xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
59 		return ip->i_d.di_extsize;
60 	if (XFS_IS_REALTIME_INODE(ip))
61 		return ip->i_mount->m_sb.sb_rextsize;
62 	return 0;
63 }
64 
65 /*
66  * Helper function to extract CoW extent size hint from inode.
67  * Between the extent size hint and the CoW extent size hint, we
68  * return the greater of the two.  If the value is zero (automatic),
69  * use the default size.
70  */
71 xfs_extlen_t
72 xfs_get_cowextsz_hint(
73 	struct xfs_inode	*ip)
74 {
75 	xfs_extlen_t		a, b;
76 
77 	a = 0;
78 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
79 		a = ip->i_d.di_cowextsize;
80 	b = xfs_get_extsz_hint(ip);
81 
82 	a = max(a, b);
83 	if (a == 0)
84 		return XFS_DEFAULT_COWEXTSZ_HINT;
85 	return a;
86 }
87 
88 /*
89  * These two are wrapper routines around the xfs_ilock() routine used to
90  * centralize some grungy code.  They are used in places that wish to lock the
91  * inode solely for reading the extents.  The reason these places can't just
92  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
93  * bringing in of the extents from disk for a file in b-tree format.  If the
94  * inode is in b-tree format, then we need to lock the inode exclusively until
95  * the extents are read in.  Locking it exclusively all the time would limit
96  * our parallelism unnecessarily, though.  What we do instead is check to see
97  * if the extents have been read in yet, and only lock the inode exclusively
98  * if they have not.
99  *
100  * The functions return a value which should be given to the corresponding
101  * xfs_iunlock() call.
102  */
103 uint
104 xfs_ilock_data_map_shared(
105 	struct xfs_inode	*ip)
106 {
107 	uint			lock_mode = XFS_ILOCK_SHARED;
108 
109 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
110 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
111 		lock_mode = XFS_ILOCK_EXCL;
112 	xfs_ilock(ip, lock_mode);
113 	return lock_mode;
114 }
115 
116 uint
117 xfs_ilock_attr_map_shared(
118 	struct xfs_inode	*ip)
119 {
120 	uint			lock_mode = XFS_ILOCK_SHARED;
121 
122 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
123 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
124 		lock_mode = XFS_ILOCK_EXCL;
125 	xfs_ilock(ip, lock_mode);
126 	return lock_mode;
127 }
128 
129 /*
130  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
131  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
132  * various combinations of the locks to be obtained.
133  *
134  * The 3 locks should always be ordered so that the IO lock is obtained first,
135  * the mmap lock second and the ilock last in order to prevent deadlock.
136  *
137  * Basic locking order:
138  *
139  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
140  *
141  * mmap_sem locking order:
142  *
143  * i_rwsem -> page lock -> mmap_sem
144  * mmap_sem -> i_mmap_lock -> page_lock
145  *
146  * The difference in mmap_sem locking order mean that we cannot hold the
147  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
148  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
149  * in get_user_pages() to map the user pages into the kernel address space for
150  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
151  * page faults already hold the mmap_sem.
152  *
153  * Hence to serialise fully against both syscall and mmap based IO, we need to
154  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
155  * taken in places where we need to invalidate the page cache in a race
156  * free manner (e.g. truncate, hole punch and other extent manipulation
157  * functions).
158  */
159 void
160 xfs_ilock(
161 	xfs_inode_t		*ip,
162 	uint			lock_flags)
163 {
164 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
165 
166 	/*
167 	 * You can't set both SHARED and EXCL for the same lock,
168 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
169 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
170 	 */
171 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
172 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
173 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
174 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
175 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
176 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
177 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
178 
179 	if (lock_flags & XFS_IOLOCK_EXCL) {
180 		down_write_nested(&VFS_I(ip)->i_rwsem,
181 				  XFS_IOLOCK_DEP(lock_flags));
182 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
183 		down_read_nested(&VFS_I(ip)->i_rwsem,
184 				 XFS_IOLOCK_DEP(lock_flags));
185 	}
186 
187 	if (lock_flags & XFS_MMAPLOCK_EXCL)
188 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
189 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
190 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
191 
192 	if (lock_flags & XFS_ILOCK_EXCL)
193 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
194 	else if (lock_flags & XFS_ILOCK_SHARED)
195 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
196 }
197 
198 /*
199  * This is just like xfs_ilock(), except that the caller
200  * is guaranteed not to sleep.  It returns 1 if it gets
201  * the requested locks and 0 otherwise.  If the IO lock is
202  * obtained but the inode lock cannot be, then the IO lock
203  * is dropped before returning.
204  *
205  * ip -- the inode being locked
206  * lock_flags -- this parameter indicates the inode's locks to be
207  *       to be locked.  See the comment for xfs_ilock() for a list
208  *	 of valid values.
209  */
210 int
211 xfs_ilock_nowait(
212 	xfs_inode_t		*ip,
213 	uint			lock_flags)
214 {
215 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
216 
217 	/*
218 	 * You can't set both SHARED and EXCL for the same lock,
219 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
220 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
221 	 */
222 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
223 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
224 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
225 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
226 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
227 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
228 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
229 
230 	if (lock_flags & XFS_IOLOCK_EXCL) {
231 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 			goto out;
233 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
234 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	}
237 
238 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 		if (!mrtryupdate(&ip->i_mmaplock))
240 			goto out_undo_iolock;
241 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 		if (!mrtryaccess(&ip->i_mmaplock))
243 			goto out_undo_iolock;
244 	}
245 
246 	if (lock_flags & XFS_ILOCK_EXCL) {
247 		if (!mrtryupdate(&ip->i_lock))
248 			goto out_undo_mmaplock;
249 	} else if (lock_flags & XFS_ILOCK_SHARED) {
250 		if (!mrtryaccess(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	}
253 	return 1;
254 
255 out_undo_mmaplock:
256 	if (lock_flags & XFS_MMAPLOCK_EXCL)
257 		mrunlock_excl(&ip->i_mmaplock);
258 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 		mrunlock_shared(&ip->i_mmaplock);
260 out_undo_iolock:
261 	if (lock_flags & XFS_IOLOCK_EXCL)
262 		up_write(&VFS_I(ip)->i_rwsem);
263 	else if (lock_flags & XFS_IOLOCK_SHARED)
264 		up_read(&VFS_I(ip)->i_rwsem);
265 out:
266 	return 0;
267 }
268 
269 /*
270  * xfs_iunlock() is used to drop the inode locks acquired with
271  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
272  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273  * that we know which locks to drop.
274  *
275  * ip -- the inode being unlocked
276  * lock_flags -- this parameter indicates the inode's locks to be
277  *       to be unlocked.  See the comment for xfs_ilock() for a list
278  *	 of valid values for this parameter.
279  *
280  */
281 void
282 xfs_iunlock(
283 	xfs_inode_t		*ip,
284 	uint			lock_flags)
285 {
286 	/*
287 	 * You can't set both SHARED and EXCL for the same lock,
288 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
289 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
290 	 */
291 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
292 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
293 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
294 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
295 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
296 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
297 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
298 	ASSERT(lock_flags != 0);
299 
300 	if (lock_flags & XFS_IOLOCK_EXCL)
301 		up_write(&VFS_I(ip)->i_rwsem);
302 	else if (lock_flags & XFS_IOLOCK_SHARED)
303 		up_read(&VFS_I(ip)->i_rwsem);
304 
305 	if (lock_flags & XFS_MMAPLOCK_EXCL)
306 		mrunlock_excl(&ip->i_mmaplock);
307 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
308 		mrunlock_shared(&ip->i_mmaplock);
309 
310 	if (lock_flags & XFS_ILOCK_EXCL)
311 		mrunlock_excl(&ip->i_lock);
312 	else if (lock_flags & XFS_ILOCK_SHARED)
313 		mrunlock_shared(&ip->i_lock);
314 
315 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
316 }
317 
318 /*
319  * give up write locks.  the i/o lock cannot be held nested
320  * if it is being demoted.
321  */
322 void
323 xfs_ilock_demote(
324 	xfs_inode_t		*ip,
325 	uint			lock_flags)
326 {
327 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
328 	ASSERT((lock_flags &
329 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
330 
331 	if (lock_flags & XFS_ILOCK_EXCL)
332 		mrdemote(&ip->i_lock);
333 	if (lock_flags & XFS_MMAPLOCK_EXCL)
334 		mrdemote(&ip->i_mmaplock);
335 	if (lock_flags & XFS_IOLOCK_EXCL)
336 		downgrade_write(&VFS_I(ip)->i_rwsem);
337 
338 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
339 }
340 
341 #if defined(DEBUG) || defined(XFS_WARN)
342 int
343 xfs_isilocked(
344 	xfs_inode_t		*ip,
345 	uint			lock_flags)
346 {
347 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
348 		if (!(lock_flags & XFS_ILOCK_SHARED))
349 			return !!ip->i_lock.mr_writer;
350 		return rwsem_is_locked(&ip->i_lock.mr_lock);
351 	}
352 
353 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
354 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
355 			return !!ip->i_mmaplock.mr_writer;
356 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_IOLOCK_SHARED))
361 			return !debug_locks ||
362 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
363 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
364 	}
365 
366 	ASSERT(0);
367 	return 0;
368 }
369 #endif
370 
371 /*
372  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
373  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
374  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
375  * errors and warnings.
376  */
377 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
378 static bool
379 xfs_lockdep_subclass_ok(
380 	int subclass)
381 {
382 	return subclass < MAX_LOCKDEP_SUBCLASSES;
383 }
384 #else
385 #define xfs_lockdep_subclass_ok(subclass)	(true)
386 #endif
387 
388 /*
389  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
390  * value. This can be called for any type of inode lock combination, including
391  * parent locking. Care must be taken to ensure we don't overrun the subclass
392  * storage fields in the class mask we build.
393  */
394 static inline int
395 xfs_lock_inumorder(int lock_mode, int subclass)
396 {
397 	int	class = 0;
398 
399 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
400 			      XFS_ILOCK_RTSUM)));
401 	ASSERT(xfs_lockdep_subclass_ok(subclass));
402 
403 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
404 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
405 		class += subclass << XFS_IOLOCK_SHIFT;
406 	}
407 
408 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
409 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 		class += subclass << XFS_MMAPLOCK_SHIFT;
411 	}
412 
413 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 		class += subclass << XFS_ILOCK_SHIFT;
416 	}
417 
418 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
419 }
420 
421 /*
422  * The following routine will lock n inodes in exclusive mode.  We assume the
423  * caller calls us with the inodes in i_ino order.
424  *
425  * We need to detect deadlock where an inode that we lock is in the AIL and we
426  * start waiting for another inode that is locked by a thread in a long running
427  * transaction (such as truncate). This can result in deadlock since the long
428  * running trans might need to wait for the inode we just locked in order to
429  * push the tail and free space in the log.
430  *
431  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433  * lock more than one at a time, lockdep will report false positives saying we
434  * have violated locking orders.
435  */
436 static void
437 xfs_lock_inodes(
438 	struct xfs_inode	**ips,
439 	int			inodes,
440 	uint			lock_mode)
441 {
442 	int			attempts = 0, i, j, try_lock;
443 	struct xfs_log_item	*lp;
444 
445 	/*
446 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
447 	 * support an arbitrary depth of locking here, but absolute limits on
448 	 * inodes depend on the the type of locking and the limits placed by
449 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
450 	 * the asserts.
451 	 */
452 	ASSERT(ips && inodes >= 2 && inodes <= 5);
453 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 			    XFS_ILOCK_EXCL));
455 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 			      XFS_ILOCK_SHARED)));
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = &ips[j]->i_itemp->ili_item;
483 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 		}
524 		i = 0;
525 		try_lock = 0;
526 		goto again;
527 	}
528 }
529 
530 /*
531  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
532  * the mmaplock or the ilock, but not more than one type at a time. If we lock
533  * more than one at a time, lockdep will report false positives saying we have
534  * violated locking orders.  The iolock must be double-locked separately since
535  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
536  * SHARED.
537  */
538 void
539 xfs_lock_two_inodes(
540 	struct xfs_inode	*ip0,
541 	uint			ip0_mode,
542 	struct xfs_inode	*ip1,
543 	uint			ip1_mode)
544 {
545 	struct xfs_inode	*temp;
546 	uint			mode_temp;
547 	int			attempts = 0;
548 	struct xfs_log_item	*lp;
549 
550 	ASSERT(hweight32(ip0_mode) == 1);
551 	ASSERT(hweight32(ip1_mode) == 1);
552 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
553 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
554 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
555 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
557 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 
563 	ASSERT(ip0->i_ino != ip1->i_ino);
564 
565 	if (ip0->i_ino > ip1->i_ino) {
566 		temp = ip0;
567 		ip0 = ip1;
568 		ip1 = temp;
569 		mode_temp = ip0_mode;
570 		ip0_mode = ip1_mode;
571 		ip1_mode = mode_temp;
572 	}
573 
574  again:
575 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576 
577 	/*
578 	 * If the first lock we have locked is in the AIL, we must TRY to get
579 	 * the second lock. If we can't get it, we must release the first one
580 	 * and try again.
581 	 */
582 	lp = &ip0->i_itemp->ili_item;
583 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 			xfs_iunlock(ip0, ip0_mode);
586 			if ((++attempts % 5) == 0)
587 				delay(1); /* Don't just spin the CPU */
588 			goto again;
589 		}
590 	} else {
591 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 	}
593 }
594 
595 void
596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wq_entry);
609 }
610 
611 STATIC uint
612 _xfs_dic2xflags(
613 	uint16_t		di_flags,
614 	uint64_t		di_flags2,
615 	bool			has_attr)
616 {
617 	uint			flags = 0;
618 
619 	if (di_flags & XFS_DIFLAG_ANY) {
620 		if (di_flags & XFS_DIFLAG_REALTIME)
621 			flags |= FS_XFLAG_REALTIME;
622 		if (di_flags & XFS_DIFLAG_PREALLOC)
623 			flags |= FS_XFLAG_PREALLOC;
624 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 			flags |= FS_XFLAG_IMMUTABLE;
626 		if (di_flags & XFS_DIFLAG_APPEND)
627 			flags |= FS_XFLAG_APPEND;
628 		if (di_flags & XFS_DIFLAG_SYNC)
629 			flags |= FS_XFLAG_SYNC;
630 		if (di_flags & XFS_DIFLAG_NOATIME)
631 			flags |= FS_XFLAG_NOATIME;
632 		if (di_flags & XFS_DIFLAG_NODUMP)
633 			flags |= FS_XFLAG_NODUMP;
634 		if (di_flags & XFS_DIFLAG_RTINHERIT)
635 			flags |= FS_XFLAG_RTINHERIT;
636 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 			flags |= FS_XFLAG_PROJINHERIT;
638 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 			flags |= FS_XFLAG_NOSYMLINKS;
640 		if (di_flags & XFS_DIFLAG_EXTSIZE)
641 			flags |= FS_XFLAG_EXTSIZE;
642 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 			flags |= FS_XFLAG_EXTSZINHERIT;
644 		if (di_flags & XFS_DIFLAG_NODEFRAG)
645 			flags |= FS_XFLAG_NODEFRAG;
646 		if (di_flags & XFS_DIFLAG_FILESTREAM)
647 			flags |= FS_XFLAG_FILESTREAM;
648 	}
649 
650 	if (di_flags2 & XFS_DIFLAG2_ANY) {
651 		if (di_flags2 & XFS_DIFLAG2_DAX)
652 			flags |= FS_XFLAG_DAX;
653 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
654 			flags |= FS_XFLAG_COWEXTSIZE;
655 	}
656 
657 	if (has_attr)
658 		flags |= FS_XFLAG_HASATTR;
659 
660 	return flags;
661 }
662 
663 uint
664 xfs_ip2xflags(
665 	struct xfs_inode	*ip)
666 {
667 	struct xfs_icdinode	*dic = &ip->i_d;
668 
669 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670 }
671 
672 /*
673  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674  * is allowed, otherwise it has to be an exact match. If a CI match is found,
675  * ci_name->name will point to a the actual name (caller must free) or
676  * will be set to NULL if an exact match is found.
