1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_bmap.h" 25 #include "xfs_bmap_util.h" 26 #include "xfs_errortag.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_filestream.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_symlink.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_log.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_reflink.h" 37 #include "xfs_ag.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 49 struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 65 return ip->i_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (xfs_need_iread_extents(&ip->i_df)) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 128 lock_mode = XFS_ILOCK_EXCL; 129 xfs_ilock(ip, lock_mode); 130 return lock_mode; 131 } 132 133 /* 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 135 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 136 * various combinations of the locks to be obtained. 137 * 138 * The 3 locks should always be ordered so that the IO lock is obtained first, 139 * the mmap lock second and the ilock last in order to prevent deadlock. 140 * 141 * Basic locking order: 142 * 143 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 144 * 145 * mmap_lock locking order: 146 * 147 * i_rwsem -> page lock -> mmap_lock 148 * mmap_lock -> invalidate_lock -> page_lock 149 * 150 * The difference in mmap_lock locking order mean that we cannot hold the 151 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 152 * can fault in pages during copy in/out (for buffered IO) or require the 153 * mmap_lock in get_user_pages() to map the user pages into the kernel address 154 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 155 * fault because page faults already hold the mmap_lock. 156 * 157 * Hence to serialise fully against both syscall and mmap based IO, we need to 158 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 159 * both taken in places where we need to invalidate the page cache in a race 160 * free manner (e.g. truncate, hole punch and other extent manipulation 161 * functions). 162 */ 163 void 164 xfs_ilock( 165 xfs_inode_t *ip, 166 uint lock_flags) 167 { 168 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 169 170 /* 171 * You can't set both SHARED and EXCL for the same lock, 172 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 173 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 174 */ 175 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 176 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 177 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 178 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 180 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 181 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 182 183 if (lock_flags & XFS_IOLOCK_EXCL) { 184 down_write_nested(&VFS_I(ip)->i_rwsem, 185 XFS_IOLOCK_DEP(lock_flags)); 186 } else if (lock_flags & XFS_IOLOCK_SHARED) { 187 down_read_nested(&VFS_I(ip)->i_rwsem, 188 XFS_IOLOCK_DEP(lock_flags)); 189 } 190 191 if (lock_flags & XFS_MMAPLOCK_EXCL) { 192 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 193 XFS_MMAPLOCK_DEP(lock_flags)); 194 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 195 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 196 XFS_MMAPLOCK_DEP(lock_flags)); 197 } 198 199 if (lock_flags & XFS_ILOCK_EXCL) 200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_ILOCK_SHARED) 202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 203 } 204 205 /* 206 * This is just like xfs_ilock(), except that the caller 207 * is guaranteed not to sleep. It returns 1 if it gets 208 * the requested locks and 0 otherwise. If the IO lock is 209 * obtained but the inode lock cannot be, then the IO lock 210 * is dropped before returning. 211 * 212 * ip -- the inode being locked 213 * lock_flags -- this parameter indicates the inode's locks to be 214 * to be locked. See the comment for xfs_ilock() for a list 215 * of valid values. 216 */ 217 int 218 xfs_ilock_nowait( 219 xfs_inode_t *ip, 220 uint lock_flags) 221 { 222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 223 224 /* 225 * You can't set both SHARED and EXCL for the same lock, 226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 228 */ 229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 /* 294 * You can't set both SHARED and EXCL for the same lock, 295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 297 */ 298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 305 ASSERT(lock_flags != 0); 306 307 if (lock_flags & XFS_IOLOCK_EXCL) 308 up_write(&VFS_I(ip)->i_rwsem); 309 else if (lock_flags & XFS_IOLOCK_SHARED) 310 up_read(&VFS_I(ip)->i_rwsem); 311 312 if (lock_flags & XFS_MMAPLOCK_EXCL) 313 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 314 else if (lock_flags & XFS_MMAPLOCK_SHARED) 315 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 316 317 if (lock_flags & XFS_ILOCK_EXCL) 318 mrunlock_excl(&ip->i_lock); 319 else if (lock_flags & XFS_ILOCK_SHARED) 320 mrunlock_shared(&ip->i_lock); 321 322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 323 } 324 325 /* 326 * give up write locks. the i/o lock cannot be held nested 327 * if it is being demoted. 328 */ 329 void 330 xfs_ilock_demote( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 335 ASSERT((lock_flags & 336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 337 338 if (lock_flags & XFS_ILOCK_EXCL) 339 mrdemote(&ip->i_lock); 340 if (lock_flags & XFS_MMAPLOCK_EXCL) 341 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 342 if (lock_flags & XFS_IOLOCK_EXCL) 343 downgrade_write(&VFS_I(ip)->i_rwsem); 344 345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 346 } 347 348 #if defined(DEBUG) || defined(XFS_WARN) 349 static inline bool 350 __xfs_rwsem_islocked( 351 struct rw_semaphore *rwsem, 352 bool shared) 353 { 354 if (!debug_locks) 355 return rwsem_is_locked(rwsem); 356 357 if (!shared) 358 return lockdep_is_held_type(rwsem, 0); 359 360 /* 361 * We are checking that the lock is held at least in shared 362 * mode but don't care that it might be held exclusively 363 * (i.e. shared | excl). Hence we check if the lock is held 364 * in any mode rather than an explicit shared mode. 365 */ 366 return lockdep_is_held_type(rwsem, -1); 367 } 368 369 bool 370 xfs_isilocked( 371 struct xfs_inode *ip, 372 uint lock_flags) 373 { 374 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 375 if (!(lock_flags & XFS_ILOCK_SHARED)) 376 return !!ip->i_lock.mr_writer; 377 return rwsem_is_locked(&ip->i_lock.mr_lock); 378 } 379 380 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 381 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 382 (lock_flags & XFS_IOLOCK_SHARED)); 383 } 384 385 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 386 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 387 (lock_flags & XFS_IOLOCK_SHARED)); 388 } 389 390 ASSERT(0); 391 return false; 392 } 393 #endif 394 395 /* 396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 399 * errors and warnings. 400 */ 401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 402 static bool 403 xfs_lockdep_subclass_ok( 404 int subclass) 405 { 406 return subclass < MAX_LOCKDEP_SUBCLASSES; 407 } 408 #else 409 #define xfs_lockdep_subclass_ok(subclass) (true) 410 #endif 411 412 /* 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 414 * value. This can be called for any type of inode lock combination, including 415 * parent locking. Care must be taken to ensure we don't overrun the subclass 416 * storage fields in the class mask we build. 417 */ 418 static inline int 419 xfs_lock_inumorder(int lock_mode, int subclass) 420 { 421 int class = 0; 422 423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 424 XFS_ILOCK_RTSUM))); 425 ASSERT(xfs_lockdep_subclass_ok(subclass)); 426 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 429 class += subclass << XFS_IOLOCK_SHIFT; 430 } 431 432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 434 class += subclass << XFS_MMAPLOCK_SHIFT; 435 } 436 437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 439 class += subclass << XFS_ILOCK_SHIFT; 440 } 441 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 443 } 444 445 /* 446 * The following routine will lock n inodes in exclusive mode. We assume the 447 * caller calls us with the inodes in i_ino order. 448 * 449 * We need to detect deadlock where an inode that we lock is in the AIL and we 450 * start waiting for another inode that is locked by a thread in a long running 451 * transaction (such as truncate). This can result in deadlock since the long 452 * running trans might need to wait for the inode we just locked in order to 453 * push the tail and free space in the log. 454 * 455 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 457 * lock more than one at a time, lockdep will report false positives saying we 458 * have violated locking orders. 459 */ 460 static void 461 xfs_lock_inodes( 462 struct xfs_inode **ips, 463 int inodes, 464 uint lock_mode) 465 { 466 int attempts = 0, i, j, try_lock; 467 struct xfs_log_item *lp; 468 469 /* 470 * Currently supports between 2 and 5 inodes with exclusive locking. We 471 * support an arbitrary depth of locking here, but absolute limits on 472 * inodes depend on the type of locking and the limits placed by 473 * lockdep annotations in xfs_lock_inumorder. These are all checked by 474 * the asserts. 475 */ 476 ASSERT(ips && inodes >= 2 && inodes <= 5); 477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 478 XFS_ILOCK_EXCL)); 479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 480 XFS_ILOCK_SHARED))); 481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 485 486 if (lock_mode & XFS_IOLOCK_EXCL) { 487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 488 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 490 491 try_lock = 0; 492 i = 0; 493 again: 494 for (; i < inodes; i++) { 495 ASSERT(ips[i]); 496 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 498 continue; 499 500 /* 501 * If try_lock is not set yet, make sure all locked inodes are 502 * not in the AIL. If any are, set try_lock to be used later. 503 */ 504 if (!try_lock) { 505 for (j = (i - 1); j >= 0 && !try_lock; j--) { 506 lp = &ips[j]->i_itemp->ili_item; 507 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 508 try_lock++; 509 } 510 } 511 512 /* 513 * If any of the previous locks we have locked is in the AIL, 514 * we must TRY to get the second and subsequent locks. If 515 * we can't get any, we must release all we have 516 * and try again. 517 */ 518 if (!try_lock) { 519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 520 continue; 521 } 522 523 /* try_lock means we have an inode locked that is in the AIL. */ 524 ASSERT(i != 0); 525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 526 continue; 527 528 /* 529 * Unlock all previous guys and try again. xfs_iunlock will try 530 * to push the tail if the inode is in the AIL. 531 */ 532 attempts++; 533 for (j = i - 1; j >= 0; j--) { 534 /* 535 * Check to see if we've already unlocked this one. Not 536 * the first one going back, and the inode ptr is the 537 * same. 538 */ 539 if (j != (i - 1) && ips[j] == ips[j + 1]) 540 continue; 541 542 xfs_iunlock(ips[j], lock_mode); 543 } 544 545 if ((attempts % 5) == 0) { 546 delay(1); /* Don't just spin the CPU */ 547 } 548 i = 0; 549 try_lock = 0; 550 goto again; 551 } 552 } 553 554 /* 555 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 556 * mmaplock must be double-locked separately since we use i_rwsem and 557 * invalidate_lock for that. We now support taking one lock EXCL and the 558 * other SHARED. 559 */ 560 void 561 xfs_lock_two_inodes( 562 struct xfs_inode *ip0, 563 uint ip0_mode, 564 struct xfs_inode *ip1, 565 uint ip1_mode) 566 { 567 struct xfs_inode *temp; 568 uint mode_temp; 569 int attempts = 0; 570 struct xfs_log_item *lp; 571 572 ASSERT(hweight32(ip0_mode) == 1); 573 ASSERT(hweight32(ip1_mode) == 1); 574 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 575 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 576 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 577 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 578 ASSERT(ip0->i_ino != ip1->i_ino); 579 580 if (ip0->i_ino > ip1->i_ino) { 581 temp = ip0; 582 ip0 = ip1; 583 ip1 = temp; 584 mode_temp = ip0_mode; 585 ip0_mode = ip1_mode; 586 ip1_mode = mode_temp; 587 } 588 589 again: 590 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 591 592 /* 593 * If the first lock we have locked is in the AIL, we must TRY to get 594 * the second lock. If we can't get it, we must release the first one 595 * and try again. 596 */ 597 lp = &ip0->i_itemp->ili_item; 598 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 599 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 600 xfs_iunlock(ip0, ip0_mode); 601 if ((++attempts % 5) == 0) 602 delay(1); /* Don't just spin the CPU */ 603 goto again; 604 } 605 } else { 606 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 607 } 608 } 609 610 uint 611 xfs_ip2xflags( 612 struct xfs_inode *ip) 613 { 614 uint flags = 0; 615 616 if (ip->i_diflags & XFS_DIFLAG_ANY) { 617 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 618 flags |= FS_XFLAG_REALTIME; 619 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 620 flags |= FS_XFLAG_PREALLOC; 621 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 622 flags |= FS_XFLAG_IMMUTABLE; 623 if (ip->i_diflags & XFS_DIFLAG_APPEND) 624 flags |= FS_XFLAG_APPEND; 625 if (ip->i_diflags & XFS_DIFLAG_SYNC) 626 flags |= FS_XFLAG_SYNC; 627 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 628 flags |= FS_XFLAG_NOATIME; 629 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 630 flags |= FS_XFLAG_NODUMP; 631 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 632 flags |= FS_XFLAG_RTINHERIT; 633 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 634 flags |= FS_XFLAG_PROJINHERIT; 635 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 636 flags |= FS_XFLAG_NOSYMLINKS; 637 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 638 flags |= FS_XFLAG_EXTSIZE; 639 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 640 flags |= FS_XFLAG_EXTSZINHERIT; 641 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 642 flags |= FS_XFLAG_NODEFRAG; 643 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 644 flags |= FS_XFLAG_FILESTREAM; 645 } 646 647 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 648 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 649 flags |= FS_XFLAG_DAX; 650 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 651 flags |= FS_XFLAG_COWEXTSIZE; 652 } 653 654 if (XFS_IFORK_Q(ip)) 655 flags |= FS_XFLAG_HASATTR; 656 return flags; 657 } 658 659 /* 660 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 661 * is allowed, otherwise it has to be an exact match. If a CI match is found, 662 * ci_name->name will point to a the actual name (caller must free) or 663 * will be set to NULL if an exact match is found. 