xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision bc5aa3a0)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 
53 kmem_zone_t *xfs_inode_zone;
54 
55 /*
56  * Used in xfs_itruncate_extents().  This is the maximum number of extents
57  * freed from a file in a single transaction.
58  */
59 #define	XFS_ITRUNC_MAX_EXTENTS	2
60 
61 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
62 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
63 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
64 
65 /*
66  * helper function to extract extent size hint from inode
67  */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 	struct xfs_inode	*ip)
71 {
72 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 		return ip->i_d.di_extsize;
74 	if (XFS_IS_REALTIME_INODE(ip))
75 		return ip->i_mount->m_sb.sb_rextsize;
76 	return 0;
77 }
78 
79 /*
80  * These two are wrapper routines around the xfs_ilock() routine used to
81  * centralize some grungy code.  They are used in places that wish to lock the
82  * inode solely for reading the extents.  The reason these places can't just
83  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
84  * bringing in of the extents from disk for a file in b-tree format.  If the
85  * inode is in b-tree format, then we need to lock the inode exclusively until
86  * the extents are read in.  Locking it exclusively all the time would limit
87  * our parallelism unnecessarily, though.  What we do instead is check to see
88  * if the extents have been read in yet, and only lock the inode exclusively
89  * if they have not.
90  *
91  * The functions return a value which should be given to the corresponding
92  * xfs_iunlock() call.
93  */
94 uint
95 xfs_ilock_data_map_shared(
96 	struct xfs_inode	*ip)
97 {
98 	uint			lock_mode = XFS_ILOCK_SHARED;
99 
100 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
101 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
102 		lock_mode = XFS_ILOCK_EXCL;
103 	xfs_ilock(ip, lock_mode);
104 	return lock_mode;
105 }
106 
107 uint
108 xfs_ilock_attr_map_shared(
109 	struct xfs_inode	*ip)
110 {
111 	uint			lock_mode = XFS_ILOCK_SHARED;
112 
113 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
114 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
115 		lock_mode = XFS_ILOCK_EXCL;
116 	xfs_ilock(ip, lock_mode);
117 	return lock_mode;
118 }
119 
120 /*
121  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
122  * the i_lock.  This routine allows various combinations of the locks to be
123  * obtained.
124  *
125  * The 3 locks should always be ordered so that the IO lock is obtained first,
126  * the mmap lock second and the ilock last in order to prevent deadlock.
127  *
128  * Basic locking order:
129  *
130  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131  *
132  * mmap_sem locking order:
133  *
134  * i_iolock -> page lock -> mmap_sem
135  * mmap_sem -> i_mmap_lock -> page_lock
136  *
137  * The difference in mmap_sem locking order mean that we cannot hold the
138  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
139  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
140  * in get_user_pages() to map the user pages into the kernel address space for
141  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
142  * page faults already hold the mmap_sem.
143  *
144  * Hence to serialise fully against both syscall and mmap based IO, we need to
145  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
146  * taken in places where we need to invalidate the page cache in a race
147  * free manner (e.g. truncate, hole punch and other extent manipulation
148  * functions).
149  */
150 void
151 xfs_ilock(
152 	xfs_inode_t		*ip,
153 	uint			lock_flags)
154 {
155 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
156 
157 	/*
158 	 * You can't set both SHARED and EXCL for the same lock,
159 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
160 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 	 */
162 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
163 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
164 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
165 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
166 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
167 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
168 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
169 
170 	if (lock_flags & XFS_IOLOCK_EXCL)
171 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
172 	else if (lock_flags & XFS_IOLOCK_SHARED)
173 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
174 
175 	if (lock_flags & XFS_MMAPLOCK_EXCL)
176 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
177 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
178 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
179 
180 	if (lock_flags & XFS_ILOCK_EXCL)
181 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
182 	else if (lock_flags & XFS_ILOCK_SHARED)
183 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
184 }
185 
186 /*
187  * This is just like xfs_ilock(), except that the caller
188  * is guaranteed not to sleep.  It returns 1 if it gets
189  * the requested locks and 0 otherwise.  If the IO lock is
190  * obtained but the inode lock cannot be, then the IO lock
191  * is dropped before returning.
192  *
193  * ip -- the inode being locked
194  * lock_flags -- this parameter indicates the inode's locks to be
195  *       to be locked.  See the comment for xfs_ilock() for a list
196  *	 of valid values.
197  */
198 int
199 xfs_ilock_nowait(
200 	xfs_inode_t		*ip,
201 	uint			lock_flags)
202 {
203 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
204 
205 	/*
206 	 * You can't set both SHARED and EXCL for the same lock,
207 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
208 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 	 */
210 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
211 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
212 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
213 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
214 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
215 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
216 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
217 
218 	if (lock_flags & XFS_IOLOCK_EXCL) {
219 		if (!mrtryupdate(&ip->i_iolock))
220 			goto out;
221 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
222 		if (!mrtryaccess(&ip->i_iolock))
223 			goto out;
224 	}
225 
226 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
227 		if (!mrtryupdate(&ip->i_mmaplock))
228 			goto out_undo_iolock;
229 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
230 		if (!mrtryaccess(&ip->i_mmaplock))
231 			goto out_undo_iolock;
232 	}
233 
234 	if (lock_flags & XFS_ILOCK_EXCL) {
235 		if (!mrtryupdate(&ip->i_lock))
236 			goto out_undo_mmaplock;
237 	} else if (lock_flags & XFS_ILOCK_SHARED) {
238 		if (!mrtryaccess(&ip->i_lock))
239 			goto out_undo_mmaplock;
240 	}
241 	return 1;
242 
243 out_undo_mmaplock:
244 	if (lock_flags & XFS_MMAPLOCK_EXCL)
245 		mrunlock_excl(&ip->i_mmaplock);
246 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
247 		mrunlock_shared(&ip->i_mmaplock);
248 out_undo_iolock:
249 	if (lock_flags & XFS_IOLOCK_EXCL)
250 		mrunlock_excl(&ip->i_iolock);
251 	else if (lock_flags & XFS_IOLOCK_SHARED)
252 		mrunlock_shared(&ip->i_iolock);
253 out:
254 	return 0;
255 }
256 
257 /*
258  * xfs_iunlock() is used to drop the inode locks acquired with
259  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
260  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
261  * that we know which locks to drop.
262  *
263  * ip -- the inode being unlocked
264  * lock_flags -- this parameter indicates the inode's locks to be
265  *       to be unlocked.  See the comment for xfs_ilock() for a list
266  *	 of valid values for this parameter.
267  *
268  */
269 void
270 xfs_iunlock(
271 	xfs_inode_t		*ip,
272 	uint			lock_flags)
273 {
274 	/*
275 	 * You can't set both SHARED and EXCL for the same lock,
276 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
277 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 	 */
279 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
280 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
281 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
282 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
283 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
284 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
285 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
286 	ASSERT(lock_flags != 0);
287 
288 	if (lock_flags & XFS_IOLOCK_EXCL)
289 		mrunlock_excl(&ip->i_iolock);
290 	else if (lock_flags & XFS_IOLOCK_SHARED)
291 		mrunlock_shared(&ip->i_iolock);
292 
293 	if (lock_flags & XFS_MMAPLOCK_EXCL)
294 		mrunlock_excl(&ip->i_mmaplock);
295 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
296 		mrunlock_shared(&ip->i_mmaplock);
297 
298 	if (lock_flags & XFS_ILOCK_EXCL)
299 		mrunlock_excl(&ip->i_lock);
300 	else if (lock_flags & XFS_ILOCK_SHARED)
301 		mrunlock_shared(&ip->i_lock);
302 
303 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
304 }
305 
306 /*
307  * give up write locks.  the i/o lock cannot be held nested
308  * if it is being demoted.
309  */
310 void
311 xfs_ilock_demote(
312 	xfs_inode_t		*ip,
313 	uint			lock_flags)
314 {
315 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
316 	ASSERT((lock_flags &
317 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 
319 	if (lock_flags & XFS_ILOCK_EXCL)
320 		mrdemote(&ip->i_lock);
321 	if (lock_flags & XFS_MMAPLOCK_EXCL)
322 		mrdemote(&ip->i_mmaplock);
323 	if (lock_flags & XFS_IOLOCK_EXCL)
324 		mrdemote(&ip->i_iolock);
325 
326 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
327 }
328 
329 #if defined(DEBUG) || defined(XFS_WARN)
330 int
331 xfs_isilocked(
332 	xfs_inode_t		*ip,
333 	uint			lock_flags)
334 {
335 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
336 		if (!(lock_flags & XFS_ILOCK_SHARED))
337 			return !!ip->i_lock.mr_writer;
338 		return rwsem_is_locked(&ip->i_lock.mr_lock);
339 	}
340 
341 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
342 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
343 			return !!ip->i_mmaplock.mr_writer;
344 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
345 	}
346 
347 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
348 		if (!(lock_flags & XFS_IOLOCK_SHARED))
349 			return !!ip->i_iolock.mr_writer;
350 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
351 	}
352 
353 	ASSERT(0);
354 	return 0;
355 }
356 #endif
357 
358 #ifdef DEBUG
359 int xfs_locked_n;
360 int xfs_small_retries;
361 int xfs_middle_retries;
362 int xfs_lots_retries;
363 int xfs_lock_delays;
364 #endif
365 
366 /*
367  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
368  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
369  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
370  * errors and warnings.
371  */
372 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
373 static bool
374 xfs_lockdep_subclass_ok(
375 	int subclass)
376 {
377 	return subclass < MAX_LOCKDEP_SUBCLASSES;
378 }
379 #else
380 #define xfs_lockdep_subclass_ok(subclass)	(true)
381 #endif
382 
383 /*
384  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
385  * value. This can be called for any type of inode lock combination, including
386  * parent locking. Care must be taken to ensure we don't overrun the subclass
387  * storage fields in the class mask we build.
388  */
389 static inline int
390 xfs_lock_inumorder(int lock_mode, int subclass)
391 {
392 	int	class = 0;
393 
394 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
395 			      XFS_ILOCK_RTSUM)));
396 	ASSERT(xfs_lockdep_subclass_ok(subclass));
397 
398 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
399 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
400 		ASSERT(xfs_lockdep_subclass_ok(subclass +
401 						XFS_IOLOCK_PARENT_VAL));
402 		class += subclass << XFS_IOLOCK_SHIFT;
403 		if (lock_mode & XFS_IOLOCK_PARENT)
404 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
405 	}
406 
407 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
408 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
409 		class += subclass << XFS_MMAPLOCK_SHIFT;
410 	}
411 
412 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
413 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
414 		class += subclass << XFS_ILOCK_SHIFT;
415 	}
416 
417 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
418 }
419 
420 /*
421  * The following routine will lock n inodes in exclusive mode.  We assume the
422  * caller calls us with the inodes in i_ino order.
423  *
424  * We need to detect deadlock where an inode that we lock is in the AIL and we
425  * start waiting for another inode that is locked by a thread in a long running
426  * transaction (such as truncate). This can result in deadlock since the long
427  * running trans might need to wait for the inode we just locked in order to
428  * push the tail and free space in the log.
429  *
430  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
431  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
432  * lock more than one at a time, lockdep will report false positives saying we
433  * have violated locking orders.
434  */
435 static void
436 xfs_lock_inodes(
437 	xfs_inode_t	**ips,
438 	int		inodes,
439 	uint		lock_mode)
440 {
441 	int		attempts = 0, i, j, try_lock;
442 	xfs_log_item_t	*lp;
443 
444 	/*
445 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
446 	 * support an arbitrary depth of locking here, but absolute limits on
447 	 * inodes depend on the the type of locking and the limits placed by
448 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
449 	 * the asserts.
450 	 */
451 	ASSERT(ips && inodes >= 2 && inodes <= 5);
452 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
453 			    XFS_ILOCK_EXCL));
454 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
455 			      XFS_ILOCK_SHARED)));
456 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
457 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
458 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
459 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
460 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
461 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
462 
463 	if (lock_mode & XFS_IOLOCK_EXCL) {
464 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
465 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
466 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
467 
468 	try_lock = 0;
469 	i = 0;
470 again:
471 	for (; i < inodes; i++) {
472 		ASSERT(ips[i]);
473 
474 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
475 			continue;
476 
477 		/*
478 		 * If try_lock is not set yet, make sure all locked inodes are
479 		 * not in the AIL.  If any are, set try_lock to be used later.
480 		 */
481 		if (!try_lock) {
482 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
483 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
484 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
485 					try_lock++;
486 			}
487 		}
488 
489 		/*
490 		 * If any of the previous locks we have locked is in the AIL,
491 		 * we must TRY to get the second and subsequent locks. If
492 		 * we can't get any, we must release all we have
493 		 * and try again.
494 		 */
495 		if (!try_lock) {
496 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
497 			continue;
498 		}
499 
500 		/* try_lock means we have an inode locked that is in the AIL. */
501 		ASSERT(i != 0);
502 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
503 			continue;
504 
505 		/*
506 		 * Unlock all previous guys and try again.  xfs_iunlock will try
507 		 * to push the tail if the inode is in the AIL.
508 		 */
509 		attempts++;
510 		for (j = i - 1; j >= 0; j--) {
511 			/*
512 			 * Check to see if we've already unlocked this one.  Not
513 			 * the first one going back, and the inode ptr is the
514 			 * same.
515 			 */
516 			if (j != (i - 1) && ips[j] == ips[j + 1])
517 				continue;
518 
519 			xfs_iunlock(ips[j], lock_mode);
520 		}
521 
522 		if ((attempts % 5) == 0) {
523 			delay(1); /* Don't just spin the CPU */
524 #ifdef DEBUG
525 			xfs_lock_delays++;
526 #endif
527 		}
528 		i = 0;
529 		try_lock = 0;
530 		goto again;
531 	}
532 
533 #ifdef DEBUG
534 	if (attempts) {
535 		if (attempts < 5) xfs_small_retries++;
536 		else if (attempts < 100) xfs_middle_retries++;
537 		else xfs_lots_retries++;
538 	} else {
539 		xfs_locked_n++;
540 	}
541 #endif
542 }
543 
544 /*
545  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
546  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
547  * lock more than one at a time, lockdep will report false positives saying we
548  * have violated locking orders.