677  */
678 int
679 xfs_lookup(
680 	xfs_inode_t		*dp,
681 	struct xfs_name		*name,
682 	xfs_inode_t		**ipp,
683 	struct xfs_name		*ci_name)
684 {
685 	xfs_ino_t		inum;
686 	int			error;
687 
688 	trace_xfs_lookup(dp, name);
689 
690 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
691 		return -EIO;
692 
693 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 	if (error)
695 		goto out_unlock;
696 
697 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 	if (error)
699 		goto out_free_name;
700 
701 	return 0;
702 
703 out_free_name:
704 	if (ci_name)
705 		kmem_free(ci_name->name);
706 out_unlock:
707 	*ipp = NULL;
708 	return error;
709 }
710 
711 /*
712  * Allocate an inode on disk and return a copy of its in-core version.
713  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
714  * appropriately within the inode.  The uid and gid for the inode are
715  * set according to the contents of the given cred structure.
716  *
717  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718  * has a free inode available, call xfs_iget() to obtain the in-core
719  * version of the allocated inode.  Finally, fill in the inode and
720  * log its initial contents.  In this case, ialloc_context would be
721  * set to NULL.
722  *
723  * If xfs_dialloc() does not have an available inode, it will replenish
724  * its supply by doing an allocation. Since we can only do one
725  * allocation within a transaction without deadlocks, we must commit
726  * the current transaction before returning the inode itself.
727  * In this case, therefore, we will set ialloc_context and return.
728  * The caller should then commit the current transaction, start a new
729  * transaction, and call xfs_ialloc() again to actually get the inode.
730  *
731  * To ensure that some other process does not grab the inode that
732  * was allocated during the first call to xfs_ialloc(), this routine
733  * also returns the [locked] bp pointing to the head of the freelist
734  * as ialloc_context.  The caller should hold this buffer across
735  * the commit and pass it back into this routine on the second call.
736  *
737  * If we are allocating quota inodes, we do not have a parent inode
738  * to attach to or associate with (i.e. pip == NULL) because they
739  * are not linked into the directory structure - they are attached
740  * directly to the superblock - and so have no parent.
741  */
742 static int
743 xfs_ialloc(
744 	xfs_trans_t	*tp,
745 	xfs_inode_t	*pip,
746 	umode_t		mode,
747 	xfs_nlink_t	nlink,
748 	dev_t		rdev,
749 	prid_t		prid,
750 	xfs_buf_t	**ialloc_context,
751 	xfs_inode_t	**ipp)
752 {
753 	struct xfs_mount *mp = tp->t_mountp;
754 	xfs_ino_t	ino;
755 	xfs_inode_t	*ip;
756 	uint		flags;
757 	int		error;
758 	struct timespec64 tv;
759 	struct inode	*inode;
760 
761 	/*
762 	 * Call the space management code to pick
763 	 * the on-disk inode to be allocated.
764 	 */
765 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
766 			    ialloc_context, &ino);
767 	if (error)
768 		return error;
769 	if (*ialloc_context || ino == NULLFSINO) {
770 		*ipp = NULL;
771 		return 0;
772 	}
773 	ASSERT(*ialloc_context == NULL);
774 
775 	/*
776 	 * Protect against obviously corrupt allocation btree records. Later
777 	 * xfs_iget checks will catch re-allocation of other active in-memory
778 	 * and on-disk inodes. If we don't catch reallocating the parent inode
779 	 * here we will deadlock in xfs_iget() so we have to do these checks
780 	 * first.
781 	 */
782 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
783 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
784 		return -EFSCORRUPTED;
785 	}
786 
787 	/*
788 	 * Get the in-core inode with the lock held exclusively.
789 	 * This is because we're setting fields here we need
790 	 * to prevent others from looking at until we're done.
791 	 */
792 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
793 			 XFS_ILOCK_EXCL, &ip);
794 	if (error)
795 		return error;
796 	ASSERT(ip != NULL);
797 	inode = VFS_I(ip);
798 
799 	/*
800 	 * We always convert v1 inodes to v2 now - we only support filesystems
801 	 * with >= v2 inode capability, so there is no reason for ever leaving
802 	 * an inode in v1 format.
803 	 */
804 	if (ip->i_d.di_version == 1)
805 		ip->i_d.di_version = 2;
806 
807 	inode->i_mode = mode;
808 	set_nlink(inode, nlink);
809 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
810 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
811 	inode->i_rdev = rdev;
812 	xfs_set_projid(ip, prid);
813 
814 	if (pip && XFS_INHERIT_GID(pip)) {
815 		ip->i_d.di_gid = pip->i_d.di_gid;
816 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
817 			inode->i_mode |= S_ISGID;
818 	}
819 
820 	/*
821 	 * If the group ID of the new file does not match the effective group
822 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
823 	 * (and only if the irix_sgid_inherit compatibility variable is set).
824 	 */
825 	if ((irix_sgid_inherit) &&
826 	    (inode->i_mode & S_ISGID) &&
827 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
828 		inode->i_mode &= ~S_ISGID;
829 
830 	ip->i_d.di_size = 0;
831 	ip->i_d.di_nextents = 0;
832 	ASSERT(ip->i_d.di_nblocks == 0);
833 
834 	tv = current_time(inode);
835 	inode->i_mtime = tv;
836 	inode->i_atime = tv;
837 	inode->i_ctime = tv;
838 
839 	ip->i_d.di_extsize = 0;
840 	ip->i_d.di_dmevmask = 0;
841 	ip->i_d.di_dmstate = 0;
842 	ip->i_d.di_flags = 0;
843 
844 	if (ip->i_d.di_version == 3) {
845 		inode_set_iversion(inode, 1);
846 		ip->i_d.di_flags2 = 0;
847 		ip->i_d.di_cowextsize = 0;
848 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
849 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
850 	}
851 
852 
853 	flags = XFS_ILOG_CORE;
854 	switch (mode & S_IFMT) {
855 	case S_IFIFO:
856 	case S_IFCHR:
857 	case S_IFBLK:
858 	case S_IFSOCK:
859 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
860 		ip->i_df.if_flags = 0;
861 		flags |= XFS_ILOG_DEV;
862 		break;
863 	case S_IFREG:
864 	case S_IFDIR:
865 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
866 			uint		di_flags = 0;
867 
868 			if (S_ISDIR(mode)) {
869 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 					di_flags |= XFS_DIFLAG_RTINHERIT;
871 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
873 					ip->i_d.di_extsize = pip->i_d.di_extsize;
874 				}
875 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
876 					di_flags |= XFS_DIFLAG_PROJINHERIT;
877 			} else if (S_ISREG(mode)) {
878 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
879 					di_flags |= XFS_DIFLAG_REALTIME;
880 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 					di_flags |= XFS_DIFLAG_EXTSIZE;
882 					ip->i_d.di_extsize = pip->i_d.di_extsize;
883 				}
884 			}
885 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
886 			    xfs_inherit_noatime)
887 				di_flags |= XFS_DIFLAG_NOATIME;
888 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
889 			    xfs_inherit_nodump)
890 				di_flags |= XFS_DIFLAG_NODUMP;
891 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
892 			    xfs_inherit_sync)
893 				di_flags |= XFS_DIFLAG_SYNC;
894 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
895 			    xfs_inherit_nosymlinks)
896 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
897 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
898 			    xfs_inherit_nodefrag)
899 				di_flags |= XFS_DIFLAG_NODEFRAG;
900 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
901 				di_flags |= XFS_DIFLAG_FILESTREAM;
902 
903 			ip->i_d.di_flags |= di_flags;
904 		}
905 		if (pip &&
906 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
907 		    pip->i_d.di_version == 3 &&
908 		    ip->i_d.di_version == 3) {
909 			uint64_t	di_flags2 = 0;
910 
911 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
912 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
913 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
914 			}
915 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
916 				di_flags2 |= XFS_DIFLAG2_DAX;
917 
918 			ip->i_d.di_flags2 |= di_flags2;
919 		}
920 		/* FALLTHROUGH */
921 	case S_IFLNK:
922 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
923 		ip->i_df.if_flags = XFS_IFEXTENTS;
924 		ip->i_df.if_bytes = 0;
925 		ip->i_df.if_u1.if_root = NULL;
926 		break;
927 	default:
928 		ASSERT(0);
929 	}
930 	/*
931 	 * Attribute fork settings for new inode.
932 	 */
933 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
934 	ip->i_d.di_anextents = 0;
935 
936 	/*
937 	 * Log the new values stuffed into the inode.
938 	 */
939 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
940 	xfs_trans_log_inode(tp, ip, flags);
941 
942 	/* now that we have an i_mode we can setup the inode structure */
943 	xfs_setup_inode(ip);
944 
945 	*ipp = ip;
946 	return 0;
947 }
948 
949 /*
950  * Allocates a new inode from disk and return a pointer to the
951  * incore copy. This routine will internally commit the current
952  * transaction and allocate a new one if the Space Manager needed
953  * to do an allocation to replenish the inode free-list.
954  *
955  * This routine is designed to be called from xfs_create and
956  * xfs_create_dir.
957  *
958  */
959 int
960 xfs_dir_ialloc(
961 	xfs_trans_t	**tpp,		/* input: current transaction;
962 					   output: may be a new transaction. */
963 	xfs_inode_t	*dp,		/* directory within whose allocate
964 					   the inode. */
965 	umode_t		mode,
966 	xfs_nlink_t	nlink,
967 	dev_t		rdev,
968 	prid_t		prid,		/* project id */
969 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
970 					   locked. */
971 {
972 	xfs_trans_t	*tp;
973 	xfs_inode_t	*ip;
974 	xfs_buf_t	*ialloc_context = NULL;
975 	int		code;
976 	void		*dqinfo;
977 	uint		tflags;
978 
979 	tp = *tpp;
980 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981 
982 	/*
983 	 * xfs_ialloc will return a pointer to an incore inode if
984 	 * the Space Manager has an available inode on the free
985 	 * list. Otherwise, it will do an allocation and replenish
986 	 * the freelist.  Since we can only do one allocation per
987 	 * transaction without deadlocks, we will need to commit the
988 	 * current transaction and start a new one.  We will then
989 	 * need to call xfs_ialloc again to get the inode.
990 	 *
991 	 * If xfs_ialloc did an allocation to replenish the freelist,
992 	 * it returns the bp containing the head of the freelist as
993 	 * ialloc_context. We will hold a lock on it across the
994 	 * transaction commit so that no other process can steal
995 	 * the inode(s) that we've just allocated.
996 	 */
997 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
998 			&ip);
999 
1000 	/*
1001 	 * Return an error if we were unable to allocate a new inode.
1002 	 * This should only happen if we run out of space on disk or
1003 	 * encounter a disk error.
1004 	 */
1005 	if (code) {
1006 		*ipp = NULL;
1007 		return code;
1008 	}
1009 	if (!ialloc_context && !ip) {
1010 		*ipp = NULL;
1011 		return -ENOSPC;
1012 	}
1013 
1014 	/*
1015 	 * If the AGI buffer is non-NULL, then we were unable to get an
1016 	 * inode in one operation.  We need to commit the current
1017 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1018 	 * to succeed the second time.
1019 	 */
1020 	if (ialloc_context) {
1021 		/*
1022 		 * Normally, xfs_trans_commit releases all the locks.
1023 		 * We call bhold to hang on to the ialloc_context across
1024 		 * the commit.  Holding this buffer prevents any other
1025 		 * processes from doing any allocations in this
1026 		 * allocation group.
1027 		 */
1028 		xfs_trans_bhold(tp, ialloc_context);
1029 
1030 		/*
1031 		 * We want the quota changes to be associated with the next
1032 		 * transaction, NOT this one. So, detach the dqinfo from this
1033 		 * and attach it to the next transaction.
1034 		 */
1035 		dqinfo = NULL;
1036 		tflags = 0;
1037 		if (tp->t_dqinfo) {
1038 			dqinfo = (void *)tp->t_dqinfo;
1039 			tp->t_dqinfo = NULL;
1040 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 		}
1043 
1044 		code = xfs_trans_roll(&tp);
1045 
1046 		/*
1047 		 * Re-attach the quota info that we detached from prev trx.
1048 		 */
1049 		if (dqinfo) {
1050 			tp->t_dqinfo = dqinfo;
1051 			tp->t_flags |= tflags;
1052 		}
1053 
1054 		if (code) {
1055 			xfs_buf_relse(ialloc_context);
1056 			*tpp = tp;
1057 			*ipp = NULL;
1058 			return code;
1059 		}
1060 		xfs_trans_bjoin(tp, ialloc_context);
1061 
1062 		/*
1063 		 * Call ialloc again. Since we've locked out all
1064 		 * other allocations in this allocation group,
1065 		 * this call should always succeed.
1066 		 */
1067 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1068 				  &ialloc_context, &ip);
1069 
1070 		/*
1071 		 * If we get an error at this point, return to the caller
1072 		 * so that the current transaction can be aborted.
1073 		 */
1074 		if (code) {
1075 			*tpp = tp;
1076 			*ipp = NULL;
1077 			return code;
1078 		}
1079 		ASSERT(!ialloc_context && ip);
1080 
1081 	}
1082 
1083 	*ipp = ip;
1084 	*tpp = tp;
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * Decrement the link count on an inode & log the change.  If this causes the
1091  * link count to go to zero, move the inode to AGI unlinked list so that it can
1092  * be freed when the last active reference goes away via xfs_inactive().