664 */ 665 int 666 xfs_lookup( 667 xfs_inode_t *dp, 668 struct xfs_name *name, 669 xfs_inode_t **ipp, 670 struct xfs_name *ci_name) 671 { 672 xfs_ino_t inum; 673 int error; 674 675 trace_xfs_lookup(dp, name); 676 677 if (xfs_is_shutdown(dp->i_mount)) 678 return -EIO; 679 680 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 681 if (error) 682 goto out_unlock; 683 684 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 685 if (error) 686 goto out_free_name; 687 688 return 0; 689 690 out_free_name: 691 if (ci_name) 692 kmem_free(ci_name->name); 693 out_unlock: 694 *ipp = NULL; 695 return error; 696 } 697 698 /* Propagate di_flags from a parent inode to a child inode. */ 699 static void 700 xfs_inode_inherit_flags( 701 struct xfs_inode *ip, 702 const struct xfs_inode *pip) 703 { 704 unsigned int di_flags = 0; 705 xfs_failaddr_t failaddr; 706 umode_t mode = VFS_I(ip)->i_mode; 707 708 if (S_ISDIR(mode)) { 709 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 710 di_flags |= XFS_DIFLAG_RTINHERIT; 711 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 712 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 713 ip->i_extsize = pip->i_extsize; 714 } 715 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 716 di_flags |= XFS_DIFLAG_PROJINHERIT; 717 } else if (S_ISREG(mode)) { 718 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 719 xfs_has_realtime(ip->i_mount)) 720 di_flags |= XFS_DIFLAG_REALTIME; 721 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 722 di_flags |= XFS_DIFLAG_EXTSIZE; 723 ip->i_extsize = pip->i_extsize; 724 } 725 } 726 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 727 xfs_inherit_noatime) 728 di_flags |= XFS_DIFLAG_NOATIME; 729 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 730 xfs_inherit_nodump) 731 di_flags |= XFS_DIFLAG_NODUMP; 732 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 733 xfs_inherit_sync) 734 di_flags |= XFS_DIFLAG_SYNC; 735 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 736 xfs_inherit_nosymlinks) 737 di_flags |= XFS_DIFLAG_NOSYMLINKS; 738 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 739 xfs_inherit_nodefrag) 740 di_flags |= XFS_DIFLAG_NODEFRAG; 741 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 742 di_flags |= XFS_DIFLAG_FILESTREAM; 743 744 ip->i_diflags |= di_flags; 745 746 /* 747 * Inode verifiers on older kernels only check that the extent size 748 * hint is an integer multiple of the rt extent size on realtime files. 749 * They did not check the hint alignment on a directory with both 750 * rtinherit and extszinherit flags set. If the misaligned hint is 751 * propagated from a directory into a new realtime file, new file 752 * allocations will fail due to math errors in the rt allocator and/or 753 * trip the verifiers. Validate the hint settings in the new file so 754 * that we don't let broken hints propagate. 755 */ 756 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 757 VFS_I(ip)->i_mode, ip->i_diflags); 758 if (failaddr) { 759 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 760 XFS_DIFLAG_EXTSZINHERIT); 761 ip->i_extsize = 0; 762 } 763 } 764 765 /* Propagate di_flags2 from a parent inode to a child inode. */ 766 static void 767 xfs_inode_inherit_flags2( 768 struct xfs_inode *ip, 769 const struct xfs_inode *pip) 770 { 771 xfs_failaddr_t failaddr; 772 773 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 774 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 775 ip->i_cowextsize = pip->i_cowextsize; 776 } 777 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 778 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 779 780 /* Don't let invalid cowextsize hints propagate. */ 781 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 782 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 783 if (failaddr) { 784 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 785 ip->i_cowextsize = 0; 786 } 787 } 788 789 /* 790 * Initialise a newly allocated inode and return the in-core inode to the 791 * caller locked exclusively. 792 */ 793 int 794 xfs_init_new_inode( 795 struct user_namespace *mnt_userns, 796 struct xfs_trans *tp, 797 struct xfs_inode *pip, 798 xfs_ino_t ino, 799 umode_t mode, 800 xfs_nlink_t nlink, 801 dev_t rdev, 802 prid_t prid, 803 bool init_xattrs, 804 struct xfs_inode **ipp) 805 { 806 struct inode *dir = pip ? VFS_I(pip) : NULL; 807 struct xfs_mount *mp = tp->t_mountp; 808 struct xfs_inode *ip; 809 unsigned int flags; 810 int error; 811 struct timespec64 tv; 812 struct inode *inode; 813 814 /* 815 * Protect against obviously corrupt allocation btree records. Later 816 * xfs_iget checks will catch re-allocation of other active in-memory 817 * and on-disk inodes. If we don't catch reallocating the parent inode 818 * here we will deadlock in xfs_iget() so we have to do these checks 819 * first. 820 */ 821 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 822 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 823 return -EFSCORRUPTED; 824 } 825 826 /* 827 * Get the in-core inode with the lock held exclusively to prevent 828 * others from looking at until we're done. 829 */ 830 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 831 if (error) 832 return error; 833 834 ASSERT(ip != NULL); 835 inode = VFS_I(ip); 836 set_nlink(inode, nlink); 837 inode->i_rdev = rdev; 838 ip->i_projid = prid; 839 840 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 841 inode_fsuid_set(inode, mnt_userns); 842 inode->i_gid = dir->i_gid; 843 inode->i_mode = mode; 844 } else { 845 inode_init_owner(mnt_userns, inode, dir, mode); 846 } 847 848 /* 849 * If the group ID of the new file does not match the effective group 850 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 851 * (and only if the irix_sgid_inherit compatibility variable is set). 852 */ 853 if (irix_sgid_inherit && 854 (inode->i_mode & S_ISGID) && 855 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 856 inode->i_mode &= ~S_ISGID; 857 858 ip->i_disk_size = 0; 859 ip->i_df.if_nextents = 0; 860 ASSERT(ip->i_nblocks == 0); 861 862 tv = current_time(inode); 863 inode->i_mtime = tv; 864 inode->i_atime = tv; 865 inode->i_ctime = tv; 866 867 ip->i_extsize = 0; 868 ip->i_diflags = 0; 869 870 if (xfs_has_v3inodes(mp)) { 871 inode_set_iversion(inode, 1); 872 ip->i_cowextsize = 0; 873 ip->i_crtime = tv; 874 } 875 876 flags = XFS_ILOG_CORE; 877 switch (mode & S_IFMT) { 878 case S_IFIFO: 879 case S_IFCHR: 880 case S_IFBLK: 881 case S_IFSOCK: 882 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 883 flags |= XFS_ILOG_DEV; 884 break; 885 case S_IFREG: 886 case S_IFDIR: 887 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 888 xfs_inode_inherit_flags(ip, pip); 889 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 890 xfs_inode_inherit_flags2(ip, pip); 891 fallthrough; 892 case S_IFLNK: 893 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 894 ip->i_df.if_bytes = 0; 895 ip->i_df.if_u1.if_root = NULL; 896 break; 897 default: 898 ASSERT(0); 899 } 900 901 /* 902 * If we need to create attributes immediately after allocating the 903 * inode, initialise an empty attribute fork right now. We use the 904 * default fork offset for attributes here as we don't know exactly what 905 * size or how many attributes we might be adding. We can do this 906 * safely here because we know the data fork is completely empty and 907 * this saves us from needing to run a separate transaction to set the 908 * fork offset in the immediate future. 909 */ 910 if (init_xattrs && xfs_has_attr(mp)) { 911 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 912 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 913 } 914 915 /* 916 * Log the new values stuffed into the inode. 917 */ 918 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 919 xfs_trans_log_inode(tp, ip, flags); 920 921 /* now that we have an i_mode we can setup the inode structure */ 922 xfs_setup_inode(ip); 923 924 *ipp = ip; 925 return 0; 926 } 927 928 /* 929 * Decrement the link count on an inode & log the change. If this causes the 930 * link count to go to zero, move the inode to AGI unlinked list so that it can 931 * be freed when the last active reference goes away via xfs_inactive(). 932 */ 933 static int /* error */ 934 xfs_droplink( 935 xfs_trans_t *tp, 936 xfs_inode_t *ip) 937 { 938 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 939 940 drop_nlink(VFS_I(ip)); 941 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 942 943 if (VFS_I(ip)->i_nlink) 944 return 0; 945 946 return xfs_iunlink(tp, ip); 947 } 948 949 /* 950 * Increment the link count on an inode & log the change. 951 */ 952 static void 953 xfs_bumplink( 954 xfs_trans_t *tp, 955 xfs_inode_t *ip) 956 { 957 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 958 959 inc_nlink(VFS_I(ip)); 960 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 961 } 962 963 int 964 xfs_create( 965 struct user_namespace *mnt_userns, 966 xfs_inode_t *dp, 967 struct xfs_name *name, 968 umode_t mode, 969 dev_t rdev, 970 bool init_xattrs, 971 xfs_inode_t **ipp) 972 { 973 int is_dir = S_ISDIR(mode); 974 struct xfs_mount *mp = dp->i_mount; 975 struct xfs_inode *ip = NULL; 976 struct xfs_trans *tp = NULL; 977 int error; 978 bool unlock_dp_on_error = false; 979 prid_t prid; 980 struct xfs_dquot *udqp = NULL; 981 struct xfs_dquot *gdqp = NULL; 982 struct xfs_dquot *pdqp = NULL; 983 struct xfs_trans_res *tres; 984 uint resblks; 985 xfs_ino_t ino; 986 987 trace_xfs_create(dp, name); 988 989 if (xfs_is_shutdown(mp)) 990 return -EIO; 991 992 prid = xfs_get_initial_prid(dp); 993 994 /* 995 * Make sure that we have allocated dquot(s) on disk. 996 */ 997 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 998 mapped_fsgid(mnt_userns), prid, 999 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1000 &udqp, &gdqp, &pdqp); 1001 if (error) 1002 return error; 1003 1004 if (is_dir) { 1005 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1006 tres = &M_RES(mp)->tr_mkdir; 1007 } else { 1008 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1009 tres = &M_RES(mp)->tr_create; 1010 } 1011 1012 /* 1013 * Initially assume that the file does not exist and 1014 * reserve the resources for that case. If that is not 1015 * the case we'll drop the one we have and get a more 1016 * appropriate transaction later. 1017 */ 1018 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1019 &tp); 1020 if (error == -ENOSPC) { 1021 /* flush outstanding delalloc blocks and retry */ 1022 xfs_flush_inodes(mp); 1023 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1024 resblks, &tp); 1025 } 1026 if (error) 1027 goto out_release_dquots; 1028 1029 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1030 unlock_dp_on_error = true; 1031 1032 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1033 XFS_IEXT_DIR_MANIP_CNT(mp)); 1034 if (error) 1035 goto out_trans_cancel; 1036 1037 /* 1038 * A newly created regular or special file just has one directory 1039 * entry pointing to them, but a directory also the "." entry 1040 * pointing to itself. 1041 */ 1042 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1043 if (!error) 1044 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1045 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1046 if (error) 1047 goto out_trans_cancel; 1048 1049 /* 1050 * Now we join the directory inode to the transaction. We do not do it 1051 * earlier because xfs_dialloc might commit the previous transaction 1052 * (and release all the locks). An error from here on will result in 1053 * the transaction cancel unlocking dp so don't do it explicitly in the 1054 * error path. 1055 */ 1056 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1057 unlock_dp_on_error = false; 1058 1059 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1060 resblks - XFS_IALLOC_SPACE_RES(mp)); 1061 if (error) { 1062 ASSERT(error != -ENOSPC); 1063 goto out_trans_cancel; 1064 } 1065 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1066 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1067 1068 if (is_dir) { 1069 error = xfs_dir_init(tp, ip, dp); 1070 if (error) 1071 goto out_trans_cancel; 1072 1073 xfs_bumplink(tp, dp); 1074 } 1075 1076 /* 1077 * If this is a synchronous mount, make sure that the 1078 * create transaction goes to disk before returning to 1079 * the user. 1080 */ 1081 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1082 xfs_trans_set_sync(tp); 1083 1084 /* 1085 * Attach the dquot(s) to the inodes and modify them incore. 1086 * These ids of the inode couldn't have changed since the new 1087 * inode has been locked ever since it was created. 1088 */ 1089 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1090 1091 error = xfs_trans_commit(tp); 1092 if (error) 1093 goto out_release_inode; 1094 1095 xfs_qm_dqrele(udqp); 1096 xfs_qm_dqrele(gdqp); 1097 xfs_qm_dqrele(pdqp); 1098 1099 *ipp = ip; 1100 return 0; 1101 1102 out_trans_cancel: 1103 xfs_trans_cancel(tp); 1104 out_release_inode: 1105 /* 1106 * Wait until after the current transaction is aborted to finish the 1107 * setup of the inode and release the inode. This prevents recursive 1108 * transactions and deadlocks from xfs_inactive. 