1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_mount.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_btree.h" 40 #include "xfs_btree_trace.h" 41 #include "xfs_alloc.h" 42 #include "xfs_ialloc.h" 43 #include "xfs_bmap.h" 44 #include "xfs_error.h" 45 #include "xfs_utils.h" 46 #include "xfs_quota.h" 47 #include "xfs_filestream.h" 48 #include "xfs_vnodeops.h" 49 #include "xfs_trace.h" 50 51 kmem_zone_t *xfs_ifork_zone; 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 64 65 #ifdef DEBUG 66 /* 67 * Make sure that the extents in the given memory buffer 68 * are valid. 69 */ 70 STATIC void 71 xfs_validate_extents( 72 xfs_ifork_t *ifp, 73 int nrecs, 74 xfs_exntfmt_t fmt) 75 { 76 xfs_bmbt_irec_t irec; 77 xfs_bmbt_rec_host_t rec; 78 int i; 79 80 for (i = 0; i < nrecs; i++) { 81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 82 rec.l0 = get_unaligned(&ep->l0); 83 rec.l1 = get_unaligned(&ep->l1); 84 xfs_bmbt_get_all(&rec, &irec); 85 if (fmt == XFS_EXTFMT_NOSTATE) 86 ASSERT(irec.br_state == XFS_EXT_NORM); 87 } 88 } 89 #else /* DEBUG */ 90 #define xfs_validate_extents(ifp, nrecs, fmt) 91 #endif /* DEBUG */ 92 93 /* 94 * Check that none of the inode's in the buffer have a next 95 * unlinked field of 0. 96 */ 97 #if defined(DEBUG) 98 void 99 xfs_inobp_check( 100 xfs_mount_t *mp, 101 xfs_buf_t *bp) 102 { 103 int i; 104 int j; 105 xfs_dinode_t *dip; 106 107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 108 109 for (i = 0; i < j; i++) { 110 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 111 i * mp->m_sb.sb_inodesize); 112 if (!dip->di_next_unlinked) { 113 xfs_fs_cmn_err(CE_ALERT, mp, 114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 115 bp); 116 ASSERT(dip->di_next_unlinked); 117 } 118 } 119 } 120 #endif 121 122 /* 123 * Find the buffer associated with the given inode map 124 * We do basic validation checks on the buffer once it has been 125 * retrieved from disk. 126 */ 127 STATIC int 128 xfs_imap_to_bp( 129 xfs_mount_t *mp, 130 xfs_trans_t *tp, 131 struct xfs_imap *imap, 132 xfs_buf_t **bpp, 133 uint buf_flags, 134 uint iget_flags) 135 { 136 int error; 137 int i; 138 int ni; 139 xfs_buf_t *bp; 140 141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 142 (int)imap->im_len, buf_flags, &bp); 143 if (error) { 144 if (error != EAGAIN) { 145 cmn_err(CE_WARN, 146 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 147 "an error %d on %s. Returning error.", 148 error, mp->m_fsname); 149 } else { 150 ASSERT(buf_flags & XBF_TRYLOCK); 151 } 152 return error; 153 } 154 155 /* 156 * Validate the magic number and version of every inode in the buffer 157 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 158 */ 159 #ifdef DEBUG 160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 161 #else /* usual case */ 162 ni = 1; 163 #endif 164 165 for (i = 0; i < ni; i++) { 166 int di_ok; 167 xfs_dinode_t *dip; 168 169 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 170 (i << mp->m_sb.sb_inodelog)); 171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 172 XFS_DINODE_GOOD_VERSION(dip->di_version); 173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 174 XFS_ERRTAG_ITOBP_INOTOBP, 175 XFS_RANDOM_ITOBP_INOTOBP))) { 176 if (iget_flags & XFS_IGET_UNTRUSTED) { 177 xfs_trans_brelse(tp, bp); 178 return XFS_ERROR(EINVAL); 179 } 180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 181 XFS_ERRLEVEL_HIGH, mp, dip); 182 #ifdef DEBUG 183 cmn_err(CE_PANIC, 184 "Device %s - bad inode magic/vsn " 185 "daddr %lld #%d (magic=%x)", 186 XFS_BUFTARG_NAME(mp->m_ddev_targp), 187 (unsigned long long)imap->im_blkno, i, 188 be16_to_cpu(dip->di_magic)); 189 #endif 190 xfs_trans_brelse(tp, bp); 191 return XFS_ERROR(EFSCORRUPTED); 192 } 193 } 194 195 xfs_inobp_check(mp, bp); 196 197 /* 198 * Mark the buffer as an inode buffer now that it looks good 199 */ 200 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 201 202 *bpp = bp; 203 return 0; 204 } 205 206 /* 207 * This routine is called to map an inode number within a file 208 * system to the buffer containing the on-disk version of the 209 * inode. It returns a pointer to the buffer containing the 210 * on-disk inode in the bpp parameter, and in the dip parameter 211 * it returns a pointer to the on-disk inode within that buffer. 212 * 213 * If a non-zero error is returned, then the contents of bpp and 214 * dipp are undefined. 215 * 216 * Use xfs_imap() to determine the size and location of the 217 * buffer to read from disk. 218 */ 219 int 220 xfs_inotobp( 221 xfs_mount_t *mp, 222 xfs_trans_t *tp, 223 xfs_ino_t ino, 224 xfs_dinode_t **dipp, 225 xfs_buf_t **bpp, 226 int *offset, 227 uint imap_flags) 228 { 229 struct xfs_imap imap; 230 xfs_buf_t *bp; 231 int error; 232 233 imap.im_blkno = 0; 234 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 235 if (error) 236 return error; 237 238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags); 239 if (error) 240 return error; 241 242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 243 *bpp = bp; 244 *offset = imap.im_boffset; 245 return 0; 246 } 247 248 249 /* 250 * This routine is called to map an inode to the buffer containing 251 * the on-disk version of the inode. It returns a pointer to the 252 * buffer containing the on-disk inode in the bpp parameter, and in 253 * the dip parameter it returns a pointer to the on-disk inode within 254 * that buffer. 255 * 256 * If a non-zero error is returned, then the contents of bpp and 257 * dipp are undefined. 258 * 259 * The inode is expected to already been mapped to its buffer and read 260 * in once, thus we can use the mapping information stored in the inode 261 * rather than calling xfs_imap(). This allows us to avoid the overhead 262 * of looking at the inode btree for small block file systems 263 * (see xfs_imap()). 264 */ 265 int 266 xfs_itobp( 267 xfs_mount_t *mp, 268 xfs_trans_t *tp, 269 xfs_inode_t *ip, 270 xfs_dinode_t **dipp, 271 xfs_buf_t **bpp, 272 uint buf_flags) 273 { 274 xfs_buf_t *bp; 275 int error; 276 277 ASSERT(ip->i_imap.im_blkno != 0); 278 279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 280 if (error) 281 return error; 282 283 if (!bp) { 284 ASSERT(buf_flags & XBF_TRYLOCK); 285 ASSERT(tp == NULL); 286 *bpp = NULL; 287 return EAGAIN; 288 } 289 290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 291 *bpp = bp; 292 return 0; 293 } 294 295 /* 296 * Move inode type and inode format specific information from the 297 * on-disk inode to the in-core inode. For fifos, devs, and sockets 298 * this means set if_rdev to the proper value. For files, directories, 299 * and symlinks this means to bring in the in-line data or extent 300 * pointers. For a file in B-tree format, only the root is immediately 301 * brought in-core. The rest will be in-lined in if_extents when it 302 * is first referenced (see xfs_iread_extents()). 303 */ 304 STATIC int 305 xfs_iformat( 306 xfs_inode_t *ip, 307 xfs_dinode_t *dip) 308 { 309 xfs_attr_shortform_t *atp; 310 int size; 311 int error; 312 xfs_fsize_t di_size; 313 ip->i_df.if_ext_max = 314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 315 error = 0; 316 317 if (unlikely(be32_to_cpu(dip->di_nextents) + 318 be16_to_cpu(dip->di_anextents) > 319 be64_to_cpu(dip->di_nblocks))) { 320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 322 (unsigned long long)ip->i_ino, 323 (int)(be32_to_cpu(dip->di_nextents) + 324 be16_to_cpu(dip->di_anextents)), 325 (unsigned long long) 326 be64_to_cpu(dip->di_nblocks)); 327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 328 ip->i_mount, dip); 329 return XFS_ERROR(EFSCORRUPTED); 330 } 331 332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 334 "corrupt dinode %Lu, forkoff = 0x%x.", 335 (unsigned long long)ip->i_ino, 336 dip->di_forkoff); 337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 338 ip->i_mount, dip); 339 return XFS_ERROR(EFSCORRUPTED); 340 } 341 342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 343 !ip->i_mount->m_rtdev_targp)) { 344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 345 "corrupt dinode %Lu, has realtime flag set.", 346 ip->i_ino); 347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 348 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 349 return XFS_ERROR(EFSCORRUPTED); 350 } 351 352 switch (ip->i_d.di_mode & S_IFMT) { 353 case S_IFIFO: 354 case S_IFCHR: 355 case S_IFBLK: 356 case S_IFSOCK: 357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 359 ip->i_mount, dip); 360 return XFS_ERROR(EFSCORRUPTED); 361 } 362 ip->i_d.di_size = 0; 363 ip->i_size = 0; 364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 365 break; 366 367 case S_IFREG: 368 case S_IFLNK: 369 case S_IFDIR: 370 switch (dip->di_format) { 371 case XFS_DINODE_FMT_LOCAL: 372 /* 373 * no local regular files yet 374 */ 375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 377 "corrupt inode %Lu " 378 "(local format for regular file).", 379 (unsigned long long) ip->i_ino); 380 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 381 XFS_ERRLEVEL_LOW, 382 ip->i_mount, dip); 383 return XFS_ERROR(EFSCORRUPTED); 384 } 385 386 di_size = be64_to_cpu(dip->di_size); 387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 389 "corrupt inode %Lu " 390 "(bad size %Ld for local inode).", 391 (unsigned long long) ip->i_ino, 392 (long long) di_size); 393 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 394 XFS_ERRLEVEL_LOW, 395 ip->i_mount, dip); 396 return XFS_ERROR(EFSCORRUPTED); 397 } 398 399 size = (int)di_size; 400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 401 break; 402 case XFS_DINODE_FMT_EXTENTS: 403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 404 break; 405 case XFS_DINODE_FMT_BTREE: 406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 407 break; 408 default: 409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 410 ip->i_mount); 411 return XFS_ERROR(EFSCORRUPTED); 412 } 413 break; 414 415 default: 416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 417 return XFS_ERROR(EFSCORRUPTED); 418 } 419 if (error) { 420 return error; 421 } 422 if (!XFS_DFORK_Q(dip)) 423 return 0; 424 ASSERT(ip->i_afp == NULL); 425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 426 ip->i_afp->if_ext_max = 427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 428 switch (dip->di_aformat) { 429 case XFS_DINODE_FMT_LOCAL: 430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 431 size = be16_to_cpu(atp->hdr.totsize); 432 433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 435 "corrupt inode %Lu " 436 "(bad attr fork size %Ld).", 437 (unsigned long long) ip->i_ino, 438 (long long) size); 439 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 440 XFS_ERRLEVEL_LOW, 441 ip->i_mount, dip); 442 return XFS_ERROR(EFSCORRUPTED); 443 } 444 445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 446 break; 447 case XFS_DINODE_FMT_EXTENTS: 448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 449 break; 450 case XFS_DINODE_FMT_BTREE: 451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 452 break; 453 default: 454 error = XFS_ERROR(EFSCORRUPTED); 455 break; 456 } 457 if (error) { 458 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 459 ip->i_afp = NULL; 460 xfs_idestroy_fork(ip, XFS_DATA_FORK); 461 } 462 return error; 463 } 464 465 /* 466 * The file is in-lined in the on-disk inode. 467 * If it fits into if_inline_data, then copy 468 * it there, otherwise allocate a buffer for it 469 * and copy the data there. Either way, set 470 * if_data to point at the data. 471 * If we allocate a buffer for the data, make 472 * sure that its size is a multiple of 4 and 473 * record the real size in i_real_bytes. 474 */ 475 STATIC int 476 xfs_iformat_local( 477 xfs_inode_t *ip, 478 xfs_dinode_t *dip, 479 int whichfork, 480 int size) 481 { 482 xfs_ifork_t *ifp; 483 int real_size; 484 485 /* 486 * If the size is unreasonable, then something 487 * is wrong and we just bail out rather than crash in 488 * kmem_alloc() or memcpy() below. 489 */ 490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 492 "corrupt inode %Lu " 493 "(bad size %d for local fork, size = %d).", 494 (unsigned long long) ip->i_ino, size, 495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 497 ip->i_mount, dip); 498 return XFS_ERROR(EFSCORRUPTED); 499 } 500 ifp = XFS_IFORK_PTR(ip, whichfork); 501 real_size = 0; 502 if (size == 0) 503 ifp->if_u1.if_data = NULL; 504 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 506 else { 507 real_size = roundup(size, 4); 508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 509 } 510 ifp->if_bytes = size; 511 ifp->if_real_bytes = real_size; 512 if (size) 513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 514 ifp->if_flags &= ~XFS_IFEXTENTS; 515 ifp->if_flags |= XFS_IFINLINE; 516 return 0; 517 } 518 519 /* 520 * The file consists of a set of extents all 521 * of which fit into the on-disk inode. 522 * If there are few enough extents to fit into 523 * the if_inline_ext, then copy them there. 524 * Otherwise allocate a buffer for them and copy 525 * them into it. Either way, set if_extents 526 * to point at the extents. 527 */ 528 STATIC int 529 xfs_iformat_extents( 530 xfs_inode_t *ip, 531 xfs_dinode_t *dip, 532 int whichfork) 533 { 534 xfs_bmbt_rec_t *dp; 535 xfs_ifork_t *ifp; 536 int nex; 537 int size; 538 int i; 539 540 ifp = XFS_IFORK_PTR(ip, whichfork); 541 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 542 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 543 544 /* 545 * If the number of extents is unreasonable, then something 546 * is wrong and we just bail out rather than crash in 547 * kmem_alloc() or memcpy() below. 548 */ 549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 551 "corrupt inode %Lu ((a)extents = %d).", 552 (unsigned long long) ip->i_ino, nex); 553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 554 ip->i_mount, dip); 555 return XFS_ERROR(EFSCORRUPTED); 556 } 557 558 ifp->if_real_bytes = 0; 559 if (nex == 0) 560 ifp->if_u1.if_extents = NULL; 561 else if (nex <= XFS_INLINE_EXTS) 562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 563 else 564 xfs_iext_add(ifp, 0, nex); 565 566 ifp->if_bytes = size; 567 if (size) { 568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 570 for (i = 0; i < nex; i++, dp++) { 571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 572 ep->l0 = get_unaligned_be64(&dp->l0); 573 ep->l1 = get_unaligned_be64(&dp->l1); 574 } 575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 576 if (whichfork != XFS_DATA_FORK || 577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 578 if (unlikely(xfs_check_nostate_extents( 579 ifp, 0, nex))) { 580 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 581 XFS_ERRLEVEL_LOW, 582 ip->i_mount); 583 return XFS_ERROR(EFSCORRUPTED); 584 } 585 } 586 ifp->if_flags |= XFS_IFEXTENTS; 587 return 0; 588 } 589 590 /* 591 * The file has too many extents to fit into 592 * the inode, so they are in B-tree format. 593 * Allocate a buffer for the root of the B-tree 594 * and copy the root into it. The i_extents 595 * field will remain NULL until all of the 596 * extents are read in (when they are needed). 597 */ 598 STATIC int 599 xfs_iformat_btree( 600 xfs_inode_t *ip, 601 xfs_dinode_t *dip, 602 int whichfork) 603 { 604 xfs_bmdr_block_t *dfp; 605 xfs_ifork_t *ifp; 606 /* REFERENCED */ 607 int nrecs; 608 int size; 609 610 ifp = XFS_IFORK_PTR(ip, whichfork); 611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 612 size = XFS_BMAP_BROOT_SPACE(dfp); 613 nrecs = be16_to_cpu(dfp->bb_numrecs); 614 615 /* 616 * blow out if -- fork has less extents than can fit in 617 * fork (fork shouldn't be a btree format), root btree 618 * block has more records than can fit into the fork, 619 * or the number of extents is greater than the number of 620 * blocks. 621 */ 622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 623 || XFS_BMDR_SPACE_CALC(nrecs) > 624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 627 "corrupt inode %Lu (btree).", 628 (unsigned long long) ip->i_ino); 629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 630 ip->i_mount); 631 return XFS_ERROR(EFSCORRUPTED); 632 } 633 634 ifp->if_broot_bytes = size; 635 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 636 ASSERT(ifp->if_broot != NULL); 637 /* 638 * Copy and convert from the on-disk structure 639 * to the in-memory structure. 