1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_dir2.h" 31 #include "xfs_dmapi.h" 32 #include "xfs_mount.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_alloc_btree.h" 35 #include "xfs_ialloc_btree.h" 36 #include "xfs_dir2_sf.h" 37 #include "xfs_attr_sf.h" 38 #include "xfs_dinode.h" 39 #include "xfs_inode.h" 40 #include "xfs_buf_item.h" 41 #include "xfs_inode_item.h" 42 #include "xfs_btree.h" 43 #include "xfs_btree_trace.h" 44 #include "xfs_alloc.h" 45 #include "xfs_ialloc.h" 46 #include "xfs_bmap.h" 47 #include "xfs_rw.h" 48 #include "xfs_error.h" 49 #include "xfs_utils.h" 50 #include "xfs_dir2_trace.h" 51 #include "xfs_quota.h" 52 #include "xfs_acl.h" 53 #include "xfs_filestream.h" 54 #include "xfs_vnodeops.h" 55 56 kmem_zone_t *xfs_ifork_zone; 57 kmem_zone_t *xfs_inode_zone; 58 59 /* 60 * Used in xfs_itruncate(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 69 70 #ifdef DEBUG 71 /* 72 * Make sure that the extents in the given memory buffer 73 * are valid. 74 */ 75 STATIC void 76 xfs_validate_extents( 77 xfs_ifork_t *ifp, 78 int nrecs, 79 xfs_exntfmt_t fmt) 80 { 81 xfs_bmbt_irec_t irec; 82 xfs_bmbt_rec_host_t rec; 83 int i; 84 85 for (i = 0; i < nrecs; i++) { 86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 87 rec.l0 = get_unaligned(&ep->l0); 88 rec.l1 = get_unaligned(&ep->l1); 89 xfs_bmbt_get_all(&rec, &irec); 90 if (fmt == XFS_EXTFMT_NOSTATE) 91 ASSERT(irec.br_state == XFS_EXT_NORM); 92 } 93 } 94 #else /* DEBUG */ 95 #define xfs_validate_extents(ifp, nrecs, fmt) 96 #endif /* DEBUG */ 97 98 /* 99 * Check that none of the inode's in the buffer have a next 100 * unlinked field of 0. 101 */ 102 #if defined(DEBUG) 103 void 104 xfs_inobp_check( 105 xfs_mount_t *mp, 106 xfs_buf_t *bp) 107 { 108 int i; 109 int j; 110 xfs_dinode_t *dip; 111 112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 113 114 for (i = 0; i < j; i++) { 115 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 116 i * mp->m_sb.sb_inodesize); 117 if (!dip->di_next_unlinked) { 118 xfs_fs_cmn_err(CE_ALERT, mp, 119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", 120 bp); 121 ASSERT(dip->di_next_unlinked); 122 } 123 } 124 } 125 #endif 126 127 /* 128 * Find the buffer associated with the given inode map 129 * We do basic validation checks on the buffer once it has been 130 * retrieved from disk. 131 */ 132 STATIC int 133 xfs_imap_to_bp( 134 xfs_mount_t *mp, 135 xfs_trans_t *tp, 136 struct xfs_imap *imap, 137 xfs_buf_t **bpp, 138 uint buf_flags, 139 uint iget_flags) 140 { 141 int error; 142 int i; 143 int ni; 144 xfs_buf_t *bp; 145 146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 147 (int)imap->im_len, buf_flags, &bp); 148 if (error) { 149 if (error != EAGAIN) { 150 cmn_err(CE_WARN, 151 "xfs_imap_to_bp: xfs_trans_read_buf()returned " 152 "an error %d on %s. Returning error.", 153 error, mp->m_fsname); 154 } else { 155 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 156 } 157 return error; 158 } 159 160 /* 161 * Validate the magic number and version of every inode in the buffer 162 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 163 */ 164 #ifdef DEBUG 165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 166 #else /* usual case */ 167 ni = 1; 168 #endif 169 170 for (i = 0; i < ni; i++) { 171 int di_ok; 172 xfs_dinode_t *dip; 173 174 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 175 (i << mp->m_sb.sb_inodelog)); 176 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC && 177 XFS_DINODE_GOOD_VERSION(dip->di_version); 178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 179 XFS_ERRTAG_ITOBP_INOTOBP, 180 XFS_RANDOM_ITOBP_INOTOBP))) { 181 if (iget_flags & XFS_IGET_BULKSTAT) { 182 