1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_dir2.h" 18 #include "xfs_attr.h" 19 #include "xfs_trans_space.h" 20 #include "xfs_trans.h" 21 #include "xfs_buf_item.h" 22 #include "xfs_inode_item.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_bmap.h" 25 #include "xfs_bmap_util.h" 26 #include "xfs_errortag.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_filestream.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_symlink.h" 33 #include "xfs_trans_priv.h" 34 #include "xfs_log.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_reflink.h" 37 #include "xfs_ag.h" 38 39 struct kmem_cache *xfs_inode_cache; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, 49 struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) 65 return ip->i_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (xfs_need_iread_extents(&ip->i_df)) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) 128 lock_mode = XFS_ILOCK_EXCL; 129 xfs_ilock(ip, lock_mode); 130 return lock_mode; 131 } 132 133 /* 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 135 * multi-reader locks: invalidate_lock and the i_lock. This routine allows 136 * various combinations of the locks to be obtained. 137 * 138 * The 3 locks should always be ordered so that the IO lock is obtained first, 139 * the mmap lock second and the ilock last in order to prevent deadlock. 140 * 141 * Basic locking order: 142 * 143 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock 144 * 145 * mmap_lock locking order: 146 * 147 * i_rwsem -> page lock -> mmap_lock 148 * mmap_lock -> invalidate_lock -> page_lock 149 * 150 * The difference in mmap_lock locking order mean that we cannot hold the 151 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths 152 * can fault in pages during copy in/out (for buffered IO) or require the 153 * mmap_lock in get_user_pages() to map the user pages into the kernel address 154 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page 155 * fault because page faults already hold the mmap_lock. 156 * 157 * Hence to serialise fully against both syscall and mmap based IO, we need to 158 * take both the i_rwsem and the invalidate_lock. These locks should *only* be 159 * both taken in places where we need to invalidate the page cache in a race 160 * free manner (e.g. truncate, hole punch and other extent manipulation 161 * functions). 162 */ 163 void 164 xfs_ilock( 165 xfs_inode_t *ip, 166 uint lock_flags) 167 { 168 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 169 170 /* 171 * You can't set both SHARED and EXCL for the same lock, 172 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 173 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 174 */ 175 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 176 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 177 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 178 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 180 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 181 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 182 183 if (lock_flags & XFS_IOLOCK_EXCL) { 184 down_write_nested(&VFS_I(ip)->i_rwsem, 185 XFS_IOLOCK_DEP(lock_flags)); 186 } else if (lock_flags & XFS_IOLOCK_SHARED) { 187 down_read_nested(&VFS_I(ip)->i_rwsem, 188 XFS_IOLOCK_DEP(lock_flags)); 189 } 190 191 if (lock_flags & XFS_MMAPLOCK_EXCL) { 192 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 193 XFS_MMAPLOCK_DEP(lock_flags)); 194 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 195 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock, 196 XFS_MMAPLOCK_DEP(lock_flags)); 197 } 198 199 if (lock_flags & XFS_ILOCK_EXCL) 200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_ILOCK_SHARED) 202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 203 } 204 205 /* 206 * This is just like xfs_ilock(), except that the caller 207 * is guaranteed not to sleep. It returns 1 if it gets 208 * the requested locks and 0 otherwise. If the IO lock is 209 * obtained but the inode lock cannot be, then the IO lock 210 * is dropped before returning. 211 * 212 * ip -- the inode being locked 213 * lock_flags -- this parameter indicates the inode's locks to be 214 * to be locked. See the comment for xfs_ilock() for a list 215 * of valid values. 216 */ 217 int 218 xfs_ilock_nowait( 219 xfs_inode_t *ip, 220 uint lock_flags) 221 { 222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 223 224 /* 225 * You can't set both SHARED and EXCL for the same lock, 226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 228 */ 229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 /* 294 * You can't set both SHARED and EXCL for the same lock, 295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 297 */ 298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 305 ASSERT(lock_flags != 0); 306 307 if (lock_flags & XFS_IOLOCK_EXCL) 308 up_write(&VFS_I(ip)->i_rwsem); 309 else if (lock_flags & XFS_IOLOCK_SHARED) 310 up_read(&VFS_I(ip)->i_rwsem); 311 312 if (lock_flags & XFS_MMAPLOCK_EXCL) 313 up_write(&VFS_I(ip)->i_mapping->invalidate_lock); 314 else if (lock_flags & XFS_MMAPLOCK_SHARED) 315 up_read(&VFS_I(ip)->i_mapping->invalidate_lock); 316 317 if (lock_flags & XFS_ILOCK_EXCL) 318 mrunlock_excl(&ip->i_lock); 319 else if (lock_flags & XFS_ILOCK_SHARED) 320 mrunlock_shared(&ip->i_lock); 321 322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 323 } 324 325 /* 326 * give up write locks. the i/o lock cannot be held nested 327 * if it is being demoted. 328 */ 329 void 330 xfs_ilock_demote( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 335 ASSERT((lock_flags & 336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 337 338 if (lock_flags & XFS_ILOCK_EXCL) 339 mrdemote(&ip->i_lock); 340 if (lock_flags & XFS_MMAPLOCK_EXCL) 341 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock); 342 if (lock_flags & XFS_IOLOCK_EXCL) 343 downgrade_write(&VFS_I(ip)->i_rwsem); 344 345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 346 } 347 348 #if defined(DEBUG) || defined(XFS_WARN) 349 static inline bool 350 __xfs_rwsem_islocked( 351 struct rw_semaphore *rwsem, 352 bool shared) 353 { 354 if (!debug_locks) 355 return rwsem_is_locked(rwsem); 356 357 if (!shared) 358 return lockdep_is_held_type(rwsem, 0); 359 360 /* 361 * We are checking that the lock is held at least in shared 362 * mode but don't care that it might be held exclusively 363 * (i.e. shared | excl). Hence we check if the lock is held 364 * in any mode rather than an explicit shared mode. 365 */ 366 return lockdep_is_held_type(rwsem, -1); 367 } 368 369 bool 370 xfs_isilocked( 371 struct xfs_inode *ip, 372 uint lock_flags) 373 { 374 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 375 if (!(lock_flags & XFS_ILOCK_SHARED)) 376 return !!ip->i_lock.mr_writer; 377 return rwsem_is_locked(&ip->i_lock.mr_lock); 378 } 379 380 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 381 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 382 (lock_flags & XFS_IOLOCK_SHARED)); 383 } 384 385 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) { 386 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem, 387 (lock_flags & XFS_IOLOCK_SHARED)); 388 } 389 390 ASSERT(0); 391 return false; 392 } 393 #endif 394 395 /* 396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 399 * errors and warnings. 400 */ 401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 402 static bool 403 xfs_lockdep_subclass_ok( 404 int subclass) 405 { 406 return subclass < MAX_LOCKDEP_SUBCLASSES; 407 } 408 #else 409 #define xfs_lockdep_subclass_ok(subclass) (true) 410 #endif 411 412 /* 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 414 * value. This can be called for any type of inode lock combination, including 415 * parent locking. Care must be taken to ensure we don't overrun the subclass 416 * storage fields in the class mask we build. 417 */ 418 static inline int 419 xfs_lock_inumorder(int lock_mode, int subclass) 420 { 421 int class = 0; 422 423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 424 XFS_ILOCK_RTSUM))); 425 ASSERT(xfs_lockdep_subclass_ok(subclass)); 426 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 429 class += subclass << XFS_IOLOCK_SHIFT; 430 } 431 432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 434 class += subclass << XFS_MMAPLOCK_SHIFT; 435 } 436 437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 439 class += subclass << XFS_ILOCK_SHIFT; 440 } 441 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 443 } 444 445 /* 446 * The following routine will lock n inodes in exclusive mode. We assume the 447 * caller calls us with the inodes in i_ino order. 448 * 449 * We need to detect deadlock where an inode that we lock is in the AIL and we 450 * start waiting for another inode that is locked by a thread in a long running 451 * transaction (such as truncate). This can result in deadlock since the long 452 * running trans might need to wait for the inode we just locked in order to 453 * push the tail and free space in the log. 454 * 455 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 457 * lock more than one at a time, lockdep will report false positives saying we 458 * have violated locking orders. 459 */ 460 static void 461 xfs_lock_inodes( 462 struct xfs_inode **ips, 463 int inodes, 464 uint lock_mode) 465 { 466 int attempts = 0, i, j, try_lock; 467 struct xfs_log_item *lp; 468 469 /* 470 * Currently supports between 2 and 5 inodes with exclusive locking. We 471 * support an arbitrary depth of locking here, but absolute limits on 472 * inodes depend on the type of locking and the limits placed by 473 * lockdep annotations in xfs_lock_inumorder. These are all checked by 474 * the asserts. 475 */ 476 ASSERT(ips && inodes >= 2 && inodes <= 5); 477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 478 XFS_ILOCK_EXCL)); 479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 480 XFS_ILOCK_SHARED))); 481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 485 486 if (lock_mode & XFS_IOLOCK_EXCL) { 487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 488 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 490 491 try_lock = 0; 492 i = 0; 493 again: 494 for (; i < inodes; i++) { 495 ASSERT(ips[i]); 496 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 498 continue; 499 500 /* 501 * If try_lock is not set yet, make sure all locked inodes are 502 * not in the AIL. If any are, set try_lock to be used later. 503 */ 504 if (!try_lock) { 505 for (j = (i - 1); j >= 0 && !try_lock; j--) { 506 lp = &ips[j]->i_itemp->ili_item; 507 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 508 try_lock++; 509 } 510 } 511 512 /* 513 * If any of the previous locks we have locked is in the AIL, 514 * we must TRY to get the second and subsequent locks. If 515 * we can't get any, we must release all we have 516 * and try again. 517 */ 518 if (!try_lock) { 519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 520 continue; 521 } 522 523 /* try_lock means we have an inode locked that is in the AIL. */ 524 ASSERT(i != 0); 525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 526 continue; 527 528 /* 529 * Unlock all previous guys and try again. xfs_iunlock will try 530 * to push the tail if the inode is in the AIL. 531 */ 532 attempts++; 533 for (j = i - 1; j >= 0; j--) { 534 /* 535 * Check to see if we've already unlocked this one. Not 536 * the first one going back, and the inode ptr is the 537 * same. 538 */ 539 if (j != (i - 1) && ips[j] == ips[j + 1]) 540 continue; 541 542 xfs_iunlock(ips[j], lock_mode); 543 } 544 545 if ((attempts % 5) == 0) { 546 delay(1); /* Don't just spin the CPU */ 547 } 548 i = 0; 549 try_lock = 0; 550 goto again; 551 } 552 } 553 554 /* 555 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and 556 * mmaplock must be double-locked separately since we use i_rwsem and 557 * invalidate_lock for that. We now support taking one lock EXCL and the 558 * other SHARED. 559 */ 560 void 561 xfs_lock_two_inodes( 562 struct xfs_inode *ip0, 563 uint ip0_mode, 564 struct xfs_inode *ip1, 565 uint ip1_mode) 566 { 567 int attempts = 0; 568 struct xfs_log_item *lp; 569 570 ASSERT(hweight32(ip0_mode) == 1); 571 ASSERT(hweight32(ip1_mode) == 1); 572 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 573 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 574 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 575 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 576 ASSERT(ip0->i_ino != ip1->i_ino); 577 578 if (ip0->i_ino > ip1->i_ino) { 579 swap(ip0, ip1); 580 swap(ip0_mode, ip1_mode); 581 } 582 583 again: 584 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 585 586 /* 587 * If the first lock we have locked is in the AIL, we must TRY to get 588 * the second lock. If we can't get it, we must release the first one 589 * and try again. 590 */ 591 lp = &ip0->i_itemp->ili_item; 592 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 593 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 594 xfs_iunlock(ip0, ip0_mode); 595 if ((++attempts % 5) == 0) 596 delay(1); /* Don't just spin the CPU */ 597 goto again; 598 } 599 } else { 600 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 601 } 602 } 603 604 uint 605 xfs_ip2xflags( 606 struct xfs_inode *ip) 607 { 608 uint flags = 0; 609 610 if (ip->i_diflags & XFS_DIFLAG_ANY) { 611 if (ip->i_diflags & XFS_DIFLAG_REALTIME) 612 flags |= FS_XFLAG_REALTIME; 613 if (ip->i_diflags & XFS_DIFLAG_PREALLOC) 614 flags |= FS_XFLAG_PREALLOC; 615 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) 616 flags |= FS_XFLAG_IMMUTABLE; 617 if (ip->i_diflags & XFS_DIFLAG_APPEND) 618 flags |= FS_XFLAG_APPEND; 619 if (ip->i_diflags & XFS_DIFLAG_SYNC) 620 flags |= FS_XFLAG_SYNC; 621 if (ip->i_diflags & XFS_DIFLAG_NOATIME) 622 flags |= FS_XFLAG_NOATIME; 623 if (ip->i_diflags & XFS_DIFLAG_NODUMP) 624 flags |= FS_XFLAG_NODUMP; 625 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) 626 flags |= FS_XFLAG_RTINHERIT; 627 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) 628 flags |= FS_XFLAG_PROJINHERIT; 629 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) 630 flags |= FS_XFLAG_NOSYMLINKS; 631 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) 632 flags |= FS_XFLAG_EXTSIZE; 633 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) 634 flags |= FS_XFLAG_EXTSZINHERIT; 635 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) 636 flags |= FS_XFLAG_NODEFRAG; 637 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) 638 flags |= FS_XFLAG_FILESTREAM; 639 } 640 641 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { 642 if (ip->i_diflags2 & XFS_DIFLAG2_DAX) 643 flags |= FS_XFLAG_DAX; 644 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) 645 flags |= FS_XFLAG_COWEXTSIZE; 646 } 647 648 if (XFS_IFORK_Q(ip)) 649 flags |= FS_XFLAG_HASATTR; 650 return flags; 651 } 652 653 /* 654 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 655 * is allowed, otherwise it has to be an exact match. If a CI match is found, 656 * ci_name->name will point to a the actual name (caller must free) or 657 * will be set to NULL if an exact match is found. 