, &agibp); 2071 if (error) 2072 return error; 2073 2074 agi = XFS_BUF_TO_AGI(agibp); 2075 2076 /* 2077 * Get the index into the agi hash table for the 2078 * list this inode will go on. 2079 */ 2080 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2081 if (!xfs_verify_agino(mp, agno, agino)) 2082 return -EFSCORRUPTED; 2083 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2084 if (!xfs_verify_agino(mp, agno, 2085 be32_to_cpu(agi->agi_unlinked[bucket_index]))) { 2086 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2087 agi, sizeof(*agi)); 2088 return -EFSCORRUPTED; 2089 } 2090 2091 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2092 /* 2093 * We're at the head of the list. Get the inode's on-disk 2094 * buffer to see if there is anyone after us on the list. 2095 * Only modify our next pointer if it is not already NULLAGINO. 2096 * This saves us the overhead of dealing with the buffer when 2097 * there is no need to change it. 2098 */ 2099 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2100 0, 0); 2101 if (error) { 2102 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2103 __func__, error); 2104 return error; 2105 } 2106 next_agino = be32_to_cpu(dip->di_next_unlinked); 2107 ASSERT(next_agino != 0); 2108 if (next_agino != NULLAGINO) { 2109 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2110 offset = ip->i_imap.im_boffset + 2111 offsetof(xfs_dinode_t, di_next_unlinked); 2112 2113 /* need to recalc the inode CRC if appropriate */ 2114 xfs_dinode_calc_crc(mp, dip); 2115 2116 xfs_trans_inode_buf(tp, ibp); 2117 xfs_trans_log_buf(tp, ibp, offset, 2118 (offset + sizeof(xfs_agino_t) - 1)); 2119 xfs_inobp_check(mp, ibp); 2120 } else { 2121 xfs_trans_brelse(tp, ibp); 2122 } 2123 /* 2124 * Point the bucket head pointer at the next inode. 2125 */ 2126 ASSERT(next_agino != 0); 2127 ASSERT(next_agino != agino); 2128 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2129 offset = offsetof(xfs_agi_t, agi_unlinked) + 2130 (sizeof(xfs_agino_t) * bucket_index); 2131 xfs_trans_log_buf(tp, agibp, offset, 2132 (offset + sizeof(xfs_agino_t) - 1)); 2133 } else { 2134 /* 2135 * We need to search the list for the inode being freed. 2136 */ 2137 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2138 last_ibp = NULL; 2139 while (next_agino != agino) { 2140 struct xfs_imap imap; 2141 2142 if (last_ibp) 2143 xfs_trans_brelse(tp, last_ibp); 2144 2145 imap.im_blkno = 0; 2146 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2147 2148 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2149 if (error) { 2150 xfs_warn(mp, 2151 "%s: xfs_imap returned error %d.", 2152 __func__, error); 2153 return error; 2154 } 2155 2156 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2157 &last_ibp, 0, 0); 2158 if (error) { 2159 xfs_warn(mp, 2160 "%s: xfs_imap_to_bp returned error %d.", 2161 __func__, error); 2162 return error; 2163 } 2164 2165 last_offset = imap.im_boffset; 2166 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2167 if (!xfs_verify_agino(mp, agno, next_agino)) { 2168 XFS_CORRUPTION_ERROR(__func__, 2169 XFS_ERRLEVEL_LOW, mp, 2170 last_dip, sizeof(*last_dip)); 2171 return -EFSCORRUPTED; 2172 } 2173 } 2174 2175 /* 2176 * Now last_ibp points to the buffer previous to us on the 2177 * unlinked list. Pull us from the list. 2178 */ 2179 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2180 0, 0); 2181 if (error) { 2182 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2183 __func__, error); 2184 return error; 2185 } 2186 next_agino = be32_to_cpu(dip->di_next_unlinked); 2187 ASSERT(next_agino != 0); 2188 ASSERT(next_agino != agino); 2189 if (next_agino != NULLAGINO) { 2190 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2191 offset = ip->i_imap.im_boffset + 2192 offsetof(xfs_dinode_t, di_next_unlinked); 2193 2194 /* need to recalc the inode CRC if appropriate */ 2195 xfs_dinode_calc_crc(mp, dip); 2196 2197 xfs_trans_inode_buf(tp, ibp); 2198 xfs_trans_log_buf(tp, ibp, offset, 2199 (offset + sizeof(xfs_agino_t) - 1)); 2200 xfs_inobp_check(mp, ibp); 2201 } else { 2202 xfs_trans_brelse(tp, ibp); 2203 } 2204 /* 2205 * Point the previous inode on the list to the next inode. 2206 */ 2207 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2208 ASSERT(next_agino != 0); 2209 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2210 2211 /* need to recalc the inode CRC if appropriate */ 2212 xfs_dinode_calc_crc(mp, last_dip); 2213 2214 xfs_trans_inode_buf(tp, last_ibp); 2215 xfs_trans_log_buf(tp, last_ibp, offset, 2216 (offset + sizeof(xfs_agino_t) - 1)); 2217 xfs_inobp_check(mp, last_ibp); 2218 } 2219 return 0; 2220 } 2221 2222 /* 2223 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2224 * inodes that are in memory - they all must be marked stale and attached to 2225 * the cluster buffer. 2226 */ 2227 STATIC int 2228 xfs_ifree_cluster( 2229 xfs_inode_t *free_ip, 2230 xfs_trans_t *tp, 2231 struct xfs_icluster *xic) 2232 { 2233 xfs_mount_t *mp = free_ip->i_mount; 2234 int blks_per_cluster; 2235 int inodes_per_cluster; 2236 int nbufs; 2237 int i, j; 2238 int ioffset; 2239 xfs_daddr_t blkno; 2240 xfs_buf_t *bp; 2241 xfs_inode_t *ip; 2242 xfs_inode_log_item_t *iip; 2243 struct xfs_log_item *lip; 2244 struct xfs_perag *pag; 2245 xfs_ino_t inum; 2246 2247 inum = xic->first_ino; 2248 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2249 blks_per_cluster = xfs_icluster_size_fsb(mp); 2250 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2251 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2252 2253 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2254 /* 2255 * The allocation bitmap tells us which inodes of the chunk were 2256 * physically allocated. Skip the cluster if an inode falls into 2257 * a sparse region. 2258 */ 2259 ioffset = inum - xic->first_ino; 2260 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2261 ASSERT(ioffset % inodes_per_cluster == 0); 2262 continue; 2263 } 2264 2265 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2266 XFS_INO_TO_AGBNO(mp, inum)); 2267 2268 /* 2269 * We obtain and lock the backing buffer first in the process 2270 * here, as we have to ensure that any dirty inode that we 2271 * can't get the flush lock on is attached to the buffer. 