1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_sem locking order: 148 * 149 * i_rwsem -> page lock -> mmap_sem 150 * mmap_sem -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_sem locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_sem. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 void 602 __xfs_iflock( 603 struct xfs_inode *ip) 604 { 605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 607 608 do { 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 610 if (xfs_isiflocked(ip)) 611 io_schedule(); 612 } while (!xfs_iflock_nowait(ip)); 613 614 finish_wait(wq, &wait.wq_entry); 615 } 616 617 STATIC uint 618 _xfs_dic2xflags( 619 uint16_t di_flags, 620 uint64_t di_flags2, 621 bool has_attr) 622 { 623 uint flags = 0; 624 625 if (di_flags & XFS_DIFLAG_ANY) { 626 if (di_flags & XFS_DIFLAG_REALTIME) 627 flags |= FS_XFLAG_REALTIME; 628 if (di_flags & XFS_DIFLAG_PREALLOC) 629 flags |= FS_XFLAG_PREALLOC; 630 if (di_flags & XFS_DIFLAG_IMMUTABLE) 631 flags |= FS_XFLAG_IMMUTABLE; 632 if (di_flags & XFS_DIFLAG_APPEND) 633 flags |= FS_XFLAG_APPEND; 634 if (di_flags & XFS_DIFLAG_SYNC) 635 flags |= FS_XFLAG_SYNC; 636 if (di_flags & XFS_DIFLAG_NOATIME) 637 flags |= FS_XFLAG_NOATIME; 638 if (di_flags & XFS_DIFLAG_NODUMP) 639 flags |= FS_XFLAG_NODUMP; 640 if (di_flags & XFS_DIFLAG_RTINHERIT) 641 flags |= FS_XFLAG_RTINHERIT; 642 if (di_flags & XFS_DIFLAG_PROJINHERIT) 643 flags |= FS_XFLAG_PROJINHERIT; 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 645 flags |= FS_XFLAG_NOSYMLINKS; 646 if (di_flags & XFS_DIFLAG_EXTSIZE) 647 flags |= FS_XFLAG_EXTSIZE; 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 649 flags |= FS_XFLAG_EXTSZINHERIT; 650 if (di_flags & XFS_DIFLAG_NODEFRAG) 651 flags |= FS_XFLAG_NODEFRAG; 652 if (di_flags & XFS_DIFLAG_FILESTREAM) 653 flags |= FS_XFLAG_FILESTREAM; 654 } 655 656 if (di_flags2 & XFS_DIFLAG2_ANY) { 657 if (di_flags2 & XFS_DIFLAG2_DAX) 658 flags |= FS_XFLAG_DAX; 659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 660 flags |= FS_XFLAG_COWEXTSIZE; 661 } 662 663 if (has_attr) 664 flags |= FS_XFLAG_HASATTR; 665 666 return flags; 667 } 668 669 uint 670 xfs_ip2xflags( 671 struct xfs_inode *ip) 672 { 673 struct xfs_icdinode *dic = &ip->i_d; 674 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 676 } 677 678 /* 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 680 * is allowed, otherwise it has to be an exact match. If a CI match is found, 681 * ci_name->name will point to a the actual name (caller must free) or 682 * will be set to NULL if an exact match is found. 683 */ 684 int 685 xfs_lookup( 686 xfs_inode_t *dp, 687 struct xfs_name *name, 688 xfs_inode_t **ipp, 689 struct xfs_name *ci_name) 690 { 691 xfs_ino_t inum; 692 int error; 693 694 trace_xfs_lookup(dp, name); 695 696 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 697 return -EIO; 698 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 700 if (error) 701 goto out_unlock; 702 703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 704 if (error) 705 goto out_free_name; 706 707 return 0; 708 709 out_free_name: 710 if (ci_name) 711 kmem_free(ci_name->name); 712 out_unlock: 713 *ipp = NULL; 714 return error; 715 } 716 717 /* 718 * Allocate an inode on disk and return a copy of its in-core version. 719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 720 * appropriately within the inode. The uid and gid for the inode are 721 * set according to the contents of the given cred structure. 722 * 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 724 * has a free inode available, call xfs_iget() to obtain the in-core 725 * version of the allocated inode. Finally, fill in the inode and 726 * log its initial contents. In this case, ialloc_context would be 727 * set to NULL. 728 * 729 * If xfs_dialloc() does not have an available inode, it will replenish 730 * its supply by doing an allocation. Since we can only do one 731 * allocation within a transaction without deadlocks, we must commit 732 * the current transaction before returning the inode itself. 733 * In this case, therefore, we will set ialloc_context and return. 734 * The caller should then commit the current transaction, start a new 735 * transaction, and call xfs_ialloc() again to actually get the inode. 736 * 737 * To ensure that some other process does not grab the inode that 738 * was allocated during the first call to xfs_ialloc(), this routine 739 * also returns the [locked] bp pointing to the head of the freelist 740 * as ialloc_context. The caller should hold this buffer across 741 * the commit and pass it back into this routine on the second call. 742 * 743 * If we are allocating quota inodes, we do not have a parent inode 744 * to attach to or associate with (i.e. pip == NULL) because they 745 * are not linked into the directory structure - they are attached 746 * directly to the superblock - and so have no parent. 747 */ 748 static int 749 xfs_ialloc( 750 xfs_trans_t *tp, 751 xfs_inode_t *pip, 752 umode_t mode, 753 xfs_nlink_t nlink, 754 dev_t rdev, 755 prid_t prid, 756 xfs_buf_t **ialloc_context, 757 xfs_inode_t **ipp) 758 { 759 struct xfs_mount *mp = tp->t_mountp; 760 xfs_ino_t ino; 761 xfs_inode_t *ip; 762 uint flags; 763 int error; 764 struct timespec64 tv; 765 struct inode *inode; 766 767 /* 768 * Call the space management code to pick 769 * the on-disk inode to be allocated. 770 */ 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 772 ialloc_context, &ino); 773 if (error) 774 return error; 775 if (*ialloc_context || ino == NULLFSINO) { 776 *ipp = NULL; 777 return 0; 778 } 779 ASSERT(*ialloc_context == NULL); 780 781 /* 782 * Protect against obviously corrupt allocation btree records. Later 783 * xfs_iget checks will catch re-allocation of other active in-memory 784 * and on-disk inodes. If we don't catch reallocating the parent inode 785 * here we will deadlock in xfs_iget() so we have to do these checks 786 * first. 787 */ 788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 790 return -EFSCORRUPTED; 791 } 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 inode->i_mode = mode; 805 set_nlink(inode, nlink); 806 inode->i_uid = current_fsuid(); 807 inode->i_rdev = rdev; 808 ip->i_d.di_projid = prid; 809 810 if (pip && XFS_INHERIT_GID(pip)) { 811 inode->i_gid = VFS_I(pip)->i_gid; 812 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 813 inode->i_mode |= S_ISGID; 814 } else { 815 inode->i_gid = current_fsgid(); 816 } 817 818 /* 819 * If the group ID of the new file does not match the effective group 820 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 821 * (and only if the irix_sgid_inherit compatibility variable is set). 822 */ 823 if (irix_sgid_inherit && 824 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 825 inode->i_mode &= ~S_ISGID; 826 827 ip->i_d.di_size = 0; 828 ip->i_d.di_nextents = 0; 829 ASSERT(ip->i_d.di_nblocks == 0); 830 831 tv = current_time(inode); 832 inode->i_mtime = tv; 833 inode->i_atime = tv; 834 inode->i_ctime = tv; 835 836 ip->i_d.di_extsize = 0; 837 ip->i_d.di_dmevmask = 0; 838 ip->i_d.di_dmstate = 0; 839 ip->i_d.di_flags = 0; 840 841 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 842 inode_set_iversion(inode, 1); 843 ip->i_d.di_flags2 = 0; 844 ip->i_d.di_cowextsize = 0; 845 ip->i_d.di_crtime = tv; 846 } 847 848 flags = XFS_ILOG_CORE; 849 switch (mode & S_IFMT) { 850 case S_IFIFO: 851 case S_IFCHR: 852 case S_IFBLK: 853 case S_IFSOCK: 854 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 855 ip->i_df.if_flags = 0; 856 flags |= XFS_ILOG_DEV; 857 break; 858 case S_IFREG: 859 case S_IFDIR: 860 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 861 uint di_flags = 0; 862 863 if (S_ISDIR(mode)) { 864 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 865 di_flags |= XFS_DIFLAG_RTINHERIT; 866 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 867 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 868 ip->i_d.di_extsize = pip->i_d.di_extsize; 869 } 870 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 871 di_flags |= XFS_DIFLAG_PROJINHERIT; 872 } else if (S_ISREG(mode)) { 873 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 874 di_flags |= XFS_DIFLAG_REALTIME; 875 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 876 di_flags |= XFS_DIFLAG_EXTSIZE; 877 ip->i_d.di_extsize = pip->i_d.di_extsize; 878 } 879 } 880 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 881 xfs_inherit_noatime) 882 di_flags |= XFS_DIFLAG_NOATIME; 883 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 884 xfs_inherit_nodump) 885 di_flags |= XFS_DIFLAG_NODUMP; 886 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 887 xfs_inherit_sync) 888 di_flags |= XFS_DIFLAG_SYNC; 889 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 890 xfs_inherit_nosymlinks) 891 di_flags |= XFS_DIFLAG_NOSYMLINKS; 892 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 893 xfs_inherit_nodefrag) 894 di_flags |= XFS_DIFLAG_NODEFRAG; 895 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 896 di_flags |= XFS_DIFLAG_FILESTREAM; 897 898 ip->i_d.di_flags |= di_flags; 899 } 900 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) { 901 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 902 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 903 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 904 } 905 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 906 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 907 } 908 /* FALLTHROUGH */ 909 case S_IFLNK: 910 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 911 ip->i_df.if_flags = XFS_IFEXTENTS; 912 ip->i_df.if_bytes = 0; 913 ip->i_df.if_u1.if_root = NULL; 914 break; 915 default: 916 ASSERT(0); 917 } 918 /* 919 * Attribute fork settings for new inode. 920 */ 921 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 922 ip->i_d.di_anextents = 0; 923 924 /* 925 * Log the new values stuffed into the inode. 926 */ 927 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 928 xfs_trans_log_inode(tp, ip, flags); 929 930 /* now that we have an i_mode we can setup the inode structure */ 931 xfs_setup_inode(ip); 932 933 *ipp = ip; 934 return 0; 935 } 936 937 /* 938 * Allocates a new inode from disk and return a pointer to the 939 * incore copy. This routine will internally commit the current 940 * transaction and allocate a new one if the Space Manager needed 941 * to do an allocation to replenish the inode free-list. 942 * 943 * This routine is designed to be called from xfs_create and 944 * xfs_create_dir. 945 * 946 */ 947 int 948 xfs_dir_ialloc( 949 xfs_trans_t **tpp, /* input: current transaction; 950 output: may be a new transaction. */ 951 xfs_inode_t *dp, /* directory within whose allocate 952 the inode. */ 953 umode_t mode, 954 xfs_nlink_t nlink, 955 dev_t rdev, 956 prid_t prid, /* project id */ 957 xfs_inode_t **ipp) /* pointer to inode; it will be 958 locked. */ 959 { 960 xfs_trans_t *tp; 961 xfs_inode_t *ip; 962 xfs_buf_t *ialloc_context = NULL; 963 int code; 964 void *dqinfo; 965 uint tflags; 966 967 tp = *tpp; 968 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 969 970 /* 971 * xfs_ialloc will return a pointer to an incore inode if 972 * the Space Manager has an available inode on the free 973 * list. Otherwise, it will do an allocation and replenish 974 * the freelist. Since we can only do one allocation per 975 * transaction without deadlocks, we will need to commit the 976 * current transaction and start a new one. We will then 977 * need to call xfs_ialloc again to get the inode. 978 * 979 * If xfs_ialloc did an allocation to replenish the freelist, 980 * it returns the bp containing the head of the freelist as 981 * ialloc_context. We will hold a lock on it across the 982 * transaction commit so that no other process can steal 983 * the inode(s) that we've just allocated. 984 */ 985 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 986 &ip); 987 988 /* 989 * Return an error if we were unable to allocate a new inode. 990 * This should only happen if we run out of space on disk or 991 * encounter a disk error. 992 */ 993 if (code) { 994 *ipp = NULL; 995 return code; 996 } 997 if (!ialloc_context && !ip) { 998 *ipp = NULL; 999 return -ENOSPC; 1000 } 1001 1002 /* 1003 * If the AGI buffer is non-NULL, then we were unable to get an 1004 * inode in one operation. We need to commit the current 1005 * transaction and call xfs_ialloc() again. It is guaranteed 1006 * to succeed the second time. 1007 */ 1008 if (ialloc_context) { 1009 /* 1010 * Normally, xfs_trans_commit releases all the locks. 1011 * We call bhold to hang on to the ialloc_context across 1012 * the commit. Holding this buffer prevents any other 1013 * processes from doing any allocations in this 1014 * allocation group. 