1093  */
1094 static int			/* error */
1095 xfs_droplink(
1096 	xfs_trans_t *tp,
1097 	xfs_inode_t *ip)
1098 {
1099 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100 
1101 	drop_nlink(VFS_I(ip));
1102 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103 
1104 	if (VFS_I(ip)->i_nlink)
1105 		return 0;
1106 
1107 	return xfs_iunlink(tp, ip);
1108 }
1109 
1110 /*
1111  * Increment the link count on an inode & log the change.
1112  */
1113 static void
1114 xfs_bumplink(
1115 	xfs_trans_t *tp,
1116 	xfs_inode_t *ip)
1117 {
1118 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119 
1120 	ASSERT(ip->i_d.di_version > 1);
1121 	inc_nlink(VFS_I(ip));
1122 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1123 }
1124 
1125 int
1126 xfs_create(
1127 	xfs_inode_t		*dp,
1128 	struct xfs_name		*name,
1129 	umode_t			mode,
1130 	dev_t			rdev,
1131 	xfs_inode_t		**ipp)
1132 {
1133 	int			is_dir = S_ISDIR(mode);
1134 	struct xfs_mount	*mp = dp->i_mount;
1135 	struct xfs_inode	*ip = NULL;
1136 	struct xfs_trans	*tp = NULL;
1137 	int			error;
1138 	bool                    unlock_dp_on_error = false;
1139 	prid_t			prid;
1140 	struct xfs_dquot	*udqp = NULL;
1141 	struct xfs_dquot	*gdqp = NULL;
1142 	struct xfs_dquot	*pdqp = NULL;
1143 	struct xfs_trans_res	*tres;
1144 	uint			resblks;
1145 
1146 	trace_xfs_create(dp, name);
1147 
1148 	if (XFS_FORCED_SHUTDOWN(mp))
1149 		return -EIO;
1150 
1151 	prid = xfs_get_initial_prid(dp);
1152 
1153 	/*
1154 	 * Make sure that we have allocated dquot(s) on disk.
1155 	 */
1156 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157 					xfs_kgid_to_gid(current_fsgid()), prid,
1158 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159 					&udqp, &gdqp, &pdqp);
1160 	if (error)
1161 		return error;
1162 
1163 	if (is_dir) {
1164 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1165 		tres = &M_RES(mp)->tr_mkdir;
1166 	} else {
1167 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1168 		tres = &M_RES(mp)->tr_create;
1169 	}
1170 
1171 	/*
1172 	 * Initially assume that the file does not exist and
1173 	 * reserve the resources for that case.  If that is not
1174 	 * the case we'll drop the one we have and get a more
1175 	 * appropriate transaction later.
1176 	 */
1177 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1178 	if (error == -ENOSPC) {
1179 		/* flush outstanding delalloc blocks and retry */
1180 		xfs_flush_inodes(mp);
1181 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1182 	}
1183 	if (error)
1184 		goto out_release_inode;
1185 
1186 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1187 	unlock_dp_on_error = true;
1188 
1189 	/*
1190 	 * Reserve disk quota and the inode.
1191 	 */
1192 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193 						pdqp, resblks, 1, 0);
1194 	if (error)
1195 		goto out_trans_cancel;
1196 
1197 	/*
1198 	 * A newly created regular or special file just has one directory
1199 	 * entry pointing to them, but a directory also the "." entry
1200 	 * pointing to itself.
1201 	 */
1202 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1203 	if (error)
1204 		goto out_trans_cancel;
1205 
1206 	/*
1207 	 * Now we join the directory inode to the transaction.  We do not do it
1208 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1209 	 * (and release all the locks).  An error from here on will result in
1210 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1211 	 * error path.
1212 	 */
1213 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1214 	unlock_dp_on_error = false;
1215 
1216 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1217 				   resblks ?
1218 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219 	if (error) {
1220 		ASSERT(error != -ENOSPC);
1221 		goto out_trans_cancel;
1222 	}
1223 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225 
1226 	if (is_dir) {
1227 		error = xfs_dir_init(tp, ip, dp);
1228 		if (error)
1229 			goto out_trans_cancel;
1230 
1231 		xfs_bumplink(tp, dp);
1232 	}
1233 
1234 	/*
1235 	 * If this is a synchronous mount, make sure that the
1236 	 * create transaction goes to disk before returning to
1237 	 * the user.
1238 	 */
1239 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240 		xfs_trans_set_sync(tp);
1241 
1242 	/*
1243 	 * Attach the dquot(s) to the inodes and modify them incore.
1244 	 * These ids of the inode couldn't have changed since the new
1245 	 * inode has been locked ever since it was created.
1246 	 */
1247 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248 
1249 	error = xfs_trans_commit(tp);
1250 	if (error)
1251 		goto out_release_inode;
1252 
1253 	xfs_qm_dqrele(udqp);
1254 	xfs_qm_dqrele(gdqp);
1255 	xfs_qm_dqrele(pdqp);
1256 
1257 	*ipp = ip;
1258 	return 0;
1259 
1260  out_trans_cancel:
1261 	xfs_trans_cancel(tp);
1262  out_release_inode:
1263 	/*
1264 	 * Wait until after the current transaction is aborted to finish the
1265 	 * setup of the inode and release the inode.  This prevents recursive
1266 	 * transactions and deadlocks from xfs_inactive.
1267 	 */
1268 	if (ip) {
1269 		xfs_finish_inode_setup(ip);
1270 		xfs_irele(ip);
1271 	}
1272 
1273 	xfs_qm_dqrele(udqp);
1274 	xfs_qm_dqrele(gdqp);
1275 	xfs_qm_dqrele(pdqp);
1276 
1277 	if (unlock_dp_on_error)
1278 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1279 	return error;
1280 }
1281 
1282 int
1283 xfs_create_tmpfile(
1284 	struct xfs_inode	*dp,
1285 	umode_t			mode,
1286 	struct xfs_inode	**ipp)
1287 {
1288 	struct xfs_mount	*mp = dp->i_mount;
1289 	struct xfs_inode	*ip = NULL;
1290 	struct xfs_trans	*tp = NULL;
1291 	int			error;
1292 	prid_t                  prid;
1293 	struct xfs_dquot	*udqp = NULL;
1294 	struct xfs_dquot	*gdqp = NULL;
1295 	struct xfs_dquot	*pdqp = NULL;
1296 	struct xfs_trans_res	*tres;
1297 	uint			resblks;
1298 
1299 	if (XFS_FORCED_SHUTDOWN(mp))
1300 		return -EIO;
1301 
1302 	prid = xfs_get_initial_prid(dp);
1303 
1304 	/*
1305 	 * Make sure that we have allocated dquot(s) on disk.
1306 	 */
1307 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308 				xfs_kgid_to_gid(current_fsgid()), prid,
1309 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310 				&udqp, &gdqp, &pdqp);
1311 	if (error)
1312 		return error;
1313 
1314 	resblks = XFS_IALLOC_SPACE_RES(mp);
1315 	tres = &M_RES(mp)->tr_create_tmpfile;
1316 
1317 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1318 	if (error)
1319 		goto out_release_inode;
1320 
1321 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322 						pdqp, resblks, 1, 0);
1323 	if (error)
1324 		goto out_trans_cancel;
1325 
1326 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1327 	if (error)
1328 		goto out_trans_cancel;
1329 
1330 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1331 		xfs_trans_set_sync(tp);
1332 
1333 	/*
1334 	 * Attach the dquot(s) to the inodes and modify them incore.
1335 	 * These ids of the inode couldn't have changed since the new
1336 	 * inode has been locked ever since it was created.
1337 	 */
1338 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339 
1340 	error = xfs_iunlink(tp, ip);
1341 	if (error)
1342 		goto out_trans_cancel;
1343 
1344 	error = xfs_trans_commit(tp);
1345 	if (error)
1346 		goto out_release_inode;
1347 
1348 	xfs_qm_dqrele(udqp);
1349 	xfs_qm_dqrele(gdqp);
1350 	xfs_qm_dqrele(pdqp);
1351 
1352 	*ipp = ip;
1353 	return 0;
1354 
1355  out_trans_cancel:
1356 	xfs_trans_cancel(tp);
1357  out_release_inode:
1358 	/*
1359 	 * Wait until after the current transaction is aborted to finish the
1360 	 * setup of the inode and release the inode.  This prevents recursive
1361 	 * transactions and deadlocks from xfs_inactive.
1362 	 */
1363 	if (ip) {
1364 		xfs_finish_inode_setup(ip);
1365 		xfs_irele(ip);
1366 	}
1367 
1368 	xfs_qm_dqrele(udqp);
1369 	xfs_qm_dqrele(gdqp);
1370 	xfs_qm_dqrele(pdqp);
1371 
1372 	return error;
1373 }
1374 
1375 int
1376 xfs_link(
1377 	xfs_inode_t		*tdp,
1378 	xfs_inode_t		*sip,
1379 	struct xfs_name		*target_name)
1380 {
1381 	xfs_mount_t		*mp = tdp->i_mount;
1382 	xfs_trans_t		*tp;
1383 	int			error;
1384 	int			resblks;
1385 
1386 	trace_xfs_link(tdp, target_name);
1387 
1388 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1389 
1390 	if (XFS_FORCED_SHUTDOWN(mp))
1391 		return -EIO;
1392 
1393 	error = xfs_qm_dqattach(sip);
1394 	if (error)
1395 		goto std_return;
1396 
1397 	error = xfs_qm_dqattach(tdp);
1398 	if (error)
1399 		goto std_return;
1400 
1401 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1402 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1403 	if (error == -ENOSPC) {
1404 		resblks = 0;
1405 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1406 	}
1407 	if (error)
1408 		goto std_return;
1409 
1410 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1411 
1412 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1413 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1414 
1415 	/*
1416 	 * If we are using project inheritance, we only allow hard link
1417 	 * creation in our tree when the project IDs are the same; else
1418 	 * the tree quota mechanism could be circumvented.
1419 	 */
1420 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1422 		error = -EXDEV;
1423 		goto error_return;
1424 	}
1425 
1426 	if (!resblks) {
1427 		error = xfs_dir_canenter(tp, tdp, target_name);
1428 		if (error)
1429 			goto error_return;
1430 	}
1431 
1432 	/*
1433 	 * Handle initial link state of O_TMPFILE inode
1434 	 */
1435 	if (VFS_I(sip)->i_nlink == 0) {
1436 		error = xfs_iunlink_remove(tp, sip);
1437 		if (error)
1438 			goto error_return;
1439 	}
1440 
1441 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1442 				   resblks);
1443 	if (error)
1444 		goto error_return;
1445 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447 
1448 	xfs_bumplink(tp, sip);
1449 
1450 	/*
1451 	 * If this is a synchronous mount, make sure that the
1452 	 * link transaction goes to disk before returning to
1453 	 * the user.
1454 	 */
1455 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1456 		xfs_trans_set_sync(tp);
1457 
1458 	return xfs_trans_commit(tp);
1459 
1460  error_return:
1461 	xfs_trans_cancel(tp);
1462  std_return:
1463 	return error;
1464 }
1465 
1466 /* Clear the reflink flag and the cowblocks tag if possible. */
1467 static void
1468 xfs_itruncate_clear_reflink_flags(
1469 	struct xfs_inode	*ip)
1470 {
1471 	struct xfs_ifork	*dfork;
1472 	struct xfs_ifork	*cfork;
1473 
1474 	if (!xfs_is_reflink_inode(ip))
1475 		return;
1476 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480 	if (cfork->if_bytes == 0)
1481 		xfs_inode_clear_cowblocks_tag(ip);
1482 }
1483 
1484 /*
1485  * Free up the underlying blocks past new_size.  The new size must be smaller
1486  * than the current size.  This routine can be used both for the attribute and
1487  * data fork, and does not modify the inode size, which is left to the caller.
1488  *
1489  * The transaction passed to this routine must have made a permanent log
1490  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1491  * given transaction and start new ones, so make sure everything involved in
1492  * the transaction is tidy before calling here.  Some transaction will be
1493  * returned to the caller to be committed.  The incoming transaction must
1494  * already include the inode, and both inode locks must be held exclusively.
1495  * The inode must also be "held" within the transaction.  On return the inode
1496  * will be "held" within the returned transaction.  This routine does NOT
1497  * require any disk space to be reserved for it within the transaction.
1498  *
1499  * If we get an error, we must return with the inode locked and linked into the
1500  * current transaction. This keeps things simple for the higher level code,
1501  * because it always knows that the inode is locked and held in the transaction
1502  * that returns to it whether errors occur or not.  We don't mark the inode
1503  * dirty on error so that transactions can be easily aborted if possible.
1504  */
1505 int
1506 xfs_itruncate_extents_flags(
1507 	struct xfs_trans	**tpp,
1508 	struct xfs_inode	*ip,
1509 	int			whichfork,
1510 	xfs_fsize_t		new_size,
1511 	int			flags)
1512 {
1513 	struct xfs_mount	*mp = ip->i_mount;
1514 	struct xfs_trans	*tp = *tpp;
1515 	xfs_fileoff_t		first_unmap_block;
1516 	xfs_fileoff_t		last_block;
1517 	xfs_filblks_t		unmap_len;
1518 	int			error = 0;
1519 	int			done = 0;
1520 
1521 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1524 	ASSERT(new_size <= XFS_ISIZE(ip));
1525 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1526 	ASSERT(ip->i_itemp != NULL);
1527 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1528 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1529 
1530 	trace_xfs_itruncate_extents_start(ip, new_size);
1531 
1532 	flags |= xfs_bmapi_aflag(whichfork);
1533 
1534 	/*
1535 	 * Since it is possible for space to become allocated beyond
1536 	 * the end of the file (in a crash where the space is allocated
1537 	 * but the inode size is not yet updated), simply remove any
1538 	 * blocks which show up between the new EOF and the maximum
1539 	 * possible file size.  If the first block to be removed is
1540 	 * beyond the maximum file size (ie it is the same as last_block),
1541 	 * then there is nothing to do.
1542 	 */
1543 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1544 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1545 	if (first_unmap_block == last_block)
1546 		return 0;
1547 
1548 	ASSERT(first_unmap_block < last_block);
1549 	unmap_len = last_block - first_unmap_block + 1;
1550 	while (!done) {
1551 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1552 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1553 				    XFS_ITRUNC_MAX_EXTENTS, &done);
1554 		if (error)
1555 			goto out;
1556 
1557 		/*
1558 		 * Duplicate the transaction that has the permanent
1559 		 * reservation and commit the old transaction.