658 */ 659 int 660 xfs_lookup( 661 xfs_inode_t *dp, 662 struct xfs_name *name, 663 xfs_inode_t **ipp, 664 struct xfs_name *ci_name) 665 { 666 xfs_ino_t inum; 667 int error; 668 669 trace_xfs_lookup(dp, name); 670 671 if (xfs_is_shutdown(dp->i_mount)) 672 return -EIO; 673 674 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 675 if (error) 676 goto out_unlock; 677 678 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 679 if (error) 680 goto out_free_name; 681 682 return 0; 683 684 out_free_name: 685 if (ci_name) 686 kmem_free(ci_name->name); 687 out_unlock: 688 *ipp = NULL; 689 return error; 690 } 691 692 /* Propagate di_flags from a parent inode to a child inode. */ 693 static void 694 xfs_inode_inherit_flags( 695 struct xfs_inode *ip, 696 const struct xfs_inode *pip) 697 { 698 unsigned int di_flags = 0; 699 xfs_failaddr_t failaddr; 700 umode_t mode = VFS_I(ip)->i_mode; 701 702 if (S_ISDIR(mode)) { 703 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) 704 di_flags |= XFS_DIFLAG_RTINHERIT; 705 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 706 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 707 ip->i_extsize = pip->i_extsize; 708 } 709 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) 710 di_flags |= XFS_DIFLAG_PROJINHERIT; 711 } else if (S_ISREG(mode)) { 712 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && 713 xfs_has_realtime(ip->i_mount)) 714 di_flags |= XFS_DIFLAG_REALTIME; 715 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { 716 di_flags |= XFS_DIFLAG_EXTSIZE; 717 ip->i_extsize = pip->i_extsize; 718 } 719 } 720 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && 721 xfs_inherit_noatime) 722 di_flags |= XFS_DIFLAG_NOATIME; 723 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && 724 xfs_inherit_nodump) 725 di_flags |= XFS_DIFLAG_NODUMP; 726 if ((pip->i_diflags & XFS_DIFLAG_SYNC) && 727 xfs_inherit_sync) 728 di_flags |= XFS_DIFLAG_SYNC; 729 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && 730 xfs_inherit_nosymlinks) 731 di_flags |= XFS_DIFLAG_NOSYMLINKS; 732 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && 733 xfs_inherit_nodefrag) 734 di_flags |= XFS_DIFLAG_NODEFRAG; 735 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) 736 di_flags |= XFS_DIFLAG_FILESTREAM; 737 738 ip->i_diflags |= di_flags; 739 740 /* 741 * Inode verifiers on older kernels only check that the extent size 742 * hint is an integer multiple of the rt extent size on realtime files. 743 * They did not check the hint alignment on a directory with both 744 * rtinherit and extszinherit flags set. If the misaligned hint is 745 * propagated from a directory into a new realtime file, new file 746 * allocations will fail due to math errors in the rt allocator and/or 747 * trip the verifiers. Validate the hint settings in the new file so 748 * that we don't let broken hints propagate. 749 */ 750 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, 751 VFS_I(ip)->i_mode, ip->i_diflags); 752 if (failaddr) { 753 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | 754 XFS_DIFLAG_EXTSZINHERIT); 755 ip->i_extsize = 0; 756 } 757 } 758 759 /* Propagate di_flags2 from a parent inode to a child inode. */ 760 static void 761 xfs_inode_inherit_flags2( 762 struct xfs_inode *ip, 763 const struct xfs_inode *pip) 764 { 765 xfs_failaddr_t failaddr; 766 767 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { 768 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 769 ip->i_cowextsize = pip->i_cowextsize; 770 } 771 if (pip->i_diflags2 & XFS_DIFLAG2_DAX) 772 ip->i_diflags2 |= XFS_DIFLAG2_DAX; 773 774 /* Don't let invalid cowextsize hints propagate. */ 775 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, 776 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); 777 if (failaddr) { 778 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; 779 ip->i_cowextsize = 0; 780 } 781 } 782 783 /* 784 * Initialise a newly allocated inode and return the in-core inode to the 785 * caller locked exclusively. 786 */ 787 int 788 xfs_init_new_inode( 789 struct user_namespace *mnt_userns, 790 struct xfs_trans *tp, 791 struct xfs_inode *pip, 792 xfs_ino_t ino, 793 umode_t mode, 794 xfs_nlink_t nlink, 795 dev_t rdev, 796 prid_t prid, 797 bool init_xattrs, 798 struct xfs_inode **ipp) 799 { 800 struct inode *dir = pip ? VFS_I(pip) : NULL; 801 struct xfs_mount *mp = tp->t_mountp; 802 struct xfs_inode *ip; 803 unsigned int flags; 804 int error; 805 struct timespec64 tv; 806 struct inode *inode; 807 808 /* 809 * Protect against obviously corrupt allocation btree records. Later 810 * xfs_iget checks will catch re-allocation of other active in-memory 811 * and on-disk inodes. If we don't catch reallocating the parent inode 812 * here we will deadlock in xfs_iget() so we have to do these checks 813 * first. 814 */ 815 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 816 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 817 return -EFSCORRUPTED; 818 } 819 820 /* 821 * Get the in-core inode with the lock held exclusively to prevent 822 * others from looking at until we're done. 823 */ 824 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 825 if (error) 826 return error; 827 828 ASSERT(ip != NULL); 829 inode = VFS_I(ip); 830 set_nlink(inode, nlink); 831 inode->i_rdev = rdev; 832 ip->i_projid = prid; 833 834 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) { 835 inode_fsuid_set(inode, mnt_userns); 836 inode->i_gid = dir->i_gid; 837 inode->i_mode = mode; 838 } else { 839 inode_init_owner(mnt_userns, inode, dir, mode); 840 } 841 842 /* 843 * If the group ID of the new file does not match the effective group 844 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 845 * (and only if the irix_sgid_inherit compatibility variable is set). 846 */ 847 if (irix_sgid_inherit && 848 (inode->i_mode & S_ISGID) && 849 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 850 inode->i_mode &= ~S_ISGID; 851 852 ip->i_disk_size = 0; 853 ip->i_df.if_nextents = 0; 854 ASSERT(ip->i_nblocks == 0); 855 856 tv = current_time(inode); 857 inode->i_mtime = tv; 858 inode->i_atime = tv; 859 inode->i_ctime = tv; 860 861 ip->i_extsize = 0; 862 ip->i_diflags = 0; 863 864 if (xfs_has_v3inodes(mp)) { 865 inode_set_iversion(inode, 1); 866 ip->i_cowextsize = 0; 867 ip->i_crtime = tv; 868 } 869 870 flags = XFS_ILOG_CORE; 871 switch (mode & S_IFMT) { 872 case S_IFIFO: 873 case S_IFCHR: 874 case S_IFBLK: 875 case S_IFSOCK: 876 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 877 flags |= XFS_ILOG_DEV; 878 break; 879 case S_IFREG: 880 case S_IFDIR: 881 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) 882 xfs_inode_inherit_flags(ip, pip); 883 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) 884 xfs_inode_inherit_flags2(ip, pip); 885 fallthrough; 886 case S_IFLNK: 887 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 888 ip->i_df.if_bytes = 0; 889 ip->i_df.if_u1.if_root = NULL; 890 break; 891 default: 892 ASSERT(0); 893 } 894 895 /* 896 * If we need to create attributes immediately after allocating the 897 * inode, initialise an empty attribute fork right now. We use the 898 * default fork offset for attributes here as we don't know exactly what 899 * size or how many attributes we might be adding. We can do this 900 * safely here because we know the data fork is completely empty and 901 * this saves us from needing to run a separate transaction to set the 902 * fork offset in the immediate future. 903 */ 904 if (init_xattrs && xfs_has_attr(mp)) { 905 ip->i_forkoff = xfs_default_attroffset(ip) >> 3; 906 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); 907 } 908 909 /* 910 * Log the new values stuffed into the inode. 911 */ 912 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 913 xfs_trans_log_inode(tp, ip, flags); 914 915 /* now that we have an i_mode we can setup the inode structure */ 916 xfs_setup_inode(ip); 917 918 *ipp = ip; 919 return 0; 920 } 921 922 /* 923 * Decrement the link count on an inode & log the change. If this causes the 924 * link count to go to zero, move the inode to AGI unlinked list so that it can 925 * be freed when the last active reference goes away via xfs_inactive(). 926 */ 927 static int /* error */ 928 xfs_droplink( 929 xfs_trans_t *tp, 930 xfs_inode_t *ip) 931 { 932 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 933 934 drop_nlink(VFS_I(ip)); 935 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 936 937 if (VFS_I(ip)->i_nlink) 938 return 0; 939 940 return xfs_iunlink(tp, ip); 941 } 942 943 /* 944 * Increment the link count on an inode & log the change. 945 */ 946 static void 947 xfs_bumplink( 948 xfs_trans_t *tp, 949 xfs_inode_t *ip) 950 { 951 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 952 953 inc_nlink(VFS_I(ip)); 954 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 955 } 956 957 int 958 xfs_create( 959 struct user_namespace *mnt_userns, 960 xfs_inode_t *dp, 961 struct xfs_name *name, 962 umode_t mode, 963 dev_t rdev, 964 bool init_xattrs, 965 xfs_inode_t **ipp) 966 { 967 int is_dir = S_ISDIR(mode); 968 struct xfs_mount *mp = dp->i_mount; 969 struct xfs_inode *ip = NULL; 970 struct xfs_trans *tp = NULL; 971 int error; 972 bool unlock_dp_on_error = false; 973 prid_t prid; 974 struct xfs_dquot *udqp = NULL; 975 struct xfs_dquot *gdqp = NULL; 976 struct xfs_dquot *pdqp = NULL; 977 struct xfs_trans_res *tres; 978 uint resblks; 979 xfs_ino_t ino; 980 981 trace_xfs_create(dp, name); 982 983 if (xfs_is_shutdown(mp)) 984 return -EIO; 985 986 prid = xfs_get_initial_prid(dp); 987 988 /* 989 * Make sure that we have allocated dquot(s) on disk. 990 */ 991 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 992 mapped_fsgid(mnt_userns, &init_user_ns), prid, 993 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 994 &udqp, &gdqp, &pdqp); 995 if (error) 996 return error; 997 998 if (is_dir) { 999 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1000 tres = &M_RES(mp)->tr_mkdir; 1001 } else { 1002 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1003 tres = &M_RES(mp)->tr_create; 1004 } 1005 1006 /* 1007 * Initially assume that the file does not exist and 1008 * reserve the resources for that case. If that is not 1009 * the case we'll drop the one we have and get a more 1010 * appropriate transaction later. 1011 */ 1012 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1013 &tp); 1014 if (error == -ENOSPC) { 1015 /* flush outstanding delalloc blocks and retry */ 1016 xfs_flush_inodes(mp); 1017 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1018 resblks, &tp); 1019 } 1020 if (error) 1021 goto out_release_dquots; 1022 1023 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1024 unlock_dp_on_error = true; 1025 1026 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1027 XFS_IEXT_DIR_MANIP_CNT(mp)); 1028 if (error) 1029 goto out_trans_cancel; 1030 1031 /* 1032 * A newly created regular or special file just has one directory 1033 * entry pointing to them, but a directory also the "." entry 1034 * pointing to itself. 1035 */ 1036 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1037 if (!error) 1038 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1039 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); 1040 if (error) 1041 goto out_trans_cancel; 1042 1043 /* 1044 * Now we join the directory inode to the transaction. We do not do it 1045 * earlier because xfs_dialloc might commit the previous transaction 1046 * (and release all the locks). An error from here on will result in 1047 * the transaction cancel unlocking dp so don't do it explicitly in the 1048 * error path. 1049 */ 1050 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1051 unlock_dp_on_error = false; 1052 1053 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1054 resblks - XFS_IALLOC_SPACE_RES(mp)); 1055 if (error) { 1056 ASSERT(error != -ENOSPC); 1057 goto out_trans_cancel; 1058 } 1059 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1060 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1061 1062 if (is_dir) { 1063 error = xfs_dir_init(tp, ip, dp); 1064 if (error) 1065 goto out_trans_cancel; 1066 1067 xfs_bumplink(tp, dp); 1068 } 1069 1070 /* 1071 * If this is a synchronous mount, make sure that the 1072 * create transaction goes to disk before returning to 1073 * the user. 1074 */ 1075 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1076 xfs_trans_set_sync(tp); 1077 1078 /* 1079 * Attach the dquot(s) to the inodes and modify them incore. 1080 * These ids of the inode couldn't have changed since the new 1081 * inode has been locked ever since it was created. 1082 */ 1083 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1084 1085 error = xfs_trans_commit(tp); 1086 if (error) 1087 goto out_release_inode; 1088 1089 xfs_qm_dqrele(udqp); 1090 xfs_qm_dqrele(gdqp); 1091 xfs_qm_dqrele(pdqp); 1092 1093 *ipp = ip; 1094 return 0; 1095 1096 out_trans_cancel: 1097 xfs_trans_cancel(tp); 1098 out_release_inode: 1099 /* 1100 * Wait until after the current transaction is aborted to finish the 1101 * setup of the inode and release the inode. This prevents recursive 1102 * transactions and deadlocks from xfs_inactive. 