640 */ 641 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 643 ifp->if_broot, size); 644 ifp->if_flags &= ~XFS_IFEXTENTS; 645 ifp->if_flags |= XFS_IFBROOT; 646 647 return 0; 648 } 649 650 STATIC void 651 xfs_dinode_from_disk( 652 xfs_icdinode_t *to, 653 xfs_dinode_t *from) 654 { 655 to->di_magic = be16_to_cpu(from->di_magic); 656 to->di_mode = be16_to_cpu(from->di_mode); 657 to->di_version = from ->di_version; 658 to->di_format = from->di_format; 659 to->di_onlink = be16_to_cpu(from->di_onlink); 660 to->di_uid = be32_to_cpu(from->di_uid); 661 to->di_gid = be32_to_cpu(from->di_gid); 662 to->di_nlink = be32_to_cpu(from->di_nlink); 663 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 664 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 665 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 666 to->di_flushiter = be16_to_cpu(from->di_flushiter); 667 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 668 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 669 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 670 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 671 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 672 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 673 to->di_size = be64_to_cpu(from->di_size); 674 to->di_nblocks = be64_to_cpu(from->di_nblocks); 675 to->di_extsize = be32_to_cpu(from->di_extsize); 676 to->di_nextents = be32_to_cpu(from->di_nextents); 677 to->di_anextents = be16_to_cpu(from->di_anextents); 678 to->di_forkoff = from->di_forkoff; 679 to->di_aformat = from->di_aformat; 680 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 681 to->di_dmstate = be16_to_cpu(from->di_dmstate); 682 to->di_flags = be16_to_cpu(from->di_flags); 683 to->di_gen = be32_to_cpu(from->di_gen); 684 } 685 686 void 687 xfs_dinode_to_disk( 688 xfs_dinode_t *to, 689 xfs_icdinode_t *from) 690 { 691 to->di_magic = cpu_to_be16(from->di_magic); 692 to->di_mode = cpu_to_be16(from->di_mode); 693 to->di_version = from ->di_version; 694 to->di_format = from->di_format; 695 to->di_onlink = cpu_to_be16(from->di_onlink); 696 to->di_uid = cpu_to_be32(from->di_uid); 697 to->di_gid = cpu_to_be32(from->di_gid); 698 to->di_nlink = cpu_to_be32(from->di_nlink); 699 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 700 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 701 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 702 to->di_flushiter = cpu_to_be16(from->di_flushiter); 703 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 704 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 705 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 706 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 707 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 708 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 709 to->di_size = cpu_to_be64(from->di_size); 710 to->di_nblocks = cpu_to_be64(from->di_nblocks); 711 to->di_extsize = cpu_to_be32(from->di_extsize); 712 to->di_nextents = cpu_to_be32(from->di_nextents); 713 to->di_anextents = cpu_to_be16(from->di_anextents); 714 to->di_forkoff = from->di_forkoff; 715 to->di_aformat = from->di_aformat; 716 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 717 to->di_dmstate = cpu_to_be16(from->di_dmstate); 718 to->di_flags = cpu_to_be16(from->di_flags); 719 to->di_gen = cpu_to_be32(from->di_gen); 720 } 721 722 STATIC uint 723 _xfs_dic2xflags( 724 __uint16_t di_flags) 725 { 726 uint flags = 0; 727 728 if (di_flags & XFS_DIFLAG_ANY) { 729 if (di_flags & XFS_DIFLAG_REALTIME) 730 flags |= XFS_XFLAG_REALTIME; 731 if (di_flags & XFS_DIFLAG_PREALLOC) 732 flags |= XFS_XFLAG_PREALLOC; 733 if (di_flags & XFS_DIFLAG_IMMUTABLE) 734 flags |= XFS_XFLAG_IMMUTABLE; 735 if (di_flags & XFS_DIFLAG_APPEND) 736 flags |= XFS_XFLAG_APPEND; 737 if (di_flags & XFS_DIFLAG_SYNC) 738 flags |= XFS_XFLAG_SYNC; 739 if (di_flags & XFS_DIFLAG_NOATIME) 740 flags |= XFS_XFLAG_NOATIME; 741 if (di_flags & XFS_DIFLAG_NODUMP) 742 flags |= XFS_XFLAG_NODUMP; 743 if (di_flags & XFS_DIFLAG_RTINHERIT) 744 flags |= XFS_XFLAG_RTINHERIT; 745 if (di_flags & XFS_DIFLAG_PROJINHERIT) 746 flags |= XFS_XFLAG_PROJINHERIT; 747 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 748 flags |= XFS_XFLAG_NOSYMLINKS; 749 if (di_flags & XFS_DIFLAG_EXTSIZE) 750 flags |= XFS_XFLAG_EXTSIZE; 751 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 752 flags |= XFS_XFLAG_EXTSZINHERIT; 753 if (di_flags & XFS_DIFLAG_NODEFRAG) 754 flags |= XFS_XFLAG_NODEFRAG; 755 if (di_flags & XFS_DIFLAG_FILESTREAM) 756 flags |= XFS_XFLAG_FILESTREAM; 757 } 758 759 return flags; 760 } 761 762 uint 763 xfs_ip2xflags( 764 xfs_inode_t *ip) 765 { 766 xfs_icdinode_t *dic = &ip->i_d; 767 768 return _xfs_dic2xflags(dic->di_flags) | 769 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 770 } 771 772 uint 773 xfs_dic2xflags( 774 xfs_dinode_t *dip) 775 { 776 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 777 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 778 } 779 780 /* 781 * Read the disk inode attributes into the in-core inode structure. 782 */ 783 int 784 xfs_iread( 785 xfs_mount_t *mp, 786 xfs_trans_t *tp, 787 xfs_inode_t *ip, 788 uint iget_flags) 789 { 790 xfs_buf_t *bp; 791 xfs_dinode_t *dip; 792 int error; 793 794 /* 795 * Fill in the location information in the in-core inode. 796 */ 797 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 798 if (error) 799 return error; 800 801 /* 802 * Get pointers to the on-disk inode and the buffer containing it. 803 */ 804 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 805 XBF_LOCK, iget_flags); 806 if (error) 807 return error; 808 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 809 810 /* 811 * If we got something that isn't an inode it means someone 812 * (nfs or dmi) has a stale handle. 813 */ 814 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 815 #ifdef DEBUG 816 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 817 "dip->di_magic (0x%x) != " 818 "XFS_DINODE_MAGIC (0x%x)", 819 be16_to_cpu(dip->di_magic), 820 XFS_DINODE_MAGIC); 821 #endif /* DEBUG */ 822 error = XFS_ERROR(EINVAL); 823 goto out_brelse; 824 } 825 826 /* 827 * If the on-disk inode is already linked to a directory 828 * entry, copy all of the inode into the in-core inode. 829 * xfs_iformat() handles copying in the inode format 830 * specific information. 831 * Otherwise, just get the truly permanent information. 832 */ 833 if (dip->di_mode) { 834 xfs_dinode_from_disk(&ip->i_d, dip); 835 error = xfs_iformat(ip, dip); 836 if (error) { 837 #ifdef DEBUG 838 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 839 "xfs_iformat() returned error %d", 840 error); 841 #endif /* DEBUG */ 842 goto out_brelse; 843 } 844 } else { 845 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 846 ip->i_d.di_version = dip->di_version; 847 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 848 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 849 /* 850 * Make sure to pull in the mode here as well in 851 * case the inode is released without being used. 852 * This ensures that xfs_inactive() will see that 853 * the inode is already free and not try to mess 854 * with the uninitialized part of it. 855 */ 856 ip->i_d.di_mode = 0; 857 /* 858 * Initialize the per-fork minima and maxima for a new 859 * inode here. xfs_iformat will do it for old inodes. 860 */ 861 ip->i_df.if_ext_max = 862 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 863 } 864 865 /* 866 * The inode format changed when we moved the link count and 867 * made it 32 bits long. If this is an old format inode, 868 * convert it in memory to look like a new one. If it gets 869 * flushed to disk we will convert back before flushing or 870 * logging it. We zero out the new projid field and the old link 871 * count field. We'll handle clearing the pad field (the remains 872 * of the old uuid field) when we actually convert the inode to 873 * the new format. We don't change the version number so that we 874 * can distinguish this from a real new format inode. 875 */ 876 if (ip->i_d.di_version == 1) { 877 ip->i_d.di_nlink = ip->i_d.di_onlink; 878 ip->i_d.di_onlink = 0; 879 xfs_set_projid(ip, 0); 880 } 881 882 ip->i_delayed_blks = 0; 883 ip->i_size = ip->i_d.di_size; 884 885 /* 886 * Mark the buffer containing the inode as something to keep 887 * around for a while. This helps to keep recently accessed 888 * meta-data in-core longer. 889 */ 890 XFS_BUF_SET_REF(bp, XFS_INO_REF); 891 892 /* 893 * Use xfs_trans_brelse() to release the buffer containing the 894 * on-disk inode, because it was acquired with xfs_trans_read_buf() 895 * in xfs_itobp() above. If tp is NULL, this is just a normal 896 * brelse(). If we're within a transaction, then xfs_trans_brelse() 897 * will only release the buffer if it is not dirty within the 898 * transaction. It will be OK to release the buffer in this case, 899 * because inodes on disk are never destroyed and we will be 900 * locking the new in-core inode before putting it in the hash 901 * table where other processes can find it. Thus we don't have 902 * to worry about the inode being changed just because we released 903 * the buffer. 904 */ 905 out_brelse: 906 xfs_trans_brelse(tp, bp); 907 return error; 908 } 909 910 /* 911 * Read in extents from a btree-format inode. 912 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 913 */ 914 int 915 xfs_iread_extents( 916 xfs_trans_t *tp, 917 xfs_inode_t *ip, 918 int whichfork) 919 { 920 int error; 921 xfs_ifork_t *ifp; 922 xfs_extnum_t nextents; 923 924 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 925 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 926 ip->i_mount); 927 return XFS_ERROR(EFSCORRUPTED); 928 } 929 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 930 ifp = XFS_IFORK_PTR(ip, whichfork); 931 932 /* 933 * We know that the size is valid (it's checked in iformat_btree) 934 */ 935 ifp->if_lastex = NULLEXTNUM; 936 ifp->if_bytes = ifp->if_real_bytes = 0; 937 ifp->if_flags |= XFS_IFEXTENTS; 938 xfs_iext_add(ifp, 0, nextents); 939 error = xfs_bmap_read_extents(tp, ip, whichfork); 940 if (error) { 941 xfs_iext_destroy(ifp); 942 ifp->if_flags &= ~XFS_IFEXTENTS; 943 return error; 944 } 945 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 946 return 0; 947 } 948 949 /* 950 * Allocate an inode on disk and return a copy of its in-core version. 951 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 952 * appropriately within the inode. The uid and gid for the inode are 953 * set according to the contents of the given cred structure. 954 * 955 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 956 * has a free inode available, call xfs_iget() 957 * to obtain the in-core version of the allocated inode. Finally, 958 * fill in the inode and log its initial contents. In this case, 959 * ialloc_context would be set to NULL and call_again set to false. 960 * 961 * If xfs_dialloc() does not have an available inode, 962 * it will replenish its supply by doing an allocation. Since we can 963 * only do one allocation within a transaction without deadlocks, we 964 * must commit the current transaction before returning the inode itself. 965 * In this case, therefore, we will set call_again to true and return. 966 * The caller should then commit the current transaction, start a new 967 * transaction, and call xfs_ialloc() again to actually get the inode. 968 * 969 * To ensure that some other process does not grab the inode that 970 * was allocated during the first call to xfs_ialloc(), this routine 971 * also returns the [locked] bp pointing to the head of the freelist 972 * as ialloc_context. The caller should hold this buffer across 973 * the commit and pass it back into this routine on the second call. 974 * 975 * If we are allocating quota inodes, we do not have a parent inode 976 * to attach to or associate with (i.e. pip == NULL) because they 977 * are not linked into the directory structure - they are attached 978 * directly to the superblock - and so have no parent. 979 */ 980 int 981 xfs_ialloc( 982 xfs_trans_t *tp, 983 xfs_inode_t *pip, 984 mode_t mode, 985 xfs_nlink_t nlink, 986 xfs_dev_t rdev, 987 prid_t prid, 988 int okalloc, 989 xfs_buf_t **ialloc_context, 990 boolean_t *call_again, 991 xfs_inode_t **ipp) 992 { 993 xfs_ino_t ino; 994 xfs_inode_t *ip; 995 uint flags; 996 int error; 997 timespec_t tv; 998 int filestreams = 0; 999 1000 /* 1001 * Call the space management code to pick 1002 * the on-disk inode to be allocated. 1003 */ 1004 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1005 ialloc_context, call_again, &ino); 1006 if (error) 1007 return error; 1008 if (*call_again || ino == NULLFSINO) { 1009 *ipp = NULL; 1010 return 0; 1011 } 1012 ASSERT(*ialloc_context == NULL); 1013 1014 /* 1015 * Get the in-core inode with the lock held exclusively. 1016 * This is because we're setting fields here we need 1017 * to prevent others from looking at until we're done. 1018 */ 1019 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1020 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1021 if (error) 1022 return error; 1023 ASSERT(ip != NULL); 1024 1025 ip->i_d.di_mode = (__uint16_t)mode; 1026 ip->i_d.di_onlink = 0; 1027 ip->i_d.di_nlink = nlink; 1028 ASSERT(ip->i_d.di_nlink == nlink); 1029 ip->i_d.di_uid = current_fsuid(); 1030 ip->i_d.di_gid = current_fsgid(); 1031 xfs_set_projid(ip, prid); 1032 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1033 1034 /* 1035 * If the superblock version is up to where we support new format 1036 * inodes and this is currently an old format inode, then change 1037 * the inode version number now. This way we only do the conversion 1038 * here rather than here and in the flush/logging code. 1039 */ 1040 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1041 ip->i_d.di_version == 1) { 1042 ip->i_d.di_version = 2; 1043 /* 1044 * We've already zeroed the old link count, the projid field, 1045 * and the pad field. 1046 */ 1047 } 1048 1049 /* 1050 * Project ids won't be stored on disk if we are using a version 1 inode. 1051 */ 1052 if ((prid != 0) && (ip->i_d.di_version == 1)) 1053 xfs_bump_ino_vers2(tp, ip); 1054 1055 if (pip && XFS_INHERIT_GID(pip)) { 1056 ip->i_d.di_gid = pip->i_d.di_gid; 1057 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1058 ip->i_d.di_mode |= S_ISGID; 1059 } 1060 } 1061 1062 /* 1063 * If the group ID of the new file does not match the effective group 1064 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1065 * (and only if the irix_sgid_inherit compatibility variable is set). 1066 */ 1067 if ((irix_sgid_inherit) && 1068 (ip->i_d.di_mode & S_ISGID) && 1069 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1070 ip->i_d.di_mode &= ~S_ISGID; 1071 } 1072 1073 ip->i_d.di_size = 0; 1074 ip->i_size = 0; 1075 ip->i_d.di_nextents = 0; 1076 ASSERT(ip->i_d.di_nblocks == 0); 1077 1078 nanotime(&tv); 1079 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1080 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1081 ip->i_d.di_atime = ip->i_d.di_mtime; 1082 ip->i_d.di_ctime = ip->i_d.di_mtime; 1083 1084 /* 1085 * di_gen will have been taken care of in xfs_iread. 1086 */ 1087 ip->i_d.di_extsize = 0; 1088 ip->i_d.di_dmevmask = 0; 1089 ip->i_d.di_dmstate = 0; 1090 ip->i_d.di_flags = 0; 1091 flags = XFS_ILOG_CORE; 1092 switch (mode & S_IFMT) { 1093 case S_IFIFO: 1094 case S_IFCHR: 1095 case S_IFBLK: 1096 case S_IFSOCK: 1097 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1098 ip->i_df.if_u2.if_rdev = rdev; 1099 ip->i_df.if_flags = 0; 1100 flags |= XFS_ILOG_DEV; 1101 break; 1102 case S_IFREG: 1103 /* 1104 * we can't set up filestreams until after the VFS inode 1105 * is set up properly. 1106 */ 1107 if (pip && xfs_inode_is_filestream(pip)) 1108 filestreams = 1; 1109 /* fall through */ 1110 case S_IFDIR: 1111 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1112 uint di_flags = 0; 1113 1114 if ((mode & S_IFMT) == S_IFDIR) { 1115 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1116 di_flags |= XFS_DIFLAG_RTINHERIT; 1117 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1118 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1119 ip->i_d.di_extsize = pip->i_d.di_extsize; 1120 } 1121 } else if ((mode & S_IFMT) == S_IFREG) { 1122 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1123 di_flags |= XFS_DIFLAG_REALTIME; 1124 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1125 di_flags |= XFS_DIFLAG_EXTSIZE; 1126 ip->i_d.di_extsize = pip->i_d.di_extsize; 1127 } 1128 } 1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1130 xfs_inherit_noatime) 1131 di_flags |= XFS_DIFLAG_NOATIME; 1132 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1133 xfs_inherit_nodump) 1134 di_flags |= XFS_DIFLAG_NODUMP; 1135 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1136 xfs_inherit_sync) 1137 di_flags |= XFS_DIFLAG_SYNC; 1138 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1139 xfs_inherit_nosymlinks) 1140 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1141 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1142 di_flags |= XFS_DIFLAG_PROJINHERIT; 1143 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1144 xfs_inherit_nodefrag) 1145 di_flags |= XFS_DIFLAG_NODEFRAG; 1146 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1147 di_flags |= XFS_DIFLAG_FILESTREAM; 1148 ip->i_d.di_flags |= di_flags; 1149 } 1150 /* FALLTHROUGH */ 1151 case S_IFLNK: 1152 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1153 ip->i_df.if_flags = XFS_IFEXTENTS; 1154 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1155 ip->i_df.if_u1.if_extents = NULL; 1156 break; 1157 default: 1158 ASSERT(0); 1159 } 1160 /* 1161 * Attribute fork settings for new inode. 