1015 */ 1016 xfs_trans_bhold(tp, ialloc_context); 1017 1018 /* 1019 * We want the quota changes to be associated with the next 1020 * transaction, NOT this one. So, detach the dqinfo from this 1021 * and attach it to the next transaction. 1022 */ 1023 dqinfo = NULL; 1024 tflags = 0; 1025 if (tp->t_dqinfo) { 1026 dqinfo = (void *)tp->t_dqinfo; 1027 tp->t_dqinfo = NULL; 1028 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1029 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1030 } 1031 1032 code = xfs_trans_roll(&tp); 1033 1034 /* 1035 * Re-attach the quota info that we detached from prev trx. 1036 */ 1037 if (dqinfo) { 1038 tp->t_dqinfo = dqinfo; 1039 tp->t_flags |= tflags; 1040 } 1041 1042 if (code) { 1043 xfs_buf_relse(ialloc_context); 1044 *tpp = tp; 1045 *ipp = NULL; 1046 return code; 1047 } 1048 xfs_trans_bjoin(tp, ialloc_context); 1049 1050 /* 1051 * Call ialloc again. Since we've locked out all 1052 * other allocations in this allocation group, 1053 * this call should always succeed. 1054 */ 1055 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1056 &ialloc_context, &ip); 1057 1058 /* 1059 * If we get an error at this point, return to the caller 1060 * so that the current transaction can be aborted. 1061 */ 1062 if (code) { 1063 *tpp = tp; 1064 *ipp = NULL; 1065 return code; 1066 } 1067 ASSERT(!ialloc_context && ip); 1068 1069 } 1070 1071 *ipp = ip; 1072 *tpp = tp; 1073 1074 return 0; 1075 } 1076 1077 /* 1078 * Decrement the link count on an inode & log the change. If this causes the 1079 * link count to go to zero, move the inode to AGI unlinked list so that it can 1080 * be freed when the last active reference goes away via xfs_inactive(). 1081 */ 1082 static int /* error */ 1083 xfs_droplink( 1084 xfs_trans_t *tp, 1085 xfs_inode_t *ip) 1086 { 1087 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1088 1089 drop_nlink(VFS_I(ip)); 1090 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1091 1092 if (VFS_I(ip)->i_nlink) 1093 return 0; 1094 1095 return xfs_iunlink(tp, ip); 1096 } 1097 1098 /* 1099 * Increment the link count on an inode & log the change. 1100 */ 1101 static void 1102 xfs_bumplink( 1103 xfs_trans_t *tp, 1104 xfs_inode_t *ip) 1105 { 1106 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1107 1108 inc_nlink(VFS_I(ip)); 1109 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1110 } 1111 1112 int 1113 xfs_create( 1114 xfs_inode_t *dp, 1115 struct xfs_name *name, 1116 umode_t mode, 1117 dev_t rdev, 1118 xfs_inode_t **ipp) 1119 { 1120 int is_dir = S_ISDIR(mode); 1121 struct xfs_mount *mp = dp->i_mount; 1122 struct xfs_inode *ip = NULL; 1123 struct xfs_trans *tp = NULL; 1124 int error; 1125 bool unlock_dp_on_error = false; 1126 prid_t prid; 1127 struct xfs_dquot *udqp = NULL; 1128 struct xfs_dquot *gdqp = NULL; 1129 struct xfs_dquot *pdqp = NULL; 1130 struct xfs_trans_res *tres; 1131 uint resblks; 1132 1133 trace_xfs_create(dp, name); 1134 1135 if (XFS_FORCED_SHUTDOWN(mp)) 1136 return -EIO; 1137 1138 prid = xfs_get_initial_prid(dp); 1139 1140 /* 1141 * Make sure that we have allocated dquot(s) on disk. 1142 */ 1143 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1144 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1145 &udqp, &gdqp, &pdqp); 1146 if (error) 1147 return error; 1148 1149 if (is_dir) { 1150 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1151 tres = &M_RES(mp)->tr_mkdir; 1152 } else { 1153 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1154 tres = &M_RES(mp)->tr_create; 1155 } 1156 1157 /* 1158 * Initially assume that the file does not exist and 1159 * reserve the resources for that case. If that is not 1160 * the case we'll drop the one we have and get a more 1161 * appropriate transaction later. 1162 */ 1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1164 if (error == -ENOSPC) { 1165 /* flush outstanding delalloc blocks and retry */ 1166 xfs_flush_inodes(mp); 1167 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1168 } 1169 if (error) 1170 goto out_release_inode; 1171 1172 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1173 unlock_dp_on_error = true; 1174 1175 /* 1176 * Reserve disk quota and the inode. 1177 */ 1178 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1179 pdqp, resblks, 1, 0); 1180 if (error) 1181 goto out_trans_cancel; 1182 1183 /* 1184 * A newly created regular or special file just has one directory 1185 * entry pointing to them, but a directory also the "." entry 1186 * pointing to itself. 1187 */ 1188 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1189 if (error) 1190 goto out_trans_cancel; 1191 1192 /* 1193 * Now we join the directory inode to the transaction. We do not do it 1194 * earlier because xfs_dir_ialloc might commit the previous transaction 1195 * (and release all the locks). An error from here on will result in 1196 * the transaction cancel unlocking dp so don't do it explicitly in the 1197 * error path. 1198 */ 1199 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1200 unlock_dp_on_error = false; 1201 1202 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1203 resblks - XFS_IALLOC_SPACE_RES(mp)); 1204 if (error) { 1205 ASSERT(error != -ENOSPC); 1206 goto out_trans_cancel; 1207 } 1208 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1209 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1210 1211 if (is_dir) { 1212 error = xfs_dir_init(tp, ip, dp); 1213 if (error) 1214 goto out_trans_cancel; 1215 1216 xfs_bumplink(tp, dp); 1217 } 1218 1219 /* 1220 * If this is a synchronous mount, make sure that the 1221 * create transaction goes to disk before returning to 1222 * the user. 1223 */ 1224 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1225 xfs_trans_set_sync(tp); 1226 1227 /* 1228 * Attach the dquot(s) to the inodes and modify them incore. 1229 * These ids of the inode couldn't have changed since the new 1230 * inode has been locked ever since it was created. 1231 */ 1232 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1233 1234 error = xfs_trans_commit(tp); 1235 if (error) 1236 goto out_release_inode; 1237 1238 xfs_qm_dqrele(udqp); 1239 xfs_qm_dqrele(gdqp); 1240 xfs_qm_dqrele(pdqp); 1241 1242 *ipp = ip; 1243 return 0; 1244 1245 out_trans_cancel: 1246 xfs_trans_cancel(tp); 1247 out_release_inode: 1248 /* 1249 * Wait until after the current transaction is aborted to finish the 1250 * setup of the inode and release the inode. This prevents recursive 1251 * transactions and deadlocks from xfs_inactive. 1252 */ 1253 if (ip) { 1254 xfs_finish_inode_setup(ip); 1255 xfs_irele(ip); 1256 } 1257 1258 xfs_qm_dqrele(udqp); 1259 xfs_qm_dqrele(gdqp); 1260 xfs_qm_dqrele(pdqp); 1261 1262 if (unlock_dp_on_error) 1263 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1264 return error; 1265 } 1266 1267 int 1268 xfs_create_tmpfile( 1269 struct xfs_inode *dp, 1270 umode_t mode, 1271 struct xfs_inode **ipp) 1272 { 1273 struct xfs_mount *mp = dp->i_mount; 1274 struct xfs_inode *ip = NULL; 1275 struct xfs_trans *tp = NULL; 1276 int error; 1277 prid_t prid; 1278 struct xfs_dquot *udqp = NULL; 1279 struct xfs_dquot *gdqp = NULL; 1280 struct xfs_dquot *pdqp = NULL; 1281 struct xfs_trans_res *tres; 1282 uint resblks; 1283 1284 if (XFS_FORCED_SHUTDOWN(mp)) 1285 return -EIO; 1286 1287 prid = xfs_get_initial_prid(dp); 1288 1289 /* 1290 * Make sure that we have allocated dquot(s) on disk. 1291 */ 1292 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1293 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1294 &udqp, &gdqp, &pdqp); 1295 if (error) 1296 return error; 1297 1298 resblks = XFS_IALLOC_SPACE_RES(mp); 1299 tres = &M_RES(mp)->tr_create_tmpfile; 1300 1301 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1302 if (error) 1303 goto out_release_inode; 1304 1305 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1306 pdqp, resblks, 1, 0); 1307 if (error) 1308 goto out_trans_cancel; 1309 1310 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1311 if (error) 1312 goto out_trans_cancel; 1313 1314 if (mp->m_flags & XFS_MOUNT_WSYNC) 1315 xfs_trans_set_sync(tp); 1316 1317 /* 1318 * Attach the dquot(s) to the inodes and modify them incore. 1319 * These ids of the inode couldn't have changed since the new 1320 * inode has been locked ever since it was created. 1321 */ 1322 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1323 1324 error = xfs_iunlink(tp, ip); 1325 if (error) 1326 goto out_trans_cancel; 1327 1328 error = xfs_trans_commit(tp); 1329 if (error) 1330 goto out_release_inode; 1331 1332 xfs_qm_dqrele(udqp); 1333 xfs_qm_dqrele(gdqp); 1334 xfs_qm_dqrele(pdqp); 1335 1336 *ipp = ip; 1337 return 0; 1338 1339 out_trans_cancel: 1340 xfs_trans_cancel(tp); 1341 out_release_inode: 1342 /* 1343 * Wait until after the current transaction is aborted to finish the 1344 * setup of the inode and release the inode. This prevents recursive 1345 * transactions and deadlocks from xfs_inactive. 1346 */ 1347 if (ip) { 1348 xfs_finish_inode_setup(ip); 1349 xfs_irele(ip); 1350 } 1351 1352 xfs_qm_dqrele(udqp); 1353 xfs_qm_dqrele(gdqp); 1354 xfs_qm_dqrele(pdqp); 1355 1356 return error; 1357 } 1358 1359 int 1360 xfs_link( 1361 xfs_inode_t *tdp, 1362 xfs_inode_t *sip, 1363 struct xfs_name *target_name) 1364 { 1365 xfs_mount_t *mp = tdp->i_mount; 1366 xfs_trans_t *tp; 1367 int error; 1368 int resblks; 1369 1370 trace_xfs_link(tdp, target_name); 1371 1372 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1373 1374 if (XFS_FORCED_SHUTDOWN(mp)) 1375 return -EIO; 1376 1377 error = xfs_qm_dqattach(sip); 1378 if (error) 1379 goto std_return; 1380 1381 error = xfs_qm_dqattach(tdp); 1382 if (error) 1383 goto std_return; 1384 1385 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1386 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1387 if (error == -ENOSPC) { 1388 resblks = 0; 1389 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1390 } 1391 if (error) 1392 goto std_return; 1393 1394 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1395 1396 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1397 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1398 1399 /* 1400 * If we are using project inheritance, we only allow hard link 1401 * creation in our tree when the project IDs are the same; else 1402 * the tree quota mechanism could be circumvented. 1403 */ 1404 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1405 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1406 error = -EXDEV; 1407 goto error_return; 1408 } 1409 1410 if (!resblks) { 1411 error = xfs_dir_canenter(tp, tdp, target_name); 1412 if (error) 1413 goto error_return; 1414 } 1415 1416 /* 1417 * Handle initial link state of O_TMPFILE inode 1418 */ 1419 if (VFS_I(sip)->i_nlink == 0) { 1420 error = xfs_iunlink_remove(tp, sip); 1421 if (error) 1422 goto error_return; 1423 } 1424 1425 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1426 resblks); 1427 if (error) 1428 goto error_return; 1429 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1430 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1431 1432 xfs_bumplink(tp, sip); 1433 1434 /* 1435 * If this is a synchronous mount, make sure that the 1436 * link transaction goes to disk before returning to 1437 * the user. 1438 */ 1439 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1440 xfs_trans_set_sync(tp); 1441 1442 return xfs_trans_commit(tp); 1443 1444 error_return: 1445 xfs_trans_cancel(tp); 1446 std_return: 1447 return error; 1448 } 1449 1450 /* Clear the reflink flag and the cowblocks tag if possible. */ 1451 static void 1452 xfs_itruncate_clear_reflink_flags( 1453 struct xfs_inode *ip) 1454 { 1455 struct xfs_ifork *dfork; 1456 struct xfs_ifork *cfork; 1457 1458 if (!xfs_is_reflink_inode(ip)) 1459 return; 1460 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1461 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1462 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1463 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1464 if (cfork->if_bytes == 0) 1465 xfs_inode_clear_cowblocks_tag(ip); 1466 } 1467 1468 /* 1469 * Free up the underlying blocks past new_size. The new size must be smaller 1470 * than the current size. This routine can be used both for the attribute and 1471 * data fork, and does not modify the inode size, which is left to the caller. 1472 * 1473 * The transaction passed to this routine must have made a permanent log 1474 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1475 * given transaction and start new ones, so make sure everything involved in 1476 * the transaction is tidy before calling here. Some transaction will be 1477 * returned to the caller to be committed. The incoming transaction must 1478 * already include the inode, and both inode locks must be held exclusively. 1479 * The inode must also be "held" within the transaction. On return the inode 1480 * will be "held" within the returned transaction. This routine does NOT 1481 * require any disk space to be reserved for it within the transaction. 