549  */
550 void
551 xfs_lock_two_inodes(
552 	xfs_inode_t		*ip0,
553 	xfs_inode_t		*ip1,
554 	uint			lock_mode)
555 {
556 	xfs_inode_t		*temp;
557 	int			attempts = 0;
558 	xfs_log_item_t		*lp;
559 
560 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
561 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
562 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
564 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 
566 	ASSERT(ip0->i_ino != ip1->i_ino);
567 
568 	if (ip0->i_ino > ip1->i_ino) {
569 		temp = ip0;
570 		ip0 = ip1;
571 		ip1 = temp;
572 	}
573 
574  again:
575 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
576 
577 	/*
578 	 * If the first lock we have locked is in the AIL, we must TRY to get
579 	 * the second lock. If we can't get it, we must release the first one
580 	 * and try again.
581 	 */
582 	lp = (xfs_log_item_t *)ip0->i_itemp;
583 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
584 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
585 			xfs_iunlock(ip0, lock_mode);
586 			if ((++attempts % 5) == 0)
587 				delay(1); /* Don't just spin the CPU */
588 			goto again;
589 		}
590 	} else {
591 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
592 	}
593 }
594 
595 
596 void
597 __xfs_iflock(
598 	struct xfs_inode	*ip)
599 {
600 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
601 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
602 
603 	do {
604 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
605 		if (xfs_isiflocked(ip))
606 			io_schedule();
607 	} while (!xfs_iflock_nowait(ip));
608 
609 	finish_wait(wq, &wait.wait);
610 }
611 
612 STATIC uint
613 _xfs_dic2xflags(
614 	__uint16_t		di_flags,
615 	uint64_t		di_flags2,
616 	bool			has_attr)
617 {
618 	uint			flags = 0;
619 
620 	if (di_flags & XFS_DIFLAG_ANY) {
621 		if (di_flags & XFS_DIFLAG_REALTIME)
622 			flags |= FS_XFLAG_REALTIME;
623 		if (di_flags & XFS_DIFLAG_PREALLOC)
624 			flags |= FS_XFLAG_PREALLOC;
625 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
626 			flags |= FS_XFLAG_IMMUTABLE;
627 		if (di_flags & XFS_DIFLAG_APPEND)
628 			flags |= FS_XFLAG_APPEND;
629 		if (di_flags & XFS_DIFLAG_SYNC)
630 			flags |= FS_XFLAG_SYNC;
631 		if (di_flags & XFS_DIFLAG_NOATIME)
632 			flags |= FS_XFLAG_NOATIME;
633 		if (di_flags & XFS_DIFLAG_NODUMP)
634 			flags |= FS_XFLAG_NODUMP;
635 		if (di_flags & XFS_DIFLAG_RTINHERIT)
636 			flags |= FS_XFLAG_RTINHERIT;
637 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
638 			flags |= FS_XFLAG_PROJINHERIT;
639 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
640 			flags |= FS_XFLAG_NOSYMLINKS;
641 		if (di_flags & XFS_DIFLAG_EXTSIZE)
642 			flags |= FS_XFLAG_EXTSIZE;
643 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
644 			flags |= FS_XFLAG_EXTSZINHERIT;
645 		if (di_flags & XFS_DIFLAG_NODEFRAG)
646 			flags |= FS_XFLAG_NODEFRAG;
647 		if (di_flags & XFS_DIFLAG_FILESTREAM)
648 			flags |= FS_XFLAG_FILESTREAM;
649 	}
650 
651 	if (di_flags2 & XFS_DIFLAG2_ANY) {
652 		if (di_flags2 & XFS_DIFLAG2_DAX)
653 			flags |= FS_XFLAG_DAX;
654 	}
655 
656 	if (has_attr)
657 		flags |= FS_XFLAG_HASATTR;
658 
659 	return flags;
660 }
661 
662 uint
663 xfs_ip2xflags(
664 	struct xfs_inode	*ip)
665 {
666 	struct xfs_icdinode	*dic = &ip->i_d;
667 
668 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
669 }
670 
671 /*
672  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
673  * is allowed, otherwise it has to be an exact match. If a CI match is found,
674  * ci_name->name will point to a the actual name (caller must free) or
675  * will be set to NULL if an exact match is found.
676  */
677 int
678 xfs_lookup(
679 	xfs_inode_t		*dp,
680 	struct xfs_name		*name,
681 	xfs_inode_t		**ipp,
682 	struct xfs_name		*ci_name)
683 {
684 	xfs_ino_t		inum;
685 	int			error;
686 
687 	trace_xfs_lookup(dp, name);
688 
689 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
690 		return -EIO;
691 
692 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
693 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 	if (error)
695 		goto out_unlock;
696 
697 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 	if (error)
699 		goto out_free_name;
700 
701 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
702 	return 0;
703 
704 out_free_name:
705 	if (ci_name)
706 		kmem_free(ci_name->name);
707 out_unlock:
708 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 	*ipp = NULL;
710 	return error;
711 }
712 
713 /*
714  * Allocate an inode on disk and return a copy of its in-core version.
715  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
716  * appropriately within the inode.  The uid and gid for the inode are
717  * set according to the contents of the given cred structure.
718  *
719  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
720  * has a free inode available, call xfs_iget() to obtain the in-core
721  * version of the allocated inode.  Finally, fill in the inode and
722  * log its initial contents.  In this case, ialloc_context would be
723  * set to NULL.
724  *
725  * If xfs_dialloc() does not have an available inode, it will replenish
726  * its supply by doing an allocation. Since we can only do one
727  * allocation within a transaction without deadlocks, we must commit
728  * the current transaction before returning the inode itself.
729  * In this case, therefore, we will set ialloc_context and return.
730  * The caller should then commit the current transaction, start a new
731  * transaction, and call xfs_ialloc() again to actually get the inode.
732  *
733  * To ensure that some other process does not grab the inode that
734  * was allocated during the first call to xfs_ialloc(), this routine
735  * also returns the [locked] bp pointing to the head of the freelist
736  * as ialloc_context.  The caller should hold this buffer across
737  * the commit and pass it back into this routine on the second call.
738  *
739  * If we are allocating quota inodes, we do not have a parent inode
740  * to attach to or associate with (i.e. pip == NULL) because they
741  * are not linked into the directory structure - they are attached
742  * directly to the superblock - and so have no parent.
743  */
744 static int
745 xfs_ialloc(
746 	xfs_trans_t	*tp,
747 	xfs_inode_t	*pip,
748 	umode_t		mode,
749 	xfs_nlink_t	nlink,
750 	xfs_dev_t	rdev,
751 	prid_t		prid,
752 	int		okalloc,
753 	xfs_buf_t	**ialloc_context,
754 	xfs_inode_t	**ipp)
755 {
756 	struct xfs_mount *mp = tp->t_mountp;
757 	xfs_ino_t	ino;
758 	xfs_inode_t	*ip;
759 	uint		flags;
760 	int		error;
761 	struct timespec	tv;
762 	struct inode	*inode;
763 
764 	/*
765 	 * Call the space management code to pick
766 	 * the on-disk inode to be allocated.
767 	 */
768 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
769 			    ialloc_context, &ino);
770 	if (error)
771 		return error;
772 	if (*ialloc_context || ino == NULLFSINO) {
773 		*ipp = NULL;
774 		return 0;
775 	}
776 	ASSERT(*ialloc_context == NULL);
777 
778 	/*
779 	 * Get the in-core inode with the lock held exclusively.
780 	 * This is because we're setting fields here we need
781 	 * to prevent others from looking at until we're done.
782 	 */
783 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
784 			 XFS_ILOCK_EXCL, &ip);
785 	if (error)
786 		return error;
787 	ASSERT(ip != NULL);
788 	inode = VFS_I(ip);
789 
790 	/*
791 	 * We always convert v1 inodes to v2 now - we only support filesystems
792 	 * with >= v2 inode capability, so there is no reason for ever leaving
793 	 * an inode in v1 format.
794 	 */
795 	if (ip->i_d.di_version == 1)
796 		ip->i_d.di_version = 2;
797 
798 	inode->i_mode = mode;
799 	set_nlink(inode, nlink);
800 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
801 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
802 	xfs_set_projid(ip, prid);
803 
804 	if (pip && XFS_INHERIT_GID(pip)) {
805 		ip->i_d.di_gid = pip->i_d.di_gid;
806 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
807 			inode->i_mode |= S_ISGID;
808 	}
809 
810 	/*
811 	 * If the group ID of the new file does not match the effective group
812 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 	 * (and only if the irix_sgid_inherit compatibility variable is set).
814 	 */
815 	if ((irix_sgid_inherit) &&
816 	    (inode->i_mode & S_ISGID) &&
817 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
818 		inode->i_mode &= ~S_ISGID;
819 
820 	ip->i_d.di_size = 0;
821 	ip->i_d.di_nextents = 0;
822 	ASSERT(ip->i_d.di_nblocks == 0);
823 
824 	tv = current_fs_time(mp->m_super);
825 	inode->i_mtime = tv;
826 	inode->i_atime = tv;
827 	inode->i_ctime = tv;
828 
829 	ip->i_d.di_extsize = 0;
830 	ip->i_d.di_dmevmask = 0;
831 	ip->i_d.di_dmstate = 0;
832 	ip->i_d.di_flags = 0;
833 
834 	if (ip->i_d.di_version == 3) {
835 		inode->i_version = 1;
836 		ip->i_d.di_flags2 = 0;
837 		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
838 		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
839 	}
840 
841 
842 	flags = XFS_ILOG_CORE;
843 	switch (mode & S_IFMT) {
844 	case S_IFIFO:
845 	case S_IFCHR:
846 	case S_IFBLK:
847 	case S_IFSOCK:
848 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
849 		ip->i_df.if_u2.if_rdev = rdev;
850 		ip->i_df.if_flags = 0;
851 		flags |= XFS_ILOG_DEV;
852 		break;
853 	case S_IFREG:
854 	case S_IFDIR:
855 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
856 			uint64_t	di_flags2 = 0;
857 			uint		di_flags = 0;
858 
859 			if (S_ISDIR(mode)) {
860 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
861 					di_flags |= XFS_DIFLAG_RTINHERIT;
862 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
863 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
864 					ip->i_d.di_extsize = pip->i_d.di_extsize;
865 				}
866 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
867 					di_flags |= XFS_DIFLAG_PROJINHERIT;
868 			} else if (S_ISREG(mode)) {
869 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 					di_flags |= XFS_DIFLAG_REALTIME;
871 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 					di_flags |= XFS_DIFLAG_EXTSIZE;
873 					ip->i_d.di_extsize = pip->i_d.di_extsize;
874 				}
875 			}
876 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
877 			    xfs_inherit_noatime)
878 				di_flags |= XFS_DIFLAG_NOATIME;
879 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
880 			    xfs_inherit_nodump)
881 				di_flags |= XFS_DIFLAG_NODUMP;
882 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
883 			    xfs_inherit_sync)
884 				di_flags |= XFS_DIFLAG_SYNC;
885 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
886 			    xfs_inherit_nosymlinks)
887 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
888 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
889 			    xfs_inherit_nodefrag)
890 				di_flags |= XFS_DIFLAG_NODEFRAG;
891 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
892 				di_flags |= XFS_DIFLAG_FILESTREAM;
893 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
894 				di_flags2 |= XFS_DIFLAG2_DAX;
895 
896 			ip->i_d.di_flags |= di_flags;
897 			ip->i_d.di_flags2 |= di_flags2;
898 		}
899 		/* FALLTHROUGH */
900 	case S_IFLNK:
901 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
902 		ip->i_df.if_flags = XFS_IFEXTENTS;
903 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
904 		ip->i_df.if_u1.if_extents = NULL;
905 		break;
906 	default:
907 		ASSERT(0);
908 	}
909 	/*
910 	 * Attribute fork settings for new inode.
911 	 */
912 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
913 	ip->i_d.di_anextents = 0;
914 
915 	/*
916 	 * Log the new values stuffed into the inode.
917 	 */
918 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
919 	xfs_trans_log_inode(tp, ip, flags);
920 
921 	/* now that we have an i_mode we can setup the inode structure */
922 	xfs_setup_inode(ip);
923 
924 	*ipp = ip;
925 	return 0;
926 }
927 
928 /*
929  * Allocates a new inode from disk and return a pointer to the
930  * incore copy. This routine will internally commit the current
931  * transaction and allocate a new one if the Space Manager needed
932  * to do an allocation to replenish the inode free-list.
933  *
934  * This routine is designed to be called from xfs_create and
935  * xfs_create_dir.
936  *
937  */
938 int
939 xfs_dir_ialloc(
940 	xfs_trans_t	**tpp,		/* input: current transaction;
941 					   output: may be a new transaction. */
942 	xfs_inode_t	*dp,		/* directory within whose allocate
943 					   the inode. */
944 	umode_t		mode,
945 	xfs_nlink_t	nlink,
946 	xfs_dev_t	rdev,
947 	prid_t		prid,		/* project id */
948 	int		okalloc,	/* ok to allocate new space */
949 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
950 					   locked. */
951 	int		*committed)
952 
953 {
954 	xfs_trans_t	*tp;
955 	xfs_inode_t	*ip;
956 	xfs_buf_t	*ialloc_context = NULL;
957 	int		code;
958 	void		*dqinfo;
959 	uint		tflags;
960 
961 	tp = *tpp;
962 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
963 
964 	/*
965 	 * xfs_ialloc will return a pointer to an incore inode if
966 	 * the Space Manager has an available inode on the free
967 	 * list. Otherwise, it will do an allocation and replenish
968 	 * the freelist.  Since we can only do one allocation per
969 	 * transaction without deadlocks, we will need to commit the
970 	 * current transaction and start a new one.  We will then
971 	 * need to call xfs_ialloc again to get the inode.