1109 */ 1110 if (ip) { 1111 xfs_finish_inode_setup(ip); 1112 xfs_irele(ip); 1113 } 1114 out_release_dquots: 1115 xfs_qm_dqrele(udqp); 1116 xfs_qm_dqrele(gdqp); 1117 xfs_qm_dqrele(pdqp); 1118 1119 if (unlock_dp_on_error) 1120 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1121 return error; 1122 } 1123 1124 int 1125 xfs_create_tmpfile( 1126 struct user_namespace *mnt_userns, 1127 struct xfs_inode *dp, 1128 umode_t mode, 1129 struct xfs_inode **ipp) 1130 { 1131 struct xfs_mount *mp = dp->i_mount; 1132 struct xfs_inode *ip = NULL; 1133 struct xfs_trans *tp = NULL; 1134 int error; 1135 prid_t prid; 1136 struct xfs_dquot *udqp = NULL; 1137 struct xfs_dquot *gdqp = NULL; 1138 struct xfs_dquot *pdqp = NULL; 1139 struct xfs_trans_res *tres; 1140 uint resblks; 1141 xfs_ino_t ino; 1142 1143 if (xfs_is_shutdown(mp)) 1144 return -EIO; 1145 1146 prid = xfs_get_initial_prid(dp); 1147 1148 /* 1149 * Make sure that we have allocated dquot(s) on disk. 1150 */ 1151 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), 1152 mapped_fsgid(mnt_userns), prid, 1153 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1154 &udqp, &gdqp, &pdqp); 1155 if (error) 1156 return error; 1157 1158 resblks = XFS_IALLOC_SPACE_RES(mp); 1159 tres = &M_RES(mp)->tr_create_tmpfile; 1160 1161 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1162 &tp); 1163 if (error) 1164 goto out_release_dquots; 1165 1166 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1167 if (!error) 1168 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1169 0, 0, prid, false, &ip); 1170 if (error) 1171 goto out_trans_cancel; 1172 1173 if (xfs_has_wsync(mp)) 1174 xfs_trans_set_sync(tp); 1175 1176 /* 1177 * Attach the dquot(s) to the inodes and modify them incore. 1178 * These ids of the inode couldn't have changed since the new 1179 * inode has been locked ever since it was created. 1180 */ 1181 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1182 1183 error = xfs_iunlink(tp, ip); 1184 if (error) 1185 goto out_trans_cancel; 1186 1187 error = xfs_trans_commit(tp); 1188 if (error) 1189 goto out_release_inode; 1190 1191 xfs_qm_dqrele(udqp); 1192 xfs_qm_dqrele(gdqp); 1193 xfs_qm_dqrele(pdqp); 1194 1195 *ipp = ip; 1196 return 0; 1197 1198 out_trans_cancel: 1199 xfs_trans_cancel(tp); 1200 out_release_inode: 1201 /* 1202 * Wait until after the current transaction is aborted to finish the 1203 * setup of the inode and release the inode. This prevents recursive 1204 * transactions and deadlocks from xfs_inactive. 1205 */ 1206 if (ip) { 1207 xfs_finish_inode_setup(ip); 1208 xfs_irele(ip); 1209 } 1210 out_release_dquots: 1211 xfs_qm_dqrele(udqp); 1212 xfs_qm_dqrele(gdqp); 1213 xfs_qm_dqrele(pdqp); 1214 1215 return error; 1216 } 1217 1218 int 1219 xfs_link( 1220 xfs_inode_t *tdp, 1221 xfs_inode_t *sip, 1222 struct xfs_name *target_name) 1223 { 1224 xfs_mount_t *mp = tdp->i_mount; 1225 xfs_trans_t *tp; 1226 int error; 1227 int resblks; 1228 1229 trace_xfs_link(tdp, target_name); 1230 1231 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1232 1233 if (xfs_is_shutdown(mp)) 1234 return -EIO; 1235 1236 error = xfs_qm_dqattach(sip); 1237 if (error) 1238 goto std_return; 1239 1240 error = xfs_qm_dqattach(tdp); 1241 if (error) 1242 goto std_return; 1243 1244 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1245 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1246 if (error == -ENOSPC) { 1247 resblks = 0; 1248 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1249 } 1250 if (error) 1251 goto std_return; 1252 1253 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1254 1255 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1256 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1257 1258 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1259 XFS_IEXT_DIR_MANIP_CNT(mp)); 1260 if (error) 1261 goto error_return; 1262 1263 /* 1264 * If we are using project inheritance, we only allow hard link 1265 * creation in our tree when the project IDs are the same; else 1266 * the tree quota mechanism could be circumvented. 1267 */ 1268 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1269 tdp->i_projid != sip->i_projid)) { 1270 error = -EXDEV; 1271 goto error_return; 1272 } 1273 1274 if (!resblks) { 1275 error = xfs_dir_canenter(tp, tdp, target_name); 1276 if (error) 1277 goto error_return; 1278 } 1279 1280 /* 1281 * Handle initial link state of O_TMPFILE inode 1282 */ 1283 if (VFS_I(sip)->i_nlink == 0) { 1284 struct xfs_perag *pag; 1285 1286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1287 error = xfs_iunlink_remove(tp, pag, sip); 1288 xfs_perag_put(pag); 1289 if (error) 1290 goto error_return; 1291 } 1292 1293 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1294 resblks); 1295 if (error) 1296 goto error_return; 1297 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1298 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1299 1300 xfs_bumplink(tp, sip); 1301 1302 /* 1303 * If this is a synchronous mount, make sure that the 1304 * link transaction goes to disk before returning to 1305 * the user. 1306 */ 1307 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1308 xfs_trans_set_sync(tp); 1309 1310 return xfs_trans_commit(tp); 1311 1312 error_return: 1313 xfs_trans_cancel(tp); 1314 std_return: 1315 return error; 1316 } 1317 1318 /* Clear the reflink flag and the cowblocks tag if possible. */ 1319 static void 1320 xfs_itruncate_clear_reflink_flags( 1321 struct xfs_inode *ip) 1322 { 1323 struct xfs_ifork *dfork; 1324 struct xfs_ifork *cfork; 1325 1326 if (!xfs_is_reflink_inode(ip)) 1327 return; 1328 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1329 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1330 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1331 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1332 if (cfork->if_bytes == 0) 1333 xfs_inode_clear_cowblocks_tag(ip); 1334 } 1335 1336 /* 1337 * Free up the underlying blocks past new_size. The new size must be smaller 1338 * than the current size. This routine can be used both for the attribute and 1339 * data fork, and does not modify the inode size, which is left to the caller. 1340 * 1341 * The transaction passed to this routine must have made a permanent log 1342 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1343 * given transaction and start new ones, so make sure everything involved in 1344 * the transaction is tidy before calling here. Some transaction will be 1345 * returned to the caller to be committed. The incoming transaction must 1346 * already include the inode, and both inode locks must be held exclusively. 1347 * The inode must also be "held" within the transaction. On return the inode 1348 * will be "held" within the returned transaction. This routine does NOT 1349 * require any disk space to be reserved for it within the transaction. 1350 * 1351 * If we get an error, we must return with the inode locked and linked into the 1352 * current transaction. This keeps things simple for the higher level code, 1353 * because it always knows that the inode is locked and held in the transaction 1354 * that returns to it whether errors occur or not. We don't mark the inode 1355 * dirty on error so that transactions can be easily aborted if possible. 1356 */ 1357 int 1358 xfs_itruncate_extents_flags( 1359 struct xfs_trans **tpp, 1360 struct xfs_inode *ip, 1361 int whichfork, 1362 xfs_fsize_t new_size, 1363 int flags) 1364 { 1365 struct xfs_mount *mp = ip->i_mount; 1366 struct xfs_trans *tp = *tpp; 1367 xfs_fileoff_t first_unmap_block; 1368 xfs_filblks_t unmap_len; 1369 int error = 0; 1370 1371 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1372 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1373 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1374 ASSERT(new_size <= XFS_ISIZE(ip)); 1375 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1376 ASSERT(ip->i_itemp != NULL); 1377 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1378 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1379 1380 trace_xfs_itruncate_extents_start(ip, new_size); 1381 1382 flags |= xfs_bmapi_aflag(whichfork); 1383 1384 /* 1385 * Since it is possible for space to become allocated beyond 1386 * the end of the file (in a crash where the space is allocated 1387 * but the inode size is not yet updated), simply remove any 1388 * blocks which show up between the new EOF and the maximum 1389 * possible file size. 1390 * 1391 * We have to free all the blocks to the bmbt maximum offset, even if 1392 * the page cache can't scale that far. 1393 */ 1394 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1395 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1396 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1397 return 0; 1398 } 1399 1400 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1401 while (unmap_len > 0) { 1402 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1403 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1404 flags, XFS_ITRUNC_MAX_EXTENTS); 1405 if (error) 1406 goto out; 1407 1408 /* free the just unmapped extents */ 1409 error = xfs_defer_finish(&tp); 1410 if (error) 1411 goto out; 1412 } 1413 1414 if (whichfork == XFS_DATA_FORK) { 1415 /* Remove all pending CoW reservations. */ 1416 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1417 first_unmap_block, XFS_MAX_FILEOFF, true); 1418 if (error) 1419 goto out; 1420 1421 xfs_itruncate_clear_reflink_flags(ip); 1422 } 1423 1424 /* 1425 * Always re-log the inode so that our permanent transaction can keep 1426 * on rolling it forward in the log. 1427 */ 1428 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1429 1430 trace_xfs_itruncate_extents_end(ip, new_size); 1431 1432 out: 1433 *tpp = tp; 1434 return error; 1435 } 1436 1437 int 1438 xfs_release( 1439 xfs_inode_t *ip) 1440 { 1441 xfs_mount_t *mp = ip->i_mount; 1442 int error = 0; 1443 1444 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1445 return 0; 1446 1447 /* If this is a read-only mount, don't do this (would generate I/O) */ 1448 if (xfs_is_readonly(mp)) 1449 return 0; 1450 1451 if (!xfs_is_shutdown(mp)) { 1452 int truncated; 1453 1454 /* 1455 * If we previously truncated this file and removed old data 1456 * in the process, we want to initiate "early" writeout on 1457 * the last close. This is an attempt to combat the notorious 1458 * NULL files problem which is particularly noticeable from a 1459 * truncate down, buffered (re-)write (delalloc), followed by 1460 * a crash. What we are effectively doing here is 1461 * significantly reducing the time window where we'd otherwise 1462 * be exposed to that problem. 1463 */ 1464 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1465 if (truncated) { 1466 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1467 if (ip->i_delayed_blks > 0) { 1468 error = filemap_flush(VFS_I(ip)->i_mapping); 1469 if (error) 1470 return error; 1471 } 1472 } 1473 } 1474 1475 if (VFS_I(ip)->i_nlink == 0) 1476 return 0; 1477 1478 /* 1479 * If we can't get the iolock just skip truncating the blocks past EOF 1480 * because we could deadlock with the mmap_lock otherwise. We'll get 1481 * another chance to drop them once the last reference to the inode is 1482 * dropped, so we'll never leak blocks permanently. 1483 */ 1484 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1485 return 0; 1486 1487 if (xfs_can_free_eofblocks(ip, false)) { 1488 /* 1489 * Check if the inode is being opened, written and closed 1490 * frequently and we have delayed allocation blocks outstanding 1491 * (e.g. streaming writes from the NFS server), truncating the 1492 * blocks past EOF will cause fragmentation to occur. 1493 * 1494 * In this case don't do the truncation, but we have to be 1495 * careful how we detect this case. Blocks beyond EOF show up as 1496 * i_delayed_blks even when the inode is clean, so we need to 1497 * truncate them away first before checking for a dirty release. 1498 * Hence on the first dirty close we will still remove the 1499 * speculative allocation, but after that we will leave it in 1500 * place. 1501 */ 1502 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1503 goto out_unlock; 1504 1505 error = xfs_free_eofblocks(ip); 1506 if (error) 1507 goto out_unlock; 1508 1509 /* delalloc blocks after truncation means it really is dirty */ 1510 if (ip->i_delayed_blks) 1511 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1512 } 1513 1514 out_unlock: 1515 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1516 return error; 1517 } 1518 1519 /* 1520 * xfs_inactive_truncate 1521 * 1522 * Called to perform a truncate when an inode becomes unlinked. 1523 */ 1524 STATIC int 1525 xfs_inactive_truncate( 1526 struct xfs_inode *ip) 1527 { 1528 struct xfs_mount *mp = ip->i_mount; 1529 struct xfs_trans *tp; 1530 int error; 1531 1532 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1533 if (error) { 1534 ASSERT(xfs_is_shutdown(mp)); 1535 return error; 1536 } 1537 xfs_ilock(ip, XFS_ILOCK_EXCL); 1538 xfs_trans_ijoin(tp, ip, 0); 1539 1540 /* 1541 * Log the inode size first to prevent stale data exposure in the event 1542 * of a system crash before the truncate completes. See the related 1543 * comment in xfs_vn_setattr_size() for details. 1544 */ 1545 ip->i_disk_size = 0; 1546 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1547 1548 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1549 if (error) 1550 goto error_trans_cancel; 1551 1552 ASSERT(ip->i_df.if_nextents == 0); 1553 1554 error = xfs_trans_commit(tp); 1555 if (error) 1556 goto error_unlock; 1557 1558 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1559 return 0; 1560 1561 error_trans_cancel: 1562 xfs_trans_cancel(tp); 1563 error_unlock: 1564 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1565 return error; 1566 } 1567 1568 /* 1569 * xfs_inactive_ifree() 1570 * 1571 * Perform the inode free when an inode is unlinked. 1572 */ 1573 STATIC int 1574 xfs_inactive_ifree( 1575 struct xfs_inode *ip) 1576 { 1577 struct xfs_mount *mp = ip->i_mount; 1578 struct xfs_trans *tp; 1579 int error; 1580 1581 /* 1582 * We try to use a per-AG reservation for any block needed by the finobt 1583 * tree, but as the finobt feature predates the per-AG reservation 1584 * support a degraded file system might not have enough space for the 1585 * reservation at mount time. In that case try to dip into the reserved 1586 * pool and pray. 1587 * 1588 * Send a warning if the reservation does happen to fail, as the inode 1589 * now remains allocated and sits on the unlinked list until the fs is 1590 * repaired. 