1560 		 */
1561 		error = xfs_defer_finish(&tp);
1562 		if (error)
1563 			goto out;
1564 
1565 		error = xfs_trans_roll_inode(&tp, ip);
1566 		if (error)
1567 			goto out;
1568 	}
1569 
1570 	if (whichfork == XFS_DATA_FORK) {
1571 		/* Remove all pending CoW reservations. */
1572 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573 				first_unmap_block, last_block, true);
1574 		if (error)
1575 			goto out;
1576 
1577 		xfs_itruncate_clear_reflink_flags(ip);
1578 	}
1579 
1580 	/*
1581 	 * Always re-log the inode so that our permanent transaction can keep
1582 	 * on rolling it forward in the log.
1583 	 */
1584 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585 
1586 	trace_xfs_itruncate_extents_end(ip, new_size);
1587 
1588 out:
1589 	*tpp = tp;
1590 	return error;
1591 }
1592 
1593 int
1594 xfs_release(
1595 	xfs_inode_t	*ip)
1596 {
1597 	xfs_mount_t	*mp = ip->i_mount;
1598 	int		error;
1599 
1600 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1601 		return 0;
1602 
1603 	/* If this is a read-only mount, don't do this (would generate I/O) */
1604 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1605 		return 0;
1606 
1607 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1608 		int truncated;
1609 
1610 		/*
1611 		 * If we previously truncated this file and removed old data
1612 		 * in the process, we want to initiate "early" writeout on
1613 		 * the last close.  This is an attempt to combat the notorious
1614 		 * NULL files problem which is particularly noticeable from a
1615 		 * truncate down, buffered (re-)write (delalloc), followed by
1616 		 * a crash.  What we are effectively doing here is
1617 		 * significantly reducing the time window where we'd otherwise
1618 		 * be exposed to that problem.
1619 		 */
1620 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621 		if (truncated) {
1622 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1623 			if (ip->i_delayed_blks > 0) {
1624 				error = filemap_flush(VFS_I(ip)->i_mapping);
1625 				if (error)
1626 					return error;
1627 			}
1628 		}
1629 	}
1630 
1631 	if (VFS_I(ip)->i_nlink == 0)
1632 		return 0;
1633 
1634 	if (xfs_can_free_eofblocks(ip, false)) {
1635 
1636 		/*
1637 		 * Check if the inode is being opened, written and closed
1638 		 * frequently and we have delayed allocation blocks outstanding
1639 		 * (e.g. streaming writes from the NFS server), truncating the
1640 		 * blocks past EOF will cause fragmentation to occur.
1641 		 *
1642 		 * In this case don't do the truncation, but we have to be
1643 		 * careful how we detect this case. Blocks beyond EOF show up as
1644 		 * i_delayed_blks even when the inode is clean, so we need to
1645 		 * truncate them away first before checking for a dirty release.
1646 		 * Hence on the first dirty close we will still remove the
1647 		 * speculative allocation, but after that we will leave it in
1648 		 * place.
1649 		 */
1650 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 			return 0;
1652 		/*
1653 		 * If we can't get the iolock just skip truncating the blocks
1654 		 * past EOF because we could deadlock with the mmap_sem
1655 		 * otherwise. We'll get another chance to drop them once the
1656 		 * last reference to the inode is dropped, so we'll never leak
1657 		 * blocks permanently.
1658 		 */
1659 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660 			error = xfs_free_eofblocks(ip);
1661 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662 			if (error)
1663 				return error;
1664 		}
1665 
1666 		/* delalloc blocks after truncation means it really is dirty */
1667 		if (ip->i_delayed_blks)
1668 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669 	}
1670 	return 0;
1671 }
1672 
1673 /*
1674  * xfs_inactive_truncate
1675  *
1676  * Called to perform a truncate when an inode becomes unlinked.
1677  */
1678 STATIC int
1679 xfs_inactive_truncate(
1680 	struct xfs_inode *ip)
1681 {
1682 	struct xfs_mount	*mp = ip->i_mount;
1683 	struct xfs_trans	*tp;
1684 	int			error;
1685 
1686 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1687 	if (error) {
1688 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1689 		return error;
1690 	}
1691 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1692 	xfs_trans_ijoin(tp, ip, 0);
1693 
1694 	/*
1695 	 * Log the inode size first to prevent stale data exposure in the event
1696 	 * of a system crash before the truncate completes. See the related
1697 	 * comment in xfs_vn_setattr_size() for details.
1698 	 */
1699 	ip->i_d.di_size = 0;
1700 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701 
1702 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703 	if (error)
1704 		goto error_trans_cancel;
1705 
1706 	ASSERT(ip->i_d.di_nextents == 0);
1707 
1708 	error = xfs_trans_commit(tp);
1709 	if (error)
1710 		goto error_unlock;
1711 
1712 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 	return 0;
1714 
1715 error_trans_cancel:
1716 	xfs_trans_cancel(tp);
1717 error_unlock:
1718 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719 	return error;
1720 }
1721 
1722 /*
1723  * xfs_inactive_ifree()
1724  *
1725  * Perform the inode free when an inode is unlinked.
1726  */
1727 STATIC int
1728 xfs_inactive_ifree(
1729 	struct xfs_inode *ip)
1730 {
1731 	struct xfs_mount	*mp = ip->i_mount;
1732 	struct xfs_trans	*tp;
1733 	int			error;
1734 
1735 	/*
1736 	 * We try to use a per-AG reservation for any block needed by the finobt
1737 	 * tree, but as the finobt feature predates the per-AG reservation
1738 	 * support a degraded file system might not have enough space for the
1739 	 * reservation at mount time.  In that case try to dip into the reserved
1740 	 * pool and pray.
1741 	 *
1742 	 * Send a warning if the reservation does happen to fail, as the inode
1743 	 * now remains allocated and sits on the unlinked list until the fs is
1744 	 * repaired.
1745 	 */
1746 	if (unlikely(mp->m_finobt_nores)) {
1747 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749 				&tp);
1750 	} else {
1751 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752 	}
1753 	if (error) {
1754 		if (error == -ENOSPC) {
1755 			xfs_warn_ratelimited(mp,
1756 			"Failed to remove inode(s) from unlinked list. "
1757 			"Please free space, unmount and run xfs_repair.");
1758 		} else {
1759 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760 		}
1761 		return error;
1762 	}
1763 
1764 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1765 	xfs_trans_ijoin(tp, ip, 0);
1766 
1767 	error = xfs_ifree(tp, ip);
1768 	if (error) {
1769 		/*
1770 		 * If we fail to free the inode, shut down.  The cancel
1771 		 * might do that, we need to make sure.  Otherwise the
1772 		 * inode might be lost for a long time or forever.
1773 		 */
1774 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1775 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776 				__func__, error);
1777 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778 		}
1779 		xfs_trans_cancel(tp);
1780 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 		return error;
1782 	}
1783 
1784 	/*
1785 	 * Credit the quota account(s). The inode is gone.
1786 	 */
1787 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788 
1789 	/*
1790 	 * Just ignore errors at this point.  There is nothing we can do except
1791 	 * to try to keep going. Make sure it's not a silent error.
1792 	 */
1793 	error = xfs_trans_commit(tp);
1794 	if (error)
1795 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796 			__func__, error);
1797 
1798 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799 	return 0;
1800 }
1801 
1802 /*
1803  * xfs_inactive
1804  *
1805  * This is called when the vnode reference count for the vnode
1806  * goes to zero.  If the file has been unlinked, then it must
1807  * now be truncated.  Also, we clear all of the read-ahead state
1808  * kept for the inode here since the file is now closed.
1809  */
1810 void
1811 xfs_inactive(
1812 	xfs_inode_t	*ip)
1813 {
1814 	struct xfs_mount	*mp;
1815 	int			error;
1816 	int			truncate = 0;
1817 
1818 	/*
1819 	 * If the inode is already free, then there can be nothing
1820 	 * to clean up here.
1821 	 */
1822 	if (VFS_I(ip)->i_mode == 0) {
1823 		ASSERT(ip->i_df.if_broot_bytes == 0);
1824 		return;
1825 	}
1826 
1827 	mp = ip->i_mount;
1828 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1829 
1830 	/* If this is a read-only mount, don't do this (would generate I/O) */
1831 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1832 		return;
1833 
1834 	/* Try to clean out the cow blocks if there are any. */
1835 	if (xfs_inode_has_cow_data(ip))
1836 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1837 
1838 	if (VFS_I(ip)->i_nlink != 0) {
1839 		/*
1840 		 * force is true because we are evicting an inode from the
1841 		 * cache. Post-eof blocks must be freed, lest we end up with
1842 		 * broken free space accounting.
1843 		 *
1844 		 * Note: don't bother with iolock here since lockdep complains
1845 		 * about acquiring it in reclaim context. We have the only
1846 		 * reference to the inode at this point anyways.
1847 		 */
1848 		if (xfs_can_free_eofblocks(ip, true))
1849 			xfs_free_eofblocks(ip);
1850 
1851 		return;
1852 	}
1853 
1854 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1855 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857 		truncate = 1;
1858 
1859 	error = xfs_qm_dqattach(ip);
1860 	if (error)
1861 		return;
1862 
1863 	if (S_ISLNK(VFS_I(ip)->i_mode))
1864 		error = xfs_inactive_symlink(ip);
1865 	else if (truncate)
1866 		error = xfs_inactive_truncate(ip);
1867 	if (error)
1868 		return;
1869 
1870 	/*
1871 	 * If there are attributes associated with the file then blow them away
1872 	 * now.  The code calls a routine that recursively deconstructs the
1873 	 * attribute fork. If also blows away the in-core attribute fork.
1874 	 */
1875 	if (XFS_IFORK_Q(ip)) {
1876 		error = xfs_attr_inactive(ip);
1877 		if (error)
1878 			return;
1879 	}
1880 
1881 	ASSERT(!ip->i_afp);
1882 	ASSERT(ip->i_d.di_anextents == 0);
1883 	ASSERT(ip->i_d.di_forkoff == 0);
1884 
1885 	/*
1886 	 * Free the inode.
1887 	 */
1888 	error = xfs_inactive_ifree(ip);
1889 	if (error)
1890 		return;
1891 
1892 	/*
1893 	 * Release the dquots held by inode, if any.
1894 	 */
1895 	xfs_qm_dqdetach(ip);
1896 }
1897 
1898 /*
1899  * In-Core Unlinked List Lookups
1900  * =============================
1901  *
1902  * Every inode is supposed to be reachable from some other piece of metadata
1903  * with the exception of the root directory.  Inodes with a connection to a
1904  * file descriptor but not linked from anywhere in the on-disk directory tree
1905  * are collectively known as unlinked inodes, though the filesystem itself
1906  * maintains links to these inodes so that on-disk metadata are consistent.
1907  *
1908  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1909  * header contains a number of buckets that point to an inode, and each inode
1910  * record has a pointer to the next inode in the hash chain.  This
1911  * singly-linked list causes scaling problems in the iunlink remove function
1912  * because we must walk that list to find the inode that points to the inode
1913  * being removed from the unlinked hash bucket list.
1914  *
1915  * What if we modelled the unlinked list as a collection of records capturing
1916  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1917  * have a fast way to look up unlinked list predecessors, which avoids the
1918  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1919  * rhashtable.
1920  *
1921  * Because this is a backref cache, we ignore operational failures since the
1922  * iunlink code can fall back to the slow bucket walk.  The only errors that
1923  * should bubble out are for obviously incorrect situations.
1924  *
1925  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926  * access or have otherwise provided for concurrency control.
1927  */
1928 
1929 /* Capture a "X.next_unlinked = Y" relationship. */
1930 struct xfs_iunlink {
1931 	struct rhash_head	iu_rhash_head;
1932 	xfs_agino_t		iu_agino;		/* X */
1933 	xfs_agino_t		iu_next_unlinked;	/* Y */
1934 };
1935 
1936 /* Unlinked list predecessor lookup hashtable construction */
1937 static int
1938 xfs_iunlink_obj_cmpfn(
1939 	struct rhashtable_compare_arg	*arg,
1940 	const void			*obj)
1941 {
1942 	const xfs_agino_t		*key = arg->key;
1943 	const struct xfs_iunlink	*iu = obj;
1944 
1945 	if (iu->iu_next_unlinked != *key)
1946 		return 1;
1947 	return 0;
1948 }
1949 
1950 static const struct rhashtable_params xfs_iunlink_hash_params = {
1951 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1952 	.key_len		= sizeof(xfs_agino_t),
1953 	.key_offset		= offsetof(struct xfs_iunlink,
1954 					   iu_next_unlinked),
1955 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1956 	.automatic_shrinking	= true,
1957 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1958 };
1959 
1960 /*
1961  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1962  * relation is found.
1963  */
1964 static xfs_agino_t
1965 xfs_iunlink_lookup_backref(
1966 	struct xfs_perag	*pag,
1967 	xfs_agino_t		agino)
1968 {
1969 	struct xfs_iunlink	*iu;
1970 
1971 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972 			xfs_iunlink_hash_params);
1973 	return iu ? iu->iu_agino : NULLAGINO;
1974 }
1975 
1976 /*
1977  * Take ownership of an iunlink cache entry and insert it into the hash table.
1978  * If successful, the entry will be owned by the cache; if not, it is freed.
1979  * Either way, the caller does not own @iu after this call.
1980  */
1981 static int
1982 xfs_iunlink_insert_backref(
1983 	struct xfs_perag	*pag,
1984 	struct xfs_iunlink	*iu)
1985 {
1986 	int			error;
1987 
1988 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1990 	/*
1991 	 * Fail loudly if there already was an entry because that's a sign of
1992 	 * corruption of in-memory data.  Also fail loudly if we see an error
1993 	 * code we didn't anticipate from the rhashtable code.  Currently we
1994 	 * only anticipate ENOMEM.
1995 	 */
1996 	if (error) {
1997 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998 		kmem_free(iu);
1999 	}
2000 	/*
2001 	 * Absorb any runtime errors that aren't a result of corruption because
2002 	 * this is a cache and we can always fall back to bucket list scanning.
2003 	 */
2004 	if (error != 0 && error != -EEXIST)
2005 		error = 0;
2006 	return error;
2007 }
2008 
2009 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2010 static int
2011 xfs_iunlink_add_backref(
2012 	struct xfs_perag	*pag,
2013 	xfs_agino_t		prev_agino,
2014 	xfs_agino_t		this_agino)
2015 {
2016 	struct xfs_iunlink	*iu;
2017 
2018 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019 		return 0;
2020 
2021 	iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS);
2022 	iu->iu_agino = prev_agino;
2023 	iu->iu_next_unlinked = this_agino;
2024 
2025 	return xfs_iunlink_insert_backref(pag, iu);
2026 }
2027 
2028 /*
2029  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2031  * wasn't any such entry then we don't bother.