1482 * 1483 * If we get an error, we must return with the inode locked and linked into the 1484 * current transaction. This keeps things simple for the higher level code, 1485 * because it always knows that the inode is locked and held in the transaction 1486 * that returns to it whether errors occur or not. We don't mark the inode 1487 * dirty on error so that transactions can be easily aborted if possible. 1488 */ 1489 int 1490 xfs_itruncate_extents_flags( 1491 struct xfs_trans **tpp, 1492 struct xfs_inode *ip, 1493 int whichfork, 1494 xfs_fsize_t new_size, 1495 int flags) 1496 { 1497 struct xfs_mount *mp = ip->i_mount; 1498 struct xfs_trans *tp = *tpp; 1499 xfs_fileoff_t first_unmap_block; 1500 xfs_filblks_t unmap_len; 1501 int error = 0; 1502 1503 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1504 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1505 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1506 ASSERT(new_size <= XFS_ISIZE(ip)); 1507 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1508 ASSERT(ip->i_itemp != NULL); 1509 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1510 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1511 1512 trace_xfs_itruncate_extents_start(ip, new_size); 1513 1514 flags |= xfs_bmapi_aflag(whichfork); 1515 1516 /* 1517 * Since it is possible for space to become allocated beyond 1518 * the end of the file (in a crash where the space is allocated 1519 * but the inode size is not yet updated), simply remove any 1520 * blocks which show up between the new EOF and the maximum 1521 * possible file size. 1522 * 1523 * We have to free all the blocks to the bmbt maximum offset, even if 1524 * the page cache can't scale that far. 1525 */ 1526 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1527 if (first_unmap_block >= XFS_MAX_FILEOFF) { 1528 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1529 return 0; 1530 } 1531 1532 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1533 while (unmap_len > 0) { 1534 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1535 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1536 flags, XFS_ITRUNC_MAX_EXTENTS); 1537 if (error) 1538 goto out; 1539 1540 /* 1541 * Duplicate the transaction that has the permanent 1542 * reservation and commit the old transaction. 1543 */ 1544 error = xfs_defer_finish(&tp); 1545 if (error) 1546 goto out; 1547 1548 error = xfs_trans_roll_inode(&tp, ip); 1549 if (error) 1550 goto out; 1551 } 1552 1553 if (whichfork == XFS_DATA_FORK) { 1554 /* Remove all pending CoW reservations. */ 1555 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1556 first_unmap_block, XFS_MAX_FILEOFF, true); 1557 if (error) 1558 goto out; 1559 1560 xfs_itruncate_clear_reflink_flags(ip); 1561 } 1562 1563 /* 1564 * Always re-log the inode so that our permanent transaction can keep 1565 * on rolling it forward in the log. 1566 */ 1567 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1568 1569 trace_xfs_itruncate_extents_end(ip, new_size); 1570 1571 out: 1572 *tpp = tp; 1573 return error; 1574 } 1575 1576 int 1577 xfs_release( 1578 xfs_inode_t *ip) 1579 { 1580 xfs_mount_t *mp = ip->i_mount; 1581 int error; 1582 1583 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1584 return 0; 1585 1586 /* If this is a read-only mount, don't do this (would generate I/O) */ 1587 if (mp->m_flags & XFS_MOUNT_RDONLY) 1588 return 0; 1589 1590 if (!XFS_FORCED_SHUTDOWN(mp)) { 1591 int truncated; 1592 1593 /* 1594 * If we previously truncated this file and removed old data 1595 * in the process, we want to initiate "early" writeout on 1596 * the last close. This is an attempt to combat the notorious 1597 * NULL files problem which is particularly noticeable from a 1598 * truncate down, buffered (re-)write (delalloc), followed by 1599 * a crash. What we are effectively doing here is 1600 * significantly reducing the time window where we'd otherwise 1601 * be exposed to that problem. 1602 */ 1603 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1604 if (truncated) { 1605 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1606 if (ip->i_delayed_blks > 0) { 1607 error = filemap_flush(VFS_I(ip)->i_mapping); 1608 if (error) 1609 return error; 1610 } 1611 } 1612 } 1613 1614 if (VFS_I(ip)->i_nlink == 0) 1615 return 0; 1616 1617 if (xfs_can_free_eofblocks(ip, false)) { 1618 1619 /* 1620 * Check if the inode is being opened, written and closed 1621 * frequently and we have delayed allocation blocks outstanding 1622 * (e.g. streaming writes from the NFS server), truncating the 1623 * blocks past EOF will cause fragmentation to occur. 1624 * 1625 * In this case don't do the truncation, but we have to be 1626 * careful how we detect this case. Blocks beyond EOF show up as 1627 * i_delayed_blks even when the inode is clean, so we need to 1628 * truncate them away first before checking for a dirty release. 1629 * Hence on the first dirty close we will still remove the 1630 * speculative allocation, but after that we will leave it in 1631 * place. 1632 */ 1633 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1634 return 0; 1635 /* 1636 * If we can't get the iolock just skip truncating the blocks 1637 * past EOF because we could deadlock with the mmap_sem 1638 * otherwise. We'll get another chance to drop them once the 1639 * last reference to the inode is dropped, so we'll never leak 1640 * blocks permanently. 1641 */ 1642 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1643 error = xfs_free_eofblocks(ip); 1644 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1645 if (error) 1646 return error; 1647 } 1648 1649 /* delalloc blocks after truncation means it really is dirty */ 1650 if (ip->i_delayed_blks) 1651 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1652 } 1653 return 0; 1654 } 1655 1656 /* 1657 * xfs_inactive_truncate 1658 * 1659 * Called to perform a truncate when an inode becomes unlinked. 1660 */ 1661 STATIC int 1662 xfs_inactive_truncate( 1663 struct xfs_inode *ip) 1664 { 1665 struct xfs_mount *mp = ip->i_mount; 1666 struct xfs_trans *tp; 1667 int error; 1668 1669 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1670 if (error) { 1671 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1672 return error; 1673 } 1674 xfs_ilock(ip, XFS_ILOCK_EXCL); 1675 xfs_trans_ijoin(tp, ip, 0); 1676 1677 /* 1678 * Log the inode size first to prevent stale data exposure in the event 1679 * of a system crash before the truncate completes. See the related 1680 * comment in xfs_vn_setattr_size() for details. 1681 */ 1682 ip->i_d.di_size = 0; 1683 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1684 1685 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1686 if (error) 1687 goto error_trans_cancel; 1688 1689 ASSERT(ip->i_d.di_nextents == 0); 1690 1691 error = xfs_trans_commit(tp); 1692 if (error) 1693 goto error_unlock; 1694 1695 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1696 return 0; 1697 1698 error_trans_cancel: 1699 xfs_trans_cancel(tp); 1700 error_unlock: 1701 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1702 return error; 1703 } 1704 1705 /* 1706 * xfs_inactive_ifree() 1707 * 1708 * Perform the inode free when an inode is unlinked. 1709 */ 1710 STATIC int 1711 xfs_inactive_ifree( 1712 struct xfs_inode *ip) 1713 { 1714 struct xfs_mount *mp = ip->i_mount; 1715 struct xfs_trans *tp; 1716 int error; 1717 1718 /* 1719 * We try to use a per-AG reservation for any block needed by the finobt 1720 * tree, but as the finobt feature predates the per-AG reservation 1721 * support a degraded file system might not have enough space for the 1722 * reservation at mount time. In that case try to dip into the reserved 1723 * pool and pray. 1724 * 1725 * Send a warning if the reservation does happen to fail, as the inode 1726 * now remains allocated and sits on the unlinked list until the fs is 1727 * repaired. 1728 */ 1729 if (unlikely(mp->m_finobt_nores)) { 1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1731 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1732 &tp); 1733 } else { 1734 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1735 } 1736 if (error) { 1737 if (error == -ENOSPC) { 1738 xfs_warn_ratelimited(mp, 1739 "Failed to remove inode(s) from unlinked list. " 1740 "Please free space, unmount and run xfs_repair."); 1741 } else { 1742 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1743 } 1744 return error; 1745 } 1746 1747 xfs_ilock(ip, XFS_ILOCK_EXCL); 1748 xfs_trans_ijoin(tp, ip, 0); 1749 1750 error = xfs_ifree(tp, ip); 1751 if (error) { 1752 /* 1753 * If we fail to free the inode, shut down. The cancel 1754 * might do that, we need to make sure. Otherwise the 1755 * inode might be lost for a long time or forever. 1756 */ 1757 if (!XFS_FORCED_SHUTDOWN(mp)) { 1758 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1759 __func__, error); 1760 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1761 } 1762 xfs_trans_cancel(tp); 1763 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1764 return error; 1765 } 1766 1767 /* 1768 * Credit the quota account(s). The inode is gone. 1769 */ 1770 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1771 1772 /* 1773 * Just ignore errors at this point. There is nothing we can do except 1774 * to try to keep going. Make sure it's not a silent error. 1775 */ 1776 error = xfs_trans_commit(tp); 1777 if (error) 1778 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1779 __func__, error); 1780 1781 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1782 return 0; 1783 } 1784 1785 /* 1786 * xfs_inactive 1787 * 1788 * This is called when the vnode reference count for the vnode 1789 * goes to zero. If the file has been unlinked, then it must 1790 * now be truncated. Also, we clear all of the read-ahead state 1791 * kept for the inode here since the file is now closed. 1792 */ 1793 void 1794 xfs_inactive( 1795 xfs_inode_t *ip) 1796 { 1797 struct xfs_mount *mp; 1798 int error; 1799 int truncate = 0; 1800 1801 /* 1802 * If the inode is already free, then there can be nothing 1803 * to clean up here. 1804 */ 1805 if (VFS_I(ip)->i_mode == 0) { 1806 ASSERT(ip->i_df.if_broot_bytes == 0); 1807 return; 1808 } 1809 1810 mp = ip->i_mount; 1811 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1812 1813 /* If this is a read-only mount, don't do this (would generate I/O) */ 1814 if (mp->m_flags & XFS_MOUNT_RDONLY) 1815 return; 1816 1817 /* Try to clean out the cow blocks if there are any. */ 1818 if (xfs_inode_has_cow_data(ip)) 1819 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1820 1821 if (VFS_I(ip)->i_nlink != 0) { 1822 /* 1823 * force is true because we are evicting an inode from the 1824 * cache. Post-eof blocks must be freed, lest we end up with 1825 * broken free space accounting. 1826 * 1827 * Note: don't bother with iolock here since lockdep complains 1828 * about acquiring it in reclaim context. We have the only 1829 * reference to the inode at this point anyways. 1830 */ 1831 if (xfs_can_free_eofblocks(ip, true)) 1832 xfs_free_eofblocks(ip); 1833 1834 return; 1835 } 1836 1837 if (S_ISREG(VFS_I(ip)->i_mode) && 1838 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1839 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1840 truncate = 1; 1841 1842 error = xfs_qm_dqattach(ip); 1843 if (error) 1844 return; 1845 1846 if (S_ISLNK(VFS_I(ip)->i_mode)) 1847 error = xfs_inactive_symlink(ip); 1848 else if (truncate) 1849 error = xfs_inactive_truncate(ip); 1850 if (error) 1851 return; 1852 1853 /* 1854 * If there are attributes associated with the file then blow them away 1855 * now. The code calls a routine that recursively deconstructs the 1856 * attribute fork. If also blows away the in-core attribute fork. 1857 */ 1858 if (XFS_IFORK_Q(ip)) { 1859 error = xfs_attr_inactive(ip); 1860 if (error) 1861 return; 1862 } 1863 1864 ASSERT(!ip->i_afp); 1865 ASSERT(ip->i_d.di_anextents == 0); 1866 ASSERT(ip->i_d.di_forkoff == 0); 1867 1868 /* 1869 * Free the inode. 1870 */ 1871 error = xfs_inactive_ifree(ip); 1872 if (error) 1873 return; 1874 1875 /* 1876 * Release the dquots held by inode, if any. 1877 */ 1878 xfs_qm_dqdetach(ip); 1879 } 1880 1881 /* 1882 * In-Core Unlinked List Lookups 1883 * ============================= 1884 * 1885 * Every inode is supposed to be reachable from some other piece of metadata 1886 * with the exception of the root directory. Inodes with a connection to a 1887 * file descriptor but not linked from anywhere in the on-disk directory tree 1888 * are collectively known as unlinked inodes, though the filesystem itself 1889 * maintains links to these inodes so that on-disk metadata are consistent. 