xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision b627b4ed)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 
70 #ifdef DEBUG
71 /*
72  * Make sure that the extents in the given memory buffer
73  * are valid.
74  */
75 STATIC void
76 xfs_validate_extents(
77 	xfs_ifork_t		*ifp,
78 	int			nrecs,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_irec_t		irec;
82 	xfs_bmbt_rec_host_t	rec;
83 	int			i;
84 
85 	for (i = 0; i < nrecs; i++) {
86 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 		rec.l0 = get_unaligned(&ep->l0);
88 		rec.l1 = get_unaligned(&ep->l1);
89 		xfs_bmbt_get_all(&rec, &irec);
90 		if (fmt == XFS_EXTFMT_NOSTATE)
91 			ASSERT(irec.br_state == XFS_EXT_NORM);
92 	}
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97 
98 /*
99  * Check that none of the inode's in the buffer have a next
100  * unlinked field of 0.
101  */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 	xfs_mount_t	*mp,
106 	xfs_buf_t	*bp)
107 {
108 	int		i;
109 	int		j;
110 	xfs_dinode_t	*dip;
111 
112 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 
114 	for (i = 0; i < j; i++) {
115 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 					i * mp->m_sb.sb_inodesize);
117 		if (!dip->di_next_unlinked)  {
118 			xfs_fs_cmn_err(CE_ALERT, mp,
119 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
120 				bp);
121 			ASSERT(dip->di_next_unlinked);
122 		}
123 	}
124 }
125 #endif
126 
127 /*
128  * Find the buffer associated with the given inode map
129  * We do basic validation checks on the buffer once it has been
130  * retrieved from disk.
131  */
132 STATIC int
133 xfs_imap_to_bp(
134 	xfs_mount_t	*mp,
135 	xfs_trans_t	*tp,
136 	struct xfs_imap	*imap,
137 	xfs_buf_t	**bpp,
138 	uint		buf_flags,
139 	uint		iget_flags)
140 {
141 	int		error;
142 	int		i;
143 	int		ni;
144 	xfs_buf_t	*bp;
145 
146 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 				   (int)imap->im_len, buf_flags, &bp);
148 	if (error) {
149 		if (error != EAGAIN) {
150 			cmn_err(CE_WARN,
151 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 				"an error %d on %s.  Returning error.",
153 				error, mp->m_fsname);
154 		} else {
155 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 		}
157 		return error;
158 	}
159 
160 	/*
161 	 * Validate the magic number and version of every inode in the buffer
162 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 	 */
164 #ifdef DEBUG
165 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else	/* usual case */
167 	ni = 1;
168 #endif
169 
170 	for (i = 0; i < ni; i++) {
171 		int		di_ok;
172 		xfs_dinode_t	*dip;
173 
174 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 					(i << mp->m_sb.sb_inodelog));
176 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
178 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 						XFS_ERRTAG_ITOBP_INOTOBP,
180 						XFS_RANDOM_ITOBP_INOTOBP))) {
181 			if (iget_flags & XFS_IGET_BULKSTAT) {
182 				xfs_trans_brelse(tp, bp);
183 				return XFS_ERROR(EINVAL);
184 			}
185 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 						XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 			cmn_err(CE_PANIC,
189 					"Device %s - bad inode magic/vsn "
190 					"daddr %lld #%d (magic=%x)",
191 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 				(unsigned long long)imap->im_blkno, i,
193 				be16_to_cpu(dip->di_magic));
194 #endif
195 			xfs_trans_brelse(tp, bp);
196 			return XFS_ERROR(EFSCORRUPTED);
197 		}
198 	}
199 
200 	xfs_inobp_check(mp, bp);
201 
202 	/*
203 	 * Mark the buffer as an inode buffer now that it looks good
204 	 */
205 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 
207 	*bpp = bp;
208 	return 0;
209 }
210 
211 /*
212  * This routine is called to map an inode number within a file
213  * system to the buffer containing the on-disk version of the
214  * inode.  It returns a pointer to the buffer containing the
215  * on-disk inode in the bpp parameter, and in the dip parameter
216  * it returns a pointer to the on-disk inode within that buffer.
217  *
218  * If a non-zero error is returned, then the contents of bpp and
219  * dipp are undefined.
220  *
221  * Use xfs_imap() to determine the size and location of the
222  * buffer to read from disk.
223  */
224 int
225 xfs_inotobp(
226 	xfs_mount_t	*mp,
227 	xfs_trans_t	*tp,
228 	xfs_ino_t	ino,
229 	xfs_dinode_t	**dipp,
230 	xfs_buf_t	**bpp,
231 	int		*offset,
232 	uint		imap_flags)
233 {
234 	struct xfs_imap	imap;
235 	xfs_buf_t	*bp;
236 	int		error;
237 
238 	imap.im_blkno = 0;
239 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
240 	if (error)
241 		return error;
242 
243 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
244 	if (error)
245 		return error;
246 
247 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 	*bpp = bp;
249 	*offset = imap.im_boffset;
250 	return 0;
251 }
252 
253 
254 /*
255  * This routine is called to map an inode to the buffer containing
256  * the on-disk version of the inode.  It returns a pointer to the
257  * buffer containing the on-disk inode in the bpp parameter, and in
258  * the dip parameter it returns a pointer to the on-disk inode within
259  * that buffer.
260  *
261  * If a non-zero error is returned, then the contents of bpp and
262  * dipp are undefined.
263  *
264  * The inode is expected to already been mapped to its buffer and read
265  * in once, thus we can use the mapping information stored in the inode
266  * rather than calling xfs_imap().  This allows us to avoid the overhead
267  * of looking at the inode btree for small block file systems
268  * (see xfs_imap()).
269  */
270 int
271 xfs_itobp(
272 	xfs_mount_t	*mp,
273 	xfs_trans_t	*tp,
274 	xfs_inode_t	*ip,
275 	xfs_dinode_t	**dipp,
276 	xfs_buf_t	**bpp,
277 	uint		buf_flags)
278 {
279 	xfs_buf_t	*bp;
280 	int		error;
281 
282 	ASSERT(ip->i_imap.im_blkno != 0);
283 
284 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
285 	if (error)
286 		return error;
287 
288 	if (!bp) {
289 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
290 		ASSERT(tp == NULL);
291 		*bpp = NULL;
292 		return EAGAIN;
293 	}
294 
295 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
296 	*bpp = bp;
297 	return 0;
298 }
299 
300 /*
301  * Move inode type and inode format specific information from the
302  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
303  * this means set if_rdev to the proper value.  For files, directories,
304  * and symlinks this means to bring in the in-line data or extent
305  * pointers.  For a file in B-tree format, only the root is immediately
306  * brought in-core.  The rest will be in-lined in if_extents when it
307  * is first referenced (see xfs_iread_extents()).
308  */
309 STATIC int
310 xfs_iformat(
311 	xfs_inode_t		*ip,
312 	xfs_dinode_t		*dip)
313 {
314 	xfs_attr_shortform_t	*atp;
315 	int			size;
316 	int			error;
317 	xfs_fsize_t             di_size;
318 	ip->i_df.if_ext_max =
319 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
320 	error = 0;
321 
322 	if (unlikely(be32_to_cpu(dip->di_nextents) +
323 		     be16_to_cpu(dip->di_anextents) >
324 		     be64_to_cpu(dip->di_nblocks))) {
325 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 			(unsigned long long)ip->i_ino,
328 			(int)(be32_to_cpu(dip->di_nextents) +
329 			      be16_to_cpu(dip->di_anextents)),
330 			(unsigned long long)
331 				be64_to_cpu(dip->di_nblocks));
332 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
333 				     ip->i_mount, dip);
334 		return XFS_ERROR(EFSCORRUPTED);
335 	}
336 
337 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
338 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 			"corrupt dinode %Lu, forkoff = 0x%x.",
340 			(unsigned long long)ip->i_ino,
341 			dip->di_forkoff);
342 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
343 				     ip->i_mount, dip);
344 		return XFS_ERROR(EFSCORRUPTED);
345 	}
346 
347 	switch (ip->i_d.di_mode & S_IFMT) {
348 	case S_IFIFO:
349 	case S_IFCHR:
350 	case S_IFBLK:
351 	case S_IFSOCK:
352 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
353 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
354 					      ip->i_mount, dip);
355 			return XFS_ERROR(EFSCORRUPTED);
356 		}
357 		ip->i_d.di_size = 0;
358 		ip->i_size = 0;
359 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
360 		break;
361 
362 	case S_IFREG:
363 	case S_IFLNK:
364 	case S_IFDIR:
365 		switch (dip->di_format) {
366 		case XFS_DINODE_FMT_LOCAL:
367 			/*
368 			 * no local regular files yet
369 			 */
370 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
371 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
372 					"corrupt inode %Lu "
373 					"(local format for regular file).",
374 					(unsigned long long) ip->i_ino);
375 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 						     XFS_ERRLEVEL_LOW,
377 						     ip->i_mount, dip);
378 				return XFS_ERROR(EFSCORRUPTED);
379 			}
380 
381 			di_size = be64_to_cpu(dip->di_size);
382 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
384 					"corrupt inode %Lu "
385 					"(bad size %Ld for local inode).",
386 					(unsigned long long) ip->i_ino,
387 					(long long) di_size);
388 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 						     XFS_ERRLEVEL_LOW,
390 						     ip->i_mount, dip);
391 				return XFS_ERROR(EFSCORRUPTED);
392 			}
393 
394 			size = (int)di_size;
395 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 			break;
397 		case XFS_DINODE_FMT_EXTENTS:
398 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 			break;
400 		case XFS_DINODE_FMT_BTREE:
401 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 			break;
403 		default:
404 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 					 ip->i_mount);
406 			return XFS_ERROR(EFSCORRUPTED);
407 		}
408 		break;
409 
410 	default:
411 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	if (error) {
415 		return error;
416 	}
417 	if (!XFS_DFORK_Q(dip))
418 		return 0;
419 	ASSERT(ip->i_afp == NULL);
420 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 	ip->i_afp->if_ext_max =
422 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 	switch (dip->di_aformat) {
424 	case XFS_DINODE_FMT_LOCAL:
425 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 		size = be16_to_cpu(atp->hdr.totsize);
427 
428 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
430 				"corrupt inode %Lu "
431 				"(bad attr fork size %Ld).",
432 				(unsigned long long) ip->i_ino,
433 				(long long) size);
434 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
435 					     XFS_ERRLEVEL_LOW,
436 					     ip->i_mount, dip);
437 			return XFS_ERROR(EFSCORRUPTED);
438 		}
439 
440 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
441 		break;
442 	case XFS_DINODE_FMT_EXTENTS:
443 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
444 		break;
445 	case XFS_DINODE_FMT_BTREE:
446 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
447 		break;
448 	default:
449 		error = XFS_ERROR(EFSCORRUPTED);
450 		break;
451 	}
452 	if (error) {
453 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
454 		ip->i_afp = NULL;
455 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
456 	}
457 	return error;
458 }
459 
460 /*
461  * The file is in-lined in the on-disk inode.
462  * If it fits into if_inline_data, then copy
463  * it there, otherwise allocate a buffer for it
464  * and copy the data there.  Either way, set
465  * if_data to point at the data.
466  * If we allocate a buffer for the data, make
467  * sure that its size is a multiple of 4 and
468  * record the real size in i_real_bytes.
469  */
470 STATIC int
471 xfs_iformat_local(
472 	xfs_inode_t	*ip,
473 	xfs_dinode_t	*dip,
474 	int		whichfork,
475 	int		size)
476 {
477 	xfs_ifork_t	*ifp;
478 	int		real_size;
479 
480 	/*
481 	 * If the size is unreasonable, then something
482 	 * is wrong and we just bail out rather than crash in
483 	 * kmem_alloc() or memcpy() below.
484 	 */
485 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
486 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
487 			"corrupt inode %Lu "
488 			"(bad size %d for local fork, size = %d).",
489 			(unsigned long long) ip->i_ino, size,
490 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
492 				     ip->i_mount, dip);
493 		return XFS_ERROR(EFSCORRUPTED);
494 	}
495 	ifp = XFS_IFORK_PTR(ip, whichfork);
496 	real_size = 0;
497 	if (size == 0)
498 		ifp->if_u1.if_data = NULL;
499 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
501 	else {
502 		real_size = roundup(size, 4);
503 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
504 	}
505 	ifp->if_bytes = size;
506 	ifp->if_real_bytes = real_size;
507 	if (size)
508 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 	ifp->if_flags &= ~XFS_IFEXTENTS;
510 	ifp->if_flags |= XFS_IFINLINE;
511 	return 0;
512 }
513 
514 /*
515  * The file consists of a set of extents all
516  * of which fit into the on-disk inode.
517  * If there are few enough extents to fit into
518  * the if_inline_ext, then copy them there.
519  * Otherwise allocate a buffer for them and copy
520  * them into it.  Either way, set if_extents
521  * to point at the extents.
522  */
523 STATIC int
524 xfs_iformat_extents(
525 	xfs_inode_t	*ip,
526 	xfs_dinode_t	*dip,
527 	int		whichfork)
528 {
529 	xfs_bmbt_rec_t	*dp;
530 	xfs_ifork_t	*ifp;
531 	int		nex;
532 	int		size;
533 	int		i;
534 
535 	ifp = XFS_IFORK_PTR(ip, whichfork);
536 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
538 
539 	/*
540 	 * If the number of extents is unreasonable, then something
541 	 * is wrong and we just bail out rather than crash in
542 	 * kmem_alloc() or memcpy() below.
543 	 */
544 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
545 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
546 			"corrupt inode %Lu ((a)extents = %d).",
547 			(unsigned long long) ip->i_ino, nex);
548 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
549 				     ip->i_mount, dip);
550 		return XFS_ERROR(EFSCORRUPTED);
551 	}
552 
553 	ifp->if_real_bytes = 0;
554 	if (nex == 0)
555 		ifp->if_u1.if_extents = NULL;
556 	else if (nex <= XFS_INLINE_EXTS)
557 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
558 	else
559 		xfs_iext_add(ifp, 0, nex);
560 
561 	ifp->if_bytes = size;
562 	if (size) {
563 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
564 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
565 		for (i = 0; i < nex; i++, dp++) {
566 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
567 			ep->l0 = get_unaligned_be64(&dp->l0);
568 			ep->l1 = get_unaligned_be64(&dp->l1);
569 		}
570 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
571 		if (whichfork != XFS_DATA_FORK ||
572 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
573 				if (unlikely(xfs_check_nostate_extents(
574 				    ifp, 0, nex))) {
575 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
576 							 XFS_ERRLEVEL_LOW,
577 							 ip->i_mount);
578 					return XFS_ERROR(EFSCORRUPTED);
579 				}
580 	}
581 	ifp->if_flags |= XFS_IFEXTENTS;
582 	return 0;
583 }
584 
585 /*
586  * The file has too many extents to fit into
587  * the inode, so they are in B-tree format.
588  * Allocate a buffer for the root of the B-tree
589  * and copy the root into it.  The i_extents
590  * field will remain NULL until all of the
591  * extents are read in (when they are needed).
592  */
593 STATIC int
594 xfs_iformat_btree(
595 	xfs_inode_t		*ip,
596 	xfs_dinode_t		*dip,
597 	int			whichfork)
598 {
599 	xfs_bmdr_block_t	*dfp;
600 	xfs_ifork_t		*ifp;
601 	/* REFERENCED */
602 	int			nrecs;
603 	int			size;
604 
605 	ifp = XFS_IFORK_PTR(ip, whichfork);
606 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
607 	size = XFS_BMAP_BROOT_SPACE(dfp);
608 	nrecs = be16_to_cpu(dfp->bb_numrecs);
609 
610 	/*
611 	 * blow out if -- fork has less extents than can fit in
612 	 * fork (fork shouldn't be a btree format), root btree
613 	 * block has more records than can fit into the fork,
614 	 * or the number of extents is greater than the number of
615 	 * blocks.
616 	 */
617 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
618 	    || XFS_BMDR_SPACE_CALC(nrecs) >
619 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
620 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
621 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 			"corrupt inode %Lu (btree).",
623 			(unsigned long long) ip->i_ino);
624 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
625 				 ip->i_mount);
626 		return XFS_ERROR(EFSCORRUPTED);
627 	}
628 
629 	ifp->if_broot_bytes = size;
630 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
631 	ASSERT(ifp->if_broot != NULL);
632 	/*
633 	 * Copy and convert from the on-disk structure
634 	 * to the in-memory structure.