2032  */
2033 static int
2034 xfs_iunlink_change_backref(
2035 	struct xfs_perag	*pag,
2036 	xfs_agino_t		agino,
2037 	xfs_agino_t		next_unlinked)
2038 {
2039 	struct xfs_iunlink	*iu;
2040 	int			error;
2041 
2042 	/* Look up the old entry; if there wasn't one then exit. */
2043 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044 			xfs_iunlink_hash_params);
2045 	if (!iu)
2046 		return 0;
2047 
2048 	/*
2049 	 * Remove the entry.  This shouldn't ever return an error, but if we
2050 	 * couldn't remove the old entry we don't want to add it again to the
2051 	 * hash table, and if the entry disappeared on us then someone's
2052 	 * violated the locking rules and we need to fail loudly.  Either way
2053 	 * we cannot remove the inode because internal state is or would have
2054 	 * been corrupt.
2055 	 */
2056 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2058 	if (error)
2059 		return error;
2060 
2061 	/* If there is no new next entry just free our item and return. */
2062 	if (next_unlinked == NULLAGINO) {
2063 		kmem_free(iu);
2064 		return 0;
2065 	}
2066 
2067 	/* Update the entry and re-add it to the hash table. */
2068 	iu->iu_next_unlinked = next_unlinked;
2069 	return xfs_iunlink_insert_backref(pag, iu);
2070 }
2071 
2072 /* Set up the in-core predecessor structures. */
2073 int
2074 xfs_iunlink_init(
2075 	struct xfs_perag	*pag)
2076 {
2077 	return rhashtable_init(&pag->pagi_unlinked_hash,
2078 			&xfs_iunlink_hash_params);
2079 }
2080 
2081 /* Free the in-core predecessor structures. */
2082 static void
2083 xfs_iunlink_free_item(
2084 	void			*ptr,
2085 	void			*arg)
2086 {
2087 	struct xfs_iunlink	*iu = ptr;
2088 	bool			*freed_anything = arg;
2089 
2090 	*freed_anything = true;
2091 	kmem_free(iu);
2092 }
2093 
2094 void
2095 xfs_iunlink_destroy(
2096 	struct xfs_perag	*pag)
2097 {
2098 	bool			freed_anything = false;
2099 
2100 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101 			xfs_iunlink_free_item, &freed_anything);
2102 
2103 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104 }
2105 
2106 /*
2107  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2108  * is responsible for validating the old value.
2109  */
2110 STATIC int
2111 xfs_iunlink_update_bucket(
2112 	struct xfs_trans	*tp,
2113 	xfs_agnumber_t		agno,
2114 	struct xfs_buf		*agibp,
2115 	unsigned int		bucket_index,
2116 	xfs_agino_t		new_agino)
2117 {
2118 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2119 	xfs_agino_t		old_value;
2120 	int			offset;
2121 
2122 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123 
2124 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126 			old_value, new_agino);
2127 
2128 	/*
2129 	 * We should never find the head of the list already set to the value
2130 	 * passed in because either we're adding or removing ourselves from the
2131 	 * head of the list.
2132 	 */
2133 	if (old_value == new_agino)
2134 		return -EFSCORRUPTED;
2135 
2136 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2138 			(sizeof(xfs_agino_t) * bucket_index);
2139 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140 	return 0;
2141 }
2142 
2143 /* Set an on-disk inode's next_unlinked pointer. */
2144 STATIC void
2145 xfs_iunlink_update_dinode(
2146 	struct xfs_trans	*tp,
2147 	xfs_agnumber_t		agno,
2148 	xfs_agino_t		agino,
2149 	struct xfs_buf		*ibp,
2150 	struct xfs_dinode	*dip,
2151 	struct xfs_imap		*imap,
2152 	xfs_agino_t		next_agino)
2153 {
2154 	struct xfs_mount	*mp = tp->t_mountp;
2155 	int			offset;
2156 
2157 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158 
2159 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2161 
2162 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2163 	offset = imap->im_boffset +
2164 			offsetof(struct xfs_dinode, di_next_unlinked);
2165 
2166 	/* need to recalc the inode CRC if appropriate */
2167 	xfs_dinode_calc_crc(mp, dip);
2168 	xfs_trans_inode_buf(tp, ibp);
2169 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170 	xfs_inobp_check(mp, ibp);
2171 }
2172 
2173 /* Set an in-core inode's unlinked pointer and return the old value. */
2174 STATIC int
2175 xfs_iunlink_update_inode(
2176 	struct xfs_trans	*tp,
2177 	struct xfs_inode	*ip,
2178 	xfs_agnumber_t		agno,
2179 	xfs_agino_t		next_agino,
2180 	xfs_agino_t		*old_next_agino)
2181 {
2182 	struct xfs_mount	*mp = tp->t_mountp;
2183 	struct xfs_dinode	*dip;
2184 	struct xfs_buf		*ibp;
2185 	xfs_agino_t		old_value;
2186 	int			error;
2187 
2188 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189 
2190 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191 	if (error)
2192 		return error;
2193 
2194 	/* Make sure the old pointer isn't garbage. */
2195 	old_value = be32_to_cpu(dip->di_next_unlinked);
2196 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197 		error = -EFSCORRUPTED;
2198 		goto out;
2199 	}
2200 
2201 	/*
2202 	 * Since we're updating a linked list, we should never find that the
2203 	 * current pointer is the same as the new value, unless we're
2204 	 * terminating the list.
2205 	 */
2206 	*old_next_agino = old_value;
2207 	if (old_value == next_agino) {
2208 		if (next_agino != NULLAGINO)
2209 			error = -EFSCORRUPTED;
2210 		goto out;
2211 	}
2212 
2213 	/* Ok, update the new pointer. */
2214 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215 			ibp, dip, &ip->i_imap, next_agino);
2216 	return 0;
2217 out:
2218 	xfs_trans_brelse(tp, ibp);
2219 	return error;
2220 }
2221 
2222 /*
2223  * This is called when the inode's link count has gone to 0 or we are creating
2224  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2225  *
2226  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2227  * list when the inode is freed.
2228  */
2229 STATIC int
2230 xfs_iunlink(
2231 	struct xfs_trans	*tp,
2232 	struct xfs_inode	*ip)
2233 {
2234 	struct xfs_mount	*mp = tp->t_mountp;
2235 	struct xfs_agi		*agi;
2236 	struct xfs_buf		*agibp;
2237 	xfs_agino_t		next_agino;
2238 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2241 	int			error;
2242 
2243 	ASSERT(VFS_I(ip)->i_nlink == 0);
2244 	ASSERT(VFS_I(ip)->i_mode != 0);
2245 	trace_xfs_iunlink(ip);
2246 
2247 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2248 	error = xfs_read_agi(mp, tp, agno, &agibp);
2249 	if (error)
2250 		return error;
2251 	agi = XFS_BUF_TO_AGI(agibp);
2252 
2253 	/*
2254 	 * Get the index into the agi hash table for the list this inode will
2255 	 * go on.  Make sure the pointer isn't garbage and that this inode
2256 	 * isn't already on the list.
2257 	 */
2258 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259 	if (next_agino == agino ||
2260 	    !xfs_verify_agino_or_null(mp, agno, next_agino))
2261 		return -EFSCORRUPTED;
2262 
2263 	if (next_agino != NULLAGINO) {
2264 		struct xfs_perag	*pag;
2265 		xfs_agino_t		old_agino;
2266 
2267 		/*
2268 		 * There is already another inode in the bucket, so point this
2269 		 * inode to the current head of the list.
2270 		 */
2271 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272 				&old_agino);
2273 		if (error)
2274 			return error;
2275 		ASSERT(old_agino == NULLAGINO);
2276 
2277 		/*
2278 		 * agino has been unlinked, add a backref from the next inode
2279 		 * back to agino.
2280 		 */
2281 		pag = xfs_perag_get(mp, agno);
2282 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283 		xfs_perag_put(pag);
2284 		if (error)
2285 			return error;
2286 	}
2287 
2288 	/* Point the head of the list to point to this inode. */
2289 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2290 }
2291 
2292 /* Return the imap, dinode pointer, and buffer for an inode. */
2293 STATIC int
2294 xfs_iunlink_map_ino(
2295 	struct xfs_trans	*tp,
2296 	xfs_agnumber_t		agno,
2297 	xfs_agino_t		agino,
2298 	struct xfs_imap		*imap,
2299 	struct xfs_dinode	**dipp,
2300 	struct xfs_buf		**bpp)
2301 {
2302 	struct xfs_mount	*mp = tp->t_mountp;
2303 	int			error;
2304 
2305 	imap->im_blkno = 0;
2306 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307 	if (error) {
2308 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309 				__func__, error);
2310 		return error;
2311 	}
2312 
2313 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314 	if (error) {
2315 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316 				__func__, error);
2317 		return error;
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  * Walk the unlinked chain from @head_agino until we find the inode that
2325  * points to @target_agino.  Return the inode number, map, dinode pointer,
2326  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327  *
2328  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329  * @agino, @imap, @dipp, and @bpp are all output parameters.
2330  *
2331  * Do not call this function if @target_agino is the head of the list.
2332  */
2333 STATIC int
2334 xfs_iunlink_map_prev(
2335 	struct xfs_trans	*tp,
2336 	xfs_agnumber_t		agno,
2337 	xfs_agino_t		head_agino,
2338 	xfs_agino_t		target_agino,
2339 	xfs_agino_t		*agino,
2340 	struct xfs_imap		*imap,
2341 	struct xfs_dinode	**dipp,
2342 	struct xfs_buf		**bpp,
2343 	struct xfs_perag	*pag)
2344 {
2345 	struct xfs_mount	*mp = tp->t_mountp;
2346 	xfs_agino_t		next_agino;
2347 	int			error;
2348 
2349 	ASSERT(head_agino != target_agino);
2350 	*bpp = NULL;
2351 
2352 	/* See if our backref cache can find it faster. */
2353 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354 	if (*agino != NULLAGINO) {
2355 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2356 		if (error)
2357 			return error;
2358 
2359 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360 			return 0;
2361 
2362 		/*
2363 		 * If we get here the cache contents were corrupt, so drop the
2364 		 * buffer and fall back to walking the bucket list.
2365 		 */
2366 		xfs_trans_brelse(tp, *bpp);
2367 		*bpp = NULL;
2368 		WARN_ON_ONCE(1);
2369 	}
2370 
2371 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372 
2373 	/* Otherwise, walk the entire bucket until we find it. */
2374 	next_agino = head_agino;
2375 	while (next_agino != target_agino) {
2376 		xfs_agino_t	unlinked_agino;
2377 
2378 		if (*bpp)
2379 			xfs_trans_brelse(tp, *bpp);
2380 
2381 		*agino = next_agino;
2382 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383 				bpp);
2384 		if (error)
2385 			return error;
2386 
2387 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388 		/*
2389 		 * Make sure this pointer is valid and isn't an obvious
2390 		 * infinite loop.
2391 		 */
2392 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393 		    next_agino == unlinked_agino) {
2394 			XFS_CORRUPTION_ERROR(__func__,
2395 					XFS_ERRLEVEL_LOW, mp,
2396 					*dipp, sizeof(**dipp));
2397 			error = -EFSCORRUPTED;
2398 			return error;
2399 		}
2400 		next_agino = unlinked_agino;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 /*
2407  * Pull the on-disk inode from the AGI unlinked list.
2408  */
2409 STATIC int
2410 xfs_iunlink_remove(
2411 	struct xfs_trans	*tp,
2412 	struct xfs_inode	*ip)
2413 {
2414 	struct xfs_mount	*mp = tp->t_mountp;
2415 	struct xfs_agi		*agi;
2416 	struct xfs_buf		*agibp;
2417 	struct xfs_buf		*last_ibp;
2418 	struct xfs_dinode	*last_dip = NULL;
2419 	struct xfs_perag	*pag = NULL;
2420 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422 	xfs_agino_t		next_agino;
2423 	xfs_agino_t		head_agino;
2424 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425 	int			error;
2426 
2427 	trace_xfs_iunlink_remove(ip);
2428 
2429 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430 	error = xfs_read_agi(mp, tp, agno, &agibp);
2431 	if (error)
2432 		return error;
2433 	agi = XFS_BUF_TO_AGI(agibp);
2434 
2435 	/*
2436 	 * Get the index into the agi hash table for the list this inode will
2437 	 * go on.  Make sure the head pointer isn't garbage.
2438 	 */
2439 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442 				agi, sizeof(*agi));
2443 		return -EFSCORRUPTED;
2444 	}
2445 
2446 	/*
2447 	 * Set our inode's next_unlinked pointer to NULL and then return
2448 	 * the old pointer value so that we can update whatever was previous
2449 	 * to us in the list to point to whatever was next in the list.
2450 	 */
2451 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452 	if (error)
2453 		return error;
2454 
2455 	/*
2456 	 * If there was a backref pointing from the next inode back to this
2457 	 * one, remove it because we've removed this inode from the list.
2458 	 *
2459 	 * Later, if this inode was in the middle of the list we'll update
2460 	 * this inode's backref to point from the next inode.
2461 	 */
2462 	if (next_agino != NULLAGINO) {
2463 		pag = xfs_perag_get(mp, agno);
2464 		error = xfs_iunlink_change_backref(pag, next_agino,
2465 				NULLAGINO);
2466 		if (error)
2467 			goto out;
2468 	}
2469 
2470 	if (head_agino == agino) {
2471 		/* Point the head of the list to the next unlinked inode. */
2472 		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473 				next_agino);
2474 		if (error)
2475 			goto out;
2476 	} else {
2477 		struct xfs_imap	imap;
2478 		xfs_agino_t	prev_agino;
2479 
2480 		if (!pag)
2481 			pag = xfs_perag_get(mp, agno);
2482 
2483 		/* We need to search the list for the inode being freed. */
2484 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2485 				&prev_agino, &imap, &last_dip, &last_ibp,
2486 				pag);
2487 		if (error)
2488 			goto out;
2489 
2490 		/* Point the previous inode on the list to the next inode. */
2491 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492 				last_dip, &imap, next_agino);
2493 
2494 		/*
2495 		 * Now we deal with the backref for this inode.  If this inode
2496 		 * pointed at a real inode, change the backref that pointed to
2497 		 * us to point to our old next.  If this inode was the end of
2498 		 * the list, delete the backref that pointed to us.  Note that
2499 		 * change_backref takes care of deleting the backref if
2500 		 * next_agino is NULLAGINO.
2501 		 */
2502 		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503 		if (error)
2504 			goto out;
2505 	}
2506 
2507 out:
2508 	if (pag)
2509 		xfs_perag_put(pag);
2510 	return error;
2511 }
2512 
2513 /*
2514  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2515  * inodes that are in memory - they all must be marked stale and attached to
2516  * the cluster buffer.