1890 * 1891 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1892 * header contains a number of buckets that point to an inode, and each inode 1893 * record has a pointer to the next inode in the hash chain. This 1894 * singly-linked list causes scaling problems in the iunlink remove function 1895 * because we must walk that list to find the inode that points to the inode 1896 * being removed from the unlinked hash bucket list. 1897 * 1898 * What if we modelled the unlinked list as a collection of records capturing 1899 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1900 * have a fast way to look up unlinked list predecessors, which avoids the 1901 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1902 * rhashtable. 1903 * 1904 * Because this is a backref cache, we ignore operational failures since the 1905 * iunlink code can fall back to the slow bucket walk. The only errors that 1906 * should bubble out are for obviously incorrect situations. 1907 * 1908 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1909 * access or have otherwise provided for concurrency control. 1910 */ 1911 1912 /* Capture a "X.next_unlinked = Y" relationship. */ 1913 struct xfs_iunlink { 1914 struct rhash_head iu_rhash_head; 1915 xfs_agino_t iu_agino; /* X */ 1916 xfs_agino_t iu_next_unlinked; /* Y */ 1917 }; 1918 1919 /* Unlinked list predecessor lookup hashtable construction */ 1920 static int 1921 xfs_iunlink_obj_cmpfn( 1922 struct rhashtable_compare_arg *arg, 1923 const void *obj) 1924 { 1925 const xfs_agino_t *key = arg->key; 1926 const struct xfs_iunlink *iu = obj; 1927 1928 if (iu->iu_next_unlinked != *key) 1929 return 1; 1930 return 0; 1931 } 1932 1933 static const struct rhashtable_params xfs_iunlink_hash_params = { 1934 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1935 .key_len = sizeof(xfs_agino_t), 1936 .key_offset = offsetof(struct xfs_iunlink, 1937 iu_next_unlinked), 1938 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1939 .automatic_shrinking = true, 1940 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1941 }; 1942 1943 /* 1944 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1945 * relation is found. 1946 */ 1947 static xfs_agino_t 1948 xfs_iunlink_lookup_backref( 1949 struct xfs_perag *pag, 1950 xfs_agino_t agino) 1951 { 1952 struct xfs_iunlink *iu; 1953 1954 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1955 xfs_iunlink_hash_params); 1956 return iu ? iu->iu_agino : NULLAGINO; 1957 } 1958 1959 /* 1960 * Take ownership of an iunlink cache entry and insert it into the hash table. 1961 * If successful, the entry will be owned by the cache; if not, it is freed. 1962 * Either way, the caller does not own @iu after this call. 1963 */ 1964 static int 1965 xfs_iunlink_insert_backref( 1966 struct xfs_perag *pag, 1967 struct xfs_iunlink *iu) 1968 { 1969 int error; 1970 1971 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1972 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1973 /* 1974 * Fail loudly if there already was an entry because that's a sign of 1975 * corruption of in-memory data. Also fail loudly if we see an error 1976 * code we didn't anticipate from the rhashtable code. Currently we 1977 * only anticipate ENOMEM. 1978 */ 1979 if (error) { 1980 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1981 kmem_free(iu); 1982 } 1983 /* 1984 * Absorb any runtime errors that aren't a result of corruption because 1985 * this is a cache and we can always fall back to bucket list scanning. 1986 */ 1987 if (error != 0 && error != -EEXIST) 1988 error = 0; 1989 return error; 1990 } 1991 1992 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1993 static int 1994 xfs_iunlink_add_backref( 1995 struct xfs_perag *pag, 1996 xfs_agino_t prev_agino, 1997 xfs_agino_t this_agino) 1998 { 1999 struct xfs_iunlink *iu; 2000 2001 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2002 return 0; 2003 2004 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2005 iu->iu_agino = prev_agino; 2006 iu->iu_next_unlinked = this_agino; 2007 2008 return xfs_iunlink_insert_backref(pag, iu); 2009 } 2010 2011 /* 2012 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2013 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2014 * wasn't any such entry then we don't bother. 2015 */ 2016 static int 2017 xfs_iunlink_change_backref( 2018 struct xfs_perag *pag, 2019 xfs_agino_t agino, 2020 xfs_agino_t next_unlinked) 2021 { 2022 struct xfs_iunlink *iu; 2023 int error; 2024 2025 /* Look up the old entry; if there wasn't one then exit. */ 2026 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2027 xfs_iunlink_hash_params); 2028 if (!iu) 2029 return 0; 2030 2031 /* 2032 * Remove the entry. This shouldn't ever return an error, but if we 2033 * couldn't remove the old entry we don't want to add it again to the 2034 * hash table, and if the entry disappeared on us then someone's 2035 * violated the locking rules and we need to fail loudly. Either way 2036 * we cannot remove the inode because internal state is or would have 2037 * been corrupt. 2038 */ 2039 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2040 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2041 if (error) 2042 return error; 2043 2044 /* If there is no new next entry just free our item and return. */ 2045 if (next_unlinked == NULLAGINO) { 2046 kmem_free(iu); 2047 return 0; 2048 } 2049 2050 /* Update the entry and re-add it to the hash table. */ 2051 iu->iu_next_unlinked = next_unlinked; 2052 return xfs_iunlink_insert_backref(pag, iu); 2053 } 2054 2055 /* Set up the in-core predecessor structures. */ 2056 int 2057 xfs_iunlink_init( 2058 struct xfs_perag *pag) 2059 { 2060 return rhashtable_init(&pag->pagi_unlinked_hash, 2061 &xfs_iunlink_hash_params); 2062 } 2063 2064 /* Free the in-core predecessor structures. */ 2065 static void 2066 xfs_iunlink_free_item( 2067 void *ptr, 2068 void *arg) 2069 { 2070 struct xfs_iunlink *iu = ptr; 2071 bool *freed_anything = arg; 2072 2073 *freed_anything = true; 2074 kmem_free(iu); 2075 } 2076 2077 void 2078 xfs_iunlink_destroy( 2079 struct xfs_perag *pag) 2080 { 2081 bool freed_anything = false; 2082 2083 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2084 xfs_iunlink_free_item, &freed_anything); 2085 2086 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2087 } 2088 2089 /* 2090 * Point the AGI unlinked bucket at an inode and log the results. The caller 2091 * is responsible for validating the old value. 2092 */ 2093 STATIC int 2094 xfs_iunlink_update_bucket( 2095 struct xfs_trans *tp, 2096 xfs_agnumber_t agno, 2097 struct xfs_buf *agibp, 2098 unsigned int bucket_index, 2099 xfs_agino_t new_agino) 2100 { 2101 struct xfs_agi *agi = agibp->b_addr; 2102 xfs_agino_t old_value; 2103 int offset; 2104 2105 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2106 2107 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2108 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2109 old_value, new_agino); 2110 2111 /* 2112 * We should never find the head of the list already set to the value 2113 * passed in because either we're adding or removing ourselves from the 2114 * head of the list. 2115 */ 2116 if (old_value == new_agino) { 2117 xfs_buf_mark_corrupt(agibp); 2118 return -EFSCORRUPTED; 2119 } 2120 2121 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2122 offset = offsetof(struct xfs_agi, agi_unlinked) + 2123 (sizeof(xfs_agino_t) * bucket_index); 2124 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2125 return 0; 2126 } 2127 2128 /* Set an on-disk inode's next_unlinked pointer. */ 2129 STATIC void 2130 xfs_iunlink_update_dinode( 2131 struct xfs_trans *tp, 2132 xfs_agnumber_t agno, 2133 xfs_agino_t agino, 2134 struct xfs_buf *ibp, 2135 struct xfs_dinode *dip, 2136 struct xfs_imap *imap, 2137 xfs_agino_t next_agino) 2138 { 2139 struct xfs_mount *mp = tp->t_mountp; 2140 int offset; 2141 2142 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2143 2144 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2145 be32_to_cpu(dip->di_next_unlinked), next_agino); 2146 2147 dip->di_next_unlinked = cpu_to_be32(next_agino); 2148 offset = imap->im_boffset + 2149 offsetof(struct xfs_dinode, di_next_unlinked); 2150 2151 /* need to recalc the inode CRC if appropriate */ 2152 xfs_dinode_calc_crc(mp, dip); 2153 xfs_trans_inode_buf(tp, ibp); 2154 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2155 xfs_inobp_check(mp, ibp); 2156 } 2157 2158 /* Set an in-core inode's unlinked pointer and return the old value. */ 2159 STATIC int 2160 xfs_iunlink_update_inode( 2161 struct xfs_trans *tp, 2162 struct xfs_inode *ip, 2163 xfs_agnumber_t agno, 2164 xfs_agino_t next_agino, 2165 xfs_agino_t *old_next_agino) 2166 { 2167 struct xfs_mount *mp = tp->t_mountp; 2168 struct xfs_dinode *dip; 2169 struct xfs_buf *ibp; 2170 xfs_agino_t old_value; 2171 int error; 2172 2173 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2174 2175 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); 2176 if (error) 2177 return error; 2178 2179 /* Make sure the old pointer isn't garbage. */ 2180 old_value = be32_to_cpu(dip->di_next_unlinked); 2181 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2182 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2183 sizeof(*dip), __this_address); 2184 error = -EFSCORRUPTED; 2185 goto out; 2186 } 2187 2188 /* 2189 * Since we're updating a linked list, we should never find that the 2190 * current pointer is the same as the new value, unless we're 2191 * terminating the list. 2192 */ 2193 *old_next_agino = old_value; 2194 if (old_value == next_agino) { 2195 if (next_agino != NULLAGINO) { 2196 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2197 dip, sizeof(*dip), __this_address); 2198 error = -EFSCORRUPTED; 2199 } 2200 goto out; 2201 } 2202 2203 /* Ok, update the new pointer. */ 2204 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2205 ibp, dip, &ip->i_imap, next_agino); 2206 return 0; 2207 out: 2208 xfs_trans_brelse(tp, ibp); 2209 return error; 2210 } 2211 2212 /* 2213 * This is called when the inode's link count has gone to 0 or we are creating 2214 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2215 * 2216 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2217 * list when the inode is freed. 2218 */ 2219 STATIC int 2220 xfs_iunlink( 2221 struct xfs_trans *tp, 2222 struct xfs_inode *ip) 2223 { 2224 struct xfs_mount *mp = tp->t_mountp; 2225 struct xfs_agi *agi; 2226 struct xfs_buf *agibp; 2227 xfs_agino_t next_agino; 2228 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2229 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2230 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2231 int error; 2232 2233 ASSERT(VFS_I(ip)->i_nlink == 0); 2234 ASSERT(VFS_I(ip)->i_mode != 0); 2235 trace_xfs_iunlink(ip); 2236 2237 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2238 error = xfs_read_agi(mp, tp, agno, &agibp); 2239 if (error) 2240 return error; 2241 agi = agibp->b_addr; 2242 2243 /* 2244 * Get the index into the agi hash table for the list this inode will 2245 * go on. Make sure the pointer isn't garbage and that this inode 2246 * isn't already on the list. 2247 */ 2248 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2249 if (next_agino == agino || 2250 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2251 xfs_buf_mark_corrupt(agibp); 2252 return -EFSCORRUPTED; 2253 } 2254 2255 if (next_agino != NULLAGINO) { 2256 struct xfs_perag *pag; 2257 xfs_agino_t old_agino; 2258 2259 /* 2260 * There is already another inode in the bucket, so point this 2261 * inode to the current head of the list. 2262 */ 2263 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2264 &old_agino); 2265 if (error) 2266 return error; 2267 ASSERT(old_agino == NULLAGINO); 2268 2269 /* 2270 * agino has been unlinked, add a backref from the next inode 2271 * back to agino. 2272 */ 2273 pag = xfs_perag_get(mp, agno); 2274 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2275 xfs_perag_put(pag); 2276 if (error) 2277 return error; 2278 } 2279 2280 /* Point the head of the list to point to this inode. */ 2281 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2282 } 2283 2284 /* Return the imap, dinode pointer, and buffer for an inode. */ 2285 STATIC int 2286 xfs_iunlink_map_ino( 2287 struct xfs_trans *tp, 2288 xfs_agnumber_t agno, 2289 xfs_agino_t agino, 2290 struct xfs_imap *imap, 2291 struct xfs_dinode **dipp, 2292 struct xfs_buf **bpp) 2293 { 2294 struct xfs_mount *mp = tp->t_mountp; 2295 int error; 2296 2297 imap->im_blkno = 0; 2298 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2299 if (error) { 2300 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2301 __func__, error); 2302 return error; 2303 } 2304 2305 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); 2306 if (error) { 2307 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2308 __func__, error); 2309 return error; 2310 } 2311 2312 return 0; 2313 } 2314 2315 /* 2316 * Walk the unlinked chain from @head_agino until we find the inode that 2317 * points to @target_agino. Return the inode number, map, dinode pointer, 2318 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2319 * 2320 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2321 * @agino, @imap, @dipp, and @bpp are all output parameters. 