972 	 *
973 	 * If xfs_ialloc did an allocation to replenish the freelist,
974 	 * it returns the bp containing the head of the freelist as
975 	 * ialloc_context. We will hold a lock on it across the
976 	 * transaction commit so that no other process can steal
977 	 * the inode(s) that we've just allocated.
978 	 */
979 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
980 			  &ialloc_context, &ip);
981 
982 	/*
983 	 * Return an error if we were unable to allocate a new inode.
984 	 * This should only happen if we run out of space on disk or
985 	 * encounter a disk error.
986 	 */
987 	if (code) {
988 		*ipp = NULL;
989 		return code;
990 	}
991 	if (!ialloc_context && !ip) {
992 		*ipp = NULL;
993 		return -ENOSPC;
994 	}
995 
996 	/*
997 	 * If the AGI buffer is non-NULL, then we were unable to get an
998 	 * inode in one operation.  We need to commit the current
999 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1000 	 * to succeed the second time.
1001 	 */
1002 	if (ialloc_context) {
1003 		/*
1004 		 * Normally, xfs_trans_commit releases all the locks.
1005 		 * We call bhold to hang on to the ialloc_context across
1006 		 * the commit.  Holding this buffer prevents any other
1007 		 * processes from doing any allocations in this
1008 		 * allocation group.
1009 		 */
1010 		xfs_trans_bhold(tp, ialloc_context);
1011 
1012 		/*
1013 		 * We want the quota changes to be associated with the next
1014 		 * transaction, NOT this one. So, detach the dqinfo from this
1015 		 * and attach it to the next transaction.
1016 		 */
1017 		dqinfo = NULL;
1018 		tflags = 0;
1019 		if (tp->t_dqinfo) {
1020 			dqinfo = (void *)tp->t_dqinfo;
1021 			tp->t_dqinfo = NULL;
1022 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1023 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1024 		}
1025 
1026 		code = xfs_trans_roll(&tp, NULL);
1027 		if (committed != NULL)
1028 			*committed = 1;
1029 
1030 		/*
1031 		 * Re-attach the quota info that we detached from prev trx.
1032 		 */
1033 		if (dqinfo) {
1034 			tp->t_dqinfo = dqinfo;
1035 			tp->t_flags |= tflags;
1036 		}
1037 
1038 		if (code) {
1039 			xfs_buf_relse(ialloc_context);
1040 			*tpp = tp;
1041 			*ipp = NULL;
1042 			return code;
1043 		}
1044 		xfs_trans_bjoin(tp, ialloc_context);
1045 
1046 		/*
1047 		 * Call ialloc again. Since we've locked out all
1048 		 * other allocations in this allocation group,
1049 		 * this call should always succeed.
1050 		 */
1051 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1052 				  okalloc, &ialloc_context, &ip);
1053 
1054 		/*
1055 		 * If we get an error at this point, return to the caller
1056 		 * so that the current transaction can be aborted.
1057 		 */
1058 		if (code) {
1059 			*tpp = tp;
1060 			*ipp = NULL;
1061 			return code;
1062 		}
1063 		ASSERT(!ialloc_context && ip);
1064 
1065 	} else {
1066 		if (committed != NULL)
1067 			*committed = 0;
1068 	}
1069 
1070 	*ipp = ip;
1071 	*tpp = tp;
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Decrement the link count on an inode & log the change.  If this causes the
1078  * link count to go to zero, move the inode to AGI unlinked list so that it can
1079  * be freed when the last active reference goes away via xfs_inactive().
1080  */
1081 static int			/* error */
1082 xfs_droplink(
1083 	xfs_trans_t *tp,
1084 	xfs_inode_t *ip)
1085 {
1086 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1087 
1088 	drop_nlink(VFS_I(ip));
1089 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1090 
1091 	if (VFS_I(ip)->i_nlink)
1092 		return 0;
1093 
1094 	return xfs_iunlink(tp, ip);
1095 }
1096 
1097 /*
1098  * Increment the link count on an inode & log the change.
1099  */
1100 static int
1101 xfs_bumplink(
1102 	xfs_trans_t *tp,
1103 	xfs_inode_t *ip)
1104 {
1105 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106 
1107 	ASSERT(ip->i_d.di_version > 1);
1108 	inc_nlink(VFS_I(ip));
1109 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 	return 0;
1111 }
1112 
1113 int
1114 xfs_create(
1115 	xfs_inode_t		*dp,
1116 	struct xfs_name		*name,
1117 	umode_t			mode,
1118 	xfs_dev_t		rdev,
1119 	xfs_inode_t		**ipp)
1120 {
1121 	int			is_dir = S_ISDIR(mode);
1122 	struct xfs_mount	*mp = dp->i_mount;
1123 	struct xfs_inode	*ip = NULL;
1124 	struct xfs_trans	*tp = NULL;
1125 	int			error;
1126 	struct xfs_defer_ops	dfops;
1127 	xfs_fsblock_t		first_block;
1128 	bool                    unlock_dp_on_error = false;
1129 	prid_t			prid;
1130 	struct xfs_dquot	*udqp = NULL;
1131 	struct xfs_dquot	*gdqp = NULL;
1132 	struct xfs_dquot	*pdqp = NULL;
1133 	struct xfs_trans_res	*tres;
1134 	uint			resblks;
1135 
1136 	trace_xfs_create(dp, name);
1137 
1138 	if (XFS_FORCED_SHUTDOWN(mp))
1139 		return -EIO;
1140 
1141 	prid = xfs_get_initial_prid(dp);
1142 
1143 	/*
1144 	 * Make sure that we have allocated dquot(s) on disk.
1145 	 */
1146 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1147 					xfs_kgid_to_gid(current_fsgid()), prid,
1148 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1149 					&udqp, &gdqp, &pdqp);
1150 	if (error)
1151 		return error;
1152 
1153 	if (is_dir) {
1154 		rdev = 0;
1155 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1156 		tres = &M_RES(mp)->tr_mkdir;
1157 	} else {
1158 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1159 		tres = &M_RES(mp)->tr_create;
1160 	}
1161 
1162 	/*
1163 	 * Initially assume that the file does not exist and
1164 	 * reserve the resources for that case.  If that is not
1165 	 * the case we'll drop the one we have and get a more
1166 	 * appropriate transaction later.
1167 	 */
1168 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1169 	if (error == -ENOSPC) {
1170 		/* flush outstanding delalloc blocks and retry */
1171 		xfs_flush_inodes(mp);
1172 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1173 	}
1174 	if (error == -ENOSPC) {
1175 		/* No space at all so try a "no-allocation" reservation */
1176 		resblks = 0;
1177 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1178 	}
1179 	if (error)
1180 		goto out_release_inode;
1181 
1182 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1183 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1184 	unlock_dp_on_error = true;
1185 
1186 	xfs_defer_init(&dfops, &first_block);
1187 
1188 	/*
1189 	 * Reserve disk quota and the inode.
1190 	 */
1191 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1192 						pdqp, resblks, 1, 0);
1193 	if (error)
1194 		goto out_trans_cancel;
1195 
1196 	if (!resblks) {
1197 		error = xfs_dir_canenter(tp, dp, name);
1198 		if (error)
1199 			goto out_trans_cancel;
1200 	}
1201 
1202 	/*
1203 	 * A newly created regular or special file just has one directory
1204 	 * entry pointing to them, but a directory also the "." entry
1205 	 * pointing to itself.
1206 	 */
1207 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1208 			       prid, resblks > 0, &ip, NULL);
1209 	if (error)
1210 		goto out_trans_cancel;
1211 
1212 	/*
1213 	 * Now we join the directory inode to the transaction.  We do not do it
1214 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1215 	 * (and release all the locks).  An error from here on will result in
1216 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1217 	 * error path.
1218 	 */
1219 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1220 	unlock_dp_on_error = false;
1221 
1222 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1223 					&first_block, &dfops, resblks ?
1224 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1225 	if (error) {
1226 		ASSERT(error != -ENOSPC);
1227 		goto out_trans_cancel;
1228 	}
1229 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1230 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1231 
1232 	if (is_dir) {
1233 		error = xfs_dir_init(tp, ip, dp);
1234 		if (error)
1235 			goto out_bmap_cancel;
1236 
1237 		error = xfs_bumplink(tp, dp);
1238 		if (error)
1239 			goto out_bmap_cancel;
1240 	}
1241 
1242 	/*
1243 	 * If this is a synchronous mount, make sure that the
1244 	 * create transaction goes to disk before returning to
1245 	 * the user.
1246 	 */
1247 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1248 		xfs_trans_set_sync(tp);
1249 
1250 	/*
1251 	 * Attach the dquot(s) to the inodes and modify them incore.
1252 	 * These ids of the inode couldn't have changed since the new
1253 	 * inode has been locked ever since it was created.
1254 	 */
1255 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1256 
1257 	error = xfs_defer_finish(&tp, &dfops, NULL);
1258 	if (error)
1259 		goto out_bmap_cancel;
1260 
1261 	error = xfs_trans_commit(tp);
1262 	if (error)
1263 		goto out_release_inode;
1264 
1265 	xfs_qm_dqrele(udqp);
1266 	xfs_qm_dqrele(gdqp);
1267 	xfs_qm_dqrele(pdqp);
1268 
1269 	*ipp = ip;
1270 	return 0;
1271 
1272  out_bmap_cancel:
1273 	xfs_defer_cancel(&dfops);
1274  out_trans_cancel:
1275 	xfs_trans_cancel(tp);
1276  out_release_inode:
1277 	/*
1278 	 * Wait until after the current transaction is aborted to finish the
1279 	 * setup of the inode and release the inode.  This prevents recursive
1280 	 * transactions and deadlocks from xfs_inactive.
1281 	 */
1282 	if (ip) {
1283 		xfs_finish_inode_setup(ip);
1284 		IRELE(ip);
1285 	}
1286 
1287 	xfs_qm_dqrele(udqp);
1288 	xfs_qm_dqrele(gdqp);
1289 	xfs_qm_dqrele(pdqp);
1290 
1291 	if (unlock_dp_on_error)
1292 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1293 	return error;
1294 }
1295 
1296 int
1297 xfs_create_tmpfile(
1298 	struct xfs_inode	*dp,
1299 	struct dentry		*dentry,
1300 	umode_t			mode,
1301 	struct xfs_inode	**ipp)
1302 {
1303 	struct xfs_mount	*mp = dp->i_mount;
1304 	struct xfs_inode	*ip = NULL;
1305 	struct xfs_trans	*tp = NULL;
1306 	int			error;
1307 	prid_t                  prid;
1308 	struct xfs_dquot	*udqp = NULL;
1309 	struct xfs_dquot	*gdqp = NULL;
1310 	struct xfs_dquot	*pdqp = NULL;
1311 	struct xfs_trans_res	*tres;
1312 	uint			resblks;
1313 
1314 	if (XFS_FORCED_SHUTDOWN(mp))
1315 		return -EIO;
1316 
1317 	prid = xfs_get_initial_prid(dp);
1318 
1319 	/*
1320 	 * Make sure that we have allocated dquot(s) on disk.
1321 	 */
1322 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1323 				xfs_kgid_to_gid(current_fsgid()), prid,
1324 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1325 				&udqp, &gdqp, &pdqp);
1326 	if (error)
1327 		return error;
1328 
1329 	resblks = XFS_IALLOC_SPACE_RES(mp);
1330 	tres = &M_RES(mp)->tr_create_tmpfile;
1331 
1332 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1333 	if (error == -ENOSPC) {
1334 		/* No space at all so try a "no-allocation" reservation */
1335 		resblks = 0;
1336 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1337 	}
1338 	if (error)
1339 		goto out_release_inode;
1340 
1341 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342 						pdqp, resblks, 1, 0);
1343 	if (error)
1344 		goto out_trans_cancel;
1345 
1346 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1347 				prid, resblks > 0, &ip, NULL);
1348 	if (error)
1349 		goto out_trans_cancel;
1350 
1351 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1352 		xfs_trans_set_sync(tp);
1353 
1354 	/*
1355 	 * Attach the dquot(s) to the inodes and modify them incore.
1356 	 * These ids of the inode couldn't have changed since the new
1357 	 * inode has been locked ever since it was created.
1358 	 */
1359 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1360 
1361 	error = xfs_iunlink(tp, ip);
1362 	if (error)
1363 		goto out_trans_cancel;
1364 
1365 	error = xfs_trans_commit(tp);
1366 	if (error)
1367 		goto out_release_inode;
1368 
1369 	xfs_qm_dqrele(udqp);
1370 	xfs_qm_dqrele(gdqp);
1371 	xfs_qm_dqrele(pdqp);
1372 
1373 	*ipp = ip;
1374 	return 0;
1375 
1376  out_trans_cancel:
1377 	xfs_trans_cancel(tp);
1378  out_release_inode:
1379 	/*
1380 	 * Wait until after the current transaction is aborted to finish the
1381 	 * setup of the inode and release the inode.  This prevents recursive
1382 	 * transactions and deadlocks from xfs_inactive.
1383 	 */
1384 	if (ip) {
1385 		xfs_finish_inode_setup(ip);
1386 		IRELE(ip);
1387 	}
1388 
1389 	xfs_qm_dqrele(udqp);
1390 	xfs_qm_dqrele(gdqp);
1391 	xfs_qm_dqrele(pdqp);
1392 
1393 	return error;
1394 }
1395 
1396 int
1397 xfs_link(
1398 	xfs_inode_t		*tdp,
1399 	xfs_inode_t		*sip,
1400 	struct xfs_name		*target_name)
1401 {
1402 	xfs_mount_t		*mp = tdp->i_mount;
1403 	xfs_trans_t		*tp;
1404 	int			error;
1405 	struct xfs_defer_ops	dfops;
1406 	xfs_fsblock_t           first_block;
1407 	int			resblks;
1408 
1409 	trace_xfs_link(tdp, target_name);
1410 
1411 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1412 
1413 	if (XFS_FORCED_SHUTDOWN(mp))
1414 		return -EIO;
1415 
1416 	error = xfs_qm_dqattach(sip, 0);
1417 	if (error)
1418 		goto std_return;
1419 
1420 	error = xfs_qm_dqattach(tdp, 0);
1421 	if (error)
1422 		goto std_return;
1423 
1424 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1425 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1426 	if (error == -ENOSPC) {
1427 		resblks = 0;
1428 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1429 	}
1430 	if (error)
1431 		goto std_return;
1432 
1433 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1434 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1435 
1436 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1437 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1438 
1439 	/*
1440 	 * If we are using project inheritance, we only allow hard link
1441 	 * creation in our tree when the project IDs are the same; else
1442 	 * the tree quota mechanism could be circumvented.