1103 */ 1104 if (ip) { 1105 xfs_finish_inode_setup(ip); 1106 xfs_irele(ip); 1107 } 1108 out_release_dquots: 1109 xfs_qm_dqrele(udqp); 1110 xfs_qm_dqrele(gdqp); 1111 xfs_qm_dqrele(pdqp); 1112 1113 if (unlock_dp_on_error) 1114 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1115 return error; 1116 } 1117 1118 int 1119 xfs_create_tmpfile( 1120 struct user_namespace *mnt_userns, 1121 struct xfs_inode *dp, 1122 umode_t mode, 1123 struct xfs_inode **ipp) 1124 { 1125 struct xfs_mount *mp = dp->i_mount; 1126 struct xfs_inode *ip = NULL; 1127 struct xfs_trans *tp = NULL; 1128 int error; 1129 prid_t prid; 1130 struct xfs_dquot *udqp = NULL; 1131 struct xfs_dquot *gdqp = NULL; 1132 struct xfs_dquot *pdqp = NULL; 1133 struct xfs_trans_res *tres; 1134 uint resblks; 1135 xfs_ino_t ino; 1136 1137 if (xfs_is_shutdown(mp)) 1138 return -EIO; 1139 1140 prid = xfs_get_initial_prid(dp); 1141 1142 /* 1143 * Make sure that we have allocated dquot(s) on disk. 1144 */ 1145 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns), 1146 mapped_fsgid(mnt_userns, &init_user_ns), prid, 1147 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1148 &udqp, &gdqp, &pdqp); 1149 if (error) 1150 return error; 1151 1152 resblks = XFS_IALLOC_SPACE_RES(mp); 1153 tres = &M_RES(mp)->tr_create_tmpfile; 1154 1155 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1156 &tp); 1157 if (error) 1158 goto out_release_dquots; 1159 1160 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); 1161 if (!error) 1162 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, 1163 0, 0, prid, false, &ip); 1164 if (error) 1165 goto out_trans_cancel; 1166 1167 if (xfs_has_wsync(mp)) 1168 xfs_trans_set_sync(tp); 1169 1170 /* 1171 * Attach the dquot(s) to the inodes and modify them incore. 1172 * These ids of the inode couldn't have changed since the new 1173 * inode has been locked ever since it was created. 1174 */ 1175 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1176 1177 error = xfs_iunlink(tp, ip); 1178 if (error) 1179 goto out_trans_cancel; 1180 1181 error = xfs_trans_commit(tp); 1182 if (error) 1183 goto out_release_inode; 1184 1185 xfs_qm_dqrele(udqp); 1186 xfs_qm_dqrele(gdqp); 1187 xfs_qm_dqrele(pdqp); 1188 1189 *ipp = ip; 1190 return 0; 1191 1192 out_trans_cancel: 1193 xfs_trans_cancel(tp); 1194 out_release_inode: 1195 /* 1196 * Wait until after the current transaction is aborted to finish the 1197 * setup of the inode and release the inode. This prevents recursive 1198 * transactions and deadlocks from xfs_inactive. 1199 */ 1200 if (ip) { 1201 xfs_finish_inode_setup(ip); 1202 xfs_irele(ip); 1203 } 1204 out_release_dquots: 1205 xfs_qm_dqrele(udqp); 1206 xfs_qm_dqrele(gdqp); 1207 xfs_qm_dqrele(pdqp); 1208 1209 return error; 1210 } 1211 1212 int 1213 xfs_link( 1214 xfs_inode_t *tdp, 1215 xfs_inode_t *sip, 1216 struct xfs_name *target_name) 1217 { 1218 xfs_mount_t *mp = tdp->i_mount; 1219 xfs_trans_t *tp; 1220 int error; 1221 int resblks; 1222 1223 trace_xfs_link(tdp, target_name); 1224 1225 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1226 1227 if (xfs_is_shutdown(mp)) 1228 return -EIO; 1229 1230 error = xfs_qm_dqattach(sip); 1231 if (error) 1232 goto std_return; 1233 1234 error = xfs_qm_dqattach(tdp); 1235 if (error) 1236 goto std_return; 1237 1238 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1239 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1240 if (error == -ENOSPC) { 1241 resblks = 0; 1242 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1243 } 1244 if (error) 1245 goto std_return; 1246 1247 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1248 1249 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1250 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1251 1252 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1253 XFS_IEXT_DIR_MANIP_CNT(mp)); 1254 if (error) 1255 goto error_return; 1256 1257 /* 1258 * If we are using project inheritance, we only allow hard link 1259 * creation in our tree when the project IDs are the same; else 1260 * the tree quota mechanism could be circumvented. 1261 */ 1262 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 1263 tdp->i_projid != sip->i_projid)) { 1264 error = -EXDEV; 1265 goto error_return; 1266 } 1267 1268 if (!resblks) { 1269 error = xfs_dir_canenter(tp, tdp, target_name); 1270 if (error) 1271 goto error_return; 1272 } 1273 1274 /* 1275 * Handle initial link state of O_TMPFILE inode 1276 */ 1277 if (VFS_I(sip)->i_nlink == 0) { 1278 struct xfs_perag *pag; 1279 1280 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); 1281 error = xfs_iunlink_remove(tp, pag, sip); 1282 xfs_perag_put(pag); 1283 if (error) 1284 goto error_return; 1285 } 1286 1287 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1288 resblks); 1289 if (error) 1290 goto error_return; 1291 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1292 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1293 1294 xfs_bumplink(tp, sip); 1295 1296 /* 1297 * If this is a synchronous mount, make sure that the 1298 * link transaction goes to disk before returning to 1299 * the user. 1300 */ 1301 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 1302 xfs_trans_set_sync(tp); 1303 1304 return xfs_trans_commit(tp); 1305 1306 error_return: 1307 xfs_trans_cancel(tp); 1308 std_return: 1309 return error; 1310 } 1311 1312 /* Clear the reflink flag and the cowblocks tag if possible. */ 1313 static void 1314 xfs_itruncate_clear_reflink_flags( 1315 struct xfs_inode *ip) 1316 { 1317 struct xfs_ifork *dfork; 1318 struct xfs_ifork *cfork; 1319 1320 if (!xfs_is_reflink_inode(ip)) 1321 return; 1322 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1323 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1324 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1325 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1326 if (cfork->if_bytes == 0) 1327 xfs_inode_clear_cowblocks_tag(ip); 1328 } 1329 1330 /* 1331 * Free up the underlying blocks past new_size. The new size must be smaller 1332 * than the current size. This routine can be used both for the attribute and 1333 * data fork, and does not modify the inode size, which is left to the caller. 1334 * 1335 * The transaction passed to this routine must have made a permanent log 1336 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1337 * given transaction and start new ones, so make sure everything involved in 1338 * the transaction is tidy before calling here. Some transaction will be 1339 * returned to the caller to be committed. The incoming transaction must 1340 * already include the inode, and both inode locks must be held exclusively. 1341 * The inode must also be "held" within the transaction. On return the inode 1342 * will be "held" within the returned transaction. This routine does NOT 1343 * require any disk space to be reserved for it within the transaction. 1344 * 1345 * If we get an error, we must return with the inode locked and linked into the 1346 * current transaction. This keeps things simple for the higher level code, 1347 * because it always knows that the inode is locked and held in the transaction 1348 * that returns to it whether errors occur or not. We don't mark the inode 1349 * dirty on error so that transactions can be easily aborted if possible. 1350 */ 1351 int 1352 xfs_itruncate_extents_flags( 1353 struct xfs_trans **tpp, 1354 struct xfs_inode *ip, 1355 int whichfork, 1356 xfs_fsize_t new_size, 1357 int flags) 1358 { 1359 struct xfs_mount *mp = ip->i_mount; 1360 struct xfs_trans *tp = *tpp; 1361 xfs_fileoff_t first_unmap_block; 1362 xfs_filblks_t unmap_len; 1363 int error = 0; 1364 1365 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1366 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1367 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1368 ASSERT(new_size <= XFS_ISIZE(ip)); 1369 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1370 ASSERT(ip->i_itemp != NULL); 1371 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1372 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1373 1374 trace_xfs_itruncate_extents_start(ip, new_size); 1375 1376 flags |= xfs_bmapi_aflag(whichfork); 1377 1378 /* 1379 * Since it is possible for space to become allocated beyond 1380 * the end of the file (in a crash where the space is allocated 1381 * but the inode size is not yet updated), simply remove any 1382 * blocks which show up between the new EOF and the maximum 1383 * possible file size. 1384 * 1385 * We have to free all the blocks to the bmbt maximum offset, even if 1386 * the page cache can't scale that far. 1387 */ 1388 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1389 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1390 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1391 return 0; 1392 } 1393 1394 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1395 while (unmap_len > 0) { 1396 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1397 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1398 flags, XFS_ITRUNC_MAX_EXTENTS); 1399 if (error) 1400 goto out; 1401 1402 /* free the just unmapped extents */ 1403 error = xfs_defer_finish(&tp); 1404 if (error) 1405 goto out; 1406 } 1407 1408 if (whichfork == XFS_DATA_FORK) { 1409 /* Remove all pending CoW reservations. */ 1410 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1411 first_unmap_block, XFS_MAX_FILEOFF, true); 1412 if (error) 1413 goto out; 1414 1415 xfs_itruncate_clear_reflink_flags(ip); 1416 } 1417 1418 /* 1419 * Always re-log the inode so that our permanent transaction can keep 1420 * on rolling it forward in the log. 1421 */ 1422 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1423 1424 trace_xfs_itruncate_extents_end(ip, new_size); 1425 1426 out: 1427 *tpp = tp; 1428 return error; 1429 } 1430 1431 int 1432 xfs_release( 1433 xfs_inode_t *ip) 1434 { 1435 xfs_mount_t *mp = ip->i_mount; 1436 int error = 0; 1437 1438 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1439 return 0; 1440 1441 /* If this is a read-only mount, don't do this (would generate I/O) */ 1442 if (xfs_is_readonly(mp)) 1443 return 0; 1444 1445 if (!xfs_is_shutdown(mp)) { 1446 int truncated; 1447 1448 /* 1449 * If we previously truncated this file and removed old data 1450 * in the process, we want to initiate "early" writeout on 1451 * the last close. This is an attempt to combat the notorious 1452 * NULL files problem which is particularly noticeable from a 1453 * truncate down, buffered (re-)write (delalloc), followed by 1454 * a crash. What we are effectively doing here is 1455 * significantly reducing the time window where we'd otherwise 1456 * be exposed to that problem. 1457 */ 1458 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1459 if (truncated) { 1460 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1461 if (ip->i_delayed_blks > 0) { 1462 error = filemap_flush(VFS_I(ip)->i_mapping); 1463 if (error) 1464 return error; 1465 } 1466 } 1467 } 1468 1469 if (VFS_I(ip)->i_nlink == 0) 1470 return 0; 1471 1472 /* 1473 * If we can't get the iolock just skip truncating the blocks past EOF 1474 * because we could deadlock with the mmap_lock otherwise. We'll get 1475 * another chance to drop them once the last reference to the inode is 1476 * dropped, so we'll never leak blocks permanently. 1477 */ 1478 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 1479 return 0; 1480 1481 if (xfs_can_free_eofblocks(ip, false)) { 1482 /* 1483 * Check if the inode is being opened, written and closed 1484 * frequently and we have delayed allocation blocks outstanding 1485 * (e.g. streaming writes from the NFS server), truncating the 1486 * blocks past EOF will cause fragmentation to occur. 1487 * 1488 * In this case don't do the truncation, but we have to be 1489 * careful how we detect this case. Blocks beyond EOF show up as 1490 * i_delayed_blks even when the inode is clean, so we need to 1491 * truncate them away first before checking for a dirty release. 1492 * Hence on the first dirty close we will still remove the 1493 * speculative allocation, but after that we will leave it in 1494 * place. 1495 */ 1496 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1497 goto out_unlock; 1498 1499 error = xfs_free_eofblocks(ip); 1500 if (error) 1501 goto out_unlock; 1502 1503 /* delalloc blocks after truncation means it really is dirty */ 1504 if (ip->i_delayed_blks) 1505 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1506 } 1507 1508 out_unlock: 1509 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1510 return error; 1511 } 1512 1513 /* 1514 * xfs_inactive_truncate 1515 * 1516 * Called to perform a truncate when an inode becomes unlinked. 1517 */ 1518 STATIC int 1519 xfs_inactive_truncate( 1520 struct xfs_inode *ip) 1521 { 1522 struct xfs_mount *mp = ip->i_mount; 1523 struct xfs_trans *tp; 1524 int error; 1525 1526 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1527 if (error) { 1528 ASSERT(xfs_is_shutdown(mp)); 1529 return error; 1530 } 1531 xfs_ilock(ip, XFS_ILOCK_EXCL); 1532 xfs_trans_ijoin(tp, ip, 0); 1533 1534 /* 1535 * Log the inode size first to prevent stale data exposure in the event 1536 * of a system crash before the truncate completes. See the related 1537 * comment in xfs_vn_setattr_size() for details. 1538 */ 1539 ip->i_disk_size = 0; 1540 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1541 1542 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1543 if (error) 1544 goto error_trans_cancel; 1545 1546 ASSERT(ip->i_df.if_nextents == 0); 1547 1548 error = xfs_trans_commit(tp); 1549 if (error) 1550 goto error_unlock; 1551 1552 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1553 return 0; 1554 1555 error_trans_cancel: 1556 xfs_trans_cancel(tp); 1557 error_unlock: 1558 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1559 return error; 1560 } 1561 1562 /* 1563 * xfs_inactive_ifree() 1564 * 1565 * Perform the inode free when an inode is unlinked. 1566 */ 1567 STATIC int 1568 xfs_inactive_ifree( 1569 struct xfs_inode *ip) 1570 { 1571 struct xfs_mount *mp = ip->i_mount; 1572 struct xfs_trans *tp; 1573 int error; 1574 1575 /* 1576 * We try to use a per-AG reservation for any block needed by the finobt 1577 * tree, but as the finobt feature predates the per-AG reservation 1578 * support a degraded file system might not have enough space for the 1579 * reservation at mount time. In that case try to dip into the reserved 1580 * pool and pray. 1581 * 1582 * Send a warning if the reservation does happen to fail, as the inode 1583 * now remains allocated and sits on the unlinked list until the fs is 1584 * repaired. 