635 	 */
636 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
637 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
638 			 ifp->if_broot, size);
639 	ifp->if_flags &= ~XFS_IFEXTENTS;
640 	ifp->if_flags |= XFS_IFBROOT;
641 
642 	return 0;
643 }
644 
645 void
646 xfs_dinode_from_disk(
647 	xfs_icdinode_t		*to,
648 	xfs_dinode_t		*from)
649 {
650 	to->di_magic = be16_to_cpu(from->di_magic);
651 	to->di_mode = be16_to_cpu(from->di_mode);
652 	to->di_version = from ->di_version;
653 	to->di_format = from->di_format;
654 	to->di_onlink = be16_to_cpu(from->di_onlink);
655 	to->di_uid = be32_to_cpu(from->di_uid);
656 	to->di_gid = be32_to_cpu(from->di_gid);
657 	to->di_nlink = be32_to_cpu(from->di_nlink);
658 	to->di_projid = be16_to_cpu(from->di_projid);
659 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
660 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
661 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
662 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
663 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
664 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
665 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
666 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
667 	to->di_size = be64_to_cpu(from->di_size);
668 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
669 	to->di_extsize = be32_to_cpu(from->di_extsize);
670 	to->di_nextents = be32_to_cpu(from->di_nextents);
671 	to->di_anextents = be16_to_cpu(from->di_anextents);
672 	to->di_forkoff = from->di_forkoff;
673 	to->di_aformat	= from->di_aformat;
674 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
675 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
676 	to->di_flags	= be16_to_cpu(from->di_flags);
677 	to->di_gen	= be32_to_cpu(from->di_gen);
678 }
679 
680 void
681 xfs_dinode_to_disk(
682 	xfs_dinode_t		*to,
683 	xfs_icdinode_t		*from)
684 {
685 	to->di_magic = cpu_to_be16(from->di_magic);
686 	to->di_mode = cpu_to_be16(from->di_mode);
687 	to->di_version = from ->di_version;
688 	to->di_format = from->di_format;
689 	to->di_onlink = cpu_to_be16(from->di_onlink);
690 	to->di_uid = cpu_to_be32(from->di_uid);
691 	to->di_gid = cpu_to_be32(from->di_gid);
692 	to->di_nlink = cpu_to_be32(from->di_nlink);
693 	to->di_projid = cpu_to_be16(from->di_projid);
694 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 	to->di_size = cpu_to_be64(from->di_size);
703 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 	to->di_extsize = cpu_to_be32(from->di_extsize);
705 	to->di_nextents = cpu_to_be32(from->di_nextents);
706 	to->di_anextents = cpu_to_be16(from->di_anextents);
707 	to->di_forkoff = from->di_forkoff;
708 	to->di_aformat = from->di_aformat;
709 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 	to->di_flags = cpu_to_be16(from->di_flags);
712 	to->di_gen = cpu_to_be32(from->di_gen);
713 }
714 
715 STATIC uint
716 _xfs_dic2xflags(
717 	__uint16_t		di_flags)
718 {
719 	uint			flags = 0;
720 
721 	if (di_flags & XFS_DIFLAG_ANY) {
722 		if (di_flags & XFS_DIFLAG_REALTIME)
723 			flags |= XFS_XFLAG_REALTIME;
724 		if (di_flags & XFS_DIFLAG_PREALLOC)
725 			flags |= XFS_XFLAG_PREALLOC;
726 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 			flags |= XFS_XFLAG_IMMUTABLE;
728 		if (di_flags & XFS_DIFLAG_APPEND)
729 			flags |= XFS_XFLAG_APPEND;
730 		if (di_flags & XFS_DIFLAG_SYNC)
731 			flags |= XFS_XFLAG_SYNC;
732 		if (di_flags & XFS_DIFLAG_NOATIME)
733 			flags |= XFS_XFLAG_NOATIME;
734 		if (di_flags & XFS_DIFLAG_NODUMP)
735 			flags |= XFS_XFLAG_NODUMP;
736 		if (di_flags & XFS_DIFLAG_RTINHERIT)
737 			flags |= XFS_XFLAG_RTINHERIT;
738 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 			flags |= XFS_XFLAG_PROJINHERIT;
740 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 			flags |= XFS_XFLAG_NOSYMLINKS;
742 		if (di_flags & XFS_DIFLAG_EXTSIZE)
743 			flags |= XFS_XFLAG_EXTSIZE;
744 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 			flags |= XFS_XFLAG_EXTSZINHERIT;
746 		if (di_flags & XFS_DIFLAG_NODEFRAG)
747 			flags |= XFS_XFLAG_NODEFRAG;
748 		if (di_flags & XFS_DIFLAG_FILESTREAM)
749 			flags |= XFS_XFLAG_FILESTREAM;
750 	}
751 
752 	return flags;
753 }
754 
755 uint
756 xfs_ip2xflags(
757 	xfs_inode_t		*ip)
758 {
759 	xfs_icdinode_t		*dic = &ip->i_d;
760 
761 	return _xfs_dic2xflags(dic->di_flags) |
762 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
763 }
764 
765 uint
766 xfs_dic2xflags(
767 	xfs_dinode_t		*dip)
768 {
769 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
770 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
771 }
772 
773 /*
774  * Read the disk inode attributes into the in-core inode structure.
775  */
776 int
777 xfs_iread(
778 	xfs_mount_t	*mp,
779 	xfs_trans_t	*tp,
780 	xfs_inode_t	*ip,
781 	xfs_daddr_t	bno,
782 	uint		iget_flags)
783 {
784 	xfs_buf_t	*bp;
785 	xfs_dinode_t	*dip;
786 	int		error;
787 
788 	/*
789 	 * Fill in the location information in the in-core inode.
790 	 */
791 	ip->i_imap.im_blkno = bno;
792 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
793 	if (error)
794 		return error;
795 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
796 
797 	/*
798 	 * Get pointers to the on-disk inode and the buffer containing it.
799 	 */
800 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
801 			       XFS_BUF_LOCK, iget_flags);
802 	if (error)
803 		return error;
804 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
805 
806 	/*
807 	 * If we got something that isn't an inode it means someone
808 	 * (nfs or dmi) has a stale handle.
809 	 */
810 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
811 #ifdef DEBUG
812 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
813 				"dip->di_magic (0x%x) != "
814 				"XFS_DINODE_MAGIC (0x%x)",
815 				be16_to_cpu(dip->di_magic),
816 				XFS_DINODE_MAGIC);
817 #endif /* DEBUG */
818 		error = XFS_ERROR(EINVAL);
819 		goto out_brelse;
820 	}
821 
822 	/*
823 	 * If the on-disk inode is already linked to a directory
824 	 * entry, copy all of the inode into the in-core inode.
825 	 * xfs_iformat() handles copying in the inode format
826 	 * specific information.
827 	 * Otherwise, just get the truly permanent information.
828 	 */
829 	if (dip->di_mode) {
830 		xfs_dinode_from_disk(&ip->i_d, dip);
831 		error = xfs_iformat(ip, dip);
832 		if (error)  {
833 #ifdef DEBUG
834 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
835 					"xfs_iformat() returned error %d",
836 					error);
837 #endif /* DEBUG */
838 			goto out_brelse;
839 		}
840 	} else {
841 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
842 		ip->i_d.di_version = dip->di_version;
843 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
844 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
845 		/*
846 		 * Make sure to pull in the mode here as well in
847 		 * case the inode is released without being used.
848 		 * This ensures that xfs_inactive() will see that
849 		 * the inode is already free and not try to mess
850 		 * with the uninitialized part of it.
851 		 */
852 		ip->i_d.di_mode = 0;
853 		/*
854 		 * Initialize the per-fork minima and maxima for a new
855 		 * inode here.  xfs_iformat will do it for old inodes.
856 		 */
857 		ip->i_df.if_ext_max =
858 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
859 	}
860 
861 	/*
862 	 * The inode format changed when we moved the link count and
863 	 * made it 32 bits long.  If this is an old format inode,
864 	 * convert it in memory to look like a new one.  If it gets
865 	 * flushed to disk we will convert back before flushing or
866 	 * logging it.  We zero out the new projid field and the old link
867 	 * count field.  We'll handle clearing the pad field (the remains
868 	 * of the old uuid field) when we actually convert the inode to
869 	 * the new format. We don't change the version number so that we
870 	 * can distinguish this from a real new format inode.
871 	 */
872 	if (ip->i_d.di_version == 1) {
873 		ip->i_d.di_nlink = ip->i_d.di_onlink;
874 		ip->i_d.di_onlink = 0;
875 		ip->i_d.di_projid = 0;
876 	}
877 
878 	ip->i_delayed_blks = 0;
879 	ip->i_size = ip->i_d.di_size;
880 
881 	/*
882 	 * Mark the buffer containing the inode as something to keep
883 	 * around for a while.  This helps to keep recently accessed
884 	 * meta-data in-core longer.
885 	 */
886 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
887 
888 	/*
889 	 * Use xfs_trans_brelse() to release the buffer containing the
890 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
891 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
892 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
893 	 * will only release the buffer if it is not dirty within the
894 	 * transaction.  It will be OK to release the buffer in this case,
895 	 * because inodes on disk are never destroyed and we will be
896 	 * locking the new in-core inode before putting it in the hash
897 	 * table where other processes can find it.  Thus we don't have
898 	 * to worry about the inode being changed just because we released
899 	 * the buffer.
900 	 */
901  out_brelse:
902 	xfs_trans_brelse(tp, bp);
903 	return error;
904 }
905 
906 /*
907  * Read in extents from a btree-format inode.
908  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
909  */
910 int
911 xfs_iread_extents(
912 	xfs_trans_t	*tp,
913 	xfs_inode_t	*ip,
914 	int		whichfork)
915 {
916 	int		error;
917 	xfs_ifork_t	*ifp;
918 	xfs_extnum_t	nextents;
919 	size_t		size;
920 
921 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
922 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
923 				 ip->i_mount);
924 		return XFS_ERROR(EFSCORRUPTED);
925 	}
926 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
927 	size = nextents * sizeof(xfs_bmbt_rec_t);
928 	ifp = XFS_IFORK_PTR(ip, whichfork);
929 
930 	/*
931 	 * We know that the size is valid (it's checked in iformat_btree)
932 	 */
933 	ifp->if_lastex = NULLEXTNUM;
934 	ifp->if_bytes = ifp->if_real_bytes = 0;
935 	ifp->if_flags |= XFS_IFEXTENTS;
936 	xfs_iext_add(ifp, 0, nextents);
937 	error = xfs_bmap_read_extents(tp, ip, whichfork);
938 	if (error) {
939 		xfs_iext_destroy(ifp);
940 		ifp->if_flags &= ~XFS_IFEXTENTS;
941 		return error;
942 	}
943 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
944 	return 0;
945 }
946 
947 /*
948  * Allocate an inode on disk and return a copy of its in-core version.
949  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
950  * appropriately within the inode.  The uid and gid for the inode are
951  * set according to the contents of the given cred structure.
952  *
953  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954  * has a free inode available, call xfs_iget()
955  * to obtain the in-core version of the allocated inode.  Finally,
956  * fill in the inode and log its initial contents.  In this case,
957  * ialloc_context would be set to NULL and call_again set to false.
958  *
959  * If xfs_dialloc() does not have an available inode,
960  * it will replenish its supply by doing an allocation. Since we can
961  * only do one allocation within a transaction without deadlocks, we
962  * must commit the current transaction before returning the inode itself.
963  * In this case, therefore, we will set call_again to true and return.
964  * The caller should then commit the current transaction, start a new
965  * transaction, and call xfs_ialloc() again to actually get the inode.
966  *
967  * To ensure that some other process does not grab the inode that
968  * was allocated during the first call to xfs_ialloc(), this routine
969  * also returns the [locked] bp pointing to the head of the freelist
970  * as ialloc_context.  The caller should hold this buffer across
971  * the commit and pass it back into this routine on the second call.
972  *
973  * If we are allocating quota inodes, we do not have a parent inode
974  * to attach to or associate with (i.e. pip == NULL) because they
975  * are not linked into the directory structure - they are attached
976  * directly to the superblock - and so have no parent.
977  */
978 int
979 xfs_ialloc(
980 	xfs_trans_t	*tp,
981 	xfs_inode_t	*pip,
982 	mode_t		mode,
983 	xfs_nlink_t	nlink,
984 	xfs_dev_t	rdev,
985 	cred_t		*cr,
986 	xfs_prid_t	prid,
987 	int		okalloc,
988 	xfs_buf_t	**ialloc_context,
989 	boolean_t	*call_again,
990 	xfs_inode_t	**ipp)
991 {
992 	xfs_ino_t	ino;
993 	xfs_inode_t	*ip;
994 	uint		flags;
995 	int		error;
996 	timespec_t	tv;
997 	int		filestreams = 0;
998 
999 	/*
1000 	 * Call the space management code to pick
1001 	 * the on-disk inode to be allocated.
1002 	 */
1003 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 			    ialloc_context, call_again, &ino);
1005 	if (error)
1006 		return error;
1007 	if (*call_again || ino == NULLFSINO) {
1008 		*ipp = NULL;
1009 		return 0;
1010 	}
1011 	ASSERT(*ialloc_context == NULL);
1012 
1013 	/*
1014 	 * Get the in-core inode with the lock held exclusively.
1015 	 * This is because we're setting fields here we need
1016 	 * to prevent others from looking at until we're done.
1017 	 */
1018 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1020 	if (error)
1021 		return error;
1022 	ASSERT(ip != NULL);
1023 
1024 	ip->i_d.di_mode = (__uint16_t)mode;
1025 	ip->i_d.di_onlink = 0;
1026 	ip->i_d.di_nlink = nlink;
1027 	ASSERT(ip->i_d.di_nlink == nlink);
1028 	ip->i_d.di_uid = current_fsuid();
1029 	ip->i_d.di_gid = current_fsgid();
1030 	ip->i_d.di_projid = prid;
1031 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1032 
1033 	/*
1034 	 * If the superblock version is up to where we support new format
1035 	 * inodes and this is currently an old format inode, then change
1036 	 * the inode version number now.  This way we only do the conversion
1037 	 * here rather than here and in the flush/logging code.
1038 	 */
1039 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 	    ip->i_d.di_version == 1) {
1041 		ip->i_d.di_version = 2;
1042 		/*
1043 		 * We've already zeroed the old link count, the projid field,
1044 		 * and the pad field.
1045 		 */
1046 	}
1047 
1048 	/*
1049 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1050 	 */
1051 	if ((prid != 0) && (ip->i_d.di_version == 1))
1052 		xfs_bump_ino_vers2(tp, ip);
1053 
1054 	if (pip && XFS_INHERIT_GID(pip)) {
1055 		ip->i_d.di_gid = pip->i_d.di_gid;
1056 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 			ip->i_d.di_mode |= S_ISGID;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * If the group ID of the new file does not match the effective group
1063 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1065 	 */
1066 	if ((irix_sgid_inherit) &&
1067 	    (ip->i_d.di_mode & S_ISGID) &&
1068 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 		ip->i_d.di_mode &= ~S_ISGID;
1070 	}
1071 
1072 	ip->i_d.di_size = 0;
1073 	ip->i_size = 0;
1074 	ip->i_d.di_nextents = 0;
1075 	ASSERT(ip->i_d.di_nblocks == 0);
1076 
1077 	nanotime(&tv);
1078 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 	ip->i_d.di_atime = ip->i_d.di_mtime;
1081 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1082 
1083 	/*
1084 	 * di_gen will have been taken care of in xfs_iread.
1085 	 */
1086 	ip->i_d.di_extsize = 0;
1087 	ip->i_d.di_dmevmask = 0;
1088 	ip->i_d.di_dmstate = 0;
1089 	ip->i_d.di_flags = 0;
1090 	flags = XFS_ILOG_CORE;
1091 	switch (mode & S_IFMT) {
1092 	case S_IFIFO:
1093 	case S_IFCHR:
1094 	case S_IFBLK:
1095 	case S_IFSOCK:
1096 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 		ip->i_df.if_u2.if_rdev = rdev;
1098 		ip->i_df.if_flags = 0;
1099 		flags |= XFS_ILOG_DEV;
1100 		break;
1101 	case S_IFREG:
1102 		/*
1103 		 * we can't set up filestreams until after the VFS inode
1104 		 * is set up properly.
1105 		 */
1106 		if (pip && xfs_inode_is_filestream(pip))
1107 			filestreams = 1;
1108 		/* fall through */
1109 	case S_IFDIR:
1110 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1111 			uint	di_flags = 0;
1112 
1113 			if ((mode & S_IFMT) == S_IFDIR) {
1114 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 					di_flags |= XFS_DIFLAG_RTINHERIT;
1116 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1119 				}
1120 			} else if ((mode & S_IFMT) == S_IFREG) {
1121 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 					di_flags |= XFS_DIFLAG_REALTIME;
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 					di_flags |= XFS_DIFLAG_EXTSIZE;
1125 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1126 				}
1127 			}
1128 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 			    xfs_inherit_noatime)
1130 				di_flags |= XFS_DIFLAG_NOATIME;
1131 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1132 			    xfs_inherit_nodump)
1133 				di_flags |= XFS_DIFLAG_NODUMP;
1134 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1135 			    xfs_inherit_sync)
1136 				di_flags |= XFS_DIFLAG_SYNC;
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 			    xfs_inherit_nosymlinks)
1139 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 			    xfs_inherit_nodefrag)
1144 				di_flags |= XFS_DIFLAG_NODEFRAG;
1145 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 				di_flags |= XFS_DIFLAG_FILESTREAM;
1147 			ip->i_d.di_flags |= di_flags;
1148 		}
1149 		/* FALLTHROUGH */
1150 	case S_IFLNK:
1151 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 		ip->i_df.if_flags = XFS_IFEXTENTS;
1153 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 		ip->i_df.if_u1.if_extents = NULL;
1155 		break;
1156 	default:
1157 		ASSERT(0);
1158 	}
1159 	/*
1160 	 * Attribute fork settings for new inode.