1591 */ 1592 if (unlikely(mp->m_finobt_nores)) { 1593 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1594 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1595 &tp); 1596 } else { 1597 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1598 } 1599 if (error) { 1600 if (error == -ENOSPC) { 1601 xfs_warn_ratelimited(mp, 1602 "Failed to remove inode(s) from unlinked list. " 1603 "Please free space, unmount and run xfs_repair."); 1604 } else { 1605 ASSERT(xfs_is_shutdown(mp)); 1606 } 1607 return error; 1608 } 1609 1610 /* 1611 * We do not hold the inode locked across the entire rolling transaction 1612 * here. We only need to hold it for the first transaction that 1613 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1614 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1615 * here breaks the relationship between cluster buffer invalidation and 1616 * stale inode invalidation on cluster buffer item journal commit 1617 * completion, and can result in leaving dirty stale inodes hanging 1618 * around in memory. 1619 * 1620 * We have no need for serialising this inode operation against other 1621 * operations - we freed the inode and hence reallocation is required 1622 * and that will serialise on reallocating the space the deferops need 1623 * to free. Hence we can unlock the inode on the first commit of 1624 * the transaction rather than roll it right through the deferops. This 1625 * avoids relogging the XFS_ISTALE inode. 1626 * 1627 * We check that xfs_ifree() hasn't grown an internal transaction roll 1628 * by asserting that the inode is still locked when it returns. 1629 */ 1630 xfs_ilock(ip, XFS_ILOCK_EXCL); 1631 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1632 1633 error = xfs_ifree(tp, ip); 1634 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1635 if (error) { 1636 /* 1637 * If we fail to free the inode, shut down. The cancel 1638 * might do that, we need to make sure. Otherwise the 1639 * inode might be lost for a long time or forever. 1640 */ 1641 if (!xfs_is_shutdown(mp)) { 1642 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1643 __func__, error); 1644 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1645 } 1646 xfs_trans_cancel(tp); 1647 return error; 1648 } 1649 1650 /* 1651 * Credit the quota account(s). The inode is gone. 1652 */ 1653 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1654 1655 /* 1656 * Just ignore errors at this point. There is nothing we can do except 1657 * to try to keep going. Make sure it's not a silent error. 1658 */ 1659 error = xfs_trans_commit(tp); 1660 if (error) 1661 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1662 __func__, error); 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * Returns true if we need to update the on-disk metadata before we can free 1669 * the memory used by this inode. Updates include freeing post-eof 1670 * preallocations; freeing COW staging extents; and marking the inode free in 1671 * the inobt if it is on the unlinked list. 1672 */ 1673 bool 1674 xfs_inode_needs_inactive( 1675 struct xfs_inode *ip) 1676 { 1677 struct xfs_mount *mp = ip->i_mount; 1678 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1679 1680 /* 1681 * If the inode is already free, then there can be nothing 1682 * to clean up here. 1683 */ 1684 if (VFS_I(ip)->i_mode == 0) 1685 return false; 1686 1687 /* If this is a read-only mount, don't do this (would generate I/O) */ 1688 if (xfs_is_readonly(mp)) 1689 return false; 1690 1691 /* If the log isn't running, push inodes straight to reclaim. */ 1692 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1693 return false; 1694 1695 /* Metadata inodes require explicit resource cleanup. */ 1696 if (xfs_is_metadata_inode(ip)) 1697 return false; 1698 1699 /* Want to clean out the cow blocks if there are any. */ 1700 if (cow_ifp && cow_ifp->if_bytes > 0) 1701 return true; 1702 1703 /* Unlinked files must be freed. */ 1704 if (VFS_I(ip)->i_nlink == 0) 1705 return true; 1706 1707 /* 1708 * This file isn't being freed, so check if there are post-eof blocks 1709 * to free. @force is true because we are evicting an inode from the 1710 * cache. Post-eof blocks must be freed, lest we end up with broken 1711 * free space accounting. 1712 * 1713 * Note: don't bother with iolock here since lockdep complains about 1714 * acquiring it in reclaim context. We have the only reference to the 1715 * inode at this point anyways. 1716 */ 1717 return xfs_can_free_eofblocks(ip, true); 1718 } 1719 1720 /* 1721 * xfs_inactive 1722 * 1723 * This is called when the vnode reference count for the vnode 1724 * goes to zero. If the file has been unlinked, then it must 1725 * now be truncated. Also, we clear all of the read-ahead state 1726 * kept for the inode here since the file is now closed. 1727 */ 1728 void 1729 xfs_inactive( 1730 xfs_inode_t *ip) 1731 { 1732 struct xfs_mount *mp; 1733 int error; 1734 int truncate = 0; 1735 1736 /* 1737 * If the inode is already free, then there can be nothing 1738 * to clean up here. 1739 */ 1740 if (VFS_I(ip)->i_mode == 0) { 1741 ASSERT(ip->i_df.if_broot_bytes == 0); 1742 goto out; 1743 } 1744 1745 mp = ip->i_mount; 1746 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1747 1748 /* If this is a read-only mount, don't do this (would generate I/O) */ 1749 if (xfs_is_readonly(mp)) 1750 goto out; 1751 1752 /* Metadata inodes require explicit resource cleanup. */ 1753 if (xfs_is_metadata_inode(ip)) 1754 goto out; 1755 1756 /* Try to clean out the cow blocks if there are any. */ 1757 if (xfs_inode_has_cow_data(ip)) 1758 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1759 1760 if (VFS_I(ip)->i_nlink != 0) { 1761 /* 1762 * force is true because we are evicting an inode from the 1763 * cache. Post-eof blocks must be freed, lest we end up with 1764 * broken free space accounting. 1765 * 1766 * Note: don't bother with iolock here since lockdep complains 1767 * about acquiring it in reclaim context. We have the only 1768 * reference to the inode at this point anyways. 1769 */ 1770 if (xfs_can_free_eofblocks(ip, true)) 1771 xfs_free_eofblocks(ip); 1772 1773 goto out; 1774 } 1775 1776 if (S_ISREG(VFS_I(ip)->i_mode) && 1777 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1778 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1779 truncate = 1; 1780 1781 error = xfs_qm_dqattach(ip); 1782 if (error) 1783 goto out; 1784 1785 if (S_ISLNK(VFS_I(ip)->i_mode)) 1786 error = xfs_inactive_symlink(ip); 1787 else if (truncate) 1788 error = xfs_inactive_truncate(ip); 1789 if (error) 1790 goto out; 1791 1792 /* 1793 * If there are attributes associated with the file then blow them away 1794 * now. The code calls a routine that recursively deconstructs the 1795 * attribute fork. If also blows away the in-core attribute fork. 1796 */ 1797 if (XFS_IFORK_Q(ip)) { 1798 error = xfs_attr_inactive(ip); 1799 if (error) 1800 goto out; 1801 } 1802 1803 ASSERT(!ip->i_afp); 1804 ASSERT(ip->i_forkoff == 0); 1805 1806 /* 1807 * Free the inode. 1808 */ 1809 xfs_inactive_ifree(ip); 1810 1811 out: 1812 /* 1813 * We're done making metadata updates for this inode, so we can release 1814 * the attached dquots. 1815 */ 1816 xfs_qm_dqdetach(ip); 1817 } 1818 1819 /* 1820 * In-Core Unlinked List Lookups 1821 * ============================= 1822 * 1823 * Every inode is supposed to be reachable from some other piece of metadata 1824 * with the exception of the root directory. Inodes with a connection to a 1825 * file descriptor but not linked from anywhere in the on-disk directory tree 1826 * are collectively known as unlinked inodes, though the filesystem itself 1827 * maintains links to these inodes so that on-disk metadata are consistent. 1828 * 1829 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1830 * header contains a number of buckets that point to an inode, and each inode 1831 * record has a pointer to the next inode in the hash chain. This 1832 * singly-linked list causes scaling problems in the iunlink remove function 1833 * because we must walk that list to find the inode that points to the inode 1834 * being removed from the unlinked hash bucket list. 1835 * 1836 * What if we modelled the unlinked list as a collection of records capturing 1837 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1838 * have a fast way to look up unlinked list predecessors, which avoids the 1839 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1840 * rhashtable. 1841 * 1842 * Because this is a backref cache, we ignore operational failures since the 1843 * iunlink code can fall back to the slow bucket walk. The only errors that 1844 * should bubble out are for obviously incorrect situations. 1845 * 1846 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1847 * access or have otherwise provided for concurrency control. 1848 */ 1849 1850 /* Capture a "X.next_unlinked = Y" relationship. */ 1851 struct xfs_iunlink { 1852 struct rhash_head iu_rhash_head; 1853 xfs_agino_t iu_agino; /* X */ 1854 xfs_agino_t iu_next_unlinked; /* Y */ 1855 }; 1856 1857 /* Unlinked list predecessor lookup hashtable construction */ 1858 static int 1859 xfs_iunlink_obj_cmpfn( 1860 struct rhashtable_compare_arg *arg, 1861 const void *obj) 1862 { 1863 const xfs_agino_t *key = arg->key; 1864 const struct xfs_iunlink *iu = obj; 1865 1866 if (iu->iu_next_unlinked != *key) 1867 return 1; 1868 return 0; 1869 } 1870 1871 static const struct rhashtable_params xfs_iunlink_hash_params = { 1872 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1873 .key_len = sizeof(xfs_agino_t), 1874 .key_offset = offsetof(struct xfs_iunlink, 1875 iu_next_unlinked), 1876 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1877 .automatic_shrinking = true, 1878 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1879 }; 1880 1881 /* 1882 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1883 * relation is found. 1884 */ 1885 static xfs_agino_t 1886 xfs_iunlink_lookup_backref( 1887 struct xfs_perag *pag, 1888 xfs_agino_t agino) 1889 { 1890 struct xfs_iunlink *iu; 1891 1892 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1893 xfs_iunlink_hash_params); 1894 return iu ? iu->iu_agino : NULLAGINO; 1895 } 1896 1897 /* 1898 * Take ownership of an iunlink cache entry and insert it into the hash table. 1899 * If successful, the entry will be owned by the cache; if not, it is freed. 1900 * Either way, the caller does not own @iu after this call. 1901 */ 1902 static int 1903 xfs_iunlink_insert_backref( 1904 struct xfs_perag *pag, 1905 struct xfs_iunlink *iu) 1906 { 1907 int error; 1908 1909 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1910 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1911 /* 1912 * Fail loudly if there already was an entry because that's a sign of 1913 * corruption of in-memory data. Also fail loudly if we see an error 1914 * code we didn't anticipate from the rhashtable code. Currently we 1915 * only anticipate ENOMEM. 1916 */ 1917 if (error) { 1918 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1919 kmem_free(iu); 1920 } 1921 /* 1922 * Absorb any runtime errors that aren't a result of corruption because 1923 * this is a cache and we can always fall back to bucket list scanning. 1924 */ 1925 if (error != 0 && error != -EEXIST) 1926 error = 0; 1927 return error; 1928 } 1929 1930 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1931 static int 1932 xfs_iunlink_add_backref( 1933 struct xfs_perag *pag, 1934 xfs_agino_t prev_agino, 1935 xfs_agino_t this_agino) 1936 { 1937 struct xfs_iunlink *iu; 1938 1939 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1940 return 0; 1941 1942 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1943 iu->iu_agino = prev_agino; 1944 iu->iu_next_unlinked = this_agino; 1945 1946 return xfs_iunlink_insert_backref(pag, iu); 1947 } 1948 1949 /* 1950 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1951 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1952 * wasn't any such entry then we don't bother. 1953 */ 1954 static int 1955 xfs_iunlink_change_backref( 1956 struct xfs_perag *pag, 1957 xfs_agino_t agino, 1958 xfs_agino_t next_unlinked) 1959 { 1960 struct xfs_iunlink *iu; 1961 int error; 1962 1963 /* Look up the old entry; if there wasn't one then exit. */ 1964 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1965 xfs_iunlink_hash_params); 1966 if (!iu) 1967 return 0; 1968 1969 /* 1970 * Remove the entry. This shouldn't ever return an error, but if we 1971 * couldn't remove the old entry we don't want to add it again to the 1972 * hash table, and if the entry disappeared on us then someone's 1973 * violated the locking rules and we need to fail loudly. Either way 1974 * we cannot remove the inode because internal state is or would have 1975 * been corrupt. 1976 */ 1977 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1978 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1979 if (error) 1980 return error; 1981 1982 /* If there is no new next entry just free our item and return. */ 1983 if (next_unlinked == NULLAGINO) { 1984 kmem_free(iu); 1985 return 0; 1986 } 1987 1988 /* Update the entry and re-add it to the hash table. */ 1989 iu->iu_next_unlinked = next_unlinked; 1990 return xfs_iunlink_insert_backref(pag, iu); 1991 } 1992 1993 /* Set up the in-core predecessor structures. */ 1994 int 1995 xfs_iunlink_init( 1996 struct xfs_perag *pag) 1997 { 1998 return rhashtable_init(&pag->pagi_unlinked_hash, 1999 &xfs_iunlink_hash_params); 2000 } 2001 2002 /* Free the in-core predecessor structures. */ 2003 static void 2004 xfs_iunlink_free_item( 2005 void *ptr, 2006 void *arg) 2007 { 2008 struct xfs_iunlink *iu = ptr; 2009 bool *freed_anything = arg; 2010 2011 *freed_anything = true; 2012 kmem_free(iu); 2013 } 2014 2015 void 2016 xfs_iunlink_destroy( 2017 struct xfs_perag *pag) 2018 { 2019 bool freed_anything = false; 2020 2021 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2022 xfs_iunlink_free_item, &freed_anything); 2023 2024 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount)); 2025 } 2026 2027 /* 2028 * Point the AGI unlinked bucket at an inode and log the results. The caller 2029 * is responsible for validating the old value. 