1443 	 */
1444 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1445 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1446 		error = -EXDEV;
1447 		goto error_return;
1448 	}
1449 
1450 	if (!resblks) {
1451 		error = xfs_dir_canenter(tp, tdp, target_name);
1452 		if (error)
1453 			goto error_return;
1454 	}
1455 
1456 	xfs_defer_init(&dfops, &first_block);
1457 
1458 	/*
1459 	 * Handle initial link state of O_TMPFILE inode
1460 	 */
1461 	if (VFS_I(sip)->i_nlink == 0) {
1462 		error = xfs_iunlink_remove(tp, sip);
1463 		if (error)
1464 			goto error_return;
1465 	}
1466 
1467 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1468 					&first_block, &dfops, resblks);
1469 	if (error)
1470 		goto error_return;
1471 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1472 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1473 
1474 	error = xfs_bumplink(tp, sip);
1475 	if (error)
1476 		goto error_return;
1477 
1478 	/*
1479 	 * If this is a synchronous mount, make sure that the
1480 	 * link transaction goes to disk before returning to
1481 	 * the user.
1482 	 */
1483 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1484 		xfs_trans_set_sync(tp);
1485 
1486 	error = xfs_defer_finish(&tp, &dfops, NULL);
1487 	if (error) {
1488 		xfs_defer_cancel(&dfops);
1489 		goto error_return;
1490 	}
1491 
1492 	return xfs_trans_commit(tp);
1493 
1494  error_return:
1495 	xfs_trans_cancel(tp);
1496  std_return:
1497 	return error;
1498 }
1499 
1500 /*
1501  * Free up the underlying blocks past new_size.  The new size must be smaller
1502  * than the current size.  This routine can be used both for the attribute and
1503  * data fork, and does not modify the inode size, which is left to the caller.
1504  *
1505  * The transaction passed to this routine must have made a permanent log
1506  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1507  * given transaction and start new ones, so make sure everything involved in
1508  * the transaction is tidy before calling here.  Some transaction will be
1509  * returned to the caller to be committed.  The incoming transaction must
1510  * already include the inode, and both inode locks must be held exclusively.
1511  * The inode must also be "held" within the transaction.  On return the inode
1512  * will be "held" within the returned transaction.  This routine does NOT
1513  * require any disk space to be reserved for it within the transaction.
1514  *
1515  * If we get an error, we must return with the inode locked and linked into the
1516  * current transaction. This keeps things simple for the higher level code,
1517  * because it always knows that the inode is locked and held in the transaction
1518  * that returns to it whether errors occur or not.  We don't mark the inode
1519  * dirty on error so that transactions can be easily aborted if possible.
1520  */
1521 int
1522 xfs_itruncate_extents(
1523 	struct xfs_trans	**tpp,
1524 	struct xfs_inode	*ip,
1525 	int			whichfork,
1526 	xfs_fsize_t		new_size)
1527 {
1528 	struct xfs_mount	*mp = ip->i_mount;
1529 	struct xfs_trans	*tp = *tpp;
1530 	struct xfs_defer_ops	dfops;
1531 	xfs_fsblock_t		first_block;
1532 	xfs_fileoff_t		first_unmap_block;
1533 	xfs_fileoff_t		last_block;
1534 	xfs_filblks_t		unmap_len;
1535 	int			error = 0;
1536 	int			done = 0;
1537 
1538 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1539 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1540 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1541 	ASSERT(new_size <= XFS_ISIZE(ip));
1542 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1543 	ASSERT(ip->i_itemp != NULL);
1544 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1545 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1546 
1547 	trace_xfs_itruncate_extents_start(ip, new_size);
1548 
1549 	/*
1550 	 * Since it is possible for space to become allocated beyond
1551 	 * the end of the file (in a crash where the space is allocated
1552 	 * but the inode size is not yet updated), simply remove any
1553 	 * blocks which show up between the new EOF and the maximum
1554 	 * possible file size.  If the first block to be removed is
1555 	 * beyond the maximum file size (ie it is the same as last_block),
1556 	 * then there is nothing to do.
1557 	 */
1558 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1559 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1560 	if (first_unmap_block == last_block)
1561 		return 0;
1562 
1563 	ASSERT(first_unmap_block < last_block);
1564 	unmap_len = last_block - first_unmap_block + 1;
1565 	while (!done) {
1566 		xfs_defer_init(&dfops, &first_block);
1567 		error = xfs_bunmapi(tp, ip,
1568 				    first_unmap_block, unmap_len,
1569 				    xfs_bmapi_aflag(whichfork),
1570 				    XFS_ITRUNC_MAX_EXTENTS,
1571 				    &first_block, &dfops,
1572 				    &done);
1573 		if (error)
1574 			goto out_bmap_cancel;
1575 
1576 		/*
1577 		 * Duplicate the transaction that has the permanent
1578 		 * reservation and commit the old transaction.
1579 		 */
1580 		error = xfs_defer_finish(&tp, &dfops, ip);
1581 		if (error)
1582 			goto out_bmap_cancel;
1583 
1584 		error = xfs_trans_roll(&tp, ip);
1585 		if (error)
1586 			goto out;
1587 	}
1588 
1589 	/*
1590 	 * Always re-log the inode so that our permanent transaction can keep
1591 	 * on rolling it forward in the log.
1592 	 */
1593 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1594 
1595 	trace_xfs_itruncate_extents_end(ip, new_size);
1596 
1597 out:
1598 	*tpp = tp;
1599 	return error;
1600 out_bmap_cancel:
1601 	/*
1602 	 * If the bunmapi call encounters an error, return to the caller where
1603 	 * the transaction can be properly aborted.  We just need to make sure
1604 	 * we're not holding any resources that we were not when we came in.
1605 	 */
1606 	xfs_defer_cancel(&dfops);
1607 	goto out;
1608 }
1609 
1610 int
1611 xfs_release(
1612 	xfs_inode_t	*ip)
1613 {
1614 	xfs_mount_t	*mp = ip->i_mount;
1615 	int		error;
1616 
1617 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1618 		return 0;
1619 
1620 	/* If this is a read-only mount, don't do this (would generate I/O) */
1621 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1622 		return 0;
1623 
1624 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1625 		int truncated;
1626 
1627 		/*
1628 		 * If we previously truncated this file and removed old data
1629 		 * in the process, we want to initiate "early" writeout on
1630 		 * the last close.  This is an attempt to combat the notorious
1631 		 * NULL files problem which is particularly noticeable from a
1632 		 * truncate down, buffered (re-)write (delalloc), followed by
1633 		 * a crash.  What we are effectively doing here is
1634 		 * significantly reducing the time window where we'd otherwise
1635 		 * be exposed to that problem.
1636 		 */
1637 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1638 		if (truncated) {
1639 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1640 			if (ip->i_delayed_blks > 0) {
1641 				error = filemap_flush(VFS_I(ip)->i_mapping);
1642 				if (error)
1643 					return error;
1644 			}
1645 		}
1646 	}
1647 
1648 	if (VFS_I(ip)->i_nlink == 0)
1649 		return 0;
1650 
1651 	if (xfs_can_free_eofblocks(ip, false)) {
1652 
1653 		/*
1654 		 * If we can't get the iolock just skip truncating the blocks
1655 		 * past EOF because we could deadlock with the mmap_sem
1656 		 * otherwise.  We'll get another chance to drop them once the
1657 		 * last reference to the inode is dropped, so we'll never leak
1658 		 * blocks permanently.
1659 		 *
1660 		 * Further, check if the inode is being opened, written and
1661 		 * closed frequently and we have delayed allocation blocks
1662 		 * outstanding (e.g. streaming writes from the NFS server),
1663 		 * truncating the blocks past EOF will cause fragmentation to
1664 		 * occur.
1665 		 *
1666 		 * In this case don't do the truncation, either, but we have to
1667 		 * be careful how we detect this case. Blocks beyond EOF show
1668 		 * up as i_delayed_blks even when the inode is clean, so we
1669 		 * need to truncate them away first before checking for a dirty
1670 		 * release. Hence on the first dirty close we will still remove
1671 		 * the speculative allocation, but after that we will leave it
1672 		 * in place.
1673 		 */
1674 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1675 			return 0;
1676 
1677 		error = xfs_free_eofblocks(mp, ip, true);
1678 		if (error && error != -EAGAIN)
1679 			return error;
1680 
1681 		/* delalloc blocks after truncation means it really is dirty */
1682 		if (ip->i_delayed_blks)
1683 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1684 	}
1685 	return 0;
1686 }
1687 
1688 /*
1689  * xfs_inactive_truncate
1690  *
1691  * Called to perform a truncate when an inode becomes unlinked.
1692  */
1693 STATIC int
1694 xfs_inactive_truncate(
1695 	struct xfs_inode *ip)
1696 {
1697 	struct xfs_mount	*mp = ip->i_mount;
1698 	struct xfs_trans	*tp;
1699 	int			error;
1700 
1701 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1702 	if (error) {
1703 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1704 		return error;
1705 	}
1706 
1707 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1708 	xfs_trans_ijoin(tp, ip, 0);
1709 
1710 	/*
1711 	 * Log the inode size first to prevent stale data exposure in the event
1712 	 * of a system crash before the truncate completes. See the related
1713 	 * comment in xfs_setattr_size() for details.
1714 	 */
1715 	ip->i_d.di_size = 0;
1716 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1717 
1718 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1719 	if (error)
1720 		goto error_trans_cancel;
1721 
1722 	ASSERT(ip->i_d.di_nextents == 0);
1723 
1724 	error = xfs_trans_commit(tp);
1725 	if (error)
1726 		goto error_unlock;
1727 
1728 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729 	return 0;
1730 
1731 error_trans_cancel:
1732 	xfs_trans_cancel(tp);
1733 error_unlock:
1734 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735 	return error;
1736 }
1737 
1738 /*
1739  * xfs_inactive_ifree()
1740  *
1741  * Perform the inode free when an inode is unlinked.
1742  */
1743 STATIC int
1744 xfs_inactive_ifree(
1745 	struct xfs_inode *ip)
1746 {
1747 	struct xfs_defer_ops	dfops;
1748 	xfs_fsblock_t		first_block;
1749 	struct xfs_mount	*mp = ip->i_mount;
1750 	struct xfs_trans	*tp;
1751 	int			error;
1752 
1753 	/*
1754 	 * The ifree transaction might need to allocate blocks for record
1755 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1756 	 * allow ifree to dip into the reserved block pool if necessary.
1757 	 *
1758 	 * Freeing large sets of inodes generally means freeing inode chunks,
1759 	 * directory and file data blocks, so this should be relatively safe.
1760 	 * Only under severe circumstances should it be possible to free enough
1761 	 * inodes to exhaust the reserve block pool via finobt expansion while
1762 	 * at the same time not creating free space in the filesystem.
1763 	 *
1764 	 * Send a warning if the reservation does happen to fail, as the inode
1765 	 * now remains allocated and sits on the unlinked list until the fs is
1766 	 * repaired.
1767 	 */
1768 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1769 			XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1770 	if (error) {
1771 		if (error == -ENOSPC) {
1772 			xfs_warn_ratelimited(mp,
1773 			"Failed to remove inode(s) from unlinked list. "
1774 			"Please free space, unmount and run xfs_repair.");
1775 		} else {
1776 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1777 		}
1778 		return error;
1779 	}
1780 
1781 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1782 	xfs_trans_ijoin(tp, ip, 0);
1783 
1784 	xfs_defer_init(&dfops, &first_block);
1785 	error = xfs_ifree(tp, ip, &dfops);
1786 	if (error) {
1787 		/*
1788 		 * If we fail to free the inode, shut down.  The cancel
1789 		 * might do that, we need to make sure.  Otherwise the
1790 		 * inode might be lost for a long time or forever.
1791 		 */
1792 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1793 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1794 				__func__, error);
1795 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1796 		}
1797 		xfs_trans_cancel(tp);
1798 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799 		return error;
1800 	}
1801 
1802 	/*
1803 	 * Credit the quota account(s). The inode is gone.
1804 	 */
1805 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1806 
1807 	/*
1808 	 * Just ignore errors at this point.  There is nothing we can do except
1809 	 * to try to keep going. Make sure it's not a silent error.
1810 	 */
1811 	error = xfs_defer_finish(&tp, &dfops, NULL);
1812 	if (error) {
1813 		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1814 			__func__, error);
1815 		xfs_defer_cancel(&dfops);
1816 	}
1817 	error = xfs_trans_commit(tp);
1818 	if (error)
1819 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1820 			__func__, error);
1821 
1822 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1823 	return 0;
1824 }
1825 
1826 /*
1827  * xfs_inactive
1828  *
1829  * This is called when the vnode reference count for the vnode
1830  * goes to zero.  If the file has been unlinked, then it must
1831  * now be truncated.  Also, we clear all of the read-ahead state
1832  * kept for the inode here since the file is now closed.
1833  */
1834 void
1835 xfs_inactive(
1836 	xfs_inode_t	*ip)
1837 {
1838 	struct xfs_mount	*mp;
1839 	int			error;
1840 	int			truncate = 0;
1841 
1842 	/*
1843 	 * If the inode is already free, then there can be nothing
1844 	 * to clean up here.