1161 	 */
1162 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 	ip->i_d.di_anextents = 0;
1164 
1165 	/*
1166 	 * Log the new values stuffed into the inode.
1167 	 */
1168 	xfs_trans_log_inode(tp, ip, flags);
1169 
1170 	/* now that we have an i_mode we can setup inode ops and unlock */
1171 	xfs_setup_inode(ip);
1172 
1173 	/* now we have set up the vfs inode we can associate the filestream */
1174 	if (filestreams) {
1175 		error = xfs_filestream_associate(pip, ip);
1176 		if (error < 0)
1177 			return -error;
1178 		if (!error)
1179 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1180 	}
1181 
1182 	*ipp = ip;
1183 	return 0;
1184 }
1185 
1186 /*
1187  * Check to make sure that there are no blocks allocated to the
1188  * file beyond the size of the file.  We don't check this for
1189  * files with fixed size extents or real time extents, but we
1190  * at least do it for regular files.
1191  */
1192 #ifdef DEBUG
1193 void
1194 xfs_isize_check(
1195 	xfs_mount_t	*mp,
1196 	xfs_inode_t	*ip,
1197 	xfs_fsize_t	isize)
1198 {
1199 	xfs_fileoff_t	map_first;
1200 	int		nimaps;
1201 	xfs_bmbt_irec_t	imaps[2];
1202 
1203 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1204 		return;
1205 
1206 	if (XFS_IS_REALTIME_INODE(ip))
1207 		return;
1208 
1209 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1210 		return;
1211 
1212 	nimaps = 2;
1213 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1214 	/*
1215 	 * The filesystem could be shutting down, so bmapi may return
1216 	 * an error.
1217 	 */
1218 	if (xfs_bmapi(NULL, ip, map_first,
1219 			 (XFS_B_TO_FSB(mp,
1220 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1221 			  map_first),
1222 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1223 			 NULL, NULL))
1224 	    return;
1225 	ASSERT(nimaps == 1);
1226 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1227 }
1228 #endif	/* DEBUG */
1229 
1230 /*
1231  * Calculate the last possible buffered byte in a file.  This must
1232  * include data that was buffered beyond the EOF by the write code.
1233  * This also needs to deal with overflowing the xfs_fsize_t type
1234  * which can happen for sizes near the limit.
1235  *
1236  * We also need to take into account any blocks beyond the EOF.  It
1237  * may be the case that they were buffered by a write which failed.
1238  * In that case the pages will still be in memory, but the inode size
1239  * will never have been updated.
1240  */
1241 xfs_fsize_t
1242 xfs_file_last_byte(
1243 	xfs_inode_t	*ip)
1244 {
1245 	xfs_mount_t	*mp;
1246 	xfs_fsize_t	last_byte;
1247 	xfs_fileoff_t	last_block;
1248 	xfs_fileoff_t	size_last_block;
1249 	int		error;
1250 
1251 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1252 
1253 	mp = ip->i_mount;
1254 	/*
1255 	 * Only check for blocks beyond the EOF if the extents have
1256 	 * been read in.  This eliminates the need for the inode lock,
1257 	 * and it also saves us from looking when it really isn't
1258 	 * necessary.
1259 	 */
1260 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1262 			XFS_DATA_FORK);
1263 		if (error) {
1264 			last_block = 0;
1265 		}
1266 	} else {
1267 		last_block = 0;
1268 	}
1269 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1270 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1271 
1272 	last_byte = XFS_FSB_TO_B(mp, last_block);
1273 	if (last_byte < 0) {
1274 		return XFS_MAXIOFFSET(mp);
1275 	}
1276 	last_byte += (1 << mp->m_writeio_log);
1277 	if (last_byte < 0) {
1278 		return XFS_MAXIOFFSET(mp);
1279 	}
1280 	return last_byte;
1281 }
1282 
1283 #if defined(XFS_RW_TRACE)
1284 STATIC void
1285 xfs_itrunc_trace(
1286 	int		tag,
1287 	xfs_inode_t	*ip,
1288 	int		flag,
1289 	xfs_fsize_t	new_size,
1290 	xfs_off_t	toss_start,
1291 	xfs_off_t	toss_finish)
1292 {
1293 	if (ip->i_rwtrace == NULL) {
1294 		return;
1295 	}
1296 
1297 	ktrace_enter(ip->i_rwtrace,
1298 		     (void*)((long)tag),
1299 		     (void*)ip,
1300 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1301 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1302 		     (void*)((long)flag),
1303 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1304 		     (void*)(unsigned long)(new_size & 0xffffffff),
1305 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1306 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1307 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1308 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1309 		     (void*)(unsigned long)current_cpu(),
1310 		     (void*)(unsigned long)current_pid(),
1311 		     (void*)NULL,
1312 		     (void*)NULL,
1313 		     (void*)NULL);
1314 }
1315 #else
1316 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1317 #endif
1318 
1319 /*
1320  * Start the truncation of the file to new_size.  The new size
1321  * must be smaller than the current size.  This routine will
1322  * clear the buffer and page caches of file data in the removed
1323  * range, and xfs_itruncate_finish() will remove the underlying
1324  * disk blocks.
1325  *
1326  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1327  * must NOT have the inode lock held at all.  This is because we're
1328  * calling into the buffer/page cache code and we can't hold the
1329  * inode lock when we do so.
1330  *
1331  * We need to wait for any direct I/Os in flight to complete before we
1332  * proceed with the truncate. This is needed to prevent the extents
1333  * being read or written by the direct I/Os from being removed while the
1334  * I/O is in flight as there is no other method of synchronising
1335  * direct I/O with the truncate operation.  Also, because we hold
1336  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1337  * started until the truncate completes and drops the lock. Essentially,
1338  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1339  * ordering between direct I/Os and the truncate operation.
1340  *
1341  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1342  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1343  * in the case that the caller is locking things out of order and
1344  * may not be able to call xfs_itruncate_finish() with the inode lock
1345  * held without dropping the I/O lock.  If the caller must drop the
1346  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1347  * must be called again with all the same restrictions as the initial
1348  * call.
1349  */
1350 int
1351 xfs_itruncate_start(
1352 	xfs_inode_t	*ip,
1353 	uint		flags,
1354 	xfs_fsize_t	new_size)
1355 {
1356 	xfs_fsize_t	last_byte;
1357 	xfs_off_t	toss_start;
1358 	xfs_mount_t	*mp;
1359 	int		error = 0;
1360 
1361 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1362 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1363 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1364 	       (flags == XFS_ITRUNC_MAYBE));
1365 
1366 	mp = ip->i_mount;
1367 
1368 	/* wait for the completion of any pending DIOs */
1369 	if (new_size == 0 || new_size < ip->i_size)
1370 		xfs_ioend_wait(ip);
1371 
1372 	/*
1373 	 * Call toss_pages or flushinval_pages to get rid of pages
1374 	 * overlapping the region being removed.  We have to use
1375 	 * the less efficient flushinval_pages in the case that the
1376 	 * caller may not be able to finish the truncate without
1377 	 * dropping the inode's I/O lock.  Make sure
1378 	 * to catch any pages brought in by buffers overlapping
1379 	 * the EOF by searching out beyond the isize by our
1380 	 * block size. We round new_size up to a block boundary
1381 	 * so that we don't toss things on the same block as
1382 	 * new_size but before it.
1383 	 *
1384 	 * Before calling toss_page or flushinval_pages, make sure to
1385 	 * call remapf() over the same region if the file is mapped.
1386 	 * This frees up mapped file references to the pages in the
1387 	 * given range and for the flushinval_pages case it ensures
1388 	 * that we get the latest mapped changes flushed out.
1389 	 */
1390 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1391 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1392 	if (toss_start < 0) {
1393 		/*
1394 		 * The place to start tossing is beyond our maximum
1395 		 * file size, so there is no way that the data extended
1396 		 * out there.
1397 		 */
1398 		return 0;
1399 	}
1400 	last_byte = xfs_file_last_byte(ip);
1401 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1402 			 last_byte);
1403 	if (last_byte > toss_start) {
1404 		if (flags & XFS_ITRUNC_DEFINITE) {
1405 			xfs_tosspages(ip, toss_start,
1406 					-1, FI_REMAPF_LOCKED);
1407 		} else {
1408 			error = xfs_flushinval_pages(ip, toss_start,
1409 					-1, FI_REMAPF_LOCKED);
1410 		}
1411 	}
1412 
1413 #ifdef DEBUG
1414 	if (new_size == 0) {
1415 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1416 	}
1417 #endif
1418 	return error;
1419 }
1420 
1421 /*
1422  * Shrink the file to the given new_size.  The new size must be smaller than
1423  * the current size.  This will free up the underlying blocks in the removed
1424  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1425  *
1426  * The transaction passed to this routine must have made a permanent log
1427  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1428  * given transaction and start new ones, so make sure everything involved in
1429  * the transaction is tidy before calling here.  Some transaction will be
1430  * returned to the caller to be committed.  The incoming transaction must
1431  * already include the inode, and both inode locks must be held exclusively.
1432  * The inode must also be "held" within the transaction.  On return the inode
1433  * will be "held" within the returned transaction.  This routine does NOT
1434  * require any disk space to be reserved for it within the transaction.
1435  *
1436  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1437  * indicates the fork which is to be truncated.  For the attribute fork we only
1438  * support truncation to size 0.
1439  *
1440  * We use the sync parameter to indicate whether or not the first transaction
1441  * we perform might have to be synchronous.  For the attr fork, it needs to be
1442  * so if the unlink of the inode is not yet known to be permanent in the log.
1443  * This keeps us from freeing and reusing the blocks of the attribute fork
1444  * before the unlink of the inode becomes permanent.
1445  *
1446  * For the data fork, we normally have to run synchronously if we're being
1447  * called out of the inactive path or we're being called out of the create path
1448  * where we're truncating an existing file.  Either way, the truncate needs to
1449  * be sync so blocks don't reappear in the file with altered data in case of a
1450  * crash.  wsync filesystems can run the first case async because anything that
1451  * shrinks the inode has to run sync so by the time we're called here from
1452  * inactive, the inode size is permanently set to 0.
1453  *
1454  * Calls from the truncate path always need to be sync unless we're in a wsync
1455  * filesystem and the file has already been unlinked.
1456  *
1457  * The caller is responsible for correctly setting the sync parameter.  It gets
1458  * too hard for us to guess here which path we're being called out of just
1459  * based on inode state.
1460  *
1461  * If we get an error, we must return with the inode locked and linked into the
1462  * current transaction. This keeps things simple for the higher level code,
1463  * because it always knows that the inode is locked and held in the transaction
1464  * that returns to it whether errors occur or not.  We don't mark the inode
1465  * dirty on error so that transactions can be easily aborted if possible.
1466  */
1467 int
1468 xfs_itruncate_finish(
1469 	xfs_trans_t	**tp,
1470 	xfs_inode_t	*ip,
1471 	xfs_fsize_t	new_size,
1472 	int		fork,
1473 	int		sync)
1474 {
1475 	xfs_fsblock_t	first_block;
1476 	xfs_fileoff_t	first_unmap_block;
1477 	xfs_fileoff_t	last_block;
1478 	xfs_filblks_t	unmap_len=0;
1479 	xfs_mount_t	*mp;
1480 	xfs_trans_t	*ntp;
1481 	int		done;
1482 	int		committed;
1483 	xfs_bmap_free_t	free_list;
1484 	int		error;
1485 
1486 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1487 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1488 	ASSERT(*tp != NULL);
1489 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1490 	ASSERT(ip->i_transp == *tp);
1491 	ASSERT(ip->i_itemp != NULL);
1492 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1493 
1494 
1495 	ntp = *tp;
1496 	mp = (ntp)->t_mountp;
1497 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1498 
1499 	/*
1500 	 * We only support truncating the entire attribute fork.
1501 	 */
1502 	if (fork == XFS_ATTR_FORK) {
1503 		new_size = 0LL;
1504 	}
1505 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1506 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1507 	/*
1508 	 * The first thing we do is set the size to new_size permanently
1509 	 * on disk.  This way we don't have to worry about anyone ever
1510 	 * being able to look at the data being freed even in the face
1511 	 * of a crash.  What we're getting around here is the case where
1512 	 * we free a block, it is allocated to another file, it is written
1513 	 * to, and then we crash.  If the new data gets written to the
1514 	 * file but the log buffers containing the free and reallocation
1515 	 * don't, then we'd end up with garbage in the blocks being freed.
1516 	 * As long as we make the new_size permanent before actually
1517 	 * freeing any blocks it doesn't matter if they get writtten to.
1518 	 *
1519 	 * The callers must signal into us whether or not the size
1520 	 * setting here must be synchronous.  There are a few cases
1521 	 * where it doesn't have to be synchronous.  Those cases
1522 	 * occur if the file is unlinked and we know the unlink is
1523 	 * permanent or if the blocks being truncated are guaranteed
1524 	 * to be beyond the inode eof (regardless of the link count)
1525 	 * and the eof value is permanent.  Both of these cases occur
1526 	 * only on wsync-mounted filesystems.  In those cases, we're
1527 	 * guaranteed that no user will ever see the data in the blocks
1528 	 * that are being truncated so the truncate can run async.
1529 	 * In the free beyond eof case, the file may wind up with
1530 	 * more blocks allocated to it than it needs if we crash
1531 	 * and that won't get fixed until the next time the file
1532 	 * is re-opened and closed but that's ok as that shouldn't
1533 	 * be too many blocks.
1534 	 *
1535 	 * However, we can't just make all wsync xactions run async
1536 	 * because there's one call out of the create path that needs
1537 	 * to run sync where it's truncating an existing file to size
1538 	 * 0 whose size is > 0.
1539 	 *
1540 	 * It's probably possible to come up with a test in this
1541 	 * routine that would correctly distinguish all the above
1542 	 * cases from the values of the function parameters and the
1543 	 * inode state but for sanity's sake, I've decided to let the
1544 	 * layers above just tell us.  It's simpler to correctly figure
1545 	 * out in the layer above exactly under what conditions we
1546 	 * can run async and I think it's easier for others read and
1547 	 * follow the logic in case something has to be changed.
1548 	 * cscope is your friend -- rcc.
1549 	 *
1550 	 * The attribute fork is much simpler.
1551 	 *
1552 	 * For the attribute fork we allow the caller to tell us whether
1553 	 * the unlink of the inode that led to this call is yet permanent
1554 	 * in the on disk log.  If it is not and we will be freeing extents
1555 	 * in this inode then we make the first transaction synchronous
1556 	 * to make sure that the unlink is permanent by the time we free
1557 	 * the blocks.
1558 	 */
1559 	if (fork == XFS_DATA_FORK) {
1560 		if (ip->i_d.di_nextents > 0) {
1561 			/*
1562 			 * If we are not changing the file size then do
1563 			 * not update the on-disk file size - we may be
1564 			 * called from xfs_inactive_free_eofblocks().  If we
1565 			 * update the on-disk file size and then the system
1566 			 * crashes before the contents of the file are
1567 			 * flushed to disk then the files may be full of
1568 			 * holes (ie NULL files bug).
1569 			 */
1570 			if (ip->i_size != new_size) {
1571 				ip->i_d.di_size = new_size;
1572 				ip->i_size = new_size;
1573 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1574 			}
1575 		}
1576 	} else if (sync) {
1577 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1578 		if (ip->i_d.di_anextents > 0)
1579 			xfs_trans_set_sync(ntp);
1580 	}
1581 	ASSERT(fork == XFS_DATA_FORK ||
1582 		(fork == XFS_ATTR_FORK &&
1583 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1584 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1585 
1586 	/*
1587 	 * Since it is possible for space to become allocated beyond
1588 	 * the end of the file (in a crash where the space is allocated
1589 	 * but the inode size is not yet updated), simply remove any
1590 	 * blocks which show up between the new EOF and the maximum
1591 	 * possible file size.  If the first block to be removed is
1592 	 * beyond the maximum file size (ie it is the same as last_block),
1593 	 * then there is nothing to do.
1594 	 */
1595 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1596 	ASSERT(first_unmap_block <= last_block);
1597 	done = 0;
1598 	if (last_block == first_unmap_block) {
1599 		done = 1;
1600 	} else {
1601 		unmap_len = last_block - first_unmap_block + 1;
1602 	}
1603 	while (!done) {
1604 		/*
1605 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1606 		 * will tell us whether it freed the entire range or
1607 		 * not.  If this is a synchronous mount (wsync),
1608 		 * then we can tell bunmapi to keep all the
1609 		 * transactions asynchronous since the unlink
1610 		 * transaction that made this inode inactive has
1611 		 * already hit the disk.  There's no danger of
1612 		 * the freed blocks being reused, there being a
1613 		 * crash, and the reused blocks suddenly reappearing
1614 		 * in this file with garbage in them once recovery
1615 		 * runs.