2272 * If we scan the in-memory inodes first, then buffer IO can 2273 * complete before we get a lock on it, and hence we may fail 2274 * to mark all the active inodes on the buffer stale. 2275 */ 2276 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2277 mp->m_bsize * blks_per_cluster, 2278 XBF_UNMAPPED); 2279 2280 if (!bp) 2281 return -ENOMEM; 2282 2283 /* 2284 * This buffer may not have been correctly initialised as we 2285 * didn't read it from disk. That's not important because we are 2286 * only using to mark the buffer as stale in the log, and to 2287 * attach stale cached inodes on it. That means it will never be 2288 * dispatched for IO. If it is, we want to know about it, and we 2289 * want it to fail. We can acheive this by adding a write 2290 * verifier to the buffer. 2291 */ 2292 bp->b_ops = &xfs_inode_buf_ops; 2293 2294 /* 2295 * Walk the inodes already attached to the buffer and mark them 2296 * stale. These will all have the flush locks held, so an 2297 * in-memory inode walk can't lock them. By marking them all 2298 * stale first, we will not attempt to lock them in the loop 2299 * below as the XFS_ISTALE flag will be set. 2300 */ 2301 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2302 if (lip->li_type == XFS_LI_INODE) { 2303 iip = (xfs_inode_log_item_t *)lip; 2304 ASSERT(iip->ili_logged == 1); 2305 lip->li_cb = xfs_istale_done; 2306 xfs_trans_ail_copy_lsn(mp->m_ail, 2307 &iip->ili_flush_lsn, 2308 &iip->ili_item.li_lsn); 2309 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2310 } 2311 } 2312 2313 2314 /* 2315 * For each inode in memory attempt to add it to the inode 2316 * buffer and set it up for being staled on buffer IO 2317 * completion. This is safe as we've locked out tail pushing 2318 * and flushing by locking the buffer. 2319 * 2320 * We have already marked every inode that was part of a 2321 * transaction stale above, which means there is no point in 2322 * even trying to lock them. 2323 */ 2324 for (i = 0; i < inodes_per_cluster; i++) { 2325 retry: 2326 rcu_read_lock(); 2327 ip = radix_tree_lookup(&pag->pag_ici_root, 2328 XFS_INO_TO_AGINO(mp, (inum + i))); 2329 2330 /* Inode not in memory, nothing to do */ 2331 if (!ip) { 2332 rcu_read_unlock(); 2333 continue; 2334 } 2335 2336 /* 2337 * because this is an RCU protected lookup, we could 2338 * find a recently freed or even reallocated inode 2339 * during the lookup. We need to check under the 2340 * i_flags_lock for a valid inode here. Skip it if it 2341 * is not valid, the wrong inode or stale. 2342 */ 2343 spin_lock(&ip->i_flags_lock); 2344 if (ip->i_ino != inum + i || 2345 __xfs_iflags_test(ip, XFS_ISTALE)) { 2346 spin_unlock(&ip->i_flags_lock); 2347 rcu_read_unlock(); 2348 continue; 2349 } 2350 spin_unlock(&ip->i_flags_lock); 2351 2352 /* 2353 * Don't try to lock/unlock the current inode, but we 2354 * _cannot_ skip the other inodes that we did not find 2355 * in the list attached to the buffer and are not 2356 * already marked stale. If we can't lock it, back off 2357 * and retry. 2358 */ 2359 if (ip != free_ip) { 2360 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2361 rcu_read_unlock(); 2362 delay(1); 2363 goto retry; 2364 } 2365 2366 /* 2367 * Check the inode number again in case we're 2368 * racing with freeing in xfs_reclaim_inode(). 2369 * See the comments in that function for more 2370 * information as to why the initial check is 2371 * not sufficient. 2372 */ 2373 if (ip->i_ino != inum + i) { 2374 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2375 rcu_read_unlock(); 2376 continue; 2377 } 2378 } 2379 rcu_read_unlock(); 2380 2381 xfs_iflock(ip); 2382 xfs_iflags_set(ip, XFS_ISTALE); 2383 2384 /* 2385 * we don't need to attach clean inodes or those only 2386 * with unlogged changes (which we throw away, anyway). 2387 */ 2388 iip = ip->i_itemp; 2389 if (!iip || xfs_inode_clean(ip)) { 2390 ASSERT(ip != free_ip); 2391 xfs_ifunlock(ip); 2392 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2393 continue; 2394 } 2395 2396 iip->ili_last_fields = iip->ili_fields; 2397 iip->ili_fields = 0; 2398 iip->ili_fsync_fields = 0; 2399 iip->ili_logged = 1; 2400 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2401 &iip->ili_item.li_lsn); 2402 2403 xfs_buf_attach_iodone(bp, xfs_istale_done, 2404 &iip->ili_item); 2405 2406 if (ip != free_ip) 2407 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2408 } 2409 2410 xfs_trans_stale_inode_buf(tp, bp); 2411 xfs_trans_binval(tp, bp); 2412 } 2413 2414 xfs_perag_put(pag); 2415 return 0; 2416 } 2417 2418 /* 2419 * Free any local-format buffers sitting around before we reset to 2420 * extents format. 2421 */ 2422 static inline void 2423 xfs_ifree_local_data( 2424 struct xfs_inode *ip, 2425 int whichfork) 2426 { 2427 struct xfs_ifork *ifp; 2428 2429 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2430 return; 2431 2432 ifp = XFS_IFORK_PTR(ip, whichfork); 2433 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2434 } 2435 2436 /* 2437 * This is called to return an inode to the inode free list. 2438 * The inode should already be truncated to 0 length and have 2439 * no pages associated with it. This routine also assumes that 2440 * the inode is already a part of the transaction. 2441 * 2442 * The on-disk copy of the inode will have been added to the list 2443 * of unlinked inodes in the AGI. We need to remove the inode from 2444 * that list atomically with respect to freeing it here. 2445 */ 2446 int 2447 xfs_ifree( 2448 xfs_trans_t *tp, 2449 xfs_inode_t *ip, 2450 struct xfs_defer_ops *dfops) 2451 { 2452 int error; 2453 struct xfs_icluster xic = { 0 }; 2454 2455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2456 ASSERT(VFS_I(ip)->i_nlink == 0); 2457 ASSERT(ip->i_d.di_nextents == 0); 2458 ASSERT(ip->i_d.di_anextents == 0); 2459 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2460 ASSERT(ip->i_d.di_nblocks == 0); 2461 2462 /* 2463 * Pull the on-disk inode from the AGI unlinked list. 2464 */ 2465 error = xfs_iunlink_remove(tp, ip); 2466 if (error) 2467 return error; 2468 2469 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2470 if (error) 2471 return error; 2472 2473 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2474 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2475 2476 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2477 ip->i_d.di_flags = 0; 2478 ip->i_d.di_flags2 = 0; 2479 ip->i_d.di_dmevmask = 0; 2480 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2481 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2482 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2483 2484 /* Don't attempt to replay owner changes for a deleted inode */ 2485 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2486 2487 /* 2488 * Bump the generation count so no one will be confused 2489 * by reincarnations of this inode. 