xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 #ifdef DEBUG
66 /*
67  * Make sure that the extents in the given memory buffer
68  * are valid.
69  */
70 STATIC void
71 xfs_validate_extents(
72 	xfs_ifork_t		*ifp,
73 	int			nrecs,
74 	xfs_exntfmt_t		fmt)
75 {
76 	xfs_bmbt_irec_t		irec;
77 	xfs_bmbt_rec_host_t	rec;
78 	int			i;
79 
80 	for (i = 0; i < nrecs; i++) {
81 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 		rec.l0 = get_unaligned(&ep->l0);
83 		rec.l1 = get_unaligned(&ep->l1);
84 		xfs_bmbt_get_all(&rec, &irec);
85 		if (fmt == XFS_EXTFMT_NOSTATE)
86 			ASSERT(irec.br_state == XFS_EXT_NORM);
87 	}
88 }
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
92 
93 /*
94  * Check that none of the inode's in the buffer have a next
95  * unlinked field of 0.
96  */
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 	xfs_mount_t	*mp,
101 	xfs_buf_t	*bp)
102 {
103 	int		i;
104 	int		j;
105 	xfs_dinode_t	*dip;
106 
107 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 
109 	for (i = 0; i < j; i++) {
110 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 					i * mp->m_sb.sb_inodesize);
112 		if (!dip->di_next_unlinked)  {
113 			xfs_fs_cmn_err(CE_ALERT, mp,
114 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
115 				bp);
116 			ASSERT(dip->di_next_unlinked);
117 		}
118 	}
119 }
120 #endif
121 
122 /*
123  * Find the buffer associated with the given inode map
124  * We do basic validation checks on the buffer once it has been
125  * retrieved from disk.
126  */
127 STATIC int
128 xfs_imap_to_bp(
129 	xfs_mount_t	*mp,
130 	xfs_trans_t	*tp,
131 	struct xfs_imap	*imap,
132 	xfs_buf_t	**bpp,
133 	uint		buf_flags,
134 	uint		iget_flags)
135 {
136 	int		error;
137 	int		i;
138 	int		ni;
139 	xfs_buf_t	*bp;
140 
141 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 				   (int)imap->im_len, buf_flags, &bp);
143 	if (error) {
144 		if (error != EAGAIN) {
145 			cmn_err(CE_WARN,
146 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 				"an error %d on %s.  Returning error.",
148 				error, mp->m_fsname);
149 		} else {
150 			ASSERT(buf_flags & XBF_TRYLOCK);
151 		}
152 		return error;
153 	}
154 
155 	/*
156 	 * Validate the magic number and version of every inode in the buffer
157 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
158 	 */
159 #ifdef DEBUG
160 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161 #else	/* usual case */
162 	ni = 1;
163 #endif
164 
165 	for (i = 0; i < ni; i++) {
166 		int		di_ok;
167 		xfs_dinode_t	*dip;
168 
169 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 					(i << mp->m_sb.sb_inodelog));
171 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
173 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 						XFS_ERRTAG_ITOBP_INOTOBP,
175 						XFS_RANDOM_ITOBP_INOTOBP))) {
176 			if (iget_flags & XFS_IGET_UNTRUSTED) {
177 				xfs_trans_brelse(tp, bp);
178 				return XFS_ERROR(EINVAL);
179 			}
180 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 						XFS_ERRLEVEL_HIGH, mp, dip);
182 #ifdef DEBUG
183 			cmn_err(CE_PANIC,
184 					"Device %s - bad inode magic/vsn "
185 					"daddr %lld #%d (magic=%x)",
186 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 				(unsigned long long)imap->im_blkno, i,
188 				be16_to_cpu(dip->di_magic));
189 #endif
190 			xfs_trans_brelse(tp, bp);
191 			return XFS_ERROR(EFSCORRUPTED);
192 		}
193 	}
194 
195 	xfs_inobp_check(mp, bp);
196 
197 	/*
198 	 * Mark the buffer as an inode buffer now that it looks good
199 	 */
200 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
201 
202 	*bpp = bp;
203 	return 0;
204 }
205 
206 /*
207  * This routine is called to map an inode number within a file
208  * system to the buffer containing the on-disk version of the
209  * inode.  It returns a pointer to the buffer containing the
210  * on-disk inode in the bpp parameter, and in the dip parameter
211  * it returns a pointer to the on-disk inode within that buffer.
212  *
213  * If a non-zero error is returned, then the contents of bpp and
214  * dipp are undefined.
215  *
216  * Use xfs_imap() to determine the size and location of the
217  * buffer to read from disk.
218  */
219 int
220 xfs_inotobp(
221 	xfs_mount_t	*mp,
222 	xfs_trans_t	*tp,
223 	xfs_ino_t	ino,
224 	xfs_dinode_t	**dipp,
225 	xfs_buf_t	**bpp,
226 	int		*offset,
227 	uint		imap_flags)
228 {
229 	struct xfs_imap	imap;
230 	xfs_buf_t	*bp;
231 	int		error;
232 
233 	imap.im_blkno = 0;
234 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 	if (error)
236 		return error;
237 
238 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 	if (error)
240 		return error;
241 
242 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 	*bpp = bp;
244 	*offset = imap.im_boffset;
245 	return 0;
246 }
247 
248 
249 /*
250  * This routine is called to map an inode to the buffer containing
251  * the on-disk version of the inode.  It returns a pointer to the
252  * buffer containing the on-disk inode in the bpp parameter, and in
253  * the dip parameter it returns a pointer to the on-disk inode within
254  * that buffer.
255  *
256  * If a non-zero error is returned, then the contents of bpp and
257  * dipp are undefined.
258  *
259  * The inode is expected to already been mapped to its buffer and read
260  * in once, thus we can use the mapping information stored in the inode
261  * rather than calling xfs_imap().  This allows us to avoid the overhead
262  * of looking at the inode btree for small block file systems
263  * (see xfs_imap()).
264  */
265 int
266 xfs_itobp(
267 	xfs_mount_t	*mp,
268 	xfs_trans_t	*tp,
269 	xfs_inode_t	*ip,
270 	xfs_dinode_t	**dipp,
271 	xfs_buf_t	**bpp,
272 	uint		buf_flags)
273 {
274 	xfs_buf_t	*bp;
275 	int		error;
276 
277 	ASSERT(ip->i_imap.im_blkno != 0);
278 
279 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 	if (error)
281 		return error;
282 
283 	if (!bp) {
284 		ASSERT(buf_flags & XBF_TRYLOCK);
285 		ASSERT(tp == NULL);
286 		*bpp = NULL;
287 		return EAGAIN;
288 	}
289 
290 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 	*bpp = bp;
292 	return 0;
293 }
294 
295 /*
296  * Move inode type and inode format specific information from the
297  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
298  * this means set if_rdev to the proper value.  For files, directories,
299  * and symlinks this means to bring in the in-line data or extent
300  * pointers.  For a file in B-tree format, only the root is immediately
301  * brought in-core.  The rest will be in-lined in if_extents when it
302  * is first referenced (see xfs_iread_extents()).
303  */
304 STATIC int
305 xfs_iformat(
306 	xfs_inode_t		*ip,
307 	xfs_dinode_t		*dip)
308 {
309 	xfs_attr_shortform_t	*atp;
310 	int			size;
311 	int			error;
312 	xfs_fsize_t             di_size;
313 	ip->i_df.if_ext_max =
314 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 	error = 0;
316 
317 	if (unlikely(be32_to_cpu(dip->di_nextents) +
318 		     be16_to_cpu(dip->di_anextents) >
319 		     be64_to_cpu(dip->di_nblocks))) {
320 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 			(unsigned long long)ip->i_ino,
323 			(int)(be32_to_cpu(dip->di_nextents) +
324 			      be16_to_cpu(dip->di_anextents)),
325 			(unsigned long long)
326 				be64_to_cpu(dip->di_nblocks));
327 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 				     ip->i_mount, dip);
329 		return XFS_ERROR(EFSCORRUPTED);
330 	}
331 
332 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 			"corrupt dinode %Lu, forkoff = 0x%x.",
335 			(unsigned long long)ip->i_ino,
336 			dip->di_forkoff);
337 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 				     ip->i_mount, dip);
339 		return XFS_ERROR(EFSCORRUPTED);
340 	}
341 
342 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 		     !ip->i_mount->m_rtdev_targp)) {
344 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 			"corrupt dinode %Lu, has realtime flag set.",
346 			ip->i_ino);
347 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 		return XFS_ERROR(EFSCORRUPTED);
350 	}
351 
352 	switch (ip->i_d.di_mode & S_IFMT) {
353 	case S_IFIFO:
354 	case S_IFCHR:
355 	case S_IFBLK:
356 	case S_IFSOCK:
357 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
358 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 					      ip->i_mount, dip);
360 			return XFS_ERROR(EFSCORRUPTED);
361 		}
362 		ip->i_d.di_size = 0;
363 		ip->i_size = 0;
364 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 		break;
366 
367 	case S_IFREG:
368 	case S_IFLNK:
369 	case S_IFDIR:
370 		switch (dip->di_format) {
371 		case XFS_DINODE_FMT_LOCAL:
372 			/*
373 			 * no local regular files yet
374 			 */
375 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
376 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 					"corrupt inode %Lu "
378 					"(local format for regular file).",
379 					(unsigned long long) ip->i_ino);
380 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 						     XFS_ERRLEVEL_LOW,
382 						     ip->i_mount, dip);
383 				return XFS_ERROR(EFSCORRUPTED);
384 			}
385 
386 			di_size = be64_to_cpu(dip->di_size);
387 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
388 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 					"corrupt inode %Lu "
390 					"(bad size %Ld for local inode).",
391 					(unsigned long long) ip->i_ino,
392 					(long long) di_size);
393 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 						     XFS_ERRLEVEL_LOW,
395 						     ip->i_mount, dip);
396 				return XFS_ERROR(EFSCORRUPTED);
397 			}
398 
399 			size = (int)di_size;
400 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 			break;
402 		case XFS_DINODE_FMT_EXTENTS:
403 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 			break;
405 		case XFS_DINODE_FMT_BTREE:
406 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 			break;
408 		default:
409 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 					 ip->i_mount);
411 			return XFS_ERROR(EFSCORRUPTED);
412 		}
413 		break;
414 
415 	default:
416 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 		return XFS_ERROR(EFSCORRUPTED);
418 	}
419 	if (error) {
420 		return error;
421 	}
422 	if (!XFS_DFORK_Q(dip))
423 		return 0;
424 	ASSERT(ip->i_afp == NULL);
425 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
426 	ip->i_afp->if_ext_max =
427 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
428 	switch (dip->di_aformat) {
429 	case XFS_DINODE_FMT_LOCAL:
430 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
431 		size = be16_to_cpu(atp->hdr.totsize);
432 
433 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 				"corrupt inode %Lu "
436 				"(bad attr fork size %Ld).",
437 				(unsigned long long) ip->i_ino,
438 				(long long) size);
439 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 					     XFS_ERRLEVEL_LOW,
441 					     ip->i_mount, dip);
442 			return XFS_ERROR(EFSCORRUPTED);
443 		}
444 
445 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 		break;
447 	case XFS_DINODE_FMT_EXTENTS:
448 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 		break;
450 	case XFS_DINODE_FMT_BTREE:
451 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 		break;
453 	default:
454 		error = XFS_ERROR(EFSCORRUPTED);
455 		break;
456 	}
457 	if (error) {
458 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 		ip->i_afp = NULL;
460 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 	}
462 	return error;
463 }
464 
465 /*
466  * The file is in-lined in the on-disk inode.
467  * If it fits into if_inline_data, then copy
468  * it there, otherwise allocate a buffer for it
469  * and copy the data there.  Either way, set
470  * if_data to point at the data.
471  * If we allocate a buffer for the data, make
472  * sure that its size is a multiple of 4 and
473  * record the real size in i_real_bytes.
474  */
475 STATIC int
476 xfs_iformat_local(
477 	xfs_inode_t	*ip,
478 	xfs_dinode_t	*dip,
479 	int		whichfork,
480 	int		size)
481 {
482 	xfs_ifork_t	*ifp;
483 	int		real_size;
484 
485 	/*
486 	 * If the size is unreasonable, then something
487 	 * is wrong and we just bail out rather than crash in
488 	 * kmem_alloc() or memcpy() below.
489 	 */
490 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
491 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 			"corrupt inode %Lu "
493 			"(bad size %d for local fork, size = %d).",
494 			(unsigned long long) ip->i_ino, size,
495 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 				     ip->i_mount, dip);
498 		return XFS_ERROR(EFSCORRUPTED);
499 	}
500 	ifp = XFS_IFORK_PTR(ip, whichfork);
501 	real_size = 0;
502 	if (size == 0)
503 		ifp->if_u1.if_data = NULL;
504 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 	else {
507 		real_size = roundup(size, 4);
508 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
509 	}
510 	ifp->if_bytes = size;
511 	ifp->if_real_bytes = real_size;
512 	if (size)
513 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 	ifp->if_flags &= ~XFS_IFEXTENTS;
515 	ifp->if_flags |= XFS_IFINLINE;
516 	return 0;
517 }
518 
519 /*
520  * The file consists of a set of extents all
521  * of which fit into the on-disk inode.
522  * If there are few enough extents to fit into
523  * the if_inline_ext, then copy them there.
524  * Otherwise allocate a buffer for them and copy
525  * them into it.  Either way, set if_extents
526  * to point at the extents.
527  */
528 STATIC int
529 xfs_iformat_extents(
530 	xfs_inode_t	*ip,
531 	xfs_dinode_t	*dip,
532 	int		whichfork)
533 {
534 	xfs_bmbt_rec_t	*dp;
535 	xfs_ifork_t	*ifp;
536 	int		nex;
537 	int		size;
538 	int		i;
539 
540 	ifp = XFS_IFORK_PTR(ip, whichfork);
541 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
543 
544 	/*
545 	 * If the number of extents is unreasonable, then something
546 	 * is wrong and we just bail out rather than crash in
547 	 * kmem_alloc() or memcpy() below.
548 	 */
549 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
550 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 			"corrupt inode %Lu ((a)extents = %d).",
552 			(unsigned long long) ip->i_ino, nex);
553 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 				     ip->i_mount, dip);
555 		return XFS_ERROR(EFSCORRUPTED);
556 	}
557 
558 	ifp->if_real_bytes = 0;
559 	if (nex == 0)
560 		ifp->if_u1.if_extents = NULL;
561 	else if (nex <= XFS_INLINE_EXTS)
562 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
563 	else
564 		xfs_iext_add(ifp, 0, nex);
565 
566 	ifp->if_bytes = size;
567 	if (size) {
568 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
569 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
570 		for (i = 0; i < nex; i++, dp++) {
571 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
572 			ep->l0 = get_unaligned_be64(&dp->l0);
573 			ep->l1 = get_unaligned_be64(&dp->l1);
574 		}
575 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
576 		if (whichfork != XFS_DATA_FORK ||
577 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 				if (unlikely(xfs_check_nostate_extents(
579 				    ifp, 0, nex))) {
580 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 							 XFS_ERRLEVEL_LOW,
582 							 ip->i_mount);
583 					return XFS_ERROR(EFSCORRUPTED);
584 				}
585 	}
586 	ifp->if_flags |= XFS_IFEXTENTS;
587 	return 0;
588 }
589 
590 /*
591  * The file has too many extents to fit into
592  * the inode, so they are in B-tree format.
593  * Allocate a buffer for the root of the B-tree
594  * and copy the root into it.  The i_extents
595  * field will remain NULL until all of the
596  * extents are read in (when they are needed).
597  */
598 STATIC int
599 xfs_iformat_btree(
600 	xfs_inode_t		*ip,
601 	xfs_dinode_t		*dip,
602 	int			whichfork)
603 {
604 	xfs_bmdr_block_t	*dfp;
605 	xfs_ifork_t		*ifp;
606 	/* REFERENCED */
607 	int			nrecs;
608 	int			size;
609 
610 	ifp = XFS_IFORK_PTR(ip, whichfork);
611 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 	size = XFS_BMAP_BROOT_SPACE(dfp);
613 	nrecs = be16_to_cpu(dfp->bb_numrecs);
614 
615 	/*
616 	 * blow out if -- fork has less extents than can fit in
617 	 * fork (fork shouldn't be a btree format), root btree
618 	 * block has more records than can fit into the fork,
619 	 * or the number of extents is greater than the number of
620 	 * blocks.
621 	 */
622 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 	    || XFS_BMDR_SPACE_CALC(nrecs) >
624 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
626 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 			"corrupt inode %Lu (btree).",
628 			(unsigned long long) ip->i_ino);
629 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 				 ip->i_mount);
631 		return XFS_ERROR(EFSCORRUPTED);
632 	}
633 
634 	ifp->if_broot_bytes = size;
635 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
636 	ASSERT(ifp->if_broot != NULL);
637 	/*
638 	 * Copy and convert from the on-disk structure
639 	 * to the in-memory structure.