2030 */ 2031 STATIC int 2032 xfs_iunlink_update_bucket( 2033 struct xfs_trans *tp, 2034 struct xfs_perag *pag, 2035 struct xfs_buf *agibp, 2036 unsigned int bucket_index, 2037 xfs_agino_t new_agino) 2038 { 2039 struct xfs_agi *agi = agibp->b_addr; 2040 xfs_agino_t old_value; 2041 int offset; 2042 2043 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); 2044 2045 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2046 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2047 old_value, new_agino); 2048 2049 /* 2050 * We should never find the head of the list already set to the value 2051 * passed in because either we're adding or removing ourselves from the 2052 * head of the list. 2053 */ 2054 if (old_value == new_agino) { 2055 xfs_buf_mark_corrupt(agibp); 2056 return -EFSCORRUPTED; 2057 } 2058 2059 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2060 offset = offsetof(struct xfs_agi, agi_unlinked) + 2061 (sizeof(xfs_agino_t) * bucket_index); 2062 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2063 return 0; 2064 } 2065 2066 /* Set an on-disk inode's next_unlinked pointer. */ 2067 STATIC void 2068 xfs_iunlink_update_dinode( 2069 struct xfs_trans *tp, 2070 struct xfs_perag *pag, 2071 xfs_agino_t agino, 2072 struct xfs_buf *ibp, 2073 struct xfs_dinode *dip, 2074 struct xfs_imap *imap, 2075 xfs_agino_t next_agino) 2076 { 2077 struct xfs_mount *mp = tp->t_mountp; 2078 int offset; 2079 2080 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2081 2082 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, 2083 be32_to_cpu(dip->di_next_unlinked), next_agino); 2084 2085 dip->di_next_unlinked = cpu_to_be32(next_agino); 2086 offset = imap->im_boffset + 2087 offsetof(struct xfs_dinode, di_next_unlinked); 2088 2089 /* need to recalc the inode CRC if appropriate */ 2090 xfs_dinode_calc_crc(mp, dip); 2091 xfs_trans_inode_buf(tp, ibp); 2092 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2093 } 2094 2095 /* Set an in-core inode's unlinked pointer and return the old value. */ 2096 STATIC int 2097 xfs_iunlink_update_inode( 2098 struct xfs_trans *tp, 2099 struct xfs_inode *ip, 2100 struct xfs_perag *pag, 2101 xfs_agino_t next_agino, 2102 xfs_agino_t *old_next_agino) 2103 { 2104 struct xfs_mount *mp = tp->t_mountp; 2105 struct xfs_dinode *dip; 2106 struct xfs_buf *ibp; 2107 xfs_agino_t old_value; 2108 int error; 2109 2110 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2111 2112 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2113 if (error) 2114 return error; 2115 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2116 2117 /* Make sure the old pointer isn't garbage. */ 2118 old_value = be32_to_cpu(dip->di_next_unlinked); 2119 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { 2120 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2121 sizeof(*dip), __this_address); 2122 error = -EFSCORRUPTED; 2123 goto out; 2124 } 2125 2126 /* 2127 * Since we're updating a linked list, we should never find that the 2128 * current pointer is the same as the new value, unless we're 2129 * terminating the list. 2130 */ 2131 *old_next_agino = old_value; 2132 if (old_value == next_agino) { 2133 if (next_agino != NULLAGINO) { 2134 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2135 dip, sizeof(*dip), __this_address); 2136 error = -EFSCORRUPTED; 2137 } 2138 goto out; 2139 } 2140 2141 /* Ok, update the new pointer. */ 2142 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 2143 ibp, dip, &ip->i_imap, next_agino); 2144 return 0; 2145 out: 2146 xfs_trans_brelse(tp, ibp); 2147 return error; 2148 } 2149 2150 /* 2151 * This is called when the inode's link count has gone to 0 or we are creating 2152 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2153 * 2154 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2155 * list when the inode is freed. 2156 */ 2157 STATIC int 2158 xfs_iunlink( 2159 struct xfs_trans *tp, 2160 struct xfs_inode *ip) 2161 { 2162 struct xfs_mount *mp = tp->t_mountp; 2163 struct xfs_perag *pag; 2164 struct xfs_agi *agi; 2165 struct xfs_buf *agibp; 2166 xfs_agino_t next_agino; 2167 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2168 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2169 int error; 2170 2171 ASSERT(VFS_I(ip)->i_nlink == 0); 2172 ASSERT(VFS_I(ip)->i_mode != 0); 2173 trace_xfs_iunlink(ip); 2174 2175 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2176 2177 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2178 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2179 if (error) 2180 goto out; 2181 agi = agibp->b_addr; 2182 2183 /* 2184 * Get the index into the agi hash table for the list this inode will 2185 * go on. Make sure the pointer isn't garbage and that this inode 2186 * isn't already on the list. 2187 */ 2188 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2189 if (next_agino == agino || 2190 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { 2191 xfs_buf_mark_corrupt(agibp); 2192 error = -EFSCORRUPTED; 2193 goto out; 2194 } 2195 2196 if (next_agino != NULLAGINO) { 2197 xfs_agino_t old_agino; 2198 2199 /* 2200 * There is already another inode in the bucket, so point this 2201 * inode to the current head of the list. 2202 */ 2203 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, 2204 &old_agino); 2205 if (error) 2206 goto out; 2207 ASSERT(old_agino == NULLAGINO); 2208 2209 /* 2210 * agino has been unlinked, add a backref from the next inode 2211 * back to agino. 2212 */ 2213 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2214 if (error) 2215 goto out; 2216 } 2217 2218 /* Point the head of the list to point to this inode. */ 2219 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2220 out: 2221 xfs_perag_put(pag); 2222 return error; 2223 } 2224 2225 /* Return the imap, dinode pointer, and buffer for an inode. */ 2226 STATIC int 2227 xfs_iunlink_map_ino( 2228 struct xfs_trans *tp, 2229 xfs_agnumber_t agno, 2230 xfs_agino_t agino, 2231 struct xfs_imap *imap, 2232 struct xfs_dinode **dipp, 2233 struct xfs_buf **bpp) 2234 { 2235 struct xfs_mount *mp = tp->t_mountp; 2236 int error; 2237 2238 imap->im_blkno = 0; 2239 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2240 if (error) { 2241 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2242 __func__, error); 2243 return error; 2244 } 2245 2246 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2247 if (error) { 2248 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2249 __func__, error); 2250 return error; 2251 } 2252 2253 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2254 return 0; 2255 } 2256 2257 /* 2258 * Walk the unlinked chain from @head_agino until we find the inode that 2259 * points to @target_agino. Return the inode number, map, dinode pointer, 2260 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2261 * 2262 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2263 * @agino, @imap, @dipp, and @bpp are all output parameters. 2264 * 2265 * Do not call this function if @target_agino is the head of the list. 2266 */ 2267 STATIC int 2268 xfs_iunlink_map_prev( 2269 struct xfs_trans *tp, 2270 struct xfs_perag *pag, 2271 xfs_agino_t head_agino, 2272 xfs_agino_t target_agino, 2273 xfs_agino_t *agino, 2274 struct xfs_imap *imap, 2275 struct xfs_dinode **dipp, 2276 struct xfs_buf **bpp) 2277 { 2278 struct xfs_mount *mp = tp->t_mountp; 2279 xfs_agino_t next_agino; 2280 int error; 2281 2282 ASSERT(head_agino != target_agino); 2283 *bpp = NULL; 2284 2285 /* See if our backref cache can find it faster. */ 2286 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2287 if (*agino != NULLAGINO) { 2288 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, 2289 dipp, bpp); 2290 if (error) 2291 return error; 2292 2293 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2294 return 0; 2295 2296 /* 2297 * If we get here the cache contents were corrupt, so drop the 2298 * buffer and fall back to walking the bucket list. 2299 */ 2300 xfs_trans_brelse(tp, *bpp); 2301 *bpp = NULL; 2302 WARN_ON_ONCE(1); 2303 } 2304 2305 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); 2306 2307 /* Otherwise, walk the entire bucket until we find it. */ 2308 next_agino = head_agino; 2309 while (next_agino != target_agino) { 2310 xfs_agino_t unlinked_agino; 2311 2312 if (*bpp) 2313 xfs_trans_brelse(tp, *bpp); 2314 2315 *agino = next_agino; 2316 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, 2317 dipp, bpp); 2318 if (error) 2319 return error; 2320 2321 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2322 /* 2323 * Make sure this pointer is valid and isn't an obvious 2324 * infinite loop. 2325 */ 2326 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || 2327 next_agino == unlinked_agino) { 2328 XFS_CORRUPTION_ERROR(__func__, 2329 XFS_ERRLEVEL_LOW, mp, 2330 *dipp, sizeof(**dipp)); 2331 error = -EFSCORRUPTED; 2332 return error; 2333 } 2334 next_agino = unlinked_agino; 2335 } 2336 2337 return 0; 2338 } 2339 2340 /* 2341 * Pull the on-disk inode from the AGI unlinked list. 2342 */ 2343 STATIC int 2344 xfs_iunlink_remove( 2345 struct xfs_trans *tp, 2346 struct xfs_perag *pag, 2347 struct xfs_inode *ip) 2348 { 2349 struct xfs_mount *mp = tp->t_mountp; 2350 struct xfs_agi *agi; 2351 struct xfs_buf *agibp; 2352 struct xfs_buf *last_ibp; 2353 struct xfs_dinode *last_dip = NULL; 2354 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2355 xfs_agino_t next_agino; 2356 xfs_agino_t head_agino; 2357 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2358 int error; 2359 2360 trace_xfs_iunlink_remove(ip); 2361 2362 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2363 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2364 if (error) 2365 return error; 2366 agi = agibp->b_addr; 2367 2368 /* 2369 * Get the index into the agi hash table for the list this inode will 2370 * go on. Make sure the head pointer isn't garbage. 2371 */ 2372 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2373 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { 2374 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2375 agi, sizeof(*agi)); 2376 return -EFSCORRUPTED; 2377 } 2378 2379 /* 2380 * Set our inode's next_unlinked pointer to NULL and then return 2381 * the old pointer value so that we can update whatever was previous 2382 * to us in the list to point to whatever was next in the list. 2383 */ 2384 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); 2385 if (error) 2386 return error; 2387 2388 /* 2389 * If there was a backref pointing from the next inode back to this 2390 * one, remove it because we've removed this inode from the list. 2391 * 2392 * Later, if this inode was in the middle of the list we'll update 2393 * this inode's backref to point from the next inode. 2394 */ 2395 if (next_agino != NULLAGINO) { 2396 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); 2397 if (error) 2398 return error; 2399 } 2400 2401 if (head_agino != agino) { 2402 struct xfs_imap imap; 2403 xfs_agino_t prev_agino; 2404 2405 /* We need to search the list for the inode being freed. */ 2406 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, 2407 &prev_agino, &imap, &last_dip, &last_ibp); 2408 if (error) 2409 return error; 2410 2411 /* Point the previous inode on the list to the next inode. */ 2412 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, 2413 last_dip, &imap, next_agino); 2414 2415 /* 2416 * Now we deal with the backref for this inode. If this inode 2417 * pointed at a real inode, change the backref that pointed to 2418 * us to point to our old next. If this inode was the end of 2419 * the list, delete the backref that pointed to us. Note that 2420 * change_backref takes care of deleting the backref if 2421 * next_agino is NULLAGINO. 2422 */ 2423 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2424 next_agino); 2425 } 2426 2427 /* Point the head of the list to the next unlinked inode. */ 2428 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2429 next_agino); 2430 } 2431 2432 /* 2433 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2434 * mark it stale. We should only find clean inodes in this lookup that aren't 2435 * already stale. 2436 */ 2437 static void 2438 xfs_ifree_mark_inode_stale( 2439 struct xfs_perag *pag, 2440 struct xfs_inode *free_ip, 2441 xfs_ino_t inum) 2442 { 2443 struct xfs_mount *mp = pag->pag_mount; 2444 struct xfs_inode_log_item *iip; 2445 struct xfs_inode *ip; 2446 2447 retry: 2448 rcu_read_lock(); 2449 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2450 2451 /* Inode not in memory, nothing to do */ 2452 if (!ip) { 2453 rcu_read_unlock(); 2454 return; 2455 } 2456 2457 /* 2458 * because this is an RCU protected lookup, we could find a recently 2459 * freed or even reallocated inode during the lookup. We need to check 2460 * under the i_flags_lock for a valid inode here. Skip it if it is not 2461 * valid, the wrong inode or stale. 2462 */ 2463 spin_lock(&ip->i_flags_lock); 2464 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2465 goto out_iflags_unlock; 2466 2467 /* 2468 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2469 * other inodes that we did not find in the list attached to the buffer 2470 * and are not already marked stale. If we can't lock it, back off and 2471 * retry. 2472 */ 2473 if (ip != free_ip) { 2474 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2475 spin_unlock(&ip->i_flags_lock); 2476 rcu_read_unlock(); 2477 delay(1); 2478 goto retry; 2479 } 2480 } 2481 ip->i_flags |= XFS_ISTALE; 2482 2483 /* 2484 * If the inode is flushing, it is already attached to the buffer. All 2485 * we needed to do here is mark the inode stale so buffer IO completion 2486 * will remove it from the AIL. 2487 */ 2488 iip = ip->i_itemp; 2489 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2490 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2491 ASSERT(iip->ili_last_fields); 2492 goto out_iunlock; 2493 } 2494 2495 /* 2496 * Inodes not attached to the buffer can be released immediately. 