2490 */ 2491 VFS_I(ip)->i_generation++; 2492 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2493 2494 if (xic.deleted) 2495 error = xfs_ifree_cluster(ip, tp, &xic); 2496 2497 return error; 2498 } 2499 2500 /* 2501 * This is called to unpin an inode. The caller must have the inode locked 2502 * in at least shared mode so that the buffer cannot be subsequently pinned 2503 * once someone is waiting for it to be unpinned. 2504 */ 2505 static void 2506 xfs_iunpin( 2507 struct xfs_inode *ip) 2508 { 2509 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2510 2511 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2512 2513 /* Give the log a push to start the unpinning I/O */ 2514 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2515 2516 } 2517 2518 static void 2519 __xfs_iunpin_wait( 2520 struct xfs_inode *ip) 2521 { 2522 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2523 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2524 2525 xfs_iunpin(ip); 2526 2527 do { 2528 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2529 if (xfs_ipincount(ip)) 2530 io_schedule(); 2531 } while (xfs_ipincount(ip)); 2532 finish_wait(wq, &wait.wq_entry); 2533 } 2534 2535 void 2536 xfs_iunpin_wait( 2537 struct xfs_inode *ip) 2538 { 2539 if (xfs_ipincount(ip)) 2540 __xfs_iunpin_wait(ip); 2541 } 2542 2543 /* 2544 * Removing an inode from the namespace involves removing the directory entry 2545 * and dropping the link count on the inode. Removing the directory entry can 2546 * result in locking an AGF (directory blocks were freed) and removing a link 2547 * count can result in placing the inode on an unlinked list which results in 2548 * locking an AGI. 2549 * 2550 * The big problem here is that we have an ordering constraint on AGF and AGI 2551 * locking - inode allocation locks the AGI, then can allocate a new extent for 2552 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2553 * removes the inode from the unlinked list, requiring that we lock the AGI 2554 * first, and then freeing the inode can result in an inode chunk being freed 2555 * and hence freeing disk space requiring that we lock an AGF. 2556 * 2557 * Hence the ordering that is imposed by other parts of the code is AGI before 2558 * AGF. This means we cannot remove the directory entry before we drop the inode 2559 * reference count and put it on the unlinked list as this results in a lock 2560 * order of AGF then AGI, and this can deadlock against inode allocation and 2561 * freeing. Therefore we must drop the link counts before we remove the 2562 * directory entry. 2563 * 2564 * This is still safe from a transactional point of view - it is not until we 2565 * get to xfs_defer_finish() that we have the possibility of multiple 2566 * transactions in this operation. Hence as long as we remove the directory 2567 * entry and drop the link count in the first transaction of the remove 2568 * operation, there are no transactional constraints on the ordering here. 2569 */ 2570 int 2571 xfs_remove( 2572 xfs_inode_t *dp, 2573 struct xfs_name *name, 2574 xfs_inode_t *ip) 2575 { 2576 xfs_mount_t *mp = dp->i_mount; 2577 xfs_trans_t *tp = NULL; 2578 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2579 int error = 0; 2580 struct xfs_defer_ops dfops; 2581 xfs_fsblock_t first_block; 2582 uint resblks; 2583 2584 trace_xfs_remove(dp, name); 2585 2586 if (XFS_FORCED_SHUTDOWN(mp)) 2587 return -EIO; 2588 2589 error = xfs_qm_dqattach(dp); 2590 if (error) 2591 goto std_return; 2592 2593 error = xfs_qm_dqattach(ip); 2594 if (error) 2595 goto std_return; 2596 2597 /* 2598 * We try to get the real space reservation first, 2599 * allowing for directory btree deletion(s) implying 2600 * possible bmap insert(s). If we can't get the space 2601 * reservation then we use 0 instead, and avoid the bmap 2602 * btree insert(s) in the directory code by, if the bmap 2603 * insert tries to happen, instead trimming the LAST 2604 * block from the directory. 2605 */ 2606 resblks = XFS_REMOVE_SPACE_RES(mp); 2607 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2608 if (error == -ENOSPC) { 2609 resblks = 0; 2610 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2611 &tp); 2612 } 2613 if (error) { 2614 ASSERT(error != -ENOSPC); 2615 goto std_return; 2616 } 2617 2618 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2619 2620 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2621 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2622 2623 /* 2624 * If we're removing a directory perform some additional validation. 2625 */ 2626 if (is_dir) { 2627 ASSERT(VFS_I(ip)->i_nlink >= 2); 2628 if (VFS_I(ip)->i_nlink != 2) { 2629 error = -ENOTEMPTY; 2630 goto out_trans_cancel; 2631 } 2632 if (!xfs_dir_isempty(ip)) { 2633 error = -ENOTEMPTY; 2634 goto out_trans_cancel; 2635 } 2636 2637 /* Drop the link from ip's "..". */ 2638 error = xfs_droplink(tp, dp); 2639 if (error) 2640 goto out_trans_cancel; 2641 2642 /* Drop the "." link from ip to self. */ 2643 error = xfs_droplink(tp, ip); 2644 if (error) 2645 goto out_trans_cancel; 2646 } else { 2647 /* 2648 * When removing a non-directory we need to log the parent 2649 * inode here. For a directory this is done implicitly 2650 * by the xfs_droplink call for the ".." entry. 