640 	 */
641 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 			 ifp->if_broot, size);
644 	ifp->if_flags &= ~XFS_IFEXTENTS;
645 	ifp->if_flags |= XFS_IFBROOT;
646 
647 	return 0;
648 }
649 
650 STATIC void
651 xfs_dinode_from_disk(
652 	xfs_icdinode_t		*to,
653 	xfs_dinode_t		*from)
654 {
655 	to->di_magic = be16_to_cpu(from->di_magic);
656 	to->di_mode = be16_to_cpu(from->di_mode);
657 	to->di_version = from ->di_version;
658 	to->di_format = from->di_format;
659 	to->di_onlink = be16_to_cpu(from->di_onlink);
660 	to->di_uid = be32_to_cpu(from->di_uid);
661 	to->di_gid = be32_to_cpu(from->di_gid);
662 	to->di_nlink = be32_to_cpu(from->di_nlink);
663 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
664 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
665 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
666 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
667 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
668 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
669 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
670 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
671 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
672 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
673 	to->di_size = be64_to_cpu(from->di_size);
674 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
675 	to->di_extsize = be32_to_cpu(from->di_extsize);
676 	to->di_nextents = be32_to_cpu(from->di_nextents);
677 	to->di_anextents = be16_to_cpu(from->di_anextents);
678 	to->di_forkoff = from->di_forkoff;
679 	to->di_aformat	= from->di_aformat;
680 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
681 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
682 	to->di_flags	= be16_to_cpu(from->di_flags);
683 	to->di_gen	= be32_to_cpu(from->di_gen);
684 }
685 
686 void
687 xfs_dinode_to_disk(
688 	xfs_dinode_t		*to,
689 	xfs_icdinode_t		*from)
690 {
691 	to->di_magic = cpu_to_be16(from->di_magic);
692 	to->di_mode = cpu_to_be16(from->di_mode);
693 	to->di_version = from ->di_version;
694 	to->di_format = from->di_format;
695 	to->di_onlink = cpu_to_be16(from->di_onlink);
696 	to->di_uid = cpu_to_be32(from->di_uid);
697 	to->di_gid = cpu_to_be32(from->di_gid);
698 	to->di_nlink = cpu_to_be32(from->di_nlink);
699 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
700 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
701 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
702 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
703 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
704 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
705 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
706 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
707 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
708 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
709 	to->di_size = cpu_to_be64(from->di_size);
710 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
711 	to->di_extsize = cpu_to_be32(from->di_extsize);
712 	to->di_nextents = cpu_to_be32(from->di_nextents);
713 	to->di_anextents = cpu_to_be16(from->di_anextents);
714 	to->di_forkoff = from->di_forkoff;
715 	to->di_aformat = from->di_aformat;
716 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
717 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
718 	to->di_flags = cpu_to_be16(from->di_flags);
719 	to->di_gen = cpu_to_be32(from->di_gen);
720 }
721 
722 STATIC uint
723 _xfs_dic2xflags(
724 	__uint16_t		di_flags)
725 {
726 	uint			flags = 0;
727 
728 	if (di_flags & XFS_DIFLAG_ANY) {
729 		if (di_flags & XFS_DIFLAG_REALTIME)
730 			flags |= XFS_XFLAG_REALTIME;
731 		if (di_flags & XFS_DIFLAG_PREALLOC)
732 			flags |= XFS_XFLAG_PREALLOC;
733 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
734 			flags |= XFS_XFLAG_IMMUTABLE;
735 		if (di_flags & XFS_DIFLAG_APPEND)
736 			flags |= XFS_XFLAG_APPEND;
737 		if (di_flags & XFS_DIFLAG_SYNC)
738 			flags |= XFS_XFLAG_SYNC;
739 		if (di_flags & XFS_DIFLAG_NOATIME)
740 			flags |= XFS_XFLAG_NOATIME;
741 		if (di_flags & XFS_DIFLAG_NODUMP)
742 			flags |= XFS_XFLAG_NODUMP;
743 		if (di_flags & XFS_DIFLAG_RTINHERIT)
744 			flags |= XFS_XFLAG_RTINHERIT;
745 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
746 			flags |= XFS_XFLAG_PROJINHERIT;
747 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
748 			flags |= XFS_XFLAG_NOSYMLINKS;
749 		if (di_flags & XFS_DIFLAG_EXTSIZE)
750 			flags |= XFS_XFLAG_EXTSIZE;
751 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
752 			flags |= XFS_XFLAG_EXTSZINHERIT;
753 		if (di_flags & XFS_DIFLAG_NODEFRAG)
754 			flags |= XFS_XFLAG_NODEFRAG;
755 		if (di_flags & XFS_DIFLAG_FILESTREAM)
756 			flags |= XFS_XFLAG_FILESTREAM;
757 	}
758 
759 	return flags;
760 }
761 
762 uint
763 xfs_ip2xflags(
764 	xfs_inode_t		*ip)
765 {
766 	xfs_icdinode_t		*dic = &ip->i_d;
767 
768 	return _xfs_dic2xflags(dic->di_flags) |
769 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
770 }
771 
772 uint
773 xfs_dic2xflags(
774 	xfs_dinode_t		*dip)
775 {
776 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
777 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
778 }
779 
780 /*
781  * Read the disk inode attributes into the in-core inode structure.
782  */
783 int
784 xfs_iread(
785 	xfs_mount_t	*mp,
786 	xfs_trans_t	*tp,
787 	xfs_inode_t	*ip,
788 	uint		iget_flags)
789 {
790 	xfs_buf_t	*bp;
791 	xfs_dinode_t	*dip;
792 	int		error;
793 
794 	/*
795 	 * Fill in the location information in the in-core inode.
796 	 */
797 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
798 	if (error)
799 		return error;
800 
801 	/*
802 	 * Get pointers to the on-disk inode and the buffer containing it.
803 	 */
804 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
805 			       XBF_LOCK, iget_flags);
806 	if (error)
807 		return error;
808 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
809 
810 	/*
811 	 * If we got something that isn't an inode it means someone
812 	 * (nfs or dmi) has a stale handle.
813 	 */
814 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
815 #ifdef DEBUG
816 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
817 				"dip->di_magic (0x%x) != "
818 				"XFS_DINODE_MAGIC (0x%x)",
819 				be16_to_cpu(dip->di_magic),
820 				XFS_DINODE_MAGIC);
821 #endif /* DEBUG */
822 		error = XFS_ERROR(EINVAL);
823 		goto out_brelse;
824 	}
825 
826 	/*
827 	 * If the on-disk inode is already linked to a directory
828 	 * entry, copy all of the inode into the in-core inode.
829 	 * xfs_iformat() handles copying in the inode format
830 	 * specific information.
831 	 * Otherwise, just get the truly permanent information.
832 	 */
833 	if (dip->di_mode) {
834 		xfs_dinode_from_disk(&ip->i_d, dip);
835 		error = xfs_iformat(ip, dip);
836 		if (error)  {
837 #ifdef DEBUG
838 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
839 					"xfs_iformat() returned error %d",
840 					error);
841 #endif /* DEBUG */
842 			goto out_brelse;
843 		}
844 	} else {
845 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
846 		ip->i_d.di_version = dip->di_version;
847 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
848 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
849 		/*
850 		 * Make sure to pull in the mode here as well in
851 		 * case the inode is released without being used.
852 		 * This ensures that xfs_inactive() will see that
853 		 * the inode is already free and not try to mess
854 		 * with the uninitialized part of it.
855 		 */
856 		ip->i_d.di_mode = 0;
857 		/*
858 		 * Initialize the per-fork minima and maxima for a new
859 		 * inode here.  xfs_iformat will do it for old inodes.
860 		 */
861 		ip->i_df.if_ext_max =
862 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
863 	}
864 
865 	/*
866 	 * The inode format changed when we moved the link count and
867 	 * made it 32 bits long.  If this is an old format inode,
868 	 * convert it in memory to look like a new one.  If it gets
869 	 * flushed to disk we will convert back before flushing or
870 	 * logging it.  We zero out the new projid field and the old link
871 	 * count field.  We'll handle clearing the pad field (the remains
872 	 * of the old uuid field) when we actually convert the inode to
873 	 * the new format. We don't change the version number so that we
874 	 * can distinguish this from a real new format inode.
875 	 */
876 	if (ip->i_d.di_version == 1) {
877 		ip->i_d.di_nlink = ip->i_d.di_onlink;
878 		ip->i_d.di_onlink = 0;
879 		xfs_set_projid(ip, 0);
880 	}
881 
882 	ip->i_delayed_blks = 0;
883 	ip->i_size = ip->i_d.di_size;
884 
885 	/*
886 	 * Mark the buffer containing the inode as something to keep
887 	 * around for a while.  This helps to keep recently accessed
888 	 * meta-data in-core longer.
889 	 */
890 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
891 
892 	/*
893 	 * Use xfs_trans_brelse() to release the buffer containing the
894 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
895 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
896 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
897 	 * will only release the buffer if it is not dirty within the
898 	 * transaction.  It will be OK to release the buffer in this case,
899 	 * because inodes on disk are never destroyed and we will be
900 	 * locking the new in-core inode before putting it in the hash
901 	 * table where other processes can find it.  Thus we don't have
902 	 * to worry about the inode being changed just because we released
903 	 * the buffer.
904 	 */
905  out_brelse:
906 	xfs_trans_brelse(tp, bp);
907 	return error;
908 }
909 
910 /*
911  * Read in extents from a btree-format inode.
912  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
913  */
914 int
915 xfs_iread_extents(
916 	xfs_trans_t	*tp,
917 	xfs_inode_t	*ip,
918 	int		whichfork)
919 {
920 	int		error;
921 	xfs_ifork_t	*ifp;
922 	xfs_extnum_t	nextents;
923 
924 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
925 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
926 				 ip->i_mount);
927 		return XFS_ERROR(EFSCORRUPTED);
928 	}
929 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
930 	ifp = XFS_IFORK_PTR(ip, whichfork);
931 
932 	/*
933 	 * We know that the size is valid (it's checked in iformat_btree)
934 	 */
935 	ifp->if_lastex = NULLEXTNUM;
936 	ifp->if_bytes = ifp->if_real_bytes = 0;
937 	ifp->if_flags |= XFS_IFEXTENTS;
938 	xfs_iext_add(ifp, 0, nextents);
939 	error = xfs_bmap_read_extents(tp, ip, whichfork);
940 	if (error) {
941 		xfs_iext_destroy(ifp);
942 		ifp->if_flags &= ~XFS_IFEXTENTS;
943 		return error;
944 	}
945 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
946 	return 0;
947 }
948 
949 /*
950  * Allocate an inode on disk and return a copy of its in-core version.
951  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
952  * appropriately within the inode.  The uid and gid for the inode are
953  * set according to the contents of the given cred structure.
954  *
955  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
956  * has a free inode available, call xfs_iget()
957  * to obtain the in-core version of the allocated inode.  Finally,
958  * fill in the inode and log its initial contents.  In this case,
959  * ialloc_context would be set to NULL and call_again set to false.
960  *
961  * If xfs_dialloc() does not have an available inode,
962  * it will replenish its supply by doing an allocation. Since we can
963  * only do one allocation within a transaction without deadlocks, we
964  * must commit the current transaction before returning the inode itself.
965  * In this case, therefore, we will set call_again to true and return.
966  * The caller should then commit the current transaction, start a new
967  * transaction, and call xfs_ialloc() again to actually get the inode.
968  *
969  * To ensure that some other process does not grab the inode that
970  * was allocated during the first call to xfs_ialloc(), this routine
971  * also returns the [locked] bp pointing to the head of the freelist
972  * as ialloc_context.  The caller should hold this buffer across
973  * the commit and pass it back into this routine on the second call.
974  *
975  * If we are allocating quota inodes, we do not have a parent inode
976  * to attach to or associate with (i.e. pip == NULL) because they
977  * are not linked into the directory structure - they are attached
978  * directly to the superblock - and so have no parent.
979  */
980 int
981 xfs_ialloc(
982 	xfs_trans_t	*tp,
983 	xfs_inode_t	*pip,
984 	mode_t		mode,
985 	xfs_nlink_t	nlink,
986 	xfs_dev_t	rdev,
987 	prid_t		prid,
988 	int		okalloc,
989 	xfs_buf_t	**ialloc_context,
990 	boolean_t	*call_again,
991 	xfs_inode_t	**ipp)
992 {
993 	xfs_ino_t	ino;
994 	xfs_inode_t	*ip;
995 	uint		flags;
996 	int		error;
997 	timespec_t	tv;
998 	int		filestreams = 0;
999 
1000 	/*
1001 	 * Call the space management code to pick
1002 	 * the on-disk inode to be allocated.
1003 	 */
1004 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1005 			    ialloc_context, call_again, &ino);
1006 	if (error)
1007 		return error;
1008 	if (*call_again || ino == NULLFSINO) {
1009 		*ipp = NULL;
1010 		return 0;
1011 	}
1012 	ASSERT(*ialloc_context == NULL);
1013 
1014 	/*
1015 	 * Get the in-core inode with the lock held exclusively.
1016 	 * This is because we're setting fields here we need
1017 	 * to prevent others from looking at until we're done.
1018 	 */
1019 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1020 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1021 	if (error)
1022 		return error;
1023 	ASSERT(ip != NULL);
1024 
1025 	ip->i_d.di_mode = (__uint16_t)mode;
1026 	ip->i_d.di_onlink = 0;
1027 	ip->i_d.di_nlink = nlink;
1028 	ASSERT(ip->i_d.di_nlink == nlink);
1029 	ip->i_d.di_uid = current_fsuid();
1030 	ip->i_d.di_gid = current_fsgid();
1031 	xfs_set_projid(ip, prid);
1032 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1033 
1034 	/*
1035 	 * If the superblock version is up to where we support new format
1036 	 * inodes and this is currently an old format inode, then change
1037 	 * the inode version number now.  This way we only do the conversion
1038 	 * here rather than here and in the flush/logging code.
1039 	 */
1040 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1041 	    ip->i_d.di_version == 1) {
1042 		ip->i_d.di_version = 2;
1043 		/*
1044 		 * We've already zeroed the old link count, the projid field,
1045 		 * and the pad field.
1046 		 */
1047 	}
1048 
1049 	/*
1050 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 	 */
1052 	if ((prid != 0) && (ip->i_d.di_version == 1))
1053 		xfs_bump_ino_vers2(tp, ip);
1054 
1055 	if (pip && XFS_INHERIT_GID(pip)) {
1056 		ip->i_d.di_gid = pip->i_d.di_gid;
1057 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1058 			ip->i_d.di_mode |= S_ISGID;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * If the group ID of the new file does not match the effective group
1064 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1065 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 	 */
1067 	if ((irix_sgid_inherit) &&
1068 	    (ip->i_d.di_mode & S_ISGID) &&
1069 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1070 		ip->i_d.di_mode &= ~S_ISGID;
1071 	}
1072 
1073 	ip->i_d.di_size = 0;
1074 	ip->i_size = 0;
1075 	ip->i_d.di_nextents = 0;
1076 	ASSERT(ip->i_d.di_nblocks == 0);
1077 
1078 	nanotime(&tv);
1079 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1080 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1081 	ip->i_d.di_atime = ip->i_d.di_mtime;
1082 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1083 
1084 	/*
1085 	 * di_gen will have been taken care of in xfs_iread.
1086 	 */
1087 	ip->i_d.di_extsize = 0;
1088 	ip->i_d.di_dmevmask = 0;
1089 	ip->i_d.di_dmstate = 0;
1090 	ip->i_d.di_flags = 0;
1091 	flags = XFS_ILOG_CORE;
1092 	switch (mode & S_IFMT) {
1093 	case S_IFIFO:
1094 	case S_IFCHR:
1095 	case S_IFBLK:
1096 	case S_IFSOCK:
1097 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1098 		ip->i_df.if_u2.if_rdev = rdev;
1099 		ip->i_df.if_flags = 0;
1100 		flags |= XFS_ILOG_DEV;
1101 		break;
1102 	case S_IFREG:
1103 		/*
1104 		 * we can't set up filestreams until after the VFS inode
1105 		 * is set up properly.