1616 		 */
1617 		xfs_bmap_init(&free_list, &first_block);
1618 		error = xfs_bunmapi(ntp, ip,
1619 				    first_unmap_block, unmap_len,
1620 				    xfs_bmapi_aflag(fork) |
1621 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1622 				    XFS_ITRUNC_MAX_EXTENTS,
1623 				    &first_block, &free_list,
1624 				    NULL, &done);
1625 		if (error) {
1626 			/*
1627 			 * If the bunmapi call encounters an error,
1628 			 * return to the caller where the transaction
1629 			 * can be properly aborted.  We just need to
1630 			 * make sure we're not holding any resources
1631 			 * that we were not when we came in.
1632 			 */
1633 			xfs_bmap_cancel(&free_list);
1634 			return error;
1635 		}
1636 
1637 		/*
1638 		 * Duplicate the transaction that has the permanent
1639 		 * reservation and commit the old transaction.
1640 		 */
1641 		error = xfs_bmap_finish(tp, &free_list, &committed);
1642 		ntp = *tp;
1643 		if (committed) {
1644 			/* link the inode into the next xact in the chain */
1645 			xfs_trans_ijoin(ntp, ip,
1646 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1647 			xfs_trans_ihold(ntp, ip);
1648 		}
1649 
1650 		if (error) {
1651 			/*
1652 			 * If the bmap finish call encounters an error, return
1653 			 * to the caller where the transaction can be properly
1654 			 * aborted.  We just need to make sure we're not
1655 			 * holding any resources that we were not when we came
1656 			 * in.
1657 			 *
1658 			 * Aborting from this point might lose some blocks in
1659 			 * the file system, but oh well.
1660 			 */
1661 			xfs_bmap_cancel(&free_list);
1662 			return error;
1663 		}
1664 
1665 		if (committed) {
1666 			/*
1667 			 * Mark the inode dirty so it will be logged and
1668 			 * moved forward in the log as part of every commit.
1669 			 */
1670 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1671 		}
1672 
1673 		ntp = xfs_trans_dup(ntp);
1674 		error = xfs_trans_commit(*tp, 0);
1675 		*tp = ntp;
1676 
1677 		/* link the inode into the next transaction in the chain */
1678 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1679 		xfs_trans_ihold(ntp, ip);
1680 
1681 		if (error)
1682 			return error;
1683 		/*
1684 		 * transaction commit worked ok so we can drop the extra ticket
1685 		 * reference that we gained in xfs_trans_dup()
1686 		 */
1687 		xfs_log_ticket_put(ntp->t_ticket);
1688 		error = xfs_trans_reserve(ntp, 0,
1689 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1690 					XFS_TRANS_PERM_LOG_RES,
1691 					XFS_ITRUNCATE_LOG_COUNT);
1692 		if (error)
1693 			return error;
1694 	}
1695 	/*
1696 	 * Only update the size in the case of the data fork, but
1697 	 * always re-log the inode so that our permanent transaction
1698 	 * can keep on rolling it forward in the log.
1699 	 */
1700 	if (fork == XFS_DATA_FORK) {
1701 		xfs_isize_check(mp, ip, new_size);
1702 		/*
1703 		 * If we are not changing the file size then do
1704 		 * not update the on-disk file size - we may be
1705 		 * called from xfs_inactive_free_eofblocks().  If we
1706 		 * update the on-disk file size and then the system
1707 		 * crashes before the contents of the file are
1708 		 * flushed to disk then the files may be full of
1709 		 * holes (ie NULL files bug).
1710 		 */
1711 		if (ip->i_size != new_size) {
1712 			ip->i_d.di_size = new_size;
1713 			ip->i_size = new_size;
1714 		}
1715 	}
1716 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1717 	ASSERT((new_size != 0) ||
1718 	       (fork == XFS_ATTR_FORK) ||
1719 	       (ip->i_delayed_blks == 0));
1720 	ASSERT((new_size != 0) ||
1721 	       (fork == XFS_ATTR_FORK) ||
1722 	       (ip->i_d.di_nextents == 0));
1723 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1724 	return 0;
1725 }
1726 
1727 /*
1728  * This is called when the inode's link count goes to 0.
1729  * We place the on-disk inode on a list in the AGI.  It
1730  * will be pulled from this list when the inode is freed.
1731  */
1732 int
1733 xfs_iunlink(
1734 	xfs_trans_t	*tp,
1735 	xfs_inode_t	*ip)
1736 {
1737 	xfs_mount_t	*mp;
1738 	xfs_agi_t	*agi;
1739 	xfs_dinode_t	*dip;
1740 	xfs_buf_t	*agibp;
1741 	xfs_buf_t	*ibp;
1742 	xfs_agino_t	agino;
1743 	short		bucket_index;
1744 	int		offset;
1745 	int		error;
1746 
1747 	ASSERT(ip->i_d.di_nlink == 0);
1748 	ASSERT(ip->i_d.di_mode != 0);
1749 	ASSERT(ip->i_transp == tp);
1750 
1751 	mp = tp->t_mountp;
1752 
1753 	/*
1754 	 * Get the agi buffer first.  It ensures lock ordering
1755 	 * on the list.
1756 	 */
1757 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1758 	if (error)
1759 		return error;
1760 	agi = XFS_BUF_TO_AGI(agibp);
1761 
1762 	/*
1763 	 * Get the index into the agi hash table for the
1764 	 * list this inode will go on.
1765 	 */
1766 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1767 	ASSERT(agino != 0);
1768 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1769 	ASSERT(agi->agi_unlinked[bucket_index]);
1770 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1771 
1772 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1773 		/*
1774 		 * There is already another inode in the bucket we need
1775 		 * to add ourselves to.  Add us at the front of the list.
1776 		 * Here we put the head pointer into our next pointer,
1777 		 * and then we fall through to point the head at us.
1778 		 */
1779 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1780 		if (error)
1781 			return error;
1782 
1783 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1784 		/* both on-disk, don't endian flip twice */
1785 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1786 		offset = ip->i_imap.im_boffset +
1787 			offsetof(xfs_dinode_t, di_next_unlinked);
1788 		xfs_trans_inode_buf(tp, ibp);
1789 		xfs_trans_log_buf(tp, ibp, offset,
1790 				  (offset + sizeof(xfs_agino_t) - 1));
1791 		xfs_inobp_check(mp, ibp);
1792 	}
1793 
1794 	/*
1795 	 * Point the bucket head pointer at the inode being inserted.
1796 	 */
1797 	ASSERT(agino != 0);
1798 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1799 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1800 		(sizeof(xfs_agino_t) * bucket_index);
1801 	xfs_trans_log_buf(tp, agibp, offset,
1802 			  (offset + sizeof(xfs_agino_t) - 1));
1803 	return 0;
1804 }
1805 
1806 /*
1807  * Pull the on-disk inode from the AGI unlinked list.
1808  */
1809 STATIC int
1810 xfs_iunlink_remove(
1811 	xfs_trans_t	*tp,
1812 	xfs_inode_t	*ip)
1813 {
1814 	xfs_ino_t	next_ino;
1815 	xfs_mount_t	*mp;
1816 	xfs_agi_t	*agi;
1817 	xfs_dinode_t	*dip;
1818 	xfs_buf_t	*agibp;
1819 	xfs_buf_t	*ibp;
1820 	xfs_agnumber_t	agno;
1821 	xfs_agino_t	agino;
1822 	xfs_agino_t	next_agino;
1823 	xfs_buf_t	*last_ibp;
1824 	xfs_dinode_t	*last_dip = NULL;
1825 	short		bucket_index;
1826 	int		offset, last_offset = 0;
1827 	int		error;
1828 
1829 	mp = tp->t_mountp;
1830 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1831 
1832 	/*
1833 	 * Get the agi buffer first.  It ensures lock ordering
1834 	 * on the list.
1835 	 */
1836 	error = xfs_read_agi(mp, tp, agno, &agibp);
1837 	if (error)
1838 		return error;
1839 
1840 	agi = XFS_BUF_TO_AGI(agibp);
1841 
1842 	/*
1843 	 * Get the index into the agi hash table for the
1844 	 * list this inode will go on.
1845 	 */
1846 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1847 	ASSERT(agino != 0);
1848 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1849 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1850 	ASSERT(agi->agi_unlinked[bucket_index]);
1851 
1852 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1853 		/*
1854 		 * We're at the head of the list.  Get the inode's
1855 		 * on-disk buffer to see if there is anyone after us
1856 		 * on the list.  Only modify our next pointer if it
1857 		 * is not already NULLAGINO.  This saves us the overhead
1858 		 * of dealing with the buffer when there is no need to
1859 		 * change it.
1860 		 */
1861 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1862 		if (error) {
1863 			cmn_err(CE_WARN,
1864 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1865 				error, mp->m_fsname);
1866 			return error;
1867 		}
1868 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1869 		ASSERT(next_agino != 0);
1870 		if (next_agino != NULLAGINO) {
1871 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1872 			offset = ip->i_imap.im_boffset +
1873 				offsetof(xfs_dinode_t, di_next_unlinked);
1874 			xfs_trans_inode_buf(tp, ibp);
1875 			xfs_trans_log_buf(tp, ibp, offset,
1876 					  (offset + sizeof(xfs_agino_t) - 1));
1877 			xfs_inobp_check(mp, ibp);
1878 		} else {
1879 			xfs_trans_brelse(tp, ibp);
1880 		}
1881 		/*
1882 		 * Point the bucket head pointer at the next inode.
1883 		 */
1884 		ASSERT(next_agino != 0);
1885 		ASSERT(next_agino != agino);
1886 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1887 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1888 			(sizeof(xfs_agino_t) * bucket_index);
1889 		xfs_trans_log_buf(tp, agibp, offset,
1890 				  (offset + sizeof(xfs_agino_t) - 1));
1891 	} else {
1892 		/*
1893 		 * We need to search the list for the inode being freed.
1894 		 */
1895 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1896 		last_ibp = NULL;
1897 		while (next_agino != agino) {
1898 			/*
1899 			 * If the last inode wasn't the one pointing to
1900 			 * us, then release its buffer since we're not
1901 			 * going to do anything with it.
1902 			 */
1903 			if (last_ibp != NULL) {
1904 				xfs_trans_brelse(tp, last_ibp);
1905 			}
1906 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1907 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1908 					    &last_ibp, &last_offset, 0);
1909 			if (error) {
1910 				cmn_err(CE_WARN,
1911 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1912 					error, mp->m_fsname);
1913 				return error;
1914 			}
1915 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1916 			ASSERT(next_agino != NULLAGINO);
1917 			ASSERT(next_agino != 0);
1918 		}
1919 		/*
1920 		 * Now last_ibp points to the buffer previous to us on
1921 		 * the unlinked list.  Pull us from the list.
1922 		 */
1923 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1924 		if (error) {
1925 			cmn_err(CE_WARN,
1926 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1927 				error, mp->m_fsname);
1928 			return error;
1929 		}
1930 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1931 		ASSERT(next_agino != 0);
1932 		ASSERT(next_agino != agino);
1933 		if (next_agino != NULLAGINO) {
1934 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1935 			offset = ip->i_imap.im_boffset +
1936 				offsetof(xfs_dinode_t, di_next_unlinked);
1937 			xfs_trans_inode_buf(tp, ibp);
1938 			xfs_trans_log_buf(tp, ibp, offset,
1939 					  (offset + sizeof(xfs_agino_t) - 1));
1940 			xfs_inobp_check(mp, ibp);
1941 		} else {
1942 			xfs_trans_brelse(tp, ibp);
1943 		}
1944 		/*
1945 		 * Point the previous inode on the list to the next inode.
1946 		 */
1947 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1948 		ASSERT(next_agino != 0);
1949 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1950 		xfs_trans_inode_buf(tp, last_ibp);
1951 		xfs_trans_log_buf(tp, last_ibp, offset,
1952 				  (offset + sizeof(xfs_agino_t) - 1));
1953 		xfs_inobp_check(mp, last_ibp);
1954 	}
1955 	return 0;
1956 }
1957 
1958 STATIC void
1959 xfs_ifree_cluster(
1960 	xfs_inode_t	*free_ip,
1961 	xfs_trans_t	*tp,
1962 	xfs_ino_t	inum)
1963 {
1964 	xfs_mount_t		*mp = free_ip->i_mount;
1965 	int			blks_per_cluster;
1966 	int			nbufs;
1967 	int			ninodes;
1968 	int			i, j, found, pre_flushed;
1969 	xfs_daddr_t		blkno;
1970 	xfs_buf_t		*bp;
1971 	xfs_inode_t		*ip, **ip_found;
1972 	xfs_inode_log_item_t	*iip;
1973 	xfs_log_item_t		*lip;
1974 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
1975 
1976 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1977 		blks_per_cluster = 1;
1978 		ninodes = mp->m_sb.sb_inopblock;
1979 		nbufs = XFS_IALLOC_BLOCKS(mp);
1980 	} else {
1981 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1982 					mp->m_sb.sb_blocksize;
1983 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1984 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1985 	}
1986 
1987 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1988 
1989 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1990 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1991 					 XFS_INO_TO_AGBNO(mp, inum));
1992 
1993 
1994 		/*
1995 		 * Look for each inode in memory and attempt to lock it,
1996 		 * we can be racing with flush and tail pushing here.
1997 		 * any inode we get the locks on, add to an array of
1998 		 * inode items to process later.
1999 		 *
2000 		 * The get the buffer lock, we could beat a flush
2001 		 * or tail pushing thread to the lock here, in which
2002 		 * case they will go looking for the inode buffer
2003 		 * and fail, we need some other form of interlock
2004 		 * here.
2005 		 */
2006 		found = 0;
2007 		for (i = 0; i < ninodes; i++) {
2008 			read_lock(&pag->pag_ici_lock);
2009 			ip = radix_tree_lookup(&pag->pag_ici_root,
2010 					XFS_INO_TO_AGINO(mp, (inum + i)));
2011 
2012 			/* Inode not in memory or we found it already,
2013 			 * nothing to do
2014 			 */
2015 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2016 				read_unlock(&pag->pag_ici_lock);
2017 				continue;
2018 			}
2019 
2020 			if (xfs_inode_clean(ip)) {
2021 				read_unlock(&pag->pag_ici_lock);
2022 				continue;
2023 			}
2024 
2025 			/* If we can get the locks then add it to the
2026 			 * list, otherwise by the time we get the bp lock
2027 			 * below it will already be attached to the
2028 			 * inode buffer.
2029 			 */
2030 
2031 			/* This inode will already be locked - by us, lets
2032 			 * keep it that way.
2033 			 */
2034 
2035 			if (ip == free_ip) {
2036 				if (xfs_iflock_nowait(ip)) {
2037 					xfs_iflags_set(ip, XFS_ISTALE);
2038 					if (xfs_inode_clean(ip)) {
2039 						xfs_ifunlock(ip);
2040 					} else {
2041 						ip_found[found++] = ip;
2042 					}
2043 				}
2044 				read_unlock(&pag->pag_ici_lock);
2045 				continue;
2046 			}
2047 
2048 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2049 				if (xfs_iflock_nowait(ip)) {
2050 					xfs_iflags_set(ip, XFS_ISTALE);
2051 
2052 					if (xfs_inode_clean(ip)) {
2053 						xfs_ifunlock(ip);
2054 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2055 					} else {
2056 						ip_found[found++] = ip;
2057 					}
2058 				} else {
2059 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2060 				}
2061 			}
2062 			read_unlock(&pag->pag_ici_lock);
2063 		}
2064 
2065 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2066 					mp->m_bsize * blks_per_cluster,
2067 					XFS_BUF_LOCK);
2068 
2069 		pre_flushed = 0;
2070 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2071 		while (lip) {
2072 			if (lip->li_type == XFS_LI_INODE) {
2073 				iip = (xfs_inode_log_item_t *)lip;
2074 				ASSERT(iip->ili_logged == 1);
2075 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2076 				xfs_trans_ail_copy_lsn(mp->m_ail,
2077 							&iip->ili_flush_lsn,
2078 							&iip->ili_item.li_lsn);
2079 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2080 				pre_flushed++;
2081 			}
2082 			lip = lip->li_bio_list;
2083 		}
2084 
2085 		for (i = 0; i < found; i++) {
2086 			ip = ip_found[i];
2087 			iip = ip->i_itemp;
2088 
2089 			if (!iip) {
2090 				ip->i_update_core = 0;
2091 				xfs_ifunlock(ip);
2092 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2093 				continue;
2094 			}
2095 
2096 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2097 			iip->ili_format.ilf_fields = 0;
2098 			iip->ili_logged = 1;
2099 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2100 						&iip->ili_item.li_lsn);
2101 
2102 			xfs_buf_attach_iodone(bp,
2103 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2104 				xfs_istale_done, (xfs_log_item_t *)iip);
2105 			if (ip != free_ip) {
2106 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2107 			}
2108 		}
2109 
2110 		if (found || pre_flushed)
2111 			xfs_trans_stale_inode_buf(tp, bp);
2112 		xfs_trans_binval(tp, bp);
2113 	}
2114 
2115 	kmem_free(ip_found);
2116 	xfs_put_perag(mp, pag);
2117 }
2118 
2119 /*
2120  * This is called to return an inode to the inode free list.
2121  * The inode should already be truncated to 0 length and have
2122  * no pages associated with it.  This routine also assumes that
2123  * the inode is already a part of the transaction.