2651 */ 2652 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2653 } 2654 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2655 2656 /* Drop the link from dp to ip. */ 2657 error = xfs_droplink(tp, ip); 2658 if (error) 2659 goto out_trans_cancel; 2660 2661 xfs_defer_init(&dfops, &first_block); 2662 tp->t_agfl_dfops = &dfops; 2663 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2664 &first_block, &dfops, resblks); 2665 if (error) { 2666 ASSERT(error != -ENOENT); 2667 goto out_bmap_cancel; 2668 } 2669 2670 /* 2671 * If this is a synchronous mount, make sure that the 2672 * remove transaction goes to disk before returning to 2673 * the user. 2674 */ 2675 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2676 xfs_trans_set_sync(tp); 2677 2678 error = xfs_defer_finish(&tp, &dfops); 2679 if (error) 2680 goto out_bmap_cancel; 2681 2682 error = xfs_trans_commit(tp); 2683 if (error) 2684 goto std_return; 2685 2686 if (is_dir && xfs_inode_is_filestream(ip)) 2687 xfs_filestream_deassociate(ip); 2688 2689 return 0; 2690 2691 out_bmap_cancel: 2692 xfs_defer_cancel(&dfops); 2693 out_trans_cancel: 2694 xfs_trans_cancel(tp); 2695 std_return: 2696 return error; 2697 } 2698 2699 /* 2700 * Enter all inodes for a rename transaction into a sorted array. 2701 */ 2702 #define __XFS_SORT_INODES 5 2703 STATIC void 2704 xfs_sort_for_rename( 2705 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2706 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2707 struct xfs_inode *ip1, /* in: inode of old entry */ 2708 struct xfs_inode *ip2, /* in: inode of new entry */ 2709 struct xfs_inode *wip, /* in: whiteout inode */ 2710 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2711 int *num_inodes) /* in/out: inodes in array */ 2712 { 2713 int i, j; 2714 2715 ASSERT(*num_inodes == __XFS_SORT_INODES); 2716 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2717 2718 /* 2719 * i_tab contains a list of pointers to inodes. We initialize 2720 * the table here & we'll sort it. We will then use it to 2721 * order the acquisition of the inode locks. 2722 * 2723 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2724 */ 2725 i = 0; 2726 i_tab[i++] = dp1; 2727 i_tab[i++] = dp2; 2728 i_tab[i++] = ip1; 2729 if (ip2) 2730 i_tab[i++] = ip2; 2731 if (wip) 2732 i_tab[i++] = wip; 2733 *num_inodes = i; 2734 2735 /* 2736 * Sort the elements via bubble sort. (Remember, there are at 2737 * most 5 elements to sort, so this is adequate.) 2738 */ 2739 for (i = 0; i < *num_inodes; i++) { 2740 for (j = 1; j < *num_inodes; j++) { 2741 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2742 struct xfs_inode *temp = i_tab[j]; 2743 i_tab[j] = i_tab[j-1]; 2744 i_tab[j-1] = temp; 2745 } 2746 } 2747 } 2748 } 2749 2750 static int 2751 xfs_finish_rename( 2752 struct xfs_trans *tp, 2753 struct xfs_defer_ops *dfops) 2754 { 2755 int error; 2756 2757 /* 2758 * If this is a synchronous mount, make sure that the rename transaction 2759 * goes to disk before returning to the user. 2760 */ 2761 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2762 xfs_trans_set_sync(tp); 2763 2764 error = xfs_defer_finish(&tp, dfops); 2765 if (error) { 2766 xfs_defer_cancel(dfops); 2767 xfs_trans_cancel(tp); 2768 return error; 2769 } 2770 2771 return xfs_trans_commit(tp); 2772 } 2773 2774 /* 2775 * xfs_cross_rename() 2776 * 2777 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2778 */ 2779 STATIC int 2780 xfs_cross_rename( 2781 struct xfs_trans *tp, 2782 struct xfs_inode *dp1, 2783 struct xfs_name *name1, 2784 struct xfs_inode *ip1, 2785 struct xfs_inode *dp2, 2786 struct xfs_name *name2, 2787 struct xfs_inode *ip2, 2788 struct xfs_defer_ops *dfops, 2789 xfs_fsblock_t *first_block, 2790 int spaceres) 2791 { 2792 int error = 0; 2793 int ip1_flags = 0; 2794 int ip2_flags = 0; 2795 int dp2_flags = 0; 2796 2797 /* Swap inode number for dirent in first parent */ 2798 error = xfs_dir_replace(tp, dp1, name1, 2799 ip2->i_ino, 2800 first_block, dfops, spaceres); 2801 if (error) 2802 goto out_trans_abort; 2803 2804 /* Swap inode number for dirent in second parent */ 2805 error = xfs_dir_replace(tp, dp2, name2, 2806 ip1->i_ino, 2807 first_block, dfops, spaceres); 2808 if (error) 2809 goto out_trans_abort; 2810 2811 /* 2812 * If we're renaming one or more directories across different parents, 2813 * update the respective ".." entries (and link counts) to match the new 2814 * parents. 2815 */ 2816 if (dp1 != dp2) { 2817 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2818 2819 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2820 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2821 dp1->i_ino, first_block, 2822 dfops, spaceres); 2823 if (error) 2824 goto out_trans_abort; 2825 2826 /* transfer ip2 ".." reference to dp1 */ 2827 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2828 error = xfs_droplink(tp, dp2); 2829 if (error) 2830 goto out_trans_abort; 2831 error = xfs_bumplink(tp, dp1); 2832 if (error) 2833 goto out_trans_abort; 2834 } 2835 2836 /* 2837 * Although ip1 isn't changed here, userspace needs 2838 * to be warned about the change, so that applications 2839 * relying on it (like backup ones), will properly 2840 * notify the change 2841 */ 2842 ip1_flags |= XFS_ICHGTIME_CHG; 2843 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2844 } 2845 2846 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2847 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2848 dp2->i_ino, first_block, 2849 dfops, spaceres); 2850 if (error) 2851 goto out_trans_abort; 2852 2853 /* transfer ip1 ".." reference to dp2 */ 2854 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2855 error = xfs_droplink(tp, dp1); 2856 if (error) 2857 goto out_trans_abort; 2858 error = xfs_bumplink(tp, dp2); 2859 if (error) 2860 goto out_trans_abort; 2861 } 2862 2863 /* 2864 * Although ip2 isn't changed here, userspace needs 2865 * to be warned about the change, so that applications 2866 * relying on it (like backup ones), will properly 2867 * notify the change 2868 */ 2869 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2870 ip2_flags |= XFS_ICHGTIME_CHG; 2871 } 2872 } 2873 2874 if (ip1_flags) { 2875 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2876 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2877 } 2878 if (ip2_flags) { 2879 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2880 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2881 } 2882 if (dp2_flags) { 2883 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2884 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2885 } 2886 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2887 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2888 return xfs_finish_rename(tp, dfops); 2889 2890 out_trans_abort: 2891 xfs_defer_cancel(dfops); 2892 xfs_trans_cancel(tp); 2893 return error; 2894 } 2895 2896 /* 2897 * xfs_rename_alloc_whiteout() 2898 * 2899 * Return a referenced, unlinked, unlocked inode that that can be used as a 2900 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2901 * crash between allocating the inode and linking it into the rename transaction 2902 * recovery will free the inode and we won't leak it. 2903 */ 2904 static int 2905 xfs_rename_alloc_whiteout( 2906 struct xfs_inode *dp, 2907 struct xfs_inode **wip) 2908 { 2909 struct xfs_inode *tmpfile; 2910 int error; 2911 2912 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2913 if (error) 2914 return error; 2915 2916 /* 2917 * Prepare the tmpfile inode as if it were created through the VFS. 2918 * Otherwise, the link increment paths will complain about nlink 0->1. 