1162 */ 1163 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1164 ip->i_d.di_anextents = 0; 1165 1166 /* 1167 * Log the new values stuffed into the inode. 1168 */ 1169 xfs_trans_log_inode(tp, ip, flags); 1170 1171 /* now that we have an i_mode we can setup inode ops and unlock */ 1172 xfs_setup_inode(ip); 1173 1174 /* now we have set up the vfs inode we can associate the filestream */ 1175 if (filestreams) { 1176 error = xfs_filestream_associate(pip, ip); 1177 if (error < 0) 1178 return -error; 1179 if (!error) 1180 xfs_iflags_set(ip, XFS_IFILESTREAM); 1181 } 1182 1183 *ipp = ip; 1184 return 0; 1185 } 1186 1187 /* 1188 * Check to make sure that there are no blocks allocated to the 1189 * file beyond the size of the file. We don't check this for 1190 * files with fixed size extents or real time extents, but we 1191 * at least do it for regular files. 1192 */ 1193 #ifdef DEBUG 1194 void 1195 xfs_isize_check( 1196 xfs_mount_t *mp, 1197 xfs_inode_t *ip, 1198 xfs_fsize_t isize) 1199 { 1200 xfs_fileoff_t map_first; 1201 int nimaps; 1202 xfs_bmbt_irec_t imaps[2]; 1203 1204 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1205 return; 1206 1207 if (XFS_IS_REALTIME_INODE(ip)) 1208 return; 1209 1210 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1211 return; 1212 1213 nimaps = 2; 1214 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1215 /* 1216 * The filesystem could be shutting down, so bmapi may return 1217 * an error. 1218 */ 1219 if (xfs_bmapi(NULL, ip, map_first, 1220 (XFS_B_TO_FSB(mp, 1221 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1222 map_first), 1223 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1224 NULL)) 1225 return; 1226 ASSERT(nimaps == 1); 1227 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1228 } 1229 #endif /* DEBUG */ 1230 1231 /* 1232 * Calculate the last possible buffered byte in a file. This must 1233 * include data that was buffered beyond the EOF by the write code. 1234 * This also needs to deal with overflowing the xfs_fsize_t type 1235 * which can happen for sizes near the limit. 1236 * 1237 * We also need to take into account any blocks beyond the EOF. It 1238 * may be the case that they were buffered by a write which failed. 1239 * In that case the pages will still be in memory, but the inode size 1240 * will never have been updated. 1241 */ 1242 STATIC xfs_fsize_t 1243 xfs_file_last_byte( 1244 xfs_inode_t *ip) 1245 { 1246 xfs_mount_t *mp; 1247 xfs_fsize_t last_byte; 1248 xfs_fileoff_t last_block; 1249 xfs_fileoff_t size_last_block; 1250 int error; 1251 1252 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1253 1254 mp = ip->i_mount; 1255 /* 1256 * Only check for blocks beyond the EOF if the extents have 1257 * been read in. This eliminates the need for the inode lock, 1258 * and it also saves us from looking when it really isn't 1259 * necessary. 1260 */ 1261 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1262 xfs_ilock(ip, XFS_ILOCK_SHARED); 1263 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1264 XFS_DATA_FORK); 1265 xfs_iunlock(ip, XFS_ILOCK_SHARED); 1266 if (error) { 1267 last_block = 0; 1268 } 1269 } else { 1270 last_block = 0; 1271 } 1272 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1273 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1274 1275 last_byte = XFS_FSB_TO_B(mp, last_block); 1276 if (last_byte < 0) { 1277 return XFS_MAXIOFFSET(mp); 1278 } 1279 last_byte += (1 << mp->m_writeio_log); 1280 if (last_byte < 0) { 1281 return XFS_MAXIOFFSET(mp); 1282 } 1283 return last_byte; 1284 } 1285 1286 /* 1287 * Start the truncation of the file to new_size. The new size 1288 * must be smaller than the current size. This routine will 1289 * clear the buffer and page caches of file data in the removed 1290 * range, and xfs_itruncate_finish() will remove the underlying 1291 * disk blocks. 1292 * 1293 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1294 * must NOT have the inode lock held at all. This is because we're 1295 * calling into the buffer/page cache code and we can't hold the 1296 * inode lock when we do so. 1297 * 1298 * We need to wait for any direct I/Os in flight to complete before we 1299 * proceed with the truncate. This is needed to prevent the extents 1300 * being read or written by the direct I/Os from being removed while the 1301 * I/O is in flight as there is no other method of synchronising 1302 * direct I/O with the truncate operation. Also, because we hold 1303 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1304 * started until the truncate completes and drops the lock. Essentially, 1305 * the xfs_ioend_wait() call forms an I/O barrier that provides strict 1306 * ordering between direct I/Os and the truncate operation. 1307 * 1308 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1309 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1310 * in the case that the caller is locking things out of order and 1311 * may not be able to call xfs_itruncate_finish() with the inode lock 1312 * held without dropping the I/O lock. If the caller must drop the 1313 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1314 * must be called again with all the same restrictions as the initial 1315 * call. 1316 */ 1317 int 1318 xfs_itruncate_start( 1319 xfs_inode_t *ip, 1320 uint flags, 1321 xfs_fsize_t new_size) 1322 { 1323 xfs_fsize_t last_byte; 1324 xfs_off_t toss_start; 1325 xfs_mount_t *mp; 1326 int error = 0; 1327 1328 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1329 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1330 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1331 (flags == XFS_ITRUNC_MAYBE)); 1332 1333 mp = ip->i_mount; 1334 1335 /* wait for the completion of any pending DIOs */ 1336 if (new_size == 0 || new_size < ip->i_size) 1337 xfs_ioend_wait(ip); 1338 1339 /* 1340 * Call toss_pages or flushinval_pages to get rid of pages 1341 * overlapping the region being removed. We have to use 1342 * the less efficient flushinval_pages in the case that the 1343 * caller may not be able to finish the truncate without 1344 * dropping the inode's I/O lock. Make sure 1345 * to catch any pages brought in by buffers overlapping 1346 * the EOF by searching out beyond the isize by our 1347 * block size. We round new_size up to a block boundary 1348 * so that we don't toss things on the same block as 1349 * new_size but before it. 1350 * 1351 * Before calling toss_page or flushinval_pages, make sure to 1352 * call remapf() over the same region if the file is mapped. 1353 * This frees up mapped file references to the pages in the 1354 * given range and for the flushinval_pages case it ensures 1355 * that we get the latest mapped changes flushed out. 1356 */ 1357 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1358 toss_start = XFS_FSB_TO_B(mp, toss_start); 1359 if (toss_start < 0) { 1360 /* 1361 * The place to start tossing is beyond our maximum 1362 * file size, so there is no way that the data extended 1363 * out there. 1364 */ 1365 return 0; 1366 } 1367 last_byte = xfs_file_last_byte(ip); 1368 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte); 1369 if (last_byte > toss_start) { 1370 if (flags & XFS_ITRUNC_DEFINITE) { 1371 xfs_tosspages(ip, toss_start, 1372 -1, FI_REMAPF_LOCKED); 1373 } else { 1374 error = xfs_flushinval_pages(ip, toss_start, 1375 -1, FI_REMAPF_LOCKED); 1376 } 1377 } 1378 1379 #ifdef DEBUG 1380 if (new_size == 0) { 1381 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1382 } 1383 #endif 1384 return error; 1385 } 1386 1387 /* 1388 * Shrink the file to the given new_size. The new size must be smaller than 1389 * the current size. This will free up the underlying blocks in the removed 1390 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1391 * 1392 * The transaction passed to this routine must have made a permanent log 1393 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1394 * given transaction and start new ones, so make sure everything involved in 1395 * the transaction is tidy before calling here. Some transaction will be 1396 * returned to the caller to be committed. The incoming transaction must 1397 * already include the inode, and both inode locks must be held exclusively. 1398 * The inode must also be "held" within the transaction. On return the inode 1399 * will be "held" within the returned transaction. This routine does NOT 1400 * require any disk space to be reserved for it within the transaction. 1401 * 1402 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1403 * indicates the fork which is to be truncated. For the attribute fork we only 1404 * support truncation to size 0. 1405 * 1406 * We use the sync parameter to indicate whether or not the first transaction 1407 * we perform might have to be synchronous. For the attr fork, it needs to be 1408 * so if the unlink of the inode is not yet known to be permanent in the log. 1409 * This keeps us from freeing and reusing the blocks of the attribute fork 1410 * before the unlink of the inode becomes permanent. 1411 * 1412 * For the data fork, we normally have to run synchronously if we're being 1413 * called out of the inactive path or we're being called out of the create path 1414 * where we're truncating an existing file. Either way, the truncate needs to 1415 * be sync so blocks don't reappear in the file with altered data in case of a 1416 * crash. wsync filesystems can run the first case async because anything that 1417 * shrinks the inode has to run sync so by the time we're called here from 1418 * inactive, the inode size is permanently set to 0. 1419 * 1420 * Calls from the truncate path always need to be sync unless we're in a wsync 1421 * filesystem and the file has already been unlinked. 1422 * 1423 * The caller is responsible for correctly setting the sync parameter. It gets 1424 * too hard for us to guess here which path we're being called out of just 1425 * based on inode state. 1426 * 1427 * If we get an error, we must return with the inode locked and linked into the 1428 * current transaction. This keeps things simple for the higher level code, 1429 * because it always knows that the inode is locked and held in the transaction 1430 * that returns to it whether errors occur or not. We don't mark the inode 1431 * dirty on error so that transactions can be easily aborted if possible. 1432 */ 1433 int 1434 xfs_itruncate_finish( 1435 xfs_trans_t **tp, 1436 xfs_inode_t *ip, 1437 xfs_fsize_t new_size, 1438 int fork, 1439 int sync) 1440 { 1441 xfs_fsblock_t first_block; 1442 xfs_fileoff_t first_unmap_block; 1443 xfs_fileoff_t last_block; 1444 xfs_filblks_t unmap_len=0; 1445 xfs_mount_t *mp; 1446 xfs_trans_t *ntp; 1447 int done; 1448 int committed; 1449 xfs_bmap_free_t free_list; 1450 int error; 1451 1452 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1453 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1454 ASSERT(*tp != NULL); 1455 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1456 ASSERT(ip->i_transp == *tp); 1457 ASSERT(ip->i_itemp != NULL); 1458 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1459 1460 1461 ntp = *tp; 1462 mp = (ntp)->t_mountp; 1463 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1464 1465 /* 1466 * We only support truncating the entire attribute fork. 1467 */ 1468 if (fork == XFS_ATTR_FORK) { 1469 new_size = 0LL; 1470 } 1471 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1472 trace_xfs_itruncate_finish_start(ip, new_size); 1473 1474 /* 1475 * The first thing we do is set the size to new_size permanently 1476 * on disk. This way we don't have to worry about anyone ever 1477 * being able to look at the data being freed even in the face 1478 * of a crash. What we're getting around here is the case where 1479 * we free a block, it is allocated to another file, it is written 1480 * to, and then we crash. If the new data gets written to the 1481 * file but the log buffers containing the free and reallocation 1482 * don't, then we'd end up with garbage in the blocks being freed. 1483 * As long as we make the new_size permanent before actually 1484 * freeing any blocks it doesn't matter if they get writtten to. 1485 * 1486 * The callers must signal into us whether or not the size 1487 * setting here must be synchronous. There are a few cases 1488 * where it doesn't have to be synchronous. Those cases 1489 * occur if the file is unlinked and we know the unlink is 1490 * permanent or if the blocks being truncated are guaranteed 1491 * to be beyond the inode eof (regardless of the link count) 1492 * and the eof value is permanent. Both of these cases occur 1493 * only on wsync-mounted filesystems. In those cases, we're 1494 * guaranteed that no user will ever see the data in the blocks 1495 * that are being truncated so the truncate can run async. 1496 * In the free beyond eof case, the file may wind up with 1497 * more blocks allocated to it than it needs if we crash 1498 * and that won't get fixed until the next time the file 1499 * is re-opened and closed but that's ok as that shouldn't 1500 * be too many blocks. 1501 * 1502 * However, we can't just make all wsync xactions run async 1503 * because there's one call out of the create path that needs 1504 * to run sync where it's truncating an existing file to size 1505 * 0 whose size is > 0. 1506 * 1507 * It's probably possible to come up with a test in this 1508 * routine that would correctly distinguish all the above 1509 * cases from the values of the function parameters and the 1510 * inode state but for sanity's sake, I've decided to let the 1511 * layers above just tell us. It's simpler to correctly figure 1512 * out in the layer above exactly under what conditions we 1513 * can run async and I think it's easier for others read and 1514 * follow the logic in case something has to be changed. 1515 * cscope is your friend -- rcc. 1516 * 1517 * The attribute fork is much simpler. 1518 * 1519 * For the attribute fork we allow the caller to tell us whether 1520 * the unlink of the inode that led to this call is yet permanent 1521 * in the on disk log. If it is not and we will be freeing extents 1522 * in this inode then we make the first transaction synchronous 1523 * to make sure that the unlink is permanent by the time we free 1524 * the blocks. 1525 */ 1526 if (fork == XFS_DATA_FORK) { 1527 if (ip->i_d.di_nextents > 0) { 1528 /* 1529 * If we are not changing the file size then do 1530 * not update the on-disk file size - we may be 1531 * called from xfs_inactive_free_eofblocks(). If we 1532 * update the on-disk file size and then the system 1533 * crashes before the contents of the file are 1534 * flushed to disk then the files may be full of 1535 * holes (ie NULL files bug). 1536 */ 1537 if (ip->i_size != new_size) { 1538 ip->i_d.di_size = new_size; 1539 ip->i_size = new_size; 1540 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1541 } 1542 } 1543 } else if (sync) { 1544 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1545 if (ip->i_d.di_anextents > 0) 1546 xfs_trans_set_sync(ntp); 1547 } 1548 ASSERT(fork == XFS_DATA_FORK || 1549 (fork == XFS_ATTR_FORK && 1550 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1551 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1552 1553 /* 1554 * Since it is possible for space to become allocated beyond 1555 * the end of the file (in a crash where the space is allocated 1556 * but the inode size is not yet updated), simply remove any 1557 * blocks which show up between the new EOF and the maximum 1558 * possible file size. If the first block to be removed is 1559 * beyond the maximum file size (ie it is the same as last_block), 1560 * then there is nothing to do. 1561 */ 1562 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1563 ASSERT(first_unmap_block <= last_block); 1564 done = 0; 1565 if (last_block == first_unmap_block) { 1566 done = 1; 1567 } else { 1568 unmap_len = last_block - first_unmap_block + 1; 1569 } 1570 while (!done) { 1571 /* 1572 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1573 * will tell us whether it freed the entire range or 1574 * not. If this is a synchronous mount (wsync), 1575 * then we can tell bunmapi to keep all the 1576 * transactions asynchronous since the unlink 1577 * transaction that made this inode inactive has 1578 * already hit the disk. There's no danger of 1579 * the freed blocks being reused, there being a 1580 * crash, and the reused blocks suddenly reappearing 1581 * in this file with garbage in them once recovery 1582 * runs. 1583 */ 1584 xfs_bmap_init(&free_list, &first_block); 1585 error = xfs_bunmapi(ntp, ip, 1586 first_unmap_block, unmap_len, 1587 xfs_bmapi_aflag(fork), 1588 XFS_ITRUNC_MAX_EXTENTS, 1589 &first_block, &free_list, 1590 &done); 1591 if (error) { 1592 /* 1593 * If the bunmapi call encounters an error, 1594 * return to the caller where the transaction 1595 * can be properly aborted. We just need to 1596 * make sure we're not holding any resources 1597 * that we were not when we came in. 1598 */ 1599 xfs_bmap_cancel(&free_list); 1600 return error; 1601 } 1602 1603 /* 1604 * Duplicate the transaction that has the permanent 1605 * reservation and commit the old transaction. 