2124  *
2125  * The on-disk copy of the inode will have been added to the list
2126  * of unlinked inodes in the AGI. We need to remove the inode from
2127  * that list atomically with respect to freeing it here.
2128  */
2129 int
2130 xfs_ifree(
2131 	xfs_trans_t	*tp,
2132 	xfs_inode_t	*ip,
2133 	xfs_bmap_free_t	*flist)
2134 {
2135 	int			error;
2136 	int			delete;
2137 	xfs_ino_t		first_ino;
2138 	xfs_dinode_t    	*dip;
2139 	xfs_buf_t       	*ibp;
2140 
2141 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2142 	ASSERT(ip->i_transp == tp);
2143 	ASSERT(ip->i_d.di_nlink == 0);
2144 	ASSERT(ip->i_d.di_nextents == 0);
2145 	ASSERT(ip->i_d.di_anextents == 0);
2146 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2147 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2148 	ASSERT(ip->i_d.di_nblocks == 0);
2149 
2150 	/*
2151 	 * Pull the on-disk inode from the AGI unlinked list.
2152 	 */
2153 	error = xfs_iunlink_remove(tp, ip);
2154 	if (error != 0) {
2155 		return error;
2156 	}
2157 
2158 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2159 	if (error != 0) {
2160 		return error;
2161 	}
2162 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2163 	ip->i_d.di_flags = 0;
2164 	ip->i_d.di_dmevmask = 0;
2165 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2166 	ip->i_df.if_ext_max =
2167 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2168 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2169 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2170 	/*
2171 	 * Bump the generation count so no one will be confused
2172 	 * by reincarnations of this inode.
2173 	 */
2174 	ip->i_d.di_gen++;
2175 
2176 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2177 
2178 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2179 	if (error)
2180 		return error;
2181 
2182         /*
2183 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2184 	* from picking up this inode when it is reclaimed (its incore state
2185 	* initialzed but not flushed to disk yet). The in-core di_mode is
2186 	* already cleared  and a corresponding transaction logged.
2187 	* The hack here just synchronizes the in-core to on-disk
2188 	* di_mode value in advance before the actual inode sync to disk.
2189 	* This is OK because the inode is already unlinked and would never
2190 	* change its di_mode again for this inode generation.
2191 	* This is a temporary hack that would require a proper fix
2192 	* in the future.
2193 	*/
2194 	dip->di_mode = 0;
2195 
2196 	if (delete) {
2197 		xfs_ifree_cluster(ip, tp, first_ino);
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * Reallocate the space for if_broot based on the number of records
2205  * being added or deleted as indicated in rec_diff.  Move the records
2206  * and pointers in if_broot to fit the new size.  When shrinking this
2207  * will eliminate holes between the records and pointers created by
2208  * the caller.  When growing this will create holes to be filled in
2209  * by the caller.
2210  *
2211  * The caller must not request to add more records than would fit in
2212  * the on-disk inode root.  If the if_broot is currently NULL, then
2213  * if we adding records one will be allocated.  The caller must also
2214  * not request that the number of records go below zero, although
2215  * it can go to zero.
2216  *
2217  * ip -- the inode whose if_broot area is changing
2218  * ext_diff -- the change in the number of records, positive or negative,
2219  *	 requested for the if_broot array.
2220  */
2221 void
2222 xfs_iroot_realloc(
2223 	xfs_inode_t		*ip,
2224 	int			rec_diff,
2225 	int			whichfork)
2226 {
2227 	struct xfs_mount	*mp = ip->i_mount;
2228 	int			cur_max;
2229 	xfs_ifork_t		*ifp;
2230 	struct xfs_btree_block	*new_broot;
2231 	int			new_max;
2232 	size_t			new_size;
2233 	char			*np;
2234 	char			*op;
2235 
2236 	/*
2237 	 * Handle the degenerate case quietly.
2238 	 */
2239 	if (rec_diff == 0) {
2240 		return;
2241 	}
2242 
2243 	ifp = XFS_IFORK_PTR(ip, whichfork);
2244 	if (rec_diff > 0) {
2245 		/*
2246 		 * If there wasn't any memory allocated before, just
2247 		 * allocate it now and get out.
2248 		 */
2249 		if (ifp->if_broot_bytes == 0) {
2250 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2251 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2252 			ifp->if_broot_bytes = (int)new_size;
2253 			return;
2254 		}
2255 
2256 		/*
2257 		 * If there is already an existing if_broot, then we need
2258 		 * to realloc() it and shift the pointers to their new
2259 		 * location.  The records don't change location because
2260 		 * they are kept butted up against the btree block header.
2261 		 */
2262 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2263 		new_max = cur_max + rec_diff;
2264 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2265 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2266 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2267 				KM_SLEEP);
2268 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2269 						     ifp->if_broot_bytes);
2270 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2271 						     (int)new_size);
2272 		ifp->if_broot_bytes = (int)new_size;
2273 		ASSERT(ifp->if_broot_bytes <=
2274 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2275 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2276 		return;
2277 	}
2278 
2279 	/*
2280 	 * rec_diff is less than 0.  In this case, we are shrinking the
2281 	 * if_broot buffer.  It must already exist.  If we go to zero
2282 	 * records, just get rid of the root and clear the status bit.
2283 	 */
2284 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2285 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2286 	new_max = cur_max + rec_diff;
2287 	ASSERT(new_max >= 0);
2288 	if (new_max > 0)
2289 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2290 	else
2291 		new_size = 0;
2292 	if (new_size > 0) {
2293 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2294 		/*
2295 		 * First copy over the btree block header.
2296 		 */
2297 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2298 	} else {
2299 		new_broot = NULL;
2300 		ifp->if_flags &= ~XFS_IFBROOT;
2301 	}
2302 
2303 	/*
2304 	 * Only copy the records and pointers if there are any.
2305 	 */
2306 	if (new_max > 0) {
2307 		/*
2308 		 * First copy the records.
2309 		 */
2310 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2311 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2312 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2313 
2314 		/*
2315 		 * Then copy the pointers.
2316 		 */
2317 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2318 						     ifp->if_broot_bytes);
2319 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2320 						     (int)new_size);
2321 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2322 	}
2323 	kmem_free(ifp->if_broot);
2324 	ifp->if_broot = new_broot;
2325 	ifp->if_broot_bytes = (int)new_size;
2326 	ASSERT(ifp->if_broot_bytes <=
2327 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2328 	return;
2329 }
2330 
2331 
2332 /*
2333  * This is called when the amount of space needed for if_data
2334  * is increased or decreased.  The change in size is indicated by
2335  * the number of bytes that need to be added or deleted in the
2336  * byte_diff parameter.
2337  *
2338  * If the amount of space needed has decreased below the size of the
2339  * inline buffer, then switch to using the inline buffer.  Otherwise,
2340  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2341  * to what is needed.
2342  *
2343  * ip -- the inode whose if_data area is changing
2344  * byte_diff -- the change in the number of bytes, positive or negative,
2345  *	 requested for the if_data array.
2346  */
2347 void
2348 xfs_idata_realloc(
2349 	xfs_inode_t	*ip,
2350 	int		byte_diff,
2351 	int		whichfork)
2352 {
2353 	xfs_ifork_t	*ifp;
2354 	int		new_size;
2355 	int		real_size;
2356 
2357 	if (byte_diff == 0) {
2358 		return;
2359 	}
2360 
2361 	ifp = XFS_IFORK_PTR(ip, whichfork);
2362 	new_size = (int)ifp->if_bytes + byte_diff;
2363 	ASSERT(new_size >= 0);
2364 
2365 	if (new_size == 0) {
2366 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2367 			kmem_free(ifp->if_u1.if_data);
2368 		}
2369 		ifp->if_u1.if_data = NULL;
2370 		real_size = 0;
2371 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2372 		/*
2373 		 * If the valid extents/data can fit in if_inline_ext/data,
2374 		 * copy them from the malloc'd vector and free it.
2375 		 */
2376 		if (ifp->if_u1.if_data == NULL) {
2377 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2378 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2379 			ASSERT(ifp->if_real_bytes != 0);
2380 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2381 			      new_size);
2382 			kmem_free(ifp->if_u1.if_data);
2383 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2384 		}
2385 		real_size = 0;
2386 	} else {
2387 		/*
2388 		 * Stuck with malloc/realloc.
2389 		 * For inline data, the underlying buffer must be
2390 		 * a multiple of 4 bytes in size so that it can be
2391 		 * logged and stay on word boundaries.  We enforce
2392 		 * that here.
2393 		 */
2394 		real_size = roundup(new_size, 4);
2395 		if (ifp->if_u1.if_data == NULL) {
2396 			ASSERT(ifp->if_real_bytes == 0);
2397 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2398 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2399 			/*
2400 			 * Only do the realloc if the underlying size
2401 			 * is really changing.
2402 			 */
2403 			if (ifp->if_real_bytes != real_size) {
2404 				ifp->if_u1.if_data =
2405 					kmem_realloc(ifp->if_u1.if_data,
2406 							real_size,
2407 							ifp->if_real_bytes,
2408 							KM_SLEEP);
2409 			}
2410 		} else {
2411 			ASSERT(ifp->if_real_bytes == 0);
2412 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2413 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2414 				ifp->if_bytes);
2415 		}
2416 	}
2417 	ifp->if_real_bytes = real_size;
2418 	ifp->if_bytes = new_size;
2419 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2420 }
2421 
2422 void
2423 xfs_idestroy_fork(
2424 	xfs_inode_t	*ip,
2425 	int		whichfork)
2426 {
2427 	xfs_ifork_t	*ifp;
2428 
2429 	ifp = XFS_IFORK_PTR(ip, whichfork);
2430 	if (ifp->if_broot != NULL) {
2431 		kmem_free(ifp->if_broot);
2432 		ifp->if_broot = NULL;
2433 	}
2434 
2435 	/*
2436 	 * If the format is local, then we can't have an extents
2437 	 * array so just look for an inline data array.  If we're
2438 	 * not local then we may or may not have an extents list,
2439 	 * so check and free it up if we do.
2440 	 */
2441 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2442 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2443 		    (ifp->if_u1.if_data != NULL)) {
2444 			ASSERT(ifp->if_real_bytes != 0);
2445 			kmem_free(ifp->if_u1.if_data);
2446 			ifp->if_u1.if_data = NULL;
2447 			ifp->if_real_bytes = 0;
2448 		}
2449 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2450 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2451 		    ((ifp->if_u1.if_extents != NULL) &&
2452 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2453 		ASSERT(ifp->if_real_bytes != 0);
2454 		xfs_iext_destroy(ifp);
2455 	}
2456 	ASSERT(ifp->if_u1.if_extents == NULL ||
2457 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2458 	ASSERT(ifp->if_real_bytes == 0);
2459 	if (whichfork == XFS_ATTR_FORK) {
2460 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2461 		ip->i_afp = NULL;
2462 	}
2463 }
2464 
2465 /*
2466  * Increment the pin count of the given buffer.
2467  * This value is protected by ipinlock spinlock in the mount structure.
2468  */
2469 void
2470 xfs_ipin(
2471 	xfs_inode_t	*ip)
2472 {
2473 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2474 
2475 	atomic_inc(&ip->i_pincount);
2476 }
2477 
2478 /*
2479  * Decrement the pin count of the given inode, and wake up
2480  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2481  * inode must have been previously pinned with a call to xfs_ipin().
2482  */
2483 void
2484 xfs_iunpin(
2485 	xfs_inode_t	*ip)
2486 {
2487 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2488 
2489 	if (atomic_dec_and_test(&ip->i_pincount))
2490 		wake_up(&ip->i_ipin_wait);
2491 }
2492 
2493 /*
2494  * This is called to unpin an inode. It can be directed to wait or to return
2495  * immediately without waiting for the inode to be unpinned.  The caller must
2496  * have the inode locked in at least shared mode so that the buffer cannot be
2497  * subsequently pinned once someone is waiting for it to be unpinned.
2498  */
2499 STATIC void
2500 __xfs_iunpin_wait(
2501 	xfs_inode_t	*ip,
2502 	int		wait)
2503 {
2504 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2505 
2506 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2507 	if (atomic_read(&ip->i_pincount) == 0)
2508 		return;
2509 
2510 	/* Give the log a push to start the unpinning I/O */
2511 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2512 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2513 	if (wait)
2514 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2515 }
2516 
2517 static inline void
2518 xfs_iunpin_wait(
2519 	xfs_inode_t	*ip)
2520 {
2521 	__xfs_iunpin_wait(ip, 1);
2522 }
2523 
2524 static inline void
2525 xfs_iunpin_nowait(
2526 	xfs_inode_t	*ip)
2527 {
2528 	__xfs_iunpin_wait(ip, 0);
2529 }
2530 
2531 
2532 /*
2533  * xfs_iextents_copy()
2534  *
2535  * This is called to copy the REAL extents (as opposed to the delayed
2536  * allocation extents) from the inode into the given buffer.  It
2537  * returns the number of bytes copied into the buffer.
2538  *
2539  * If there are no delayed allocation extents, then we can just
2540  * memcpy() the extents into the buffer.  Otherwise, we need to
2541  * examine each extent in turn and skip those which are delayed.
2542  */
2543 int
2544 xfs_iextents_copy(
2545 	xfs_inode_t		*ip,
2546 	xfs_bmbt_rec_t		*dp,
2547 	int			whichfork)
2548 {
2549 	int			copied;
2550 	int			i;
2551 	xfs_ifork_t		*ifp;
2552 	int			nrecs;
2553 	xfs_fsblock_t		start_block;
2554 
2555 	ifp = XFS_IFORK_PTR(ip, whichfork);
2556 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2557 	ASSERT(ifp->if_bytes > 0);
2558 
2559 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2560 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2561 	ASSERT(nrecs > 0);
2562 
2563 	/*
2564 	 * There are some delayed allocation extents in the
2565 	 * inode, so copy the extents one at a time and skip
2566 	 * the delayed ones.  There must be at least one
2567 	 * non-delayed extent.
2568 	 */
2569 	copied = 0;
2570 	for (i = 0; i < nrecs; i++) {
2571 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2572 		start_block = xfs_bmbt_get_startblock(ep);
2573 		if (isnullstartblock(start_block)) {
2574 			/*
2575 			 * It's a delayed allocation extent, so skip it.
2576 			 */
2577 			continue;
2578 		}
2579 
2580 		/* Translate to on disk format */
2581 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2582 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2583 		dp++;
2584 		copied++;
2585 	}
2586 	ASSERT(copied != 0);
2587 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2588 
2589 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2590 }
2591 
2592 /*
2593  * Each of the following cases stores data into the same region
2594  * of the on-disk inode, so only one of them can be valid at
2595  * any given time. While it is possible to have conflicting formats
2596  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2597  * in EXTENTS format, this can only happen when the fork has
2598  * changed formats after being modified but before being flushed.
2599  * In these cases, the format always takes precedence, because the
2600  * format indicates the current state of the fork.
2601  */
2602 /*ARGSUSED*/
2603 STATIC void
2604 xfs_iflush_fork(
2605 	xfs_inode_t		*ip,
2606 	xfs_dinode_t		*dip,
2607 	xfs_inode_log_item_t	*iip,
2608 	int			whichfork,
2609 	xfs_buf_t		*bp)
2610 {
2611 	char			*cp;
2612 	xfs_ifork_t		*ifp;
2613 	xfs_mount_t		*mp;
2614 #ifdef XFS_TRANS_DEBUG
2615 	int			first;
2616 #endif
2617 	static const short	brootflag[2] =
2618 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2619 	static const short	dataflag[2] =
2620 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2621 	static const short	extflag[2] =
2622 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2623 
2624 	if (!iip)
2625 		return;
2626 	ifp = XFS_IFORK_PTR(ip, whichfork);
2627 	/*
2628 	 * This can happen if we gave up in iformat in an error path,
2629 	 * for the attribute fork.