2919 * Drop the link count as done by d_tmpfile(), complete the inode setup 2920 * and flag it as linkable. 2921 */ 2922 drop_nlink(VFS_I(tmpfile)); 2923 xfs_setup_iops(tmpfile); 2924 xfs_finish_inode_setup(tmpfile); 2925 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2926 2927 *wip = tmpfile; 2928 return 0; 2929 } 2930 2931 /* 2932 * xfs_rename 2933 */ 2934 int 2935 xfs_rename( 2936 struct xfs_inode *src_dp, 2937 struct xfs_name *src_name, 2938 struct xfs_inode *src_ip, 2939 struct xfs_inode *target_dp, 2940 struct xfs_name *target_name, 2941 struct xfs_inode *target_ip, 2942 unsigned int flags) 2943 { 2944 struct xfs_mount *mp = src_dp->i_mount; 2945 struct xfs_trans *tp; 2946 struct xfs_defer_ops dfops; 2947 xfs_fsblock_t first_block; 2948 struct xfs_inode *wip = NULL; /* whiteout inode */ 2949 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2950 int num_inodes = __XFS_SORT_INODES; 2951 bool new_parent = (src_dp != target_dp); 2952 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2953 int spaceres; 2954 int error; 2955 2956 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2957 2958 if ((flags & RENAME_EXCHANGE) && !target_ip) 2959 return -EINVAL; 2960 2961 /* 2962 * If we are doing a whiteout operation, allocate the whiteout inode 2963 * we will be placing at the target and ensure the type is set 2964 * appropriately. 2965 */ 2966 if (flags & RENAME_WHITEOUT) { 2967 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2968 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2969 if (error) 2970 return error; 2971 2972 /* setup target dirent info as whiteout */ 2973 src_name->type = XFS_DIR3_FT_CHRDEV; 2974 } 2975 2976 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2977 inodes, &num_inodes); 2978 2979 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2980 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2981 if (error == -ENOSPC) { 2982 spaceres = 0; 2983 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2984 &tp); 2985 } 2986 if (error) 2987 goto out_release_wip; 2988 2989 /* 2990 * Attach the dquots to the inodes 2991 */ 2992 error = xfs_qm_vop_rename_dqattach(inodes); 2993 if (error) 2994 goto out_trans_cancel; 2995 2996 /* 2997 * Lock all the participating inodes. Depending upon whether 2998 * the target_name exists in the target directory, and 2999 * whether the target directory is the same as the source 3000 * directory, we can lock from 2 to 4 inodes. 3001 */ 3002 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3003 3004 /* 3005 * Join all the inodes to the transaction. From this point on, 3006 * we can rely on either trans_commit or trans_cancel to unlock 3007 * them. 3008 */ 3009 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3010 if (new_parent) 3011 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3012 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3013 if (target_ip) 3014 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3015 if (wip) 3016 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3017 3018 /* 3019 * If we are using project inheritance, we only allow renames 3020 * into our tree when the project IDs are the same; else the 3021 * tree quota mechanism would be circumvented. 3022 */ 3023 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3024 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3025 error = -EXDEV; 3026 goto out_trans_cancel; 3027 } 3028 3029 xfs_defer_init(&dfops, &first_block); 3030 tp->t_agfl_dfops = &dfops; 3031 3032 /* RENAME_EXCHANGE is unique from here on. */ 3033 if (flags & RENAME_EXCHANGE) 3034 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3035 target_dp, target_name, target_ip, 3036 &dfops, &first_block, spaceres); 3037 3038 /* 3039 * Set up the target. 3040 */ 3041 if (target_ip == NULL) { 3042 /* 3043 * If there's no space reservation, check the entry will 3044 * fit before actually inserting it. 3045 */ 3046 if (!spaceres) { 3047 error = xfs_dir_canenter(tp, target_dp, target_name); 3048 if (error) 3049 goto out_trans_cancel; 3050 } 3051 /* 3052 * If target does not exist and the rename crosses 3053 * directories, adjust the target directory link count 3054 * to account for the ".." reference from the new entry. 3055 */ 3056 error = xfs_dir_createname(tp, target_dp, target_name, 3057 src_ip->i_ino, &first_block, 3058 &dfops, spaceres); 3059 if (error) 3060 goto out_bmap_cancel; 3061 3062 xfs_trans_ichgtime(tp, target_dp, 3063 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3064 3065 if (new_parent && src_is_directory) { 3066 error = xfs_bumplink(tp, target_dp); 3067 if (error) 3068 goto out_bmap_cancel; 3069 } 3070 } else { /* target_ip != NULL */ 3071 /* 3072 * If target exists and it's a directory, check that both 3073 * target and source are directories and that target can be 3074 * destroyed, or that neither is a directory. 3075 */ 3076 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3077 /* 3078 * Make sure target dir is empty. 3079 */ 3080 if (!(xfs_dir_isempty(target_ip)) || 3081 (VFS_I(target_ip)->i_nlink > 2)) { 3082 error = -EEXIST; 3083 goto out_trans_cancel; 3084 } 3085 } 3086 3087 /* 3088 * Link the source inode under the target name. 3089 * If the source inode is a directory and we are moving 3090 * it across directories, its ".." entry will be 3091 * inconsistent until we replace that down below. 3092 * 3093 * In case there is already an entry with the same 3094 * name at the destination directory, remove it first. 