2322 * 2323 * Do not call this function if @target_agino is the head of the list. 2324 */ 2325 STATIC int 2326 xfs_iunlink_map_prev( 2327 struct xfs_trans *tp, 2328 xfs_agnumber_t agno, 2329 xfs_agino_t head_agino, 2330 xfs_agino_t target_agino, 2331 xfs_agino_t *agino, 2332 struct xfs_imap *imap, 2333 struct xfs_dinode **dipp, 2334 struct xfs_buf **bpp, 2335 struct xfs_perag *pag) 2336 { 2337 struct xfs_mount *mp = tp->t_mountp; 2338 xfs_agino_t next_agino; 2339 int error; 2340 2341 ASSERT(head_agino != target_agino); 2342 *bpp = NULL; 2343 2344 /* See if our backref cache can find it faster. */ 2345 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2346 if (*agino != NULLAGINO) { 2347 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2348 if (error) 2349 return error; 2350 2351 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2352 return 0; 2353 2354 /* 2355 * If we get here the cache contents were corrupt, so drop the 2356 * buffer and fall back to walking the bucket list. 2357 */ 2358 xfs_trans_brelse(tp, *bpp); 2359 *bpp = NULL; 2360 WARN_ON_ONCE(1); 2361 } 2362 2363 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2364 2365 /* Otherwise, walk the entire bucket until we find it. */ 2366 next_agino = head_agino; 2367 while (next_agino != target_agino) { 2368 xfs_agino_t unlinked_agino; 2369 2370 if (*bpp) 2371 xfs_trans_brelse(tp, *bpp); 2372 2373 *agino = next_agino; 2374 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2375 bpp); 2376 if (error) 2377 return error; 2378 2379 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2380 /* 2381 * Make sure this pointer is valid and isn't an obvious 2382 * infinite loop. 2383 */ 2384 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2385 next_agino == unlinked_agino) { 2386 XFS_CORRUPTION_ERROR(__func__, 2387 XFS_ERRLEVEL_LOW, mp, 2388 *dipp, sizeof(**dipp)); 2389 error = -EFSCORRUPTED; 2390 return error; 2391 } 2392 next_agino = unlinked_agino; 2393 } 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * Pull the on-disk inode from the AGI unlinked list. 2400 */ 2401 STATIC int 2402 xfs_iunlink_remove( 2403 struct xfs_trans *tp, 2404 struct xfs_inode *ip) 2405 { 2406 struct xfs_mount *mp = tp->t_mountp; 2407 struct xfs_agi *agi; 2408 struct xfs_buf *agibp; 2409 struct xfs_buf *last_ibp; 2410 struct xfs_dinode *last_dip = NULL; 2411 struct xfs_perag *pag = NULL; 2412 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2413 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2414 xfs_agino_t next_agino; 2415 xfs_agino_t head_agino; 2416 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2417 int error; 2418 2419 trace_xfs_iunlink_remove(ip); 2420 2421 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2422 error = xfs_read_agi(mp, tp, agno, &agibp); 2423 if (error) 2424 return error; 2425 agi = agibp->b_addr; 2426 2427 /* 2428 * Get the index into the agi hash table for the list this inode will 2429 * go on. Make sure the head pointer isn't garbage. 2430 */ 2431 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2432 if (!xfs_verify_agino(mp, agno, head_agino)) { 2433 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2434 agi, sizeof(*agi)); 2435 return -EFSCORRUPTED; 2436 } 2437 2438 /* 2439 * Set our inode's next_unlinked pointer to NULL and then return 2440 * the old pointer value so that we can update whatever was previous 2441 * to us in the list to point to whatever was next in the list. 2442 */ 2443 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2444 if (error) 2445 return error; 2446 2447 /* 2448 * If there was a backref pointing from the next inode back to this 2449 * one, remove it because we've removed this inode from the list. 2450 * 2451 * Later, if this inode was in the middle of the list we'll update 2452 * this inode's backref to point from the next inode. 2453 */ 2454 if (next_agino != NULLAGINO) { 2455 pag = xfs_perag_get(mp, agno); 2456 error = xfs_iunlink_change_backref(pag, next_agino, 2457 NULLAGINO); 2458 if (error) 2459 goto out; 2460 } 2461 2462 if (head_agino == agino) { 2463 /* Point the head of the list to the next unlinked inode. */ 2464 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2465 next_agino); 2466 if (error) 2467 goto out; 2468 } else { 2469 struct xfs_imap imap; 2470 xfs_agino_t prev_agino; 2471 2472 if (!pag) 2473 pag = xfs_perag_get(mp, agno); 2474 2475 /* We need to search the list for the inode being freed. */ 2476 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2477 &prev_agino, &imap, &last_dip, &last_ibp, 2478 pag); 2479 if (error) 2480 goto out; 2481 2482 /* Point the previous inode on the list to the next inode. */ 2483 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2484 last_dip, &imap, next_agino); 2485 2486 /* 2487 * Now we deal with the backref for this inode. If this inode 2488 * pointed at a real inode, change the backref that pointed to 2489 * us to point to our old next. If this inode was the end of 2490 * the list, delete the backref that pointed to us. Note that 2491 * change_backref takes care of deleting the backref if 2492 * next_agino is NULLAGINO. 2493 */ 2494 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2495 if (error) 2496 goto out; 2497 } 2498 2499 out: 2500 if (pag) 2501 xfs_perag_put(pag); 2502 return error; 2503 } 2504 2505 /* 2506 * Look up the inode number specified and mark it stale if it is found. If it is 2507 * dirty, return the inode so it can be attached to the cluster buffer so it can 2508 * be processed appropriately when the cluster free transaction completes. 2509 */ 2510 static struct xfs_inode * 2511 xfs_ifree_get_one_inode( 2512 struct xfs_perag *pag, 2513 struct xfs_inode *free_ip, 2514 xfs_ino_t inum) 2515 { 2516 struct xfs_mount *mp = pag->pag_mount; 2517 struct xfs_inode *ip; 2518 2519 retry: 2520 rcu_read_lock(); 2521 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2522 2523 /* Inode not in memory, nothing to do */ 2524 if (!ip) 2525 goto out_rcu_unlock; 2526 2527 /* 2528 * because this is an RCU protected lookup, we could find a recently 2529 * freed or even reallocated inode during the lookup. We need to check 2530 * under the i_flags_lock for a valid inode here. Skip it if it is not 2531 * valid, the wrong inode or stale. 2532 */ 2533 spin_lock(&ip->i_flags_lock); 2534 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) { 2535 spin_unlock(&ip->i_flags_lock); 2536 goto out_rcu_unlock; 2537 } 2538 spin_unlock(&ip->i_flags_lock); 2539 2540 /* 2541 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2542 * other inodes that we did not find in the list attached to the buffer 2543 * and are not already marked stale. If we can't lock it, back off and 2544 * retry. 2545 */ 2546 if (ip != free_ip) { 2547 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2548 rcu_read_unlock(); 2549 delay(1); 2550 goto retry; 2551 } 2552 2553 /* 2554 * Check the inode number again in case we're racing with 2555 * freeing in xfs_reclaim_inode(). See the comments in that 2556 * function for more information as to why the initial check is 2557 * not sufficient. 2558 */ 2559 if (ip->i_ino != inum) { 2560 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2561 goto out_rcu_unlock; 2562 } 2563 } 2564 rcu_read_unlock(); 2565 2566 xfs_iflock(ip); 2567 xfs_iflags_set(ip, XFS_ISTALE); 2568 2569 /* 2570 * We don't need to attach clean inodes or those only with unlogged 2571 * changes (which we throw away, anyway). 2572 */ 2573 if (!ip->i_itemp || xfs_inode_clean(ip)) { 2574 ASSERT(ip != free_ip); 2575 xfs_ifunlock(ip); 2576 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2577 goto out_no_inode; 2578 } 2579 return ip; 2580 2581 out_rcu_unlock: 2582 rcu_read_unlock(); 2583 out_no_inode: 2584 return NULL; 2585 } 2586 2587 /* 2588 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2589 * inodes that are in memory - they all must be marked stale and attached to 2590 * the cluster buffer. 2591 */ 2592 STATIC int 2593 xfs_ifree_cluster( 2594 xfs_inode_t *free_ip, 2595 xfs_trans_t *tp, 2596 struct xfs_icluster *xic) 2597 { 2598 xfs_mount_t *mp = free_ip->i_mount; 2599 int nbufs; 2600 int i, j; 2601 int ioffset; 2602 xfs_daddr_t blkno; 2603 xfs_buf_t *bp; 2604 xfs_inode_t *ip; 2605 xfs_inode_log_item_t *iip; 2606 struct xfs_log_item *lip; 2607 struct xfs_perag *pag; 2608 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2609 xfs_ino_t inum; 2610 int error; 2611 2612 inum = xic->first_ino; 2613 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2614 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2615 2616 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2617 /* 2618 * The allocation bitmap tells us which inodes of the chunk were 2619 * physically allocated. Skip the cluster if an inode falls into 2620 * a sparse region. 2621 */ 2622 ioffset = inum - xic->first_ino; 2623 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2624 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2625 continue; 2626 } 2627 2628 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2629 XFS_INO_TO_AGBNO(mp, inum)); 2630 2631 /* 2632 * We obtain and lock the backing buffer first in the process 2633 * here, as we have to ensure that any dirty inode that we 2634 * can't get the flush lock on is attached to the buffer. 2635 * If we scan the in-memory inodes first, then buffer IO can 2636 * complete before we get a lock on it, and hence we may fail 2637 * to mark all the active inodes on the buffer stale. 2638 */ 2639 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2640 mp->m_bsize * igeo->blocks_per_cluster, 2641 XBF_UNMAPPED, &bp); 2642 if (error) 2643 return error; 2644 2645 /* 2646 * This buffer may not have been correctly initialised as we 2647 * didn't read it from disk. That's not important because we are 2648 * only using to mark the buffer as stale in the log, and to 2649 * attach stale cached inodes on it. That means it will never be 2650 * dispatched for IO. If it is, we want to know about it, and we 2651 * want it to fail. We can acheive this by adding a write 2652 * verifier to the buffer. 2653 */ 2654 bp->b_ops = &xfs_inode_buf_ops; 2655 2656 /* 2657 * Walk the inodes already attached to the buffer and mark them 2658 * stale. These will all have the flush locks held, so an 2659 * in-memory inode walk can't lock them. By marking them all 2660 * stale first, we will not attempt to lock them in the loop 2661 * below as the XFS_ISTALE flag will be set. 2662 */ 2663 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2664 if (lip->li_type == XFS_LI_INODE) { 2665 iip = (xfs_inode_log_item_t *)lip; 2666 ASSERT(iip->ili_logged == 1); 2667 lip->li_cb = xfs_istale_done; 2668 xfs_trans_ail_copy_lsn(mp->m_ail, 2669 &iip->ili_flush_lsn, 2670 &iip->ili_item.li_lsn); 2671 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2672 } 2673 } 2674 2675 2676 /* 2677 * For each inode in memory attempt to add it to the inode 2678 * buffer and set it up for being staled on buffer IO 2679 * completion. This is safe as we've locked out tail pushing 2680 * and flushing by locking the buffer. 2681 * 2682 * We have already marked every inode that was part of a 2683 * transaction stale above, which means there is no point in 2684 * even trying to lock them. 2685 */ 2686 for (i = 0; i < igeo->inodes_per_cluster; i++) { 2687 ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i); 2688 if (!ip) 2689 continue; 2690 2691 iip = ip->i_itemp; 2692 iip->ili_last_fields = iip->ili_fields; 2693 iip->ili_fields = 0; 2694 iip->ili_fsync_fields = 0; 2695 iip->ili_logged = 1; 2696 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2697 &iip->ili_item.li_lsn); 2698 2699 xfs_buf_attach_iodone(bp, xfs_istale_done, 2700 &iip->ili_item); 2701 2702 if (ip != free_ip) 2703 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2704 } 2705 2706 xfs_trans_stale_inode_buf(tp, bp); 2707 xfs_trans_binval(tp, bp); 2708 } 2709 2710 xfs_perag_put(pag); 2711 return 0; 2712 } 2713 2714 /* 2715 * Free any local-format buffers sitting around before we reset to 2716 * extents format. 2717 */ 2718 static inline void 2719 xfs_ifree_local_data( 2720 struct xfs_inode *ip, 2721 int whichfork) 2722 { 2723 struct xfs_ifork *ifp; 2724 2725 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2726 return; 2727 2728 ifp = XFS_IFORK_PTR(ip, whichfork); 2729 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2730 } 2731 2732 /* 2733 * This is called to return an inode to the inode free list. 2734 * The inode should already be truncated to 0 length and have 2735 * no pages associated with it. This routine also assumes that 2736 * the inode is already a part of the transaction. 