2517  */
2518 STATIC int
2519 xfs_ifree_cluster(
2520 	xfs_inode_t		*free_ip,
2521 	xfs_trans_t		*tp,
2522 	struct xfs_icluster	*xic)
2523 {
2524 	xfs_mount_t		*mp = free_ip->i_mount;
2525 	int			nbufs;
2526 	int			i, j;
2527 	int			ioffset;
2528 	xfs_daddr_t		blkno;
2529 	xfs_buf_t		*bp;
2530 	xfs_inode_t		*ip;
2531 	xfs_inode_log_item_t	*iip;
2532 	struct xfs_log_item	*lip;
2533 	struct xfs_perag	*pag;
2534 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2535 	xfs_ino_t		inum;
2536 
2537 	inum = xic->first_ino;
2538 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2539 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2540 
2541 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2542 		/*
2543 		 * The allocation bitmap tells us which inodes of the chunk were
2544 		 * physically allocated. Skip the cluster if an inode falls into
2545 		 * a sparse region.
2546 		 */
2547 		ioffset = inum - xic->first_ino;
2548 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2549 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2550 			continue;
2551 		}
2552 
2553 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554 					 XFS_INO_TO_AGBNO(mp, inum));
2555 
2556 		/*
2557 		 * We obtain and lock the backing buffer first in the process
2558 		 * here, as we have to ensure that any dirty inode that we
2559 		 * can't get the flush lock on is attached to the buffer.
2560 		 * If we scan the in-memory inodes first, then buffer IO can
2561 		 * complete before we get a lock on it, and hence we may fail
2562 		 * to mark all the active inodes on the buffer stale.
2563 		 */
2564 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2565 					mp->m_bsize * igeo->blocks_per_cluster,
2566 					XBF_UNMAPPED);
2567 
2568 		if (!bp)
2569 			return -ENOMEM;
2570 
2571 		/*
2572 		 * This buffer may not have been correctly initialised as we
2573 		 * didn't read it from disk. That's not important because we are
2574 		 * only using to mark the buffer as stale in the log, and to
2575 		 * attach stale cached inodes on it. That means it will never be
2576 		 * dispatched for IO. If it is, we want to know about it, and we
2577 		 * want it to fail. We can acheive this by adding a write
2578 		 * verifier to the buffer.
2579 		 */
2580 		bp->b_ops = &xfs_inode_buf_ops;
2581 
2582 		/*
2583 		 * Walk the inodes already attached to the buffer and mark them
2584 		 * stale. These will all have the flush locks held, so an
2585 		 * in-memory inode walk can't lock them. By marking them all
2586 		 * stale first, we will not attempt to lock them in the loop
2587 		 * below as the XFS_ISTALE flag will be set.
2588 		 */
2589 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2590 			if (lip->li_type == XFS_LI_INODE) {
2591 				iip = (xfs_inode_log_item_t *)lip;
2592 				ASSERT(iip->ili_logged == 1);
2593 				lip->li_cb = xfs_istale_done;
2594 				xfs_trans_ail_copy_lsn(mp->m_ail,
2595 							&iip->ili_flush_lsn,
2596 							&iip->ili_item.li_lsn);
2597 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2598 			}
2599 		}
2600 
2601 
2602 		/*
2603 		 * For each inode in memory attempt to add it to the inode
2604 		 * buffer and set it up for being staled on buffer IO
2605 		 * completion.  This is safe as we've locked out tail pushing
2606 		 * and flushing by locking the buffer.
2607 		 *
2608 		 * We have already marked every inode that was part of a
2609 		 * transaction stale above, which means there is no point in
2610 		 * even trying to lock them.
2611 		 */
2612 		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2613 retry:
2614 			rcu_read_lock();
2615 			ip = radix_tree_lookup(&pag->pag_ici_root,
2616 					XFS_INO_TO_AGINO(mp, (inum + i)));
2617 
2618 			/* Inode not in memory, nothing to do */
2619 			if (!ip) {
2620 				rcu_read_unlock();
2621 				continue;
2622 			}
2623 
2624 			/*
2625 			 * because this is an RCU protected lookup, we could
2626 			 * find a recently freed or even reallocated inode
2627 			 * during the lookup. We need to check under the
2628 			 * i_flags_lock for a valid inode here. Skip it if it
2629 			 * is not valid, the wrong inode or stale.
2630 			 */
2631 			spin_lock(&ip->i_flags_lock);
2632 			if (ip->i_ino != inum + i ||
2633 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2634 				spin_unlock(&ip->i_flags_lock);
2635 				rcu_read_unlock();
2636 				continue;
2637 			}
2638 			spin_unlock(&ip->i_flags_lock);
2639 
2640 			/*
2641 			 * Don't try to lock/unlock the current inode, but we
2642 			 * _cannot_ skip the other inodes that we did not find
2643 			 * in the list attached to the buffer and are not
2644 			 * already marked stale. If we can't lock it, back off
2645 			 * and retry.
2646 			 */
2647 			if (ip != free_ip) {
2648 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649 					rcu_read_unlock();
2650 					delay(1);
2651 					goto retry;
2652 				}
2653 
2654 				/*
2655 				 * Check the inode number again in case we're
2656 				 * racing with freeing in xfs_reclaim_inode().
2657 				 * See the comments in that function for more
2658 				 * information as to why the initial check is
2659 				 * not sufficient.
2660 				 */
2661 				if (ip->i_ino != inum + i) {
2662 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2663 					rcu_read_unlock();
2664 					continue;
2665 				}
2666 			}
2667 			rcu_read_unlock();
2668 
2669 			xfs_iflock(ip);
2670 			xfs_iflags_set(ip, XFS_ISTALE);
2671 
2672 			/*
2673 			 * we don't need to attach clean inodes or those only
2674 			 * with unlogged changes (which we throw away, anyway).
2675 			 */
2676 			iip = ip->i_itemp;
2677 			if (!iip || xfs_inode_clean(ip)) {
2678 				ASSERT(ip != free_ip);
2679 				xfs_ifunlock(ip);
2680 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681 				continue;
2682 			}
2683 
2684 			iip->ili_last_fields = iip->ili_fields;
2685 			iip->ili_fields = 0;
2686 			iip->ili_fsync_fields = 0;
2687 			iip->ili_logged = 1;
2688 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689 						&iip->ili_item.li_lsn);
2690 
2691 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2692 						  &iip->ili_item);
2693 
2694 			if (ip != free_ip)
2695 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2696 		}
2697 
2698 		xfs_trans_stale_inode_buf(tp, bp);
2699 		xfs_trans_binval(tp, bp);
2700 	}
2701 
2702 	xfs_perag_put(pag);
2703 	return 0;
2704 }
2705 
2706 /*
2707  * Free any local-format buffers sitting around before we reset to
2708  * extents format.
2709  */
2710 static inline void
2711 xfs_ifree_local_data(
2712 	struct xfs_inode	*ip,
2713 	int			whichfork)
2714 {
2715 	struct xfs_ifork	*ifp;
2716 
2717 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718 		return;
2719 
2720 	ifp = XFS_IFORK_PTR(ip, whichfork);
2721 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722 }
2723 
2724 /*
2725  * This is called to return an inode to the inode free list.
2726  * The inode should already be truncated to 0 length and have
2727  * no pages associated with it.  This routine also assumes that
2728  * the inode is already a part of the transaction.
2729  *
2730  * The on-disk copy of the inode will have been added to the list
2731  * of unlinked inodes in the AGI. We need to remove the inode from
2732  * that list atomically with respect to freeing it here.
2733  */
2734 int
2735 xfs_ifree(
2736 	struct xfs_trans	*tp,
2737 	struct xfs_inode	*ip)
2738 {
2739 	int			error;
2740 	struct xfs_icluster	xic = { 0 };
2741 
2742 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2743 	ASSERT(VFS_I(ip)->i_nlink == 0);
2744 	ASSERT(ip->i_d.di_nextents == 0);
2745 	ASSERT(ip->i_d.di_anextents == 0);
2746 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2747 	ASSERT(ip->i_d.di_nblocks == 0);
2748 
2749 	/*
2750 	 * Pull the on-disk inode from the AGI unlinked list.
2751 	 */
2752 	error = xfs_iunlink_remove(tp, ip);
2753 	if (error)
2754 		return error;
2755 
2756 	error = xfs_difree(tp, ip->i_ino, &xic);
2757 	if (error)
2758 		return error;
2759 
2760 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2762 
2763 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2764 	ip->i_d.di_flags = 0;
2765 	ip->i_d.di_flags2 = 0;
2766 	ip->i_d.di_dmevmask = 0;
2767 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2768 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2770 
2771 	/* Don't attempt to replay owner changes for a deleted inode */
2772 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2773 
2774 	/*
2775 	 * Bump the generation count so no one will be confused
2776 	 * by reincarnations of this inode.
2777 	 */
2778 	VFS_I(ip)->i_generation++;
2779 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780 
2781 	if (xic.deleted)
2782 		error = xfs_ifree_cluster(ip, tp, &xic);
2783 
2784 	return error;
2785 }
2786 
2787 /*
2788  * This is called to unpin an inode.  The caller must have the inode locked
2789  * in at least shared mode so that the buffer cannot be subsequently pinned
2790  * once someone is waiting for it to be unpinned.
2791  */
2792 static void
2793 xfs_iunpin(
2794 	struct xfs_inode	*ip)
2795 {
2796 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2797 
2798 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799 
2800 	/* Give the log a push to start the unpinning I/O */
2801 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2802 
2803 }
2804 
2805 static void
2806 __xfs_iunpin_wait(
2807 	struct xfs_inode	*ip)
2808 {
2809 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811 
2812 	xfs_iunpin(ip);
2813 
2814 	do {
2815 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2816 		if (xfs_ipincount(ip))
2817 			io_schedule();
2818 	} while (xfs_ipincount(ip));
2819 	finish_wait(wq, &wait.wq_entry);
2820 }
2821 
2822 void
2823 xfs_iunpin_wait(
2824 	struct xfs_inode	*ip)
2825 {
2826 	if (xfs_ipincount(ip))
2827 		__xfs_iunpin_wait(ip);
2828 }
2829 
2830 /*
2831  * Removing an inode from the namespace involves removing the directory entry
2832  * and dropping the link count on the inode. Removing the directory entry can
2833  * result in locking an AGF (directory blocks were freed) and removing a link
2834  * count can result in placing the inode on an unlinked list which results in
2835  * locking an AGI.
2836  *
2837  * The big problem here is that we have an ordering constraint on AGF and AGI
2838  * locking - inode allocation locks the AGI, then can allocate a new extent for
2839  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840  * removes the inode from the unlinked list, requiring that we lock the AGI
2841  * first, and then freeing the inode can result in an inode chunk being freed
2842  * and hence freeing disk space requiring that we lock an AGF.
2843  *
2844  * Hence the ordering that is imposed by other parts of the code is AGI before
2845  * AGF. This means we cannot remove the directory entry before we drop the inode
2846  * reference count and put it on the unlinked list as this results in a lock
2847  * order of AGF then AGI, and this can deadlock against inode allocation and
2848  * freeing. Therefore we must drop the link counts before we remove the
2849  * directory entry.
2850  *
2851  * This is still safe from a transactional point of view - it is not until we
2852  * get to xfs_defer_finish() that we have the possibility of multiple
2853  * transactions in this operation. Hence as long as we remove the directory
2854  * entry and drop the link count in the first transaction of the remove
2855  * operation, there are no transactional constraints on the ordering here.
2856  */
2857 int
2858 xfs_remove(
2859 	xfs_inode_t             *dp,
2860 	struct xfs_name		*name,
2861 	xfs_inode_t		*ip)
2862 {
2863 	xfs_mount_t		*mp = dp->i_mount;
2864 	xfs_trans_t             *tp = NULL;
2865 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2866 	int                     error = 0;
2867 	uint			resblks;
2868 
2869 	trace_xfs_remove(dp, name);
2870 
2871 	if (XFS_FORCED_SHUTDOWN(mp))
2872 		return -EIO;
2873 
2874 	error = xfs_qm_dqattach(dp);
2875 	if (error)
2876 		goto std_return;
2877 
2878 	error = xfs_qm_dqattach(ip);
2879 	if (error)
2880 		goto std_return;
2881 
2882 	/*
2883 	 * We try to get the real space reservation first,
2884 	 * allowing for directory btree deletion(s) implying
2885 	 * possible bmap insert(s).  If we can't get the space
2886 	 * reservation then we use 0 instead, and avoid the bmap
2887 	 * btree insert(s) in the directory code by, if the bmap
2888 	 * insert tries to happen, instead trimming the LAST
2889 	 * block from the directory.
2890 	 */
2891 	resblks = XFS_REMOVE_SPACE_RES(mp);
2892 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2893 	if (error == -ENOSPC) {
2894 		resblks = 0;
2895 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896 				&tp);
2897 	}
2898 	if (error) {
2899 		ASSERT(error != -ENOSPC);
2900 		goto std_return;
2901 	}
2902 
2903 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2904 
2905 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2906 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907 
2908 	/*
2909 	 * If we're removing a directory perform some additional validation.
2910 	 */
2911 	if (is_dir) {
2912 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2913 		if (VFS_I(ip)->i_nlink != 2) {
2914 			error = -ENOTEMPTY;
2915 			goto out_trans_cancel;
2916 		}
2917 		if (!xfs_dir_isempty(ip)) {
2918 			error = -ENOTEMPTY;
2919 			goto out_trans_cancel;
2920 		}
2921 
2922 		/* Drop the link from ip's "..".  */
2923 		error = xfs_droplink(tp, dp);
2924 		if (error)
2925 			goto out_trans_cancel;
2926 
2927 		/* Drop the "." link from ip to self.  */
2928 		error = xfs_droplink(tp, ip);
2929 		if (error)
2930 			goto out_trans_cancel;
2931 	} else {
2932 		/*
2933 		 * When removing a non-directory we need to log the parent
2934 		 * inode here.  For a directory this is done implicitly
2935 		 * by the xfs_droplink call for the ".." entry.
2936 		 */
2937 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938 	}
2939 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2940 
2941 	/* Drop the link from dp to ip. */
2942 	error = xfs_droplink(tp, ip);
2943 	if (error)
2944 		goto out_trans_cancel;
2945 
2946 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2947 	if (error) {
2948 		ASSERT(error != -ENOENT);
2949 		goto out_trans_cancel;
2950 	}
2951 
2952 	/*
2953 	 * If this is a synchronous mount, make sure that the
2954 	 * remove transaction goes to disk before returning to
2955 	 * the user.