3095 */ 3096 error = xfs_dir_replace(tp, target_dp, target_name, 3097 src_ip->i_ino, 3098 &first_block, &dfops, spaceres); 3099 if (error) 3100 goto out_bmap_cancel; 3101 3102 xfs_trans_ichgtime(tp, target_dp, 3103 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3104 3105 /* 3106 * Decrement the link count on the target since the target 3107 * dir no longer points to it. 3108 */ 3109 error = xfs_droplink(tp, target_ip); 3110 if (error) 3111 goto out_bmap_cancel; 3112 3113 if (src_is_directory) { 3114 /* 3115 * Drop the link from the old "." entry. 3116 */ 3117 error = xfs_droplink(tp, target_ip); 3118 if (error) 3119 goto out_bmap_cancel; 3120 } 3121 } /* target_ip != NULL */ 3122 3123 /* 3124 * Remove the source. 3125 */ 3126 if (new_parent && src_is_directory) { 3127 /* 3128 * Rewrite the ".." entry to point to the new 3129 * directory. 3130 */ 3131 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3132 target_dp->i_ino, 3133 &first_block, &dfops, spaceres); 3134 ASSERT(error != -EEXIST); 3135 if (error) 3136 goto out_bmap_cancel; 3137 } 3138 3139 /* 3140 * We always want to hit the ctime on the source inode. 3141 * 3142 * This isn't strictly required by the standards since the source 3143 * inode isn't really being changed, but old unix file systems did 3144 * it and some incremental backup programs won't work without it. 3145 */ 3146 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3147 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3148 3149 /* 3150 * Adjust the link count on src_dp. This is necessary when 3151 * renaming a directory, either within one parent when 3152 * the target existed, or across two parent directories. 3153 */ 3154 if (src_is_directory && (new_parent || target_ip != NULL)) { 3155 3156 /* 3157 * Decrement link count on src_directory since the 3158 * entry that's moved no longer points to it. 3159 */ 3160 error = xfs_droplink(tp, src_dp); 3161 if (error) 3162 goto out_bmap_cancel; 3163 } 3164 3165 /* 3166 * For whiteouts, we only need to update the source dirent with the 3167 * inode number of the whiteout inode rather than removing it 3168 * altogether. 3169 */ 3170 if (wip) { 3171 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3172 &first_block, &dfops, spaceres); 3173 } else 3174 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3175 &first_block, &dfops, spaceres); 3176 if (error) 3177 goto out_bmap_cancel; 3178 3179 /* 3180 * For whiteouts, we need to bump the link count on the whiteout inode. 3181 * This means that failures all the way up to this point leave the inode 3182 * on the unlinked list and so cleanup is a simple matter of dropping 3183 * the remaining reference to it. If we fail here after bumping the link 3184 * count, we're shutting down the filesystem so we'll never see the 3185 * intermediate state on disk. 3186 */ 3187 if (wip) { 3188 ASSERT(VFS_I(wip)->i_nlink == 0); 3189 error = xfs_bumplink(tp, wip); 3190 if (error) 3191 goto out_bmap_cancel; 3192 error = xfs_iunlink_remove(tp, wip); 3193 if (error) 3194 goto out_bmap_cancel; 3195 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3196 3197 /* 3198 * Now we have a real link, clear the "I'm a tmpfile" state 3199 * flag from the inode so it doesn't accidentally get misused in 3200 * future. 3201 */ 3202 VFS_I(wip)->i_state &= ~I_LINKABLE; 3203 } 3204 3205 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3206 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3207 if (new_parent) 3208 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3209 3210 error = xfs_finish_rename(tp, &dfops); 3211 if (wip) 3212 IRELE(wip); 3213 return error; 3214 3215 out_bmap_cancel: 3216 xfs_defer_cancel(&dfops); 3217 out_trans_cancel: 3218 xfs_trans_cancel(tp); 3219 out_release_wip: 3220 if (wip) 3221 IRELE(wip); 3222 return error; 3223 } 3224 3225 STATIC int 3226 xfs_iflush_cluster( 3227 struct xfs_inode *ip, 3228 struct xfs_buf *bp) 3229 { 3230 struct xfs_mount *mp = ip->i_mount; 3231 struct xfs_perag *pag; 3232 unsigned long first_index, mask; 3233 unsigned long inodes_per_cluster; 3234 int cilist_size; 3235 struct xfs_inode **cilist; 3236 struct xfs_inode *cip; 3237 int nr_found; 3238 int clcount = 0; 3239 int i; 3240 3241 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3242 3243 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3244 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3245 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3246 if (!cilist) 3247 goto out_put; 3248 3249 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3250 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3251 rcu_read_lock(); 3252 /* really need a gang lookup range call here */ 3253 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3254 first_index, inodes_per_cluster); 3255 if (nr_found == 0) 3256 goto out_free; 3257 3258 for (i = 0; i < nr_found; i++) { 3259 cip = cilist[i]; 3260 if (cip == ip) 3261 continue; 3262 3263 /* 3264 * because this is an RCU protected lookup, we could find a 3265 * recently freed or even reallocated inode during the lookup. 3266 * We need to check under the i_flags_lock for a valid inode 3267 * here. Skip it if it is not valid or the wrong inode. 3268 */ 3269 spin_lock(&cip->i_flags_lock); 3270 if (!cip->i_ino || 3271 __xfs_iflags_test(cip, XFS_ISTALE)) { 3272 spin_unlock(&cip->i_flags_lock); 3273 continue; 3274 } 3275 3276 /* 3277 * Once we fall off the end of the cluster, no point checking 3278 * any more inodes in the list because they will also all be 3279 * outside the cluster. 3280 */ 3281 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3282 spin_unlock(&cip->i_flags_lock); 3283 break; 3284 } 3285 spin_unlock(&cip->i_flags_lock); 3286 3287 /* 3288 * Do an un-protected check to see if the inode is dirty and 3289 * is a candidate for flushing. These checks will be repeated 3290 * later after the appropriate locks are acquired. 3291 */ 3292 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3293 continue; 3294 3295 /* 3296 * Try to get locks. If any are unavailable or it is pinned, 3297 * then this inode cannot be flushed and is skipped. 