2737 * 2738 * The on-disk copy of the inode will have been added to the list 2739 * of unlinked inodes in the AGI. We need to remove the inode from 2740 * that list atomically with respect to freeing it here. 2741 */ 2742 int 2743 xfs_ifree( 2744 struct xfs_trans *tp, 2745 struct xfs_inode *ip) 2746 { 2747 int error; 2748 struct xfs_icluster xic = { 0 }; 2749 2750 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2751 ASSERT(VFS_I(ip)->i_nlink == 0); 2752 ASSERT(ip->i_d.di_nextents == 0); 2753 ASSERT(ip->i_d.di_anextents == 0); 2754 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2755 ASSERT(ip->i_d.di_nblocks == 0); 2756 2757 /* 2758 * Pull the on-disk inode from the AGI unlinked list. 2759 */ 2760 error = xfs_iunlink_remove(tp, ip); 2761 if (error) 2762 return error; 2763 2764 error = xfs_difree(tp, ip->i_ino, &xic); 2765 if (error) 2766 return error; 2767 2768 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2769 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2770 2771 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2772 ip->i_d.di_flags = 0; 2773 ip->i_d.di_flags2 = 0; 2774 ip->i_d.di_dmevmask = 0; 2775 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2776 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2777 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2778 2779 /* Don't attempt to replay owner changes for a deleted inode */ 2780 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2781 2782 /* 2783 * Bump the generation count so no one will be confused 2784 * by reincarnations of this inode. 2785 */ 2786 VFS_I(ip)->i_generation++; 2787 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2788 2789 if (xic.deleted) 2790 error = xfs_ifree_cluster(ip, tp, &xic); 2791 2792 return error; 2793 } 2794 2795 /* 2796 * This is called to unpin an inode. The caller must have the inode locked 2797 * in at least shared mode so that the buffer cannot be subsequently pinned 2798 * once someone is waiting for it to be unpinned. 2799 */ 2800 static void 2801 xfs_iunpin( 2802 struct xfs_inode *ip) 2803 { 2804 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2805 2806 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2807 2808 /* Give the log a push to start the unpinning I/O */ 2809 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2810 2811 } 2812 2813 static void 2814 __xfs_iunpin_wait( 2815 struct xfs_inode *ip) 2816 { 2817 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2818 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2819 2820 xfs_iunpin(ip); 2821 2822 do { 2823 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2824 if (xfs_ipincount(ip)) 2825 io_schedule(); 2826 } while (xfs_ipincount(ip)); 2827 finish_wait(wq, &wait.wq_entry); 2828 } 2829 2830 void 2831 xfs_iunpin_wait( 2832 struct xfs_inode *ip) 2833 { 2834 if (xfs_ipincount(ip)) 2835 __xfs_iunpin_wait(ip); 2836 } 2837 2838 /* 2839 * Removing an inode from the namespace involves removing the directory entry 2840 * and dropping the link count on the inode. Removing the directory entry can 2841 * result in locking an AGF (directory blocks were freed) and removing a link 2842 * count can result in placing the inode on an unlinked list which results in 2843 * locking an AGI. 2844 * 2845 * The big problem here is that we have an ordering constraint on AGF and AGI 2846 * locking - inode allocation locks the AGI, then can allocate a new extent for 2847 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2848 * removes the inode from the unlinked list, requiring that we lock the AGI 2849 * first, and then freeing the inode can result in an inode chunk being freed 2850 * and hence freeing disk space requiring that we lock an AGF. 2851 * 2852 * Hence the ordering that is imposed by other parts of the code is AGI before 2853 * AGF. This means we cannot remove the directory entry before we drop the inode 2854 * reference count and put it on the unlinked list as this results in a lock 2855 * order of AGF then AGI, and this can deadlock against inode allocation and 2856 * freeing. Therefore we must drop the link counts before we remove the 2857 * directory entry. 2858 * 2859 * This is still safe from a transactional point of view - it is not until we 2860 * get to xfs_defer_finish() that we have the possibility of multiple 2861 * transactions in this operation. Hence as long as we remove the directory 2862 * entry and drop the link count in the first transaction of the remove 2863 * operation, there are no transactional constraints on the ordering here. 2864 */ 2865 int 2866 xfs_remove( 2867 xfs_inode_t *dp, 2868 struct xfs_name *name, 2869 xfs_inode_t *ip) 2870 { 2871 xfs_mount_t *mp = dp->i_mount; 2872 xfs_trans_t *tp = NULL; 2873 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2874 int error = 0; 2875 uint resblks; 2876 2877 trace_xfs_remove(dp, name); 2878 2879 if (XFS_FORCED_SHUTDOWN(mp)) 2880 return -EIO; 2881 2882 error = xfs_qm_dqattach(dp); 2883 if (error) 2884 goto std_return; 2885 2886 error = xfs_qm_dqattach(ip); 2887 if (error) 2888 goto std_return; 2889 2890 /* 2891 * We try to get the real space reservation first, 2892 * allowing for directory btree deletion(s) implying 2893 * possible bmap insert(s). If we can't get the space 2894 * reservation then we use 0 instead, and avoid the bmap 2895 * btree insert(s) in the directory code by, if the bmap 2896 * insert tries to happen, instead trimming the LAST 2897 * block from the directory. 2898 */ 2899 resblks = XFS_REMOVE_SPACE_RES(mp); 2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2901 if (error == -ENOSPC) { 2902 resblks = 0; 2903 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2904 &tp); 2905 } 2906 if (error) { 2907 ASSERT(error != -ENOSPC); 2908 goto std_return; 2909 } 2910 2911 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2912 2913 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2914 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2915 2916 /* 2917 * If we're removing a directory perform some additional validation. 2918 */ 2919 if (is_dir) { 2920 ASSERT(VFS_I(ip)->i_nlink >= 2); 2921 if (VFS_I(ip)->i_nlink != 2) { 2922 error = -ENOTEMPTY; 2923 goto out_trans_cancel; 2924 } 2925 if (!xfs_dir_isempty(ip)) { 2926 error = -ENOTEMPTY; 2927 goto out_trans_cancel; 2928 } 2929 2930 /* Drop the link from ip's "..". */ 2931 error = xfs_droplink(tp, dp); 2932 if (error) 2933 goto out_trans_cancel; 2934 2935 /* Drop the "." link from ip to self. */ 2936 error = xfs_droplink(tp, ip); 2937 if (error) 2938 goto out_trans_cancel; 2939 } else { 2940 /* 2941 * When removing a non-directory we need to log the parent 2942 * inode here. For a directory this is done implicitly 2943 * by the xfs_droplink call for the ".." entry. 2944 */ 2945 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2946 } 2947 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2948 2949 /* Drop the link from dp to ip. */ 2950 error = xfs_droplink(tp, ip); 2951 if (error) 2952 goto out_trans_cancel; 2953 2954 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2955 if (error) { 2956 ASSERT(error != -ENOENT); 2957 goto out_trans_cancel; 2958 } 2959 2960 /* 2961 * If this is a synchronous mount, make sure that the 2962 * remove transaction goes to disk before returning to 2963 * the user. 2964 */ 2965 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2966 xfs_trans_set_sync(tp); 2967 2968 error = xfs_trans_commit(tp); 2969 if (error) 2970 goto std_return; 2971 2972 if (is_dir && xfs_inode_is_filestream(ip)) 2973 xfs_filestream_deassociate(ip); 2974 2975 return 0; 2976 2977 out_trans_cancel: 2978 xfs_trans_cancel(tp); 2979 std_return: 2980 return error; 2981 } 2982 2983 /* 2984 * Enter all inodes for a rename transaction into a sorted array. 2985 */ 2986 #define __XFS_SORT_INODES 5 2987 STATIC void 2988 xfs_sort_for_rename( 2989 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2990 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2991 struct xfs_inode *ip1, /* in: inode of old entry */ 2992 struct xfs_inode *ip2, /* in: inode of new entry */ 2993 struct xfs_inode *wip, /* in: whiteout inode */ 2994 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2995 int *num_inodes) /* in/out: inodes in array */ 2996 { 2997 int i, j; 2998 2999 ASSERT(*num_inodes == __XFS_SORT_INODES); 3000 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 3001 3002 /* 3003 * i_tab contains a list of pointers to inodes. We initialize 3004 * the table here & we'll sort it. We will then use it to 3005 * order the acquisition of the inode locks. 3006 * 3007 * Note that the table may contain duplicates. e.g., dp1 == dp2. 3008 */ 3009 i = 0; 3010 i_tab[i++] = dp1; 3011 i_tab[i++] = dp2; 3012 i_tab[i++] = ip1; 3013 if (ip2) 3014 i_tab[i++] = ip2; 3015 if (wip) 3016 i_tab[i++] = wip; 3017 *num_inodes = i; 3018 3019 /* 3020 * Sort the elements via bubble sort. (Remember, there are at 3021 * most 5 elements to sort, so this is adequate.) 3022 */ 3023 for (i = 0; i < *num_inodes; i++) { 3024 for (j = 1; j < *num_inodes; j++) { 3025 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3026 struct xfs_inode *temp = i_tab[j]; 3027 i_tab[j] = i_tab[j-1]; 3028 i_tab[j-1] = temp; 3029 } 3030 } 3031 } 3032 } 3033 3034 static int 3035 xfs_finish_rename( 3036 struct xfs_trans *tp) 3037 { 3038 /* 3039 * If this is a synchronous mount, make sure that the rename transaction 3040 * goes to disk before returning to the user. 3041 */ 3042 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3043 xfs_trans_set_sync(tp); 3044 3045 return xfs_trans_commit(tp); 3046 } 3047 3048 /* 3049 * xfs_cross_rename() 3050 * 3051 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3052 */ 3053 STATIC int 3054 xfs_cross_rename( 3055 struct xfs_trans *tp, 3056 struct xfs_inode *dp1, 3057 struct xfs_name *name1, 3058 struct xfs_inode *ip1, 3059 struct xfs_inode *dp2, 3060 struct xfs_name *name2, 3061 struct xfs_inode *ip2, 3062 int spaceres) 3063 { 3064 int error = 0; 3065 int ip1_flags = 0; 3066 int ip2_flags = 0; 3067 int dp2_flags = 0; 3068 3069 /* Swap inode number for dirent in first parent */ 3070 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3071 if (error) 3072 goto out_trans_abort; 3073 3074 /* Swap inode number for dirent in second parent */ 3075 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3076 if (error) 3077 goto out_trans_abort; 3078 3079 /* 3080 * If we're renaming one or more directories across different parents, 3081 * update the respective ".." entries (and link counts) to match the new 3082 * parents. 3083 */ 3084 if (dp1 != dp2) { 3085 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3086 3087 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3088 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3089 dp1->i_ino, spaceres); 3090 if (error) 3091 goto out_trans_abort; 3092 3093 /* transfer ip2 ".." reference to dp1 */ 3094 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3095 error = xfs_droplink(tp, dp2); 3096 if (error) 3097 goto out_trans_abort; 3098 xfs_bumplink(tp, dp1); 3099 } 3100 3101 /* 3102 * Although ip1 isn't changed here, userspace needs 3103 * to be warned about the change, so that applications 3104 * relying on it (like backup ones), will properly 3105 * notify the change 3106 */ 3107 ip1_flags |= XFS_ICHGTIME_CHG; 3108 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3109 } 3110 3111 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3112 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3113 dp2->i_ino, spaceres); 3114 if (error) 3115 goto out_trans_abort; 3116 3117 /* transfer ip1 ".." reference to dp2 */ 3118 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3119 error = xfs_droplink(tp, dp1); 3120 if (error) 3121 goto out_trans_abort; 3122 xfs_bumplink(tp, dp2); 3123 } 3124 3125 /* 3126 * Although ip2 isn't changed here, userspace needs 3127 * to be warned about the change, so that applications 3128 * relying on it (like backup ones), will properly 3129 * notify the change 3130 */ 3131 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3132 ip2_flags |= XFS_ICHGTIME_CHG; 3133 } 3134 } 3135 3136 if (ip1_flags) { 3137 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3138 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3139 } 3140 if (ip2_flags) { 3141 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3142 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3143 } 3144 if (dp2_flags) { 3145 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3146 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3147 } 3148 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3149 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3150 return xfs_finish_rename(tp); 3151 3152 out_trans_abort: 3153 xfs_trans_cancel(tp); 3154 return error; 3155 } 3156 3157 /* 3158 * xfs_rename_alloc_whiteout() 3159 * 3160 * Return a referenced, unlinked, unlocked inode that that can be used as a 3161 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3162 * crash between allocating the inode and linking it into the rename transaction 3163 * recovery will free the inode and we won't leak it. 3164 */ 3165 static int 3166 xfs_rename_alloc_whiteout( 3167 struct xfs_inode *dp, 3168 struct xfs_inode **wip) 3169 { 3170 struct xfs_inode *tmpfile; 3171 int error; 3172 3173 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3174 if (error) 3175 return error; 3176 3177 /* 3178 * Prepare the tmpfile inode as if it were created through the VFS. 3179 * Complete the inode setup and flag it as linkable. nlink is already 3180 * zero, so we can skip the drop_nlink. 