2956 	 */
2957 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958 		xfs_trans_set_sync(tp);
2959 
2960 	error = xfs_trans_commit(tp);
2961 	if (error)
2962 		goto std_return;
2963 
2964 	if (is_dir && xfs_inode_is_filestream(ip))
2965 		xfs_filestream_deassociate(ip);
2966 
2967 	return 0;
2968 
2969  out_trans_cancel:
2970 	xfs_trans_cancel(tp);
2971  std_return:
2972 	return error;
2973 }
2974 
2975 /*
2976  * Enter all inodes for a rename transaction into a sorted array.
2977  */
2978 #define __XFS_SORT_INODES	5
2979 STATIC void
2980 xfs_sort_for_rename(
2981 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2982 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2983 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2984 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2985 	struct xfs_inode	*wip,	/* in: whiteout inode */
2986 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2987 	int			*num_inodes)  /* in/out: inodes in array */
2988 {
2989 	int			i, j;
2990 
2991 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2992 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993 
2994 	/*
2995 	 * i_tab contains a list of pointers to inodes.  We initialize
2996 	 * the table here & we'll sort it.  We will then use it to
2997 	 * order the acquisition of the inode locks.
2998 	 *
2999 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3000 	 */
3001 	i = 0;
3002 	i_tab[i++] = dp1;
3003 	i_tab[i++] = dp2;
3004 	i_tab[i++] = ip1;
3005 	if (ip2)
3006 		i_tab[i++] = ip2;
3007 	if (wip)
3008 		i_tab[i++] = wip;
3009 	*num_inodes = i;
3010 
3011 	/*
3012 	 * Sort the elements via bubble sort.  (Remember, there are at
3013 	 * most 5 elements to sort, so this is adequate.)
3014 	 */
3015 	for (i = 0; i < *num_inodes; i++) {
3016 		for (j = 1; j < *num_inodes; j++) {
3017 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3018 				struct xfs_inode *temp = i_tab[j];
3019 				i_tab[j] = i_tab[j-1];
3020 				i_tab[j-1] = temp;
3021 			}
3022 		}
3023 	}
3024 }
3025 
3026 static int
3027 xfs_finish_rename(
3028 	struct xfs_trans	*tp)
3029 {
3030 	/*
3031 	 * If this is a synchronous mount, make sure that the rename transaction
3032 	 * goes to disk before returning to the user.
3033 	 */
3034 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035 		xfs_trans_set_sync(tp);
3036 
3037 	return xfs_trans_commit(tp);
3038 }
3039 
3040 /*
3041  * xfs_cross_rename()
3042  *
3043  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044  */
3045 STATIC int
3046 xfs_cross_rename(
3047 	struct xfs_trans	*tp,
3048 	struct xfs_inode	*dp1,
3049 	struct xfs_name		*name1,
3050 	struct xfs_inode	*ip1,
3051 	struct xfs_inode	*dp2,
3052 	struct xfs_name		*name2,
3053 	struct xfs_inode	*ip2,
3054 	int			spaceres)
3055 {
3056 	int		error = 0;
3057 	int		ip1_flags = 0;
3058 	int		ip2_flags = 0;
3059 	int		dp2_flags = 0;
3060 
3061 	/* Swap inode number for dirent in first parent */
3062 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3063 	if (error)
3064 		goto out_trans_abort;
3065 
3066 	/* Swap inode number for dirent in second parent */
3067 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3068 	if (error)
3069 		goto out_trans_abort;
3070 
3071 	/*
3072 	 * If we're renaming one or more directories across different parents,
3073 	 * update the respective ".." entries (and link counts) to match the new
3074 	 * parents.
3075 	 */
3076 	if (dp1 != dp2) {
3077 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078 
3079 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3080 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3081 						dp1->i_ino, spaceres);
3082 			if (error)
3083 				goto out_trans_abort;
3084 
3085 			/* transfer ip2 ".." reference to dp1 */
3086 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3087 				error = xfs_droplink(tp, dp2);
3088 				if (error)
3089 					goto out_trans_abort;
3090 				xfs_bumplink(tp, dp1);
3091 			}
3092 
3093 			/*
3094 			 * Although ip1 isn't changed here, userspace needs
3095 			 * to be warned about the change, so that applications
3096 			 * relying on it (like backup ones), will properly
3097 			 * notify the change
3098 			 */
3099 			ip1_flags |= XFS_ICHGTIME_CHG;
3100 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101 		}
3102 
3103 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3104 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3105 						dp2->i_ino, spaceres);
3106 			if (error)
3107 				goto out_trans_abort;
3108 
3109 			/* transfer ip1 ".." reference to dp2 */
3110 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3111 				error = xfs_droplink(tp, dp1);
3112 				if (error)
3113 					goto out_trans_abort;
3114 				xfs_bumplink(tp, dp2);
3115 			}
3116 
3117 			/*
3118 			 * Although ip2 isn't changed here, userspace needs
3119 			 * to be warned about the change, so that applications
3120 			 * relying on it (like backup ones), will properly
3121 			 * notify the change
3122 			 */
3123 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124 			ip2_flags |= XFS_ICHGTIME_CHG;
3125 		}
3126 	}
3127 
3128 	if (ip1_flags) {
3129 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131 	}
3132 	if (ip2_flags) {
3133 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135 	}
3136 	if (dp2_flags) {
3137 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139 	}
3140 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3142 	return xfs_finish_rename(tp);
3143 
3144 out_trans_abort:
3145 	xfs_trans_cancel(tp);
3146 	return error;
3147 }
3148 
3149 /*
3150  * xfs_rename_alloc_whiteout()
3151  *
3152  * Return a referenced, unlinked, unlocked inode that that can be used as a
3153  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154  * crash between allocating the inode and linking it into the rename transaction
3155  * recovery will free the inode and we won't leak it.
3156  */
3157 static int
3158 xfs_rename_alloc_whiteout(
3159 	struct xfs_inode	*dp,
3160 	struct xfs_inode	**wip)
3161 {
3162 	struct xfs_inode	*tmpfile;
3163 	int			error;
3164 
3165 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3166 	if (error)
3167 		return error;
3168 
3169 	/*
3170 	 * Prepare the tmpfile inode as if it were created through the VFS.
3171 	 * Complete the inode setup and flag it as linkable.  nlink is already
3172 	 * zero, so we can skip the drop_nlink.
3173 	 */
3174 	xfs_setup_iops(tmpfile);
3175 	xfs_finish_inode_setup(tmpfile);
3176 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177 
3178 	*wip = tmpfile;
3179 	return 0;
3180 }
3181 
3182 /*
3183  * xfs_rename
3184  */
3185 int
3186 xfs_rename(
3187 	struct xfs_inode	*src_dp,
3188 	struct xfs_name		*src_name,
3189 	struct xfs_inode	*src_ip,
3190 	struct xfs_inode	*target_dp,
3191 	struct xfs_name		*target_name,
3192 	struct xfs_inode	*target_ip,
3193 	unsigned int		flags)
3194 {
3195 	struct xfs_mount	*mp = src_dp->i_mount;
3196 	struct xfs_trans	*tp;
3197 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3198 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3199 	int			num_inodes = __XFS_SORT_INODES;
3200 	bool			new_parent = (src_dp != target_dp);
3201 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3202 	int			spaceres;
3203 	int			error;
3204 
3205 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206 
3207 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3208 		return -EINVAL;
3209 
3210 	/*
3211 	 * If we are doing a whiteout operation, allocate the whiteout inode
3212 	 * we will be placing at the target and ensure the type is set
3213 	 * appropriately.
3214 	 */
3215 	if (flags & RENAME_WHITEOUT) {
3216 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218 		if (error)
3219 			return error;
3220 
3221 		/* setup target dirent info as whiteout */
3222 		src_name->type = XFS_DIR3_FT_CHRDEV;
3223 	}
3224 
3225 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3226 				inodes, &num_inodes);
3227 
3228 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3229 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3230 	if (error == -ENOSPC) {
3231 		spaceres = 0;
3232 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233 				&tp);
3234 	}
3235 	if (error)
3236 		goto out_release_wip;
3237 
3238 	/*
3239 	 * Attach the dquots to the inodes
3240 	 */
3241 	error = xfs_qm_vop_rename_dqattach(inodes);
3242 	if (error)
3243 		goto out_trans_cancel;
3244 
3245 	/*
3246 	 * Lock all the participating inodes. Depending upon whether
3247 	 * the target_name exists in the target directory, and
3248 	 * whether the target directory is the same as the source
3249 	 * directory, we can lock from 2 to 4 inodes.
3250 	 */
3251 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252 
3253 	/*
3254 	 * Join all the inodes to the transaction. From this point on,
3255 	 * we can rely on either trans_commit or trans_cancel to unlock
3256 	 * them.
3257 	 */
3258 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3259 	if (new_parent)
3260 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3261 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262 	if (target_ip)
3263 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3264 	if (wip)
3265 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3266 
3267 	/*
3268 	 * If we are using project inheritance, we only allow renames
3269 	 * into our tree when the project IDs are the same; else the
3270 	 * tree quota mechanism would be circumvented.
3271 	 */
3272 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3274 		error = -EXDEV;
3275 		goto out_trans_cancel;
3276 	}
3277 
3278 	/* RENAME_EXCHANGE is unique from here on. */
3279 	if (flags & RENAME_EXCHANGE)
3280 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281 					target_dp, target_name, target_ip,
3282 					spaceres);
3283 
3284 	/*
3285 	 * Set up the target.
3286 	 */
3287 	if (target_ip == NULL) {
3288 		/*
3289 		 * If there's no space reservation, check the entry will
3290 		 * fit before actually inserting it.
3291 		 */
3292 		if (!spaceres) {
3293 			error = xfs_dir_canenter(tp, target_dp, target_name);
3294 			if (error)
3295 				goto out_trans_cancel;
3296 		}
3297 		/*
3298 		 * If target does not exist and the rename crosses
3299 		 * directories, adjust the target directory link count
3300 		 * to account for the ".." reference from the new entry.
3301 		 */
3302 		error = xfs_dir_createname(tp, target_dp, target_name,
3303 					   src_ip->i_ino, spaceres);
3304 		if (error)
3305 			goto out_trans_cancel;
3306 
3307 		xfs_trans_ichgtime(tp, target_dp,
3308 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3309 
3310 		if (new_parent && src_is_directory) {
3311 			xfs_bumplink(tp, target_dp);
3312 		}
3313 	} else { /* target_ip != NULL */
3314 		/*
3315 		 * If target exists and it's a directory, check that both
3316 		 * target and source are directories and that target can be
3317 		 * destroyed, or that neither is a directory.
3318 		 */
3319 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3320 			/*
3321 			 * Make sure target dir is empty.
3322 			 */
3323 			if (!(xfs_dir_isempty(target_ip)) ||
3324 			    (VFS_I(target_ip)->i_nlink > 2)) {
3325 				error = -EEXIST;
3326 				goto out_trans_cancel;
3327 			}
3328 		}
3329 
3330 		/*
3331 		 * Link the source inode under the target name.
3332 		 * If the source inode is a directory and we are moving
3333 		 * it across directories, its ".." entry will be
3334 		 * inconsistent until we replace that down below.
3335 		 *
3336 		 * In case there is already an entry with the same
3337 		 * name at the destination directory, remove it first.
3338 		 */
3339 		error = xfs_dir_replace(tp, target_dp, target_name,
3340 					src_ip->i_ino, spaceres);
3341 		if (error)
3342 			goto out_trans_cancel;
3343 
3344 		xfs_trans_ichgtime(tp, target_dp,
3345 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3346 
3347 		/*
3348 		 * Decrement the link count on the target since the target
3349 		 * dir no longer points to it.
3350 		 */
3351 		error = xfs_droplink(tp, target_ip);
3352 		if (error)
3353 			goto out_trans_cancel;
3354 
3355 		if (src_is_directory) {
3356 			/*
3357 			 * Drop the link from the old "." entry.
3358 			 */
3359 			error = xfs_droplink(tp, target_ip);
3360 			if (error)
3361 				goto out_trans_cancel;
3362 		}
3363 	} /* target_ip != NULL */
3364 
3365 	/*
3366 	 * Remove the source.
3367 	 */
3368 	if (new_parent && src_is_directory) {
3369 		/*
3370 		 * Rewrite the ".." entry to point to the new
3371 		 * directory.
3372 		 */
3373 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3374 					target_dp->i_ino, spaceres);
3375 		ASSERT(error != -EEXIST);
3376 		if (error)
3377 			goto out_trans_cancel;
3378 	}
3379 
3380 	/*
3381 	 * We always want to hit the ctime on the source inode.
3382 	 *
3383 	 * This isn't strictly required by the standards since the source
3384 	 * inode isn't really being changed, but old unix file systems did
3385 	 * it and some incremental backup programs won't work without it.
3386 	 */
3387 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3388 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3389 
3390 	/*
3391 	 * Adjust the link count on src_dp.  This is necessary when
3392 	 * renaming a directory, either within one parent when
3393 	 * the target existed, or across two parent directories.
3394 	 */
3395 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3396 
3397 		/*
3398 		 * Decrement link count on src_directory since the
3399 		 * entry that's moved no longer points to it.
3400 		 */
3401 		error = xfs_droplink(tp, src_dp);
3402 		if (error)
3403 			goto out_trans_cancel;
3404 	}
3405 
3406 	/*
3407 	 * For whiteouts, we only need to update the source dirent with the
3408 	 * inode number of the whiteout inode rather than removing it
3409 	 * altogether.
3410 	 */
3411 	if (wip) {
3412 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3413 					spaceres);
3414 	} else
3415 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3416 					   spaceres);
3417 	if (error)
3418 		goto out_trans_cancel;
3419 
3420 	/*
3421 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3422 	 * This means that failures all the way up to this point leave the inode
3423 	 * on the unlinked list and so cleanup is a simple matter of dropping
3424 	 * the remaining reference to it. If we fail here after bumping the link
3425 	 * count, we're shutting down the filesystem so we'll never see the
3426 	 * intermediate state on disk.
3427 	 */
3428 	if (wip) {
3429 		ASSERT(VFS_I(wip)->i_nlink == 0);
3430 		xfs_bumplink(tp, wip);
3431 		error = xfs_iunlink_remove(tp, wip);
3432 		if (error)
3433 			goto out_trans_cancel;
3434 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3435 
3436 		/*
3437 		 * Now we have a real link, clear the "I'm a tmpfile" state
3438 		 * flag from the inode so it doesn't accidentally get misused in
3439 		 * future.