1585 */ 1586 if (unlikely(mp->m_finobt_nores)) { 1587 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1588 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1589 &tp); 1590 } else { 1591 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1592 } 1593 if (error) { 1594 if (error == -ENOSPC) { 1595 xfs_warn_ratelimited(mp, 1596 "Failed to remove inode(s) from unlinked list. " 1597 "Please free space, unmount and run xfs_repair."); 1598 } else { 1599 ASSERT(xfs_is_shutdown(mp)); 1600 } 1601 return error; 1602 } 1603 1604 /* 1605 * We do not hold the inode locked across the entire rolling transaction 1606 * here. We only need to hold it for the first transaction that 1607 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1608 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1609 * here breaks the relationship between cluster buffer invalidation and 1610 * stale inode invalidation on cluster buffer item journal commit 1611 * completion, and can result in leaving dirty stale inodes hanging 1612 * around in memory. 1613 * 1614 * We have no need for serialising this inode operation against other 1615 * operations - we freed the inode and hence reallocation is required 1616 * and that will serialise on reallocating the space the deferops need 1617 * to free. Hence we can unlock the inode on the first commit of 1618 * the transaction rather than roll it right through the deferops. This 1619 * avoids relogging the XFS_ISTALE inode. 1620 * 1621 * We check that xfs_ifree() hasn't grown an internal transaction roll 1622 * by asserting that the inode is still locked when it returns. 1623 */ 1624 xfs_ilock(ip, XFS_ILOCK_EXCL); 1625 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1626 1627 error = xfs_ifree(tp, ip); 1628 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1629 if (error) { 1630 /* 1631 * If we fail to free the inode, shut down. The cancel 1632 * might do that, we need to make sure. Otherwise the 1633 * inode might be lost for a long time or forever. 1634 */ 1635 if (!xfs_is_shutdown(mp)) { 1636 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1637 __func__, error); 1638 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1639 } 1640 xfs_trans_cancel(tp); 1641 return error; 1642 } 1643 1644 /* 1645 * Credit the quota account(s). The inode is gone. 1646 */ 1647 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1648 1649 /* 1650 * Just ignore errors at this point. There is nothing we can do except 1651 * to try to keep going. Make sure it's not a silent error. 1652 */ 1653 error = xfs_trans_commit(tp); 1654 if (error) 1655 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1656 __func__, error); 1657 1658 return 0; 1659 } 1660 1661 /* 1662 * Returns true if we need to update the on-disk metadata before we can free 1663 * the memory used by this inode. Updates include freeing post-eof 1664 * preallocations; freeing COW staging extents; and marking the inode free in 1665 * the inobt if it is on the unlinked list. 1666 */ 1667 bool 1668 xfs_inode_needs_inactive( 1669 struct xfs_inode *ip) 1670 { 1671 struct xfs_mount *mp = ip->i_mount; 1672 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1673 1674 /* 1675 * If the inode is already free, then there can be nothing 1676 * to clean up here. 1677 */ 1678 if (VFS_I(ip)->i_mode == 0) 1679 return false; 1680 1681 /* If this is a read-only mount, don't do this (would generate I/O) */ 1682 if (xfs_is_readonly(mp)) 1683 return false; 1684 1685 /* If the log isn't running, push inodes straight to reclaim. */ 1686 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp)) 1687 return false; 1688 1689 /* Metadata inodes require explicit resource cleanup. */ 1690 if (xfs_is_metadata_inode(ip)) 1691 return false; 1692 1693 /* Want to clean out the cow blocks if there are any. */ 1694 if (cow_ifp && cow_ifp->if_bytes > 0) 1695 return true; 1696 1697 /* Unlinked files must be freed. */ 1698 if (VFS_I(ip)->i_nlink == 0) 1699 return true; 1700 1701 /* 1702 * This file isn't being freed, so check if there are post-eof blocks 1703 * to free. @force is true because we are evicting an inode from the 1704 * cache. Post-eof blocks must be freed, lest we end up with broken 1705 * free space accounting. 1706 * 1707 * Note: don't bother with iolock here since lockdep complains about 1708 * acquiring it in reclaim context. We have the only reference to the 1709 * inode at this point anyways. 1710 */ 1711 return xfs_can_free_eofblocks(ip, true); 1712 } 1713 1714 /* 1715 * xfs_inactive 1716 * 1717 * This is called when the vnode reference count for the vnode 1718 * goes to zero. If the file has been unlinked, then it must 1719 * now be truncated. Also, we clear all of the read-ahead state 1720 * kept for the inode here since the file is now closed. 1721 */ 1722 void 1723 xfs_inactive( 1724 xfs_inode_t *ip) 1725 { 1726 struct xfs_mount *mp; 1727 int error; 1728 int truncate = 0; 1729 1730 /* 1731 * If the inode is already free, then there can be nothing 1732 * to clean up here. 1733 */ 1734 if (VFS_I(ip)->i_mode == 0) { 1735 ASSERT(ip->i_df.if_broot_bytes == 0); 1736 goto out; 1737 } 1738 1739 mp = ip->i_mount; 1740 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1741 1742 /* If this is a read-only mount, don't do this (would generate I/O) */ 1743 if (xfs_is_readonly(mp)) 1744 goto out; 1745 1746 /* Metadata inodes require explicit resource cleanup. */ 1747 if (xfs_is_metadata_inode(ip)) 1748 goto out; 1749 1750 /* Try to clean out the cow blocks if there are any. */ 1751 if (xfs_inode_has_cow_data(ip)) 1752 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1753 1754 if (VFS_I(ip)->i_nlink != 0) { 1755 /* 1756 * force is true because we are evicting an inode from the 1757 * cache. Post-eof blocks must be freed, lest we end up with 1758 * broken free space accounting. 1759 * 1760 * Note: don't bother with iolock here since lockdep complains 1761 * about acquiring it in reclaim context. We have the only 1762 * reference to the inode at this point anyways. 1763 */ 1764 if (xfs_can_free_eofblocks(ip, true)) 1765 xfs_free_eofblocks(ip); 1766 1767 goto out; 1768 } 1769 1770 if (S_ISREG(VFS_I(ip)->i_mode) && 1771 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || 1772 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1773 truncate = 1; 1774 1775 error = xfs_qm_dqattach(ip); 1776 if (error) 1777 goto out; 1778 1779 if (S_ISLNK(VFS_I(ip)->i_mode)) 1780 error = xfs_inactive_symlink(ip); 1781 else if (truncate) 1782 error = xfs_inactive_truncate(ip); 1783 if (error) 1784 goto out; 1785 1786 /* 1787 * If there are attributes associated with the file then blow them away 1788 * now. The code calls a routine that recursively deconstructs the 1789 * attribute fork. If also blows away the in-core attribute fork. 1790 */ 1791 if (XFS_IFORK_Q(ip)) { 1792 error = xfs_attr_inactive(ip); 1793 if (error) 1794 goto out; 1795 } 1796 1797 ASSERT(!ip->i_afp); 1798 ASSERT(ip->i_forkoff == 0); 1799 1800 /* 1801 * Free the inode. 1802 */ 1803 xfs_inactive_ifree(ip); 1804 1805 out: 1806 /* 1807 * We're done making metadata updates for this inode, so we can release 1808 * the attached dquots. 1809 */ 1810 xfs_qm_dqdetach(ip); 1811 } 1812 1813 /* 1814 * In-Core Unlinked List Lookups 1815 * ============================= 1816 * 1817 * Every inode is supposed to be reachable from some other piece of metadata 1818 * with the exception of the root directory. Inodes with a connection to a 1819 * file descriptor but not linked from anywhere in the on-disk directory tree 1820 * are collectively known as unlinked inodes, though the filesystem itself 1821 * maintains links to these inodes so that on-disk metadata are consistent. 1822 * 1823 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1824 * header contains a number of buckets that point to an inode, and each inode 1825 * record has a pointer to the next inode in the hash chain. This 1826 * singly-linked list causes scaling problems in the iunlink remove function 1827 * because we must walk that list to find the inode that points to the inode 1828 * being removed from the unlinked hash bucket list. 1829 * 1830 * What if we modelled the unlinked list as a collection of records capturing 1831 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1832 * have a fast way to look up unlinked list predecessors, which avoids the 1833 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1834 * rhashtable. 1835 * 1836 * Because this is a backref cache, we ignore operational failures since the 1837 * iunlink code can fall back to the slow bucket walk. The only errors that 1838 * should bubble out are for obviously incorrect situations. 1839 * 1840 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1841 * access or have otherwise provided for concurrency control. 1842 */ 1843 1844 /* Capture a "X.next_unlinked = Y" relationship. */ 1845 struct xfs_iunlink { 1846 struct rhash_head iu_rhash_head; 1847 xfs_agino_t iu_agino; /* X */ 1848 xfs_agino_t iu_next_unlinked; /* Y */ 1849 }; 1850 1851 /* Unlinked list predecessor lookup hashtable construction */ 1852 static int 1853 xfs_iunlink_obj_cmpfn( 1854 struct rhashtable_compare_arg *arg, 1855 const void *obj) 1856 { 1857 const xfs_agino_t *key = arg->key; 1858 const struct xfs_iunlink *iu = obj; 1859 1860 if (iu->iu_next_unlinked != *key) 1861 return 1; 1862 return 0; 1863 } 1864 1865 static const struct rhashtable_params xfs_iunlink_hash_params = { 1866 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1867 .key_len = sizeof(xfs_agino_t), 1868 .key_offset = offsetof(struct xfs_iunlink, 1869 iu_next_unlinked), 1870 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1871 .automatic_shrinking = true, 1872 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1873 }; 1874 1875 /* 1876 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1877 * relation is found. 1878 */ 1879 static xfs_agino_t 1880 xfs_iunlink_lookup_backref( 1881 struct xfs_perag *pag, 1882 xfs_agino_t agino) 1883 { 1884 struct xfs_iunlink *iu; 1885 1886 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1887 xfs_iunlink_hash_params); 1888 return iu ? iu->iu_agino : NULLAGINO; 1889 } 1890 1891 /* 1892 * Take ownership of an iunlink cache entry and insert it into the hash table. 1893 * If successful, the entry will be owned by the cache; if not, it is freed. 1894 * Either way, the caller does not own @iu after this call. 1895 */ 1896 static int 1897 xfs_iunlink_insert_backref( 1898 struct xfs_perag *pag, 1899 struct xfs_iunlink *iu) 1900 { 1901 int error; 1902 1903 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1904 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1905 /* 1906 * Fail loudly if there already was an entry because that's a sign of 1907 * corruption of in-memory data. Also fail loudly if we see an error 1908 * code we didn't anticipate from the rhashtable code. Currently we 1909 * only anticipate ENOMEM. 1910 */ 1911 if (error) { 1912 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1913 kmem_free(iu); 1914 } 1915 /* 1916 * Absorb any runtime errors that aren't a result of corruption because 1917 * this is a cache and we can always fall back to bucket list scanning. 1918 */ 1919 if (error != 0 && error != -EEXIST) 1920 error = 0; 1921 return error; 1922 } 1923 1924 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1925 static int 1926 xfs_iunlink_add_backref( 1927 struct xfs_perag *pag, 1928 xfs_agino_t prev_agino, 1929 xfs_agino_t this_agino) 1930 { 1931 struct xfs_iunlink *iu; 1932 1933 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1934 return 0; 1935 1936 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1937 iu->iu_agino = prev_agino; 1938 iu->iu_next_unlinked = this_agino; 1939 1940 return xfs_iunlink_insert_backref(pag, iu); 1941 } 1942 1943 /* 1944 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1945 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1946 * wasn't any such entry then we don't bother. 1947 */ 1948 static int 1949 xfs_iunlink_change_backref( 1950 struct xfs_perag *pag, 1951 xfs_agino_t agino, 1952 xfs_agino_t next_unlinked) 1953 { 1954 struct xfs_iunlink *iu; 1955 int error; 1956 1957 /* Look up the old entry; if there wasn't one then exit. */ 1958 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1959 xfs_iunlink_hash_params); 1960 if (!iu) 1961 return 0; 1962 1963 /* 1964 * Remove the entry. This shouldn't ever return an error, but if we 1965 * couldn't remove the old entry we don't want to add it again to the 1966 * hash table, and if the entry disappeared on us then someone's 1967 * violated the locking rules and we need to fail loudly. Either way 1968 * we cannot remove the inode because internal state is or would have 1969 * been corrupt. 1970 */ 1971 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1972 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1973 if (error) 1974 return error; 1975 1976 /* If there is no new next entry just free our item and return. */ 1977 if (next_unlinked == NULLAGINO) { 1978 kmem_free(iu); 1979 return 0; 1980 } 1981 1982 /* Update the entry and re-add it to the hash table. */ 1983 iu->iu_next_unlinked = next_unlinked; 1984 return xfs_iunlink_insert_backref(pag, iu); 1985 } 1986 1987 /* Set up the in-core predecessor structures. */ 1988 int 1989 xfs_iunlink_init( 1990 struct xfs_perag *pag) 1991 { 1992 return rhashtable_init(&pag->pagi_unlinked_hash, 1993 &xfs_iunlink_hash_params); 1994 } 1995 1996 /* Free the in-core predecessor structures. */ 1997 static void 1998 xfs_iunlink_free_item( 1999 void *ptr, 2000 void *arg) 2001 { 2002 struct xfs_iunlink *iu = ptr; 2003 bool *freed_anything = arg; 2004 2005 *freed_anything = true; 2006 kmem_free(iu); 2007 } 2008 2009 void 2010 xfs_iunlink_destroy( 2011 struct xfs_perag *pag) 2012 { 2013 bool freed_anything = false; 2014 2015 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2016 xfs_iunlink_free_item, &freed_anything); 2017 2018 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount)); 2019 } 2020 2021 /* 2022 * Point the AGI unlinked bucket at an inode and log the results. The caller 2023 * is responsible for validating the old value. 