3181 */ 3182 xfs_setup_iops(tmpfile); 3183 xfs_finish_inode_setup(tmpfile); 3184 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3185 3186 *wip = tmpfile; 3187 return 0; 3188 } 3189 3190 /* 3191 * xfs_rename 3192 */ 3193 int 3194 xfs_rename( 3195 struct xfs_inode *src_dp, 3196 struct xfs_name *src_name, 3197 struct xfs_inode *src_ip, 3198 struct xfs_inode *target_dp, 3199 struct xfs_name *target_name, 3200 struct xfs_inode *target_ip, 3201 unsigned int flags) 3202 { 3203 struct xfs_mount *mp = src_dp->i_mount; 3204 struct xfs_trans *tp; 3205 struct xfs_inode *wip = NULL; /* whiteout inode */ 3206 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3207 struct xfs_buf *agibp; 3208 int num_inodes = __XFS_SORT_INODES; 3209 bool new_parent = (src_dp != target_dp); 3210 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3211 int spaceres; 3212 int error; 3213 3214 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3215 3216 if ((flags & RENAME_EXCHANGE) && !target_ip) 3217 return -EINVAL; 3218 3219 /* 3220 * If we are doing a whiteout operation, allocate the whiteout inode 3221 * we will be placing at the target and ensure the type is set 3222 * appropriately. 3223 */ 3224 if (flags & RENAME_WHITEOUT) { 3225 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3226 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3227 if (error) 3228 return error; 3229 3230 /* setup target dirent info as whiteout */ 3231 src_name->type = XFS_DIR3_FT_CHRDEV; 3232 } 3233 3234 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3235 inodes, &num_inodes); 3236 3237 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3238 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3239 if (error == -ENOSPC) { 3240 spaceres = 0; 3241 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3242 &tp); 3243 } 3244 if (error) 3245 goto out_release_wip; 3246 3247 /* 3248 * Attach the dquots to the inodes 3249 */ 3250 error = xfs_qm_vop_rename_dqattach(inodes); 3251 if (error) 3252 goto out_trans_cancel; 3253 3254 /* 3255 * Lock all the participating inodes. Depending upon whether 3256 * the target_name exists in the target directory, and 3257 * whether the target directory is the same as the source 3258 * directory, we can lock from 2 to 4 inodes. 3259 */ 3260 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3261 3262 /* 3263 * Join all the inodes to the transaction. From this point on, 3264 * we can rely on either trans_commit or trans_cancel to unlock 3265 * them. 3266 */ 3267 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3268 if (new_parent) 3269 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3270 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3271 if (target_ip) 3272 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3273 if (wip) 3274 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3275 3276 /* 3277 * If we are using project inheritance, we only allow renames 3278 * into our tree when the project IDs are the same; else the 3279 * tree quota mechanism would be circumvented. 3280 */ 3281 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3282 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3283 error = -EXDEV; 3284 goto out_trans_cancel; 3285 } 3286 3287 /* RENAME_EXCHANGE is unique from here on. */ 3288 if (flags & RENAME_EXCHANGE) 3289 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3290 target_dp, target_name, target_ip, 3291 spaceres); 3292 3293 /* 3294 * Check for expected errors before we dirty the transaction 3295 * so we can return an error without a transaction abort. 3296 */ 3297 if (target_ip == NULL) { 3298 /* 3299 * If there's no space reservation, check the entry will 3300 * fit before actually inserting it. 3301 */ 3302 if (!spaceres) { 3303 error = xfs_dir_canenter(tp, target_dp, target_name); 3304 if (error) 3305 goto out_trans_cancel; 3306 } 3307 } else { 3308 /* 3309 * If target exists and it's a directory, check that whether 3310 * it can be destroyed. 3311 */ 3312 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3313 (!xfs_dir_isempty(target_ip) || 3314 (VFS_I(target_ip)->i_nlink > 2))) { 3315 error = -EEXIST; 3316 goto out_trans_cancel; 3317 } 3318 } 3319 3320 /* 3321 * Directory entry creation below may acquire the AGF. Remove 3322 * the whiteout from the unlinked list first to preserve correct 3323 * AGI/AGF locking order. This dirties the transaction so failures 3324 * after this point will abort and log recovery will clean up the 3325 * mess. 3326 * 3327 * For whiteouts, we need to bump the link count on the whiteout 3328 * inode. After this point, we have a real link, clear the tmpfile 3329 * state flag from the inode so it doesn't accidentally get misused 3330 * in future. 3331 */ 3332 if (wip) { 3333 ASSERT(VFS_I(wip)->i_nlink == 0); 3334 error = xfs_iunlink_remove(tp, wip); 3335 if (error) 3336 goto out_trans_cancel; 3337 3338 xfs_bumplink(tp, wip); 3339 VFS_I(wip)->i_state &= ~I_LINKABLE; 3340 } 3341 3342 /* 3343 * Set up the target. 3344 */ 3345 if (target_ip == NULL) { 3346 /* 3347 * If target does not exist and the rename crosses 3348 * directories, adjust the target directory link count 3349 * to account for the ".." reference from the new entry. 3350 */ 3351 error = xfs_dir_createname(tp, target_dp, target_name, 3352 src_ip->i_ino, spaceres); 3353 if (error) 3354 goto out_trans_cancel; 3355 3356 xfs_trans_ichgtime(tp, target_dp, 3357 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3358 3359 if (new_parent && src_is_directory) { 3360 xfs_bumplink(tp, target_dp); 3361 } 3362 } else { /* target_ip != NULL */ 3363 /* 3364 * Link the source inode under the target name. 3365 * If the source inode is a directory and we are moving 3366 * it across directories, its ".." entry will be 3367 * inconsistent until we replace that down below. 3368 * 3369 * In case there is already an entry with the same 3370 * name at the destination directory, remove it first. 3371 */ 3372 3373 /* 3374 * Check whether the replace operation will need to allocate 3375 * blocks. This happens when the shortform directory lacks 3376 * space and we have to convert it to a block format directory. 3377 * When more blocks are necessary, we must lock the AGI first 3378 * to preserve locking order (AGI -> AGF). 3379 */ 3380 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3381 error = xfs_read_agi(mp, tp, 3382 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3383 &agibp); 3384 if (error) 3385 goto out_trans_cancel; 3386 } 3387 3388 error = xfs_dir_replace(tp, target_dp, target_name, 3389 src_ip->i_ino, spaceres); 3390 if (error) 3391 goto out_trans_cancel; 3392 3393 xfs_trans_ichgtime(tp, target_dp, 3394 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3395 3396 /* 3397 * Decrement the link count on the target since the target 3398 * dir no longer points to it. 3399 */ 3400 error = xfs_droplink(tp, target_ip); 3401 if (error) 3402 goto out_trans_cancel; 3403 3404 if (src_is_directory) { 3405 /* 3406 * Drop the link from the old "." entry. 3407 */ 3408 error = xfs_droplink(tp, target_ip); 3409 if (error) 3410 goto out_trans_cancel; 3411 } 3412 } /* target_ip != NULL */ 3413 3414 /* 3415 * Remove the source. 3416 */ 3417 if (new_parent && src_is_directory) { 3418 /* 3419 * Rewrite the ".." entry to point to the new 3420 * directory. 3421 */ 3422 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3423 target_dp->i_ino, spaceres); 3424 ASSERT(error != -EEXIST); 3425 if (error) 3426 goto out_trans_cancel; 3427 } 3428 3429 /* 3430 * We always want to hit the ctime on the source inode. 3431 * 3432 * This isn't strictly required by the standards since the source 3433 * inode isn't really being changed, but old unix file systems did 3434 * it and some incremental backup programs won't work without it. 3435 */ 3436 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3437 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3438 3439 /* 3440 * Adjust the link count on src_dp. This is necessary when 3441 * renaming a directory, either within one parent when 3442 * the target existed, or across two parent directories. 3443 */ 3444 if (src_is_directory && (new_parent || target_ip != NULL)) { 3445 3446 /* 3447 * Decrement link count on src_directory since the 3448 * entry that's moved no longer points to it. 3449 */ 3450 error = xfs_droplink(tp, src_dp); 3451 if (error) 3452 goto out_trans_cancel; 3453 } 3454 3455 /* 3456 * For whiteouts, we only need to update the source dirent with the 3457 * inode number of the whiteout inode rather than removing it 3458 * altogether. 3459 */ 3460 if (wip) { 3461 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3462 spaceres); 3463 } else 3464 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3465 spaceres); 3466 if (error) 3467 goto out_trans_cancel; 3468 3469 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3470 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3471 if (new_parent) 3472 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3473 3474 error = xfs_finish_rename(tp); 3475 if (wip) 3476 xfs_irele(wip); 3477 return error; 3478 3479 out_trans_cancel: 3480 xfs_trans_cancel(tp); 3481 out_release_wip: 3482 if (wip) 3483 xfs_irele(wip); 3484 return error; 3485 } 3486 3487 STATIC int 3488 xfs_iflush_cluster( 3489 struct xfs_inode *ip, 3490 struct xfs_buf *bp) 3491 { 3492 struct xfs_mount *mp = ip->i_mount; 3493 struct xfs_perag *pag; 3494 unsigned long first_index, mask; 3495 int cilist_size; 3496 struct xfs_inode **cilist; 3497 struct xfs_inode *cip; 3498 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3499 int nr_found; 3500 int clcount = 0; 3501 int i; 3502 3503 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3504 3505 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); 3506 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3507 if (!cilist) 3508 goto out_put; 3509 3510 mask = ~(igeo->inodes_per_cluster - 1); 3511 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3512 rcu_read_lock(); 3513 /* really need a gang lookup range call here */ 3514 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3515 first_index, igeo->inodes_per_cluster); 3516 if (nr_found == 0) 3517 goto out_free; 3518 3519 for (i = 0; i < nr_found; i++) { 3520 cip = cilist[i]; 3521 if (cip == ip) 3522 continue; 3523 3524 /* 3525 * because this is an RCU protected lookup, we could find a 3526 * recently freed or even reallocated inode during the lookup. 3527 * We need to check under the i_flags_lock for a valid inode 3528 * here. Skip it if it is not valid or the wrong inode. 3529 */ 3530 spin_lock(&cip->i_flags_lock); 3531 if (!cip->i_ino || 3532 __xfs_iflags_test(cip, XFS_ISTALE)) { 3533 spin_unlock(&cip->i_flags_lock); 3534 continue; 3535 } 3536 3537 /* 3538 * Once we fall off the end of the cluster, no point checking 3539 * any more inodes in the list because they will also all be 3540 * outside the cluster. 3541 */ 3542 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3543 spin_unlock(&cip->i_flags_lock); 3544 break; 3545 } 3546 spin_unlock(&cip->i_flags_lock); 3547 3548 /* 3549 * Do an un-protected check to see if the inode is dirty and 3550 * is a candidate for flushing. These checks will be repeated 3551 * later after the appropriate locks are acquired. 3552 */ 3553 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3554 continue; 3555 3556 /* 3557 * Try to get locks. If any are unavailable or it is pinned, 3558 * then this inode cannot be flushed and is skipped. 3559 */ 3560 3561 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3562 continue; 3563 if (!xfs_iflock_nowait(cip)) { 3564 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3565 continue; 3566 } 3567 if (xfs_ipincount(cip)) { 3568 xfs_ifunlock(cip); 3569 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3570 continue; 3571 } 3572 3573 3574 /* 3575 * Check the inode number again, just to be certain we are not 3576 * racing with freeing in xfs_reclaim_inode(). See the comments 3577 * in that function for more information as to why the initial 3578 * check is not sufficient. 