1606 */ 1607 error = xfs_bmap_finish(tp, &free_list, &committed); 1608 ntp = *tp; 1609 if (committed) 1610 xfs_trans_ijoin(ntp, ip); 1611 1612 if (error) { 1613 /* 1614 * If the bmap finish call encounters an error, return 1615 * to the caller where the transaction can be properly 1616 * aborted. We just need to make sure we're not 1617 * holding any resources that we were not when we came 1618 * in. 1619 * 1620 * Aborting from this point might lose some blocks in 1621 * the file system, but oh well. 1622 */ 1623 xfs_bmap_cancel(&free_list); 1624 return error; 1625 } 1626 1627 if (committed) { 1628 /* 1629 * Mark the inode dirty so it will be logged and 1630 * moved forward in the log as part of every commit. 1631 */ 1632 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1633 } 1634 1635 ntp = xfs_trans_dup(ntp); 1636 error = xfs_trans_commit(*tp, 0); 1637 *tp = ntp; 1638 1639 xfs_trans_ijoin(ntp, ip); 1640 1641 if (error) 1642 return error; 1643 /* 1644 * transaction commit worked ok so we can drop the extra ticket 1645 * reference that we gained in xfs_trans_dup() 1646 */ 1647 xfs_log_ticket_put(ntp->t_ticket); 1648 error = xfs_trans_reserve(ntp, 0, 1649 XFS_ITRUNCATE_LOG_RES(mp), 0, 1650 XFS_TRANS_PERM_LOG_RES, 1651 XFS_ITRUNCATE_LOG_COUNT); 1652 if (error) 1653 return error; 1654 } 1655 /* 1656 * Only update the size in the case of the data fork, but 1657 * always re-log the inode so that our permanent transaction 1658 * can keep on rolling it forward in the log. 1659 */ 1660 if (fork == XFS_DATA_FORK) { 1661 xfs_isize_check(mp, ip, new_size); 1662 /* 1663 * If we are not changing the file size then do 1664 * not update the on-disk file size - we may be 1665 * called from xfs_inactive_free_eofblocks(). If we 1666 * update the on-disk file size and then the system 1667 * crashes before the contents of the file are 1668 * flushed to disk then the files may be full of 1669 * holes (ie NULL files bug). 1670 */ 1671 if (ip->i_size != new_size) { 1672 ip->i_d.di_size = new_size; 1673 ip->i_size = new_size; 1674 } 1675 } 1676 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1677 ASSERT((new_size != 0) || 1678 (fork == XFS_ATTR_FORK) || 1679 (ip->i_delayed_blks == 0)); 1680 ASSERT((new_size != 0) || 1681 (fork == XFS_ATTR_FORK) || 1682 (ip->i_d.di_nextents == 0)); 1683 trace_xfs_itruncate_finish_end(ip, new_size); 1684 return 0; 1685 } 1686 1687 /* 1688 * This is called when the inode's link count goes to 0. 1689 * We place the on-disk inode on a list in the AGI. It 1690 * will be pulled from this list when the inode is freed. 1691 */ 1692 int 1693 xfs_iunlink( 1694 xfs_trans_t *tp, 1695 xfs_inode_t *ip) 1696 { 1697 xfs_mount_t *mp; 1698 xfs_agi_t *agi; 1699 xfs_dinode_t *dip; 1700 xfs_buf_t *agibp; 1701 xfs_buf_t *ibp; 1702 xfs_agino_t agino; 1703 short bucket_index; 1704 int offset; 1705 int error; 1706 1707 ASSERT(ip->i_d.di_nlink == 0); 1708 ASSERT(ip->i_d.di_mode != 0); 1709 ASSERT(ip->i_transp == tp); 1710 1711 mp = tp->t_mountp; 1712 1713 /* 1714 * Get the agi buffer first. It ensures lock ordering 1715 * on the list. 1716 */ 1717 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1718 if (error) 1719 return error; 1720 agi = XFS_BUF_TO_AGI(agibp); 1721 1722 /* 1723 * Get the index into the agi hash table for the 1724 * list this inode will go on. 1725 */ 1726 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1727 ASSERT(agino != 0); 1728 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1729 ASSERT(agi->agi_unlinked[bucket_index]); 1730 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1731 1732 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1733 /* 1734 * There is already another inode in the bucket we need 1735 * to add ourselves to. Add us at the front of the list. 1736 * Here we put the head pointer into our next pointer, 1737 * and then we fall through to point the head at us. 1738 */ 1739 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1740 if (error) 1741 return error; 1742 1743 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1744 /* both on-disk, don't endian flip twice */ 1745 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1746 offset = ip->i_imap.im_boffset + 1747 offsetof(xfs_dinode_t, di_next_unlinked); 1748 xfs_trans_inode_buf(tp, ibp); 1749 xfs_trans_log_buf(tp, ibp, offset, 1750 (offset + sizeof(xfs_agino_t) - 1)); 1751 xfs_inobp_check(mp, ibp); 1752 } 1753 1754 /* 1755 * Point the bucket head pointer at the inode being inserted. 1756 */ 1757 ASSERT(agino != 0); 1758 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1759 offset = offsetof(xfs_agi_t, agi_unlinked) + 1760 (sizeof(xfs_agino_t) * bucket_index); 1761 xfs_trans_log_buf(tp, agibp, offset, 1762 (offset + sizeof(xfs_agino_t) - 1)); 1763 return 0; 1764 } 1765 1766 /* 1767 * Pull the on-disk inode from the AGI unlinked list. 1768 */ 1769 STATIC int 1770 xfs_iunlink_remove( 1771 xfs_trans_t *tp, 1772 xfs_inode_t *ip) 1773 { 1774 xfs_ino_t next_ino; 1775 xfs_mount_t *mp; 1776 xfs_agi_t *agi; 1777 xfs_dinode_t *dip; 1778 xfs_buf_t *agibp; 1779 xfs_buf_t *ibp; 1780 xfs_agnumber_t agno; 1781 xfs_agino_t agino; 1782 xfs_agino_t next_agino; 1783 xfs_buf_t *last_ibp; 1784 xfs_dinode_t *last_dip = NULL; 1785 short bucket_index; 1786 int offset, last_offset = 0; 1787 int error; 1788 1789 mp = tp->t_mountp; 1790 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1791 1792 /* 1793 * Get the agi buffer first. It ensures lock ordering 1794 * on the list. 1795 */ 1796 error = xfs_read_agi(mp, tp, agno, &agibp); 1797 if (error) 1798 return error; 1799 1800 agi = XFS_BUF_TO_AGI(agibp); 1801 1802 /* 1803 * Get the index into the agi hash table for the 1804 * list this inode will go on. 1805 */ 1806 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1807 ASSERT(agino != 0); 1808 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1809 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1810 ASSERT(agi->agi_unlinked[bucket_index]); 1811 1812 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1813 /* 1814 * We're at the head of the list. Get the inode's 1815 * on-disk buffer to see if there is anyone after us 1816 * on the list. Only modify our next pointer if it 1817 * is not already NULLAGINO. This saves us the overhead 1818 * of dealing with the buffer when there is no need to 1819 * change it. 1820 */ 1821 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1822 if (error) { 1823 cmn_err(CE_WARN, 1824 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1825 error, mp->m_fsname); 1826 return error; 1827 } 1828 next_agino = be32_to_cpu(dip->di_next_unlinked); 1829 ASSERT(next_agino != 0); 1830 if (next_agino != NULLAGINO) { 1831 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1832 offset = ip->i_imap.im_boffset + 1833 offsetof(xfs_dinode_t, di_next_unlinked); 1834 xfs_trans_inode_buf(tp, ibp); 1835 xfs_trans_log_buf(tp, ibp, offset, 1836 (offset + sizeof(xfs_agino_t) - 1)); 1837 xfs_inobp_check(mp, ibp); 1838 } else { 1839 xfs_trans_brelse(tp, ibp); 1840 } 1841 /* 1842 * Point the bucket head pointer at the next inode. 1843 */ 1844 ASSERT(next_agino != 0); 1845 ASSERT(next_agino != agino); 1846 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1847 offset = offsetof(xfs_agi_t, agi_unlinked) + 1848 (sizeof(xfs_agino_t) * bucket_index); 1849 xfs_trans_log_buf(tp, agibp, offset, 1850 (offset + sizeof(xfs_agino_t) - 1)); 1851 } else { 1852 /* 1853 * We need to search the list for the inode being freed. 1854 */ 1855 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1856 last_ibp = NULL; 1857 while (next_agino != agino) { 1858 /* 1859 * If the last inode wasn't the one pointing to 1860 * us, then release its buffer since we're not 1861 * going to do anything with it. 1862 */ 1863 if (last_ibp != NULL) { 1864 xfs_trans_brelse(tp, last_ibp); 1865 } 1866 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1867 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1868 &last_ibp, &last_offset, 0); 1869 if (error) { 1870 cmn_err(CE_WARN, 1871 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1872 error, mp->m_fsname); 1873 return error; 1874 } 1875 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1876 ASSERT(next_agino != NULLAGINO); 1877 ASSERT(next_agino != 0); 1878 } 1879 /* 1880 * Now last_ibp points to the buffer previous to us on 1881 * the unlinked list. Pull us from the list. 1882 */ 1883 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1884 if (error) { 1885 cmn_err(CE_WARN, 1886 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1887 error, mp->m_fsname); 1888 return error; 1889 } 1890 next_agino = be32_to_cpu(dip->di_next_unlinked); 1891 ASSERT(next_agino != 0); 1892 ASSERT(next_agino != agino); 1893 if (next_agino != NULLAGINO) { 1894 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1895 offset = ip->i_imap.im_boffset + 1896 offsetof(xfs_dinode_t, di_next_unlinked); 1897 xfs_trans_inode_buf(tp, ibp); 1898 xfs_trans_log_buf(tp, ibp, offset, 1899 (offset + sizeof(xfs_agino_t) - 1)); 1900 xfs_inobp_check(mp, ibp); 1901 } else { 1902 xfs_trans_brelse(tp, ibp); 1903 } 1904 /* 1905 * Point the previous inode on the list to the next inode. 1906 */ 1907 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1908 ASSERT(next_agino != 0); 1909 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1910 xfs_trans_inode_buf(tp, last_ibp); 1911 xfs_trans_log_buf(tp, last_ibp, offset, 1912 (offset + sizeof(xfs_agino_t) - 1)); 1913 xfs_inobp_check(mp, last_ibp); 1914 } 1915 return 0; 1916 } 1917 1918 /* 1919 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1920 * inodes that are in memory - they all must be marked stale and attached to 1921 * the cluster buffer. 1922 */ 1923 STATIC void 1924 xfs_ifree_cluster( 1925 xfs_inode_t *free_ip, 1926 xfs_trans_t *tp, 1927 xfs_ino_t inum) 1928 { 1929 xfs_mount_t *mp = free_ip->i_mount; 1930 int blks_per_cluster; 1931 int nbufs; 1932 int ninodes; 1933 int i, j; 1934 xfs_daddr_t blkno; 1935 xfs_buf_t *bp; 1936 xfs_inode_t *ip; 1937 xfs_inode_log_item_t *iip; 1938 xfs_log_item_t *lip; 1939 struct xfs_perag *pag; 1940 1941 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1942 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1943 blks_per_cluster = 1; 1944 ninodes = mp->m_sb.sb_inopblock; 1945 nbufs = XFS_IALLOC_BLOCKS(mp); 1946 } else { 1947 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1948 mp->m_sb.sb_blocksize; 1949 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1950 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1951 } 1952 1953 for (j = 0; j < nbufs; j++, inum += ninodes) { 1954 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1955 XFS_INO_TO_AGBNO(mp, inum)); 1956 1957 /* 1958 * We obtain and lock the backing buffer first in the process 1959 * here, as we have to ensure that any dirty inode that we 1960 * can't get the flush lock on is attached to the buffer. 1961 * If we scan the in-memory inodes first, then buffer IO can 1962 * complete before we get a lock on it, and hence we may fail 1963 * to mark all the active inodes on the buffer stale. 1964 */ 1965 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1966 mp->m_bsize * blks_per_cluster, 1967 XBF_LOCK); 1968 1969 /* 1970 * Walk the inodes already attached to the buffer and mark them 1971 * stale. These will all have the flush locks held, so an 1972 * in-memory inode walk can't lock them. By marking them all 1973 * stale first, we will not attempt to lock them in the loop 1974 * below as the XFS_ISTALE flag will be set. 1975 */ 1976 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 1977 while (lip) { 1978 if (lip->li_type == XFS_LI_INODE) { 1979 iip = (xfs_inode_log_item_t *)lip; 1980 ASSERT(iip->ili_logged == 1); 1981 lip->li_cb = xfs_istale_done; 1982 xfs_trans_ail_copy_lsn(mp->m_ail, 1983 &iip->ili_flush_lsn, 1984 &iip->ili_item.li_lsn); 1985 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1986 } 1987 lip = lip->li_bio_list; 1988 } 1989 1990 1991 /* 1992 * For each inode in memory attempt to add it to the inode 1993 * buffer and set it up for being staled on buffer IO 1994 * completion. This is safe as we've locked out tail pushing 1995 * and flushing by locking the buffer. 1996 * 1997 * We have already marked every inode that was part of a 1998 * transaction stale above, which means there is no point in 1999 * even trying to lock them. 2000 */ 2001 for (i = 0; i < ninodes; i++) { 2002 retry: 2003 read_lock(&pag->pag_ici_lock); 2004 ip = radix_tree_lookup(&pag->pag_ici_root, 2005 XFS_INO_TO_AGINO(mp, (inum + i))); 2006 2007 /* Inode not in memory or stale, nothing to do */ 2008 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2009 read_unlock(&pag->pag_ici_lock); 2010 continue; 2011 } 2012 2013 /* 2014 * Don't try to lock/unlock the current inode, but we 2015 * _cannot_ skip the other inodes that we did not find 2016 * in the list attached to the buffer and are not 2017 * already marked stale. If we can't lock it, back off 2018 * and retry. 2019 */ 2020 if (ip != free_ip && 2021 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2022 read_unlock(&pag->pag_ici_lock); 2023 delay(1); 2024 goto retry; 2025 } 2026 read_unlock(&pag->pag_ici_lock); 2027 2028 xfs_iflock(ip); 2029 xfs_iflags_set(ip, XFS_ISTALE); 2030 2031 /* 2032 * we don't need to attach clean inodes or those only 2033 * with unlogged changes (which we throw away, anyway). 2034 */ 2035 iip = ip->i_itemp; 2036 if (!iip || xfs_inode_clean(ip)) { 2037 ASSERT(ip != free_ip); 2038 ip->i_update_core = 0; 2039 xfs_ifunlock(ip); 2040 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2041 continue; 2042 } 2043 2044 iip->ili_last_fields = iip->ili_format.ilf_fields; 2045 iip->ili_format.ilf_fields = 0; 2046 iip->ili_logged = 1; 2047 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2048 &iip->ili_item.li_lsn); 2049 2050 xfs_buf_attach_iodone(bp, xfs_istale_done, 2051 &iip->ili_item); 2052 2053 if (ip != free_ip) 2054 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2055 } 2056 2057 xfs_trans_stale_inode_buf(tp, bp); 2058 xfs_trans_binval(tp, bp); 2059 } 2060 2061 xfs_perag_put(pag); 2062 } 2063 2064 /* 2065 * This is called to return an inode to the inode free list. 2066 * The inode should already be truncated to 0 length and have 2067 * no pages associated with it. This routine also assumes that 2068 * the inode is already a part of the transaction. 2069 * 2070 * The on-disk copy of the inode will have been added to the list 2071 * of unlinked inodes in the AGI. We need to remove the inode from 2072 * that list atomically with respect to freeing it here. 2073 */ 2074 int 2075 xfs_ifree( 2076 xfs_trans_t *tp, 2077 xfs_inode_t *ip, 2078 xfs_bmap_free_t *flist) 2079 { 2080 int error; 2081 int delete; 2082 xfs_ino_t first_ino; 2083 xfs_dinode_t *dip; 2084 xfs_buf_t *ibp; 2085 2086 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2087 ASSERT(ip->i_transp == tp); 2088 ASSERT(ip->i_d.di_nlink == 0); 2089 ASSERT(ip->i_d.di_nextents == 0); 2090 ASSERT(ip->i_d.di_anextents == 0); 2091 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2092 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2093 ASSERT(ip->i_d.di_nblocks == 0); 2094 2095 /* 2096 * Pull the on-disk inode from the AGI unlinked list. 2097 */ 2098 error = xfs_iunlink_remove(tp, ip); 2099 if (error != 0) { 2100 return error; 2101 } 2102 2103 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2104 if (error != 0) { 2105 return error; 2106 } 2107 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2108 ip->i_d.di_flags = 0; 2109 ip->i_d.di_dmevmask = 0; 2110 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2111 ip->i_df.if_ext_max = 2112 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2113 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2114 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2115 /* 2116 * Bump the generation count so no one will be confused 2117 * by reincarnations of this inode. 