1106 		 */
1107 		if (pip && xfs_inode_is_filestream(pip))
1108 			filestreams = 1;
1109 		/* fall through */
1110 	case S_IFDIR:
1111 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1112 			uint	di_flags = 0;
1113 
1114 			if ((mode & S_IFMT) == S_IFDIR) {
1115 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1116 					di_flags |= XFS_DIFLAG_RTINHERIT;
1117 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1118 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1119 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 				}
1121 			} else if ((mode & S_IFMT) == S_IFREG) {
1122 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1123 					di_flags |= XFS_DIFLAG_REALTIME;
1124 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1125 					di_flags |= XFS_DIFLAG_EXTSIZE;
1126 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1127 				}
1128 			}
1129 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1130 			    xfs_inherit_noatime)
1131 				di_flags |= XFS_DIFLAG_NOATIME;
1132 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1133 			    xfs_inherit_nodump)
1134 				di_flags |= XFS_DIFLAG_NODUMP;
1135 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1136 			    xfs_inherit_sync)
1137 				di_flags |= XFS_DIFLAG_SYNC;
1138 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1139 			    xfs_inherit_nosymlinks)
1140 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1141 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1142 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1144 			    xfs_inherit_nodefrag)
1145 				di_flags |= XFS_DIFLAG_NODEFRAG;
1146 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1147 				di_flags |= XFS_DIFLAG_FILESTREAM;
1148 			ip->i_d.di_flags |= di_flags;
1149 		}
1150 		/* FALLTHROUGH */
1151 	case S_IFLNK:
1152 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1153 		ip->i_df.if_flags = XFS_IFEXTENTS;
1154 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1155 		ip->i_df.if_u1.if_extents = NULL;
1156 		break;
1157 	default:
1158 		ASSERT(0);
1159 	}
1160 	/*
1161 	 * Attribute fork settings for new inode.
1162 	 */
1163 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1164 	ip->i_d.di_anextents = 0;
1165 
1166 	/*
1167 	 * Log the new values stuffed into the inode.
1168 	 */
1169 	xfs_trans_log_inode(tp, ip, flags);
1170 
1171 	/* now that we have an i_mode we can setup inode ops and unlock */
1172 	xfs_setup_inode(ip);
1173 
1174 	/* now we have set up the vfs inode we can associate the filestream */
1175 	if (filestreams) {
1176 		error = xfs_filestream_associate(pip, ip);
1177 		if (error < 0)
1178 			return -error;
1179 		if (!error)
1180 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1181 	}
1182 
1183 	*ipp = ip;
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Check to make sure that there are no blocks allocated to the
1189  * file beyond the size of the file.  We don't check this for
1190  * files with fixed size extents or real time extents, but we
1191  * at least do it for regular files.
1192  */
1193 #ifdef DEBUG
1194 void
1195 xfs_isize_check(
1196 	xfs_mount_t	*mp,
1197 	xfs_inode_t	*ip,
1198 	xfs_fsize_t	isize)
1199 {
1200 	xfs_fileoff_t	map_first;
1201 	int		nimaps;
1202 	xfs_bmbt_irec_t	imaps[2];
1203 
1204 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1205 		return;
1206 
1207 	if (XFS_IS_REALTIME_INODE(ip))
1208 		return;
1209 
1210 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1211 		return;
1212 
1213 	nimaps = 2;
1214 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1215 	/*
1216 	 * The filesystem could be shutting down, so bmapi may return
1217 	 * an error.
1218 	 */
1219 	if (xfs_bmapi(NULL, ip, map_first,
1220 			 (XFS_B_TO_FSB(mp,
1221 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1222 			  map_first),
1223 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1224 			 NULL))
1225 	    return;
1226 	ASSERT(nimaps == 1);
1227 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1228 }
1229 #endif	/* DEBUG */
1230 
1231 /*
1232  * Calculate the last possible buffered byte in a file.  This must
1233  * include data that was buffered beyond the EOF by the write code.
1234  * This also needs to deal with overflowing the xfs_fsize_t type
1235  * which can happen for sizes near the limit.
1236  *
1237  * We also need to take into account any blocks beyond the EOF.  It
1238  * may be the case that they were buffered by a write which failed.
1239  * In that case the pages will still be in memory, but the inode size
1240  * will never have been updated.
1241  */
1242 STATIC xfs_fsize_t
1243 xfs_file_last_byte(
1244 	xfs_inode_t	*ip)
1245 {
1246 	xfs_mount_t	*mp;
1247 	xfs_fsize_t	last_byte;
1248 	xfs_fileoff_t	last_block;
1249 	xfs_fileoff_t	size_last_block;
1250 	int		error;
1251 
1252 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1253 
1254 	mp = ip->i_mount;
1255 	/*
1256 	 * Only check for blocks beyond the EOF if the extents have
1257 	 * been read in.  This eliminates the need for the inode lock,
1258 	 * and it also saves us from looking when it really isn't
1259 	 * necessary.
1260 	 */
1261 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1262 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1263 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1264 			XFS_DATA_FORK);
1265 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1266 		if (error) {
1267 			last_block = 0;
1268 		}
1269 	} else {
1270 		last_block = 0;
1271 	}
1272 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1273 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1274 
1275 	last_byte = XFS_FSB_TO_B(mp, last_block);
1276 	if (last_byte < 0) {
1277 		return XFS_MAXIOFFSET(mp);
1278 	}
1279 	last_byte += (1 << mp->m_writeio_log);
1280 	if (last_byte < 0) {
1281 		return XFS_MAXIOFFSET(mp);
1282 	}
1283 	return last_byte;
1284 }
1285 
1286 /*
1287  * Start the truncation of the file to new_size.  The new size
1288  * must be smaller than the current size.  This routine will
1289  * clear the buffer and page caches of file data in the removed
1290  * range, and xfs_itruncate_finish() will remove the underlying
1291  * disk blocks.
1292  *
1293  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1294  * must NOT have the inode lock held at all.  This is because we're
1295  * calling into the buffer/page cache code and we can't hold the
1296  * inode lock when we do so.
1297  *
1298  * We need to wait for any direct I/Os in flight to complete before we
1299  * proceed with the truncate. This is needed to prevent the extents
1300  * being read or written by the direct I/Os from being removed while the
1301  * I/O is in flight as there is no other method of synchronising
1302  * direct I/O with the truncate operation.  Also, because we hold
1303  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1304  * started until the truncate completes and drops the lock. Essentially,
1305  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1306  * ordering between direct I/Os and the truncate operation.
1307  *
1308  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1309  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1310  * in the case that the caller is locking things out of order and
1311  * may not be able to call xfs_itruncate_finish() with the inode lock
1312  * held without dropping the I/O lock.  If the caller must drop the
1313  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1314  * must be called again with all the same restrictions as the initial
1315  * call.
1316  */
1317 int
1318 xfs_itruncate_start(
1319 	xfs_inode_t	*ip,
1320 	uint		flags,
1321 	xfs_fsize_t	new_size)
1322 {
1323 	xfs_fsize_t	last_byte;
1324 	xfs_off_t	toss_start;
1325 	xfs_mount_t	*mp;
1326 	int		error = 0;
1327 
1328 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1329 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1330 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1331 	       (flags == XFS_ITRUNC_MAYBE));
1332 
1333 	mp = ip->i_mount;
1334 
1335 	/* wait for the completion of any pending DIOs */
1336 	if (new_size == 0 || new_size < ip->i_size)
1337 		xfs_ioend_wait(ip);
1338 
1339 	/*
1340 	 * Call toss_pages or flushinval_pages to get rid of pages
1341 	 * overlapping the region being removed.  We have to use
1342 	 * the less efficient flushinval_pages in the case that the
1343 	 * caller may not be able to finish the truncate without
1344 	 * dropping the inode's I/O lock.  Make sure
1345 	 * to catch any pages brought in by buffers overlapping
1346 	 * the EOF by searching out beyond the isize by our
1347 	 * block size. We round new_size up to a block boundary
1348 	 * so that we don't toss things on the same block as
1349 	 * new_size but before it.
1350 	 *
1351 	 * Before calling toss_page or flushinval_pages, make sure to
1352 	 * call remapf() over the same region if the file is mapped.
1353 	 * This frees up mapped file references to the pages in the
1354 	 * given range and for the flushinval_pages case it ensures
1355 	 * that we get the latest mapped changes flushed out.
1356 	 */
1357 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1358 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1359 	if (toss_start < 0) {
1360 		/*
1361 		 * The place to start tossing is beyond our maximum
1362 		 * file size, so there is no way that the data extended
1363 		 * out there.
1364 		 */
1365 		return 0;
1366 	}
1367 	last_byte = xfs_file_last_byte(ip);
1368 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1369 	if (last_byte > toss_start) {
1370 		if (flags & XFS_ITRUNC_DEFINITE) {
1371 			xfs_tosspages(ip, toss_start,
1372 					-1, FI_REMAPF_LOCKED);
1373 		} else {
1374 			error = xfs_flushinval_pages(ip, toss_start,
1375 					-1, FI_REMAPF_LOCKED);
1376 		}
1377 	}
1378 
1379 #ifdef DEBUG
1380 	if (new_size == 0) {
1381 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1382 	}
1383 #endif
1384 	return error;
1385 }
1386 
1387 /*
1388  * Shrink the file to the given new_size.  The new size must be smaller than
1389  * the current size.  This will free up the underlying blocks in the removed
1390  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1391  *
1392  * The transaction passed to this routine must have made a permanent log
1393  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1394  * given transaction and start new ones, so make sure everything involved in
1395  * the transaction is tidy before calling here.  Some transaction will be
1396  * returned to the caller to be committed.  The incoming transaction must
1397  * already include the inode, and both inode locks must be held exclusively.
1398  * The inode must also be "held" within the transaction.  On return the inode
1399  * will be "held" within the returned transaction.  This routine does NOT
1400  * require any disk space to be reserved for it within the transaction.
1401  *
1402  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1403  * indicates the fork which is to be truncated.  For the attribute fork we only
1404  * support truncation to size 0.
1405  *
1406  * We use the sync parameter to indicate whether or not the first transaction
1407  * we perform might have to be synchronous.  For the attr fork, it needs to be
1408  * so if the unlink of the inode is not yet known to be permanent in the log.
1409  * This keeps us from freeing and reusing the blocks of the attribute fork
1410  * before the unlink of the inode becomes permanent.
1411  *
1412  * For the data fork, we normally have to run synchronously if we're being
1413  * called out of the inactive path or we're being called out of the create path
1414  * where we're truncating an existing file.  Either way, the truncate needs to
1415  * be sync so blocks don't reappear in the file with altered data in case of a
1416  * crash.  wsync filesystems can run the first case async because anything that
1417  * shrinks the inode has to run sync so by the time we're called here from
1418  * inactive, the inode size is permanently set to 0.
1419  *
1420  * Calls from the truncate path always need to be sync unless we're in a wsync
1421  * filesystem and the file has already been unlinked.
1422  *
1423  * The caller is responsible for correctly setting the sync parameter.  It gets
1424  * too hard for us to guess here which path we're being called out of just
1425  * based on inode state.
1426  *
1427  * If we get an error, we must return with the inode locked and linked into the
1428  * current transaction. This keeps things simple for the higher level code,
1429  * because it always knows that the inode is locked and held in the transaction
1430  * that returns to it whether errors occur or not.  We don't mark the inode
1431  * dirty on error so that transactions can be easily aborted if possible.
1432  */
1433 int
1434 xfs_itruncate_finish(
1435 	xfs_trans_t	**tp,
1436 	xfs_inode_t	*ip,
1437 	xfs_fsize_t	new_size,
1438 	int		fork,
1439 	int		sync)
1440 {
1441 	xfs_fsblock_t	first_block;
1442 	xfs_fileoff_t	first_unmap_block;
1443 	xfs_fileoff_t	last_block;
1444 	xfs_filblks_t	unmap_len=0;
1445 	xfs_mount_t	*mp;
1446 	xfs_trans_t	*ntp;
1447 	int		done;
1448 	int		committed;
1449 	xfs_bmap_free_t	free_list;
1450 	int		error;
1451 
1452 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1453 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1454 	ASSERT(*tp != NULL);
1455 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1456 	ASSERT(ip->i_transp == *tp);
1457 	ASSERT(ip->i_itemp != NULL);
1458 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1459 
1460 
1461 	ntp = *tp;
1462 	mp = (ntp)->t_mountp;
1463 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1464 
1465 	/*
1466 	 * We only support truncating the entire attribute fork.
1467 	 */
1468 	if (fork == XFS_ATTR_FORK) {
1469 		new_size = 0LL;
1470 	}
1471 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1472 	trace_xfs_itruncate_finish_start(ip, new_size);
1473 
1474 	/*
1475 	 * The first thing we do is set the size to new_size permanently
1476 	 * on disk.  This way we don't have to worry about anyone ever
1477 	 * being able to look at the data being freed even in the face
1478 	 * of a crash.  What we're getting around here is the case where
1479 	 * we free a block, it is allocated to another file, it is written
1480 	 * to, and then we crash.  If the new data gets written to the
1481 	 * file but the log buffers containing the free and reallocation
1482 	 * don't, then we'd end up with garbage in the blocks being freed.
1483 	 * As long as we make the new_size permanent before actually
1484 	 * freeing any blocks it doesn't matter if they get writtten to.
1485 	 *
1486 	 * The callers must signal into us whether or not the size
1487 	 * setting here must be synchronous.  There are a few cases
1488 	 * where it doesn't have to be synchronous.  Those cases
1489 	 * occur if the file is unlinked and we know the unlink is
1490 	 * permanent or if the blocks being truncated are guaranteed
1491 	 * to be beyond the inode eof (regardless of the link count)
1492 	 * and the eof value is permanent.  Both of these cases occur
1493 	 * only on wsync-mounted filesystems.  In those cases, we're
1494 	 * guaranteed that no user will ever see the data in the blocks
1495 	 * that are being truncated so the truncate can run async.
1496 	 * In the free beyond eof case, the file may wind up with
1497 	 * more blocks allocated to it than it needs if we crash
1498 	 * and that won't get fixed until the next time the file
1499 	 * is re-opened and closed but that's ok as that shouldn't
1500 	 * be too many blocks.
1501 	 *
1502 	 * However, we can't just make all wsync xactions run async
1503 	 * because there's one call out of the create path that needs
1504 	 * to run sync where it's truncating an existing file to size
1505 	 * 0 whose size is > 0.
1506 	 *
1507 	 * It's probably possible to come up with a test in this
1508 	 * routine that would correctly distinguish all the above
1509 	 * cases from the values of the function parameters and the
1510 	 * inode state but for sanity's sake, I've decided to let the
1511 	 * layers above just tell us.  It's simpler to correctly figure
1512 	 * out in the layer above exactly under what conditions we
1513 	 * can run async and I think it's easier for others read and
1514 	 * follow the logic in case something has to be changed.
1515 	 * cscope is your friend -- rcc.
1516 	 *
1517 	 * The attribute fork is much simpler.
1518 	 *
1519 	 * For the attribute fork we allow the caller to tell us whether
1520 	 * the unlink of the inode that led to this call is yet permanent
1521 	 * in the on disk log.  If it is not and we will be freeing extents
1522 	 * in this inode then we make the first transaction synchronous
1523 	 * to make sure that the unlink is permanent by the time we free
1524 	 * the blocks.
1525 	 */
1526 	if (fork == XFS_DATA_FORK) {
1527 		if (ip->i_d.di_nextents > 0) {
1528 			/*
1529 			 * If we are not changing the file size then do
1530 			 * not update the on-disk file size - we may be
1531 			 * called from xfs_inactive_free_eofblocks().  If we
1532 			 * update the on-disk file size and then the system
1533 			 * crashes before the contents of the file are
1534 			 * flushed to disk then the files may be full of
1535 			 * holes (ie NULL files bug).
1536 			 */
1537 			if (ip->i_size != new_size) {
1538 				ip->i_d.di_size = new_size;
1539 				ip->i_size = new_size;
1540 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1541 			}
1542 		}
1543 	} else if (sync) {
1544 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1545 		if (ip->i_d.di_anextents > 0)
1546 			xfs_trans_set_sync(ntp);
1547 	}
1548 	ASSERT(fork == XFS_DATA_FORK ||
1549 		(fork == XFS_ATTR_FORK &&
1550 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1551 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1552 
1553 	/*
1554 	 * Since it is possible for space to become allocated beyond
1555 	 * the end of the file (in a crash where the space is allocated
1556 	 * but the inode size is not yet updated), simply remove any
1557 	 * blocks which show up between the new EOF and the maximum
1558 	 * possible file size.  If the first block to be removed is
1559 	 * beyond the maximum file size (ie it is the same as last_block),
1560 	 * then there is nothing to do.