2024 */ 2025 STATIC int 2026 xfs_iunlink_update_bucket( 2027 struct xfs_trans *tp, 2028 struct xfs_perag *pag, 2029 struct xfs_buf *agibp, 2030 unsigned int bucket_index, 2031 xfs_agino_t new_agino) 2032 { 2033 struct xfs_agi *agi = agibp->b_addr; 2034 xfs_agino_t old_value; 2035 int offset; 2036 2037 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); 2038 2039 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2040 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, 2041 old_value, new_agino); 2042 2043 /* 2044 * We should never find the head of the list already set to the value 2045 * passed in because either we're adding or removing ourselves from the 2046 * head of the list. 2047 */ 2048 if (old_value == new_agino) { 2049 xfs_buf_mark_corrupt(agibp); 2050 return -EFSCORRUPTED; 2051 } 2052 2053 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2054 offset = offsetof(struct xfs_agi, agi_unlinked) + 2055 (sizeof(xfs_agino_t) * bucket_index); 2056 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2057 return 0; 2058 } 2059 2060 /* Set an on-disk inode's next_unlinked pointer. */ 2061 STATIC void 2062 xfs_iunlink_update_dinode( 2063 struct xfs_trans *tp, 2064 struct xfs_perag *pag, 2065 xfs_agino_t agino, 2066 struct xfs_buf *ibp, 2067 struct xfs_dinode *dip, 2068 struct xfs_imap *imap, 2069 xfs_agino_t next_agino) 2070 { 2071 struct xfs_mount *mp = tp->t_mountp; 2072 int offset; 2073 2074 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2075 2076 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, 2077 be32_to_cpu(dip->di_next_unlinked), next_agino); 2078 2079 dip->di_next_unlinked = cpu_to_be32(next_agino); 2080 offset = imap->im_boffset + 2081 offsetof(struct xfs_dinode, di_next_unlinked); 2082 2083 /* need to recalc the inode CRC if appropriate */ 2084 xfs_dinode_calc_crc(mp, dip); 2085 xfs_trans_inode_buf(tp, ibp); 2086 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2087 } 2088 2089 /* Set an in-core inode's unlinked pointer and return the old value. */ 2090 STATIC int 2091 xfs_iunlink_update_inode( 2092 struct xfs_trans *tp, 2093 struct xfs_inode *ip, 2094 struct xfs_perag *pag, 2095 xfs_agino_t next_agino, 2096 xfs_agino_t *old_next_agino) 2097 { 2098 struct xfs_mount *mp = tp->t_mountp; 2099 struct xfs_dinode *dip; 2100 struct xfs_buf *ibp; 2101 xfs_agino_t old_value; 2102 int error; 2103 2104 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); 2105 2106 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); 2107 if (error) 2108 return error; 2109 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); 2110 2111 /* Make sure the old pointer isn't garbage. */ 2112 old_value = be32_to_cpu(dip->di_next_unlinked); 2113 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { 2114 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2115 sizeof(*dip), __this_address); 2116 error = -EFSCORRUPTED; 2117 goto out; 2118 } 2119 2120 /* 2121 * Since we're updating a linked list, we should never find that the 2122 * current pointer is the same as the new value, unless we're 2123 * terminating the list. 2124 */ 2125 *old_next_agino = old_value; 2126 if (old_value == next_agino) { 2127 if (next_agino != NULLAGINO) { 2128 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2129 dip, sizeof(*dip), __this_address); 2130 error = -EFSCORRUPTED; 2131 } 2132 goto out; 2133 } 2134 2135 /* Ok, update the new pointer. */ 2136 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), 2137 ibp, dip, &ip->i_imap, next_agino); 2138 return 0; 2139 out: 2140 xfs_trans_brelse(tp, ibp); 2141 return error; 2142 } 2143 2144 /* 2145 * This is called when the inode's link count has gone to 0 or we are creating 2146 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2147 * 2148 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2149 * list when the inode is freed. 2150 */ 2151 STATIC int 2152 xfs_iunlink( 2153 struct xfs_trans *tp, 2154 struct xfs_inode *ip) 2155 { 2156 struct xfs_mount *mp = tp->t_mountp; 2157 struct xfs_perag *pag; 2158 struct xfs_agi *agi; 2159 struct xfs_buf *agibp; 2160 xfs_agino_t next_agino; 2161 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2162 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2163 int error; 2164 2165 ASSERT(VFS_I(ip)->i_nlink == 0); 2166 ASSERT(VFS_I(ip)->i_mode != 0); 2167 trace_xfs_iunlink(ip); 2168 2169 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2170 2171 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2172 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2173 if (error) 2174 goto out; 2175 agi = agibp->b_addr; 2176 2177 /* 2178 * Get the index into the agi hash table for the list this inode will 2179 * go on. Make sure the pointer isn't garbage and that this inode 2180 * isn't already on the list. 2181 */ 2182 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2183 if (next_agino == agino || 2184 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { 2185 xfs_buf_mark_corrupt(agibp); 2186 error = -EFSCORRUPTED; 2187 goto out; 2188 } 2189 2190 if (next_agino != NULLAGINO) { 2191 xfs_agino_t old_agino; 2192 2193 /* 2194 * There is already another inode in the bucket, so point this 2195 * inode to the current head of the list. 2196 */ 2197 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, 2198 &old_agino); 2199 if (error) 2200 goto out; 2201 ASSERT(old_agino == NULLAGINO); 2202 2203 /* 2204 * agino has been unlinked, add a backref from the next inode 2205 * back to agino. 2206 */ 2207 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2208 if (error) 2209 goto out; 2210 } 2211 2212 /* Point the head of the list to point to this inode. */ 2213 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); 2214 out: 2215 xfs_perag_put(pag); 2216 return error; 2217 } 2218 2219 /* Return the imap, dinode pointer, and buffer for an inode. */ 2220 STATIC int 2221 xfs_iunlink_map_ino( 2222 struct xfs_trans *tp, 2223 xfs_agnumber_t agno, 2224 xfs_agino_t agino, 2225 struct xfs_imap *imap, 2226 struct xfs_dinode **dipp, 2227 struct xfs_buf **bpp) 2228 { 2229 struct xfs_mount *mp = tp->t_mountp; 2230 int error; 2231 2232 imap->im_blkno = 0; 2233 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2234 if (error) { 2235 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2236 __func__, error); 2237 return error; 2238 } 2239 2240 error = xfs_imap_to_bp(mp, tp, imap, bpp); 2241 if (error) { 2242 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2243 __func__, error); 2244 return error; 2245 } 2246 2247 *dipp = xfs_buf_offset(*bpp, imap->im_boffset); 2248 return 0; 2249 } 2250 2251 /* 2252 * Walk the unlinked chain from @head_agino until we find the inode that 2253 * points to @target_agino. Return the inode number, map, dinode pointer, 2254 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2255 * 2256 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2257 * @agino, @imap, @dipp, and @bpp are all output parameters. 2258 * 2259 * Do not call this function if @target_agino is the head of the list. 2260 */ 2261 STATIC int 2262 xfs_iunlink_map_prev( 2263 struct xfs_trans *tp, 2264 struct xfs_perag *pag, 2265 xfs_agino_t head_agino, 2266 xfs_agino_t target_agino, 2267 xfs_agino_t *agino, 2268 struct xfs_imap *imap, 2269 struct xfs_dinode **dipp, 2270 struct xfs_buf **bpp) 2271 { 2272 struct xfs_mount *mp = tp->t_mountp; 2273 xfs_agino_t next_agino; 2274 int error; 2275 2276 ASSERT(head_agino != target_agino); 2277 *bpp = NULL; 2278 2279 /* See if our backref cache can find it faster. */ 2280 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2281 if (*agino != NULLAGINO) { 2282 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, 2283 dipp, bpp); 2284 if (error) 2285 return error; 2286 2287 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2288 return 0; 2289 2290 /* 2291 * If we get here the cache contents were corrupt, so drop the 2292 * buffer and fall back to walking the bucket list. 2293 */ 2294 xfs_trans_brelse(tp, *bpp); 2295 *bpp = NULL; 2296 WARN_ON_ONCE(1); 2297 } 2298 2299 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); 2300 2301 /* Otherwise, walk the entire bucket until we find it. */ 2302 next_agino = head_agino; 2303 while (next_agino != target_agino) { 2304 xfs_agino_t unlinked_agino; 2305 2306 if (*bpp) 2307 xfs_trans_brelse(tp, *bpp); 2308 2309 *agino = next_agino; 2310 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, 2311 dipp, bpp); 2312 if (error) 2313 return error; 2314 2315 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2316 /* 2317 * Make sure this pointer is valid and isn't an obvious 2318 * infinite loop. 2319 */ 2320 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || 2321 next_agino == unlinked_agino) { 2322 XFS_CORRUPTION_ERROR(__func__, 2323 XFS_ERRLEVEL_LOW, mp, 2324 *dipp, sizeof(**dipp)); 2325 error = -EFSCORRUPTED; 2326 return error; 2327 } 2328 next_agino = unlinked_agino; 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* 2335 * Pull the on-disk inode from the AGI unlinked list. 2336 */ 2337 STATIC int 2338 xfs_iunlink_remove( 2339 struct xfs_trans *tp, 2340 struct xfs_perag *pag, 2341 struct xfs_inode *ip) 2342 { 2343 struct xfs_mount *mp = tp->t_mountp; 2344 struct xfs_agi *agi; 2345 struct xfs_buf *agibp; 2346 struct xfs_buf *last_ibp; 2347 struct xfs_dinode *last_dip = NULL; 2348 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2349 xfs_agino_t next_agino; 2350 xfs_agino_t head_agino; 2351 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2352 int error; 2353 2354 trace_xfs_iunlink_remove(ip); 2355 2356 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2357 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); 2358 if (error) 2359 return error; 2360 agi = agibp->b_addr; 2361 2362 /* 2363 * Get the index into the agi hash table for the list this inode will 2364 * go on. Make sure the head pointer isn't garbage. 2365 */ 2366 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2367 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { 2368 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2369 agi, sizeof(*agi)); 2370 return -EFSCORRUPTED; 2371 } 2372 2373 /* 2374 * Set our inode's next_unlinked pointer to NULL and then return 2375 * the old pointer value so that we can update whatever was previous 2376 * to us in the list to point to whatever was next in the list. 2377 */ 2378 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); 2379 if (error) 2380 return error; 2381 2382 /* 2383 * If there was a backref pointing from the next inode back to this 2384 * one, remove it because we've removed this inode from the list. 2385 * 2386 * Later, if this inode was in the middle of the list we'll update 2387 * this inode's backref to point from the next inode. 2388 */ 2389 if (next_agino != NULLAGINO) { 2390 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); 2391 if (error) 2392 return error; 2393 } 2394 2395 if (head_agino != agino) { 2396 struct xfs_imap imap; 2397 xfs_agino_t prev_agino; 2398 2399 /* We need to search the list for the inode being freed. */ 2400 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, 2401 &prev_agino, &imap, &last_dip, &last_ibp); 2402 if (error) 2403 return error; 2404 2405 /* Point the previous inode on the list to the next inode. */ 2406 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, 2407 last_dip, &imap, next_agino); 2408 2409 /* 2410 * Now we deal with the backref for this inode. If this inode 2411 * pointed at a real inode, change the backref that pointed to 2412 * us to point to our old next. If this inode was the end of 2413 * the list, delete the backref that pointed to us. Note that 2414 * change_backref takes care of deleting the backref if 2415 * next_agino is NULLAGINO. 2416 */ 2417 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2418 next_agino); 2419 } 2420 2421 /* Point the head of the list to the next unlinked inode. */ 2422 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, 2423 next_agino); 2424 } 2425 2426 /* 2427 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2428 * mark it stale. We should only find clean inodes in this lookup that aren't 2429 * already stale. 2430 */ 2431 static void 2432 xfs_ifree_mark_inode_stale( 2433 struct xfs_perag *pag, 2434 struct xfs_inode *free_ip, 2435 xfs_ino_t inum) 2436 { 2437 struct xfs_mount *mp = pag->pag_mount; 2438 struct xfs_inode_log_item *iip; 2439 struct xfs_inode *ip; 2440 2441 retry: 2442 rcu_read_lock(); 2443 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2444 2445 /* Inode not in memory, nothing to do */ 2446 if (!ip) { 2447 rcu_read_unlock(); 2448 return; 2449 } 2450 2451 /* 2452 * because this is an RCU protected lookup, we could find a recently 2453 * freed or even reallocated inode during the lookup. We need to check 2454 * under the i_flags_lock for a valid inode here. Skip it if it is not 2455 * valid, the wrong inode or stale. 2456 */ 2457 spin_lock(&ip->i_flags_lock); 2458 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2459 goto out_iflags_unlock; 2460 2461 /* 2462 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2463 * other inodes that we did not find in the list attached to the buffer 2464 * and are not already marked stale. If we can't lock it, back off and 2465 * retry. 2466 */ 2467 if (ip != free_ip) { 2468 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2469 spin_unlock(&ip->i_flags_lock); 2470 rcu_read_unlock(); 2471 delay(1); 2472 goto retry; 2473 } 2474 } 2475 ip->i_flags |= XFS_ISTALE; 2476 2477 /* 2478 * If the inode is flushing, it is already attached to the buffer. All 2479 * we needed to do here is mark the inode stale so buffer IO completion 2480 * will remove it from the AIL. 2481 */ 2482 iip = ip->i_itemp; 2483 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2484 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2485 ASSERT(iip->ili_last_fields); 2486 goto out_iunlock; 2487 } 2488 2489 /* 2490 * Inodes not attached to the buffer can be released immediately. 