3579 */ 3580 if (!cip->i_ino) { 3581 xfs_ifunlock(cip); 3582 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3583 continue; 3584 } 3585 3586 /* 3587 * arriving here means that this inode can be flushed. First 3588 * re-check that it's dirty before flushing. 3589 */ 3590 if (!xfs_inode_clean(cip)) { 3591 int error; 3592 error = xfs_iflush_int(cip, bp); 3593 if (error) { 3594 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3595 goto cluster_corrupt_out; 3596 } 3597 clcount++; 3598 } else { 3599 xfs_ifunlock(cip); 3600 } 3601 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3602 } 3603 3604 if (clcount) { 3605 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3606 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3607 } 3608 3609 out_free: 3610 rcu_read_unlock(); 3611 kmem_free(cilist); 3612 out_put: 3613 xfs_perag_put(pag); 3614 return 0; 3615 3616 3617 cluster_corrupt_out: 3618 /* 3619 * Corruption detected in the clustering loop. Invalidate the 3620 * inode buffer and shut down the filesystem. 3621 */ 3622 rcu_read_unlock(); 3623 3624 /* 3625 * We'll always have an inode attached to the buffer for completion 3626 * process by the time we are called from xfs_iflush(). Hence we have 3627 * always need to do IO completion processing to abort the inodes 3628 * attached to the buffer. handle them just like the shutdown case in 3629 * xfs_buf_submit(). 3630 */ 3631 ASSERT(bp->b_iodone); 3632 bp->b_flags |= XBF_ASYNC; 3633 bp->b_flags &= ~XBF_DONE; 3634 xfs_buf_stale(bp); 3635 xfs_buf_ioerror(bp, -EIO); 3636 xfs_buf_ioend(bp); 3637 3638 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3639 3640 /* abort the corrupt inode, as it was not attached to the buffer */ 3641 xfs_iflush_abort(cip, false); 3642 kmem_free(cilist); 3643 xfs_perag_put(pag); 3644 return -EFSCORRUPTED; 3645 } 3646 3647 /* 3648 * Flush dirty inode metadata into the backing buffer. 3649 * 3650 * The caller must have the inode lock and the inode flush lock held. The 3651 * inode lock will still be held upon return to the caller, and the inode 3652 * flush lock will be released after the inode has reached the disk. 3653 * 3654 * The caller must write out the buffer returned in *bpp and release it. 3655 */ 3656 int 3657 xfs_iflush( 3658 struct xfs_inode *ip, 3659 struct xfs_buf **bpp) 3660 { 3661 struct xfs_mount *mp = ip->i_mount; 3662 struct xfs_buf *bp = NULL; 3663 struct xfs_dinode *dip; 3664 int error; 3665 3666 XFS_STATS_INC(mp, xs_iflush_count); 3667 3668 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3669 ASSERT(xfs_isiflocked(ip)); 3670 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3671 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3672 3673 *bpp = NULL; 3674 3675 xfs_iunpin_wait(ip); 3676 3677 /* 3678 * For stale inodes we cannot rely on the backing buffer remaining 3679 * stale in cache for the remaining life of the stale inode and so 3680 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3681 * inodes below. We have to check this after ensuring the inode is 3682 * unpinned so that it is safe to reclaim the stale inode after the 3683 * flush call. 3684 */ 3685 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3686 xfs_ifunlock(ip); 3687 return 0; 3688 } 3689 3690 /* 3691 * This may have been unpinned because the filesystem is shutting 3692 * down forcibly. If that's the case we must not write this inode 3693 * to disk, because the log record didn't make it to disk. 3694 * 3695 * We also have to remove the log item from the AIL in this case, 3696 * as we wait for an empty AIL as part of the unmount process. 3697 */ 3698 if (XFS_FORCED_SHUTDOWN(mp)) { 3699 error = -EIO; 3700 goto abort_out; 3701 } 3702 3703 /* 3704 * Get the buffer containing the on-disk inode. We are doing a try-lock 3705 * operation here, so we may get an EAGAIN error. In that case, we 3706 * simply want to return with the inode still dirty. 3707 * 3708 * If we get any other error, we effectively have a corruption situation 3709 * and we cannot flush the inode, so we treat it the same as failing 3710 * xfs_iflush_int(). 3711 */ 3712 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3713 0); 3714 if (error == -EAGAIN) { 3715 xfs_ifunlock(ip); 3716 return error; 3717 } 3718 if (error) 3719 goto corrupt_out; 3720 3721 /* 3722 * First flush out the inode that xfs_iflush was called with. 3723 */ 3724 error = xfs_iflush_int(ip, bp); 3725 if (error) 3726 goto corrupt_out; 3727 3728 /* 3729 * If the buffer is pinned then push on the log now so we won't 3730 * get stuck waiting in the write for too long. 3731 */ 3732 if (xfs_buf_ispinned(bp)) 3733 xfs_log_force(mp, 0); 3734 3735 /* 3736 * inode clustering: try to gather other inodes into this write 3737 * 3738 * Note: Any error during clustering will result in the filesystem 3739 * being shut down and completion callbacks run on the cluster buffer. 3740 * As we have already flushed and attached this inode to the buffer, 3741 * it has already been aborted and released by xfs_iflush_cluster() and 3742 * so we have no further error handling to do here. 3743 */ 3744 error = xfs_iflush_cluster(ip, bp); 3745 if (error) 3746 return error; 3747 3748 *bpp = bp; 3749 return 0; 3750 3751 corrupt_out: 3752 if (bp) 3753 xfs_buf_relse(bp); 3754 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3755 abort_out: 3756 /* abort the corrupt inode, as it was not attached to the buffer */ 3757 xfs_iflush_abort(ip, false); 3758 return error; 3759 } 3760 3761 /* 3762 * If there are inline format data / attr forks attached to this inode, 3763 * make sure they're not corrupt. 3764 */ 3765 bool 3766 xfs_inode_verify_forks( 3767 struct xfs_inode *ip) 3768 { 3769 struct xfs_ifork *ifp; 3770 xfs_failaddr_t fa; 3771 3772 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3773 if (fa) { 3774 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3775 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3776 ifp->if_u1.if_data, ifp->if_bytes, fa); 3777 return false; 3778 } 3779 3780 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3781 if (fa) { 3782 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3783 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3784 ifp ? ifp->if_u1.if_data : NULL, 3785 ifp ? ifp->if_bytes : 0, fa); 3786 return false; 3787 } 3788 return true; 3789 } 3790 3791 STATIC int 3792 xfs_iflush_int( 3793 struct xfs_inode *ip, 3794 struct xfs_buf *bp) 3795 { 3796 struct xfs_inode_log_item *iip = ip->i_itemp; 3797 struct xfs_dinode *dip; 3798 struct xfs_mount *mp = ip->i_mount; 3799 3800 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3801 ASSERT(xfs_isiflocked(ip)); 3802 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3803 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3804 ASSERT(iip != NULL && iip->ili_fields != 0); 3805 3806 /* set *dip = inode's place in the buffer */ 3807 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3808 3809 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3810 mp, XFS_ERRTAG_IFLUSH_1)) { 3811 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3812 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3813 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3814 goto corrupt_out; 3815 } 3816 if (S_ISREG(VFS_I(ip)->i_mode)) { 3817 if (XFS_TEST_ERROR( 3818 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3819 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3820 mp, XFS_ERRTAG_IFLUSH_3)) { 3821 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3822 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3823 __func__, ip->i_ino, ip); 3824 goto corrupt_out; 3825 } 3826 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3827 if (XFS_TEST_ERROR( 3828 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3829 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3830 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3831 mp, XFS_ERRTAG_IFLUSH_4)) { 3832 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3833 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3834 __func__, ip->i_ino, ip); 3835 goto corrupt_out; 3836 } 3837 } 3838 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3839 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3840 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3841 "%s: detected corrupt incore inode %Lu, " 3842 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3843 __func__, ip->i_ino, 3844 ip->i_d.di_nextents + ip->i_d.di_anextents, 3845 ip->i_d.di_nblocks, ip); 3846 goto corrupt_out; 3847 } 3848 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3849 mp, XFS_ERRTAG_IFLUSH_6)) { 3850 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3851 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3852 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3853 goto corrupt_out; 3854 } 3855 3856 /* 3857 * Inode item log recovery for v2 inodes are dependent on the 3858 * di_flushiter count for correct sequencing. We bump the flush 3859 * iteration count so we can detect flushes which postdate a log record 3860 * during recovery. This is redundant as we now log every change and 3861 * hence this can't happen but we need to still do it to ensure 3862 * backwards compatibility with old kernels that predate logging all 3863 * inode changes. 3864 */ 3865 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3866 ip->i_d.di_flushiter++; 3867 3868 /* Check the inline fork data before we write out. */ 3869 if (!xfs_inode_verify_forks(ip)) 3870 goto corrupt_out; 3871 3872 /* 3873 * Copy the dirty parts of the inode into the on-disk inode. We always 3874 * copy out the core of the inode, because if the inode is dirty at all 3875 * the core must be. 3876 */ 3877 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3878 3879 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3880 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3881 ip->i_d.di_flushiter = 0; 3882 3883 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3884 if (XFS_IFORK_Q(ip)) 3885 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3886 xfs_inobp_check(mp, bp); 3887 3888 /* 3889 * We've recorded everything logged in the inode, so we'd like to clear 3890 * the ili_fields bits so we don't log and flush things unnecessarily. 3891 * However, we can't stop logging all this information until the data 3892 * we've copied into the disk buffer is written to disk. If we did we 3893 * might overwrite the copy of the inode in the log with all the data 3894 * after re-logging only part of it, and in the face of a crash we 3895 * wouldn't have all the data we need to recover. 3896 * 3897 * What we do is move the bits to the ili_last_fields field. When 3898 * logging the inode, these bits are moved back to the ili_fields field. 3899 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3900 * know that the information those bits represent is permanently on 3901 * disk. As long as the flush completes before the inode is logged 3902 * again, then both ili_fields and ili_last_fields will be cleared. 3903 * 3904 * We can play with the ili_fields bits here, because the inode lock 3905 * must be held exclusively in order to set bits there and the flush 3906 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3907 * done routine can tell whether or not to look in the AIL. Also, store 3908 * the current LSN of the inode so that we can tell whether the item has 3909 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3910 * need the AIL lock, because it is a 64 bit value that cannot be read 3911 * atomically. 3912 */ 3913 iip->ili_last_fields = iip->ili_fields; 3914 iip->ili_fields = 0; 3915 iip->ili_fsync_fields = 0; 3916 iip->ili_logged = 1; 3917 3918 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3919 &iip->ili_item.li_lsn); 3920 3921 /* 3922 * Attach the function xfs_iflush_done to the inode's 3923 * buffer. This will remove the inode from the AIL 3924 * and unlock the inode's flush lock when the inode is 3925 * completely written to disk. 3926 */ 3927 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3928 3929 /* generate the checksum. */ 3930 xfs_dinode_calc_crc(mp, dip); 3931 3932 ASSERT(!list_empty(&bp->b_li_list)); 3933 ASSERT(bp->b_iodone != NULL); 3934 return 0; 3935 3936 corrupt_out: 3937 return -EFSCORRUPTED; 3938 } 3939 3940 /* Release an inode. */ 3941 void 3942 xfs_irele( 3943 struct xfs_inode *ip) 3944 { 3945 trace_xfs_irele(ip, _RET_IP_); 3946 iput(VFS_I(ip)); 3947 } 3948 3949 /* 3950 * Ensure all commited transactions touching the inode are written to the log. 3951 */ 3952 int 3953 xfs_log_force_inode( 3954 struct xfs_inode *ip) 3955 { 3956 xfs_lsn_t lsn = 0; 3957 3958 xfs_ilock(ip, XFS_ILOCK_SHARED); 3959 if (xfs_ipincount(ip)) 3960 lsn = ip->i_itemp->ili_last_lsn; 3961 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3962 3963 if (!lsn) 3964 return 0; 3965 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3966 } 3967