1561 	 */
1562 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1563 	ASSERT(first_unmap_block <= last_block);
1564 	done = 0;
1565 	if (last_block == first_unmap_block) {
1566 		done = 1;
1567 	} else {
1568 		unmap_len = last_block - first_unmap_block + 1;
1569 	}
1570 	while (!done) {
1571 		/*
1572 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1573 		 * will tell us whether it freed the entire range or
1574 		 * not.  If this is a synchronous mount (wsync),
1575 		 * then we can tell bunmapi to keep all the
1576 		 * transactions asynchronous since the unlink
1577 		 * transaction that made this inode inactive has
1578 		 * already hit the disk.  There's no danger of
1579 		 * the freed blocks being reused, there being a
1580 		 * crash, and the reused blocks suddenly reappearing
1581 		 * in this file with garbage in them once recovery
1582 		 * runs.
1583 		 */
1584 		xfs_bmap_init(&free_list, &first_block);
1585 		error = xfs_bunmapi(ntp, ip,
1586 				    first_unmap_block, unmap_len,
1587 				    xfs_bmapi_aflag(fork),
1588 				    XFS_ITRUNC_MAX_EXTENTS,
1589 				    &first_block, &free_list,
1590 				    &done);
1591 		if (error) {
1592 			/*
1593 			 * If the bunmapi call encounters an error,
1594 			 * return to the caller where the transaction
1595 			 * can be properly aborted.  We just need to
1596 			 * make sure we're not holding any resources
1597 			 * that we were not when we came in.
1598 			 */
1599 			xfs_bmap_cancel(&free_list);
1600 			return error;
1601 		}
1602 
1603 		/*
1604 		 * Duplicate the transaction that has the permanent
1605 		 * reservation and commit the old transaction.
1606 		 */
1607 		error = xfs_bmap_finish(tp, &free_list, &committed);
1608 		ntp = *tp;
1609 		if (committed)
1610 			xfs_trans_ijoin(ntp, ip);
1611 
1612 		if (error) {
1613 			/*
1614 			 * If the bmap finish call encounters an error, return
1615 			 * to the caller where the transaction can be properly
1616 			 * aborted.  We just need to make sure we're not
1617 			 * holding any resources that we were not when we came
1618 			 * in.
1619 			 *
1620 			 * Aborting from this point might lose some blocks in
1621 			 * the file system, but oh well.
1622 			 */
1623 			xfs_bmap_cancel(&free_list);
1624 			return error;
1625 		}
1626 
1627 		if (committed) {
1628 			/*
1629 			 * Mark the inode dirty so it will be logged and
1630 			 * moved forward in the log as part of every commit.
1631 			 */
1632 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1633 		}
1634 
1635 		ntp = xfs_trans_dup(ntp);
1636 		error = xfs_trans_commit(*tp, 0);
1637 		*tp = ntp;
1638 
1639 		xfs_trans_ijoin(ntp, ip);
1640 
1641 		if (error)
1642 			return error;
1643 		/*
1644 		 * transaction commit worked ok so we can drop the extra ticket
1645 		 * reference that we gained in xfs_trans_dup()
1646 		 */
1647 		xfs_log_ticket_put(ntp->t_ticket);
1648 		error = xfs_trans_reserve(ntp, 0,
1649 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1650 					XFS_TRANS_PERM_LOG_RES,
1651 					XFS_ITRUNCATE_LOG_COUNT);
1652 		if (error)
1653 			return error;
1654 	}
1655 	/*
1656 	 * Only update the size in the case of the data fork, but
1657 	 * always re-log the inode so that our permanent transaction
1658 	 * can keep on rolling it forward in the log.
1659 	 */
1660 	if (fork == XFS_DATA_FORK) {
1661 		xfs_isize_check(mp, ip, new_size);
1662 		/*
1663 		 * If we are not changing the file size then do
1664 		 * not update the on-disk file size - we may be
1665 		 * called from xfs_inactive_free_eofblocks().  If we
1666 		 * update the on-disk file size and then the system
1667 		 * crashes before the contents of the file are
1668 		 * flushed to disk then the files may be full of
1669 		 * holes (ie NULL files bug).
1670 		 */
1671 		if (ip->i_size != new_size) {
1672 			ip->i_d.di_size = new_size;
1673 			ip->i_size = new_size;
1674 		}
1675 	}
1676 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1677 	ASSERT((new_size != 0) ||
1678 	       (fork == XFS_ATTR_FORK) ||
1679 	       (ip->i_delayed_blks == 0));
1680 	ASSERT((new_size != 0) ||
1681 	       (fork == XFS_ATTR_FORK) ||
1682 	       (ip->i_d.di_nextents == 0));
1683 	trace_xfs_itruncate_finish_end(ip, new_size);
1684 	return 0;
1685 }
1686 
1687 /*
1688  * This is called when the inode's link count goes to 0.
1689  * We place the on-disk inode on a list in the AGI.  It
1690  * will be pulled from this list when the inode is freed.
1691  */
1692 int
1693 xfs_iunlink(
1694 	xfs_trans_t	*tp,
1695 	xfs_inode_t	*ip)
1696 {
1697 	xfs_mount_t	*mp;
1698 	xfs_agi_t	*agi;
1699 	xfs_dinode_t	*dip;
1700 	xfs_buf_t	*agibp;
1701 	xfs_buf_t	*ibp;
1702 	xfs_agino_t	agino;
1703 	short		bucket_index;
1704 	int		offset;
1705 	int		error;
1706 
1707 	ASSERT(ip->i_d.di_nlink == 0);
1708 	ASSERT(ip->i_d.di_mode != 0);
1709 	ASSERT(ip->i_transp == tp);
1710 
1711 	mp = tp->t_mountp;
1712 
1713 	/*
1714 	 * Get the agi buffer first.  It ensures lock ordering
1715 	 * on the list.
1716 	 */
1717 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1718 	if (error)
1719 		return error;
1720 	agi = XFS_BUF_TO_AGI(agibp);
1721 
1722 	/*
1723 	 * Get the index into the agi hash table for the
1724 	 * list this inode will go on.
1725 	 */
1726 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1727 	ASSERT(agino != 0);
1728 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1729 	ASSERT(agi->agi_unlinked[bucket_index]);
1730 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1731 
1732 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1733 		/*
1734 		 * There is already another inode in the bucket we need
1735 		 * to add ourselves to.  Add us at the front of the list.
1736 		 * Here we put the head pointer into our next pointer,
1737 		 * and then we fall through to point the head at us.
1738 		 */
1739 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1740 		if (error)
1741 			return error;
1742 
1743 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1744 		/* both on-disk, don't endian flip twice */
1745 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1746 		offset = ip->i_imap.im_boffset +
1747 			offsetof(xfs_dinode_t, di_next_unlinked);
1748 		xfs_trans_inode_buf(tp, ibp);
1749 		xfs_trans_log_buf(tp, ibp, offset,
1750 				  (offset + sizeof(xfs_agino_t) - 1));
1751 		xfs_inobp_check(mp, ibp);
1752 	}
1753 
1754 	/*
1755 	 * Point the bucket head pointer at the inode being inserted.
1756 	 */
1757 	ASSERT(agino != 0);
1758 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1759 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1760 		(sizeof(xfs_agino_t) * bucket_index);
1761 	xfs_trans_log_buf(tp, agibp, offset,
1762 			  (offset + sizeof(xfs_agino_t) - 1));
1763 	return 0;
1764 }
1765 
1766 /*
1767  * Pull the on-disk inode from the AGI unlinked list.
1768  */
1769 STATIC int
1770 xfs_iunlink_remove(
1771 	xfs_trans_t	*tp,
1772 	xfs_inode_t	*ip)
1773 {
1774 	xfs_ino_t	next_ino;
1775 	xfs_mount_t	*mp;
1776 	xfs_agi_t	*agi;
1777 	xfs_dinode_t	*dip;
1778 	xfs_buf_t	*agibp;
1779 	xfs_buf_t	*ibp;
1780 	xfs_agnumber_t	agno;
1781 	xfs_agino_t	agino;
1782 	xfs_agino_t	next_agino;
1783 	xfs_buf_t	*last_ibp;
1784 	xfs_dinode_t	*last_dip = NULL;
1785 	short		bucket_index;
1786 	int		offset, last_offset = 0;
1787 	int		error;
1788 
1789 	mp = tp->t_mountp;
1790 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1791 
1792 	/*
1793 	 * Get the agi buffer first.  It ensures lock ordering
1794 	 * on the list.
1795 	 */
1796 	error = xfs_read_agi(mp, tp, agno, &agibp);
1797 	if (error)
1798 		return error;
1799 
1800 	agi = XFS_BUF_TO_AGI(agibp);
1801 
1802 	/*
1803 	 * Get the index into the agi hash table for the
1804 	 * list this inode will go on.
1805 	 */
1806 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1807 	ASSERT(agino != 0);
1808 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1809 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1810 	ASSERT(agi->agi_unlinked[bucket_index]);
1811 
1812 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1813 		/*
1814 		 * We're at the head of the list.  Get the inode's
1815 		 * on-disk buffer to see if there is anyone after us
1816 		 * on the list.  Only modify our next pointer if it
1817 		 * is not already NULLAGINO.  This saves us the overhead
1818 		 * of dealing with the buffer when there is no need to
1819 		 * change it.
1820 		 */
1821 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1822 		if (error) {
1823 			cmn_err(CE_WARN,
1824 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1825 				error, mp->m_fsname);
1826 			return error;
1827 		}
1828 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1829 		ASSERT(next_agino != 0);
1830 		if (next_agino != NULLAGINO) {
1831 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1832 			offset = ip->i_imap.im_boffset +
1833 				offsetof(xfs_dinode_t, di_next_unlinked);
1834 			xfs_trans_inode_buf(tp, ibp);
1835 			xfs_trans_log_buf(tp, ibp, offset,
1836 					  (offset + sizeof(xfs_agino_t) - 1));
1837 			xfs_inobp_check(mp, ibp);
1838 		} else {
1839 			xfs_trans_brelse(tp, ibp);
1840 		}
1841 		/*
1842 		 * Point the bucket head pointer at the next inode.
1843 		 */
1844 		ASSERT(next_agino != 0);
1845 		ASSERT(next_agino != agino);
1846 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1847 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1848 			(sizeof(xfs_agino_t) * bucket_index);
1849 		xfs_trans_log_buf(tp, agibp, offset,
1850 				  (offset + sizeof(xfs_agino_t) - 1));
1851 	} else {
1852 		/*
1853 		 * We need to search the list for the inode being freed.
1854 		 */
1855 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1856 		last_ibp = NULL;
1857 		while (next_agino != agino) {
1858 			/*
1859 			 * If the last inode wasn't the one pointing to
1860 			 * us, then release its buffer since we're not
1861 			 * going to do anything with it.
1862 			 */
1863 			if (last_ibp != NULL) {
1864 				xfs_trans_brelse(tp, last_ibp);
1865 			}
1866 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1867 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1868 					    &last_ibp, &last_offset, 0);
1869 			if (error) {
1870 				cmn_err(CE_WARN,
1871 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1872 					error, mp->m_fsname);
1873 				return error;
1874 			}
1875 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1876 			ASSERT(next_agino != NULLAGINO);
1877 			ASSERT(next_agino != 0);
1878 		}
1879 		/*
1880 		 * Now last_ibp points to the buffer previous to us on
1881 		 * the unlinked list.  Pull us from the list.
1882 		 */
1883 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1884 		if (error) {
1885 			cmn_err(CE_WARN,
1886 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1887 				error, mp->m_fsname);
1888 			return error;
1889 		}
1890 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1891 		ASSERT(next_agino != 0);
1892 		ASSERT(next_agino != agino);
1893 		if (next_agino != NULLAGINO) {
1894 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1895 			offset = ip->i_imap.im_boffset +
1896 				offsetof(xfs_dinode_t, di_next_unlinked);
1897 			xfs_trans_inode_buf(tp, ibp);
1898 			xfs_trans_log_buf(tp, ibp, offset,
1899 					  (offset + sizeof(xfs_agino_t) - 1));
1900 			xfs_inobp_check(mp, ibp);
1901 		} else {
1902 			xfs_trans_brelse(tp, ibp);
1903 		}
1904 		/*
1905 		 * Point the previous inode on the list to the next inode.
1906 		 */
1907 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1908 		ASSERT(next_agino != 0);
1909 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1910 		xfs_trans_inode_buf(tp, last_ibp);
1911 		xfs_trans_log_buf(tp, last_ibp, offset,
1912 				  (offset + sizeof(xfs_agino_t) - 1));
1913 		xfs_inobp_check(mp, last_ibp);
1914 	}
1915 	return 0;
1916 }
1917 
1918 /*
1919  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1920  * inodes that are in memory - they all must be marked stale and attached to
1921  * the cluster buffer.
1922  */
1923 STATIC void
1924 xfs_ifree_cluster(
1925 	xfs_inode_t	*free_ip,
1926 	xfs_trans_t	*tp,
1927 	xfs_ino_t	inum)
1928 {
1929 	xfs_mount_t		*mp = free_ip->i_mount;
1930 	int			blks_per_cluster;
1931 	int			nbufs;
1932 	int			ninodes;
1933 	int			i, j;
1934 	xfs_daddr_t		blkno;
1935 	xfs_buf_t		*bp;
1936 	xfs_inode_t		*ip;
1937 	xfs_inode_log_item_t	*iip;
1938 	xfs_log_item_t		*lip;
1939 	struct xfs_perag	*pag;
1940 
1941 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1942 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1943 		blks_per_cluster = 1;
1944 		ninodes = mp->m_sb.sb_inopblock;
1945 		nbufs = XFS_IALLOC_BLOCKS(mp);
1946 	} else {
1947 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1948 					mp->m_sb.sb_blocksize;
1949 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1950 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1951 	}
1952 
1953 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1954 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1955 					 XFS_INO_TO_AGBNO(mp, inum));
1956 
1957 		/*
1958 		 * We obtain and lock the backing buffer first in the process
1959 		 * here, as we have to ensure that any dirty inode that we
1960 		 * can't get the flush lock on is attached to the buffer.
1961 		 * If we scan the in-memory inodes first, then buffer IO can
1962 		 * complete before we get a lock on it, and hence we may fail
1963 		 * to mark all the active inodes on the buffer stale.
1964 		 */
1965 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1966 					mp->m_bsize * blks_per_cluster,
1967 					XBF_LOCK);
1968 
1969 		/*
1970 		 * Walk the inodes already attached to the buffer and mark them
1971 		 * stale. These will all have the flush locks held, so an
1972 		 * in-memory inode walk can't lock them. By marking them all
1973 		 * stale first, we will not attempt to lock them in the loop
1974 		 * below as the XFS_ISTALE flag will be set.
1975 		 */
1976 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1977 		while (lip) {
1978 			if (lip->li_type == XFS_LI_INODE) {
1979 				iip = (xfs_inode_log_item_t *)lip;
1980 				ASSERT(iip->ili_logged == 1);
1981 				lip->li_cb = xfs_istale_done;
1982 				xfs_trans_ail_copy_lsn(mp->m_ail,
1983 							&iip->ili_flush_lsn,
1984 							&iip->ili_item.li_lsn);
1985 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1986 			}
1987 			lip = lip->li_bio_list;
1988 		}
1989 
1990 
1991 		/*
1992 		 * For each inode in memory attempt to add it to the inode
1993 		 * buffer and set it up for being staled on buffer IO
1994 		 * completion.  This is safe as we've locked out tail pushing
1995 		 * and flushing by locking the buffer.
1996 		 *
1997 		 * We have already marked every inode that was part of a
1998 		 * transaction stale above, which means there is no point in
1999 		 * even trying to lock them.
2000 		 */
2001 		for (i = 0; i < ninodes; i++) {
2002 retry:
2003 			read_lock(&pag->pag_ici_lock);
2004 			ip = radix_tree_lookup(&pag->pag_ici_root,
2005 					XFS_INO_TO_AGINO(mp, (inum + i)));
2006 
2007 			/* Inode not in memory or stale, nothing to do */
2008 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2009 				read_unlock(&pag->pag_ici_lock);
2010 				continue;
2011 			}
2012 
2013 			/*
2014 			 * Don't try to lock/unlock the current inode, but we
2015 			 * _cannot_ skip the other inodes that we did not find
2016 			 * in the list attached to the buffer and are not
2017 			 * already marked stale. If we can't lock it, back off
2018 			 * and retry.
2019 			 */
2020 			if (ip != free_ip &&
2021 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2022 				read_unlock(&pag->pag_ici_lock);
2023 				delay(1);
2024 				goto retry;
2025 			}
2026 			read_unlock(&pag->pag_ici_lock);
2027 
2028 			xfs_iflock(ip);
2029 			xfs_iflags_set(ip, XFS_ISTALE);
2030 
2031 			/*
2032 			 * we don't need to attach clean inodes or those only
2033 			 * with unlogged changes (which we throw away, anyway).