2497 * Everything else has to go through xfs_iflush_abort() on journal 2498 * commit as the flock synchronises removal of the inode from the 2499 * cluster buffer against inode reclaim. 2500 */ 2501 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2502 goto out_iunlock; 2503 2504 __xfs_iflags_set(ip, XFS_IFLUSHING); 2505 spin_unlock(&ip->i_flags_lock); 2506 rcu_read_unlock(); 2507 2508 /* we have a dirty inode in memory that has not yet been flushed. */ 2509 spin_lock(&iip->ili_lock); 2510 iip->ili_last_fields = iip->ili_fields; 2511 iip->ili_fields = 0; 2512 iip->ili_fsync_fields = 0; 2513 spin_unlock(&iip->ili_lock); 2514 ASSERT(iip->ili_last_fields); 2515 2516 if (ip != free_ip) 2517 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2518 return; 2519 2520 out_iunlock: 2521 if (ip != free_ip) 2522 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2523 out_iflags_unlock: 2524 spin_unlock(&ip->i_flags_lock); 2525 rcu_read_unlock(); 2526 } 2527 2528 /* 2529 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2530 * inodes that are in memory - they all must be marked stale and attached to 2531 * the cluster buffer. 2532 */ 2533 static int 2534 xfs_ifree_cluster( 2535 struct xfs_trans *tp, 2536 struct xfs_perag *pag, 2537 struct xfs_inode *free_ip, 2538 struct xfs_icluster *xic) 2539 { 2540 struct xfs_mount *mp = free_ip->i_mount; 2541 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2542 struct xfs_buf *bp; 2543 xfs_daddr_t blkno; 2544 xfs_ino_t inum = xic->first_ino; 2545 int nbufs; 2546 int i, j; 2547 int ioffset; 2548 int error; 2549 2550 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2551 2552 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2553 /* 2554 * The allocation bitmap tells us which inodes of the chunk were 2555 * physically allocated. Skip the cluster if an inode falls into 2556 * a sparse region. 2557 */ 2558 ioffset = inum - xic->first_ino; 2559 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2560 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2561 continue; 2562 } 2563 2564 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2565 XFS_INO_TO_AGBNO(mp, inum)); 2566 2567 /* 2568 * We obtain and lock the backing buffer first in the process 2569 * here to ensure dirty inodes attached to the buffer remain in 2570 * the flushing state while we mark them stale. 2571 * 2572 * If we scan the in-memory inodes first, then buffer IO can 2573 * complete before we get a lock on it, and hence we may fail 2574 * to mark all the active inodes on the buffer stale. 2575 */ 2576 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2577 mp->m_bsize * igeo->blocks_per_cluster, 2578 XBF_UNMAPPED, &bp); 2579 if (error) 2580 return error; 2581 2582 /* 2583 * This buffer may not have been correctly initialised as we 2584 * didn't read it from disk. That's not important because we are 2585 * only using to mark the buffer as stale in the log, and to 2586 * attach stale cached inodes on it. That means it will never be 2587 * dispatched for IO. If it is, we want to know about it, and we 2588 * want it to fail. We can acheive this by adding a write 2589 * verifier to the buffer. 2590 */ 2591 bp->b_ops = &xfs_inode_buf_ops; 2592 2593 /* 2594 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2595 * too. This requires lookups, and will skip inodes that we've 2596 * already marked XFS_ISTALE. 2597 */ 2598 for (i = 0; i < igeo->inodes_per_cluster; i++) 2599 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2600 2601 xfs_trans_stale_inode_buf(tp, bp); 2602 xfs_trans_binval(tp, bp); 2603 } 2604 return 0; 2605 } 2606 2607 /* 2608 * This is called to return an inode to the inode free list. 2609 * The inode should already be truncated to 0 length and have 2610 * no pages associated with it. This routine also assumes that 2611 * the inode is already a part of the transaction. 2612 * 2613 * The on-disk copy of the inode will have been added to the list 2614 * of unlinked inodes in the AGI. We need to remove the inode from 2615 * that list atomically with respect to freeing it here. 2616 */ 2617 int 2618 xfs_ifree( 2619 struct xfs_trans *tp, 2620 struct xfs_inode *ip) 2621 { 2622 struct xfs_mount *mp = ip->i_mount; 2623 struct xfs_perag *pag; 2624 struct xfs_icluster xic = { 0 }; 2625 struct xfs_inode_log_item *iip = ip->i_itemp; 2626 int error; 2627 2628 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2629 ASSERT(VFS_I(ip)->i_nlink == 0); 2630 ASSERT(ip->i_df.if_nextents == 0); 2631 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2632 ASSERT(ip->i_nblocks == 0); 2633 2634 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2635 2636 /* 2637 * Pull the on-disk inode from the AGI unlinked list. 2638 */ 2639 error = xfs_iunlink_remove(tp, pag, ip); 2640 if (error) 2641 goto out; 2642 2643 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2644 if (error) 2645 goto out; 2646 2647 /* 2648 * Free any local-format data sitting around before we reset the 2649 * data fork to extents format. Note that the attr fork data has 2650 * already been freed by xfs_attr_inactive. 2651 */ 2652 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2653 kmem_free(ip->i_df.if_u1.if_data); 2654 ip->i_df.if_u1.if_data = NULL; 2655 ip->i_df.if_bytes = 0; 2656 } 2657 2658 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2659 ip->i_diflags = 0; 2660 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2661 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2662 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2663 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2664 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2665 2666 /* Don't attempt to replay owner changes for a deleted inode */ 2667 spin_lock(&iip->ili_lock); 2668 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2669 spin_unlock(&iip->ili_lock); 2670 2671 /* 2672 * Bump the generation count so no one will be confused 2673 * by reincarnations of this inode. 2674 */ 2675 VFS_I(ip)->i_generation++; 2676 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2677 2678 if (xic.deleted) 2679 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2680 out: 2681 xfs_perag_put(pag); 2682 return error; 2683 } 2684 2685 /* 2686 * This is called to unpin an inode. The caller must have the inode locked 2687 * in at least shared mode so that the buffer cannot be subsequently pinned 2688 * once someone is waiting for it to be unpinned. 2689 */ 2690 static void 2691 xfs_iunpin( 2692 struct xfs_inode *ip) 2693 { 2694 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2695 2696 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2697 2698 /* Give the log a push to start the unpinning I/O */ 2699 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2700 2701 } 2702 2703 static void 2704 __xfs_iunpin_wait( 2705 struct xfs_inode *ip) 2706 { 2707 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2708 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2709 2710 xfs_iunpin(ip); 2711 2712 do { 2713 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2714 if (xfs_ipincount(ip)) 2715 io_schedule(); 2716 } while (xfs_ipincount(ip)); 2717 finish_wait(wq, &wait.wq_entry); 2718 } 2719 2720 void 2721 xfs_iunpin_wait( 2722 struct xfs_inode *ip) 2723 { 2724 if (xfs_ipincount(ip)) 2725 __xfs_iunpin_wait(ip); 2726 } 2727 2728 /* 2729 * Removing an inode from the namespace involves removing the directory entry 2730 * and dropping the link count on the inode. Removing the directory entry can 2731 * result in locking an AGF (directory blocks were freed) and removing a link 2732 * count can result in placing the inode on an unlinked list which results in 2733 * locking an AGI. 2734 * 2735 * The big problem here is that we have an ordering constraint on AGF and AGI 2736 * locking - inode allocation locks the AGI, then can allocate a new extent for 2737 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2738 * removes the inode from the unlinked list, requiring that we lock the AGI 2739 * first, and then freeing the inode can result in an inode chunk being freed 2740 * and hence freeing disk space requiring that we lock an AGF. 2741 * 2742 * Hence the ordering that is imposed by other parts of the code is AGI before 2743 * AGF. This means we cannot remove the directory entry before we drop the inode 2744 * reference count and put it on the unlinked list as this results in a lock 2745 * order of AGF then AGI, and this can deadlock against inode allocation and 2746 * freeing. Therefore we must drop the link counts before we remove the 2747 * directory entry. 2748 * 2749 * This is still safe from a transactional point of view - it is not until we 2750 * get to xfs_defer_finish() that we have the possibility of multiple 2751 * transactions in this operation. Hence as long as we remove the directory 2752 * entry and drop the link count in the first transaction of the remove 2753 * operation, there are no transactional constraints on the ordering here. 2754 */ 2755 int 2756 xfs_remove( 2757 xfs_inode_t *dp, 2758 struct xfs_name *name, 2759 xfs_inode_t *ip) 2760 { 2761 xfs_mount_t *mp = dp->i_mount; 2762 xfs_trans_t *tp = NULL; 2763 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2764 int error = 0; 2765 uint resblks; 2766 2767 trace_xfs_remove(dp, name); 2768 2769 if (xfs_is_shutdown(mp)) 2770 return -EIO; 2771 2772 error = xfs_qm_dqattach(dp); 2773 if (error) 2774 goto std_return; 2775 2776 error = xfs_qm_dqattach(ip); 2777 if (error) 2778 goto std_return; 2779 2780 /* 2781 * We try to get the real space reservation first, 2782 * allowing for directory btree deletion(s) implying 2783 * possible bmap insert(s). If we can't get the space 2784 * reservation then we use 0 instead, and avoid the bmap 2785 * btree insert(s) in the directory code by, if the bmap 2786 * insert tries to happen, instead trimming the LAST 2787 * block from the directory. 2788 */ 2789 resblks = XFS_REMOVE_SPACE_RES(mp); 2790 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2791 if (error == -ENOSPC) { 2792 resblks = 0; 2793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2794 &tp); 2795 } 2796 if (error) { 2797 ASSERT(error != -ENOSPC); 2798 goto std_return; 2799 } 2800 2801 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2802 2803 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2804 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2805 2806 /* 2807 * If we're removing a directory perform some additional validation. 2808 */ 2809 if (is_dir) { 2810 ASSERT(VFS_I(ip)->i_nlink >= 2); 2811 if (VFS_I(ip)->i_nlink != 2) { 2812 error = -ENOTEMPTY; 2813 goto out_trans_cancel; 2814 } 2815 if (!xfs_dir_isempty(ip)) { 2816 error = -ENOTEMPTY; 2817 goto out_trans_cancel; 2818 } 2819 2820 /* Drop the link from ip's "..". */ 2821 error = xfs_droplink(tp, dp); 2822 if (error) 2823 goto out_trans_cancel; 2824 2825 /* Drop the "." link from ip to self. */ 2826 error = xfs_droplink(tp, ip); 2827 if (error) 2828 goto out_trans_cancel; 2829 2830 /* 2831 * Point the unlinked child directory's ".." entry to the root 2832 * directory to eliminate back-references to inodes that may 2833 * get freed before the child directory is closed. If the fs 2834 * gets shrunk, this can lead to dirent inode validation errors. 2835 */ 2836 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2837 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2838 tp->t_mountp->m_sb.sb_rootino, 0); 2839 if (error) 2840 return error; 2841 } 2842 } else { 2843 /* 2844 * When removing a non-directory we need to log the parent 2845 * inode here. For a directory this is done implicitly 2846 * by the xfs_droplink call for the ".." entry. 2847 */ 2848 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2849 } 2850 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2851 2852 /* Drop the link from dp to ip. */ 2853 error = xfs_droplink(tp, ip); 2854 if (error) 2855 goto out_trans_cancel; 2856 2857 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2858 if (error) { 2859 ASSERT(error != -ENOENT); 2860 goto out_trans_cancel; 2861 } 2862 2863 /* 2864 * If this is a synchronous mount, make sure that the 2865 * remove transaction goes to disk before returning to 2866 * the user. 2867 */ 2868 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2869 xfs_trans_set_sync(tp); 2870 2871 error = xfs_trans_commit(tp); 2872 if (error) 2873 goto std_return; 2874 2875 if (is_dir && xfs_inode_is_filestream(ip)) 2876 xfs_filestream_deassociate(ip); 2877 2878 return 0; 2879 2880 out_trans_cancel: 2881 xfs_trans_cancel(tp); 2882 std_return: 2883 return error; 2884 } 2885 2886 /* 2887 * Enter all inodes for a rename transaction into a sorted array. 2888 */ 2889 #define __XFS_SORT_INODES 5 2890 STATIC void 2891 xfs_sort_for_rename( 2892 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2893 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2894 struct xfs_inode *ip1, /* in: inode of old entry */ 2895 struct xfs_inode *ip2, /* in: inode of new entry */ 2896 struct xfs_inode *wip, /* in: whiteout inode */ 2897 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2898 int *num_inodes) /* in/out: inodes in array */ 2899 { 2900 int i, j; 2901 2902 ASSERT(*num_inodes == __XFS_SORT_INODES); 2903 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2904 2905 /* 2906 * i_tab contains a list of pointers to inodes. We initialize 2907 * the table here & we'll sort it. We will then use it to 2908 * order the acquisition of the inode locks. 2909 * 2910 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2911 */ 2912 i = 0; 2913 i_tab[i++] = dp1; 2914 i_tab[i++] = dp2; 2915 i_tab[i++] = ip1; 2916 if (ip2) 2917 i_tab[i++] = ip2; 2918 if (wip) 2919 i_tab[i++] = wip; 2920 *num_inodes = i; 2921 2922 /* 2923 * Sort the elements via bubble sort. (Remember, there are at 2924 * most 5 elements to sort, so this is adequate.) 