2630 	 */
2631 	if (!ifp) {
2632 		ASSERT(whichfork == XFS_ATTR_FORK);
2633 		return;
2634 	}
2635 	cp = XFS_DFORK_PTR(dip, whichfork);
2636 	mp = ip->i_mount;
2637 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2638 	case XFS_DINODE_FMT_LOCAL:
2639 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2640 		    (ifp->if_bytes > 0)) {
2641 			ASSERT(ifp->if_u1.if_data != NULL);
2642 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2643 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2644 		}
2645 		break;
2646 
2647 	case XFS_DINODE_FMT_EXTENTS:
2648 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2649 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2650 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2651 			(ifp->if_bytes == 0));
2652 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2653 			(ifp->if_bytes > 0));
2654 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2655 		    (ifp->if_bytes > 0)) {
2656 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2657 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2658 				whichfork);
2659 		}
2660 		break;
2661 
2662 	case XFS_DINODE_FMT_BTREE:
2663 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2664 		    (ifp->if_broot_bytes > 0)) {
2665 			ASSERT(ifp->if_broot != NULL);
2666 			ASSERT(ifp->if_broot_bytes <=
2667 			       (XFS_IFORK_SIZE(ip, whichfork) +
2668 				XFS_BROOT_SIZE_ADJ));
2669 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2670 				(xfs_bmdr_block_t *)cp,
2671 				XFS_DFORK_SIZE(dip, mp, whichfork));
2672 		}
2673 		break;
2674 
2675 	case XFS_DINODE_FMT_DEV:
2676 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2677 			ASSERT(whichfork == XFS_DATA_FORK);
2678 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2679 		}
2680 		break;
2681 
2682 	case XFS_DINODE_FMT_UUID:
2683 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2684 			ASSERT(whichfork == XFS_DATA_FORK);
2685 			memcpy(XFS_DFORK_DPTR(dip),
2686 			       &ip->i_df.if_u2.if_uuid,
2687 			       sizeof(uuid_t));
2688 		}
2689 		break;
2690 
2691 	default:
2692 		ASSERT(0);
2693 		break;
2694 	}
2695 }
2696 
2697 STATIC int
2698 xfs_iflush_cluster(
2699 	xfs_inode_t	*ip,
2700 	xfs_buf_t	*bp)
2701 {
2702 	xfs_mount_t		*mp = ip->i_mount;
2703 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2704 	unsigned long		first_index, mask;
2705 	unsigned long		inodes_per_cluster;
2706 	int			ilist_size;
2707 	xfs_inode_t		**ilist;
2708 	xfs_inode_t		*iq;
2709 	int			nr_found;
2710 	int			clcount = 0;
2711 	int			bufwasdelwri;
2712 	int			i;
2713 
2714 	ASSERT(pag->pagi_inodeok);
2715 	ASSERT(pag->pag_ici_init);
2716 
2717 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2718 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2719 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2720 	if (!ilist)
2721 		return 0;
2722 
2723 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2724 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2725 	read_lock(&pag->pag_ici_lock);
2726 	/* really need a gang lookup range call here */
2727 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2728 					first_index, inodes_per_cluster);
2729 	if (nr_found == 0)
2730 		goto out_free;
2731 
2732 	for (i = 0; i < nr_found; i++) {
2733 		iq = ilist[i];
2734 		if (iq == ip)
2735 			continue;
2736 		/* if the inode lies outside this cluster, we're done. */
2737 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2738 			break;
2739 		/*
2740 		 * Do an un-protected check to see if the inode is dirty and
2741 		 * is a candidate for flushing.  These checks will be repeated
2742 		 * later after the appropriate locks are acquired.
2743 		 */
2744 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2745 			continue;
2746 
2747 		/*
2748 		 * Try to get locks.  If any are unavailable or it is pinned,
2749 		 * then this inode cannot be flushed and is skipped.
2750 		 */
2751 
2752 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2753 			continue;
2754 		if (!xfs_iflock_nowait(iq)) {
2755 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2756 			continue;
2757 		}
2758 		if (xfs_ipincount(iq)) {
2759 			xfs_ifunlock(iq);
2760 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2761 			continue;
2762 		}
2763 
2764 		/*
2765 		 * arriving here means that this inode can be flushed.  First
2766 		 * re-check that it's dirty before flushing.
2767 		 */
2768 		if (!xfs_inode_clean(iq)) {
2769 			int	error;
2770 			error = xfs_iflush_int(iq, bp);
2771 			if (error) {
2772 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2773 				goto cluster_corrupt_out;
2774 			}
2775 			clcount++;
2776 		} else {
2777 			xfs_ifunlock(iq);
2778 		}
2779 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2780 	}
2781 
2782 	if (clcount) {
2783 		XFS_STATS_INC(xs_icluster_flushcnt);
2784 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2785 	}
2786 
2787 out_free:
2788 	read_unlock(&pag->pag_ici_lock);
2789 	kmem_free(ilist);
2790 	return 0;
2791 
2792 
2793 cluster_corrupt_out:
2794 	/*
2795 	 * Corruption detected in the clustering loop.  Invalidate the
2796 	 * inode buffer and shut down the filesystem.
2797 	 */
2798 	read_unlock(&pag->pag_ici_lock);
2799 	/*
2800 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2801 	 * brelse can handle it with no problems.  If not, shut down the
2802 	 * filesystem before releasing the buffer.
2803 	 */
2804 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2805 	if (bufwasdelwri)
2806 		xfs_buf_relse(bp);
2807 
2808 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2809 
2810 	if (!bufwasdelwri) {
2811 		/*
2812 		 * Just like incore_relse: if we have b_iodone functions,
2813 		 * mark the buffer as an error and call them.  Otherwise
2814 		 * mark it as stale and brelse.
2815 		 */
2816 		if (XFS_BUF_IODONE_FUNC(bp)) {
2817 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2818 			XFS_BUF_UNDONE(bp);
2819 			XFS_BUF_STALE(bp);
2820 			XFS_BUF_ERROR(bp,EIO);
2821 			xfs_biodone(bp);
2822 		} else {
2823 			XFS_BUF_STALE(bp);
2824 			xfs_buf_relse(bp);
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * Unlocks the flush lock
2830 	 */
2831 	xfs_iflush_abort(iq);
2832 	kmem_free(ilist);
2833 	return XFS_ERROR(EFSCORRUPTED);
2834 }
2835 
2836 /*
2837  * xfs_iflush() will write a modified inode's changes out to the
2838  * inode's on disk home.  The caller must have the inode lock held
2839  * in at least shared mode and the inode flush completion must be
2840  * active as well.  The inode lock will still be held upon return from
2841  * the call and the caller is free to unlock it.
2842  * The inode flush will be completed when the inode reaches the disk.
2843  * The flags indicate how the inode's buffer should be written out.
2844  */
2845 int
2846 xfs_iflush(
2847 	xfs_inode_t		*ip,
2848 	uint			flags)
2849 {
2850 	xfs_inode_log_item_t	*iip;
2851 	xfs_buf_t		*bp;
2852 	xfs_dinode_t		*dip;
2853 	xfs_mount_t		*mp;
2854 	int			error;
2855 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2856 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2857 
2858 	XFS_STATS_INC(xs_iflush_count);
2859 
2860 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2861 	ASSERT(!completion_done(&ip->i_flush));
2862 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2863 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2864 
2865 	iip = ip->i_itemp;
2866 	mp = ip->i_mount;
2867 
2868 	/*
2869 	 * If the inode isn't dirty, then just release the inode
2870 	 * flush lock and do nothing.
2871 	 */
2872 	if (xfs_inode_clean(ip)) {
2873 		xfs_ifunlock(ip);
2874 		return 0;
2875 	}
2876 
2877 	/*
2878 	 * We can't flush the inode until it is unpinned, so wait for it if we
2879 	 * are allowed to block.  We know noone new can pin it, because we are
2880 	 * holding the inode lock shared and you need to hold it exclusively to
2881 	 * pin the inode.
2882 	 *
2883 	 * If we are not allowed to block, force the log out asynchronously so
2884 	 * that when we come back the inode will be unpinned. If other inodes
2885 	 * in the same cluster are dirty, they will probably write the inode
2886 	 * out for us if they occur after the log force completes.
2887 	 */
2888 	if (noblock && xfs_ipincount(ip)) {
2889 		xfs_iunpin_nowait(ip);
2890 		xfs_ifunlock(ip);
2891 		return EAGAIN;
2892 	}
2893 	xfs_iunpin_wait(ip);
2894 
2895 	/*
2896 	 * This may have been unpinned because the filesystem is shutting
2897 	 * down forcibly. If that's the case we must not write this inode
2898 	 * to disk, because the log record didn't make it to disk!
2899 	 */
2900 	if (XFS_FORCED_SHUTDOWN(mp)) {
2901 		ip->i_update_core = 0;
2902 		if (iip)
2903 			iip->ili_format.ilf_fields = 0;
2904 		xfs_ifunlock(ip);
2905 		return XFS_ERROR(EIO);
2906 	}
2907 
2908 	/*
2909 	 * Decide how buffer will be flushed out.  This is done before
2910 	 * the call to xfs_iflush_int because this field is zeroed by it.
2911 	 */
2912 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2913 		/*
2914 		 * Flush out the inode buffer according to the directions
2915 		 * of the caller.  In the cases where the caller has given
2916 		 * us a choice choose the non-delwri case.  This is because
2917 		 * the inode is in the AIL and we need to get it out soon.
2918 		 */
2919 		switch (flags) {
2920 		case XFS_IFLUSH_SYNC:
2921 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2922 			flags = 0;
2923 			break;
2924 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2925 		case XFS_IFLUSH_ASYNC:
2926 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2927 			flags = INT_ASYNC;
2928 			break;
2929 		case XFS_IFLUSH_DELWRI:
2930 			flags = INT_DELWRI;
2931 			break;
2932 		default:
2933 			ASSERT(0);
2934 			flags = 0;
2935 			break;
2936 		}
2937 	} else {
2938 		switch (flags) {
2939 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2940 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2941 		case XFS_IFLUSH_DELWRI:
2942 			flags = INT_DELWRI;
2943 			break;
2944 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2945 		case XFS_IFLUSH_ASYNC:
2946 			flags = INT_ASYNC;
2947 			break;
2948 		case XFS_IFLUSH_SYNC:
2949 			flags = 0;
2950 			break;
2951 		default:
2952 			ASSERT(0);
2953 			flags = 0;
2954 			break;
2955 		}
2956 	}
2957 
2958 	/*
2959 	 * Get the buffer containing the on-disk inode.
2960 	 */
2961 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2962 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2963 	if (error || !bp) {
2964 		xfs_ifunlock(ip);
2965 		return error;
2966 	}
2967 
2968 	/*
2969 	 * First flush out the inode that xfs_iflush was called with.
2970 	 */
2971 	error = xfs_iflush_int(ip, bp);
2972 	if (error)
2973 		goto corrupt_out;
2974 
2975 	/*
2976 	 * If the buffer is pinned then push on the log now so we won't
2977 	 * get stuck waiting in the write for too long.
2978 	 */
2979 	if (XFS_BUF_ISPINNED(bp))
2980 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2981 
2982 	/*
2983 	 * inode clustering:
2984 	 * see if other inodes can be gathered into this write
2985 	 */
2986 	error = xfs_iflush_cluster(ip, bp);
2987 	if (error)
2988 		goto cluster_corrupt_out;
2989 
2990 	if (flags & INT_DELWRI) {
2991 		xfs_bdwrite(mp, bp);
2992 	} else if (flags & INT_ASYNC) {
2993 		error = xfs_bawrite(mp, bp);
2994 	} else {
2995 		error = xfs_bwrite(mp, bp);
2996 	}
2997 	return error;
2998 
2999 corrupt_out:
3000 	xfs_buf_relse(bp);
3001 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3002 cluster_corrupt_out:
3003 	/*
3004 	 * Unlocks the flush lock
3005 	 */
3006 	xfs_iflush_abort(ip);
3007 	return XFS_ERROR(EFSCORRUPTED);
3008 }
3009 
3010 
3011 STATIC int
3012 xfs_iflush_int(
3013 	xfs_inode_t		*ip,
3014 	xfs_buf_t		*bp)
3015 {
3016 	xfs_inode_log_item_t	*iip;
3017 	xfs_dinode_t		*dip;
3018 	xfs_mount_t		*mp;
3019 #ifdef XFS_TRANS_DEBUG
3020 	int			first;
3021 #endif
3022 
3023 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3024 	ASSERT(!completion_done(&ip->i_flush));
3025 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3026 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3027 
3028 	iip = ip->i_itemp;
3029 	mp = ip->i_mount;
3030 
3031 
3032 	/*
3033 	 * If the inode isn't dirty, then just release the inode
3034 	 * flush lock and do nothing.
3035 	 */
3036 	if (xfs_inode_clean(ip)) {
3037 		xfs_ifunlock(ip);
3038 		return 0;
3039 	}
3040 
3041 	/* set *dip = inode's place in the buffer */
3042 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3043 
3044 	/*
3045 	 * Clear i_update_core before copying out the data.
3046 	 * This is for coordination with our timestamp updates
3047 	 * that don't hold the inode lock. They will always
3048 	 * update the timestamps BEFORE setting i_update_core,
3049 	 * so if we clear i_update_core after they set it we
3050 	 * are guaranteed to see their updates to the timestamps.
3051 	 * I believe that this depends on strongly ordered memory
3052 	 * semantics, but we have that.  We use the SYNCHRONIZE
3053 	 * macro to make sure that the compiler does not reorder
3054 	 * the i_update_core access below the data copy below.
3055 	 */
3056 	ip->i_update_core = 0;
3057 	SYNCHRONIZE();
3058 
3059 	/*
3060 	 * Make sure to get the latest atime from the Linux inode.
3061 	 */
3062 	xfs_synchronize_atime(ip);
3063 
3064 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3065 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3066 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3067 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3068 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3069 		goto corrupt_out;
3070 	}
3071 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3072 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3073 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3074 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3075 			ip->i_ino, ip, ip->i_d.di_magic);
3076 		goto corrupt_out;
3077 	}
3078 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3079 		if (XFS_TEST_ERROR(
3080 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3081 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3082 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3083 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3084 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3085 				ip->i_ino, ip);
3086 			goto corrupt_out;
3087 		}
3088 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3089 		if (XFS_TEST_ERROR(
3090 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3091 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3092 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3093 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3094 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3095 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3096 				ip->i_ino, ip);
3097 			goto corrupt_out;
3098 		}
3099 	}
3100 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3101 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3102 				XFS_RANDOM_IFLUSH_5)) {
3103 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3104 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3105 			ip->i_ino,
3106 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3107 			ip->i_d.di_nblocks,
3108 			ip);
3109 		goto corrupt_out;
3110 	}
3111 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3112 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3113 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3114 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3115 			ip->i_ino, ip->i_d.di_forkoff, ip);
3116 		goto corrupt_out;
3117 	}
3118 	/*
3119 	 * bump the flush iteration count, used to detect flushes which
3120 	 * postdate a log record during recovery.
3121 	 */
3122 
3123 	ip->i_d.di_flushiter++;
3124 
3125 	/*
3126 	 * Copy the dirty parts of the inode into the on-disk
3127 	 * inode.  We always copy out the core of the inode,
3128 	 * because if the inode is dirty at all the core must
3129 	 * be.
3130 	 */
3131 	xfs_dinode_to_disk(dip, &ip->i_d);
3132 
3133 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3134 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3135 		ip->i_d.di_flushiter = 0;
3136 
3137 	/*
3138 	 * If this is really an old format inode and the superblock version
3139 	 * has not been updated to support only new format inodes, then
3140 	 * convert back to the old inode format.  If the superblock version
3141 	 * has been updated, then make the conversion permanent.
3142 	 */
3143 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3144 	if (ip->i_d.di_version == 1) {
3145 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3146 			/*
3147 			 * Convert it back.
3148 			 */
3149 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3150 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3151 		} else {
3152 			/*
3153 			 * The superblock version has already been bumped,
3154 			 * so just make the conversion to the new inode
3155 			 * format permanent.
3156 			 */
3157 			ip->i_d.di_version = 2;
3158 			dip->di_version = 2;
3159 			ip->i_d.di_onlink = 0;
3160 			dip->di_onlink = 0;
3161 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3162 			memset(&(dip->di_pad[0]), 0,
3163 			      sizeof(dip->di_pad));
3164 			ASSERT(ip->i_d.di_projid == 0);
3165 		}
3166 	}
3167 
3168 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3169 	if (XFS_IFORK_Q(ip))
3170 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3171 	xfs_inobp_check(mp, bp);
3172 
3173 	/*
3174 	 * We've recorded everything logged in the inode, so we'd
3175 	 * like to clear the ilf_fields bits so we don't log and
3176 	 * flush things unnecessarily.  However, we can't stop
3177 	 * logging all this information until the data we've copied
3178 	 * into the disk buffer is written to disk.  If we did we might
3179 	 * overwrite the copy of the inode in the log with all the
3180 	 * data after re-logging only part of it, and in the face of
3181 	 * a crash we wouldn't have all the data we need to recover.
3182 	 *
3183 	 * What we do is move the bits to the ili_last_fields field.
3184 	 * When logging the inode, these bits are moved back to the
3185 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3186 	 * clear ili_last_fields, since we know that the information
3187 	 * those bits represent is permanently on disk.  As long as
3188 	 * the flush completes before the inode is logged again, then
3189 	 * both ilf_fields and ili_last_fields will be cleared.
3190 	 *
3191 	 * We can play with the ilf_fields bits here, because the inode
3192 	 * lock must be held exclusively in order to set bits there
3193 	 * and the flush lock protects the ili_last_fields bits.
3194 	 * Set ili_logged so the flush done
3195 	 * routine can tell whether or not to look in the AIL.
3196 	 * Also, store the current LSN of the inode so that we can tell
3197 	 * whether the item has moved in the AIL from xfs_iflush_done().
3198 	 * In order to read the lsn we need the AIL lock, because
3199 	 * it is a 64 bit value that cannot be read atomically.
3200 	 */
3201 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3202 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3203 		iip->ili_format.ilf_fields = 0;
3204 		iip->ili_logged = 1;
3205 
3206 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3207 					&iip->ili_item.li_lsn);
3208 
3209 		/*
3210 		 * Attach the function xfs_iflush_done to the inode's
3211 		 * buffer.  This will remove the inode from the AIL
3212 		 * and unlock the inode's flush lock when the inode is
3213 		 * completely written to disk.