1845 	 */
1846 	if (VFS_I(ip)->i_mode == 0) {
1847 		ASSERT(ip->i_df.if_real_bytes == 0);
1848 		ASSERT(ip->i_df.if_broot_bytes == 0);
1849 		return;
1850 	}
1851 
1852 	mp = ip->i_mount;
1853 
1854 	/* If this is a read-only mount, don't do this (would generate I/O) */
1855 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1856 		return;
1857 
1858 	if (VFS_I(ip)->i_nlink != 0) {
1859 		/*
1860 		 * force is true because we are evicting an inode from the
1861 		 * cache. Post-eof blocks must be freed, lest we end up with
1862 		 * broken free space accounting.
1863 		 */
1864 		if (xfs_can_free_eofblocks(ip, true))
1865 			xfs_free_eofblocks(mp, ip, false);
1866 
1867 		return;
1868 	}
1869 
1870 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1871 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1872 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1873 		truncate = 1;
1874 
1875 	error = xfs_qm_dqattach(ip, 0);
1876 	if (error)
1877 		return;
1878 
1879 	if (S_ISLNK(VFS_I(ip)->i_mode))
1880 		error = xfs_inactive_symlink(ip);
1881 	else if (truncate)
1882 		error = xfs_inactive_truncate(ip);
1883 	if (error)
1884 		return;
1885 
1886 	/*
1887 	 * If there are attributes associated with the file then blow them away
1888 	 * now.  The code calls a routine that recursively deconstructs the
1889 	 * attribute fork. If also blows away the in-core attribute fork.
1890 	 */
1891 	if (XFS_IFORK_Q(ip)) {
1892 		error = xfs_attr_inactive(ip);
1893 		if (error)
1894 			return;
1895 	}
1896 
1897 	ASSERT(!ip->i_afp);
1898 	ASSERT(ip->i_d.di_anextents == 0);
1899 	ASSERT(ip->i_d.di_forkoff == 0);
1900 
1901 	/*
1902 	 * Free the inode.
1903 	 */
1904 	error = xfs_inactive_ifree(ip);
1905 	if (error)
1906 		return;
1907 
1908 	/*
1909 	 * Release the dquots held by inode, if any.
1910 	 */
1911 	xfs_qm_dqdetach(ip);
1912 }
1913 
1914 /*
1915  * This is called when the inode's link count goes to 0 or we are creating a
1916  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1917  * set to true as the link count is dropped to zero by the VFS after we've
1918  * created the file successfully, so we have to add it to the unlinked list
1919  * while the link count is non-zero.
1920  *
1921  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1922  * list when the inode is freed.
1923  */
1924 STATIC int
1925 xfs_iunlink(
1926 	struct xfs_trans *tp,
1927 	struct xfs_inode *ip)
1928 {
1929 	xfs_mount_t	*mp = tp->t_mountp;
1930 	xfs_agi_t	*agi;
1931 	xfs_dinode_t	*dip;
1932 	xfs_buf_t	*agibp;
1933 	xfs_buf_t	*ibp;
1934 	xfs_agino_t	agino;
1935 	short		bucket_index;
1936 	int		offset;
1937 	int		error;
1938 
1939 	ASSERT(VFS_I(ip)->i_mode != 0);
1940 
1941 	/*
1942 	 * Get the agi buffer first.  It ensures lock ordering
1943 	 * on the list.
1944 	 */
1945 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1946 	if (error)
1947 		return error;
1948 	agi = XFS_BUF_TO_AGI(agibp);
1949 
1950 	/*
1951 	 * Get the index into the agi hash table for the
1952 	 * list this inode will go on.
1953 	 */
1954 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955 	ASSERT(agino != 0);
1956 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1957 	ASSERT(agi->agi_unlinked[bucket_index]);
1958 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1959 
1960 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1961 		/*
1962 		 * There is already another inode in the bucket we need
1963 		 * to add ourselves to.  Add us at the front of the list.
1964 		 * Here we put the head pointer into our next pointer,
1965 		 * and then we fall through to point the head at us.
1966 		 */
1967 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1968 				       0, 0);
1969 		if (error)
1970 			return error;
1971 
1972 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1973 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1974 		offset = ip->i_imap.im_boffset +
1975 			offsetof(xfs_dinode_t, di_next_unlinked);
1976 
1977 		/* need to recalc the inode CRC if appropriate */
1978 		xfs_dinode_calc_crc(mp, dip);
1979 
1980 		xfs_trans_inode_buf(tp, ibp);
1981 		xfs_trans_log_buf(tp, ibp, offset,
1982 				  (offset + sizeof(xfs_agino_t) - 1));
1983 		xfs_inobp_check(mp, ibp);
1984 	}
1985 
1986 	/*
1987 	 * Point the bucket head pointer at the inode being inserted.
1988 	 */
1989 	ASSERT(agino != 0);
1990 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1991 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1992 		(sizeof(xfs_agino_t) * bucket_index);
1993 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1994 	xfs_trans_log_buf(tp, agibp, offset,
1995 			  (offset + sizeof(xfs_agino_t) - 1));
1996 	return 0;
1997 }
1998 
1999 /*
2000  * Pull the on-disk inode from the AGI unlinked list.
2001  */
2002 STATIC int
2003 xfs_iunlink_remove(
2004 	xfs_trans_t	*tp,
2005 	xfs_inode_t	*ip)
2006 {
2007 	xfs_ino_t	next_ino;
2008 	xfs_mount_t	*mp;
2009 	xfs_agi_t	*agi;
2010 	xfs_dinode_t	*dip;
2011 	xfs_buf_t	*agibp;
2012 	xfs_buf_t	*ibp;
2013 	xfs_agnumber_t	agno;
2014 	xfs_agino_t	agino;
2015 	xfs_agino_t	next_agino;
2016 	xfs_buf_t	*last_ibp;
2017 	xfs_dinode_t	*last_dip = NULL;
2018 	short		bucket_index;
2019 	int		offset, last_offset = 0;
2020 	int		error;
2021 
2022 	mp = tp->t_mountp;
2023 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2024 
2025 	/*
2026 	 * Get the agi buffer first.  It ensures lock ordering
2027 	 * on the list.
2028 	 */
2029 	error = xfs_read_agi(mp, tp, agno, &agibp);
2030 	if (error)
2031 		return error;
2032 
2033 	agi = XFS_BUF_TO_AGI(agibp);
2034 
2035 	/*
2036 	 * Get the index into the agi hash table for the
2037 	 * list this inode will go on.
2038 	 */
2039 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2040 	ASSERT(agino != 0);
2041 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2042 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2043 	ASSERT(agi->agi_unlinked[bucket_index]);
2044 
2045 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2046 		/*
2047 		 * We're at the head of the list.  Get the inode's on-disk
2048 		 * buffer to see if there is anyone after us on the list.
2049 		 * Only modify our next pointer if it is not already NULLAGINO.
2050 		 * This saves us the overhead of dealing with the buffer when
2051 		 * there is no need to change it.
2052 		 */
2053 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2054 				       0, 0);
2055 		if (error) {
2056 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2057 				__func__, error);
2058 			return error;
2059 		}
2060 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2061 		ASSERT(next_agino != 0);
2062 		if (next_agino != NULLAGINO) {
2063 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2064 			offset = ip->i_imap.im_boffset +
2065 				offsetof(xfs_dinode_t, di_next_unlinked);
2066 
2067 			/* need to recalc the inode CRC if appropriate */
2068 			xfs_dinode_calc_crc(mp, dip);
2069 
2070 			xfs_trans_inode_buf(tp, ibp);
2071 			xfs_trans_log_buf(tp, ibp, offset,
2072 					  (offset + sizeof(xfs_agino_t) - 1));
2073 			xfs_inobp_check(mp, ibp);
2074 		} else {
2075 			xfs_trans_brelse(tp, ibp);
2076 		}
2077 		/*
2078 		 * Point the bucket head pointer at the next inode.
2079 		 */
2080 		ASSERT(next_agino != 0);
2081 		ASSERT(next_agino != agino);
2082 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2083 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2084 			(sizeof(xfs_agino_t) * bucket_index);
2085 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2086 		xfs_trans_log_buf(tp, agibp, offset,
2087 				  (offset + sizeof(xfs_agino_t) - 1));
2088 	} else {
2089 		/*
2090 		 * We need to search the list for the inode being freed.
2091 		 */
2092 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2093 		last_ibp = NULL;
2094 		while (next_agino != agino) {
2095 			struct xfs_imap	imap;
2096 
2097 			if (last_ibp)
2098 				xfs_trans_brelse(tp, last_ibp);
2099 
2100 			imap.im_blkno = 0;
2101 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2102 
2103 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2104 			if (error) {
2105 				xfs_warn(mp,
2106 	"%s: xfs_imap returned error %d.",
2107 					 __func__, error);
2108 				return error;
2109 			}
2110 
2111 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2112 					       &last_ibp, 0, 0);
2113 			if (error) {
2114 				xfs_warn(mp,
2115 	"%s: xfs_imap_to_bp returned error %d.",
2116 					__func__, error);
2117 				return error;
2118 			}
2119 
2120 			last_offset = imap.im_boffset;
2121 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2122 			ASSERT(next_agino != NULLAGINO);
2123 			ASSERT(next_agino != 0);
2124 		}
2125 
2126 		/*
2127 		 * Now last_ibp points to the buffer previous to us on the
2128 		 * unlinked list.  Pull us from the list.
2129 		 */
2130 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2131 				       0, 0);
2132 		if (error) {
2133 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2134 				__func__, error);
2135 			return error;
2136 		}
2137 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2138 		ASSERT(next_agino != 0);
2139 		ASSERT(next_agino != agino);
2140 		if (next_agino != NULLAGINO) {
2141 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2142 			offset = ip->i_imap.im_boffset +
2143 				offsetof(xfs_dinode_t, di_next_unlinked);
2144 
2145 			/* need to recalc the inode CRC if appropriate */
2146 			xfs_dinode_calc_crc(mp, dip);
2147 
2148 			xfs_trans_inode_buf(tp, ibp);
2149 			xfs_trans_log_buf(tp, ibp, offset,
2150 					  (offset + sizeof(xfs_agino_t) - 1));
2151 			xfs_inobp_check(mp, ibp);
2152 		} else {
2153 			xfs_trans_brelse(tp, ibp);
2154 		}
2155 		/*
2156 		 * Point the previous inode on the list to the next inode.
2157 		 */
2158 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2159 		ASSERT(next_agino != 0);
2160 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2161 
2162 		/* need to recalc the inode CRC if appropriate */
2163 		xfs_dinode_calc_crc(mp, last_dip);
2164 
2165 		xfs_trans_inode_buf(tp, last_ibp);
2166 		xfs_trans_log_buf(tp, last_ibp, offset,
2167 				  (offset + sizeof(xfs_agino_t) - 1));
2168 		xfs_inobp_check(mp, last_ibp);
2169 	}
2170 	return 0;
2171 }
2172 
2173 /*
2174  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2175  * inodes that are in memory - they all must be marked stale and attached to
2176  * the cluster buffer.
2177  */
2178 STATIC int
2179 xfs_ifree_cluster(
2180 	xfs_inode_t		*free_ip,
2181 	xfs_trans_t		*tp,
2182 	struct xfs_icluster	*xic)
2183 {
2184 	xfs_mount_t		*mp = free_ip->i_mount;
2185 	int			blks_per_cluster;
2186 	int			inodes_per_cluster;
2187 	int			nbufs;
2188 	int			i, j;
2189 	int			ioffset;
2190 	xfs_daddr_t		blkno;
2191 	xfs_buf_t		*bp;
2192 	xfs_inode_t		*ip;
2193 	xfs_inode_log_item_t	*iip;
2194 	xfs_log_item_t		*lip;
2195 	struct xfs_perag	*pag;
2196 	xfs_ino_t		inum;
2197 
2198 	inum = xic->first_ino;
2199 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2200 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2201 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2202 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2203 
2204 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2205 		/*
2206 		 * The allocation bitmap tells us which inodes of the chunk were
2207 		 * physically allocated. Skip the cluster if an inode falls into
2208 		 * a sparse region.
2209 		 */
2210 		ioffset = inum - xic->first_ino;
2211 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2212 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2213 			continue;
2214 		}
2215 
2216 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2217 					 XFS_INO_TO_AGBNO(mp, inum));
2218 
2219 		/*
2220 		 * We obtain and lock the backing buffer first in the process
2221 		 * here, as we have to ensure that any dirty inode that we
2222 		 * can't get the flush lock on is attached to the buffer.
2223 		 * If we scan the in-memory inodes first, then buffer IO can
2224 		 * complete before we get a lock on it, and hence we may fail
2225 		 * to mark all the active inodes on the buffer stale.
2226 		 */
2227 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2228 					mp->m_bsize * blks_per_cluster,
2229 					XBF_UNMAPPED);
2230 
2231 		if (!bp)
2232 			return -ENOMEM;
2233 
2234 		/*
2235 		 * This buffer may not have been correctly initialised as we
2236 		 * didn't read it from disk. That's not important because we are
2237 		 * only using to mark the buffer as stale in the log, and to
2238 		 * attach stale cached inodes on it. That means it will never be
2239 		 * dispatched for IO. If it is, we want to know about it, and we
2240 		 * want it to fail. We can acheive this by adding a write
2241 		 * verifier to the buffer.
2242 		 */
2243 		 bp->b_ops = &xfs_inode_buf_ops;
2244 
2245 		/*
2246 		 * Walk the inodes already attached to the buffer and mark them
2247 		 * stale. These will all have the flush locks held, so an
2248 		 * in-memory inode walk can't lock them. By marking them all
2249 		 * stale first, we will not attempt to lock them in the loop
2250 		 * below as the XFS_ISTALE flag will be set.