2925 */ 2926 for (i = 0; i < *num_inodes; i++) { 2927 for (j = 1; j < *num_inodes; j++) { 2928 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2929 struct xfs_inode *temp = i_tab[j]; 2930 i_tab[j] = i_tab[j-1]; 2931 i_tab[j-1] = temp; 2932 } 2933 } 2934 } 2935 } 2936 2937 static int 2938 xfs_finish_rename( 2939 struct xfs_trans *tp) 2940 { 2941 /* 2942 * If this is a synchronous mount, make sure that the rename transaction 2943 * goes to disk before returning to the user. 2944 */ 2945 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2946 xfs_trans_set_sync(tp); 2947 2948 return xfs_trans_commit(tp); 2949 } 2950 2951 /* 2952 * xfs_cross_rename() 2953 * 2954 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2955 */ 2956 STATIC int 2957 xfs_cross_rename( 2958 struct xfs_trans *tp, 2959 struct xfs_inode *dp1, 2960 struct xfs_name *name1, 2961 struct xfs_inode *ip1, 2962 struct xfs_inode *dp2, 2963 struct xfs_name *name2, 2964 struct xfs_inode *ip2, 2965 int spaceres) 2966 { 2967 int error = 0; 2968 int ip1_flags = 0; 2969 int ip2_flags = 0; 2970 int dp2_flags = 0; 2971 2972 /* Swap inode number for dirent in first parent */ 2973 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2974 if (error) 2975 goto out_trans_abort; 2976 2977 /* Swap inode number for dirent in second parent */ 2978 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2979 if (error) 2980 goto out_trans_abort; 2981 2982 /* 2983 * If we're renaming one or more directories across different parents, 2984 * update the respective ".." entries (and link counts) to match the new 2985 * parents. 2986 */ 2987 if (dp1 != dp2) { 2988 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2989 2990 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2991 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2992 dp1->i_ino, spaceres); 2993 if (error) 2994 goto out_trans_abort; 2995 2996 /* transfer ip2 ".." reference to dp1 */ 2997 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2998 error = xfs_droplink(tp, dp2); 2999 if (error) 3000 goto out_trans_abort; 3001 xfs_bumplink(tp, dp1); 3002 } 3003 3004 /* 3005 * Although ip1 isn't changed here, userspace needs 3006 * to be warned about the change, so that applications 3007 * relying on it (like backup ones), will properly 3008 * notify the change 3009 */ 3010 ip1_flags |= XFS_ICHGTIME_CHG; 3011 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3012 } 3013 3014 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3015 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3016 dp2->i_ino, spaceres); 3017 if (error) 3018 goto out_trans_abort; 3019 3020 /* transfer ip1 ".." reference to dp2 */ 3021 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3022 error = xfs_droplink(tp, dp1); 3023 if (error) 3024 goto out_trans_abort; 3025 xfs_bumplink(tp, dp2); 3026 } 3027 3028 /* 3029 * Although ip2 isn't changed here, userspace needs 3030 * to be warned about the change, so that applications 3031 * relying on it (like backup ones), will properly 3032 * notify the change 3033 */ 3034 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3035 ip2_flags |= XFS_ICHGTIME_CHG; 3036 } 3037 } 3038 3039 if (ip1_flags) { 3040 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3041 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3042 } 3043 if (ip2_flags) { 3044 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3045 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3046 } 3047 if (dp2_flags) { 3048 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3049 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3050 } 3051 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3052 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3053 return xfs_finish_rename(tp); 3054 3055 out_trans_abort: 3056 xfs_trans_cancel(tp); 3057 return error; 3058 } 3059 3060 /* 3061 * xfs_rename_alloc_whiteout() 3062 * 3063 * Return a referenced, unlinked, unlocked inode that can be used as a 3064 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3065 * crash between allocating the inode and linking it into the rename transaction 3066 * recovery will free the inode and we won't leak it. 3067 */ 3068 static int 3069 xfs_rename_alloc_whiteout( 3070 struct user_namespace *mnt_userns, 3071 struct xfs_inode *dp, 3072 struct xfs_inode **wip) 3073 { 3074 struct xfs_inode *tmpfile; 3075 int error; 3076 3077 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3078 &tmpfile); 3079 if (error) 3080 return error; 3081 3082 /* 3083 * Prepare the tmpfile inode as if it were created through the VFS. 3084 * Complete the inode setup and flag it as linkable. nlink is already 3085 * zero, so we can skip the drop_nlink. 3086 */ 3087 xfs_setup_iops(tmpfile); 3088 xfs_finish_inode_setup(tmpfile); 3089 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3090 3091 *wip = tmpfile; 3092 return 0; 3093 } 3094 3095 /* 3096 * xfs_rename 3097 */ 3098 int 3099 xfs_rename( 3100 struct user_namespace *mnt_userns, 3101 struct xfs_inode *src_dp, 3102 struct xfs_name *src_name, 3103 struct xfs_inode *src_ip, 3104 struct xfs_inode *target_dp, 3105 struct xfs_name *target_name, 3106 struct xfs_inode *target_ip, 3107 unsigned int flags) 3108 { 3109 struct xfs_mount *mp = src_dp->i_mount; 3110 struct xfs_trans *tp; 3111 struct xfs_inode *wip = NULL; /* whiteout inode */ 3112 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3113 int i; 3114 int num_inodes = __XFS_SORT_INODES; 3115 bool new_parent = (src_dp != target_dp); 3116 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3117 int spaceres; 3118 int error; 3119 3120 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3121 3122 if ((flags & RENAME_EXCHANGE) && !target_ip) 3123 return -EINVAL; 3124 3125 /* 3126 * If we are doing a whiteout operation, allocate the whiteout inode 3127 * we will be placing at the target and ensure the type is set 3128 * appropriately. 3129 */ 3130 if (flags & RENAME_WHITEOUT) { 3131 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3132 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3133 if (error) 3134 return error; 3135 3136 /* setup target dirent info as whiteout */ 3137 src_name->type = XFS_DIR3_FT_CHRDEV; 3138 } 3139 3140 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3141 inodes, &num_inodes); 3142 3143 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3144 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3145 if (error == -ENOSPC) { 3146 spaceres = 0; 3147 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3148 &tp); 3149 } 3150 if (error) 3151 goto out_release_wip; 3152 3153 /* 3154 * Attach the dquots to the inodes 3155 */ 3156 error = xfs_qm_vop_rename_dqattach(inodes); 3157 if (error) 3158 goto out_trans_cancel; 3159 3160 /* 3161 * Lock all the participating inodes. Depending upon whether 3162 * the target_name exists in the target directory, and 3163 * whether the target directory is the same as the source 3164 * directory, we can lock from 2 to 4 inodes. 3165 */ 3166 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3167 3168 /* 3169 * Join all the inodes to the transaction. From this point on, 3170 * we can rely on either trans_commit or trans_cancel to unlock 3171 * them. 3172 */ 3173 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3174 if (new_parent) 3175 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3176 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3177 if (target_ip) 3178 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3179 if (wip) 3180 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3181 3182 /* 3183 * If we are using project inheritance, we only allow renames 3184 * into our tree when the project IDs are the same; else the 3185 * tree quota mechanism would be circumvented. 3186 */ 3187 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3188 target_dp->i_projid != src_ip->i_projid)) { 3189 error = -EXDEV; 3190 goto out_trans_cancel; 3191 } 3192 3193 /* RENAME_EXCHANGE is unique from here on. */ 3194 if (flags & RENAME_EXCHANGE) 3195 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3196 target_dp, target_name, target_ip, 3197 spaceres); 3198 3199 /* 3200 * Check for expected errors before we dirty the transaction 3201 * so we can return an error without a transaction abort. 3202 * 3203 * Extent count overflow check: 3204 * 3205 * From the perspective of src_dp, a rename operation is essentially a 3206 * directory entry remove operation. Hence the only place where we check 3207 * for extent count overflow for src_dp is in 3208 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3209 * -ENOSPC when it detects a possible extent count overflow and in 3210 * response, the higher layers of directory handling code do the 3211 * following: 3212 * 1. Data/Free blocks: XFS lets these blocks linger until a 3213 * future remove operation removes them. 3214 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3215 * Leaf space and unmaps the last block. 3216 * 3217 * For target_dp, there are two cases depending on whether the 3218 * destination directory entry exists or not. 3219 * 3220 * When destination directory entry does not exist (i.e. target_ip == 3221 * NULL), extent count overflow check is performed only when transaction 3222 * has a non-zero sized space reservation associated with it. With a 3223 * zero-sized space reservation, XFS allows a rename operation to 3224 * continue only when the directory has sufficient free space in its 3225 * data/leaf/free space blocks to hold the new entry. 3226 * 3227 * When destination directory entry exists (i.e. target_ip != NULL), all 3228 * we need to do is change the inode number associated with the already 3229 * existing entry. Hence there is no need to perform an extent count 3230 * overflow check. 3231 */ 3232 if (target_ip == NULL) { 3233 /* 3234 * If there's no space reservation, check the entry will 3235 * fit before actually inserting it. 3236 */ 3237 if (!spaceres) { 3238 error = xfs_dir_canenter(tp, target_dp, target_name); 3239 if (error) 3240 goto out_trans_cancel; 3241 } else { 3242 error = xfs_iext_count_may_overflow(target_dp, 3243 XFS_DATA_FORK, 3244 XFS_IEXT_DIR_MANIP_CNT(mp)); 3245 if (error) 3246 goto out_trans_cancel; 3247 } 3248 } else { 3249 /* 3250 * If target exists and it's a directory, check that whether 3251 * it can be destroyed. 3252 */ 3253 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3254 (!xfs_dir_isempty(target_ip) || 3255 (VFS_I(target_ip)->i_nlink > 2))) { 3256 error = -EEXIST; 3257 goto out_trans_cancel; 3258 } 3259 } 3260 3261 /* 3262 * Lock the AGI buffers we need to handle bumping the nlink of the 3263 * whiteout inode off the unlinked list and to handle dropping the 3264 * nlink of the target inode. Per locking order rules, do this in 3265 * increasing AG order and before directory block allocation tries to 3266 * grab AGFs because we grab AGIs before AGFs. 3267 * 3268 * The (vfs) caller must ensure that if src is a directory then 3269 * target_ip is either null or an empty directory. 3270 */ 3271 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3272 if (inodes[i] == wip || 3273 (inodes[i] == target_ip && 3274 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3275 struct xfs_buf *bp; 3276 xfs_agnumber_t agno; 3277 3278 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3279 error = xfs_read_agi(mp, tp, agno, &bp); 3280 if (error) 3281 goto out_trans_cancel; 3282 } 3283 } 3284 3285 /* 3286 * Directory entry creation below may acquire the AGF. Remove 3287 * the whiteout from the unlinked list first to preserve correct 3288 * AGI/AGF locking order. This dirties the transaction so failures 3289 * after this point will abort and log recovery will clean up the 3290 * mess. 3291 * 3292 * For whiteouts, we need to bump the link count on the whiteout 3293 * inode. After this point, we have a real link, clear the tmpfile 3294 * state flag from the inode so it doesn't accidentally get misused 3295 * in future. 3296 */ 3297 if (wip) { 3298 struct xfs_perag *pag; 3299 3300 ASSERT(VFS_I(wip)->i_nlink == 0); 3301 3302 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3303 error = xfs_iunlink_remove(tp, pag, wip); 3304 xfs_perag_put(pag); 3305 if (error) 3306 goto out_trans_cancel; 3307 3308 xfs_bumplink(tp, wip); 3309 VFS_I(wip)->i_state &= ~I_LINKABLE; 3310 } 3311 3312 /* 3313 * Set up the target. 3314 */ 3315 if (target_ip == NULL) { 3316 /* 3317 * If target does not exist and the rename crosses 3318 * directories, adjust the target directory link count 3319 * to account for the ".." reference from the new entry. 3320 */ 3321 error = xfs_dir_createname(tp, target_dp, target_name, 3322 src_ip->i_ino, spaceres); 3323 if (error) 3324 goto out_trans_cancel; 3325 3326 xfs_trans_ichgtime(tp, target_dp, 3327 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3328 3329 if (new_parent && src_is_directory) { 3330 xfs_bumplink(tp, target_dp); 3331 } 3332 } else { /* target_ip != NULL */ 3333 /* 3334 * Link the source inode under the target name. 3335 * If the source inode is a directory and we are moving 3336 * it across directories, its ".." entry will be 3337 * inconsistent until we replace that down below. 3338 * 3339 * In case there is already an entry with the same 3340 * name at the destination directory, remove it first. 3341 */ 3342 error = xfs_dir_replace(tp, target_dp, target_name, 3343 src_ip->i_ino, spaceres); 3344 if (error) 3345 goto out_trans_cancel; 3346 3347 xfs_trans_ichgtime(tp, target_dp, 3348 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3349 3350 /* 3351 * Decrement the link count on the target since the target 3352 * dir no longer points to it. 3353 */ 3354 error = xfs_droplink(tp, target_ip); 3355 if (error) 3356 goto out_trans_cancel; 3357 3358 if (src_is_directory) { 3359 /* 3360 * Drop the link from the old "." entry. 3361 */ 3362 error = xfs_droplink(tp, target_ip); 3363 if (error) 3364 goto out_trans_cancel; 3365 } 3366 } /* target_ip != NULL */ 3367 3368 /* 3369 * Remove the source. 3370 */ 3371 if (new_parent && src_is_directory) { 3372 /* 3373 * Rewrite the ".." entry to point to the new 3374 * directory. 3375 */ 3376 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3377 target_dp->i_ino, spaceres); 3378 ASSERT(error != -EEXIST); 3379 if (error) 3380 goto out_trans_cancel; 3381 } 3382 3383 /* 3384 * We always want to hit the ctime on the source inode. 