3214 		 */
3215 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3216 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3217 
3218 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3219 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3220 	} else {
3221 		/*
3222 		 * We're flushing an inode which is not in the AIL and has
3223 		 * not been logged but has i_update_core set.  For this
3224 		 * case we can use a B_DELWRI flush and immediately drop
3225 		 * the inode flush lock because we can avoid the whole
3226 		 * AIL state thing.  It's OK to drop the flush lock now,
3227 		 * because we've already locked the buffer and to do anything
3228 		 * you really need both.
3229 		 */
3230 		if (iip != NULL) {
3231 			ASSERT(iip->ili_logged == 0);
3232 			ASSERT(iip->ili_last_fields == 0);
3233 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3234 		}
3235 		xfs_ifunlock(ip);
3236 	}
3237 
3238 	return 0;
3239 
3240 corrupt_out:
3241 	return XFS_ERROR(EFSCORRUPTED);
3242 }
3243 
3244 
3245 
3246 #ifdef XFS_ILOCK_TRACE
3247 void
3248 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3249 {
3250 	ktrace_enter(ip->i_lock_trace,
3251 		     (void *)ip,
3252 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3253 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3254 		     (void *)ra,		/* caller of ilock */
3255 		     (void *)(unsigned long)current_cpu(),
3256 		     (void *)(unsigned long)current_pid(),
3257 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3258 }
3259 #endif
3260 
3261 /*
3262  * Return a pointer to the extent record at file index idx.
3263  */
3264 xfs_bmbt_rec_host_t *
3265 xfs_iext_get_ext(
3266 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3267 	xfs_extnum_t	idx)		/* index of target extent */
3268 {
3269 	ASSERT(idx >= 0);
3270 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3271 		return ifp->if_u1.if_ext_irec->er_extbuf;
3272 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3273 		xfs_ext_irec_t	*erp;		/* irec pointer */
3274 		int		erp_idx = 0;	/* irec index */
3275 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3276 
3277 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3278 		return &erp->er_extbuf[page_idx];
3279 	} else if (ifp->if_bytes) {
3280 		return &ifp->if_u1.if_extents[idx];
3281 	} else {
3282 		return NULL;
3283 	}
3284 }
3285 
3286 /*
3287  * Insert new item(s) into the extent records for incore inode
3288  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3289  */
3290 void
3291 xfs_iext_insert(
3292 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3293 	xfs_extnum_t	idx,		/* starting index of new items */
3294 	xfs_extnum_t	count,		/* number of inserted items */
3295 	xfs_bmbt_irec_t	*new)		/* items to insert */
3296 {
3297 	xfs_extnum_t	i;		/* extent record index */
3298 
3299 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3300 	xfs_iext_add(ifp, idx, count);
3301 	for (i = idx; i < idx + count; i++, new++)
3302 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3303 }
3304 
3305 /*
3306  * This is called when the amount of space required for incore file
3307  * extents needs to be increased. The ext_diff parameter stores the
3308  * number of new extents being added and the idx parameter contains
3309  * the extent index where the new extents will be added. If the new
3310  * extents are being appended, then we just need to (re)allocate and
3311  * initialize the space. Otherwise, if the new extents are being
3312  * inserted into the middle of the existing entries, a bit more work
3313  * is required to make room for the new extents to be inserted. The
3314  * caller is responsible for filling in the new extent entries upon
3315  * return.
3316  */
3317 void
3318 xfs_iext_add(
3319 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3320 	xfs_extnum_t	idx,		/* index to begin adding exts */
3321 	int		ext_diff)	/* number of extents to add */
3322 {
3323 	int		byte_diff;	/* new bytes being added */
3324 	int		new_size;	/* size of extents after adding */
3325 	xfs_extnum_t	nextents;	/* number of extents in file */
3326 
3327 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3328 	ASSERT((idx >= 0) && (idx <= nextents));
3329 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3330 	new_size = ifp->if_bytes + byte_diff;
3331 	/*
3332 	 * If the new number of extents (nextents + ext_diff)
3333 	 * fits inside the inode, then continue to use the inline
3334 	 * extent buffer.
3335 	 */
3336 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3337 		if (idx < nextents) {
3338 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3339 				&ifp->if_u2.if_inline_ext[idx],
3340 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3341 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3342 		}
3343 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3344 		ifp->if_real_bytes = 0;
3345 		ifp->if_lastex = nextents + ext_diff;
3346 	}
3347 	/*
3348 	 * Otherwise use a linear (direct) extent list.
3349 	 * If the extents are currently inside the inode,
3350 	 * xfs_iext_realloc_direct will switch us from
3351 	 * inline to direct extent allocation mode.
3352 	 */
3353 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3354 		xfs_iext_realloc_direct(ifp, new_size);
3355 		if (idx < nextents) {
3356 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3357 				&ifp->if_u1.if_extents[idx],
3358 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3359 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3360 		}
3361 	}
3362 	/* Indirection array */
3363 	else {
3364 		xfs_ext_irec_t	*erp;
3365 		int		erp_idx = 0;
3366 		int		page_idx = idx;
3367 
3368 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3369 		if (ifp->if_flags & XFS_IFEXTIREC) {
3370 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3371 		} else {
3372 			xfs_iext_irec_init(ifp);
3373 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3374 			erp = ifp->if_u1.if_ext_irec;
3375 		}
3376 		/* Extents fit in target extent page */
3377 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3378 			if (page_idx < erp->er_extcount) {
3379 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3380 					&erp->er_extbuf[page_idx],
3381 					(erp->er_extcount - page_idx) *
3382 					sizeof(xfs_bmbt_rec_t));
3383 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3384 			}
3385 			erp->er_extcount += ext_diff;
3386 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3387 		}
3388 		/* Insert a new extent page */
3389 		else if (erp) {
3390 			xfs_iext_add_indirect_multi(ifp,
3391 				erp_idx, page_idx, ext_diff);
3392 		}
3393 		/*
3394 		 * If extent(s) are being appended to the last page in
3395 		 * the indirection array and the new extent(s) don't fit
3396 		 * in the page, then erp is NULL and erp_idx is set to
3397 		 * the next index needed in the indirection array.
3398 		 */
3399 		else {
3400 			int	count = ext_diff;
3401 
3402 			while (count) {
3403 				erp = xfs_iext_irec_new(ifp, erp_idx);
3404 				erp->er_extcount = count;
3405 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3406 				if (count) {
3407 					erp_idx++;
3408 				}
3409 			}
3410 		}
3411 	}
3412 	ifp->if_bytes = new_size;
3413 }
3414 
3415 /*
3416  * This is called when incore extents are being added to the indirection
3417  * array and the new extents do not fit in the target extent list. The
3418  * erp_idx parameter contains the irec index for the target extent list
3419  * in the indirection array, and the idx parameter contains the extent
3420  * index within the list. The number of extents being added is stored
3421  * in the count parameter.
3422  *
3423  *    |-------|   |-------|
3424  *    |       |   |       |    idx - number of extents before idx
3425  *    |  idx  |   | count |
3426  *    |       |   |       |    count - number of extents being inserted at idx
3427  *    |-------|   |-------|
3428  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3429  *    |-------|   |-------|
3430  */
3431 void
3432 xfs_iext_add_indirect_multi(
3433 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3434 	int		erp_idx,		/* target extent irec index */
3435 	xfs_extnum_t	idx,			/* index within target list */
3436 	int		count)			/* new extents being added */
3437 {
3438 	int		byte_diff;		/* new bytes being added */
3439 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3440 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3441 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3442 	xfs_extnum_t	nex2;			/* extents after idx + count */
3443 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3444 	int		nlists;			/* number of irec's (lists) */
3445 
3446 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3447 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448 	nex2 = erp->er_extcount - idx;
3449 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3450 
3451 	/*
3452 	 * Save second part of target extent list
3453 	 * (all extents past */
3454 	if (nex2) {
3455 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3456 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3457 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3458 		erp->er_extcount -= nex2;
3459 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3460 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3461 	}
3462 
3463 	/*
3464 	 * Add the new extents to the end of the target
3465 	 * list, then allocate new irec record(s) and
3466 	 * extent buffer(s) as needed to store the rest
3467 	 * of the new extents.
3468 	 */
3469 	ext_cnt = count;
3470 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3471 	if (ext_diff) {
3472 		erp->er_extcount += ext_diff;
3473 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3474 		ext_cnt -= ext_diff;
3475 	}
3476 	while (ext_cnt) {
3477 		erp_idx++;
3478 		erp = xfs_iext_irec_new(ifp, erp_idx);
3479 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3480 		erp->er_extcount = ext_diff;
3481 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3482 		ext_cnt -= ext_diff;
3483 	}
3484 
3485 	/* Add nex2 extents back to indirection array */
3486 	if (nex2) {
3487 		xfs_extnum_t	ext_avail;
3488 		int		i;
3489 
3490 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3491 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3492 		i = 0;
3493 		/*
3494 		 * If nex2 extents fit in the current page, append
3495 		 * nex2_ep after the new extents.
3496 		 */
3497 		if (nex2 <= ext_avail) {
3498 			i = erp->er_extcount;
3499 		}
3500 		/*
3501 		 * Otherwise, check if space is available in the
3502 		 * next page.
3503 		 */
3504 		else if ((erp_idx < nlists - 1) &&
3505 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3506 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3507 			erp_idx++;
3508 			erp++;
3509 			/* Create a hole for nex2 extents */
3510 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3511 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3512 		}
3513 		/*
3514 		 * Final choice, create a new extent page for
3515 		 * nex2 extents.
3516 		 */
3517 		else {
3518 			erp_idx++;
3519 			erp = xfs_iext_irec_new(ifp, erp_idx);
3520 		}
3521 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3522 		kmem_free(nex2_ep);
3523 		erp->er_extcount += nex2;
3524 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3525 	}
3526 }
3527 
3528 /*
3529  * This is called when the amount of space required for incore file
3530  * extents needs to be decreased. The ext_diff parameter stores the
3531  * number of extents to be removed and the idx parameter contains
3532  * the extent index where the extents will be removed from.
3533  *
3534  * If the amount of space needed has decreased below the linear
3535  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3536  * extent array.  Otherwise, use kmem_realloc() to adjust the
3537  * size to what is needed.
3538  */
3539 void
3540 xfs_iext_remove(
3541 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3542 	xfs_extnum_t	idx,		/* index to begin removing exts */
3543 	int		ext_diff)	/* number of extents to remove */
3544 {
3545 	xfs_extnum_t	nextents;	/* number of extents in file */
3546 	int		new_size;	/* size of extents after removal */
3547 
3548 	ASSERT(ext_diff > 0);
3549 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3550 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3551 
3552 	if (new_size == 0) {
3553 		xfs_iext_destroy(ifp);
3554 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3555 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3556 	} else if (ifp->if_real_bytes) {
3557 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3558 	} else {
3559 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3560 	}
3561 	ifp->if_bytes = new_size;
3562 }
3563 
3564 /*
3565  * This removes ext_diff extents from the inline buffer, beginning
3566  * at extent index idx.
3567  */
3568 void
3569 xfs_iext_remove_inline(
3570 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3571 	xfs_extnum_t	idx,		/* index to begin removing exts */
3572 	int		ext_diff)	/* number of extents to remove */
3573 {
3574 	int		nextents;	/* number of extents in file */
3575 
3576 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3577 	ASSERT(idx < XFS_INLINE_EXTS);
3578 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3579 	ASSERT(((nextents - ext_diff) > 0) &&
3580 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3581 
3582 	if (idx + ext_diff < nextents) {
3583 		memmove(&ifp->if_u2.if_inline_ext[idx],
3584 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3585 			(nextents - (idx + ext_diff)) *
3586 			 sizeof(xfs_bmbt_rec_t));
3587 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3588 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3589 	} else {
3590 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3591 			ext_diff * sizeof(xfs_bmbt_rec_t));
3592 	}
3593 }
3594 
3595 /*
3596  * This removes ext_diff extents from a linear (direct) extent list,
3597  * beginning at extent index idx. If the extents are being removed
3598  * from the end of the list (ie. truncate) then we just need to re-
3599  * allocate the list to remove the extra space. Otherwise, if the
3600  * extents are being removed from the middle of the existing extent
3601  * entries, then we first need to move the extent records beginning
3602  * at idx + ext_diff up in the list to overwrite the records being
3603  * removed, then remove the extra space via kmem_realloc.
3604  */
3605 void
3606 xfs_iext_remove_direct(
3607 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3608 	xfs_extnum_t	idx,		/* index to begin removing exts */
3609 	int		ext_diff)	/* number of extents to remove */
3610 {
3611 	xfs_extnum_t	nextents;	/* number of extents in file */
3612 	int		new_size;	/* size of extents after removal */
3613 
3614 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3615 	new_size = ifp->if_bytes -
3616 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3617 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3618 
3619 	if (new_size == 0) {
3620 		xfs_iext_destroy(ifp);
3621 		return;
3622 	}
3623 	/* Move extents up in the list (if needed) */
3624 	if (idx + ext_diff < nextents) {
3625 		memmove(&ifp->if_u1.if_extents[idx],
3626 			&ifp->if_u1.if_extents[idx + ext_diff],
3627 			(nextents - (idx + ext_diff)) *
3628 			 sizeof(xfs_bmbt_rec_t));
3629 	}
3630 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3631 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3632 	/*
3633 	 * Reallocate the direct extent list. If the extents
3634 	 * will fit inside the inode then xfs_iext_realloc_direct
3635 	 * will switch from direct to inline extent allocation
3636 	 * mode for us.
3637 	 */
3638 	xfs_iext_realloc_direct(ifp, new_size);
3639 	ifp->if_bytes = new_size;
3640 }
3641 
3642 /*
3643  * This is called when incore extents are being removed from the
3644  * indirection array and the extents being removed span multiple extent
3645  * buffers. The idx parameter contains the file extent index where we
3646  * want to begin removing extents, and the count parameter contains
3647  * how many extents need to be removed.
3648  *
3649  *    |-------|   |-------|
3650  *    | nex1  |   |       |    nex1 - number of extents before idx
3651  *    |-------|   | count |
3652  *    |       |   |       |    count - number of extents being removed at idx
3653  *    | count |   |-------|
3654  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3655  *    |-------|   |-------|
3656  */
3657 void
3658 xfs_iext_remove_indirect(
3659 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3660 	xfs_extnum_t	idx,		/* index to begin removing extents */
3661 	int		count)		/* number of extents to remove */
3662 {
3663 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3664 	int		erp_idx = 0;	/* indirection array index */
3665 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3666 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3667 	xfs_extnum_t	nex1;		/* number of extents before idx */
3668 	xfs_extnum_t	nex2;		/* extents after idx + count */
3669 	int		nlists;		/* entries in indirection array */
3670 	int		page_idx = idx;	/* index in target extent list */
3671 
3672 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3673 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3674 	ASSERT(erp != NULL);
3675 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3676 	nex1 = page_idx;
3677 	ext_cnt = count;
3678 	while (ext_cnt) {
3679 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3680 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3681 		/*
3682 		 * Check for deletion of entire list;
3683 		 * xfs_iext_irec_remove() updates extent offsets.
3684 		 */
3685 		if (ext_diff == erp->er_extcount) {
3686 			xfs_iext_irec_remove(ifp, erp_idx);
3687 			ext_cnt -= ext_diff;
3688 			nex1 = 0;
3689 			if (ext_cnt) {
3690 				ASSERT(erp_idx < ifp->if_real_bytes /
3691 					XFS_IEXT_BUFSZ);
3692 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3693 				nex1 = 0;
3694 				continue;
3695 			} else {
3696 				break;
3697 			}
3698 		}
3699 		/* Move extents up (if needed) */
3700 		if (nex2) {
3701 			memmove(&erp->er_extbuf[nex1],
3702 				&erp->er_extbuf[nex1 + ext_diff],
3703 				nex2 * sizeof(xfs_bmbt_rec_t));
3704 		}
3705 		/* Zero out rest of page */
3706 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3707 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3708 		/* Update remaining counters */
3709 		erp->er_extcount -= ext_diff;
3710 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3711 		ext_cnt -= ext_diff;
3712 		nex1 = 0;
3713 		erp_idx++;
3714 		erp++;
3715 	}
3716 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3717 	xfs_iext_irec_compact(ifp);
3718 }
3719 
3720 /*
3721  * Create, destroy, or resize a linear (direct) block of extents.