2251 		 */
2252 		lip = bp->b_fspriv;
2253 		while (lip) {
2254 			if (lip->li_type == XFS_LI_INODE) {
2255 				iip = (xfs_inode_log_item_t *)lip;
2256 				ASSERT(iip->ili_logged == 1);
2257 				lip->li_cb = xfs_istale_done;
2258 				xfs_trans_ail_copy_lsn(mp->m_ail,
2259 							&iip->ili_flush_lsn,
2260 							&iip->ili_item.li_lsn);
2261 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2262 			}
2263 			lip = lip->li_bio_list;
2264 		}
2265 
2266 
2267 		/*
2268 		 * For each inode in memory attempt to add it to the inode
2269 		 * buffer and set it up for being staled on buffer IO
2270 		 * completion.  This is safe as we've locked out tail pushing
2271 		 * and flushing by locking the buffer.
2272 		 *
2273 		 * We have already marked every inode that was part of a
2274 		 * transaction stale above, which means there is no point in
2275 		 * even trying to lock them.
2276 		 */
2277 		for (i = 0; i < inodes_per_cluster; i++) {
2278 retry:
2279 			rcu_read_lock();
2280 			ip = radix_tree_lookup(&pag->pag_ici_root,
2281 					XFS_INO_TO_AGINO(mp, (inum + i)));
2282 
2283 			/* Inode not in memory, nothing to do */
2284 			if (!ip) {
2285 				rcu_read_unlock();
2286 				continue;
2287 			}
2288 
2289 			/*
2290 			 * because this is an RCU protected lookup, we could
2291 			 * find a recently freed or even reallocated inode
2292 			 * during the lookup. We need to check under the
2293 			 * i_flags_lock for a valid inode here. Skip it if it
2294 			 * is not valid, the wrong inode or stale.
2295 			 */
2296 			spin_lock(&ip->i_flags_lock);
2297 			if (ip->i_ino != inum + i ||
2298 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2299 				spin_unlock(&ip->i_flags_lock);
2300 				rcu_read_unlock();
2301 				continue;
2302 			}
2303 			spin_unlock(&ip->i_flags_lock);
2304 
2305 			/*
2306 			 * Don't try to lock/unlock the current inode, but we
2307 			 * _cannot_ skip the other inodes that we did not find
2308 			 * in the list attached to the buffer and are not
2309 			 * already marked stale. If we can't lock it, back off
2310 			 * and retry.
2311 			 */
2312 			if (ip != free_ip &&
2313 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2314 				rcu_read_unlock();
2315 				delay(1);
2316 				goto retry;
2317 			}
2318 			rcu_read_unlock();
2319 
2320 			xfs_iflock(ip);
2321 			xfs_iflags_set(ip, XFS_ISTALE);
2322 
2323 			/*
2324 			 * we don't need to attach clean inodes or those only
2325 			 * with unlogged changes (which we throw away, anyway).
2326 			 */
2327 			iip = ip->i_itemp;
2328 			if (!iip || xfs_inode_clean(ip)) {
2329 				ASSERT(ip != free_ip);
2330 				xfs_ifunlock(ip);
2331 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2332 				continue;
2333 			}
2334 
2335 			iip->ili_last_fields = iip->ili_fields;
2336 			iip->ili_fields = 0;
2337 			iip->ili_fsync_fields = 0;
2338 			iip->ili_logged = 1;
2339 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2340 						&iip->ili_item.li_lsn);
2341 
2342 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2343 						  &iip->ili_item);
2344 
2345 			if (ip != free_ip)
2346 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2347 		}
2348 
2349 		xfs_trans_stale_inode_buf(tp, bp);
2350 		xfs_trans_binval(tp, bp);
2351 	}
2352 
2353 	xfs_perag_put(pag);
2354 	return 0;
2355 }
2356 
2357 /*
2358  * This is called to return an inode to the inode free list.
2359  * The inode should already be truncated to 0 length and have
2360  * no pages associated with it.  This routine also assumes that
2361  * the inode is already a part of the transaction.
2362  *
2363  * The on-disk copy of the inode will have been added to the list
2364  * of unlinked inodes in the AGI. We need to remove the inode from
2365  * that list atomically with respect to freeing it here.
2366  */
2367 int
2368 xfs_ifree(
2369 	xfs_trans_t	*tp,
2370 	xfs_inode_t	*ip,
2371 	struct xfs_defer_ops	*dfops)
2372 {
2373 	int			error;
2374 	struct xfs_icluster	xic = { 0 };
2375 
2376 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2377 	ASSERT(VFS_I(ip)->i_nlink == 0);
2378 	ASSERT(ip->i_d.di_nextents == 0);
2379 	ASSERT(ip->i_d.di_anextents == 0);
2380 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2381 	ASSERT(ip->i_d.di_nblocks == 0);
2382 
2383 	/*
2384 	 * Pull the on-disk inode from the AGI unlinked list.
2385 	 */
2386 	error = xfs_iunlink_remove(tp, ip);
2387 	if (error)
2388 		return error;
2389 
2390 	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2391 	if (error)
2392 		return error;
2393 
2394 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2395 	ip->i_d.di_flags = 0;
2396 	ip->i_d.di_dmevmask = 0;
2397 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2398 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2399 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2400 	/*
2401 	 * Bump the generation count so no one will be confused
2402 	 * by reincarnations of this inode.
2403 	 */
2404 	VFS_I(ip)->i_generation++;
2405 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2406 
2407 	if (xic.deleted)
2408 		error = xfs_ifree_cluster(ip, tp, &xic);
2409 
2410 	return error;
2411 }
2412 
2413 /*
2414  * This is called to unpin an inode.  The caller must have the inode locked
2415  * in at least shared mode so that the buffer cannot be subsequently pinned
2416  * once someone is waiting for it to be unpinned.
2417  */
2418 static void
2419 xfs_iunpin(
2420 	struct xfs_inode	*ip)
2421 {
2422 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423 
2424 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425 
2426 	/* Give the log a push to start the unpinning I/O */
2427 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2428 
2429 }
2430 
2431 static void
2432 __xfs_iunpin_wait(
2433 	struct xfs_inode	*ip)
2434 {
2435 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437 
2438 	xfs_iunpin(ip);
2439 
2440 	do {
2441 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2442 		if (xfs_ipincount(ip))
2443 			io_schedule();
2444 	} while (xfs_ipincount(ip));
2445 	finish_wait(wq, &wait.wait);
2446 }
2447 
2448 void
2449 xfs_iunpin_wait(
2450 	struct xfs_inode	*ip)
2451 {
2452 	if (xfs_ipincount(ip))
2453 		__xfs_iunpin_wait(ip);
2454 }
2455 
2456 /*
2457  * Removing an inode from the namespace involves removing the directory entry
2458  * and dropping the link count on the inode. Removing the directory entry can
2459  * result in locking an AGF (directory blocks were freed) and removing a link
2460  * count can result in placing the inode on an unlinked list which results in
2461  * locking an AGI.
2462  *
2463  * The big problem here is that we have an ordering constraint on AGF and AGI
2464  * locking - inode allocation locks the AGI, then can allocate a new extent for
2465  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466  * removes the inode from the unlinked list, requiring that we lock the AGI
2467  * first, and then freeing the inode can result in an inode chunk being freed
2468  * and hence freeing disk space requiring that we lock an AGF.
2469  *
2470  * Hence the ordering that is imposed by other parts of the code is AGI before
2471  * AGF. This means we cannot remove the directory entry before we drop the inode
2472  * reference count and put it on the unlinked list as this results in a lock
2473  * order of AGF then AGI, and this can deadlock against inode allocation and
2474  * freeing. Therefore we must drop the link counts before we remove the
2475  * directory entry.
2476  *
2477  * This is still safe from a transactional point of view - it is not until we
2478  * get to xfs_defer_finish() that we have the possibility of multiple
2479  * transactions in this operation. Hence as long as we remove the directory
2480  * entry and drop the link count in the first transaction of the remove
2481  * operation, there are no transactional constraints on the ordering here.
2482  */
2483 int
2484 xfs_remove(
2485 	xfs_inode_t             *dp,
2486 	struct xfs_name		*name,
2487 	xfs_inode_t		*ip)
2488 {
2489 	xfs_mount_t		*mp = dp->i_mount;
2490 	xfs_trans_t             *tp = NULL;
2491 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492 	int                     error = 0;
2493 	struct xfs_defer_ops	dfops;
2494 	xfs_fsblock_t           first_block;
2495 	uint			resblks;
2496 
2497 	trace_xfs_remove(dp, name);
2498 
2499 	if (XFS_FORCED_SHUTDOWN(mp))
2500 		return -EIO;
2501 
2502 	error = xfs_qm_dqattach(dp, 0);
2503 	if (error)
2504 		goto std_return;
2505 
2506 	error = xfs_qm_dqattach(ip, 0);
2507 	if (error)
2508 		goto std_return;
2509 
2510 	/*
2511 	 * We try to get the real space reservation first,
2512 	 * allowing for directory btree deletion(s) implying
2513 	 * possible bmap insert(s).  If we can't get the space
2514 	 * reservation then we use 0 instead, and avoid the bmap
2515 	 * btree insert(s) in the directory code by, if the bmap
2516 	 * insert tries to happen, instead trimming the LAST
2517 	 * block from the directory.
2518 	 */
2519 	resblks = XFS_REMOVE_SPACE_RES(mp);
2520 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2521 	if (error == -ENOSPC) {
2522 		resblks = 0;
2523 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2524 				&tp);
2525 	}
2526 	if (error) {
2527 		ASSERT(error != -ENOSPC);
2528 		goto std_return;
2529 	}
2530 
2531 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2532 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2533 
2534 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2535 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2536 
2537 	/*
2538 	 * If we're removing a directory perform some additional validation.
2539 	 */
2540 	if (is_dir) {
2541 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2542 		if (VFS_I(ip)->i_nlink != 2) {
2543 			error = -ENOTEMPTY;
2544 			goto out_trans_cancel;
2545 		}
2546 		if (!xfs_dir_isempty(ip)) {
2547 			error = -ENOTEMPTY;
2548 			goto out_trans_cancel;
2549 		}
2550 
2551 		/* Drop the link from ip's "..".  */
2552 		error = xfs_droplink(tp, dp);
2553 		if (error)
2554 			goto out_trans_cancel;
2555 
2556 		/* Drop the "." link from ip to self.  */
2557 		error = xfs_droplink(tp, ip);
2558 		if (error)
2559 			goto out_trans_cancel;
2560 	} else {
2561 		/*
2562 		 * When removing a non-directory we need to log the parent
2563 		 * inode here.  For a directory this is done implicitly
2564 		 * by the xfs_droplink call for the ".." entry.
2565 		 */
2566 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2567 	}
2568 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2569 
2570 	/* Drop the link from dp to ip. */
2571 	error = xfs_droplink(tp, ip);
2572 	if (error)
2573 		goto out_trans_cancel;
2574 
2575 	xfs_defer_init(&dfops, &first_block);
2576 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2577 					&first_block, &dfops, resblks);
2578 	if (error) {
2579 		ASSERT(error != -ENOENT);
2580 		goto out_bmap_cancel;
2581 	}
2582 
2583 	/*
2584 	 * If this is a synchronous mount, make sure that the
2585 	 * remove transaction goes to disk before returning to
2586 	 * the user.
2587 	 */
2588 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2589 		xfs_trans_set_sync(tp);
2590 
2591 	error = xfs_defer_finish(&tp, &dfops, NULL);
2592 	if (error)
2593 		goto out_bmap_cancel;
2594 
2595 	error = xfs_trans_commit(tp);
2596 	if (error)
2597 		goto std_return;
2598 
2599 	if (is_dir && xfs_inode_is_filestream(ip))
2600 		xfs_filestream_deassociate(ip);
2601 
2602 	return 0;
2603 
2604  out_bmap_cancel:
2605 	xfs_defer_cancel(&dfops);
2606  out_trans_cancel:
2607 	xfs_trans_cancel(tp);
2608  std_return:
2609 	return error;
2610 }
2611 
2612 /*
2613  * Enter all inodes for a rename transaction into a sorted array.
2614  */
2615 #define __XFS_SORT_INODES	5
2616 STATIC void
2617 xfs_sort_for_rename(
2618 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2619 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2620 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2621 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2622 	struct xfs_inode	*wip,	/* in: whiteout inode */
2623 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2624 	int			*num_inodes)  /* in/out: inodes in array */
2625 {
2626 	int			i, j;
2627 
2628 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2629 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2630 
2631 	/*
2632 	 * i_tab contains a list of pointers to inodes.  We initialize
2633 	 * the table here & we'll sort it.  We will then use it to
2634 	 * order the acquisition of the inode locks.
2635 	 *
2636 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2637 	 */
2638 	i = 0;
2639 	i_tab[i++] = dp1;
2640 	i_tab[i++] = dp2;
2641 	i_tab[i++] = ip1;
2642 	if (ip2)
2643 		i_tab[i++] = ip2;
2644 	if (wip)
2645 		i_tab[i++] = wip;
2646 	*num_inodes = i;
2647 
2648 	/*
2649 	 * Sort the elements via bubble sort.  (Remember, there are at
2650 	 * most 5 elements to sort, so this is adequate.)
2651 	 */
2652 	for (i = 0; i < *num_inodes; i++) {
2653 		for (j = 1; j < *num_inodes; j++) {
2654 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2655 				struct xfs_inode *temp = i_tab[j];
2656 				i_tab[j] = i_tab[j-1];
2657 				i_tab[j-1] = temp;
2658 			}
2659 		}
2660 	}
2661 }
2662 
2663 static int
2664 xfs_finish_rename(
2665 	struct xfs_trans	*tp,
2666 	struct xfs_defer_ops	*dfops)
2667 {
2668 	int			error;
2669 
2670 	/*
2671 	 * If this is a synchronous mount, make sure that the rename transaction
2672 	 * goes to disk before returning to the user.