2034 			 */
2035 			iip = ip->i_itemp;
2036 			if (!iip || xfs_inode_clean(ip)) {
2037 				ASSERT(ip != free_ip);
2038 				ip->i_update_core = 0;
2039 				xfs_ifunlock(ip);
2040 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2041 				continue;
2042 			}
2043 
2044 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2045 			iip->ili_format.ilf_fields = 0;
2046 			iip->ili_logged = 1;
2047 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2048 						&iip->ili_item.li_lsn);
2049 
2050 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2051 						  &iip->ili_item);
2052 
2053 			if (ip != free_ip)
2054 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2055 		}
2056 
2057 		xfs_trans_stale_inode_buf(tp, bp);
2058 		xfs_trans_binval(tp, bp);
2059 	}
2060 
2061 	xfs_perag_put(pag);
2062 }
2063 
2064 /*
2065  * This is called to return an inode to the inode free list.
2066  * The inode should already be truncated to 0 length and have
2067  * no pages associated with it.  This routine also assumes that
2068  * the inode is already a part of the transaction.
2069  *
2070  * The on-disk copy of the inode will have been added to the list
2071  * of unlinked inodes in the AGI. We need to remove the inode from
2072  * that list atomically with respect to freeing it here.
2073  */
2074 int
2075 xfs_ifree(
2076 	xfs_trans_t	*tp,
2077 	xfs_inode_t	*ip,
2078 	xfs_bmap_free_t	*flist)
2079 {
2080 	int			error;
2081 	int			delete;
2082 	xfs_ino_t		first_ino;
2083 	xfs_dinode_t    	*dip;
2084 	xfs_buf_t       	*ibp;
2085 
2086 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2087 	ASSERT(ip->i_transp == tp);
2088 	ASSERT(ip->i_d.di_nlink == 0);
2089 	ASSERT(ip->i_d.di_nextents == 0);
2090 	ASSERT(ip->i_d.di_anextents == 0);
2091 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2092 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2093 	ASSERT(ip->i_d.di_nblocks == 0);
2094 
2095 	/*
2096 	 * Pull the on-disk inode from the AGI unlinked list.
2097 	 */
2098 	error = xfs_iunlink_remove(tp, ip);
2099 	if (error != 0) {
2100 		return error;
2101 	}
2102 
2103 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2104 	if (error != 0) {
2105 		return error;
2106 	}
2107 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2108 	ip->i_d.di_flags = 0;
2109 	ip->i_d.di_dmevmask = 0;
2110 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2111 	ip->i_df.if_ext_max =
2112 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2113 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2114 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2115 	/*
2116 	 * Bump the generation count so no one will be confused
2117 	 * by reincarnations of this inode.
2118 	 */
2119 	ip->i_d.di_gen++;
2120 
2121 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2122 
2123 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2124 	if (error)
2125 		return error;
2126 
2127         /*
2128 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2129 	* from picking up this inode when it is reclaimed (its incore state
2130 	* initialzed but not flushed to disk yet). The in-core di_mode is
2131 	* already cleared  and a corresponding transaction logged.
2132 	* The hack here just synchronizes the in-core to on-disk
2133 	* di_mode value in advance before the actual inode sync to disk.
2134 	* This is OK because the inode is already unlinked and would never
2135 	* change its di_mode again for this inode generation.
2136 	* This is a temporary hack that would require a proper fix
2137 	* in the future.
2138 	*/
2139 	dip->di_mode = 0;
2140 
2141 	if (delete) {
2142 		xfs_ifree_cluster(ip, tp, first_ino);
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 /*
2149  * Reallocate the space for if_broot based on the number of records
2150  * being added or deleted as indicated in rec_diff.  Move the records
2151  * and pointers in if_broot to fit the new size.  When shrinking this
2152  * will eliminate holes between the records and pointers created by
2153  * the caller.  When growing this will create holes to be filled in
2154  * by the caller.
2155  *
2156  * The caller must not request to add more records than would fit in
2157  * the on-disk inode root.  If the if_broot is currently NULL, then
2158  * if we adding records one will be allocated.  The caller must also
2159  * not request that the number of records go below zero, although
2160  * it can go to zero.
2161  *
2162  * ip -- the inode whose if_broot area is changing
2163  * ext_diff -- the change in the number of records, positive or negative,
2164  *	 requested for the if_broot array.
2165  */
2166 void
2167 xfs_iroot_realloc(
2168 	xfs_inode_t		*ip,
2169 	int			rec_diff,
2170 	int			whichfork)
2171 {
2172 	struct xfs_mount	*mp = ip->i_mount;
2173 	int			cur_max;
2174 	xfs_ifork_t		*ifp;
2175 	struct xfs_btree_block	*new_broot;
2176 	int			new_max;
2177 	size_t			new_size;
2178 	char			*np;
2179 	char			*op;
2180 
2181 	/*
2182 	 * Handle the degenerate case quietly.
2183 	 */
2184 	if (rec_diff == 0) {
2185 		return;
2186 	}
2187 
2188 	ifp = XFS_IFORK_PTR(ip, whichfork);
2189 	if (rec_diff > 0) {
2190 		/*
2191 		 * If there wasn't any memory allocated before, just
2192 		 * allocate it now and get out.
2193 		 */
2194 		if (ifp->if_broot_bytes == 0) {
2195 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2196 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2197 			ifp->if_broot_bytes = (int)new_size;
2198 			return;
2199 		}
2200 
2201 		/*
2202 		 * If there is already an existing if_broot, then we need
2203 		 * to realloc() it and shift the pointers to their new
2204 		 * location.  The records don't change location because
2205 		 * they are kept butted up against the btree block header.
2206 		 */
2207 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2208 		new_max = cur_max + rec_diff;
2209 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2210 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2211 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2212 				KM_SLEEP | KM_NOFS);
2213 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2214 						     ifp->if_broot_bytes);
2215 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2216 						     (int)new_size);
2217 		ifp->if_broot_bytes = (int)new_size;
2218 		ASSERT(ifp->if_broot_bytes <=
2219 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2220 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2221 		return;
2222 	}
2223 
2224 	/*
2225 	 * rec_diff is less than 0.  In this case, we are shrinking the
2226 	 * if_broot buffer.  It must already exist.  If we go to zero
2227 	 * records, just get rid of the root and clear the status bit.
2228 	 */
2229 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2230 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2231 	new_max = cur_max + rec_diff;
2232 	ASSERT(new_max >= 0);
2233 	if (new_max > 0)
2234 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2235 	else
2236 		new_size = 0;
2237 	if (new_size > 0) {
2238 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2239 		/*
2240 		 * First copy over the btree block header.
2241 		 */
2242 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2243 	} else {
2244 		new_broot = NULL;
2245 		ifp->if_flags &= ~XFS_IFBROOT;
2246 	}
2247 
2248 	/*
2249 	 * Only copy the records and pointers if there are any.
2250 	 */
2251 	if (new_max > 0) {
2252 		/*
2253 		 * First copy the records.
2254 		 */
2255 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2256 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2257 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2258 
2259 		/*
2260 		 * Then copy the pointers.
2261 		 */
2262 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2263 						     ifp->if_broot_bytes);
2264 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2265 						     (int)new_size);
2266 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2267 	}
2268 	kmem_free(ifp->if_broot);
2269 	ifp->if_broot = new_broot;
2270 	ifp->if_broot_bytes = (int)new_size;
2271 	ASSERT(ifp->if_broot_bytes <=
2272 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2273 	return;
2274 }
2275 
2276 
2277 /*
2278  * This is called when the amount of space needed for if_data
2279  * is increased or decreased.  The change in size is indicated by
2280  * the number of bytes that need to be added or deleted in the
2281  * byte_diff parameter.
2282  *
2283  * If the amount of space needed has decreased below the size of the
2284  * inline buffer, then switch to using the inline buffer.  Otherwise,
2285  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2286  * to what is needed.
2287  *
2288  * ip -- the inode whose if_data area is changing
2289  * byte_diff -- the change in the number of bytes, positive or negative,
2290  *	 requested for the if_data array.
2291  */
2292 void
2293 xfs_idata_realloc(
2294 	xfs_inode_t	*ip,
2295 	int		byte_diff,
2296 	int		whichfork)
2297 {
2298 	xfs_ifork_t	*ifp;
2299 	int		new_size;
2300 	int		real_size;
2301 
2302 	if (byte_diff == 0) {
2303 		return;
2304 	}
2305 
2306 	ifp = XFS_IFORK_PTR(ip, whichfork);
2307 	new_size = (int)ifp->if_bytes + byte_diff;
2308 	ASSERT(new_size >= 0);
2309 
2310 	if (new_size == 0) {
2311 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2312 			kmem_free(ifp->if_u1.if_data);
2313 		}
2314 		ifp->if_u1.if_data = NULL;
2315 		real_size = 0;
2316 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2317 		/*
2318 		 * If the valid extents/data can fit in if_inline_ext/data,
2319 		 * copy them from the malloc'd vector and free it.
2320 		 */
2321 		if (ifp->if_u1.if_data == NULL) {
2322 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2323 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2324 			ASSERT(ifp->if_real_bytes != 0);
2325 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2326 			      new_size);
2327 			kmem_free(ifp->if_u1.if_data);
2328 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2329 		}
2330 		real_size = 0;
2331 	} else {
2332 		/*
2333 		 * Stuck with malloc/realloc.
2334 		 * For inline data, the underlying buffer must be
2335 		 * a multiple of 4 bytes in size so that it can be
2336 		 * logged and stay on word boundaries.  We enforce
2337 		 * that here.
2338 		 */
2339 		real_size = roundup(new_size, 4);
2340 		if (ifp->if_u1.if_data == NULL) {
2341 			ASSERT(ifp->if_real_bytes == 0);
2342 			ifp->if_u1.if_data = kmem_alloc(real_size,
2343 							KM_SLEEP | KM_NOFS);
2344 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2345 			/*
2346 			 * Only do the realloc if the underlying size
2347 			 * is really changing.
2348 			 */
2349 			if (ifp->if_real_bytes != real_size) {
2350 				ifp->if_u1.if_data =
2351 					kmem_realloc(ifp->if_u1.if_data,
2352 							real_size,
2353 							ifp->if_real_bytes,
2354 							KM_SLEEP | KM_NOFS);
2355 			}
2356 		} else {
2357 			ASSERT(ifp->if_real_bytes == 0);
2358 			ifp->if_u1.if_data = kmem_alloc(real_size,
2359 							KM_SLEEP | KM_NOFS);
2360 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2361 				ifp->if_bytes);
2362 		}
2363 	}
2364 	ifp->if_real_bytes = real_size;
2365 	ifp->if_bytes = new_size;
2366 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2367 }
2368 
2369 void
2370 xfs_idestroy_fork(
2371 	xfs_inode_t	*ip,
2372 	int		whichfork)
2373 {
2374 	xfs_ifork_t	*ifp;
2375 
2376 	ifp = XFS_IFORK_PTR(ip, whichfork);
2377 	if (ifp->if_broot != NULL) {
2378 		kmem_free(ifp->if_broot);
2379 		ifp->if_broot = NULL;
2380 	}
2381 
2382 	/*
2383 	 * If the format is local, then we can't have an extents
2384 	 * array so just look for an inline data array.  If we're
2385 	 * not local then we may or may not have an extents list,
2386 	 * so check and free it up if we do.
2387 	 */
2388 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2389 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2390 		    (ifp->if_u1.if_data != NULL)) {
2391 			ASSERT(ifp->if_real_bytes != 0);
2392 			kmem_free(ifp->if_u1.if_data);
2393 			ifp->if_u1.if_data = NULL;
2394 			ifp->if_real_bytes = 0;
2395 		}
2396 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2397 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2398 		    ((ifp->if_u1.if_extents != NULL) &&
2399 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2400 		ASSERT(ifp->if_real_bytes != 0);
2401 		xfs_iext_destroy(ifp);
2402 	}
2403 	ASSERT(ifp->if_u1.if_extents == NULL ||
2404 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2405 	ASSERT(ifp->if_real_bytes == 0);
2406 	if (whichfork == XFS_ATTR_FORK) {
2407 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2408 		ip->i_afp = NULL;
2409 	}
2410 }
2411 
2412 /*
2413  * This is called to unpin an inode.  The caller must have the inode locked
2414  * in at least shared mode so that the buffer cannot be subsequently pinned
2415  * once someone is waiting for it to be unpinned.
2416  */
2417 static void
2418 xfs_iunpin_nowait(
2419 	struct xfs_inode	*ip)
2420 {
2421 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2422 
2423 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2424 
2425 	/* Give the log a push to start the unpinning I/O */
2426 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2427 
2428 }
2429 
2430 void
2431 xfs_iunpin_wait(
2432 	struct xfs_inode	*ip)
2433 {
2434 	if (xfs_ipincount(ip)) {
2435 		xfs_iunpin_nowait(ip);
2436 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2437 	}
2438 }
2439 
2440 /*
2441  * xfs_iextents_copy()
2442  *
2443  * This is called to copy the REAL extents (as opposed to the delayed
2444  * allocation extents) from the inode into the given buffer.  It
2445  * returns the number of bytes copied into the buffer.
2446  *
2447  * If there are no delayed allocation extents, then we can just
2448  * memcpy() the extents into the buffer.  Otherwise, we need to
2449  * examine each extent in turn and skip those which are delayed.
2450  */
2451 int
2452 xfs_iextents_copy(
2453 	xfs_inode_t		*ip,
2454 	xfs_bmbt_rec_t		*dp,
2455 	int			whichfork)
2456 {
2457 	int			copied;
2458 	int			i;
2459 	xfs_ifork_t		*ifp;
2460 	int			nrecs;
2461 	xfs_fsblock_t		start_block;
2462 
2463 	ifp = XFS_IFORK_PTR(ip, whichfork);
2464 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2465 	ASSERT(ifp->if_bytes > 0);
2466 
2467 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2468 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2469 	ASSERT(nrecs > 0);
2470 
2471 	/*
2472 	 * There are some delayed allocation extents in the
2473 	 * inode, so copy the extents one at a time and skip
2474 	 * the delayed ones.  There must be at least one
2475 	 * non-delayed extent.
2476 	 */
2477 	copied = 0;
2478 	for (i = 0; i < nrecs; i++) {
2479 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2480 		start_block = xfs_bmbt_get_startblock(ep);
2481 		if (isnullstartblock(start_block)) {
2482 			/*
2483 			 * It's a delayed allocation extent, so skip it.
2484 			 */
2485 			continue;
2486 		}
2487 
2488 		/* Translate to on disk format */
2489 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2490 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2491 		dp++;
2492 		copied++;
2493 	}
2494 	ASSERT(copied != 0);
2495 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2496 
2497 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2498 }
2499 
2500 /*
2501  * Each of the following cases stores data into the same region
2502  * of the on-disk inode, so only one of them can be valid at
2503  * any given time. While it is possible to have conflicting formats
2504  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2505  * in EXTENTS format, this can only happen when the fork has
2506  * changed formats after being modified but before being flushed.
2507  * In these cases, the format always takes precedence, because the
2508  * format indicates the current state of the fork.
2509  */
2510 /*ARGSUSED*/
2511 STATIC void
2512 xfs_iflush_fork(
2513 	xfs_inode_t		*ip,
2514 	xfs_dinode_t		*dip,
2515 	xfs_inode_log_item_t	*iip,
2516 	int			whichfork,
2517 	xfs_buf_t		*bp)
2518 {
2519 	char			*cp;
2520 	xfs_ifork_t		*ifp;
2521 	xfs_mount_t		*mp;
2522 #ifdef XFS_TRANS_DEBUG
2523 	int			first;
2524 #endif
2525 	static const short	brootflag[2] =
2526 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2527 	static const short	dataflag[2] =
2528 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2529 	static const short	extflag[2] =
2530 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2531 
2532 	if (!iip)
2533 		return;
2534 	ifp = XFS_IFORK_PTR(ip, whichfork);
2535 	/*
2536 	 * This can happen if we gave up in iformat in an error path,
2537 	 * for the attribute fork.