3385 * 3386 * This isn't strictly required by the standards since the source 3387 * inode isn't really being changed, but old unix file systems did 3388 * it and some incremental backup programs won't work without it. 3389 */ 3390 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3391 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3392 3393 /* 3394 * Adjust the link count on src_dp. This is necessary when 3395 * renaming a directory, either within one parent when 3396 * the target existed, or across two parent directories. 3397 */ 3398 if (src_is_directory && (new_parent || target_ip != NULL)) { 3399 3400 /* 3401 * Decrement link count on src_directory since the 3402 * entry that's moved no longer points to it. 3403 */ 3404 error = xfs_droplink(tp, src_dp); 3405 if (error) 3406 goto out_trans_cancel; 3407 } 3408 3409 /* 3410 * For whiteouts, we only need to update the source dirent with the 3411 * inode number of the whiteout inode rather than removing it 3412 * altogether. 3413 */ 3414 if (wip) { 3415 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3416 spaceres); 3417 } else { 3418 /* 3419 * NOTE: We don't need to check for extent count overflow here 3420 * because the dir remove name code will leave the dir block in 3421 * place if the extent count would overflow. 3422 */ 3423 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3424 spaceres); 3425 } 3426 3427 if (error) 3428 goto out_trans_cancel; 3429 3430 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3431 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3432 if (new_parent) 3433 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3434 3435 error = xfs_finish_rename(tp); 3436 if (wip) 3437 xfs_irele(wip); 3438 return error; 3439 3440 out_trans_cancel: 3441 xfs_trans_cancel(tp); 3442 out_release_wip: 3443 if (wip) 3444 xfs_irele(wip); 3445 return error; 3446 } 3447 3448 static int 3449 xfs_iflush( 3450 struct xfs_inode *ip, 3451 struct xfs_buf *bp) 3452 { 3453 struct xfs_inode_log_item *iip = ip->i_itemp; 3454 struct xfs_dinode *dip; 3455 struct xfs_mount *mp = ip->i_mount; 3456 int error; 3457 3458 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3459 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3460 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3461 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3462 ASSERT(iip->ili_item.li_buf == bp); 3463 3464 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3465 3466 /* 3467 * We don't flush the inode if any of the following checks fail, but we 3468 * do still update the log item and attach to the backing buffer as if 3469 * the flush happened. This is a formality to facilitate predictable 3470 * error handling as the caller will shutdown and fail the buffer. 3471 */ 3472 error = -EFSCORRUPTED; 3473 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3474 mp, XFS_ERRTAG_IFLUSH_1)) { 3475 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3476 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3477 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3478 goto flush_out; 3479 } 3480 if (S_ISREG(VFS_I(ip)->i_mode)) { 3481 if (XFS_TEST_ERROR( 3482 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3483 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3484 mp, XFS_ERRTAG_IFLUSH_3)) { 3485 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3486 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3487 __func__, ip->i_ino, ip); 3488 goto flush_out; 3489 } 3490 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3491 if (XFS_TEST_ERROR( 3492 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3493 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3494 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3495 mp, XFS_ERRTAG_IFLUSH_4)) { 3496 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3497 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3498 __func__, ip->i_ino, ip); 3499 goto flush_out; 3500 } 3501 } 3502 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3503 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3504 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3505 "%s: detected corrupt incore inode %Lu, " 3506 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3507 __func__, ip->i_ino, 3508 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3509 ip->i_nblocks, ip); 3510 goto flush_out; 3511 } 3512 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3513 mp, XFS_ERRTAG_IFLUSH_6)) { 3514 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3515 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3516 __func__, ip->i_ino, ip->i_forkoff, ip); 3517 goto flush_out; 3518 } 3519 3520 /* 3521 * Inode item log recovery for v2 inodes are dependent on the flushiter 3522 * count for correct sequencing. We bump the flush iteration count so 3523 * we can detect flushes which postdate a log record during recovery. 3524 * This is redundant as we now log every change and hence this can't 3525 * happen but we need to still do it to ensure backwards compatibility 3526 * with old kernels that predate logging all inode changes. 3527 */ 3528 if (!xfs_has_v3inodes(mp)) 3529 ip->i_flushiter++; 3530 3531 /* 3532 * If there are inline format data / attr forks attached to this inode, 3533 * make sure they are not corrupt. 3534 */ 3535 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3536 xfs_ifork_verify_local_data(ip)) 3537 goto flush_out; 3538 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3539 xfs_ifork_verify_local_attr(ip)) 3540 goto flush_out; 3541 3542 /* 3543 * Copy the dirty parts of the inode into the on-disk inode. We always 3544 * copy out the core of the inode, because if the inode is dirty at all 3545 * the core must be. 3546 */ 3547 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3548 3549 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3550 if (!xfs_has_v3inodes(mp)) { 3551 if (ip->i_flushiter == DI_MAX_FLUSH) 3552 ip->i_flushiter = 0; 3553 } 3554 3555 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3556 if (XFS_IFORK_Q(ip)) 3557 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3558 3559 /* 3560 * We've recorded everything logged in the inode, so we'd like to clear 3561 * the ili_fields bits so we don't log and flush things unnecessarily. 3562 * However, we can't stop logging all this information until the data 3563 * we've copied into the disk buffer is written to disk. If we did we 3564 * might overwrite the copy of the inode in the log with all the data 3565 * after re-logging only part of it, and in the face of a crash we 3566 * wouldn't have all the data we need to recover. 3567 * 3568 * What we do is move the bits to the ili_last_fields field. When 3569 * logging the inode, these bits are moved back to the ili_fields field. 3570 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3571 * we know that the information those bits represent is permanently on 3572 * disk. As long as the flush completes before the inode is logged 3573 * again, then both ili_fields and ili_last_fields will be cleared. 3574 */ 3575 error = 0; 3576 flush_out: 3577 spin_lock(&iip->ili_lock); 3578 iip->ili_last_fields = iip->ili_fields; 3579 iip->ili_fields = 0; 3580 iip->ili_fsync_fields = 0; 3581 spin_unlock(&iip->ili_lock); 3582 3583 /* 3584 * Store the current LSN of the inode so that we can tell whether the 3585 * item has moved in the AIL from xfs_buf_inode_iodone(). 3586 */ 3587 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3588 &iip->ili_item.li_lsn); 3589 3590 /* generate the checksum. */ 3591 xfs_dinode_calc_crc(mp, dip); 3592 return error; 3593 } 3594 3595 /* 3596 * Non-blocking flush of dirty inode metadata into the backing buffer. 3597 * 3598 * The caller must have a reference to the inode and hold the cluster buffer 3599 * locked. The function will walk across all the inodes on the cluster buffer it 3600 * can find and lock without blocking, and flush them to the cluster buffer. 3601 * 3602 * On successful flushing of at least one inode, the caller must write out the 3603 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3604 * the caller needs to release the buffer. On failure, the filesystem will be 3605 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3606 * will be returned. 3607 */ 3608 int 3609 xfs_iflush_cluster( 3610 struct xfs_buf *bp) 3611 { 3612 struct xfs_mount *mp = bp->b_mount; 3613 struct xfs_log_item *lip, *n; 3614 struct xfs_inode *ip; 3615 struct xfs_inode_log_item *iip; 3616 int clcount = 0; 3617 int error = 0; 3618 3619 /* 3620 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3621 * can remove itself from the list. 3622 */ 3623 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3624 iip = (struct xfs_inode_log_item *)lip; 3625 ip = iip->ili_inode; 3626 3627 /* 3628 * Quick and dirty check to avoid locks if possible. 3629 */ 3630 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3631 continue; 3632 if (xfs_ipincount(ip)) 3633 continue; 3634 3635 /* 3636 * The inode is still attached to the buffer, which means it is 3637 * dirty but reclaim might try to grab it. Check carefully for 3638 * that, and grab the ilock while still holding the i_flags_lock 3639 * to guarantee reclaim will not be able to reclaim this inode 3640 * once we drop the i_flags_lock. 3641 */ 3642 spin_lock(&ip->i_flags_lock); 3643 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3644 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3645 spin_unlock(&ip->i_flags_lock); 3646 continue; 3647 } 3648 3649 /* 3650 * ILOCK will pin the inode against reclaim and prevent 3651 * concurrent transactions modifying the inode while we are 3652 * flushing the inode. If we get the lock, set the flushing 3653 * state before we drop the i_flags_lock. 3654 */ 3655 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3656 spin_unlock(&ip->i_flags_lock); 3657 continue; 3658 } 3659 __xfs_iflags_set(ip, XFS_IFLUSHING); 3660 spin_unlock(&ip->i_flags_lock); 3661 3662 /* 3663 * Abort flushing this inode if we are shut down because the 3664 * inode may not currently be in the AIL. This can occur when 3665 * log I/O failure unpins the inode without inserting into the 3666 * AIL, leaving a dirty/unpinned inode attached to the buffer 3667 * that otherwise looks like it should be flushed. 3668 */ 3669 if (xfs_is_shutdown(mp)) { 3670 xfs_iunpin_wait(ip); 3671 xfs_iflush_abort(ip); 3672 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3673 error = -EIO; 3674 continue; 3675 } 3676 3677 /* don't block waiting on a log force to unpin dirty inodes */ 3678 if (xfs_ipincount(ip)) { 3679 xfs_iflags_clear(ip, XFS_IFLUSHING); 3680 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3681 continue; 3682 } 3683 3684 if (!xfs_inode_clean(ip)) 3685 error = xfs_iflush(ip, bp); 3686 else 3687 xfs_iflags_clear(ip, XFS_IFLUSHING); 3688 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3689 if (error) 3690 break; 3691 clcount++; 3692 } 3693 3694 if (error) { 3695 bp->b_flags |= XBF_ASYNC; 3696 xfs_buf_ioend_fail(bp); 3697 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3698 return error; 3699 } 3700 3701 if (!clcount) 3702 return -EAGAIN; 3703 3704 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3705 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3706 return 0; 3707 3708 } 3709 3710 /* Release an inode. */ 3711 void 3712 xfs_irele( 3713 struct xfs_inode *ip) 3714 { 3715 trace_xfs_irele(ip, _RET_IP_); 3716 iput(VFS_I(ip)); 3717 } 3718 3719 /* 3720 * Ensure all commited transactions touching the inode are written to the log. 3721 */ 3722 int 3723 xfs_log_force_inode( 3724 struct xfs_inode *ip) 3725 { 3726 xfs_csn_t seq = 0; 3727 3728 xfs_ilock(ip, XFS_ILOCK_SHARED); 3729 if (xfs_ipincount(ip)) 3730 seq = ip->i_itemp->ili_commit_seq; 3731 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3732 3733 if (!seq) 3734 return 0; 3735 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3736 } 3737 3738 /* 3739 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3740 * abide vfs locking order (lowest pointer value goes first) and breaking the 3741 * layout leases before proceeding. The loop is needed because we cannot call 3742 * the blocking break_layout() with the iolocks held, and therefore have to 3743 * back out both locks. 3744 */ 3745 static int 3746 xfs_iolock_two_inodes_and_break_layout( 3747 struct inode *src, 3748 struct inode *dest) 3749 { 3750 int error; 3751 3752 if (src > dest) 3753 swap(src, dest); 3754 3755 retry: 3756 /* Wait to break both inodes' layouts before we start locking. */ 3757 error = break_layout(src, true); 3758 if (error) 3759 return error; 3760 if (src != dest) { 3761 error = break_layout(dest, true); 3762 if (error) 3763 return error; 3764 } 3765 3766 /* Lock one inode and make sure nobody got in and leased it. */ 3767 inode_lock(src); 3768 error = break_layout(src, false); 3769 if (error) { 3770 inode_unlock(src); 3771 if (error == -EWOULDBLOCK) 3772 goto retry; 3773 return error; 3774 } 3775 3776 if (src == dest) 3777 return 0; 3778 3779 /* Lock the other inode and make sure nobody got in and leased it. */ 3780 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3781 error = break_layout(dest, false); 3782 if (error) { 3783 inode_unlock(src); 3784 inode_unlock(dest); 3785 if (error == -EWOULDBLOCK) 3786 goto retry; 3787 return error; 3788 } 3789 3790 return 0; 3791 } 3792 3793 /* 3794 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3795 * mmap activity. 3796 */ 3797 int 3798 xfs_ilock2_io_mmap( 3799 struct xfs_inode *ip1, 3800 struct xfs_inode *ip2) 3801 { 3802 int ret; 3803 3804 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3805 if (ret) 3806 return ret; 3807 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3808 VFS_I(ip2)->i_mapping); 3809 return 0; 3810 } 3811 3812 /* Unlock both inodes to allow IO and mmap activity. */ 3813 void 3814 xfs_iunlock2_io_mmap( 3815 struct xfs_inode *ip1, 3816 struct xfs_inode *ip2) 3817 { 3818 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3819 VFS_I(ip2)->i_mapping); 3820 inode_unlock(VFS_I(ip2)); 3821 if (ip1 != ip2) 3822 inode_unlock(VFS_I(ip1)); 3823 } 3824