2673 	 */
2674 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2675 		xfs_trans_set_sync(tp);
2676 
2677 	error = xfs_defer_finish(&tp, dfops, NULL);
2678 	if (error) {
2679 		xfs_defer_cancel(dfops);
2680 		xfs_trans_cancel(tp);
2681 		return error;
2682 	}
2683 
2684 	return xfs_trans_commit(tp);
2685 }
2686 
2687 /*
2688  * xfs_cross_rename()
2689  *
2690  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2691  */
2692 STATIC int
2693 xfs_cross_rename(
2694 	struct xfs_trans	*tp,
2695 	struct xfs_inode	*dp1,
2696 	struct xfs_name		*name1,
2697 	struct xfs_inode	*ip1,
2698 	struct xfs_inode	*dp2,
2699 	struct xfs_name		*name2,
2700 	struct xfs_inode	*ip2,
2701 	struct xfs_defer_ops	*dfops,
2702 	xfs_fsblock_t		*first_block,
2703 	int			spaceres)
2704 {
2705 	int		error = 0;
2706 	int		ip1_flags = 0;
2707 	int		ip2_flags = 0;
2708 	int		dp2_flags = 0;
2709 
2710 	/* Swap inode number for dirent in first parent */
2711 	error = xfs_dir_replace(tp, dp1, name1,
2712 				ip2->i_ino,
2713 				first_block, dfops, spaceres);
2714 	if (error)
2715 		goto out_trans_abort;
2716 
2717 	/* Swap inode number for dirent in second parent */
2718 	error = xfs_dir_replace(tp, dp2, name2,
2719 				ip1->i_ino,
2720 				first_block, dfops, spaceres);
2721 	if (error)
2722 		goto out_trans_abort;
2723 
2724 	/*
2725 	 * If we're renaming one or more directories across different parents,
2726 	 * update the respective ".." entries (and link counts) to match the new
2727 	 * parents.
2728 	 */
2729 	if (dp1 != dp2) {
2730 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2731 
2732 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2733 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2734 						dp1->i_ino, first_block,
2735 						dfops, spaceres);
2736 			if (error)
2737 				goto out_trans_abort;
2738 
2739 			/* transfer ip2 ".." reference to dp1 */
2740 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2741 				error = xfs_droplink(tp, dp2);
2742 				if (error)
2743 					goto out_trans_abort;
2744 				error = xfs_bumplink(tp, dp1);
2745 				if (error)
2746 					goto out_trans_abort;
2747 			}
2748 
2749 			/*
2750 			 * Although ip1 isn't changed here, userspace needs
2751 			 * to be warned about the change, so that applications
2752 			 * relying on it (like backup ones), will properly
2753 			 * notify the change
2754 			 */
2755 			ip1_flags |= XFS_ICHGTIME_CHG;
2756 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2757 		}
2758 
2759 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2760 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2761 						dp2->i_ino, first_block,
2762 						dfops, spaceres);
2763 			if (error)
2764 				goto out_trans_abort;
2765 
2766 			/* transfer ip1 ".." reference to dp2 */
2767 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2768 				error = xfs_droplink(tp, dp1);
2769 				if (error)
2770 					goto out_trans_abort;
2771 				error = xfs_bumplink(tp, dp2);
2772 				if (error)
2773 					goto out_trans_abort;
2774 			}
2775 
2776 			/*
2777 			 * Although ip2 isn't changed here, userspace needs
2778 			 * to be warned about the change, so that applications
2779 			 * relying on it (like backup ones), will properly
2780 			 * notify the change
2781 			 */
2782 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2783 			ip2_flags |= XFS_ICHGTIME_CHG;
2784 		}
2785 	}
2786 
2787 	if (ip1_flags) {
2788 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2789 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2790 	}
2791 	if (ip2_flags) {
2792 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2793 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2794 	}
2795 	if (dp2_flags) {
2796 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2797 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2798 	}
2799 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2800 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2801 	return xfs_finish_rename(tp, dfops);
2802 
2803 out_trans_abort:
2804 	xfs_defer_cancel(dfops);
2805 	xfs_trans_cancel(tp);
2806 	return error;
2807 }
2808 
2809 /*
2810  * xfs_rename_alloc_whiteout()
2811  *
2812  * Return a referenced, unlinked, unlocked inode that that can be used as a
2813  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2814  * crash between allocating the inode and linking it into the rename transaction
2815  * recovery will free the inode and we won't leak it.
2816  */
2817 static int
2818 xfs_rename_alloc_whiteout(
2819 	struct xfs_inode	*dp,
2820 	struct xfs_inode	**wip)
2821 {
2822 	struct xfs_inode	*tmpfile;
2823 	int			error;
2824 
2825 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2826 	if (error)
2827 		return error;
2828 
2829 	/*
2830 	 * Prepare the tmpfile inode as if it were created through the VFS.
2831 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2832 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2833 	 * and flag it as linkable.
2834 	 */
2835 	drop_nlink(VFS_I(tmpfile));
2836 	xfs_setup_iops(tmpfile);
2837 	xfs_finish_inode_setup(tmpfile);
2838 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2839 
2840 	*wip = tmpfile;
2841 	return 0;
2842 }
2843 
2844 /*
2845  * xfs_rename
2846  */
2847 int
2848 xfs_rename(
2849 	struct xfs_inode	*src_dp,
2850 	struct xfs_name		*src_name,
2851 	struct xfs_inode	*src_ip,
2852 	struct xfs_inode	*target_dp,
2853 	struct xfs_name		*target_name,
2854 	struct xfs_inode	*target_ip,
2855 	unsigned int		flags)
2856 {
2857 	struct xfs_mount	*mp = src_dp->i_mount;
2858 	struct xfs_trans	*tp;
2859 	struct xfs_defer_ops	dfops;
2860 	xfs_fsblock_t		first_block;
2861 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2862 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2863 	int			num_inodes = __XFS_SORT_INODES;
2864 	bool			new_parent = (src_dp != target_dp);
2865 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2866 	int			spaceres;
2867 	int			error;
2868 
2869 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2870 
2871 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2872 		return -EINVAL;
2873 
2874 	/*
2875 	 * If we are doing a whiteout operation, allocate the whiteout inode
2876 	 * we will be placing at the target and ensure the type is set
2877 	 * appropriately.
2878 	 */
2879 	if (flags & RENAME_WHITEOUT) {
2880 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2881 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2882 		if (error)
2883 			return error;
2884 
2885 		/* setup target dirent info as whiteout */
2886 		src_name->type = XFS_DIR3_FT_CHRDEV;
2887 	}
2888 
2889 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2890 				inodes, &num_inodes);
2891 
2892 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2893 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2894 	if (error == -ENOSPC) {
2895 		spaceres = 0;
2896 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2897 				&tp);
2898 	}
2899 	if (error)
2900 		goto out_release_wip;
2901 
2902 	/*
2903 	 * Attach the dquots to the inodes
2904 	 */
2905 	error = xfs_qm_vop_rename_dqattach(inodes);
2906 	if (error)
2907 		goto out_trans_cancel;
2908 
2909 	/*
2910 	 * Lock all the participating inodes. Depending upon whether
2911 	 * the target_name exists in the target directory, and
2912 	 * whether the target directory is the same as the source
2913 	 * directory, we can lock from 2 to 4 inodes.
2914 	 */
2915 	if (!new_parent)
2916 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2917 	else
2918 		xfs_lock_two_inodes(src_dp, target_dp,
2919 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2920 
2921 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2922 
2923 	/*
2924 	 * Join all the inodes to the transaction. From this point on,
2925 	 * we can rely on either trans_commit or trans_cancel to unlock
2926 	 * them.
2927 	 */
2928 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2929 	if (new_parent)
2930 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2931 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2932 	if (target_ip)
2933 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2934 	if (wip)
2935 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2936 
2937 	/*
2938 	 * If we are using project inheritance, we only allow renames
2939 	 * into our tree when the project IDs are the same; else the
2940 	 * tree quota mechanism would be circumvented.
2941 	 */
2942 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2943 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2944 		error = -EXDEV;
2945 		goto out_trans_cancel;
2946 	}
2947 
2948 	xfs_defer_init(&dfops, &first_block);
2949 
2950 	/* RENAME_EXCHANGE is unique from here on. */
2951 	if (flags & RENAME_EXCHANGE)
2952 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2953 					target_dp, target_name, target_ip,
2954 					&dfops, &first_block, spaceres);
2955 
2956 	/*
2957 	 * Set up the target.
2958 	 */
2959 	if (target_ip == NULL) {
2960 		/*
2961 		 * If there's no space reservation, check the entry will
2962 		 * fit before actually inserting it.
2963 		 */
2964 		if (!spaceres) {
2965 			error = xfs_dir_canenter(tp, target_dp, target_name);
2966 			if (error)
2967 				goto out_trans_cancel;
2968 		}
2969 		/*
2970 		 * If target does not exist and the rename crosses
2971 		 * directories, adjust the target directory link count
2972 		 * to account for the ".." reference from the new entry.
2973 		 */
2974 		error = xfs_dir_createname(tp, target_dp, target_name,
2975 						src_ip->i_ino, &first_block,
2976 						&dfops, spaceres);
2977 		if (error)
2978 			goto out_bmap_cancel;
2979 
2980 		xfs_trans_ichgtime(tp, target_dp,
2981 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2982 
2983 		if (new_parent && src_is_directory) {
2984 			error = xfs_bumplink(tp, target_dp);
2985 			if (error)
2986 				goto out_bmap_cancel;
2987 		}
2988 	} else { /* target_ip != NULL */
2989 		/*
2990 		 * If target exists and it's a directory, check that both
2991 		 * target and source are directories and that target can be
2992 		 * destroyed, or that neither is a directory.
2993 		 */
2994 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
2995 			/*
2996 			 * Make sure target dir is empty.
2997 			 */
2998 			if (!(xfs_dir_isempty(target_ip)) ||
2999 			    (VFS_I(target_ip)->i_nlink > 2)) {
3000 				error = -EEXIST;
3001 				goto out_trans_cancel;
3002 			}
3003 		}
3004 
3005 		/*
3006 		 * Link the source inode under the target name.
3007 		 * If the source inode is a directory and we are moving
3008 		 * it across directories, its ".." entry will be
3009 		 * inconsistent until we replace that down below.
3010 		 *
3011 		 * In case there is already an entry with the same
3012 		 * name at the destination directory, remove it first.
3013 		 */
3014 		error = xfs_dir_replace(tp, target_dp, target_name,
3015 					src_ip->i_ino,
3016 					&first_block, &dfops, spaceres);
3017 		if (error)
3018 			goto out_bmap_cancel;
3019 
3020 		xfs_trans_ichgtime(tp, target_dp,
3021 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3022 
3023 		/*
3024 		 * Decrement the link count on the target since the target
3025 		 * dir no longer points to it.
3026 		 */
3027 		error = xfs_droplink(tp, target_ip);
3028 		if (error)
3029 			goto out_bmap_cancel;
3030 
3031 		if (src_is_directory) {
3032 			/*
3033 			 * Drop the link from the old "." entry.
3034 			 */
3035 			error = xfs_droplink(tp, target_ip);
3036 			if (error)
3037 				goto out_bmap_cancel;
3038 		}
3039 	} /* target_ip != NULL */
3040 
3041 	/*
3042 	 * Remove the source.
3043 	 */
3044 	if (new_parent && src_is_directory) {
3045 		/*
3046 		 * Rewrite the ".." entry to point to the new
3047 		 * directory.
3048 		 */
3049 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3050 					target_dp->i_ino,
3051 					&first_block, &dfops, spaceres);
3052 		ASSERT(error != -EEXIST);
3053 		if (error)
3054 			goto out_bmap_cancel;
3055 	}
3056 
3057 	/*
3058 	 * We always want to hit the ctime on the source inode.
3059 	 *
3060 	 * This isn't strictly required by the standards since the source
3061 	 * inode isn't really being changed, but old unix file systems did
3062 	 * it and some incremental backup programs won't work without it.
3063 	 */
3064 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3065 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3066 
3067 	/*
3068 	 * Adjust the link count on src_dp.  This is necessary when
3069 	 * renaming a directory, either within one parent when
3070 	 * the target existed, or across two parent directories.
3071 	 */
3072 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3073 
3074 		/*
3075 		 * Decrement link count on src_directory since the
3076 		 * entry that's moved no longer points to it.
3077 		 */
3078 		error = xfs_droplink(tp, src_dp);
3079 		if (error)
3080 			goto out_bmap_cancel;
3081 	}
3082 
3083 	/*
3084 	 * For whiteouts, we only need to update the source dirent with the
3085 	 * inode number of the whiteout inode rather than removing it
3086 	 * altogether.
3087 	 */
3088 	if (wip) {
3089 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3090 					&first_block, &dfops, spaceres);
3091 	} else
3092 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3093 					   &first_block, &dfops, spaceres);
3094 	if (error)
3095 		goto out_bmap_cancel;
3096 
3097 	/*
3098 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3099 	 * This means that failures all the way up to this point leave the inode
3100 	 * on the unlinked list and so cleanup is a simple matter of dropping
3101 	 * the remaining reference to it. If we fail here after bumping the link
3102 	 * count, we're shutting down the filesystem so we'll never see the
3103 	 * intermediate state on disk.
3104 	 */
3105 	if (wip) {
3106 		ASSERT(VFS_I(wip)->i_nlink == 0);
3107 		error = xfs_bumplink(tp, wip);
3108 		if (error)
3109 			goto out_bmap_cancel;
3110 		error = xfs_iunlink_remove(tp, wip);
3111 		if (error)
3112 			goto out_bmap_cancel;
3113 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3114 
3115 		/*
3116 		 * Now we have a real link, clear the "I'm a tmpfile" state
3117 		 * flag from the inode so it doesn't accidentally get misused in
3118 		 * future.