2491 * Everything else has to go through xfs_iflush_abort() on journal 2492 * commit as the flock synchronises removal of the inode from the 2493 * cluster buffer against inode reclaim. 2494 */ 2495 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2496 goto out_iunlock; 2497 2498 __xfs_iflags_set(ip, XFS_IFLUSHING); 2499 spin_unlock(&ip->i_flags_lock); 2500 rcu_read_unlock(); 2501 2502 /* we have a dirty inode in memory that has not yet been flushed. */ 2503 spin_lock(&iip->ili_lock); 2504 iip->ili_last_fields = iip->ili_fields; 2505 iip->ili_fields = 0; 2506 iip->ili_fsync_fields = 0; 2507 spin_unlock(&iip->ili_lock); 2508 ASSERT(iip->ili_last_fields); 2509 2510 if (ip != free_ip) 2511 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2512 return; 2513 2514 out_iunlock: 2515 if (ip != free_ip) 2516 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2517 out_iflags_unlock: 2518 spin_unlock(&ip->i_flags_lock); 2519 rcu_read_unlock(); 2520 } 2521 2522 /* 2523 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2524 * inodes that are in memory - they all must be marked stale and attached to 2525 * the cluster buffer. 2526 */ 2527 static int 2528 xfs_ifree_cluster( 2529 struct xfs_trans *tp, 2530 struct xfs_perag *pag, 2531 struct xfs_inode *free_ip, 2532 struct xfs_icluster *xic) 2533 { 2534 struct xfs_mount *mp = free_ip->i_mount; 2535 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2536 struct xfs_buf *bp; 2537 xfs_daddr_t blkno; 2538 xfs_ino_t inum = xic->first_ino; 2539 int nbufs; 2540 int i, j; 2541 int ioffset; 2542 int error; 2543 2544 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2545 2546 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2547 /* 2548 * The allocation bitmap tells us which inodes of the chunk were 2549 * physically allocated. Skip the cluster if an inode falls into 2550 * a sparse region. 2551 */ 2552 ioffset = inum - xic->first_ino; 2553 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2554 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2555 continue; 2556 } 2557 2558 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2559 XFS_INO_TO_AGBNO(mp, inum)); 2560 2561 /* 2562 * We obtain and lock the backing buffer first in the process 2563 * here to ensure dirty inodes attached to the buffer remain in 2564 * the flushing state while we mark them stale. 2565 * 2566 * If we scan the in-memory inodes first, then buffer IO can 2567 * complete before we get a lock on it, and hence we may fail 2568 * to mark all the active inodes on the buffer stale. 2569 */ 2570 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2571 mp->m_bsize * igeo->blocks_per_cluster, 2572 XBF_UNMAPPED, &bp); 2573 if (error) 2574 return error; 2575 2576 /* 2577 * This buffer may not have been correctly initialised as we 2578 * didn't read it from disk. That's not important because we are 2579 * only using to mark the buffer as stale in the log, and to 2580 * attach stale cached inodes on it. That means it will never be 2581 * dispatched for IO. If it is, we want to know about it, and we 2582 * want it to fail. We can acheive this by adding a write 2583 * verifier to the buffer. 2584 */ 2585 bp->b_ops = &xfs_inode_buf_ops; 2586 2587 /* 2588 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2589 * too. This requires lookups, and will skip inodes that we've 2590 * already marked XFS_ISTALE. 2591 */ 2592 for (i = 0; i < igeo->inodes_per_cluster; i++) 2593 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); 2594 2595 xfs_trans_stale_inode_buf(tp, bp); 2596 xfs_trans_binval(tp, bp); 2597 } 2598 return 0; 2599 } 2600 2601 /* 2602 * This is called to return an inode to the inode free list. 2603 * The inode should already be truncated to 0 length and have 2604 * no pages associated with it. This routine also assumes that 2605 * the inode is already a part of the transaction. 2606 * 2607 * The on-disk copy of the inode will have been added to the list 2608 * of unlinked inodes in the AGI. We need to remove the inode from 2609 * that list atomically with respect to freeing it here. 2610 */ 2611 int 2612 xfs_ifree( 2613 struct xfs_trans *tp, 2614 struct xfs_inode *ip) 2615 { 2616 struct xfs_mount *mp = ip->i_mount; 2617 struct xfs_perag *pag; 2618 struct xfs_icluster xic = { 0 }; 2619 struct xfs_inode_log_item *iip = ip->i_itemp; 2620 int error; 2621 2622 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2623 ASSERT(VFS_I(ip)->i_nlink == 0); 2624 ASSERT(ip->i_df.if_nextents == 0); 2625 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2626 ASSERT(ip->i_nblocks == 0); 2627 2628 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2629 2630 /* 2631 * Pull the on-disk inode from the AGI unlinked list. 2632 */ 2633 error = xfs_iunlink_remove(tp, pag, ip); 2634 if (error) 2635 goto out; 2636 2637 error = xfs_difree(tp, pag, ip->i_ino, &xic); 2638 if (error) 2639 goto out; 2640 2641 /* 2642 * Free any local-format data sitting around before we reset the 2643 * data fork to extents format. Note that the attr fork data has 2644 * already been freed by xfs_attr_inactive. 2645 */ 2646 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2647 kmem_free(ip->i_df.if_u1.if_data); 2648 ip->i_df.if_u1.if_data = NULL; 2649 ip->i_df.if_bytes = 0; 2650 } 2651 2652 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2653 ip->i_diflags = 0; 2654 ip->i_diflags2 = mp->m_ino_geo.new_diflags2; 2655 ip->i_forkoff = 0; /* mark the attr fork not in use */ 2656 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2657 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) 2658 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); 2659 2660 /* Don't attempt to replay owner changes for a deleted inode */ 2661 spin_lock(&iip->ili_lock); 2662 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2663 spin_unlock(&iip->ili_lock); 2664 2665 /* 2666 * Bump the generation count so no one will be confused 2667 * by reincarnations of this inode. 2668 */ 2669 VFS_I(ip)->i_generation++; 2670 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2671 2672 if (xic.deleted) 2673 error = xfs_ifree_cluster(tp, pag, ip, &xic); 2674 out: 2675 xfs_perag_put(pag); 2676 return error; 2677 } 2678 2679 /* 2680 * This is called to unpin an inode. The caller must have the inode locked 2681 * in at least shared mode so that the buffer cannot be subsequently pinned 2682 * once someone is waiting for it to be unpinned. 2683 */ 2684 static void 2685 xfs_iunpin( 2686 struct xfs_inode *ip) 2687 { 2688 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2689 2690 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2691 2692 /* Give the log a push to start the unpinning I/O */ 2693 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); 2694 2695 } 2696 2697 static void 2698 __xfs_iunpin_wait( 2699 struct xfs_inode *ip) 2700 { 2701 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2702 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2703 2704 xfs_iunpin(ip); 2705 2706 do { 2707 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2708 if (xfs_ipincount(ip)) 2709 io_schedule(); 2710 } while (xfs_ipincount(ip)); 2711 finish_wait(wq, &wait.wq_entry); 2712 } 2713 2714 void 2715 xfs_iunpin_wait( 2716 struct xfs_inode *ip) 2717 { 2718 if (xfs_ipincount(ip)) 2719 __xfs_iunpin_wait(ip); 2720 } 2721 2722 /* 2723 * Removing an inode from the namespace involves removing the directory entry 2724 * and dropping the link count on the inode. Removing the directory entry can 2725 * result in locking an AGF (directory blocks were freed) and removing a link 2726 * count can result in placing the inode on an unlinked list which results in 2727 * locking an AGI. 2728 * 2729 * The big problem here is that we have an ordering constraint on AGF and AGI 2730 * locking - inode allocation locks the AGI, then can allocate a new extent for 2731 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2732 * removes the inode from the unlinked list, requiring that we lock the AGI 2733 * first, and then freeing the inode can result in an inode chunk being freed 2734 * and hence freeing disk space requiring that we lock an AGF. 2735 * 2736 * Hence the ordering that is imposed by other parts of the code is AGI before 2737 * AGF. This means we cannot remove the directory entry before we drop the inode 2738 * reference count and put it on the unlinked list as this results in a lock 2739 * order of AGF then AGI, and this can deadlock against inode allocation and 2740 * freeing. Therefore we must drop the link counts before we remove the 2741 * directory entry. 2742 * 2743 * This is still safe from a transactional point of view - it is not until we 2744 * get to xfs_defer_finish() that we have the possibility of multiple 2745 * transactions in this operation. Hence as long as we remove the directory 2746 * entry and drop the link count in the first transaction of the remove 2747 * operation, there are no transactional constraints on the ordering here. 2748 */ 2749 int 2750 xfs_remove( 2751 xfs_inode_t *dp, 2752 struct xfs_name *name, 2753 xfs_inode_t *ip) 2754 { 2755 xfs_mount_t *mp = dp->i_mount; 2756 xfs_trans_t *tp = NULL; 2757 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2758 int error = 0; 2759 uint resblks; 2760 2761 trace_xfs_remove(dp, name); 2762 2763 if (xfs_is_shutdown(mp)) 2764 return -EIO; 2765 2766 error = xfs_qm_dqattach(dp); 2767 if (error) 2768 goto std_return; 2769 2770 error = xfs_qm_dqattach(ip); 2771 if (error) 2772 goto std_return; 2773 2774 /* 2775 * We try to get the real space reservation first, 2776 * allowing for directory btree deletion(s) implying 2777 * possible bmap insert(s). If we can't get the space 2778 * reservation then we use 0 instead, and avoid the bmap 2779 * btree insert(s) in the directory code by, if the bmap 2780 * insert tries to happen, instead trimming the LAST 2781 * block from the directory. 2782 */ 2783 resblks = XFS_REMOVE_SPACE_RES(mp); 2784 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2785 if (error == -ENOSPC) { 2786 resblks = 0; 2787 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2788 &tp); 2789 } 2790 if (error) { 2791 ASSERT(error != -ENOSPC); 2792 goto std_return; 2793 } 2794 2795 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2796 2797 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2798 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2799 2800 /* 2801 * If we're removing a directory perform some additional validation. 2802 */ 2803 if (is_dir) { 2804 ASSERT(VFS_I(ip)->i_nlink >= 2); 2805 if (VFS_I(ip)->i_nlink != 2) { 2806 error = -ENOTEMPTY; 2807 goto out_trans_cancel; 2808 } 2809 if (!xfs_dir_isempty(ip)) { 2810 error = -ENOTEMPTY; 2811 goto out_trans_cancel; 2812 } 2813 2814 /* Drop the link from ip's "..". */ 2815 error = xfs_droplink(tp, dp); 2816 if (error) 2817 goto out_trans_cancel; 2818 2819 /* Drop the "." link from ip to self. */ 2820 error = xfs_droplink(tp, ip); 2821 if (error) 2822 goto out_trans_cancel; 2823 2824 /* 2825 * Point the unlinked child directory's ".." entry to the root 2826 * directory to eliminate back-references to inodes that may 2827 * get freed before the child directory is closed. If the fs 2828 * gets shrunk, this can lead to dirent inode validation errors. 2829 */ 2830 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { 2831 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, 2832 tp->t_mountp->m_sb.sb_rootino, 0); 2833 if (error) 2834 return error; 2835 } 2836 } else { 2837 /* 2838 * When removing a non-directory we need to log the parent 2839 * inode here. For a directory this is done implicitly 2840 * by the xfs_droplink call for the ".." entry. 2841 */ 2842 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2843 } 2844 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2845 2846 /* Drop the link from dp to ip. */ 2847 error = xfs_droplink(tp, ip); 2848 if (error) 2849 goto out_trans_cancel; 2850 2851 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2852 if (error) { 2853 ASSERT(error != -ENOENT); 2854 goto out_trans_cancel; 2855 } 2856 2857 /* 2858 * If this is a synchronous mount, make sure that the 2859 * remove transaction goes to disk before returning to 2860 * the user. 2861 */ 2862 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp)) 2863 xfs_trans_set_sync(tp); 2864 2865 error = xfs_trans_commit(tp); 2866 if (error) 2867 goto std_return; 2868 2869 if (is_dir && xfs_inode_is_filestream(ip)) 2870 xfs_filestream_deassociate(ip); 2871 2872 return 0; 2873 2874 out_trans_cancel: 2875 xfs_trans_cancel(tp); 2876 std_return: 2877 return error; 2878 } 2879 2880 /* 2881 * Enter all inodes for a rename transaction into a sorted array. 2882 */ 2883 #define __XFS_SORT_INODES 5 2884 STATIC void 2885 xfs_sort_for_rename( 2886 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2887 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2888 struct xfs_inode *ip1, /* in: inode of old entry */ 2889 struct xfs_inode *ip2, /* in: inode of new entry */ 2890 struct xfs_inode *wip, /* in: whiteout inode */ 2891 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2892 int *num_inodes) /* in/out: inodes in array */ 2893 { 2894 int i, j; 2895 2896 ASSERT(*num_inodes == __XFS_SORT_INODES); 2897 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2898 2899 /* 2900 * i_tab contains a list of pointers to inodes. We initialize 2901 * the table here & we'll sort it. We will then use it to 2902 * order the acquisition of the inode locks. 2903 * 2904 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2905 */ 2906 i = 0; 2907 i_tab[i++] = dp1; 2908 i_tab[i++] = dp2; 2909 i_tab[i++] = ip1; 2910 if (ip2) 2911 i_tab[i++] = ip2; 2912 if (wip) 2913 i_tab[i++] = wip; 2914 *num_inodes = i; 2915 2916 /* 2917 * Sort the elements via bubble sort. (Remember, there are at 2918 * most 5 elements to sort, so this is adequate.) 