2118 */ 2119 ip->i_d.di_gen++; 2120 2121 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2122 2123 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK); 2124 if (error) 2125 return error; 2126 2127 /* 2128 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2129 * from picking up this inode when it is reclaimed (its incore state 2130 * initialzed but not flushed to disk yet). The in-core di_mode is 2131 * already cleared and a corresponding transaction logged. 2132 * The hack here just synchronizes the in-core to on-disk 2133 * di_mode value in advance before the actual inode sync to disk. 2134 * This is OK because the inode is already unlinked and would never 2135 * change its di_mode again for this inode generation. 2136 * This is a temporary hack that would require a proper fix 2137 * in the future. 2138 */ 2139 dip->di_mode = 0; 2140 2141 if (delete) { 2142 xfs_ifree_cluster(ip, tp, first_ino); 2143 } 2144 2145 return 0; 2146 } 2147 2148 /* 2149 * Reallocate the space for if_broot based on the number of records 2150 * being added or deleted as indicated in rec_diff. Move the records 2151 * and pointers in if_broot to fit the new size. When shrinking this 2152 * will eliminate holes between the records and pointers created by 2153 * the caller. When growing this will create holes to be filled in 2154 * by the caller. 2155 * 2156 * The caller must not request to add more records than would fit in 2157 * the on-disk inode root. If the if_broot is currently NULL, then 2158 * if we adding records one will be allocated. The caller must also 2159 * not request that the number of records go below zero, although 2160 * it can go to zero. 2161 * 2162 * ip -- the inode whose if_broot area is changing 2163 * ext_diff -- the change in the number of records, positive or negative, 2164 * requested for the if_broot array. 2165 */ 2166 void 2167 xfs_iroot_realloc( 2168 xfs_inode_t *ip, 2169 int rec_diff, 2170 int whichfork) 2171 { 2172 struct xfs_mount *mp = ip->i_mount; 2173 int cur_max; 2174 xfs_ifork_t *ifp; 2175 struct xfs_btree_block *new_broot; 2176 int new_max; 2177 size_t new_size; 2178 char *np; 2179 char *op; 2180 2181 /* 2182 * Handle the degenerate case quietly. 2183 */ 2184 if (rec_diff == 0) { 2185 return; 2186 } 2187 2188 ifp = XFS_IFORK_PTR(ip, whichfork); 2189 if (rec_diff > 0) { 2190 /* 2191 * If there wasn't any memory allocated before, just 2192 * allocate it now and get out. 2193 */ 2194 if (ifp->if_broot_bytes == 0) { 2195 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2196 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2197 ifp->if_broot_bytes = (int)new_size; 2198 return; 2199 } 2200 2201 /* 2202 * If there is already an existing if_broot, then we need 2203 * to realloc() it and shift the pointers to their new 2204 * location. The records don't change location because 2205 * they are kept butted up against the btree block header. 2206 */ 2207 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2208 new_max = cur_max + rec_diff; 2209 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2210 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2211 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2212 KM_SLEEP | KM_NOFS); 2213 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2214 ifp->if_broot_bytes); 2215 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2216 (int)new_size); 2217 ifp->if_broot_bytes = (int)new_size; 2218 ASSERT(ifp->if_broot_bytes <= 2219 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2220 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2221 return; 2222 } 2223 2224 /* 2225 * rec_diff is less than 0. In this case, we are shrinking the 2226 * if_broot buffer. It must already exist. If we go to zero 2227 * records, just get rid of the root and clear the status bit. 2228 */ 2229 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2230 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2231 new_max = cur_max + rec_diff; 2232 ASSERT(new_max >= 0); 2233 if (new_max > 0) 2234 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2235 else 2236 new_size = 0; 2237 if (new_size > 0) { 2238 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 2239 /* 2240 * First copy over the btree block header. 2241 */ 2242 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2243 } else { 2244 new_broot = NULL; 2245 ifp->if_flags &= ~XFS_IFBROOT; 2246 } 2247 2248 /* 2249 * Only copy the records and pointers if there are any. 2250 */ 2251 if (new_max > 0) { 2252 /* 2253 * First copy the records. 2254 */ 2255 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2256 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2257 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2258 2259 /* 2260 * Then copy the pointers. 2261 */ 2262 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2263 ifp->if_broot_bytes); 2264 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2265 (int)new_size); 2266 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2267 } 2268 kmem_free(ifp->if_broot); 2269 ifp->if_broot = new_broot; 2270 ifp->if_broot_bytes = (int)new_size; 2271 ASSERT(ifp->if_broot_bytes <= 2272 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2273 return; 2274 } 2275 2276 2277 /* 2278 * This is called when the amount of space needed for if_data 2279 * is increased or decreased. The change in size is indicated by 2280 * the number of bytes that need to be added or deleted in the 2281 * byte_diff parameter. 2282 * 2283 * If the amount of space needed has decreased below the size of the 2284 * inline buffer, then switch to using the inline buffer. Otherwise, 2285 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2286 * to what is needed. 2287 * 2288 * ip -- the inode whose if_data area is changing 2289 * byte_diff -- the change in the number of bytes, positive or negative, 2290 * requested for the if_data array. 2291 */ 2292 void 2293 xfs_idata_realloc( 2294 xfs_inode_t *ip, 2295 int byte_diff, 2296 int whichfork) 2297 { 2298 xfs_ifork_t *ifp; 2299 int new_size; 2300 int real_size; 2301 2302 if (byte_diff == 0) { 2303 return; 2304 } 2305 2306 ifp = XFS_IFORK_PTR(ip, whichfork); 2307 new_size = (int)ifp->if_bytes + byte_diff; 2308 ASSERT(new_size >= 0); 2309 2310 if (new_size == 0) { 2311 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2312 kmem_free(ifp->if_u1.if_data); 2313 } 2314 ifp->if_u1.if_data = NULL; 2315 real_size = 0; 2316 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2317 /* 2318 * If the valid extents/data can fit in if_inline_ext/data, 2319 * copy them from the malloc'd vector and free it. 2320 */ 2321 if (ifp->if_u1.if_data == NULL) { 2322 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2323 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2324 ASSERT(ifp->if_real_bytes != 0); 2325 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2326 new_size); 2327 kmem_free(ifp->if_u1.if_data); 2328 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2329 } 2330 real_size = 0; 2331 } else { 2332 /* 2333 * Stuck with malloc/realloc. 2334 * For inline data, the underlying buffer must be 2335 * a multiple of 4 bytes in size so that it can be 2336 * logged and stay on word boundaries. We enforce 2337 * that here. 2338 */ 2339 real_size = roundup(new_size, 4); 2340 if (ifp->if_u1.if_data == NULL) { 2341 ASSERT(ifp->if_real_bytes == 0); 2342 ifp->if_u1.if_data = kmem_alloc(real_size, 2343 KM_SLEEP | KM_NOFS); 2344 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2345 /* 2346 * Only do the realloc if the underlying size 2347 * is really changing. 2348 */ 2349 if (ifp->if_real_bytes != real_size) { 2350 ifp->if_u1.if_data = 2351 kmem_realloc(ifp->if_u1.if_data, 2352 real_size, 2353 ifp->if_real_bytes, 2354 KM_SLEEP | KM_NOFS); 2355 } 2356 } else { 2357 ASSERT(ifp->if_real_bytes == 0); 2358 ifp->if_u1.if_data = kmem_alloc(real_size, 2359 KM_SLEEP | KM_NOFS); 2360 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2361 ifp->if_bytes); 2362 } 2363 } 2364 ifp->if_real_bytes = real_size; 2365 ifp->if_bytes = new_size; 2366 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2367 } 2368 2369 void 2370 xfs_idestroy_fork( 2371 xfs_inode_t *ip, 2372 int whichfork) 2373 { 2374 xfs_ifork_t *ifp; 2375 2376 ifp = XFS_IFORK_PTR(ip, whichfork); 2377 if (ifp->if_broot != NULL) { 2378 kmem_free(ifp->if_broot); 2379 ifp->if_broot = NULL; 2380 } 2381 2382 /* 2383 * If the format is local, then we can't have an extents 2384 * array so just look for an inline data array. If we're 2385 * not local then we may or may not have an extents list, 2386 * so check and free it up if we do. 2387 */ 2388 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2389 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2390 (ifp->if_u1.if_data != NULL)) { 2391 ASSERT(ifp->if_real_bytes != 0); 2392 kmem_free(ifp->if_u1.if_data); 2393 ifp->if_u1.if_data = NULL; 2394 ifp->if_real_bytes = 0; 2395 } 2396 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2397 ((ifp->if_flags & XFS_IFEXTIREC) || 2398 ((ifp->if_u1.if_extents != NULL) && 2399 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2400 ASSERT(ifp->if_real_bytes != 0); 2401 xfs_iext_destroy(ifp); 2402 } 2403 ASSERT(ifp->if_u1.if_extents == NULL || 2404 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2405 ASSERT(ifp->if_real_bytes == 0); 2406 if (whichfork == XFS_ATTR_FORK) { 2407 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2408 ip->i_afp = NULL; 2409 } 2410 } 2411 2412 /* 2413 * This is called to unpin an inode. The caller must have the inode locked 2414 * in at least shared mode so that the buffer cannot be subsequently pinned 2415 * once someone is waiting for it to be unpinned. 2416 */ 2417 static void 2418 xfs_iunpin_nowait( 2419 struct xfs_inode *ip) 2420 { 2421 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2422 2423 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2424 2425 /* Give the log a push to start the unpinning I/O */ 2426 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2427 2428 } 2429 2430 void 2431 xfs_iunpin_wait( 2432 struct xfs_inode *ip) 2433 { 2434 if (xfs_ipincount(ip)) { 2435 xfs_iunpin_nowait(ip); 2436 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0)); 2437 } 2438 } 2439 2440 /* 2441 * xfs_iextents_copy() 2442 * 2443 * This is called to copy the REAL extents (as opposed to the delayed 2444 * allocation extents) from the inode into the given buffer. It 2445 * returns the number of bytes copied into the buffer. 2446 * 2447 * If there are no delayed allocation extents, then we can just 2448 * memcpy() the extents into the buffer. Otherwise, we need to 2449 * examine each extent in turn and skip those which are delayed. 2450 */ 2451 int 2452 xfs_iextents_copy( 2453 xfs_inode_t *ip, 2454 xfs_bmbt_rec_t *dp, 2455 int whichfork) 2456 { 2457 int copied; 2458 int i; 2459 xfs_ifork_t *ifp; 2460 int nrecs; 2461 xfs_fsblock_t start_block; 2462 2463 ifp = XFS_IFORK_PTR(ip, whichfork); 2464 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2465 ASSERT(ifp->if_bytes > 0); 2466 2467 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2468 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2469 ASSERT(nrecs > 0); 2470 2471 /* 2472 * There are some delayed allocation extents in the 2473 * inode, so copy the extents one at a time and skip 2474 * the delayed ones. There must be at least one 2475 * non-delayed extent. 2476 */ 2477 copied = 0; 2478 for (i = 0; i < nrecs; i++) { 2479 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2480 start_block = xfs_bmbt_get_startblock(ep); 2481 if (isnullstartblock(start_block)) { 2482 /* 2483 * It's a delayed allocation extent, so skip it. 2484 */ 2485 continue; 2486 } 2487 2488 /* Translate to on disk format */ 2489 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2490 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2491 dp++; 2492 copied++; 2493 } 2494 ASSERT(copied != 0); 2495 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2496 2497 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2498 } 2499 2500 /* 2501 * Each of the following cases stores data into the same region 2502 * of the on-disk inode, so only one of them can be valid at 2503 * any given time. While it is possible to have conflicting formats 2504 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2505 * in EXTENTS format, this can only happen when the fork has 2506 * changed formats after being modified but before being flushed. 2507 * In these cases, the format always takes precedence, because the 2508 * format indicates the current state of the fork. 2509 */ 2510 /*ARGSUSED*/ 2511 STATIC void 2512 xfs_iflush_fork( 2513 xfs_inode_t *ip, 2514 xfs_dinode_t *dip, 2515 xfs_inode_log_item_t *iip, 2516 int whichfork, 2517 xfs_buf_t *bp) 2518 { 2519 char *cp; 2520 xfs_ifork_t *ifp; 2521 xfs_mount_t *mp; 2522 #ifdef XFS_TRANS_DEBUG 2523 int first; 2524 #endif 2525 static const short brootflag[2] = 2526 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2527 static const short dataflag[2] = 2528 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2529 static const short extflag[2] = 2530 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2531 2532 if (!iip) 2533 return; 2534 ifp = XFS_IFORK_PTR(ip, whichfork); 2535 /* 2536 * This can happen if we gave up in iformat in an error path, 2537 * for the attribute fork. 2538 */ 2539 if (!ifp) { 2540 ASSERT(whichfork == XFS_ATTR_FORK); 2541 return; 2542 } 2543 cp = XFS_DFORK_PTR(dip, whichfork); 2544 mp = ip->i_mount; 2545 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2546 case XFS_DINODE_FMT_LOCAL: 2547 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2548 (ifp->if_bytes > 0)) { 2549 ASSERT(ifp->if_u1.if_data != NULL); 2550 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2551 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2552 } 2553 break; 2554 2555 case XFS_DINODE_FMT_EXTENTS: 2556 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2557 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2558 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2559 (ifp->if_bytes == 0)); 2560 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2561 (ifp->if_bytes > 0)); 2562 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2563 (ifp->if_bytes > 0)) { 2564 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2565 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2566 whichfork); 2567 } 2568 break; 2569 2570 case XFS_DINODE_FMT_BTREE: 2571 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2572 (ifp->if_broot_bytes > 0)) { 2573 ASSERT(ifp->if_broot != NULL); 2574 ASSERT(ifp->if_broot_bytes <= 2575 (XFS_IFORK_SIZE(ip, whichfork) + 2576 XFS_BROOT_SIZE_ADJ)); 2577 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2578 (xfs_bmdr_block_t *)cp, 2579 XFS_DFORK_SIZE(dip, mp, whichfork)); 2580 } 2581 break; 2582 2583 case XFS_DINODE_FMT_DEV: 2584 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2585 ASSERT(whichfork == XFS_DATA_FORK); 2586 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2587 } 2588 break; 2589 2590 case XFS_DINODE_FMT_UUID: 2591 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2592 ASSERT(whichfork == XFS_DATA_FORK); 2593 memcpy(XFS_DFORK_DPTR(dip), 2594 &ip->i_df.if_u2.if_uuid, 2595 sizeof(uuid_t)); 2596 } 2597 break; 2598 2599 default: 2600 ASSERT(0); 2601 break; 2602 } 2603 } 2604 2605 STATIC int 2606 xfs_iflush_cluster( 2607 xfs_inode_t *ip, 2608 xfs_buf_t *bp) 2609 { 2610 xfs_mount_t *mp = ip->i_mount; 2611 struct xfs_perag *pag; 2612 unsigned long first_index, mask; 2613 unsigned long inodes_per_cluster; 2614 int ilist_size; 2615 xfs_inode_t **ilist; 2616 xfs_inode_t *iq; 2617 int nr_found; 2618 int clcount = 0; 2619 int bufwasdelwri; 2620 int i; 2621 2622 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2623 2624 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2625 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2626 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2627 if (!ilist) 2628 goto out_put; 2629 2630 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2631 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2632 read_lock(&pag->pag_ici_lock); 2633 /* really need a gang lookup range call here */ 2634 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2635 first_index, inodes_per_cluster); 2636 if (nr_found == 0) 2637 goto out_free; 2638 2639 for (i = 0; i < nr_found; i++) { 2640 iq = ilist[i]; 2641 if (iq == ip) 2642 continue; 2643 /* if the inode lies outside this cluster, we're done. */ 2644 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2645 break; 2646 /* 2647 * Do an un-protected check to see if the inode is dirty and 2648 * is a candidate for flushing. These checks will be repeated 2649 * later after the appropriate locks are acquired. 