3722  */
3723 void
3724 xfs_iext_realloc_direct(
3725 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3726 	int		new_size)	/* new size of extents */
3727 {
3728 	int		rnew_size;	/* real new size of extents */
3729 
3730 	rnew_size = new_size;
3731 
3732 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3733 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3734 		 (new_size != ifp->if_real_bytes)));
3735 
3736 	/* Free extent records */
3737 	if (new_size == 0) {
3738 		xfs_iext_destroy(ifp);
3739 	}
3740 	/* Resize direct extent list and zero any new bytes */
3741 	else if (ifp->if_real_bytes) {
3742 		/* Check if extents will fit inside the inode */
3743 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3744 			xfs_iext_direct_to_inline(ifp, new_size /
3745 				(uint)sizeof(xfs_bmbt_rec_t));
3746 			ifp->if_bytes = new_size;
3747 			return;
3748 		}
3749 		if (!is_power_of_2(new_size)){
3750 			rnew_size = roundup_pow_of_two(new_size);
3751 		}
3752 		if (rnew_size != ifp->if_real_bytes) {
3753 			ifp->if_u1.if_extents =
3754 				kmem_realloc(ifp->if_u1.if_extents,
3755 						rnew_size,
3756 						ifp->if_real_bytes, KM_NOFS);
3757 		}
3758 		if (rnew_size > ifp->if_real_bytes) {
3759 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3760 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3761 				rnew_size - ifp->if_real_bytes);
3762 		}
3763 	}
3764 	/*
3765 	 * Switch from the inline extent buffer to a direct
3766 	 * extent list. Be sure to include the inline extent
3767 	 * bytes in new_size.
3768 	 */
3769 	else {
3770 		new_size += ifp->if_bytes;
3771 		if (!is_power_of_2(new_size)) {
3772 			rnew_size = roundup_pow_of_two(new_size);
3773 		}
3774 		xfs_iext_inline_to_direct(ifp, rnew_size);
3775 	}
3776 	ifp->if_real_bytes = rnew_size;
3777 	ifp->if_bytes = new_size;
3778 }
3779 
3780 /*
3781  * Switch from linear (direct) extent records to inline buffer.
3782  */
3783 void
3784 xfs_iext_direct_to_inline(
3785 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3786 	xfs_extnum_t	nextents)	/* number of extents in file */
3787 {
3788 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3789 	ASSERT(nextents <= XFS_INLINE_EXTS);
3790 	/*
3791 	 * The inline buffer was zeroed when we switched
3792 	 * from inline to direct extent allocation mode,
3793 	 * so we don't need to clear it here.
3794 	 */
3795 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3796 		nextents * sizeof(xfs_bmbt_rec_t));
3797 	kmem_free(ifp->if_u1.if_extents);
3798 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3799 	ifp->if_real_bytes = 0;
3800 }
3801 
3802 /*
3803  * Switch from inline buffer to linear (direct) extent records.
3804  * new_size should already be rounded up to the next power of 2
3805  * by the caller (when appropriate), so use new_size as it is.
3806  * However, since new_size may be rounded up, we can't update
3807  * if_bytes here. It is the caller's responsibility to update
3808  * if_bytes upon return.
3809  */
3810 void
3811 xfs_iext_inline_to_direct(
3812 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3813 	int		new_size)	/* number of extents in file */
3814 {
3815 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3816 	memset(ifp->if_u1.if_extents, 0, new_size);
3817 	if (ifp->if_bytes) {
3818 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3819 			ifp->if_bytes);
3820 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3821 			sizeof(xfs_bmbt_rec_t));
3822 	}
3823 	ifp->if_real_bytes = new_size;
3824 }
3825 
3826 /*
3827  * Resize an extent indirection array to new_size bytes.
3828  */
3829 void
3830 xfs_iext_realloc_indirect(
3831 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3832 	int		new_size)	/* new indirection array size */
3833 {
3834 	int		nlists;		/* number of irec's (ex lists) */
3835 	int		size;		/* current indirection array size */
3836 
3837 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3838 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3839 	size = nlists * sizeof(xfs_ext_irec_t);
3840 	ASSERT(ifp->if_real_bytes);
3841 	ASSERT((new_size >= 0) && (new_size != size));
3842 	if (new_size == 0) {
3843 		xfs_iext_destroy(ifp);
3844 	} else {
3845 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3846 			kmem_realloc(ifp->if_u1.if_ext_irec,
3847 				new_size, size, KM_NOFS);
3848 	}
3849 }
3850 
3851 /*
3852  * Switch from indirection array to linear (direct) extent allocations.
3853  */
3854 void
3855 xfs_iext_indirect_to_direct(
3856 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3857 {
3858 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3859 	xfs_extnum_t	nextents;	/* number of extents in file */
3860 	int		size;		/* size of file extents */
3861 
3862 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3863 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3864 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3865 	size = nextents * sizeof(xfs_bmbt_rec_t);
3866 
3867 	xfs_iext_irec_compact_pages(ifp);
3868 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3869 
3870 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3871 	kmem_free(ifp->if_u1.if_ext_irec);
3872 	ifp->if_flags &= ~XFS_IFEXTIREC;
3873 	ifp->if_u1.if_extents = ep;
3874 	ifp->if_bytes = size;
3875 	if (nextents < XFS_LINEAR_EXTS) {
3876 		xfs_iext_realloc_direct(ifp, size);
3877 	}
3878 }
3879 
3880 /*
3881  * Free incore file extents.
3882  */
3883 void
3884 xfs_iext_destroy(
3885 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3886 {
3887 	if (ifp->if_flags & XFS_IFEXTIREC) {
3888 		int	erp_idx;
3889 		int	nlists;
3890 
3891 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3892 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3893 			xfs_iext_irec_remove(ifp, erp_idx);
3894 		}
3895 		ifp->if_flags &= ~XFS_IFEXTIREC;
3896 	} else if (ifp->if_real_bytes) {
3897 		kmem_free(ifp->if_u1.if_extents);
3898 	} else if (ifp->if_bytes) {
3899 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3900 			sizeof(xfs_bmbt_rec_t));
3901 	}
3902 	ifp->if_u1.if_extents = NULL;
3903 	ifp->if_real_bytes = 0;
3904 	ifp->if_bytes = 0;
3905 }
3906 
3907 /*
3908  * Return a pointer to the extent record for file system block bno.
3909  */
3910 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3911 xfs_iext_bno_to_ext(
3912 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3913 	xfs_fileoff_t	bno,		/* block number to search for */
3914 	xfs_extnum_t	*idxp)		/* index of target extent */
3915 {
3916 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3917 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3918 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3919 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3920 	int		high;		/* upper boundary in search */
3921 	xfs_extnum_t	idx = 0;	/* index of target extent */
3922 	int		low;		/* lower boundary in search */
3923 	xfs_extnum_t	nextents;	/* number of file extents */
3924 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3925 
3926 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3927 	if (nextents == 0) {
3928 		*idxp = 0;
3929 		return NULL;
3930 	}
3931 	low = 0;
3932 	if (ifp->if_flags & XFS_IFEXTIREC) {
3933 		/* Find target extent list */
3934 		int	erp_idx = 0;
3935 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3936 		base = erp->er_extbuf;
3937 		high = erp->er_extcount - 1;
3938 	} else {
3939 		base = ifp->if_u1.if_extents;
3940 		high = nextents - 1;
3941 	}
3942 	/* Binary search extent records */
3943 	while (low <= high) {
3944 		idx = (low + high) >> 1;
3945 		ep = base + idx;
3946 		startoff = xfs_bmbt_get_startoff(ep);
3947 		blockcount = xfs_bmbt_get_blockcount(ep);
3948 		if (bno < startoff) {
3949 			high = idx - 1;
3950 		} else if (bno >= startoff + blockcount) {
3951 			low = idx + 1;
3952 		} else {
3953 			/* Convert back to file-based extent index */
3954 			if (ifp->if_flags & XFS_IFEXTIREC) {
3955 				idx += erp->er_extoff;
3956 			}
3957 			*idxp = idx;
3958 			return ep;
3959 		}
3960 	}
3961 	/* Convert back to file-based extent index */
3962 	if (ifp->if_flags & XFS_IFEXTIREC) {
3963 		idx += erp->er_extoff;
3964 	}
3965 	if (bno >= startoff + blockcount) {
3966 		if (++idx == nextents) {
3967 			ep = NULL;
3968 		} else {
3969 			ep = xfs_iext_get_ext(ifp, idx);
3970 		}
3971 	}
3972 	*idxp = idx;
3973 	return ep;
3974 }
3975 
3976 /*
3977  * Return a pointer to the indirection array entry containing the
3978  * extent record for filesystem block bno. Store the index of the
3979  * target irec in *erp_idxp.
3980  */
3981 xfs_ext_irec_t *			/* pointer to found extent record */
3982 xfs_iext_bno_to_irec(
3983 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3984 	xfs_fileoff_t	bno,		/* block number to search for */
3985 	int		*erp_idxp)	/* irec index of target ext list */
3986 {
3987 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3988 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3989 	int		erp_idx;	/* indirection array index */
3990 	int		nlists;		/* number of extent irec's (lists) */
3991 	int		high;		/* binary search upper limit */
3992 	int		low;		/* binary search lower limit */
3993 
3994 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3995 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3996 	erp_idx = 0;
3997 	low = 0;
3998 	high = nlists - 1;
3999 	while (low <= high) {
4000 		erp_idx = (low + high) >> 1;
4001 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4002 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4003 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4004 			high = erp_idx - 1;
4005 		} else if (erp_next && bno >=
4006 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4007 			low = erp_idx + 1;
4008 		} else {
4009 			break;
4010 		}
4011 	}
4012 	*erp_idxp = erp_idx;
4013 	return erp;
4014 }
4015 
4016 /*
4017  * Return a pointer to the indirection array entry containing the
4018  * extent record at file extent index *idxp. Store the index of the
4019  * target irec in *erp_idxp and store the page index of the target
4020  * extent record in *idxp.
4021  */
4022 xfs_ext_irec_t *
4023 xfs_iext_idx_to_irec(
4024 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4025 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4026 	int		*erp_idxp,	/* pointer to target irec */
4027 	int		realloc)	/* new bytes were just added */
4028 {
4029 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4030 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4031 	int		erp_idx;	/* indirection array index */
4032 	int		nlists;		/* number of irec's (ex lists) */
4033 	int		high;		/* binary search upper limit */
4034 	int		low;		/* binary search lower limit */
4035 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4036 
4037 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4038 	ASSERT(page_idx >= 0 && page_idx <=
4039 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4040 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4041 	erp_idx = 0;
4042 	low = 0;
4043 	high = nlists - 1;
4044 
4045 	/* Binary search extent irec's */
4046 	while (low <= high) {
4047 		erp_idx = (low + high) >> 1;
4048 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4049 		prev = erp_idx > 0 ? erp - 1 : NULL;
4050 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4051 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4052 			high = erp_idx - 1;
4053 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4054 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4055 			    !realloc)) {
4056 			low = erp_idx + 1;
4057 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4058 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4059 			ASSERT(realloc);
4060 			page_idx = 0;
4061 			erp_idx++;
4062 			erp = erp_idx < nlists ? erp + 1 : NULL;
4063 			break;
4064 		} else {
4065 			page_idx -= erp->er_extoff;
4066 			break;
4067 		}
4068 	}
4069 	*idxp = page_idx;
4070 	*erp_idxp = erp_idx;
4071 	return(erp);
4072 }
4073 
4074 /*
4075  * Allocate and initialize an indirection array once the space needed
4076  * for incore extents increases above XFS_IEXT_BUFSZ.
4077  */
4078 void
4079 xfs_iext_irec_init(
4080 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4081 {
4082 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4083 	xfs_extnum_t	nextents;	/* number of extents in file */
4084 
4085 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4086 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4087 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4088 
4089 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4090 
4091 	if (nextents == 0) {
4092 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4093 	} else if (!ifp->if_real_bytes) {
4094 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4095 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4096 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4097 	}
4098 	erp->er_extbuf = ifp->if_u1.if_extents;
4099 	erp->er_extcount = nextents;
4100 	erp->er_extoff = 0;
4101 
4102 	ifp->if_flags |= XFS_IFEXTIREC;
4103 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4104 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4105 	ifp->if_u1.if_ext_irec = erp;
4106 
4107 	return;
4108 }
4109 
4110 /*
4111  * Allocate and initialize a new entry in the indirection array.
4112  */
4113 xfs_ext_irec_t *
4114 xfs_iext_irec_new(
4115 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4116 	int		erp_idx)	/* index for new irec */
4117 {
4118 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4119 	int		i;		/* loop counter */
4120 	int		nlists;		/* number of irec's (ex lists) */
4121 
4122 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4123 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4124 
4125 	/* Resize indirection array */
4126 	xfs_iext_realloc_indirect(ifp, ++nlists *
4127 				  sizeof(xfs_ext_irec_t));
4128 	/*
4129 	 * Move records down in the array so the
4130 	 * new page can use erp_idx.
4131 	 */
4132 	erp = ifp->if_u1.if_ext_irec;
4133 	for (i = nlists - 1; i > erp_idx; i--) {
4134 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4135 	}
4136 	ASSERT(i == erp_idx);
4137 
4138 	/* Initialize new extent record */
4139 	erp = ifp->if_u1.if_ext_irec;
4140 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4141 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4142 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4143 	erp[erp_idx].er_extcount = 0;
4144 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4145 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4146 	return (&erp[erp_idx]);
4147 }
4148 
4149 /*
4150  * Remove a record from the indirection array.
4151  */
4152 void
4153 xfs_iext_irec_remove(
4154 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4155 	int		erp_idx)	/* irec index to remove */
4156 {
4157 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4158 	int		i;		/* loop counter */
4159 	int		nlists;		/* number of irec's (ex lists) */
4160 
4161 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4162 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4163 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4164 	if (erp->er_extbuf) {
4165 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4166 			-erp->er_extcount);
4167 		kmem_free(erp->er_extbuf);
4168 	}
4169 	/* Compact extent records */
4170 	erp = ifp->if_u1.if_ext_irec;
4171 	for (i = erp_idx; i < nlists - 1; i++) {
4172 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4173 	}
4174 	/*
4175 	 * Manually free the last extent record from the indirection
4176 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4177 	 * of zero would result in a call to xfs_iext_destroy() which
4178 	 * would in turn call this function again, creating a nasty
4179 	 * infinite loop.
4180 	 */
4181 	if (--nlists) {
4182 		xfs_iext_realloc_indirect(ifp,
4183 			nlists * sizeof(xfs_ext_irec_t));
4184 	} else {
4185 		kmem_free(ifp->if_u1.if_ext_irec);
4186 	}
4187 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4188 }
4189 
4190 /*
4191  * This is called to clean up large amounts of unused memory allocated
4192  * by the indirection array.  Before compacting anything though, verify
4193  * that the indirection array is still needed and switch back to the
4194  * linear extent list (or even the inline buffer) if possible.  The
4195  * compaction policy is as follows:
4196  *
4197  *    Full Compaction: Extents fit into a single page (or inline buffer)
4198  * Partial Compaction: Extents occupy less than 50% of allocated space
4199  *      No Compaction: Extents occupy at least 50% of allocated space
4200  */
4201 void
4202 xfs_iext_irec_compact(
4203 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4204 {
4205 	xfs_extnum_t	nextents;	/* number of extents in file */
4206 	int		nlists;		/* number of irec's (ex lists) */
4207 
4208 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4209 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4210 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4211 
4212 	if (nextents == 0) {
4213 		xfs_iext_destroy(ifp);
4214 	} else if (nextents <= XFS_INLINE_EXTS) {
4215 		xfs_iext_indirect_to_direct(ifp);
4216 		xfs_iext_direct_to_inline(ifp, nextents);
4217 	} else if (nextents <= XFS_LINEAR_EXTS) {
4218 		xfs_iext_indirect_to_direct(ifp);
4219 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4220 		xfs_iext_irec_compact_pages(ifp);
4221 	}
4222 }
4223 
4224 /*
4225  * Combine extents from neighboring extent pages.
4226  */
4227 void
4228 xfs_iext_irec_compact_pages(
4229 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4230 {
4231 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4232 	int		erp_idx = 0;	/* indirection array index */
4233 	int		nlists;		/* number of irec's (ex lists) */
4234 
4235 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4236 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4237 	while (erp_idx < nlists - 1) {
4238 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4239 		erp_next = erp + 1;
4240 		if (erp_next->er_extcount <=
4241 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4242 			memcpy(&erp->er_extbuf[erp->er_extcount],
4243 				erp_next->er_extbuf, erp_next->er_extcount *
4244 				sizeof(xfs_bmbt_rec_t));
4245 			erp->er_extcount += erp_next->er_extcount;
4246 			/*
4247 			 * Free page before removing extent record
4248 			 * so er_extoffs don't get modified in
4249 			 * xfs_iext_irec_remove.
4250 			 */
4251 			kmem_free(erp_next->er_extbuf);
4252 			erp_next->er_extbuf = NULL;
4253 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4254 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4255 		} else {
4256 			erp_idx++;
4257 		}
4258 	}
4259 }
4260 
4261 /*
4262  * This is called to update the er_extoff field in the indirection
4263  * array when extents have been added or removed from one of the
4264  * extent lists. erp_idx contains the irec index to begin updating
4265  * at and ext_diff contains the number of extents that were added
4266  * or removed.
4267  */
4268 void
4269 xfs_iext_irec_update_extoffs(
4270 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4271 	int		erp_idx,	/* irec index to update */
4272 	int		ext_diff)	/* number of new extents */
4273 {
4274 	int		i;		/* loop counter */
4275 	int		nlists;		/* number of irec's (ex lists */
4276 
4277 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4278 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4279 	for (i = erp_idx; i < nlists; i++) {
4280 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4281 	}
4282 }
4283