2919 */ 2920 for (i = 0; i < *num_inodes; i++) { 2921 for (j = 1; j < *num_inodes; j++) { 2922 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2923 struct xfs_inode *temp = i_tab[j]; 2924 i_tab[j] = i_tab[j-1]; 2925 i_tab[j-1] = temp; 2926 } 2927 } 2928 } 2929 } 2930 2931 static int 2932 xfs_finish_rename( 2933 struct xfs_trans *tp) 2934 { 2935 /* 2936 * If this is a synchronous mount, make sure that the rename transaction 2937 * goes to disk before returning to the user. 2938 */ 2939 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp)) 2940 xfs_trans_set_sync(tp); 2941 2942 return xfs_trans_commit(tp); 2943 } 2944 2945 /* 2946 * xfs_cross_rename() 2947 * 2948 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall 2949 */ 2950 STATIC int 2951 xfs_cross_rename( 2952 struct xfs_trans *tp, 2953 struct xfs_inode *dp1, 2954 struct xfs_name *name1, 2955 struct xfs_inode *ip1, 2956 struct xfs_inode *dp2, 2957 struct xfs_name *name2, 2958 struct xfs_inode *ip2, 2959 int spaceres) 2960 { 2961 int error = 0; 2962 int ip1_flags = 0; 2963 int ip2_flags = 0; 2964 int dp2_flags = 0; 2965 2966 /* Swap inode number for dirent in first parent */ 2967 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2968 if (error) 2969 goto out_trans_abort; 2970 2971 /* Swap inode number for dirent in second parent */ 2972 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2973 if (error) 2974 goto out_trans_abort; 2975 2976 /* 2977 * If we're renaming one or more directories across different parents, 2978 * update the respective ".." entries (and link counts) to match the new 2979 * parents. 2980 */ 2981 if (dp1 != dp2) { 2982 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2983 2984 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2985 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2986 dp1->i_ino, spaceres); 2987 if (error) 2988 goto out_trans_abort; 2989 2990 /* transfer ip2 ".." reference to dp1 */ 2991 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2992 error = xfs_droplink(tp, dp2); 2993 if (error) 2994 goto out_trans_abort; 2995 xfs_bumplink(tp, dp1); 2996 } 2997 2998 /* 2999 * Although ip1 isn't changed here, userspace needs 3000 * to be warned about the change, so that applications 3001 * relying on it (like backup ones), will properly 3002 * notify the change 3003 */ 3004 ip1_flags |= XFS_ICHGTIME_CHG; 3005 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3006 } 3007 3008 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3009 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3010 dp2->i_ino, spaceres); 3011 if (error) 3012 goto out_trans_abort; 3013 3014 /* transfer ip1 ".." reference to dp2 */ 3015 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3016 error = xfs_droplink(tp, dp1); 3017 if (error) 3018 goto out_trans_abort; 3019 xfs_bumplink(tp, dp2); 3020 } 3021 3022 /* 3023 * Although ip2 isn't changed here, userspace needs 3024 * to be warned about the change, so that applications 3025 * relying on it (like backup ones), will properly 3026 * notify the change 3027 */ 3028 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3029 ip2_flags |= XFS_ICHGTIME_CHG; 3030 } 3031 } 3032 3033 if (ip1_flags) { 3034 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3035 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3036 } 3037 if (ip2_flags) { 3038 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3039 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3040 } 3041 if (dp2_flags) { 3042 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3043 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3044 } 3045 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3046 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3047 return xfs_finish_rename(tp); 3048 3049 out_trans_abort: 3050 xfs_trans_cancel(tp); 3051 return error; 3052 } 3053 3054 /* 3055 * xfs_rename_alloc_whiteout() 3056 * 3057 * Return a referenced, unlinked, unlocked inode that can be used as a 3058 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3059 * crash between allocating the inode and linking it into the rename transaction 3060 * recovery will free the inode and we won't leak it. 3061 */ 3062 static int 3063 xfs_rename_alloc_whiteout( 3064 struct user_namespace *mnt_userns, 3065 struct xfs_inode *dp, 3066 struct xfs_inode **wip) 3067 { 3068 struct xfs_inode *tmpfile; 3069 int error; 3070 3071 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 3072 &tmpfile); 3073 if (error) 3074 return error; 3075 3076 /* 3077 * Prepare the tmpfile inode as if it were created through the VFS. 3078 * Complete the inode setup and flag it as linkable. nlink is already 3079 * zero, so we can skip the drop_nlink. 3080 */ 3081 xfs_setup_iops(tmpfile); 3082 xfs_finish_inode_setup(tmpfile); 3083 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3084 3085 *wip = tmpfile; 3086 return 0; 3087 } 3088 3089 /* 3090 * xfs_rename 3091 */ 3092 int 3093 xfs_rename( 3094 struct user_namespace *mnt_userns, 3095 struct xfs_inode *src_dp, 3096 struct xfs_name *src_name, 3097 struct xfs_inode *src_ip, 3098 struct xfs_inode *target_dp, 3099 struct xfs_name *target_name, 3100 struct xfs_inode *target_ip, 3101 unsigned int flags) 3102 { 3103 struct xfs_mount *mp = src_dp->i_mount; 3104 struct xfs_trans *tp; 3105 struct xfs_inode *wip = NULL; /* whiteout inode */ 3106 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3107 int i; 3108 int num_inodes = __XFS_SORT_INODES; 3109 bool new_parent = (src_dp != target_dp); 3110 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3111 int spaceres; 3112 int error; 3113 3114 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3115 3116 if ((flags & RENAME_EXCHANGE) && !target_ip) 3117 return -EINVAL; 3118 3119 /* 3120 * If we are doing a whiteout operation, allocate the whiteout inode 3121 * we will be placing at the target and ensure the type is set 3122 * appropriately. 3123 */ 3124 if (flags & RENAME_WHITEOUT) { 3125 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3126 if (error) 3127 return error; 3128 3129 /* setup target dirent info as whiteout */ 3130 src_name->type = XFS_DIR3_FT_CHRDEV; 3131 } 3132 3133 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3134 inodes, &num_inodes); 3135 3136 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3137 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3138 if (error == -ENOSPC) { 3139 spaceres = 0; 3140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3141 &tp); 3142 } 3143 if (error) 3144 goto out_release_wip; 3145 3146 /* 3147 * Attach the dquots to the inodes 3148 */ 3149 error = xfs_qm_vop_rename_dqattach(inodes); 3150 if (error) 3151 goto out_trans_cancel; 3152 3153 /* 3154 * Lock all the participating inodes. Depending upon whether 3155 * the target_name exists in the target directory, and 3156 * whether the target directory is the same as the source 3157 * directory, we can lock from 2 to 4 inodes. 3158 */ 3159 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3160 3161 /* 3162 * Join all the inodes to the transaction. From this point on, 3163 * we can rely on either trans_commit or trans_cancel to unlock 3164 * them. 3165 */ 3166 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3167 if (new_parent) 3168 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3169 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3170 if (target_ip) 3171 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3172 if (wip) 3173 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3174 3175 /* 3176 * If we are using project inheritance, we only allow renames 3177 * into our tree when the project IDs are the same; else the 3178 * tree quota mechanism would be circumvented. 3179 */ 3180 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && 3181 target_dp->i_projid != src_ip->i_projid)) { 3182 error = -EXDEV; 3183 goto out_trans_cancel; 3184 } 3185 3186 /* RENAME_EXCHANGE is unique from here on. */ 3187 if (flags & RENAME_EXCHANGE) 3188 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3189 target_dp, target_name, target_ip, 3190 spaceres); 3191 3192 /* 3193 * Check for expected errors before we dirty the transaction 3194 * so we can return an error without a transaction abort. 3195 * 3196 * Extent count overflow check: 3197 * 3198 * From the perspective of src_dp, a rename operation is essentially a 3199 * directory entry remove operation. Hence the only place where we check 3200 * for extent count overflow for src_dp is in 3201 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3202 * -ENOSPC when it detects a possible extent count overflow and in 3203 * response, the higher layers of directory handling code do the 3204 * following: 3205 * 1. Data/Free blocks: XFS lets these blocks linger until a 3206 * future remove operation removes them. 3207 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3208 * Leaf space and unmaps the last block. 3209 * 3210 * For target_dp, there are two cases depending on whether the 3211 * destination directory entry exists or not. 3212 * 3213 * When destination directory entry does not exist (i.e. target_ip == 3214 * NULL), extent count overflow check is performed only when transaction 3215 * has a non-zero sized space reservation associated with it. With a 3216 * zero-sized space reservation, XFS allows a rename operation to 3217 * continue only when the directory has sufficient free space in its 3218 * data/leaf/free space blocks to hold the new entry. 3219 * 3220 * When destination directory entry exists (i.e. target_ip != NULL), all 3221 * we need to do is change the inode number associated with the already 3222 * existing entry. Hence there is no need to perform an extent count 3223 * overflow check. 3224 */ 3225 if (target_ip == NULL) { 3226 /* 3227 * If there's no space reservation, check the entry will 3228 * fit before actually inserting it. 3229 */ 3230 if (!spaceres) { 3231 error = xfs_dir_canenter(tp, target_dp, target_name); 3232 if (error) 3233 goto out_trans_cancel; 3234 } else { 3235 error = xfs_iext_count_may_overflow(target_dp, 3236 XFS_DATA_FORK, 3237 XFS_IEXT_DIR_MANIP_CNT(mp)); 3238 if (error) 3239 goto out_trans_cancel; 3240 } 3241 } else { 3242 /* 3243 * If target exists and it's a directory, check that whether 3244 * it can be destroyed. 3245 */ 3246 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3247 (!xfs_dir_isempty(target_ip) || 3248 (VFS_I(target_ip)->i_nlink > 2))) { 3249 error = -EEXIST; 3250 goto out_trans_cancel; 3251 } 3252 } 3253 3254 /* 3255 * Lock the AGI buffers we need to handle bumping the nlink of the 3256 * whiteout inode off the unlinked list and to handle dropping the 3257 * nlink of the target inode. Per locking order rules, do this in 3258 * increasing AG order and before directory block allocation tries to 3259 * grab AGFs because we grab AGIs before AGFs. 3260 * 3261 * The (vfs) caller must ensure that if src is a directory then 3262 * target_ip is either null or an empty directory. 3263 */ 3264 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3265 if (inodes[i] == wip || 3266 (inodes[i] == target_ip && 3267 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3268 struct xfs_buf *bp; 3269 xfs_agnumber_t agno; 3270 3271 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3272 error = xfs_read_agi(mp, tp, agno, &bp); 3273 if (error) 3274 goto out_trans_cancel; 3275 } 3276 } 3277 3278 /* 3279 * Directory entry creation below may acquire the AGF. Remove 3280 * the whiteout from the unlinked list first to preserve correct 3281 * AGI/AGF locking order. This dirties the transaction so failures 3282 * after this point will abort and log recovery will clean up the 3283 * mess. 3284 * 3285 * For whiteouts, we need to bump the link count on the whiteout 3286 * inode. After this point, we have a real link, clear the tmpfile 3287 * state flag from the inode so it doesn't accidentally get misused 3288 * in future. 3289 */ 3290 if (wip) { 3291 struct xfs_perag *pag; 3292 3293 ASSERT(VFS_I(wip)->i_nlink == 0); 3294 3295 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); 3296 error = xfs_iunlink_remove(tp, pag, wip); 3297 xfs_perag_put(pag); 3298 if (error) 3299 goto out_trans_cancel; 3300 3301 xfs_bumplink(tp, wip); 3302 VFS_I(wip)->i_state &= ~I_LINKABLE; 3303 } 3304 3305 /* 3306 * Set up the target. 3307 */ 3308 if (target_ip == NULL) { 3309 /* 3310 * If target does not exist and the rename crosses 3311 * directories, adjust the target directory link count 3312 * to account for the ".." reference from the new entry. 3313 */ 3314 error = xfs_dir_createname(tp, target_dp, target_name, 3315 src_ip->i_ino, spaceres); 3316 if (error) 3317 goto out_trans_cancel; 3318 3319 xfs_trans_ichgtime(tp, target_dp, 3320 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3321 3322 if (new_parent && src_is_directory) { 3323 xfs_bumplink(tp, target_dp); 3324 } 3325 } else { /* target_ip != NULL */ 3326 /* 3327 * Link the source inode under the target name. 3328 * If the source inode is a directory and we are moving 3329 * it across directories, its ".." entry will be 3330 * inconsistent until we replace that down below. 3331 * 3332 * In case there is already an entry with the same 3333 * name at the destination directory, remove it first. 3334 */ 3335 error = xfs_dir_replace(tp, target_dp, target_name, 3336 src_ip->i_ino, spaceres); 3337 if (error) 3338 goto out_trans_cancel; 3339 3340 xfs_trans_ichgtime(tp, target_dp, 3341 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3342 3343 /* 3344 * Decrement the link count on the target since the target 3345 * dir no longer points to it. 3346 */ 3347 error = xfs_droplink(tp, target_ip); 3348 if (error) 3349 goto out_trans_cancel; 3350 3351 if (src_is_directory) { 3352 /* 3353 * Drop the link from the old "." entry. 3354 */ 3355 error = xfs_droplink(tp, target_ip); 3356 if (error) 3357 goto out_trans_cancel; 3358 } 3359 } /* target_ip != NULL */ 3360 3361 /* 3362 * Remove the source. 3363 */ 3364 if (new_parent && src_is_directory) { 3365 /* 3366 * Rewrite the ".." entry to point to the new 3367 * directory. 3368 */ 3369 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3370 target_dp->i_ino, spaceres); 3371 ASSERT(error != -EEXIST); 3372 if (error) 3373 goto out_trans_cancel; 3374 } 3375 3376 /* 3377 * We always want to hit the ctime on the source inode. 