2538 	 */
2539 	if (!ifp) {
2540 		ASSERT(whichfork == XFS_ATTR_FORK);
2541 		return;
2542 	}
2543 	cp = XFS_DFORK_PTR(dip, whichfork);
2544 	mp = ip->i_mount;
2545 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2546 	case XFS_DINODE_FMT_LOCAL:
2547 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2548 		    (ifp->if_bytes > 0)) {
2549 			ASSERT(ifp->if_u1.if_data != NULL);
2550 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2551 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2552 		}
2553 		break;
2554 
2555 	case XFS_DINODE_FMT_EXTENTS:
2556 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2557 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2558 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2559 			(ifp->if_bytes == 0));
2560 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2561 			(ifp->if_bytes > 0));
2562 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2563 		    (ifp->if_bytes > 0)) {
2564 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2565 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2566 				whichfork);
2567 		}
2568 		break;
2569 
2570 	case XFS_DINODE_FMT_BTREE:
2571 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2572 		    (ifp->if_broot_bytes > 0)) {
2573 			ASSERT(ifp->if_broot != NULL);
2574 			ASSERT(ifp->if_broot_bytes <=
2575 			       (XFS_IFORK_SIZE(ip, whichfork) +
2576 				XFS_BROOT_SIZE_ADJ));
2577 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2578 				(xfs_bmdr_block_t *)cp,
2579 				XFS_DFORK_SIZE(dip, mp, whichfork));
2580 		}
2581 		break;
2582 
2583 	case XFS_DINODE_FMT_DEV:
2584 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2585 			ASSERT(whichfork == XFS_DATA_FORK);
2586 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2587 		}
2588 		break;
2589 
2590 	case XFS_DINODE_FMT_UUID:
2591 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2592 			ASSERT(whichfork == XFS_DATA_FORK);
2593 			memcpy(XFS_DFORK_DPTR(dip),
2594 			       &ip->i_df.if_u2.if_uuid,
2595 			       sizeof(uuid_t));
2596 		}
2597 		break;
2598 
2599 	default:
2600 		ASSERT(0);
2601 		break;
2602 	}
2603 }
2604 
2605 STATIC int
2606 xfs_iflush_cluster(
2607 	xfs_inode_t	*ip,
2608 	xfs_buf_t	*bp)
2609 {
2610 	xfs_mount_t		*mp = ip->i_mount;
2611 	struct xfs_perag	*pag;
2612 	unsigned long		first_index, mask;
2613 	unsigned long		inodes_per_cluster;
2614 	int			ilist_size;
2615 	xfs_inode_t		**ilist;
2616 	xfs_inode_t		*iq;
2617 	int			nr_found;
2618 	int			clcount = 0;
2619 	int			bufwasdelwri;
2620 	int			i;
2621 
2622 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2623 
2624 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2625 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2626 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2627 	if (!ilist)
2628 		goto out_put;
2629 
2630 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2631 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2632 	read_lock(&pag->pag_ici_lock);
2633 	/* really need a gang lookup range call here */
2634 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2635 					first_index, inodes_per_cluster);
2636 	if (nr_found == 0)
2637 		goto out_free;
2638 
2639 	for (i = 0; i < nr_found; i++) {
2640 		iq = ilist[i];
2641 		if (iq == ip)
2642 			continue;
2643 		/* if the inode lies outside this cluster, we're done. */
2644 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2645 			break;
2646 		/*
2647 		 * Do an un-protected check to see if the inode is dirty and
2648 		 * is a candidate for flushing.  These checks will be repeated
2649 		 * later after the appropriate locks are acquired.
2650 		 */
2651 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2652 			continue;
2653 
2654 		/*
2655 		 * Try to get locks.  If any are unavailable or it is pinned,
2656 		 * then this inode cannot be flushed and is skipped.
2657 		 */
2658 
2659 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2660 			continue;
2661 		if (!xfs_iflock_nowait(iq)) {
2662 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2663 			continue;
2664 		}
2665 		if (xfs_ipincount(iq)) {
2666 			xfs_ifunlock(iq);
2667 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2668 			continue;
2669 		}
2670 
2671 		/*
2672 		 * arriving here means that this inode can be flushed.  First
2673 		 * re-check that it's dirty before flushing.
2674 		 */
2675 		if (!xfs_inode_clean(iq)) {
2676 			int	error;
2677 			error = xfs_iflush_int(iq, bp);
2678 			if (error) {
2679 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2680 				goto cluster_corrupt_out;
2681 			}
2682 			clcount++;
2683 		} else {
2684 			xfs_ifunlock(iq);
2685 		}
2686 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2687 	}
2688 
2689 	if (clcount) {
2690 		XFS_STATS_INC(xs_icluster_flushcnt);
2691 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2692 	}
2693 
2694 out_free:
2695 	read_unlock(&pag->pag_ici_lock);
2696 	kmem_free(ilist);
2697 out_put:
2698 	xfs_perag_put(pag);
2699 	return 0;
2700 
2701 
2702 cluster_corrupt_out:
2703 	/*
2704 	 * Corruption detected in the clustering loop.  Invalidate the
2705 	 * inode buffer and shut down the filesystem.
2706 	 */
2707 	read_unlock(&pag->pag_ici_lock);
2708 	/*
2709 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2710 	 * brelse can handle it with no problems.  If not, shut down the
2711 	 * filesystem before releasing the buffer.
2712 	 */
2713 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2714 	if (bufwasdelwri)
2715 		xfs_buf_relse(bp);
2716 
2717 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2718 
2719 	if (!bufwasdelwri) {
2720 		/*
2721 		 * Just like incore_relse: if we have b_iodone functions,
2722 		 * mark the buffer as an error and call them.  Otherwise
2723 		 * mark it as stale and brelse.
2724 		 */
2725 		if (XFS_BUF_IODONE_FUNC(bp)) {
2726 			XFS_BUF_UNDONE(bp);
2727 			XFS_BUF_STALE(bp);
2728 			XFS_BUF_ERROR(bp,EIO);
2729 			xfs_buf_ioend(bp, 0);
2730 		} else {
2731 			XFS_BUF_STALE(bp);
2732 			xfs_buf_relse(bp);
2733 		}
2734 	}
2735 
2736 	/*
2737 	 * Unlocks the flush lock
2738 	 */
2739 	xfs_iflush_abort(iq);
2740 	kmem_free(ilist);
2741 	xfs_perag_put(pag);
2742 	return XFS_ERROR(EFSCORRUPTED);
2743 }
2744 
2745 /*
2746  * xfs_iflush() will write a modified inode's changes out to the
2747  * inode's on disk home.  The caller must have the inode lock held
2748  * in at least shared mode and the inode flush completion must be
2749  * active as well.  The inode lock will still be held upon return from
2750  * the call and the caller is free to unlock it.
2751  * The inode flush will be completed when the inode reaches the disk.
2752  * The flags indicate how the inode's buffer should be written out.
2753  */
2754 int
2755 xfs_iflush(
2756 	xfs_inode_t		*ip,
2757 	uint			flags)
2758 {
2759 	xfs_inode_log_item_t	*iip;
2760 	xfs_buf_t		*bp;
2761 	xfs_dinode_t		*dip;
2762 	xfs_mount_t		*mp;
2763 	int			error;
2764 
2765 	XFS_STATS_INC(xs_iflush_count);
2766 
2767 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2768 	ASSERT(!completion_done(&ip->i_flush));
2769 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2770 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2771 
2772 	iip = ip->i_itemp;
2773 	mp = ip->i_mount;
2774 
2775 	/*
2776 	 * We can't flush the inode until it is unpinned, so wait for it if we
2777 	 * are allowed to block.  We know noone new can pin it, because we are
2778 	 * holding the inode lock shared and you need to hold it exclusively to
2779 	 * pin the inode.
2780 	 *
2781 	 * If we are not allowed to block, force the log out asynchronously so
2782 	 * that when we come back the inode will be unpinned. If other inodes
2783 	 * in the same cluster are dirty, they will probably write the inode
2784 	 * out for us if they occur after the log force completes.
2785 	 */
2786 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2787 		xfs_iunpin_nowait(ip);
2788 		xfs_ifunlock(ip);
2789 		return EAGAIN;
2790 	}
2791 	xfs_iunpin_wait(ip);
2792 
2793 	/*
2794 	 * For stale inodes we cannot rely on the backing buffer remaining
2795 	 * stale in cache for the remaining life of the stale inode and so
2796 	 * xfs_itobp() below may give us a buffer that no longer contains
2797 	 * inodes below. We have to check this after ensuring the inode is
2798 	 * unpinned so that it is safe to reclaim the stale inode after the
2799 	 * flush call.
2800 	 */
2801 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2802 		xfs_ifunlock(ip);
2803 		return 0;
2804 	}
2805 
2806 	/*
2807 	 * This may have been unpinned because the filesystem is shutting
2808 	 * down forcibly. If that's the case we must not write this inode
2809 	 * to disk, because the log record didn't make it to disk!
2810 	 */
2811 	if (XFS_FORCED_SHUTDOWN(mp)) {
2812 		ip->i_update_core = 0;
2813 		if (iip)
2814 			iip->ili_format.ilf_fields = 0;
2815 		xfs_ifunlock(ip);
2816 		return XFS_ERROR(EIO);
2817 	}
2818 
2819 	/*
2820 	 * Get the buffer containing the on-disk inode.
2821 	 */
2822 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2823 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2824 	if (error || !bp) {
2825 		xfs_ifunlock(ip);
2826 		return error;
2827 	}
2828 
2829 	/*
2830 	 * First flush out the inode that xfs_iflush was called with.
2831 	 */
2832 	error = xfs_iflush_int(ip, bp);
2833 	if (error)
2834 		goto corrupt_out;
2835 
2836 	/*
2837 	 * If the buffer is pinned then push on the log now so we won't
2838 	 * get stuck waiting in the write for too long.
2839 	 */
2840 	if (XFS_BUF_ISPINNED(bp))
2841 		xfs_log_force(mp, 0);
2842 
2843 	/*
2844 	 * inode clustering:
2845 	 * see if other inodes can be gathered into this write
2846 	 */
2847 	error = xfs_iflush_cluster(ip, bp);
2848 	if (error)
2849 		goto cluster_corrupt_out;
2850 
2851 	if (flags & SYNC_WAIT)
2852 		error = xfs_bwrite(mp, bp);
2853 	else
2854 		xfs_bdwrite(mp, bp);
2855 	return error;
2856 
2857 corrupt_out:
2858 	xfs_buf_relse(bp);
2859 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2860 cluster_corrupt_out:
2861 	/*
2862 	 * Unlocks the flush lock
2863 	 */
2864 	xfs_iflush_abort(ip);
2865 	return XFS_ERROR(EFSCORRUPTED);
2866 }
2867 
2868 
2869 STATIC int
2870 xfs_iflush_int(
2871 	xfs_inode_t		*ip,
2872 	xfs_buf_t		*bp)
2873 {
2874 	xfs_inode_log_item_t	*iip;
2875 	xfs_dinode_t		*dip;
2876 	xfs_mount_t		*mp;
2877 #ifdef XFS_TRANS_DEBUG
2878 	int			first;
2879 #endif
2880 
2881 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2882 	ASSERT(!completion_done(&ip->i_flush));
2883 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2884 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2885 
2886 	iip = ip->i_itemp;
2887 	mp = ip->i_mount;
2888 
2889 	/* set *dip = inode's place in the buffer */
2890 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2891 
2892 	/*
2893 	 * Clear i_update_core before copying out the data.
2894 	 * This is for coordination with our timestamp updates
2895 	 * that don't hold the inode lock. They will always
2896 	 * update the timestamps BEFORE setting i_update_core,
2897 	 * so if we clear i_update_core after they set it we
2898 	 * are guaranteed to see their updates to the timestamps.
2899 	 * I believe that this depends on strongly ordered memory
2900 	 * semantics, but we have that.  We use the SYNCHRONIZE
2901 	 * macro to make sure that the compiler does not reorder
2902 	 * the i_update_core access below the data copy below.
2903 	 */
2904 	ip->i_update_core = 0;
2905 	SYNCHRONIZE();
2906 
2907 	/*
2908 	 * Make sure to get the latest timestamps from the Linux inode.
2909 	 */
2910 	xfs_synchronize_times(ip);
2911 
2912 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2913 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2914 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2915 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2916 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2917 		goto corrupt_out;
2918 	}
2919 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2920 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2921 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2922 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2923 			ip->i_ino, ip, ip->i_d.di_magic);
2924 		goto corrupt_out;
2925 	}
2926 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2927 		if (XFS_TEST_ERROR(
2928 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2929 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2930 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2931 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2932 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2933 				ip->i_ino, ip);
2934 			goto corrupt_out;
2935 		}
2936 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2937 		if (XFS_TEST_ERROR(
2938 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2939 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2940 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2941 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2942 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2943 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2944 				ip->i_ino, ip);
2945 			goto corrupt_out;
2946 		}
2947 	}
2948 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2949 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2950 				XFS_RANDOM_IFLUSH_5)) {
2951 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2952 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2953 			ip->i_ino,
2954 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2955 			ip->i_d.di_nblocks,
2956 			ip);
2957 		goto corrupt_out;
2958 	}
2959 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2960 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2961 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2962 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2963 			ip->i_ino, ip->i_d.di_forkoff, ip);
2964 		goto corrupt_out;
2965 	}
2966 	/*
2967 	 * bump the flush iteration count, used to detect flushes which
2968 	 * postdate a log record during recovery.
2969 	 */
2970 
2971 	ip->i_d.di_flushiter++;
2972 
2973 	/*
2974 	 * Copy the dirty parts of the inode into the on-disk
2975 	 * inode.  We always copy out the core of the inode,
2976 	 * because if the inode is dirty at all the core must
2977 	 * be.
2978 	 */
2979 	xfs_dinode_to_disk(dip, &ip->i_d);
2980 
2981 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2982 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2983 		ip->i_d.di_flushiter = 0;
2984 
2985 	/*
2986 	 * If this is really an old format inode and the superblock version
2987 	 * has not been updated to support only new format inodes, then
2988 	 * convert back to the old inode format.  If the superblock version
2989 	 * has been updated, then make the conversion permanent.
2990 	 */
2991 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2992 	if (ip->i_d.di_version == 1) {
2993 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2994 			/*
2995 			 * Convert it back.
2996 			 */
2997 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2998 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2999 		} else {
3000 			/*
3001 			 * The superblock version has already been bumped,
3002 			 * so just make the conversion to the new inode
3003 			 * format permanent.
3004 			 */
3005 			ip->i_d.di_version = 2;
3006 			dip->di_version = 2;
3007 			ip->i_d.di_onlink = 0;
3008 			dip->di_onlink = 0;
3009 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3010 			memset(&(dip->di_pad[0]), 0,
3011 			      sizeof(dip->di_pad));
3012 			ASSERT(xfs_get_projid(ip) == 0);
3013 		}
3014 	}
3015 
3016 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3017 	if (XFS_IFORK_Q(ip))
3018 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3019 	xfs_inobp_check(mp, bp);
3020 
3021 	/*
3022 	 * We've recorded everything logged in the inode, so we'd
3023 	 * like to clear the ilf_fields bits so we don't log and
3024 	 * flush things unnecessarily.  However, we can't stop
3025 	 * logging all this information until the data we've copied
3026 	 * into the disk buffer is written to disk.  If we did we might
3027 	 * overwrite the copy of the inode in the log with all the
3028 	 * data after re-logging only part of it, and in the face of
3029 	 * a crash we wouldn't have all the data we need to recover.
3030 	 *
3031 	 * What we do is move the bits to the ili_last_fields field.
3032 	 * When logging the inode, these bits are moved back to the
3033 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3034 	 * clear ili_last_fields, since we know that the information
3035 	 * those bits represent is permanently on disk.  As long as
3036 	 * the flush completes before the inode is logged again, then
3037 	 * both ilf_fields and ili_last_fields will be cleared.
3038 	 *
3039 	 * We can play with the ilf_fields bits here, because the inode
3040 	 * lock must be held exclusively in order to set bits there
3041 	 * and the flush lock protects the ili_last_fields bits.
3042 	 * Set ili_logged so the flush done
3043 	 * routine can tell whether or not to look in the AIL.
3044 	 * Also, store the current LSN of the inode so that we can tell
3045 	 * whether the item has moved in the AIL from xfs_iflush_done().
3046 	 * In order to read the lsn we need the AIL lock, because
3047 	 * it is a 64 bit value that cannot be read atomically.
3048 	 */
3049 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3050 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3051 		iip->ili_format.ilf_fields = 0;
3052 		iip->ili_logged = 1;
3053 
3054 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3055 					&iip->ili_item.li_lsn);
3056 
3057 		/*
3058 		 * Attach the function xfs_iflush_done to the inode's
3059 		 * buffer.  This will remove the inode from the AIL
3060 		 * and unlock the inode's flush lock when the inode is
3061 		 * completely written to disk.
3062 		 */
3063 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3064 
3065 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3066 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3067 	} else {
3068 		/*
3069 		 * We're flushing an inode which is not in the AIL and has
3070 		 * not been logged but has i_update_core set.  For this
3071 		 * case we can use a B_DELWRI flush and immediately drop
3072 		 * the inode flush lock because we can avoid the whole
3073 		 * AIL state thing.  It's OK to drop the flush lock now,
3074 		 * because we've already locked the buffer and to do anything
3075 		 * you really need both.