3440 		 */
3441 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3442 	}
3443 
3444 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3445 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3446 	if (new_parent)
3447 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3448 
3449 	error = xfs_finish_rename(tp);
3450 	if (wip)
3451 		xfs_irele(wip);
3452 	return error;
3453 
3454 out_trans_cancel:
3455 	xfs_trans_cancel(tp);
3456 out_release_wip:
3457 	if (wip)
3458 		xfs_irele(wip);
3459 	return error;
3460 }
3461 
3462 STATIC int
3463 xfs_iflush_cluster(
3464 	struct xfs_inode	*ip,
3465 	struct xfs_buf		*bp)
3466 {
3467 	struct xfs_mount	*mp = ip->i_mount;
3468 	struct xfs_perag	*pag;
3469 	unsigned long		first_index, mask;
3470 	int			cilist_size;
3471 	struct xfs_inode	**cilist;
3472 	struct xfs_inode	*cip;
3473 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3474 	int			nr_found;
3475 	int			clcount = 0;
3476 	int			i;
3477 
3478 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3479 
3480 	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3481 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3482 	if (!cilist)
3483 		goto out_put;
3484 
3485 	mask = ~(igeo->inodes_per_cluster - 1);
3486 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3487 	rcu_read_lock();
3488 	/* really need a gang lookup range call here */
3489 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3490 					first_index, igeo->inodes_per_cluster);
3491 	if (nr_found == 0)
3492 		goto out_free;
3493 
3494 	for (i = 0; i < nr_found; i++) {
3495 		cip = cilist[i];
3496 		if (cip == ip)
3497 			continue;
3498 
3499 		/*
3500 		 * because this is an RCU protected lookup, we could find a
3501 		 * recently freed or even reallocated inode during the lookup.
3502 		 * We need to check under the i_flags_lock for a valid inode
3503 		 * here. Skip it if it is not valid or the wrong inode.
3504 		 */
3505 		spin_lock(&cip->i_flags_lock);
3506 		if (!cip->i_ino ||
3507 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3508 			spin_unlock(&cip->i_flags_lock);
3509 			continue;
3510 		}
3511 
3512 		/*
3513 		 * Once we fall off the end of the cluster, no point checking
3514 		 * any more inodes in the list because they will also all be
3515 		 * outside the cluster.
3516 		 */
3517 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3518 			spin_unlock(&cip->i_flags_lock);
3519 			break;
3520 		}
3521 		spin_unlock(&cip->i_flags_lock);
3522 
3523 		/*
3524 		 * Do an un-protected check to see if the inode is dirty and
3525 		 * is a candidate for flushing.  These checks will be repeated
3526 		 * later after the appropriate locks are acquired.
3527 		 */
3528 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3529 			continue;
3530 
3531 		/*
3532 		 * Try to get locks.  If any are unavailable or it is pinned,
3533 		 * then this inode cannot be flushed and is skipped.
3534 		 */
3535 
3536 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3537 			continue;
3538 		if (!xfs_iflock_nowait(cip)) {
3539 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3540 			continue;
3541 		}
3542 		if (xfs_ipincount(cip)) {
3543 			xfs_ifunlock(cip);
3544 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3545 			continue;
3546 		}
3547 
3548 
3549 		/*
3550 		 * Check the inode number again, just to be certain we are not
3551 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3552 		 * in that function for more information as to why the initial
3553 		 * check is not sufficient.
3554 		 */
3555 		if (!cip->i_ino) {
3556 			xfs_ifunlock(cip);
3557 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3558 			continue;
3559 		}
3560 
3561 		/*
3562 		 * arriving here means that this inode can be flushed.  First
3563 		 * re-check that it's dirty before flushing.
3564 		 */
3565 		if (!xfs_inode_clean(cip)) {
3566 			int	error;
3567 			error = xfs_iflush_int(cip, bp);
3568 			if (error) {
3569 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3570 				goto cluster_corrupt_out;
3571 			}
3572 			clcount++;
3573 		} else {
3574 			xfs_ifunlock(cip);
3575 		}
3576 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3577 	}
3578 
3579 	if (clcount) {
3580 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3581 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3582 	}
3583 
3584 out_free:
3585 	rcu_read_unlock();
3586 	kmem_free(cilist);
3587 out_put:
3588 	xfs_perag_put(pag);
3589 	return 0;
3590 
3591 
3592 cluster_corrupt_out:
3593 	/*
3594 	 * Corruption detected in the clustering loop.  Invalidate the
3595 	 * inode buffer and shut down the filesystem.
3596 	 */
3597 	rcu_read_unlock();
3598 
3599 	/*
3600 	 * We'll always have an inode attached to the buffer for completion
3601 	 * process by the time we are called from xfs_iflush(). Hence we have
3602 	 * always need to do IO completion processing to abort the inodes
3603 	 * attached to the buffer.  handle them just like the shutdown case in
3604 	 * xfs_buf_submit().
3605 	 */
3606 	ASSERT(bp->b_iodone);
3607 	bp->b_flags |= XBF_ASYNC;
3608 	bp->b_flags &= ~XBF_DONE;
3609 	xfs_buf_stale(bp);
3610 	xfs_buf_ioerror(bp, -EIO);
3611 	xfs_buf_ioend(bp);
3612 
3613 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3614 
3615 	/* abort the corrupt inode, as it was not attached to the buffer */
3616 	xfs_iflush_abort(cip, false);
3617 	kmem_free(cilist);
3618 	xfs_perag_put(pag);
3619 	return -EFSCORRUPTED;
3620 }
3621 
3622 /*
3623  * Flush dirty inode metadata into the backing buffer.
3624  *
3625  * The caller must have the inode lock and the inode flush lock held.  The
3626  * inode lock will still be held upon return to the caller, and the inode
3627  * flush lock will be released after the inode has reached the disk.
3628  *
3629  * The caller must write out the buffer returned in *bpp and release it.
3630  */
3631 int
3632 xfs_iflush(
3633 	struct xfs_inode	*ip,
3634 	struct xfs_buf		**bpp)
3635 {
3636 	struct xfs_mount	*mp = ip->i_mount;
3637 	struct xfs_buf		*bp = NULL;
3638 	struct xfs_dinode	*dip;
3639 	int			error;
3640 
3641 	XFS_STATS_INC(mp, xs_iflush_count);
3642 
3643 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3644 	ASSERT(xfs_isiflocked(ip));
3645 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3646 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3647 
3648 	*bpp = NULL;
3649 
3650 	xfs_iunpin_wait(ip);
3651 
3652 	/*
3653 	 * For stale inodes we cannot rely on the backing buffer remaining
3654 	 * stale in cache for the remaining life of the stale inode and so
3655 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3656 	 * inodes below. We have to check this after ensuring the inode is
3657 	 * unpinned so that it is safe to reclaim the stale inode after the
3658 	 * flush call.
3659 	 */
3660 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3661 		xfs_ifunlock(ip);
3662 		return 0;
3663 	}
3664 
3665 	/*
3666 	 * This may have been unpinned because the filesystem is shutting
3667 	 * down forcibly. If that's the case we must not write this inode
3668 	 * to disk, because the log record didn't make it to disk.
3669 	 *
3670 	 * We also have to remove the log item from the AIL in this case,
3671 	 * as we wait for an empty AIL as part of the unmount process.
3672 	 */
3673 	if (XFS_FORCED_SHUTDOWN(mp)) {
3674 		error = -EIO;
3675 		goto abort_out;
3676 	}
3677 
3678 	/*
3679 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3680 	 * operation here, so we may get  an EAGAIN error. In that case, we
3681 	 * simply want to return with the inode still dirty.
3682 	 *
3683 	 * If we get any other error, we effectively have a corruption situation
3684 	 * and we cannot flush the inode, so we treat it the same as failing
3685 	 * xfs_iflush_int().
3686 	 */
3687 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3688 			       0);
3689 	if (error == -EAGAIN) {
3690 		xfs_ifunlock(ip);
3691 		return error;
3692 	}
3693 	if (error)
3694 		goto corrupt_out;
3695 
3696 	/*
3697 	 * First flush out the inode that xfs_iflush was called with.
3698 	 */
3699 	error = xfs_iflush_int(ip, bp);
3700 	if (error)
3701 		goto corrupt_out;
3702 
3703 	/*
3704 	 * If the buffer is pinned then push on the log now so we won't
3705 	 * get stuck waiting in the write for too long.
3706 	 */
3707 	if (xfs_buf_ispinned(bp))
3708 		xfs_log_force(mp, 0);
3709 
3710 	/*
3711 	 * inode clustering: try to gather other inodes into this write
3712 	 *
3713 	 * Note: Any error during clustering will result in the filesystem
3714 	 * being shut down and completion callbacks run on the cluster buffer.
3715 	 * As we have already flushed and attached this inode to the buffer,
3716 	 * it has already been aborted and released by xfs_iflush_cluster() and
3717 	 * so we have no further error handling to do here.
3718 	 */
3719 	error = xfs_iflush_cluster(ip, bp);
3720 	if (error)
3721 		return error;
3722 
3723 	*bpp = bp;
3724 	return 0;
3725 
3726 corrupt_out:
3727 	if (bp)
3728 		xfs_buf_relse(bp);
3729 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3730 abort_out:
3731 	/* abort the corrupt inode, as it was not attached to the buffer */
3732 	xfs_iflush_abort(ip, false);
3733 	return error;
3734 }
3735 
3736 /*
3737  * If there are inline format data / attr forks attached to this inode,
3738  * make sure they're not corrupt.
3739  */
3740 bool
3741 xfs_inode_verify_forks(
3742 	struct xfs_inode	*ip)
3743 {
3744 	struct xfs_ifork	*ifp;
3745 	xfs_failaddr_t		fa;
3746 
3747 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3748 	if (fa) {
3749 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3750 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3751 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3752 		return false;
3753 	}
3754 
3755 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3756 	if (fa) {
3757 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3758 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3759 				ifp ? ifp->if_u1.if_data : NULL,
3760 				ifp ? ifp->if_bytes : 0, fa);
3761 		return false;
3762 	}
3763 	return true;
3764 }
3765 
3766 STATIC int
3767 xfs_iflush_int(
3768 	struct xfs_inode	*ip,
3769 	struct xfs_buf		*bp)
3770 {
3771 	struct xfs_inode_log_item *iip = ip->i_itemp;
3772 	struct xfs_dinode	*dip;
3773 	struct xfs_mount	*mp = ip->i_mount;
3774 
3775 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3776 	ASSERT(xfs_isiflocked(ip));
3777 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3778 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3779 	ASSERT(iip != NULL && iip->ili_fields != 0);
3780 	ASSERT(ip->i_d.di_version > 1);
3781 
3782 	/* set *dip = inode's place in the buffer */
3783 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3784 
3785 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3786 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3787 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3788 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3789 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3790 		goto corrupt_out;
3791 	}
3792 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3793 		if (XFS_TEST_ERROR(
3794 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3795 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3796 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3797 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3798 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3799 				__func__, ip->i_ino, ip);
3800 			goto corrupt_out;
3801 		}
3802 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3803 		if (XFS_TEST_ERROR(
3804 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3805 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3806 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3807 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3808 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3809 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3810 				__func__, ip->i_ino, ip);
3811 			goto corrupt_out;
3812 		}
3813 	}
3814 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3815 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3816 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3817 			"%s: detected corrupt incore inode %Lu, "
3818 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3819 			__func__, ip->i_ino,
3820 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3821 			ip->i_d.di_nblocks, ip);
3822 		goto corrupt_out;
3823 	}
3824 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3825 				mp, XFS_ERRTAG_IFLUSH_6)) {
3826 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3827 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3828 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3829 		goto corrupt_out;
3830 	}
3831 
3832 	/*
3833 	 * Inode item log recovery for v2 inodes are dependent on the
3834 	 * di_flushiter count for correct sequencing. We bump the flush
3835 	 * iteration count so we can detect flushes which postdate a log record
3836 	 * during recovery. This is redundant as we now log every change and
3837 	 * hence this can't happen but we need to still do it to ensure
3838 	 * backwards compatibility with old kernels that predate logging all
3839 	 * inode changes.
3840 	 */
3841 	if (ip->i_d.di_version < 3)
3842 		ip->i_d.di_flushiter++;
3843 
3844 	/* Check the inline fork data before we write out. */
3845 	if (!xfs_inode_verify_forks(ip))
3846 		goto corrupt_out;
3847 
3848 	/*
3849 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3850 	 * copy out the core of the inode, because if the inode is dirty at all
3851 	 * the core must be.
3852 	 */
3853 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3854 
3855 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3856 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3857 		ip->i_d.di_flushiter = 0;
3858 
3859 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3860 	if (XFS_IFORK_Q(ip))
3861 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3862 	xfs_inobp_check(mp, bp);
3863 
3864 	/*
3865 	 * We've recorded everything logged in the inode, so we'd like to clear
3866 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3867 	 * However, we can't stop logging all this information until the data
3868 	 * we've copied into the disk buffer is written to disk.  If we did we
3869 	 * might overwrite the copy of the inode in the log with all the data
3870 	 * after re-logging only part of it, and in the face of a crash we
3871 	 * wouldn't have all the data we need to recover.
3872 	 *
3873 	 * What we do is move the bits to the ili_last_fields field.  When
3874 	 * logging the inode, these bits are moved back to the ili_fields field.
3875 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3876 	 * know that the information those bits represent is permanently on
3877 	 * disk.  As long as the flush completes before the inode is logged
3878 	 * again, then both ili_fields and ili_last_fields will be cleared.
3879 	 *
3880 	 * We can play with the ili_fields bits here, because the inode lock
3881 	 * must be held exclusively in order to set bits there and the flush
3882 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3883 	 * done routine can tell whether or not to look in the AIL.  Also, store
3884 	 * the current LSN of the inode so that we can tell whether the item has
3885 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3886 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3887 	 * atomically.
3888 	 */
3889 	iip->ili_last_fields = iip->ili_fields;
3890 	iip->ili_fields = 0;
3891 	iip->ili_fsync_fields = 0;
3892 	iip->ili_logged = 1;
3893 
3894 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3895 				&iip->ili_item.li_lsn);
3896 
3897 	/*
3898 	 * Attach the function xfs_iflush_done to the inode's
3899 	 * buffer.  This will remove the inode from the AIL
3900 	 * and unlock the inode's flush lock when the inode is
3901 	 * completely written to disk.
3902 	 */
3903 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3904 
3905 	/* generate the checksum. */
3906 	xfs_dinode_calc_crc(mp, dip);
3907 
3908 	ASSERT(!list_empty(&bp->b_li_list));
3909 	ASSERT(bp->b_iodone != NULL);
3910 	return 0;
3911 
3912 corrupt_out:
3913 	return -EFSCORRUPTED;
3914 }
3915 
3916 /* Release an inode. */
3917 void
3918 xfs_irele(
3919 	struct xfs_inode	*ip)
3920 {
3921 	trace_xfs_irele(ip, _RET_IP_);
3922 	iput(VFS_I(ip));
3923 }
3924