3378 * 3379 * This isn't strictly required by the standards since the source 3380 * inode isn't really being changed, but old unix file systems did 3381 * it and some incremental backup programs won't work without it. 3382 */ 3383 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3384 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3385 3386 /* 3387 * Adjust the link count on src_dp. This is necessary when 3388 * renaming a directory, either within one parent when 3389 * the target existed, or across two parent directories. 3390 */ 3391 if (src_is_directory && (new_parent || target_ip != NULL)) { 3392 3393 /* 3394 * Decrement link count on src_directory since the 3395 * entry that's moved no longer points to it. 3396 */ 3397 error = xfs_droplink(tp, src_dp); 3398 if (error) 3399 goto out_trans_cancel; 3400 } 3401 3402 /* 3403 * For whiteouts, we only need to update the source dirent with the 3404 * inode number of the whiteout inode rather than removing it 3405 * altogether. 3406 */ 3407 if (wip) { 3408 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3409 spaceres); 3410 } else { 3411 /* 3412 * NOTE: We don't need to check for extent count overflow here 3413 * because the dir remove name code will leave the dir block in 3414 * place if the extent count would overflow. 3415 */ 3416 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3417 spaceres); 3418 } 3419 3420 if (error) 3421 goto out_trans_cancel; 3422 3423 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3424 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3425 if (new_parent) 3426 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3427 3428 error = xfs_finish_rename(tp); 3429 if (wip) 3430 xfs_irele(wip); 3431 return error; 3432 3433 out_trans_cancel: 3434 xfs_trans_cancel(tp); 3435 out_release_wip: 3436 if (wip) 3437 xfs_irele(wip); 3438 return error; 3439 } 3440 3441 static int 3442 xfs_iflush( 3443 struct xfs_inode *ip, 3444 struct xfs_buf *bp) 3445 { 3446 struct xfs_inode_log_item *iip = ip->i_itemp; 3447 struct xfs_dinode *dip; 3448 struct xfs_mount *mp = ip->i_mount; 3449 int error; 3450 3451 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3452 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3453 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3454 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3455 ASSERT(iip->ili_item.li_buf == bp); 3456 3457 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3458 3459 /* 3460 * We don't flush the inode if any of the following checks fail, but we 3461 * do still update the log item and attach to the backing buffer as if 3462 * the flush happened. This is a formality to facilitate predictable 3463 * error handling as the caller will shutdown and fail the buffer. 3464 */ 3465 error = -EFSCORRUPTED; 3466 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3467 mp, XFS_ERRTAG_IFLUSH_1)) { 3468 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3469 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3470 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3471 goto flush_out; 3472 } 3473 if (S_ISREG(VFS_I(ip)->i_mode)) { 3474 if (XFS_TEST_ERROR( 3475 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3476 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3477 mp, XFS_ERRTAG_IFLUSH_3)) { 3478 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3479 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3480 __func__, ip->i_ino, ip); 3481 goto flush_out; 3482 } 3483 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3484 if (XFS_TEST_ERROR( 3485 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3486 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3487 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3488 mp, XFS_ERRTAG_IFLUSH_4)) { 3489 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3490 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3491 __func__, ip->i_ino, ip); 3492 goto flush_out; 3493 } 3494 } 3495 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3496 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3497 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3498 "%s: detected corrupt incore inode %Lu, " 3499 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3500 __func__, ip->i_ino, 3501 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3502 ip->i_nblocks, ip); 3503 goto flush_out; 3504 } 3505 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, 3506 mp, XFS_ERRTAG_IFLUSH_6)) { 3507 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3508 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3509 __func__, ip->i_ino, ip->i_forkoff, ip); 3510 goto flush_out; 3511 } 3512 3513 /* 3514 * Inode item log recovery for v2 inodes are dependent on the flushiter 3515 * count for correct sequencing. We bump the flush iteration count so 3516 * we can detect flushes which postdate a log record during recovery. 3517 * This is redundant as we now log every change and hence this can't 3518 * happen but we need to still do it to ensure backwards compatibility 3519 * with old kernels that predate logging all inode changes. 3520 */ 3521 if (!xfs_has_v3inodes(mp)) 3522 ip->i_flushiter++; 3523 3524 /* 3525 * If there are inline format data / attr forks attached to this inode, 3526 * make sure they are not corrupt. 3527 */ 3528 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3529 xfs_ifork_verify_local_data(ip)) 3530 goto flush_out; 3531 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3532 xfs_ifork_verify_local_attr(ip)) 3533 goto flush_out; 3534 3535 /* 3536 * Copy the dirty parts of the inode into the on-disk inode. We always 3537 * copy out the core of the inode, because if the inode is dirty at all 3538 * the core must be. 3539 */ 3540 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3541 3542 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3543 if (!xfs_has_v3inodes(mp)) { 3544 if (ip->i_flushiter == DI_MAX_FLUSH) 3545 ip->i_flushiter = 0; 3546 } 3547 3548 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3549 if (XFS_IFORK_Q(ip)) 3550 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3551 3552 /* 3553 * We've recorded everything logged in the inode, so we'd like to clear 3554 * the ili_fields bits so we don't log and flush things unnecessarily. 3555 * However, we can't stop logging all this information until the data 3556 * we've copied into the disk buffer is written to disk. If we did we 3557 * might overwrite the copy of the inode in the log with all the data 3558 * after re-logging only part of it, and in the face of a crash we 3559 * wouldn't have all the data we need to recover. 3560 * 3561 * What we do is move the bits to the ili_last_fields field. When 3562 * logging the inode, these bits are moved back to the ili_fields field. 3563 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3564 * we know that the information those bits represent is permanently on 3565 * disk. As long as the flush completes before the inode is logged 3566 * again, then both ili_fields and ili_last_fields will be cleared. 3567 */ 3568 error = 0; 3569 flush_out: 3570 spin_lock(&iip->ili_lock); 3571 iip->ili_last_fields = iip->ili_fields; 3572 iip->ili_fields = 0; 3573 iip->ili_fsync_fields = 0; 3574 spin_unlock(&iip->ili_lock); 3575 3576 /* 3577 * Store the current LSN of the inode so that we can tell whether the 3578 * item has moved in the AIL from xfs_buf_inode_iodone(). 3579 */ 3580 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3581 &iip->ili_item.li_lsn); 3582 3583 /* generate the checksum. */ 3584 xfs_dinode_calc_crc(mp, dip); 3585 return error; 3586 } 3587 3588 /* 3589 * Non-blocking flush of dirty inode metadata into the backing buffer. 3590 * 3591 * The caller must have a reference to the inode and hold the cluster buffer 3592 * locked. The function will walk across all the inodes on the cluster buffer it 3593 * can find and lock without blocking, and flush them to the cluster buffer. 3594 * 3595 * On successful flushing of at least one inode, the caller must write out the 3596 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3597 * the caller needs to release the buffer. On failure, the filesystem will be 3598 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3599 * will be returned. 3600 */ 3601 int 3602 xfs_iflush_cluster( 3603 struct xfs_buf *bp) 3604 { 3605 struct xfs_mount *mp = bp->b_mount; 3606 struct xfs_log_item *lip, *n; 3607 struct xfs_inode *ip; 3608 struct xfs_inode_log_item *iip; 3609 int clcount = 0; 3610 int error = 0; 3611 3612 /* 3613 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3614 * can remove itself from the list. 3615 */ 3616 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3617 iip = (struct xfs_inode_log_item *)lip; 3618 ip = iip->ili_inode; 3619 3620 /* 3621 * Quick and dirty check to avoid locks if possible. 3622 */ 3623 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3624 continue; 3625 if (xfs_ipincount(ip)) 3626 continue; 3627 3628 /* 3629 * The inode is still attached to the buffer, which means it is 3630 * dirty but reclaim might try to grab it. Check carefully for 3631 * that, and grab the ilock while still holding the i_flags_lock 3632 * to guarantee reclaim will not be able to reclaim this inode 3633 * once we drop the i_flags_lock. 3634 */ 3635 spin_lock(&ip->i_flags_lock); 3636 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3637 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3638 spin_unlock(&ip->i_flags_lock); 3639 continue; 3640 } 3641 3642 /* 3643 * ILOCK will pin the inode against reclaim and prevent 3644 * concurrent transactions modifying the inode while we are 3645 * flushing the inode. If we get the lock, set the flushing 3646 * state before we drop the i_flags_lock. 3647 */ 3648 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3649 spin_unlock(&ip->i_flags_lock); 3650 continue; 3651 } 3652 __xfs_iflags_set(ip, XFS_IFLUSHING); 3653 spin_unlock(&ip->i_flags_lock); 3654 3655 /* 3656 * Abort flushing this inode if we are shut down because the 3657 * inode may not currently be in the AIL. This can occur when 3658 * log I/O failure unpins the inode without inserting into the 3659 * AIL, leaving a dirty/unpinned inode attached to the buffer 3660 * that otherwise looks like it should be flushed. 3661 */ 3662 if (xfs_is_shutdown(mp)) { 3663 xfs_iunpin_wait(ip); 3664 xfs_iflush_abort(ip); 3665 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3666 error = -EIO; 3667 continue; 3668 } 3669 3670 /* don't block waiting on a log force to unpin dirty inodes */ 3671 if (xfs_ipincount(ip)) { 3672 xfs_iflags_clear(ip, XFS_IFLUSHING); 3673 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3674 continue; 3675 } 3676 3677 if (!xfs_inode_clean(ip)) 3678 error = xfs_iflush(ip, bp); 3679 else 3680 xfs_iflags_clear(ip, XFS_IFLUSHING); 3681 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3682 if (error) 3683 break; 3684 clcount++; 3685 } 3686 3687 if (error) { 3688 bp->b_flags |= XBF_ASYNC; 3689 xfs_buf_ioend_fail(bp); 3690 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3691 return error; 3692 } 3693 3694 if (!clcount) 3695 return -EAGAIN; 3696 3697 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3698 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3699 return 0; 3700 3701 } 3702 3703 /* Release an inode. */ 3704 void 3705 xfs_irele( 3706 struct xfs_inode *ip) 3707 { 3708 trace_xfs_irele(ip, _RET_IP_); 3709 iput(VFS_I(ip)); 3710 } 3711 3712 /* 3713 * Ensure all commited transactions touching the inode are written to the log. 3714 */ 3715 int 3716 xfs_log_force_inode( 3717 struct xfs_inode *ip) 3718 { 3719 xfs_csn_t seq = 0; 3720 3721 xfs_ilock(ip, XFS_ILOCK_SHARED); 3722 if (xfs_ipincount(ip)) 3723 seq = ip->i_itemp->ili_commit_seq; 3724 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3725 3726 if (!seq) 3727 return 0; 3728 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); 3729 } 3730 3731 /* 3732 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3733 * abide vfs locking order (lowest pointer value goes first) and breaking the 3734 * layout leases before proceeding. The loop is needed because we cannot call 3735 * the blocking break_layout() with the iolocks held, and therefore have to 3736 * back out both locks. 3737 */ 3738 static int 3739 xfs_iolock_two_inodes_and_break_layout( 3740 struct inode *src, 3741 struct inode *dest) 3742 { 3743 int error; 3744 3745 if (src > dest) 3746 swap(src, dest); 3747 3748 retry: 3749 /* Wait to break both inodes' layouts before we start locking. */ 3750 error = break_layout(src, true); 3751 if (error) 3752 return error; 3753 if (src != dest) { 3754 error = break_layout(dest, true); 3755 if (error) 3756 return error; 3757 } 3758 3759 /* Lock one inode and make sure nobody got in and leased it. */ 3760 inode_lock(src); 3761 error = break_layout(src, false); 3762 if (error) { 3763 inode_unlock(src); 3764 if (error == -EWOULDBLOCK) 3765 goto retry; 3766 return error; 3767 } 3768 3769 if (src == dest) 3770 return 0; 3771 3772 /* Lock the other inode and make sure nobody got in and leased it. */ 3773 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3774 error = break_layout(dest, false); 3775 if (error) { 3776 inode_unlock(src); 3777 inode_unlock(dest); 3778 if (error == -EWOULDBLOCK) 3779 goto retry; 3780 return error; 3781 } 3782 3783 return 0; 3784 } 3785 3786 /* 3787 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3788 * mmap activity. 3789 */ 3790 int 3791 xfs_ilock2_io_mmap( 3792 struct xfs_inode *ip1, 3793 struct xfs_inode *ip2) 3794 { 3795 int ret; 3796 3797 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3798 if (ret) 3799 return ret; 3800 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping, 3801 VFS_I(ip2)->i_mapping); 3802 return 0; 3803 } 3804 3805 /* Unlock both inodes to allow IO and mmap activity. */ 3806 void 3807 xfs_iunlock2_io_mmap( 3808 struct xfs_inode *ip1, 3809 struct xfs_inode *ip2) 3810 { 3811 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping, 3812 VFS_I(ip2)->i_mapping); 3813 inode_unlock(VFS_I(ip2)); 3814 if (ip1 != ip2) 3815 inode_unlock(VFS_I(ip1)); 3816 } 3817