2650 */ 2651 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2652 continue; 2653 2654 /* 2655 * Try to get locks. If any are unavailable or it is pinned, 2656 * then this inode cannot be flushed and is skipped. 2657 */ 2658 2659 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2660 continue; 2661 if (!xfs_iflock_nowait(iq)) { 2662 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2663 continue; 2664 } 2665 if (xfs_ipincount(iq)) { 2666 xfs_ifunlock(iq); 2667 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2668 continue; 2669 } 2670 2671 /* 2672 * arriving here means that this inode can be flushed. First 2673 * re-check that it's dirty before flushing. 2674 */ 2675 if (!xfs_inode_clean(iq)) { 2676 int error; 2677 error = xfs_iflush_int(iq, bp); 2678 if (error) { 2679 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2680 goto cluster_corrupt_out; 2681 } 2682 clcount++; 2683 } else { 2684 xfs_ifunlock(iq); 2685 } 2686 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2687 } 2688 2689 if (clcount) { 2690 XFS_STATS_INC(xs_icluster_flushcnt); 2691 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2692 } 2693 2694 out_free: 2695 read_unlock(&pag->pag_ici_lock); 2696 kmem_free(ilist); 2697 out_put: 2698 xfs_perag_put(pag); 2699 return 0; 2700 2701 2702 cluster_corrupt_out: 2703 /* 2704 * Corruption detected in the clustering loop. Invalidate the 2705 * inode buffer and shut down the filesystem. 2706 */ 2707 read_unlock(&pag->pag_ici_lock); 2708 /* 2709 * Clean up the buffer. If it was B_DELWRI, just release it -- 2710 * brelse can handle it with no problems. If not, shut down the 2711 * filesystem before releasing the buffer. 2712 */ 2713 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2714 if (bufwasdelwri) 2715 xfs_buf_relse(bp); 2716 2717 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2718 2719 if (!bufwasdelwri) { 2720 /* 2721 * Just like incore_relse: if we have b_iodone functions, 2722 * mark the buffer as an error and call them. Otherwise 2723 * mark it as stale and brelse. 2724 */ 2725 if (XFS_BUF_IODONE_FUNC(bp)) { 2726 XFS_BUF_UNDONE(bp); 2727 XFS_BUF_STALE(bp); 2728 XFS_BUF_ERROR(bp,EIO); 2729 xfs_buf_ioend(bp, 0); 2730 } else { 2731 XFS_BUF_STALE(bp); 2732 xfs_buf_relse(bp); 2733 } 2734 } 2735 2736 /* 2737 * Unlocks the flush lock 2738 */ 2739 xfs_iflush_abort(iq); 2740 kmem_free(ilist); 2741 xfs_perag_put(pag); 2742 return XFS_ERROR(EFSCORRUPTED); 2743 } 2744 2745 /* 2746 * xfs_iflush() will write a modified inode's changes out to the 2747 * inode's on disk home. The caller must have the inode lock held 2748 * in at least shared mode and the inode flush completion must be 2749 * active as well. The inode lock will still be held upon return from 2750 * the call and the caller is free to unlock it. 2751 * The inode flush will be completed when the inode reaches the disk. 2752 * The flags indicate how the inode's buffer should be written out. 2753 */ 2754 int 2755 xfs_iflush( 2756 xfs_inode_t *ip, 2757 uint flags) 2758 { 2759 xfs_inode_log_item_t *iip; 2760 xfs_buf_t *bp; 2761 xfs_dinode_t *dip; 2762 xfs_mount_t *mp; 2763 int error; 2764 2765 XFS_STATS_INC(xs_iflush_count); 2766 2767 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2768 ASSERT(!completion_done(&ip->i_flush)); 2769 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2770 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2771 2772 iip = ip->i_itemp; 2773 mp = ip->i_mount; 2774 2775 /* 2776 * We can't flush the inode until it is unpinned, so wait for it if we 2777 * are allowed to block. We know noone new can pin it, because we are 2778 * holding the inode lock shared and you need to hold it exclusively to 2779 * pin the inode. 2780 * 2781 * If we are not allowed to block, force the log out asynchronously so 2782 * that when we come back the inode will be unpinned. If other inodes 2783 * in the same cluster are dirty, they will probably write the inode 2784 * out for us if they occur after the log force completes. 2785 */ 2786 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) { 2787 xfs_iunpin_nowait(ip); 2788 xfs_ifunlock(ip); 2789 return EAGAIN; 2790 } 2791 xfs_iunpin_wait(ip); 2792 2793 /* 2794 * For stale inodes we cannot rely on the backing buffer remaining 2795 * stale in cache for the remaining life of the stale inode and so 2796 * xfs_itobp() below may give us a buffer that no longer contains 2797 * inodes below. We have to check this after ensuring the inode is 2798 * unpinned so that it is safe to reclaim the stale inode after the 2799 * flush call. 2800 */ 2801 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2802 xfs_ifunlock(ip); 2803 return 0; 2804 } 2805 2806 /* 2807 * This may have been unpinned because the filesystem is shutting 2808 * down forcibly. If that's the case we must not write this inode 2809 * to disk, because the log record didn't make it to disk! 2810 */ 2811 if (XFS_FORCED_SHUTDOWN(mp)) { 2812 ip->i_update_core = 0; 2813 if (iip) 2814 iip->ili_format.ilf_fields = 0; 2815 xfs_ifunlock(ip); 2816 return XFS_ERROR(EIO); 2817 } 2818 2819 /* 2820 * Get the buffer containing the on-disk inode. 2821 */ 2822 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2823 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK); 2824 if (error || !bp) { 2825 xfs_ifunlock(ip); 2826 return error; 2827 } 2828 2829 /* 2830 * First flush out the inode that xfs_iflush was called with. 2831 */ 2832 error = xfs_iflush_int(ip, bp); 2833 if (error) 2834 goto corrupt_out; 2835 2836 /* 2837 * If the buffer is pinned then push on the log now so we won't 2838 * get stuck waiting in the write for too long. 2839 */ 2840 if (XFS_BUF_ISPINNED(bp)) 2841 xfs_log_force(mp, 0); 2842 2843 /* 2844 * inode clustering: 2845 * see if other inodes can be gathered into this write 2846 */ 2847 error = xfs_iflush_cluster(ip, bp); 2848 if (error) 2849 goto cluster_corrupt_out; 2850 2851 if (flags & SYNC_WAIT) 2852 error = xfs_bwrite(mp, bp); 2853 else 2854 xfs_bdwrite(mp, bp); 2855 return error; 2856 2857 corrupt_out: 2858 xfs_buf_relse(bp); 2859 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2860 cluster_corrupt_out: 2861 /* 2862 * Unlocks the flush lock 2863 */ 2864 xfs_iflush_abort(ip); 2865 return XFS_ERROR(EFSCORRUPTED); 2866 } 2867 2868 2869 STATIC int 2870 xfs_iflush_int( 2871 xfs_inode_t *ip, 2872 xfs_buf_t *bp) 2873 { 2874 xfs_inode_log_item_t *iip; 2875 xfs_dinode_t *dip; 2876 xfs_mount_t *mp; 2877 #ifdef XFS_TRANS_DEBUG 2878 int first; 2879 #endif 2880 2881 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2882 ASSERT(!completion_done(&ip->i_flush)); 2883 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2884 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2885 2886 iip = ip->i_itemp; 2887 mp = ip->i_mount; 2888 2889 /* set *dip = inode's place in the buffer */ 2890 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2891 2892 /* 2893 * Clear i_update_core before copying out the data. 2894 * This is for coordination with our timestamp updates 2895 * that don't hold the inode lock. They will always 2896 * update the timestamps BEFORE setting i_update_core, 2897 * so if we clear i_update_core after they set it we 2898 * are guaranteed to see their updates to the timestamps. 2899 * I believe that this depends on strongly ordered memory 2900 * semantics, but we have that. We use the SYNCHRONIZE 2901 * macro to make sure that the compiler does not reorder 2902 * the i_update_core access below the data copy below. 2903 */ 2904 ip->i_update_core = 0; 2905 SYNCHRONIZE(); 2906 2907 /* 2908 * Make sure to get the latest timestamps from the Linux inode. 2909 */ 2910 xfs_synchronize_times(ip); 2911 2912 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 2913 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2914 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2915 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2916 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2917 goto corrupt_out; 2918 } 2919 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2920 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2921 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2922 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2923 ip->i_ino, ip, ip->i_d.di_magic); 2924 goto corrupt_out; 2925 } 2926 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 2927 if (XFS_TEST_ERROR( 2928 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2929 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2930 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2931 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2932 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 2933 ip->i_ino, ip); 2934 goto corrupt_out; 2935 } 2936 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 2937 if (XFS_TEST_ERROR( 2938 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2939 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2940 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2941 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2942 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2943 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 2944 ip->i_ino, ip); 2945 goto corrupt_out; 2946 } 2947 } 2948 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2949 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2950 XFS_RANDOM_IFLUSH_5)) { 2951 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2952 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 2953 ip->i_ino, 2954 ip->i_d.di_nextents + ip->i_d.di_anextents, 2955 ip->i_d.di_nblocks, 2956 ip); 2957 goto corrupt_out; 2958 } 2959 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2960 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2961 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 2962 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2963 ip->i_ino, ip->i_d.di_forkoff, ip); 2964 goto corrupt_out; 2965 } 2966 /* 2967 * bump the flush iteration count, used to detect flushes which 2968 * postdate a log record during recovery. 2969 */ 2970 2971 ip->i_d.di_flushiter++; 2972 2973 /* 2974 * Copy the dirty parts of the inode into the on-disk 2975 * inode. We always copy out the core of the inode, 2976 * because if the inode is dirty at all the core must 2977 * be. 2978 */ 2979 xfs_dinode_to_disk(dip, &ip->i_d); 2980 2981 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2982 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2983 ip->i_d.di_flushiter = 0; 2984 2985 /* 2986 * If this is really an old format inode and the superblock version 2987 * has not been updated to support only new format inodes, then 2988 * convert back to the old inode format. If the superblock version 2989 * has been updated, then make the conversion permanent. 2990 */ 2991 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2992 if (ip->i_d.di_version == 1) { 2993 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2994 /* 2995 * Convert it back. 2996 */ 2997 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2998 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2999 } else { 3000 /* 3001 * The superblock version has already been bumped, 3002 * so just make the conversion to the new inode 3003 * format permanent. 3004 */ 3005 ip->i_d.di_version = 2; 3006 dip->di_version = 2; 3007 ip->i_d.di_onlink = 0; 3008 dip->di_onlink = 0; 3009 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3010 memset(&(dip->di_pad[0]), 0, 3011 sizeof(dip->di_pad)); 3012 ASSERT(xfs_get_projid(ip) == 0); 3013 } 3014 } 3015 3016 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3017 if (XFS_IFORK_Q(ip)) 3018 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3019 xfs_inobp_check(mp, bp); 3020 3021 /* 3022 * We've recorded everything logged in the inode, so we'd 3023 * like to clear the ilf_fields bits so we don't log and 3024 * flush things unnecessarily. However, we can't stop 3025 * logging all this information until the data we've copied 3026 * into the disk buffer is written to disk. If we did we might 3027 * overwrite the copy of the inode in the log with all the 3028 * data after re-logging only part of it, and in the face of 3029 * a crash we wouldn't have all the data we need to recover. 3030 * 3031 * What we do is move the bits to the ili_last_fields field. 3032 * When logging the inode, these bits are moved back to the 3033 * ilf_fields field. In the xfs_iflush_done() routine we 3034 * clear ili_last_fields, since we know that the information 3035 * those bits represent is permanently on disk. As long as 3036 * the flush completes before the inode is logged again, then 3037 * both ilf_fields and ili_last_fields will be cleared. 3038 * 3039 * We can play with the ilf_fields bits here, because the inode 3040 * lock must be held exclusively in order to set bits there 3041 * and the flush lock protects the ili_last_fields bits. 3042 * Set ili_logged so the flush done 3043 * routine can tell whether or not to look in the AIL. 3044 * Also, store the current LSN of the inode so that we can tell 3045 * whether the item has moved in the AIL from xfs_iflush_done(). 3046 * In order to read the lsn we need the AIL lock, because 3047 * it is a 64 bit value that cannot be read atomically. 3048 */ 3049 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3050 iip->ili_last_fields = iip->ili_format.ilf_fields; 3051 iip->ili_format.ilf_fields = 0; 3052 iip->ili_logged = 1; 3053 3054 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3055 &iip->ili_item.li_lsn); 3056 3057 /* 3058 * Attach the function xfs_iflush_done to the inode's 3059 * buffer. This will remove the inode from the AIL 3060 * and unlock the inode's flush lock when the inode is 3061 * completely written to disk. 3062 */ 3063 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3064 3065 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3066 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3067 } else { 3068 /* 3069 * We're flushing an inode which is not in the AIL and has 3070 * not been logged but has i_update_core set. For this 3071 * case we can use a B_DELWRI flush and immediately drop 3072 * the inode flush lock because we can avoid the whole 3073 * AIL state thing. It's OK to drop the flush lock now, 3074 * because we've already locked the buffer and to do anything 3075 * you really need both. 3076 */ 3077 if (iip != NULL) { 3078 ASSERT(iip->ili_logged == 0); 3079 ASSERT(iip->ili_last_fields == 0); 3080 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3081 } 3082 xfs_ifunlock(ip); 3083 } 3084 3085 return 0; 3086 3087 corrupt_out: 3088 return XFS_ERROR(EFSCORRUPTED); 3089 } 3090 3091 /* 3092 * Return a pointer to the extent record at file index idx. 3093 */ 3094 xfs_bmbt_rec_host_t * 3095 xfs_iext_get_ext( 3096 xfs_ifork_t *ifp, /* inode fork pointer */ 3097 xfs_extnum_t idx) /* index of target extent */ 3098 { 3099 ASSERT(idx >= 0); 3100 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3101 return ifp->if_u1.if_ext_irec->er_extbuf; 3102 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3103 xfs_ext_irec_t *erp; /* irec pointer */ 3104 int erp_idx = 0; /* irec index */ 3105 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3106 3107 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3108 return &erp->er_extbuf[page_idx]; 3109 } else if (ifp->if_bytes) { 3110 return &ifp->if_u1.if_extents[idx]; 3111 } else { 3112 return NULL; 3113 } 3114 } 3115 3116 /* 3117 * Insert new item(s) into the extent records for incore inode 3118 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3119 */ 3120 void 3121 xfs_iext_insert( 3122 xfs_inode_t *ip, /* incore inode pointer */ 3123 xfs_extnum_t idx, /* starting index of new items */ 3124 xfs_extnum_t count, /* number of inserted items */ 3125 xfs_bmbt_irec_t *new, /* items to insert */ 3126 int state) /* type of extent conversion */ 3127 { 3128 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3129 xfs_extnum_t i; /* extent record index */ 3130 3131 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 3132 3133 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3134 xfs_iext_add(ifp, idx, count); 3135 for (i = idx; i < idx + count; i++, new++) 3136 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3137 } 3138 3139 /* 3140 * This is called when the amount of space required for incore file 3141 * extents needs to be increased. The ext_diff parameter stores the 3142 * number of new extents being added and the idx parameter contains 3143 * the extent index where the new extents will be added. If the new 3144 * extents are being appended, then we just need to (re)allocate and 3145 * initialize the space. Otherwise, if the new extents are being 3146 * inserted into the middle of the existing entries, a bit more work 3147 * is required to make room for the new extents to be inserted. The 3148 * caller is responsible for filling in the new extent entries upon 3149 * return. 