3076 		 */
3077 		if (iip != NULL) {
3078 			ASSERT(iip->ili_logged == 0);
3079 			ASSERT(iip->ili_last_fields == 0);
3080 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3081 		}
3082 		xfs_ifunlock(ip);
3083 	}
3084 
3085 	return 0;
3086 
3087 corrupt_out:
3088 	return XFS_ERROR(EFSCORRUPTED);
3089 }
3090 
3091 /*
3092  * Return a pointer to the extent record at file index idx.
3093  */
3094 xfs_bmbt_rec_host_t *
3095 xfs_iext_get_ext(
3096 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3097 	xfs_extnum_t	idx)		/* index of target extent */
3098 {
3099 	ASSERT(idx >= 0);
3100 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3101 		return ifp->if_u1.if_ext_irec->er_extbuf;
3102 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3103 		xfs_ext_irec_t	*erp;		/* irec pointer */
3104 		int		erp_idx = 0;	/* irec index */
3105 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3106 
3107 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3108 		return &erp->er_extbuf[page_idx];
3109 	} else if (ifp->if_bytes) {
3110 		return &ifp->if_u1.if_extents[idx];
3111 	} else {
3112 		return NULL;
3113 	}
3114 }
3115 
3116 /*
3117  * Insert new item(s) into the extent records for incore inode
3118  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3119  */
3120 void
3121 xfs_iext_insert(
3122 	xfs_inode_t	*ip,		/* incore inode pointer */
3123 	xfs_extnum_t	idx,		/* starting index of new items */
3124 	xfs_extnum_t	count,		/* number of inserted items */
3125 	xfs_bmbt_irec_t	*new,		/* items to insert */
3126 	int		state)		/* type of extent conversion */
3127 {
3128 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3129 	xfs_extnum_t	i;		/* extent record index */
3130 
3131 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3132 
3133 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3134 	xfs_iext_add(ifp, idx, count);
3135 	for (i = idx; i < idx + count; i++, new++)
3136 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3137 }
3138 
3139 /*
3140  * This is called when the amount of space required for incore file
3141  * extents needs to be increased. The ext_diff parameter stores the
3142  * number of new extents being added and the idx parameter contains
3143  * the extent index where the new extents will be added. If the new
3144  * extents are being appended, then we just need to (re)allocate and
3145  * initialize the space. Otherwise, if the new extents are being
3146  * inserted into the middle of the existing entries, a bit more work
3147  * is required to make room for the new extents to be inserted. The
3148  * caller is responsible for filling in the new extent entries upon
3149  * return.
3150  */
3151 void
3152 xfs_iext_add(
3153 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3154 	xfs_extnum_t	idx,		/* index to begin adding exts */
3155 	int		ext_diff)	/* number of extents to add */
3156 {
3157 	int		byte_diff;	/* new bytes being added */
3158 	int		new_size;	/* size of extents after adding */
3159 	xfs_extnum_t	nextents;	/* number of extents in file */
3160 
3161 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3162 	ASSERT((idx >= 0) && (idx <= nextents));
3163 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3164 	new_size = ifp->if_bytes + byte_diff;
3165 	/*
3166 	 * If the new number of extents (nextents + ext_diff)
3167 	 * fits inside the inode, then continue to use the inline
3168 	 * extent buffer.
3169 	 */
3170 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3171 		if (idx < nextents) {
3172 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3173 				&ifp->if_u2.if_inline_ext[idx],
3174 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3175 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3176 		}
3177 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3178 		ifp->if_real_bytes = 0;
3179 		ifp->if_lastex = nextents + ext_diff;
3180 	}
3181 	/*
3182 	 * Otherwise use a linear (direct) extent list.
3183 	 * If the extents are currently inside the inode,
3184 	 * xfs_iext_realloc_direct will switch us from
3185 	 * inline to direct extent allocation mode.
3186 	 */
3187 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3188 		xfs_iext_realloc_direct(ifp, new_size);
3189 		if (idx < nextents) {
3190 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3191 				&ifp->if_u1.if_extents[idx],
3192 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3193 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3194 		}
3195 	}
3196 	/* Indirection array */
3197 	else {
3198 		xfs_ext_irec_t	*erp;
3199 		int		erp_idx = 0;
3200 		int		page_idx = idx;
3201 
3202 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3203 		if (ifp->if_flags & XFS_IFEXTIREC) {
3204 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3205 		} else {
3206 			xfs_iext_irec_init(ifp);
3207 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3208 			erp = ifp->if_u1.if_ext_irec;
3209 		}
3210 		/* Extents fit in target extent page */
3211 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3212 			if (page_idx < erp->er_extcount) {
3213 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3214 					&erp->er_extbuf[page_idx],
3215 					(erp->er_extcount - page_idx) *
3216 					sizeof(xfs_bmbt_rec_t));
3217 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3218 			}
3219 			erp->er_extcount += ext_diff;
3220 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3221 		}
3222 		/* Insert a new extent page */
3223 		else if (erp) {
3224 			xfs_iext_add_indirect_multi(ifp,
3225 				erp_idx, page_idx, ext_diff);
3226 		}
3227 		/*
3228 		 * If extent(s) are being appended to the last page in
3229 		 * the indirection array and the new extent(s) don't fit
3230 		 * in the page, then erp is NULL and erp_idx is set to
3231 		 * the next index needed in the indirection array.
3232 		 */
3233 		else {
3234 			int	count = ext_diff;
3235 
3236 			while (count) {
3237 				erp = xfs_iext_irec_new(ifp, erp_idx);
3238 				erp->er_extcount = count;
3239 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3240 				if (count) {
3241 					erp_idx++;
3242 				}
3243 			}
3244 		}
3245 	}
3246 	ifp->if_bytes = new_size;
3247 }
3248 
3249 /*
3250  * This is called when incore extents are being added to the indirection
3251  * array and the new extents do not fit in the target extent list. The
3252  * erp_idx parameter contains the irec index for the target extent list
3253  * in the indirection array, and the idx parameter contains the extent
3254  * index within the list. The number of extents being added is stored
3255  * in the count parameter.
3256  *
3257  *    |-------|   |-------|
3258  *    |       |   |       |    idx - number of extents before idx
3259  *    |  idx  |   | count |
3260  *    |       |   |       |    count - number of extents being inserted at idx
3261  *    |-------|   |-------|
3262  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3263  *    |-------|   |-------|
3264  */
3265 void
3266 xfs_iext_add_indirect_multi(
3267 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3268 	int		erp_idx,		/* target extent irec index */
3269 	xfs_extnum_t	idx,			/* index within target list */
3270 	int		count)			/* new extents being added */
3271 {
3272 	int		byte_diff;		/* new bytes being added */
3273 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3274 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3275 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3276 	xfs_extnum_t	nex2;			/* extents after idx + count */
3277 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3278 	int		nlists;			/* number of irec's (lists) */
3279 
3280 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3281 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3282 	nex2 = erp->er_extcount - idx;
3283 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3284 
3285 	/*
3286 	 * Save second part of target extent list
3287 	 * (all extents past */
3288 	if (nex2) {
3289 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3290 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3291 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3292 		erp->er_extcount -= nex2;
3293 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3294 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3295 	}
3296 
3297 	/*
3298 	 * Add the new extents to the end of the target
3299 	 * list, then allocate new irec record(s) and
3300 	 * extent buffer(s) as needed to store the rest
3301 	 * of the new extents.
3302 	 */
3303 	ext_cnt = count;
3304 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3305 	if (ext_diff) {
3306 		erp->er_extcount += ext_diff;
3307 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3308 		ext_cnt -= ext_diff;
3309 	}
3310 	while (ext_cnt) {
3311 		erp_idx++;
3312 		erp = xfs_iext_irec_new(ifp, erp_idx);
3313 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3314 		erp->er_extcount = ext_diff;
3315 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3316 		ext_cnt -= ext_diff;
3317 	}
3318 
3319 	/* Add nex2 extents back to indirection array */
3320 	if (nex2) {
3321 		xfs_extnum_t	ext_avail;
3322 		int		i;
3323 
3324 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3325 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3326 		i = 0;
3327 		/*
3328 		 * If nex2 extents fit in the current page, append
3329 		 * nex2_ep after the new extents.
3330 		 */
3331 		if (nex2 <= ext_avail) {
3332 			i = erp->er_extcount;
3333 		}
3334 		/*
3335 		 * Otherwise, check if space is available in the
3336 		 * next page.
3337 		 */
3338 		else if ((erp_idx < nlists - 1) &&
3339 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3340 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3341 			erp_idx++;
3342 			erp++;
3343 			/* Create a hole for nex2 extents */
3344 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3345 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3346 		}
3347 		/*
3348 		 * Final choice, create a new extent page for
3349 		 * nex2 extents.
3350 		 */
3351 		else {
3352 			erp_idx++;
3353 			erp = xfs_iext_irec_new(ifp, erp_idx);
3354 		}
3355 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3356 		kmem_free(nex2_ep);
3357 		erp->er_extcount += nex2;
3358 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3359 	}
3360 }
3361 
3362 /*
3363  * This is called when the amount of space required for incore file
3364  * extents needs to be decreased. The ext_diff parameter stores the
3365  * number of extents to be removed and the idx parameter contains
3366  * the extent index where the extents will be removed from.
3367  *
3368  * If the amount of space needed has decreased below the linear
3369  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3370  * extent array.  Otherwise, use kmem_realloc() to adjust the
3371  * size to what is needed.
3372  */
3373 void
3374 xfs_iext_remove(
3375 	xfs_inode_t	*ip,		/* incore inode pointer */
3376 	xfs_extnum_t	idx,		/* index to begin removing exts */
3377 	int		ext_diff,	/* number of extents to remove */
3378 	int		state)		/* type of extent conversion */
3379 {
3380 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3381 	xfs_extnum_t	nextents;	/* number of extents in file */
3382 	int		new_size;	/* size of extents after removal */
3383 
3384 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3385 
3386 	ASSERT(ext_diff > 0);
3387 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3388 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3389 
3390 	if (new_size == 0) {
3391 		xfs_iext_destroy(ifp);
3392 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3393 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3394 	} else if (ifp->if_real_bytes) {
3395 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3396 	} else {
3397 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3398 	}
3399 	ifp->if_bytes = new_size;
3400 }
3401 
3402 /*
3403  * This removes ext_diff extents from the inline buffer, beginning
3404  * at extent index idx.
3405  */
3406 void
3407 xfs_iext_remove_inline(
3408 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3409 	xfs_extnum_t	idx,		/* index to begin removing exts */
3410 	int		ext_diff)	/* number of extents to remove */
3411 {
3412 	int		nextents;	/* number of extents in file */
3413 
3414 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3415 	ASSERT(idx < XFS_INLINE_EXTS);
3416 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3417 	ASSERT(((nextents - ext_diff) > 0) &&
3418 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3419 
3420 	if (idx + ext_diff < nextents) {
3421 		memmove(&ifp->if_u2.if_inline_ext[idx],
3422 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3423 			(nextents - (idx + ext_diff)) *
3424 			 sizeof(xfs_bmbt_rec_t));
3425 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3426 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3427 	} else {
3428 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3429 			ext_diff * sizeof(xfs_bmbt_rec_t));
3430 	}
3431 }
3432 
3433 /*
3434  * This removes ext_diff extents from a linear (direct) extent list,
3435  * beginning at extent index idx. If the extents are being removed
3436  * from the end of the list (ie. truncate) then we just need to re-
3437  * allocate the list to remove the extra space. Otherwise, if the
3438  * extents are being removed from the middle of the existing extent
3439  * entries, then we first need to move the extent records beginning
3440  * at idx + ext_diff up in the list to overwrite the records being
3441  * removed, then remove the extra space via kmem_realloc.
3442  */
3443 void
3444 xfs_iext_remove_direct(
3445 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3446 	xfs_extnum_t	idx,		/* index to begin removing exts */
3447 	int		ext_diff)	/* number of extents to remove */
3448 {
3449 	xfs_extnum_t	nextents;	/* number of extents in file */
3450 	int		new_size;	/* size of extents after removal */
3451 
3452 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3453 	new_size = ifp->if_bytes -
3454 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3455 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3456 
3457 	if (new_size == 0) {
3458 		xfs_iext_destroy(ifp);
3459 		return;
3460 	}
3461 	/* Move extents up in the list (if needed) */
3462 	if (idx + ext_diff < nextents) {
3463 		memmove(&ifp->if_u1.if_extents[idx],
3464 			&ifp->if_u1.if_extents[idx + ext_diff],
3465 			(nextents - (idx + ext_diff)) *
3466 			 sizeof(xfs_bmbt_rec_t));
3467 	}
3468 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3469 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3470 	/*
3471 	 * Reallocate the direct extent list. If the extents
3472 	 * will fit inside the inode then xfs_iext_realloc_direct
3473 	 * will switch from direct to inline extent allocation
3474 	 * mode for us.
3475 	 */
3476 	xfs_iext_realloc_direct(ifp, new_size);
3477 	ifp->if_bytes = new_size;
3478 }
3479 
3480 /*
3481  * This is called when incore extents are being removed from the
3482  * indirection array and the extents being removed span multiple extent
3483  * buffers. The idx parameter contains the file extent index where we
3484  * want to begin removing extents, and the count parameter contains
3485  * how many extents need to be removed.
3486  *
3487  *    |-------|   |-------|
3488  *    | nex1  |   |       |    nex1 - number of extents before idx
3489  *    |-------|   | count |
3490  *    |       |   |       |    count - number of extents being removed at idx
3491  *    | count |   |-------|
3492  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3493  *    |-------|   |-------|
3494  */
3495 void
3496 xfs_iext_remove_indirect(
3497 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3498 	xfs_extnum_t	idx,		/* index to begin removing extents */
3499 	int		count)		/* number of extents to remove */
3500 {
3501 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3502 	int		erp_idx = 0;	/* indirection array index */
3503 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3504 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3505 	xfs_extnum_t	nex1;		/* number of extents before idx */
3506 	xfs_extnum_t	nex2;		/* extents after idx + count */
3507 	int		page_idx = idx;	/* index in target extent list */
3508 
3509 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3510 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3511 	ASSERT(erp != NULL);
3512 	nex1 = page_idx;
3513 	ext_cnt = count;
3514 	while (ext_cnt) {
3515 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3516 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3517 		/*
3518 		 * Check for deletion of entire list;
3519 		 * xfs_iext_irec_remove() updates extent offsets.
3520 		 */
3521 		if (ext_diff == erp->er_extcount) {
3522 			xfs_iext_irec_remove(ifp, erp_idx);
3523 			ext_cnt -= ext_diff;
3524 			nex1 = 0;
3525 			if (ext_cnt) {
3526 				ASSERT(erp_idx < ifp->if_real_bytes /
3527 					XFS_IEXT_BUFSZ);
3528 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3529 				nex1 = 0;
3530 				continue;
3531 			} else {
3532 				break;
3533 			}
3534 		}
3535 		/* Move extents up (if needed) */
3536 		if (nex2) {
3537 			memmove(&erp->er_extbuf[nex1],
3538 				&erp->er_extbuf[nex1 + ext_diff],
3539 				nex2 * sizeof(xfs_bmbt_rec_t));
3540 		}
3541 		/* Zero out rest of page */
3542 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3543 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3544 		/* Update remaining counters */
3545 		erp->er_extcount -= ext_diff;
3546 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3547 		ext_cnt -= ext_diff;
3548 		nex1 = 0;
3549 		erp_idx++;
3550 		erp++;
3551 	}
3552 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3553 	xfs_iext_irec_compact(ifp);
3554 }
3555 
3556 /*
3557  * Create, destroy, or resize a linear (direct) block of extents.
3558  */
3559 void
3560 xfs_iext_realloc_direct(
3561 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3562 	int		new_size)	/* new size of extents */
3563 {
3564 	int		rnew_size;	/* real new size of extents */
3565 
3566 	rnew_size = new_size;
3567 
3568 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3569 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3570 		 (new_size != ifp->if_real_bytes)));
3571 
3572 	/* Free extent records */
3573 	if (new_size == 0) {
3574 		xfs_iext_destroy(ifp);
3575 	}
3576 	/* Resize direct extent list and zero any new bytes */
3577 	else if (ifp->if_real_bytes) {
3578 		/* Check if extents will fit inside the inode */
3579 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3580 			xfs_iext_direct_to_inline(ifp, new_size /
3581 				(uint)sizeof(xfs_bmbt_rec_t));
3582 			ifp->if_bytes = new_size;
3583 			return;
3584 		}
3585 		if (!is_power_of_2(new_size)){
3586 			rnew_size = roundup_pow_of_two(new_size);
3587 		}
3588 		if (rnew_size != ifp->if_real_bytes) {
3589 			ifp->if_u1.if_extents =
3590 				kmem_realloc(ifp->if_u1.if_extents,
3591 						rnew_size,
3592 						ifp->if_real_bytes, KM_NOFS);
3593 		}
3594 		if (rnew_size > ifp->if_real_bytes) {
3595 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3596 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3597 				rnew_size - ifp->if_real_bytes);
3598 		}
3599 	}
3600 	/*
3601 	 * Switch from the inline extent buffer to a direct
3602 	 * extent list. Be sure to include the inline extent
3603 	 * bytes in new_size.