3119 		 */
3120 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3121 	}
3122 
3123 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3124 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3125 	if (new_parent)
3126 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3127 
3128 	error = xfs_finish_rename(tp, &dfops);
3129 	if (wip)
3130 		IRELE(wip);
3131 	return error;
3132 
3133 out_bmap_cancel:
3134 	xfs_defer_cancel(&dfops);
3135 out_trans_cancel:
3136 	xfs_trans_cancel(tp);
3137 out_release_wip:
3138 	if (wip)
3139 		IRELE(wip);
3140 	return error;
3141 }
3142 
3143 STATIC int
3144 xfs_iflush_cluster(
3145 	struct xfs_inode	*ip,
3146 	struct xfs_buf		*bp)
3147 {
3148 	struct xfs_mount	*mp = ip->i_mount;
3149 	struct xfs_perag	*pag;
3150 	unsigned long		first_index, mask;
3151 	unsigned long		inodes_per_cluster;
3152 	int			cilist_size;
3153 	struct xfs_inode	**cilist;
3154 	struct xfs_inode	*cip;
3155 	int			nr_found;
3156 	int			clcount = 0;
3157 	int			bufwasdelwri;
3158 	int			i;
3159 
3160 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3161 
3162 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3163 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3164 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3165 	if (!cilist)
3166 		goto out_put;
3167 
3168 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3169 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3170 	rcu_read_lock();
3171 	/* really need a gang lookup range call here */
3172 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3173 					first_index, inodes_per_cluster);
3174 	if (nr_found == 0)
3175 		goto out_free;
3176 
3177 	for (i = 0; i < nr_found; i++) {
3178 		cip = cilist[i];
3179 		if (cip == ip)
3180 			continue;
3181 
3182 		/*
3183 		 * because this is an RCU protected lookup, we could find a
3184 		 * recently freed or even reallocated inode during the lookup.
3185 		 * We need to check under the i_flags_lock for a valid inode
3186 		 * here. Skip it if it is not valid or the wrong inode.
3187 		 */
3188 		spin_lock(&cip->i_flags_lock);
3189 		if (!cip->i_ino ||
3190 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3191 			spin_unlock(&cip->i_flags_lock);
3192 			continue;
3193 		}
3194 
3195 		/*
3196 		 * Once we fall off the end of the cluster, no point checking
3197 		 * any more inodes in the list because they will also all be
3198 		 * outside the cluster.
3199 		 */
3200 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3201 			spin_unlock(&cip->i_flags_lock);
3202 			break;
3203 		}
3204 		spin_unlock(&cip->i_flags_lock);
3205 
3206 		/*
3207 		 * Do an un-protected check to see if the inode is dirty and
3208 		 * is a candidate for flushing.  These checks will be repeated
3209 		 * later after the appropriate locks are acquired.
3210 		 */
3211 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3212 			continue;
3213 
3214 		/*
3215 		 * Try to get locks.  If any are unavailable or it is pinned,
3216 		 * then this inode cannot be flushed and is skipped.
3217 		 */
3218 
3219 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3220 			continue;
3221 		if (!xfs_iflock_nowait(cip)) {
3222 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3223 			continue;
3224 		}
3225 		if (xfs_ipincount(cip)) {
3226 			xfs_ifunlock(cip);
3227 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3228 			continue;
3229 		}
3230 
3231 
3232 		/*
3233 		 * Check the inode number again, just to be certain we are not
3234 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3235 		 * in that function for more information as to why the initial
3236 		 * check is not sufficient.
3237 		 */
3238 		if (!cip->i_ino) {
3239 			xfs_ifunlock(cip);
3240 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3241 			continue;
3242 		}
3243 
3244 		/*
3245 		 * arriving here means that this inode can be flushed.  First
3246 		 * re-check that it's dirty before flushing.
3247 		 */
3248 		if (!xfs_inode_clean(cip)) {
3249 			int	error;
3250 			error = xfs_iflush_int(cip, bp);
3251 			if (error) {
3252 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3253 				goto cluster_corrupt_out;
3254 			}
3255 			clcount++;
3256 		} else {
3257 			xfs_ifunlock(cip);
3258 		}
3259 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3260 	}
3261 
3262 	if (clcount) {
3263 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3264 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3265 	}
3266 
3267 out_free:
3268 	rcu_read_unlock();
3269 	kmem_free(cilist);
3270 out_put:
3271 	xfs_perag_put(pag);
3272 	return 0;
3273 
3274 
3275 cluster_corrupt_out:
3276 	/*
3277 	 * Corruption detected in the clustering loop.  Invalidate the
3278 	 * inode buffer and shut down the filesystem.
3279 	 */
3280 	rcu_read_unlock();
3281 	/*
3282 	 * Clean up the buffer.  If it was delwri, just release it --
3283 	 * brelse can handle it with no problems.  If not, shut down the
3284 	 * filesystem before releasing the buffer.
3285 	 */
3286 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3287 	if (bufwasdelwri)
3288 		xfs_buf_relse(bp);
3289 
3290 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3291 
3292 	if (!bufwasdelwri) {
3293 		/*
3294 		 * Just like incore_relse: if we have b_iodone functions,
3295 		 * mark the buffer as an error and call them.  Otherwise
3296 		 * mark it as stale and brelse.
3297 		 */
3298 		if (bp->b_iodone) {
3299 			bp->b_flags &= ~XBF_DONE;
3300 			xfs_buf_stale(bp);
3301 			xfs_buf_ioerror(bp, -EIO);
3302 			xfs_buf_ioend(bp);
3303 		} else {
3304 			xfs_buf_stale(bp);
3305 			xfs_buf_relse(bp);
3306 		}
3307 	}
3308 
3309 	/*
3310 	 * Unlocks the flush lock
3311 	 */
3312 	xfs_iflush_abort(cip, false);
3313 	kmem_free(cilist);
3314 	xfs_perag_put(pag);
3315 	return -EFSCORRUPTED;
3316 }
3317 
3318 /*
3319  * Flush dirty inode metadata into the backing buffer.
3320  *
3321  * The caller must have the inode lock and the inode flush lock held.  The
3322  * inode lock will still be held upon return to the caller, and the inode
3323  * flush lock will be released after the inode has reached the disk.
3324  *
3325  * The caller must write out the buffer returned in *bpp and release it.
3326  */
3327 int
3328 xfs_iflush(
3329 	struct xfs_inode	*ip,
3330 	struct xfs_buf		**bpp)
3331 {
3332 	struct xfs_mount	*mp = ip->i_mount;
3333 	struct xfs_buf		*bp = NULL;
3334 	struct xfs_dinode	*dip;
3335 	int			error;
3336 
3337 	XFS_STATS_INC(mp, xs_iflush_count);
3338 
3339 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3340 	ASSERT(xfs_isiflocked(ip));
3341 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3342 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3343 
3344 	*bpp = NULL;
3345 
3346 	xfs_iunpin_wait(ip);
3347 
3348 	/*
3349 	 * For stale inodes we cannot rely on the backing buffer remaining
3350 	 * stale in cache for the remaining life of the stale inode and so
3351 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3352 	 * inodes below. We have to check this after ensuring the inode is
3353 	 * unpinned so that it is safe to reclaim the stale inode after the
3354 	 * flush call.
3355 	 */
3356 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3357 		xfs_ifunlock(ip);
3358 		return 0;
3359 	}
3360 
3361 	/*
3362 	 * This may have been unpinned because the filesystem is shutting
3363 	 * down forcibly. If that's the case we must not write this inode
3364 	 * to disk, because the log record didn't make it to disk.
3365 	 *
3366 	 * We also have to remove the log item from the AIL in this case,
3367 	 * as we wait for an empty AIL as part of the unmount process.
3368 	 */
3369 	if (XFS_FORCED_SHUTDOWN(mp)) {
3370 		error = -EIO;
3371 		goto abort_out;
3372 	}
3373 
3374 	/*
3375 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3376 	 * operation here, so we may get  an EAGAIN error. In that case, we
3377 	 * simply want to return with the inode still dirty.
3378 	 *
3379 	 * If we get any other error, we effectively have a corruption situation
3380 	 * and we cannot flush the inode, so we treat it the same as failing
3381 	 * xfs_iflush_int().
3382 	 */
3383 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3384 			       0);
3385 	if (error == -EAGAIN) {
3386 		xfs_ifunlock(ip);
3387 		return error;
3388 	}
3389 	if (error)
3390 		goto corrupt_out;
3391 
3392 	/*
3393 	 * First flush out the inode that xfs_iflush was called with.
3394 	 */
3395 	error = xfs_iflush_int(ip, bp);
3396 	if (error)
3397 		goto corrupt_out;
3398 
3399 	/*
3400 	 * If the buffer is pinned then push on the log now so we won't
3401 	 * get stuck waiting in the write for too long.
3402 	 */
3403 	if (xfs_buf_ispinned(bp))
3404 		xfs_log_force(mp, 0);
3405 
3406 	/*
3407 	 * inode clustering:
3408 	 * see if other inodes can be gathered into this write
3409 	 */
3410 	error = xfs_iflush_cluster(ip, bp);
3411 	if (error)
3412 		goto cluster_corrupt_out;
3413 
3414 	*bpp = bp;
3415 	return 0;
3416 
3417 corrupt_out:
3418 	if (bp)
3419 		xfs_buf_relse(bp);
3420 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3421 cluster_corrupt_out:
3422 	error = -EFSCORRUPTED;
3423 abort_out:
3424 	/*
3425 	 * Unlocks the flush lock
3426 	 */
3427 	xfs_iflush_abort(ip, false);
3428 	return error;
3429 }
3430 
3431 STATIC int
3432 xfs_iflush_int(
3433 	struct xfs_inode	*ip,
3434 	struct xfs_buf		*bp)
3435 {
3436 	struct xfs_inode_log_item *iip = ip->i_itemp;
3437 	struct xfs_dinode	*dip;
3438 	struct xfs_mount	*mp = ip->i_mount;
3439 
3440 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3441 	ASSERT(xfs_isiflocked(ip));
3442 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3443 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3444 	ASSERT(iip != NULL && iip->ili_fields != 0);
3445 	ASSERT(ip->i_d.di_version > 1);
3446 
3447 	/* set *dip = inode's place in the buffer */
3448 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3449 
3450 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3451 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3452 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3453 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3454 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3455 		goto corrupt_out;
3456 	}
3457 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3458 		if (XFS_TEST_ERROR(
3459 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3460 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3461 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3462 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463 				"%s: Bad regular inode %Lu, ptr 0x%p",
3464 				__func__, ip->i_ino, ip);
3465 			goto corrupt_out;
3466 		}
3467 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3468 		if (XFS_TEST_ERROR(
3469 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3470 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3471 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3472 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3473 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3474 				"%s: Bad directory inode %Lu, ptr 0x%p",
3475 				__func__, ip->i_ino, ip);
3476 			goto corrupt_out;
3477 		}
3478 	}
3479 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3480 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3481 				XFS_RANDOM_IFLUSH_5)) {
3482 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483 			"%s: detected corrupt incore inode %Lu, "
3484 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3485 			__func__, ip->i_ino,
3486 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3487 			ip->i_d.di_nblocks, ip);
3488 		goto corrupt_out;
3489 	}
3490 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3491 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3492 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3493 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3494 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3495 		goto corrupt_out;
3496 	}
3497 
3498 	/*
3499 	 * Inode item log recovery for v2 inodes are dependent on the
3500 	 * di_flushiter count for correct sequencing. We bump the flush
3501 	 * iteration count so we can detect flushes which postdate a log record
3502 	 * during recovery. This is redundant as we now log every change and
3503 	 * hence this can't happen but we need to still do it to ensure
3504 	 * backwards compatibility with old kernels that predate logging all
3505 	 * inode changes.
3506 	 */
3507 	if (ip->i_d.di_version < 3)
3508 		ip->i_d.di_flushiter++;
3509 
3510 	/*
3511 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3512 	 * copy out the core of the inode, because if the inode is dirty at all
3513 	 * the core must be.
3514 	 */
3515 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3516 
3517 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3518 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3519 		ip->i_d.di_flushiter = 0;
3520 
3521 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3522 	if (XFS_IFORK_Q(ip))
3523 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3524 	xfs_inobp_check(mp, bp);
3525 
3526 	/*
3527 	 * We've recorded everything logged in the inode, so we'd like to clear
3528 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3529 	 * However, we can't stop logging all this information until the data
3530 	 * we've copied into the disk buffer is written to disk.  If we did we
3531 	 * might overwrite the copy of the inode in the log with all the data
3532 	 * after re-logging only part of it, and in the face of a crash we
3533 	 * wouldn't have all the data we need to recover.
3534 	 *
3535 	 * What we do is move the bits to the ili_last_fields field.  When
3536 	 * logging the inode, these bits are moved back to the ili_fields field.
3537 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3538 	 * know that the information those bits represent is permanently on
3539 	 * disk.  As long as the flush completes before the inode is logged
3540 	 * again, then both ili_fields and ili_last_fields will be cleared.
3541 	 *
3542 	 * We can play with the ili_fields bits here, because the inode lock
3543 	 * must be held exclusively in order to set bits there and the flush
3544 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3545 	 * done routine can tell whether or not to look in the AIL.  Also, store
3546 	 * the current LSN of the inode so that we can tell whether the item has
3547 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3548 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3549 	 * atomically.
3550 	 */
3551 	iip->ili_last_fields = iip->ili_fields;
3552 	iip->ili_fields = 0;
3553 	iip->ili_fsync_fields = 0;
3554 	iip->ili_logged = 1;
3555 
3556 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3557 				&iip->ili_item.li_lsn);
3558 
3559 	/*
3560 	 * Attach the function xfs_iflush_done to the inode's
3561 	 * buffer.  This will remove the inode from the AIL
3562 	 * and unlock the inode's flush lock when the inode is
3563 	 * completely written to disk.
3564 	 */
3565 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3566 
3567 	/* generate the checksum. */
3568 	xfs_dinode_calc_crc(mp, dip);
3569 
3570 	ASSERT(bp->b_fspriv != NULL);
3571 	ASSERT(bp->b_iodone != NULL);
3572 	return 0;
3573 
3574 corrupt_out:
3575 	return -EFSCORRUPTED;
3576 }
3577