3150 */ 3151 void 3152 xfs_iext_add( 3153 xfs_ifork_t *ifp, /* inode fork pointer */ 3154 xfs_extnum_t idx, /* index to begin adding exts */ 3155 int ext_diff) /* number of extents to add */ 3156 { 3157 int byte_diff; /* new bytes being added */ 3158 int new_size; /* size of extents after adding */ 3159 xfs_extnum_t nextents; /* number of extents in file */ 3160 3161 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3162 ASSERT((idx >= 0) && (idx <= nextents)); 3163 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3164 new_size = ifp->if_bytes + byte_diff; 3165 /* 3166 * If the new number of extents (nextents + ext_diff) 3167 * fits inside the inode, then continue to use the inline 3168 * extent buffer. 3169 */ 3170 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3171 if (idx < nextents) { 3172 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3173 &ifp->if_u2.if_inline_ext[idx], 3174 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3175 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3176 } 3177 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3178 ifp->if_real_bytes = 0; 3179 ifp->if_lastex = nextents + ext_diff; 3180 } 3181 /* 3182 * Otherwise use a linear (direct) extent list. 3183 * If the extents are currently inside the inode, 3184 * xfs_iext_realloc_direct will switch us from 3185 * inline to direct extent allocation mode. 3186 */ 3187 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3188 xfs_iext_realloc_direct(ifp, new_size); 3189 if (idx < nextents) { 3190 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3191 &ifp->if_u1.if_extents[idx], 3192 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3193 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3194 } 3195 } 3196 /* Indirection array */ 3197 else { 3198 xfs_ext_irec_t *erp; 3199 int erp_idx = 0; 3200 int page_idx = idx; 3201 3202 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3203 if (ifp->if_flags & XFS_IFEXTIREC) { 3204 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3205 } else { 3206 xfs_iext_irec_init(ifp); 3207 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3208 erp = ifp->if_u1.if_ext_irec; 3209 } 3210 /* Extents fit in target extent page */ 3211 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3212 if (page_idx < erp->er_extcount) { 3213 memmove(&erp->er_extbuf[page_idx + ext_diff], 3214 &erp->er_extbuf[page_idx], 3215 (erp->er_extcount - page_idx) * 3216 sizeof(xfs_bmbt_rec_t)); 3217 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3218 } 3219 erp->er_extcount += ext_diff; 3220 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3221 } 3222 /* Insert a new extent page */ 3223 else if (erp) { 3224 xfs_iext_add_indirect_multi(ifp, 3225 erp_idx, page_idx, ext_diff); 3226 } 3227 /* 3228 * If extent(s) are being appended to the last page in 3229 * the indirection array and the new extent(s) don't fit 3230 * in the page, then erp is NULL and erp_idx is set to 3231 * the next index needed in the indirection array. 3232 */ 3233 else { 3234 int count = ext_diff; 3235 3236 while (count) { 3237 erp = xfs_iext_irec_new(ifp, erp_idx); 3238 erp->er_extcount = count; 3239 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3240 if (count) { 3241 erp_idx++; 3242 } 3243 } 3244 } 3245 } 3246 ifp->if_bytes = new_size; 3247 } 3248 3249 /* 3250 * This is called when incore extents are being added to the indirection 3251 * array and the new extents do not fit in the target extent list. The 3252 * erp_idx parameter contains the irec index for the target extent list 3253 * in the indirection array, and the idx parameter contains the extent 3254 * index within the list. The number of extents being added is stored 3255 * in the count parameter. 3256 * 3257 * |-------| |-------| 3258 * | | | | idx - number of extents before idx 3259 * | idx | | count | 3260 * | | | | count - number of extents being inserted at idx 3261 * |-------| |-------| 3262 * | count | | nex2 | nex2 - number of extents after idx + count 3263 * |-------| |-------| 3264 */ 3265 void 3266 xfs_iext_add_indirect_multi( 3267 xfs_ifork_t *ifp, /* inode fork pointer */ 3268 int erp_idx, /* target extent irec index */ 3269 xfs_extnum_t idx, /* index within target list */ 3270 int count) /* new extents being added */ 3271 { 3272 int byte_diff; /* new bytes being added */ 3273 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3274 xfs_extnum_t ext_diff; /* number of extents to add */ 3275 xfs_extnum_t ext_cnt; /* new extents still needed */ 3276 xfs_extnum_t nex2; /* extents after idx + count */ 3277 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3278 int nlists; /* number of irec's (lists) */ 3279 3280 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3281 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3282 nex2 = erp->er_extcount - idx; 3283 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3284 3285 /* 3286 * Save second part of target extent list 3287 * (all extents past */ 3288 if (nex2) { 3289 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3290 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3291 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3292 erp->er_extcount -= nex2; 3293 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3294 memset(&erp->er_extbuf[idx], 0, byte_diff); 3295 } 3296 3297 /* 3298 * Add the new extents to the end of the target 3299 * list, then allocate new irec record(s) and 3300 * extent buffer(s) as needed to store the rest 3301 * of the new extents. 3302 */ 3303 ext_cnt = count; 3304 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3305 if (ext_diff) { 3306 erp->er_extcount += ext_diff; 3307 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3308 ext_cnt -= ext_diff; 3309 } 3310 while (ext_cnt) { 3311 erp_idx++; 3312 erp = xfs_iext_irec_new(ifp, erp_idx); 3313 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3314 erp->er_extcount = ext_diff; 3315 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3316 ext_cnt -= ext_diff; 3317 } 3318 3319 /* Add nex2 extents back to indirection array */ 3320 if (nex2) { 3321 xfs_extnum_t ext_avail; 3322 int i; 3323 3324 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3325 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3326 i = 0; 3327 /* 3328 * If nex2 extents fit in the current page, append 3329 * nex2_ep after the new extents. 3330 */ 3331 if (nex2 <= ext_avail) { 3332 i = erp->er_extcount; 3333 } 3334 /* 3335 * Otherwise, check if space is available in the 3336 * next page. 3337 */ 3338 else if ((erp_idx < nlists - 1) && 3339 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3340 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3341 erp_idx++; 3342 erp++; 3343 /* Create a hole for nex2 extents */ 3344 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3345 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3346 } 3347 /* 3348 * Final choice, create a new extent page for 3349 * nex2 extents. 3350 */ 3351 else { 3352 erp_idx++; 3353 erp = xfs_iext_irec_new(ifp, erp_idx); 3354 } 3355 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3356 kmem_free(nex2_ep); 3357 erp->er_extcount += nex2; 3358 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3359 } 3360 } 3361 3362 /* 3363 * This is called when the amount of space required for incore file 3364 * extents needs to be decreased. The ext_diff parameter stores the 3365 * number of extents to be removed and the idx parameter contains 3366 * the extent index where the extents will be removed from. 3367 * 3368 * If the amount of space needed has decreased below the linear 3369 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3370 * extent array. Otherwise, use kmem_realloc() to adjust the 3371 * size to what is needed. 3372 */ 3373 void 3374 xfs_iext_remove( 3375 xfs_inode_t *ip, /* incore inode pointer */ 3376 xfs_extnum_t idx, /* index to begin removing exts */ 3377 int ext_diff, /* number of extents to remove */ 3378 int state) /* type of extent conversion */ 3379 { 3380 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3381 xfs_extnum_t nextents; /* number of extents in file */ 3382 int new_size; /* size of extents after removal */ 3383 3384 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3385 3386 ASSERT(ext_diff > 0); 3387 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3388 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3389 3390 if (new_size == 0) { 3391 xfs_iext_destroy(ifp); 3392 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3393 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3394 } else if (ifp->if_real_bytes) { 3395 xfs_iext_remove_direct(ifp, idx, ext_diff); 3396 } else { 3397 xfs_iext_remove_inline(ifp, idx, ext_diff); 3398 } 3399 ifp->if_bytes = new_size; 3400 } 3401 3402 /* 3403 * This removes ext_diff extents from the inline buffer, beginning 3404 * at extent index idx. 3405 */ 3406 void 3407 xfs_iext_remove_inline( 3408 xfs_ifork_t *ifp, /* inode fork pointer */ 3409 xfs_extnum_t idx, /* index to begin removing exts */ 3410 int ext_diff) /* number of extents to remove */ 3411 { 3412 int nextents; /* number of extents in file */ 3413 3414 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3415 ASSERT(idx < XFS_INLINE_EXTS); 3416 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3417 ASSERT(((nextents - ext_diff) > 0) && 3418 (nextents - ext_diff) < XFS_INLINE_EXTS); 3419 3420 if (idx + ext_diff < nextents) { 3421 memmove(&ifp->if_u2.if_inline_ext[idx], 3422 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3423 (nextents - (idx + ext_diff)) * 3424 sizeof(xfs_bmbt_rec_t)); 3425 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3426 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3427 } else { 3428 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3429 ext_diff * sizeof(xfs_bmbt_rec_t)); 3430 } 3431 } 3432 3433 /* 3434 * This removes ext_diff extents from a linear (direct) extent list, 3435 * beginning at extent index idx. If the extents are being removed 3436 * from the end of the list (ie. truncate) then we just need to re- 3437 * allocate the list to remove the extra space. Otherwise, if the 3438 * extents are being removed from the middle of the existing extent 3439 * entries, then we first need to move the extent records beginning 3440 * at idx + ext_diff up in the list to overwrite the records being 3441 * removed, then remove the extra space via kmem_realloc. 3442 */ 3443 void 3444 xfs_iext_remove_direct( 3445 xfs_ifork_t *ifp, /* inode fork pointer */ 3446 xfs_extnum_t idx, /* index to begin removing exts */ 3447 int ext_diff) /* number of extents to remove */ 3448 { 3449 xfs_extnum_t nextents; /* number of extents in file */ 3450 int new_size; /* size of extents after removal */ 3451 3452 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3453 new_size = ifp->if_bytes - 3454 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3455 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3456 3457 if (new_size == 0) { 3458 xfs_iext_destroy(ifp); 3459 return; 3460 } 3461 /* Move extents up in the list (if needed) */ 3462 if (idx + ext_diff < nextents) { 3463 memmove(&ifp->if_u1.if_extents[idx], 3464 &ifp->if_u1.if_extents[idx + ext_diff], 3465 (nextents - (idx + ext_diff)) * 3466 sizeof(xfs_bmbt_rec_t)); 3467 } 3468 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3469 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3470 /* 3471 * Reallocate the direct extent list. If the extents 3472 * will fit inside the inode then xfs_iext_realloc_direct 3473 * will switch from direct to inline extent allocation 3474 * mode for us. 3475 */ 3476 xfs_iext_realloc_direct(ifp, new_size); 3477 ifp->if_bytes = new_size; 3478 } 3479 3480 /* 3481 * This is called when incore extents are being removed from the 3482 * indirection array and the extents being removed span multiple extent 3483 * buffers. The idx parameter contains the file extent index where we 3484 * want to begin removing extents, and the count parameter contains 3485 * how many extents need to be removed. 3486 * 3487 * |-------| |-------| 3488 * | nex1 | | | nex1 - number of extents before idx 3489 * |-------| | count | 3490 * | | | | count - number of extents being removed at idx 3491 * | count | |-------| 3492 * | | | nex2 | nex2 - number of extents after idx + count 3493 * |-------| |-------| 3494 */ 3495 void 3496 xfs_iext_remove_indirect( 3497 xfs_ifork_t *ifp, /* inode fork pointer */ 3498 xfs_extnum_t idx, /* index to begin removing extents */ 3499 int count) /* number of extents to remove */ 3500 { 3501 xfs_ext_irec_t *erp; /* indirection array pointer */ 3502 int erp_idx = 0; /* indirection array index */ 3503 xfs_extnum_t ext_cnt; /* extents left to remove */ 3504 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3505 xfs_extnum_t nex1; /* number of extents before idx */ 3506 xfs_extnum_t nex2; /* extents after idx + count */ 3507 int page_idx = idx; /* index in target extent list */ 3508 3509 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3510 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3511 ASSERT(erp != NULL); 3512 nex1 = page_idx; 3513 ext_cnt = count; 3514 while (ext_cnt) { 3515 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3516 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3517 /* 3518 * Check for deletion of entire list; 3519 * xfs_iext_irec_remove() updates extent offsets. 3520 */ 3521 if (ext_diff == erp->er_extcount) { 3522 xfs_iext_irec_remove(ifp, erp_idx); 3523 ext_cnt -= ext_diff; 3524 nex1 = 0; 3525 if (ext_cnt) { 3526 ASSERT(erp_idx < ifp->if_real_bytes / 3527 XFS_IEXT_BUFSZ); 3528 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3529 nex1 = 0; 3530 continue; 3531 } else { 3532 break; 3533 } 3534 } 3535 /* Move extents up (if needed) */ 3536 if (nex2) { 3537 memmove(&erp->er_extbuf[nex1], 3538 &erp->er_extbuf[nex1 + ext_diff], 3539 nex2 * sizeof(xfs_bmbt_rec_t)); 3540 } 3541 /* Zero out rest of page */ 3542 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3543 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3544 /* Update remaining counters */ 3545 erp->er_extcount -= ext_diff; 3546 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3547 ext_cnt -= ext_diff; 3548 nex1 = 0; 3549 erp_idx++; 3550 erp++; 3551 } 3552 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3553 xfs_iext_irec_compact(ifp); 3554 } 3555 3556 /* 3557 * Create, destroy, or resize a linear (direct) block of extents. 3558 */ 3559 void 3560 xfs_iext_realloc_direct( 3561 xfs_ifork_t *ifp, /* inode fork pointer */ 3562 int new_size) /* new size of extents */ 3563 { 3564 int rnew_size; /* real new size of extents */ 3565 3566 rnew_size = new_size; 3567 3568 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3569 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3570 (new_size != ifp->if_real_bytes))); 3571 3572 /* Free extent records */ 3573 if (new_size == 0) { 3574 xfs_iext_destroy(ifp); 3575 } 3576 /* Resize direct extent list and zero any new bytes */ 3577 else if (ifp->if_real_bytes) { 3578 /* Check if extents will fit inside the inode */ 3579 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3580 xfs_iext_direct_to_inline(ifp, new_size / 3581 (uint)sizeof(xfs_bmbt_rec_t)); 3582 ifp->if_bytes = new_size; 3583 return; 3584 } 3585 if (!is_power_of_2(new_size)){ 3586 rnew_size = roundup_pow_of_two(new_size); 3587 } 3588 if (rnew_size != ifp->if_real_bytes) { 3589 ifp->if_u1.if_extents = 3590 kmem_realloc(ifp->if_u1.if_extents, 3591 rnew_size, 3592 ifp->if_real_bytes, KM_NOFS); 3593 } 3594 if (rnew_size > ifp->if_real_bytes) { 3595 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3596 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3597 rnew_size - ifp->if_real_bytes); 3598 } 3599 } 3600 /* 3601 * Switch from the inline extent buffer to a direct 3602 * extent list. Be sure to include the inline extent 3603 * bytes in new_size. 3604 */ 3605 else { 3606 new_size += ifp->if_bytes; 3607 if (!is_power_of_2(new_size)) { 3608 rnew_size = roundup_pow_of_two(new_size); 3609 } 3610 xfs_iext_inline_to_direct(ifp, rnew_size); 3611 } 3612 ifp->if_real_bytes = rnew_size; 3613 ifp->if_bytes = new_size; 3614 } 3615 3616 /* 3617 * Switch from linear (direct) extent records to inline buffer. 