3298 */ 3299 3300 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3301 continue; 3302 if (!xfs_iflock_nowait(cip)) { 3303 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3304 continue; 3305 } 3306 if (xfs_ipincount(cip)) { 3307 xfs_ifunlock(cip); 3308 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3309 continue; 3310 } 3311 3312 3313 /* 3314 * Check the inode number again, just to be certain we are not 3315 * racing with freeing in xfs_reclaim_inode(). See the comments 3316 * in that function for more information as to why the initial 3317 * check is not sufficient. 3318 */ 3319 if (!cip->i_ino) { 3320 xfs_ifunlock(cip); 3321 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3322 continue; 3323 } 3324 3325 /* 3326 * arriving here means that this inode can be flushed. First 3327 * re-check that it's dirty before flushing. 3328 */ 3329 if (!xfs_inode_clean(cip)) { 3330 int error; 3331 error = xfs_iflush_int(cip, bp); 3332 if (error) { 3333 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3334 goto cluster_corrupt_out; 3335 } 3336 clcount++; 3337 } else { 3338 xfs_ifunlock(cip); 3339 } 3340 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3341 } 3342 3343 if (clcount) { 3344 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3345 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3346 } 3347 3348 out_free: 3349 rcu_read_unlock(); 3350 kmem_free(cilist); 3351 out_put: 3352 xfs_perag_put(pag); 3353 return 0; 3354 3355 3356 cluster_corrupt_out: 3357 /* 3358 * Corruption detected in the clustering loop. Invalidate the 3359 * inode buffer and shut down the filesystem. 3360 */ 3361 rcu_read_unlock(); 3362 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3363 3364 /* 3365 * We'll always have an inode attached to the buffer for completion 3366 * process by the time we are called from xfs_iflush(). Hence we have 3367 * always need to do IO completion processing to abort the inodes 3368 * attached to the buffer. handle them just like the shutdown case in 3369 * xfs_buf_submit(). 3370 */ 3371 ASSERT(bp->b_iodone); 3372 bp->b_flags &= ~XBF_DONE; 3373 xfs_buf_stale(bp); 3374 xfs_buf_ioerror(bp, -EIO); 3375 xfs_buf_ioend(bp); 3376 3377 /* abort the corrupt inode, as it was not attached to the buffer */ 3378 xfs_iflush_abort(cip, false); 3379 kmem_free(cilist); 3380 xfs_perag_put(pag); 3381 return -EFSCORRUPTED; 3382 } 3383 3384 /* 3385 * Flush dirty inode metadata into the backing buffer. 3386 * 3387 * The caller must have the inode lock and the inode flush lock held. The 3388 * inode lock will still be held upon return to the caller, and the inode 3389 * flush lock will be released after the inode has reached the disk. 3390 * 3391 * The caller must write out the buffer returned in *bpp and release it. 3392 */ 3393 int 3394 xfs_iflush( 3395 struct xfs_inode *ip, 3396 struct xfs_buf **bpp) 3397 { 3398 struct xfs_mount *mp = ip->i_mount; 3399 struct xfs_buf *bp = NULL; 3400 struct xfs_dinode *dip; 3401 int error; 3402 3403 XFS_STATS_INC(mp, xs_iflush_count); 3404 3405 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3406 ASSERT(xfs_isiflocked(ip)); 3407 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3408 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3409 3410 *bpp = NULL; 3411 3412 xfs_iunpin_wait(ip); 3413 3414 /* 3415 * For stale inodes we cannot rely on the backing buffer remaining 3416 * stale in cache for the remaining life of the stale inode and so 3417 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3418 * inodes below. We have to check this after ensuring the inode is 3419 * unpinned so that it is safe to reclaim the stale inode after the 3420 * flush call. 3421 */ 3422 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3423 xfs_ifunlock(ip); 3424 return 0; 3425 } 3426 3427 /* 3428 * This may have been unpinned because the filesystem is shutting 3429 * down forcibly. If that's the case we must not write this inode 3430 * to disk, because the log record didn't make it to disk. 3431 * 3432 * We also have to remove the log item from the AIL in this case, 3433 * as we wait for an empty AIL as part of the unmount process. 3434 */ 3435 if (XFS_FORCED_SHUTDOWN(mp)) { 3436 error = -EIO; 3437 goto abort_out; 3438 } 3439 3440 /* 3441 * Get the buffer containing the on-disk inode. We are doing a try-lock 3442 * operation here, so we may get an EAGAIN error. In that case, we 3443 * simply want to return with the inode still dirty. 3444 * 3445 * If we get any other error, we effectively have a corruption situation 3446 * and we cannot flush the inode, so we treat it the same as failing 3447 * xfs_iflush_int(). 3448 */ 3449 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3450 0); 3451 if (error == -EAGAIN) { 3452 xfs_ifunlock(ip); 3453 return error; 3454 } 3455 if (error) 3456 goto corrupt_out; 3457 3458 /* 3459 * First flush out the inode that xfs_iflush was called with. 3460 */ 3461 error = xfs_iflush_int(ip, bp); 3462 if (error) 3463 goto corrupt_out; 3464 3465 /* 3466 * If the buffer is pinned then push on the log now so we won't 3467 * get stuck waiting in the write for too long. 3468 */ 3469 if (xfs_buf_ispinned(bp)) 3470 xfs_log_force(mp, 0); 3471 3472 /* 3473 * inode clustering: try to gather other inodes into this write 3474 * 3475 * Note: Any error during clustering will result in the filesystem 3476 * being shut down and completion callbacks run on the cluster buffer. 3477 * As we have already flushed and attached this inode to the buffer, 3478 * it has already been aborted and released by xfs_iflush_cluster() and 3479 * so we have no further error handling to do here. 3480 */ 3481 error = xfs_iflush_cluster(ip, bp); 3482 if (error) 3483 return error; 3484 3485 *bpp = bp; 3486 return 0; 3487 3488 corrupt_out: 3489 if (bp) 3490 xfs_buf_relse(bp); 3491 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3492 abort_out: 3493 /* abort the corrupt inode, as it was not attached to the buffer */ 3494 xfs_iflush_abort(ip, false); 3495 return error; 3496 } 3497 3498 /* 3499 * If there are inline format data / attr forks attached to this inode, 3500 * make sure they're not corrupt. 