3604 	 */
3605 	else {
3606 		new_size += ifp->if_bytes;
3607 		if (!is_power_of_2(new_size)) {
3608 			rnew_size = roundup_pow_of_two(new_size);
3609 		}
3610 		xfs_iext_inline_to_direct(ifp, rnew_size);
3611 	}
3612 	ifp->if_real_bytes = rnew_size;
3613 	ifp->if_bytes = new_size;
3614 }
3615 
3616 /*
3617  * Switch from linear (direct) extent records to inline buffer.
3618  */
3619 void
3620 xfs_iext_direct_to_inline(
3621 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3622 	xfs_extnum_t	nextents)	/* number of extents in file */
3623 {
3624 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3625 	ASSERT(nextents <= XFS_INLINE_EXTS);
3626 	/*
3627 	 * The inline buffer was zeroed when we switched
3628 	 * from inline to direct extent allocation mode,
3629 	 * so we don't need to clear it here.
3630 	 */
3631 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3632 		nextents * sizeof(xfs_bmbt_rec_t));
3633 	kmem_free(ifp->if_u1.if_extents);
3634 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3635 	ifp->if_real_bytes = 0;
3636 }
3637 
3638 /*
3639  * Switch from inline buffer to linear (direct) extent records.
3640  * new_size should already be rounded up to the next power of 2
3641  * by the caller (when appropriate), so use new_size as it is.
3642  * However, since new_size may be rounded up, we can't update
3643  * if_bytes here. It is the caller's responsibility to update
3644  * if_bytes upon return.
3645  */
3646 void
3647 xfs_iext_inline_to_direct(
3648 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3649 	int		new_size)	/* number of extents in file */
3650 {
3651 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3652 	memset(ifp->if_u1.if_extents, 0, new_size);
3653 	if (ifp->if_bytes) {
3654 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3655 			ifp->if_bytes);
3656 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3657 			sizeof(xfs_bmbt_rec_t));
3658 	}
3659 	ifp->if_real_bytes = new_size;
3660 }
3661 
3662 /*
3663  * Resize an extent indirection array to new_size bytes.
3664  */
3665 STATIC void
3666 xfs_iext_realloc_indirect(
3667 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3668 	int		new_size)	/* new indirection array size */
3669 {
3670 	int		nlists;		/* number of irec's (ex lists) */
3671 	int		size;		/* current indirection array size */
3672 
3673 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3674 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3675 	size = nlists * sizeof(xfs_ext_irec_t);
3676 	ASSERT(ifp->if_real_bytes);
3677 	ASSERT((new_size >= 0) && (new_size != size));
3678 	if (new_size == 0) {
3679 		xfs_iext_destroy(ifp);
3680 	} else {
3681 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3682 			kmem_realloc(ifp->if_u1.if_ext_irec,
3683 				new_size, size, KM_NOFS);
3684 	}
3685 }
3686 
3687 /*
3688  * Switch from indirection array to linear (direct) extent allocations.
3689  */
3690 STATIC void
3691 xfs_iext_indirect_to_direct(
3692 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3693 {
3694 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3695 	xfs_extnum_t	nextents;	/* number of extents in file */
3696 	int		size;		/* size of file extents */
3697 
3698 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3699 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3700 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3701 	size = nextents * sizeof(xfs_bmbt_rec_t);
3702 
3703 	xfs_iext_irec_compact_pages(ifp);
3704 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3705 
3706 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3707 	kmem_free(ifp->if_u1.if_ext_irec);
3708 	ifp->if_flags &= ~XFS_IFEXTIREC;
3709 	ifp->if_u1.if_extents = ep;
3710 	ifp->if_bytes = size;
3711 	if (nextents < XFS_LINEAR_EXTS) {
3712 		xfs_iext_realloc_direct(ifp, size);
3713 	}
3714 }
3715 
3716 /*
3717  * Free incore file extents.
3718  */
3719 void
3720 xfs_iext_destroy(
3721 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3722 {
3723 	if (ifp->if_flags & XFS_IFEXTIREC) {
3724 		int	erp_idx;
3725 		int	nlists;
3726 
3727 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3728 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3729 			xfs_iext_irec_remove(ifp, erp_idx);
3730 		}
3731 		ifp->if_flags &= ~XFS_IFEXTIREC;
3732 	} else if (ifp->if_real_bytes) {
3733 		kmem_free(ifp->if_u1.if_extents);
3734 	} else if (ifp->if_bytes) {
3735 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3736 			sizeof(xfs_bmbt_rec_t));
3737 	}
3738 	ifp->if_u1.if_extents = NULL;
3739 	ifp->if_real_bytes = 0;
3740 	ifp->if_bytes = 0;
3741 }
3742 
3743 /*
3744  * Return a pointer to the extent record for file system block bno.
3745  */
3746 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3747 xfs_iext_bno_to_ext(
3748 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3749 	xfs_fileoff_t	bno,		/* block number to search for */
3750 	xfs_extnum_t	*idxp)		/* index of target extent */
3751 {
3752 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3753 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3754 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3755 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3756 	int		high;		/* upper boundary in search */
3757 	xfs_extnum_t	idx = 0;	/* index of target extent */
3758 	int		low;		/* lower boundary in search */
3759 	xfs_extnum_t	nextents;	/* number of file extents */
3760 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3761 
3762 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3763 	if (nextents == 0) {
3764 		*idxp = 0;
3765 		return NULL;
3766 	}
3767 	low = 0;
3768 	if (ifp->if_flags & XFS_IFEXTIREC) {
3769 		/* Find target extent list */
3770 		int	erp_idx = 0;
3771 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3772 		base = erp->er_extbuf;
3773 		high = erp->er_extcount - 1;
3774 	} else {
3775 		base = ifp->if_u1.if_extents;
3776 		high = nextents - 1;
3777 	}
3778 	/* Binary search extent records */
3779 	while (low <= high) {
3780 		idx = (low + high) >> 1;
3781 		ep = base + idx;
3782 		startoff = xfs_bmbt_get_startoff(ep);
3783 		blockcount = xfs_bmbt_get_blockcount(ep);
3784 		if (bno < startoff) {
3785 			high = idx - 1;
3786 		} else if (bno >= startoff + blockcount) {
3787 			low = idx + 1;
3788 		} else {
3789 			/* Convert back to file-based extent index */
3790 			if (ifp->if_flags & XFS_IFEXTIREC) {
3791 				idx += erp->er_extoff;
3792 			}
3793 			*idxp = idx;
3794 			return ep;
3795 		}
3796 	}
3797 	/* Convert back to file-based extent index */
3798 	if (ifp->if_flags & XFS_IFEXTIREC) {
3799 		idx += erp->er_extoff;
3800 	}
3801 	if (bno >= startoff + blockcount) {
3802 		if (++idx == nextents) {
3803 			ep = NULL;
3804 		} else {
3805 			ep = xfs_iext_get_ext(ifp, idx);
3806 		}
3807 	}
3808 	*idxp = idx;
3809 	return ep;
3810 }
3811 
3812 /*
3813  * Return a pointer to the indirection array entry containing the
3814  * extent record for filesystem block bno. Store the index of the
3815  * target irec in *erp_idxp.
3816  */
3817 xfs_ext_irec_t *			/* pointer to found extent record */
3818 xfs_iext_bno_to_irec(
3819 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3820 	xfs_fileoff_t	bno,		/* block number to search for */
3821 	int		*erp_idxp)	/* irec index of target ext list */
3822 {
3823 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3824 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3825 	int		erp_idx;	/* indirection array index */
3826 	int		nlists;		/* number of extent irec's (lists) */
3827 	int		high;		/* binary search upper limit */
3828 	int		low;		/* binary search lower limit */
3829 
3830 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3831 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3832 	erp_idx = 0;
3833 	low = 0;
3834 	high = nlists - 1;
3835 	while (low <= high) {
3836 		erp_idx = (low + high) >> 1;
3837 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3838 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3839 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3840 			high = erp_idx - 1;
3841 		} else if (erp_next && bno >=
3842 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3843 			low = erp_idx + 1;
3844 		} else {
3845 			break;
3846 		}
3847 	}
3848 	*erp_idxp = erp_idx;
3849 	return erp;
3850 }
3851 
3852 /*
3853  * Return a pointer to the indirection array entry containing the
3854  * extent record at file extent index *idxp. Store the index of the
3855  * target irec in *erp_idxp and store the page index of the target
3856  * extent record in *idxp.
3857  */
3858 xfs_ext_irec_t *
3859 xfs_iext_idx_to_irec(
3860 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3861 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3862 	int		*erp_idxp,	/* pointer to target irec */
3863 	int		realloc)	/* new bytes were just added */
3864 {
3865 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3866 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3867 	int		erp_idx;	/* indirection array index */
3868 	int		nlists;		/* number of irec's (ex lists) */
3869 	int		high;		/* binary search upper limit */
3870 	int		low;		/* binary search lower limit */
3871 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3872 
3873 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 	ASSERT(page_idx >= 0 && page_idx <=
3875 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3876 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3877 	erp_idx = 0;
3878 	low = 0;
3879 	high = nlists - 1;
3880 
3881 	/* Binary search extent irec's */
3882 	while (low <= high) {
3883 		erp_idx = (low + high) >> 1;
3884 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3885 		prev = erp_idx > 0 ? erp - 1 : NULL;
3886 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3887 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3888 			high = erp_idx - 1;
3889 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3890 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3891 			    !realloc)) {
3892 			low = erp_idx + 1;
3893 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3894 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3895 			ASSERT(realloc);
3896 			page_idx = 0;
3897 			erp_idx++;
3898 			erp = erp_idx < nlists ? erp + 1 : NULL;
3899 			break;
3900 		} else {
3901 			page_idx -= erp->er_extoff;
3902 			break;
3903 		}
3904 	}
3905 	*idxp = page_idx;
3906 	*erp_idxp = erp_idx;
3907 	return(erp);
3908 }
3909 
3910 /*
3911  * Allocate and initialize an indirection array once the space needed
3912  * for incore extents increases above XFS_IEXT_BUFSZ.
3913  */
3914 void
3915 xfs_iext_irec_init(
3916 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3917 {
3918 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3919 	xfs_extnum_t	nextents;	/* number of extents in file */
3920 
3921 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3922 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3923 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3924 
3925 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3926 
3927 	if (nextents == 0) {
3928 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3929 	} else if (!ifp->if_real_bytes) {
3930 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3931 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3932 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3933 	}
3934 	erp->er_extbuf = ifp->if_u1.if_extents;
3935 	erp->er_extcount = nextents;
3936 	erp->er_extoff = 0;
3937 
3938 	ifp->if_flags |= XFS_IFEXTIREC;
3939 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3940 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3941 	ifp->if_u1.if_ext_irec = erp;
3942 
3943 	return;
3944 }
3945 
3946 /*
3947  * Allocate and initialize a new entry in the indirection array.
3948  */
3949 xfs_ext_irec_t *
3950 xfs_iext_irec_new(
3951 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3952 	int		erp_idx)	/* index for new irec */
3953 {
3954 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3955 	int		i;		/* loop counter */
3956 	int		nlists;		/* number of irec's (ex lists) */
3957 
3958 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3959 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3960 
3961 	/* Resize indirection array */
3962 	xfs_iext_realloc_indirect(ifp, ++nlists *
3963 				  sizeof(xfs_ext_irec_t));
3964 	/*
3965 	 * Move records down in the array so the
3966 	 * new page can use erp_idx.
3967 	 */
3968 	erp = ifp->if_u1.if_ext_irec;
3969 	for (i = nlists - 1; i > erp_idx; i--) {
3970 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3971 	}
3972 	ASSERT(i == erp_idx);
3973 
3974 	/* Initialize new extent record */
3975 	erp = ifp->if_u1.if_ext_irec;
3976 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3977 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3978 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3979 	erp[erp_idx].er_extcount = 0;
3980 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3981 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3982 	return (&erp[erp_idx]);
3983 }
3984 
3985 /*
3986  * Remove a record from the indirection array.
3987  */
3988 void
3989 xfs_iext_irec_remove(
3990 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3991 	int		erp_idx)	/* irec index to remove */
3992 {
3993 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3994 	int		i;		/* loop counter */
3995 	int		nlists;		/* number of irec's (ex lists) */
3996 
3997 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3998 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3999 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4000 	if (erp->er_extbuf) {
4001 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4002 			-erp->er_extcount);
4003 		kmem_free(erp->er_extbuf);
4004 	}
4005 	/* Compact extent records */
4006 	erp = ifp->if_u1.if_ext_irec;
4007 	for (i = erp_idx; i < nlists - 1; i++) {
4008 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4009 	}
4010 	/*
4011 	 * Manually free the last extent record from the indirection
4012 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4013 	 * of zero would result in a call to xfs_iext_destroy() which
4014 	 * would in turn call this function again, creating a nasty
4015 	 * infinite loop.
4016 	 */
4017 	if (--nlists) {
4018 		xfs_iext_realloc_indirect(ifp,
4019 			nlists * sizeof(xfs_ext_irec_t));
4020 	} else {
4021 		kmem_free(ifp->if_u1.if_ext_irec);
4022 	}
4023 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4024 }
4025 
4026 /*
4027  * This is called to clean up large amounts of unused memory allocated
4028  * by the indirection array.  Before compacting anything though, verify
4029  * that the indirection array is still needed and switch back to the
4030  * linear extent list (or even the inline buffer) if possible.  The
4031  * compaction policy is as follows:
4032  *
4033  *    Full Compaction: Extents fit into a single page (or inline buffer)
4034  * Partial Compaction: Extents occupy less than 50% of allocated space
4035  *      No Compaction: Extents occupy at least 50% of allocated space
4036  */
4037 void
4038 xfs_iext_irec_compact(
4039 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4040 {
4041 	xfs_extnum_t	nextents;	/* number of extents in file */
4042 	int		nlists;		/* number of irec's (ex lists) */
4043 
4044 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4045 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4046 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4047 
4048 	if (nextents == 0) {
4049 		xfs_iext_destroy(ifp);
4050 	} else if (nextents <= XFS_INLINE_EXTS) {
4051 		xfs_iext_indirect_to_direct(ifp);
4052 		xfs_iext_direct_to_inline(ifp, nextents);
4053 	} else if (nextents <= XFS_LINEAR_EXTS) {
4054 		xfs_iext_indirect_to_direct(ifp);
4055 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4056 		xfs_iext_irec_compact_pages(ifp);
4057 	}
4058 }
4059 
4060 /*
4061  * Combine extents from neighboring extent pages.
4062  */
4063 void
4064 xfs_iext_irec_compact_pages(
4065 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4066 {
4067 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4068 	int		erp_idx = 0;	/* indirection array index */
4069 	int		nlists;		/* number of irec's (ex lists) */
4070 
4071 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4072 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4073 	while (erp_idx < nlists - 1) {
4074 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4075 		erp_next = erp + 1;
4076 		if (erp_next->er_extcount <=
4077 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4078 			memcpy(&erp->er_extbuf[erp->er_extcount],
4079 				erp_next->er_extbuf, erp_next->er_extcount *
4080 				sizeof(xfs_bmbt_rec_t));
4081 			erp->er_extcount += erp_next->er_extcount;
4082 			/*
4083 			 * Free page before removing extent record
4084 			 * so er_extoffs don't get modified in
4085 			 * xfs_iext_irec_remove.
4086 			 */
4087 			kmem_free(erp_next->er_extbuf);
4088 			erp_next->er_extbuf = NULL;
4089 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4090 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4091 		} else {
4092 			erp_idx++;
4093 		}
4094 	}
4095 }
4096 
4097 /*
4098  * This is called to update the er_extoff field in the indirection
4099  * array when extents have been added or removed from one of the
4100  * extent lists. erp_idx contains the irec index to begin updating
4101  * at and ext_diff contains the number of extents that were added
4102  * or removed.
4103  */
4104 void
4105 xfs_iext_irec_update_extoffs(
4106 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4107 	int		erp_idx,	/* irec index to update */
4108 	int		ext_diff)	/* number of new extents */
4109 {
4110 	int		i;		/* loop counter */
4111 	int		nlists;		/* number of irec's (ex lists */
4112 
4113 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4114 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4115 	for (i = erp_idx; i < nlists; i++) {
4116 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4117 	}
4118 }
4119