3618 */ 3619 void 3620 xfs_iext_direct_to_inline( 3621 xfs_ifork_t *ifp, /* inode fork pointer */ 3622 xfs_extnum_t nextents) /* number of extents in file */ 3623 { 3624 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3625 ASSERT(nextents <= XFS_INLINE_EXTS); 3626 /* 3627 * The inline buffer was zeroed when we switched 3628 * from inline to direct extent allocation mode, 3629 * so we don't need to clear it here. 3630 */ 3631 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3632 nextents * sizeof(xfs_bmbt_rec_t)); 3633 kmem_free(ifp->if_u1.if_extents); 3634 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3635 ifp->if_real_bytes = 0; 3636 } 3637 3638 /* 3639 * Switch from inline buffer to linear (direct) extent records. 3640 * new_size should already be rounded up to the next power of 2 3641 * by the caller (when appropriate), so use new_size as it is. 3642 * However, since new_size may be rounded up, we can't update 3643 * if_bytes here. It is the caller's responsibility to update 3644 * if_bytes upon return. 3645 */ 3646 void 3647 xfs_iext_inline_to_direct( 3648 xfs_ifork_t *ifp, /* inode fork pointer */ 3649 int new_size) /* number of extents in file */ 3650 { 3651 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3652 memset(ifp->if_u1.if_extents, 0, new_size); 3653 if (ifp->if_bytes) { 3654 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3655 ifp->if_bytes); 3656 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3657 sizeof(xfs_bmbt_rec_t)); 3658 } 3659 ifp->if_real_bytes = new_size; 3660 } 3661 3662 /* 3663 * Resize an extent indirection array to new_size bytes. 3664 */ 3665 STATIC void 3666 xfs_iext_realloc_indirect( 3667 xfs_ifork_t *ifp, /* inode fork pointer */ 3668 int new_size) /* new indirection array size */ 3669 { 3670 int nlists; /* number of irec's (ex lists) */ 3671 int size; /* current indirection array size */ 3672 3673 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3674 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3675 size = nlists * sizeof(xfs_ext_irec_t); 3676 ASSERT(ifp->if_real_bytes); 3677 ASSERT((new_size >= 0) && (new_size != size)); 3678 if (new_size == 0) { 3679 xfs_iext_destroy(ifp); 3680 } else { 3681 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3682 kmem_realloc(ifp->if_u1.if_ext_irec, 3683 new_size, size, KM_NOFS); 3684 } 3685 } 3686 3687 /* 3688 * Switch from indirection array to linear (direct) extent allocations. 3689 */ 3690 STATIC void 3691 xfs_iext_indirect_to_direct( 3692 xfs_ifork_t *ifp) /* inode fork pointer */ 3693 { 3694 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3695 xfs_extnum_t nextents; /* number of extents in file */ 3696 int size; /* size of file extents */ 3697 3698 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3699 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3700 ASSERT(nextents <= XFS_LINEAR_EXTS); 3701 size = nextents * sizeof(xfs_bmbt_rec_t); 3702 3703 xfs_iext_irec_compact_pages(ifp); 3704 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3705 3706 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3707 kmem_free(ifp->if_u1.if_ext_irec); 3708 ifp->if_flags &= ~XFS_IFEXTIREC; 3709 ifp->if_u1.if_extents = ep; 3710 ifp->if_bytes = size; 3711 if (nextents < XFS_LINEAR_EXTS) { 3712 xfs_iext_realloc_direct(ifp, size); 3713 } 3714 } 3715 3716 /* 3717 * Free incore file extents. 3718 */ 3719 void 3720 xfs_iext_destroy( 3721 xfs_ifork_t *ifp) /* inode fork pointer */ 3722 { 3723 if (ifp->if_flags & XFS_IFEXTIREC) { 3724 int erp_idx; 3725 int nlists; 3726 3727 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3728 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3729 xfs_iext_irec_remove(ifp, erp_idx); 3730 } 3731 ifp->if_flags &= ~XFS_IFEXTIREC; 3732 } else if (ifp->if_real_bytes) { 3733 kmem_free(ifp->if_u1.if_extents); 3734 } else if (ifp->if_bytes) { 3735 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3736 sizeof(xfs_bmbt_rec_t)); 3737 } 3738 ifp->if_u1.if_extents = NULL; 3739 ifp->if_real_bytes = 0; 3740 ifp->if_bytes = 0; 3741 } 3742 3743 /* 3744 * Return a pointer to the extent record for file system block bno. 3745 */ 3746 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3747 xfs_iext_bno_to_ext( 3748 xfs_ifork_t *ifp, /* inode fork pointer */ 3749 xfs_fileoff_t bno, /* block number to search for */ 3750 xfs_extnum_t *idxp) /* index of target extent */ 3751 { 3752 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3753 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3754 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3755 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3756 int high; /* upper boundary in search */ 3757 xfs_extnum_t idx = 0; /* index of target extent */ 3758 int low; /* lower boundary in search */ 3759 xfs_extnum_t nextents; /* number of file extents */ 3760 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3761 3762 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3763 if (nextents == 0) { 3764 *idxp = 0; 3765 return NULL; 3766 } 3767 low = 0; 3768 if (ifp->if_flags & XFS_IFEXTIREC) { 3769 /* Find target extent list */ 3770 int erp_idx = 0; 3771 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3772 base = erp->er_extbuf; 3773 high = erp->er_extcount - 1; 3774 } else { 3775 base = ifp->if_u1.if_extents; 3776 high = nextents - 1; 3777 } 3778 /* Binary search extent records */ 3779 while (low <= high) { 3780 idx = (low + high) >> 1; 3781 ep = base + idx; 3782 startoff = xfs_bmbt_get_startoff(ep); 3783 blockcount = xfs_bmbt_get_blockcount(ep); 3784 if (bno < startoff) { 3785 high = idx - 1; 3786 } else if (bno >= startoff + blockcount) { 3787 low = idx + 1; 3788 } else { 3789 /* Convert back to file-based extent index */ 3790 if (ifp->if_flags & XFS_IFEXTIREC) { 3791 idx += erp->er_extoff; 3792 } 3793 *idxp = idx; 3794 return ep; 3795 } 3796 } 3797 /* Convert back to file-based extent index */ 3798 if (ifp->if_flags & XFS_IFEXTIREC) { 3799 idx += erp->er_extoff; 3800 } 3801 if (bno >= startoff + blockcount) { 3802 if (++idx == nextents) { 3803 ep = NULL; 3804 } else { 3805 ep = xfs_iext_get_ext(ifp, idx); 3806 } 3807 } 3808 *idxp = idx; 3809 return ep; 3810 } 3811 3812 /* 3813 * Return a pointer to the indirection array entry containing the 3814 * extent record for filesystem block bno. Store the index of the 3815 * target irec in *erp_idxp. 3816 */ 3817 xfs_ext_irec_t * /* pointer to found extent record */ 3818 xfs_iext_bno_to_irec( 3819 xfs_ifork_t *ifp, /* inode fork pointer */ 3820 xfs_fileoff_t bno, /* block number to search for */ 3821 int *erp_idxp) /* irec index of target ext list */ 3822 { 3823 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3824 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3825 int erp_idx; /* indirection array index */ 3826 int nlists; /* number of extent irec's (lists) */ 3827 int high; /* binary search upper limit */ 3828 int low; /* binary search lower limit */ 3829 3830 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3831 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3832 erp_idx = 0; 3833 low = 0; 3834 high = nlists - 1; 3835 while (low <= high) { 3836 erp_idx = (low + high) >> 1; 3837 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3838 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3839 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3840 high = erp_idx - 1; 3841 } else if (erp_next && bno >= 3842 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3843 low = erp_idx + 1; 3844 } else { 3845 break; 3846 } 3847 } 3848 *erp_idxp = erp_idx; 3849 return erp; 3850 } 3851 3852 /* 3853 * Return a pointer to the indirection array entry containing the 3854 * extent record at file extent index *idxp. Store the index of the 3855 * target irec in *erp_idxp and store the page index of the target 3856 * extent record in *idxp. 3857 */ 3858 xfs_ext_irec_t * 3859 xfs_iext_idx_to_irec( 3860 xfs_ifork_t *ifp, /* inode fork pointer */ 3861 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3862 int *erp_idxp, /* pointer to target irec */ 3863 int realloc) /* new bytes were just added */ 3864 { 3865 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3866 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3867 int erp_idx; /* indirection array index */ 3868 int nlists; /* number of irec's (ex lists) */ 3869 int high; /* binary search upper limit */ 3870 int low; /* binary search lower limit */ 3871 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3872 3873 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3874 ASSERT(page_idx >= 0 && page_idx <= 3875 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 3876 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3877 erp_idx = 0; 3878 low = 0; 3879 high = nlists - 1; 3880 3881 /* Binary search extent irec's */ 3882 while (low <= high) { 3883 erp_idx = (low + high) >> 1; 3884 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3885 prev = erp_idx > 0 ? erp - 1 : NULL; 3886 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3887 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3888 high = erp_idx - 1; 3889 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3890 (page_idx == erp->er_extoff + erp->er_extcount && 3891 !realloc)) { 3892 low = erp_idx + 1; 3893 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3894 erp->er_extcount == XFS_LINEAR_EXTS) { 3895 ASSERT(realloc); 3896 page_idx = 0; 3897 erp_idx++; 3898 erp = erp_idx < nlists ? erp + 1 : NULL; 3899 break; 3900 } else { 3901 page_idx -= erp->er_extoff; 3902 break; 3903 } 3904 } 3905 *idxp = page_idx; 3906 *erp_idxp = erp_idx; 3907 return(erp); 3908 } 3909 3910 /* 3911 * Allocate and initialize an indirection array once the space needed 3912 * for incore extents increases above XFS_IEXT_BUFSZ. 3913 */ 3914 void 3915 xfs_iext_irec_init( 3916 xfs_ifork_t *ifp) /* inode fork pointer */ 3917 { 3918 xfs_ext_irec_t *erp; /* indirection array pointer */ 3919 xfs_extnum_t nextents; /* number of extents in file */ 3920 3921 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3922 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3923 ASSERT(nextents <= XFS_LINEAR_EXTS); 3924 3925 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3926 3927 if (nextents == 0) { 3928 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3929 } else if (!ifp->if_real_bytes) { 3930 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3931 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3932 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3933 } 3934 erp->er_extbuf = ifp->if_u1.if_extents; 3935 erp->er_extcount = nextents; 3936 erp->er_extoff = 0; 3937 3938 ifp->if_flags |= XFS_IFEXTIREC; 3939 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3940 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3941 ifp->if_u1.if_ext_irec = erp; 3942 3943 return; 3944 } 3945 3946 /* 3947 * Allocate and initialize a new entry in the indirection array. 3948 */ 3949 xfs_ext_irec_t * 3950 xfs_iext_irec_new( 3951 xfs_ifork_t *ifp, /* inode fork pointer */ 3952 int erp_idx) /* index for new irec */ 3953 { 3954 xfs_ext_irec_t *erp; /* indirection array pointer */ 3955 int i; /* loop counter */ 3956 int nlists; /* number of irec's (ex lists) */ 3957 3958 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3959 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3960 3961 /* Resize indirection array */ 3962 xfs_iext_realloc_indirect(ifp, ++nlists * 3963 sizeof(xfs_ext_irec_t)); 3964 /* 3965 * Move records down in the array so the 3966 * new page can use erp_idx. 3967 */ 3968 erp = ifp->if_u1.if_ext_irec; 3969 for (i = nlists - 1; i > erp_idx; i--) { 3970 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3971 } 3972 ASSERT(i == erp_idx); 3973 3974 /* Initialize new extent record */ 3975 erp = ifp->if_u1.if_ext_irec; 3976 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3977 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3978 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3979 erp[erp_idx].er_extcount = 0; 3980 erp[erp_idx].er_extoff = erp_idx > 0 ? 3981 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3982 return (&erp[erp_idx]); 3983 } 3984 3985 /* 3986 * Remove a record from the indirection array. 3987 */ 3988 void 3989 xfs_iext_irec_remove( 3990 xfs_ifork_t *ifp, /* inode fork pointer */ 3991 int erp_idx) /* irec index to remove */ 3992 { 3993 xfs_ext_irec_t *erp; /* indirection array pointer */ 3994 int i; /* loop counter */ 3995 int nlists; /* number of irec's (ex lists) */ 3996 3997 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3998 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3999 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4000 if (erp->er_extbuf) { 4001 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4002 -erp->er_extcount); 4003 kmem_free(erp->er_extbuf); 4004 } 4005 /* Compact extent records */ 4006 erp = ifp->if_u1.if_ext_irec; 4007 for (i = erp_idx; i < nlists - 1; i++) { 4008 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4009 } 4010 /* 4011 * Manually free the last extent record from the indirection 4012 * array. A call to xfs_iext_realloc_indirect() with a size 4013 * of zero would result in a call to xfs_iext_destroy() which 4014 * would in turn call this function again, creating a nasty 4015 * infinite loop. 4016 */ 4017 if (--nlists) { 4018 xfs_iext_realloc_indirect(ifp, 4019 nlists * sizeof(xfs_ext_irec_t)); 4020 } else { 4021 kmem_free(ifp->if_u1.if_ext_irec); 4022 } 4023 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4024 } 4025 4026 /* 4027 * This is called to clean up large amounts of unused memory allocated 4028 * by the indirection array. Before compacting anything though, verify 4029 * that the indirection array is still needed and switch back to the 4030 * linear extent list (or even the inline buffer) if possible. The 4031 * compaction policy is as follows: 4032 * 4033 * Full Compaction: Extents fit into a single page (or inline buffer) 4034 * Partial Compaction: Extents occupy less than 50% of allocated space 4035 * No Compaction: Extents occupy at least 50% of allocated space 4036 */ 4037 void 4038 xfs_iext_irec_compact( 4039 xfs_ifork_t *ifp) /* inode fork pointer */ 4040 { 4041 xfs_extnum_t nextents; /* number of extents in file */ 4042 int nlists; /* number of irec's (ex lists) */ 4043 4044 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4045 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4046 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4047 4048 if (nextents == 0) { 4049 xfs_iext_destroy(ifp); 4050 } else if (nextents <= XFS_INLINE_EXTS) { 4051 xfs_iext_indirect_to_direct(ifp); 4052 xfs_iext_direct_to_inline(ifp, nextents); 4053 } else if (nextents <= XFS_LINEAR_EXTS) { 4054 xfs_iext_indirect_to_direct(ifp); 4055 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4056 xfs_iext_irec_compact_pages(ifp); 4057 } 4058 } 4059 4060 /* 4061 * Combine extents from neighboring extent pages. 4062 */ 4063 void 4064 xfs_iext_irec_compact_pages( 4065 xfs_ifork_t *ifp) /* inode fork pointer */ 4066 { 4067 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4068 int erp_idx = 0; /* indirection array index */ 4069 int nlists; /* number of irec's (ex lists) */ 4070 4071 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4072 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4073 while (erp_idx < nlists - 1) { 4074 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4075 erp_next = erp + 1; 4076 if (erp_next->er_extcount <= 4077 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4078 memcpy(&erp->er_extbuf[erp->er_extcount], 4079 erp_next->er_extbuf, erp_next->er_extcount * 4080 sizeof(xfs_bmbt_rec_t)); 4081 erp->er_extcount += erp_next->er_extcount; 4082 /* 4083 * Free page before removing extent record 4084 * so er_extoffs don't get modified in 4085 * xfs_iext_irec_remove. 4086 */ 4087 kmem_free(erp_next->er_extbuf); 4088 erp_next->er_extbuf = NULL; 4089 xfs_iext_irec_remove(ifp, erp_idx + 1); 4090 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4091 } else { 4092 erp_idx++; 4093 } 4094 } 4095 } 4096 4097 /* 4098 * This is called to update the er_extoff field in the indirection 4099 * array when extents have been added or removed from one of the 4100 * extent lists. erp_idx contains the irec index to begin updating 4101 * at and ext_diff contains the number of extents that were added 4102 * or removed. 4103 */ 4104 void 4105 xfs_iext_irec_update_extoffs( 4106 xfs_ifork_t *ifp, /* inode fork pointer */ 4107 int erp_idx, /* irec index to update */ 4108 int ext_diff) /* number of new extents */ 4109 { 4110 int i; /* loop counter */ 4111 int nlists; /* number of irec's (ex lists */ 4112 4113 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4114 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4115 for (i = erp_idx; i < nlists; i++) { 4116 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4117 } 4118 } 4119