3501 */ 3502 bool 3503 xfs_inode_verify_forks( 3504 struct xfs_inode *ip) 3505 { 3506 struct xfs_ifork *ifp; 3507 xfs_failaddr_t fa; 3508 3509 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3510 if (fa) { 3511 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3512 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3513 ifp->if_u1.if_data, ifp->if_bytes, fa); 3514 return false; 3515 } 3516 3517 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3518 if (fa) { 3519 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3520 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3521 ifp ? ifp->if_u1.if_data : NULL, 3522 ifp ? ifp->if_bytes : 0, fa); 3523 return false; 3524 } 3525 return true; 3526 } 3527 3528 STATIC int 3529 xfs_iflush_int( 3530 struct xfs_inode *ip, 3531 struct xfs_buf *bp) 3532 { 3533 struct xfs_inode_log_item *iip = ip->i_itemp; 3534 struct xfs_dinode *dip; 3535 struct xfs_mount *mp = ip->i_mount; 3536 3537 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3538 ASSERT(xfs_isiflocked(ip)); 3539 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3540 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3541 ASSERT(iip != NULL && iip->ili_fields != 0); 3542 ASSERT(ip->i_d.di_version > 1); 3543 3544 /* set *dip = inode's place in the buffer */ 3545 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3546 3547 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3548 mp, XFS_ERRTAG_IFLUSH_1)) { 3549 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3550 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3551 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3552 goto corrupt_out; 3553 } 3554 if (S_ISREG(VFS_I(ip)->i_mode)) { 3555 if (XFS_TEST_ERROR( 3556 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3557 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3558 mp, XFS_ERRTAG_IFLUSH_3)) { 3559 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3560 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3561 __func__, ip->i_ino, ip); 3562 goto corrupt_out; 3563 } 3564 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3565 if (XFS_TEST_ERROR( 3566 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3567 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3568 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3569 mp, XFS_ERRTAG_IFLUSH_4)) { 3570 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3571 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3572 __func__, ip->i_ino, ip); 3573 goto corrupt_out; 3574 } 3575 } 3576 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3577 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3578 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3579 "%s: detected corrupt incore inode %Lu, " 3580 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3581 __func__, ip->i_ino, 3582 ip->i_d.di_nextents + ip->i_d.di_anextents, 3583 ip->i_d.di_nblocks, ip); 3584 goto corrupt_out; 3585 } 3586 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3587 mp, XFS_ERRTAG_IFLUSH_6)) { 3588 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3589 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3590 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3591 goto corrupt_out; 3592 } 3593 3594 /* 3595 * Inode item log recovery for v2 inodes are dependent on the 3596 * di_flushiter count for correct sequencing. We bump the flush 3597 * iteration count so we can detect flushes which postdate a log record 3598 * during recovery. This is redundant as we now log every change and 3599 * hence this can't happen but we need to still do it to ensure 3600 * backwards compatibility with old kernels that predate logging all 3601 * inode changes. 3602 */ 3603 if (ip->i_d.di_version < 3) 3604 ip->i_d.di_flushiter++; 3605 3606 /* Check the inline fork data before we write out. */ 3607 if (!xfs_inode_verify_forks(ip)) 3608 goto corrupt_out; 3609 3610 /* 3611 * Copy the dirty parts of the inode into the on-disk inode. We always 3612 * copy out the core of the inode, because if the inode is dirty at all 3613 * the core must be. 3614 */ 3615 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3616 3617 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3618 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3619 ip->i_d.di_flushiter = 0; 3620 3621 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3622 if (XFS_IFORK_Q(ip)) 3623 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3624 xfs_inobp_check(mp, bp); 3625 3626 /* 3627 * We've recorded everything logged in the inode, so we'd like to clear 3628 * the ili_fields bits so we don't log and flush things unnecessarily. 3629 * However, we can't stop logging all this information until the data 3630 * we've copied into the disk buffer is written to disk. If we did we 3631 * might overwrite the copy of the inode in the log with all the data 3632 * after re-logging only part of it, and in the face of a crash we 3633 * wouldn't have all the data we need to recover. 3634 * 3635 * What we do is move the bits to the ili_last_fields field. When 3636 * logging the inode, these bits are moved back to the ili_fields field. 3637 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3638 * know that the information those bits represent is permanently on 3639 * disk. As long as the flush completes before the inode is logged 3640 * again, then both ili_fields and ili_last_fields will be cleared. 3641 * 3642 * We can play with the ili_fields bits here, because the inode lock 3643 * must be held exclusively in order to set bits there and the flush 3644 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3645 * done routine can tell whether or not to look in the AIL. Also, store 3646 * the current LSN of the inode so that we can tell whether the item has 3647 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3648 * need the AIL lock, because it is a 64 bit value that cannot be read 3649 * atomically. 3650 */ 3651 iip->ili_last_fields = iip->ili_fields; 3652 iip->ili_fields = 0; 3653 iip->ili_fsync_fields = 0; 3654 iip->ili_logged = 1; 3655 3656 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3657 &iip->ili_item.li_lsn); 3658 3659 /* 3660 * Attach the function xfs_iflush_done to the inode's 3661 * buffer. This will remove the inode from the AIL 3662 * and unlock the inode's flush lock when the inode is 3663 * completely written to disk. 3664 */ 3665 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3666 3667 /* generate the checksum. */ 3668 xfs_dinode_calc_crc(mp, dip); 3669 3670 ASSERT(!list_empty(&bp->b_li_list)); 3671 ASSERT(bp->b_iodone != NULL); 3672 return 0; 3673 3674 corrupt_out: 3675 return -EFSCORRUPTED; 3676 } 3677