xfs_trans_brelse(tp, bp); 183 return XFS_ERROR(EINVAL); 184 } 185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 186 XFS_ERRLEVEL_HIGH, mp, dip); 187 #ifdef DEBUG 188 cmn_err(CE_PANIC, 189 "Device %s - bad inode magic/vsn " 190 "daddr %lld #%d (magic=%x)", 191 XFS_BUFTARG_NAME(mp->m_ddev_targp), 192 (unsigned long long)imap->im_blkno, i, 193 be16_to_cpu(dip->di_magic)); 194 #endif 195 xfs_trans_brelse(tp, bp); 196 return XFS_ERROR(EFSCORRUPTED); 197 } 198 } 199 200 xfs_inobp_check(mp, bp); 201 202 /* 203 * Mark the buffer as an inode buffer now that it looks good 204 */ 205 XFS_BUF_SET_VTYPE(bp, B_FS_INO); 206 207 *bpp = bp; 208 return 0; 209 } 210 211 /* 212 * This routine is called to map an inode number within a file 213 * system to the buffer containing the on-disk version of the 214 * inode. It returns a pointer to the buffer containing the 215 * on-disk inode in the bpp parameter, and in the dip parameter 216 * it returns a pointer to the on-disk inode within that buffer. 217 * 218 * If a non-zero error is returned, then the contents of bpp and 219 * dipp are undefined. 220 * 221 * Use xfs_imap() to determine the size and location of the 222 * buffer to read from disk. 223 */ 224 int 225 xfs_inotobp( 226 xfs_mount_t *mp, 227 xfs_trans_t *tp, 228 xfs_ino_t ino, 229 xfs_dinode_t **dipp, 230 xfs_buf_t **bpp, 231 int *offset, 232 uint imap_flags) 233 { 234 struct xfs_imap imap; 235 xfs_buf_t *bp; 236 int error; 237 238 imap.im_blkno = 0; 239 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 240 if (error) 241 return error; 242 243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags); 244 if (error) 245 return error; 246 247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 248 *bpp = bp; 249 *offset = imap.im_boffset; 250 return 0; 251 } 252 253 254 /* 255 * This routine is called to map an inode to the buffer containing 256 * the on-disk version of the inode. It returns a pointer to the 257 * buffer containing the on-disk inode in the bpp parameter, and in 258 * the dip parameter it returns a pointer to the on-disk inode within 259 * that buffer. 260 * 261 * If a non-zero error is returned, then the contents of bpp and 262 * dipp are undefined. 263 * 264 * The inode is expected to already been mapped to its buffer and read 265 * in once, thus we can use the mapping information stored in the inode 266 * rather than calling xfs_imap(). This allows us to avoid the overhead 267 * of looking at the inode btree for small block file systems 268 * (see xfs_imap()). 269 */ 270 int 271 xfs_itobp( 272 xfs_mount_t *mp, 273 xfs_trans_t *tp, 274 xfs_inode_t *ip, 275 xfs_dinode_t **dipp, 276 xfs_buf_t **bpp, 277 uint buf_flags) 278 { 279 xfs_buf_t *bp; 280 int error; 281 282 ASSERT(ip->i_imap.im_blkno != 0); 283 284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 285 if (error) 286 return error; 287 288 if (!bp) { 289 ASSERT(buf_flags & XFS_BUF_TRYLOCK); 290 ASSERT(tp == NULL); 291 *bpp = NULL; 292 return EAGAIN; 293 } 294 295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 296 *bpp = bp; 297 return 0; 298 } 299 300 /* 301 * Move inode type and inode format specific information from the 302 * on-disk inode to the in-core inode. For fifos, devs, and sockets 303 * this means set if_rdev to the proper value. For files, directories, 304 * and symlinks this means to bring in the in-line data or extent 305 * pointers. For a file in B-tree format, only the root is immediately 306 * brought in-core. The rest will be in-lined in if_extents when it 307 * is first referenced (see xfs_iread_extents()). 308 */ 309 STATIC int 310 xfs_iformat( 311 xfs_inode_t *ip, 312 xfs_dinode_t *dip) 313 { 314 xfs_attr_shortform_t *atp; 315 int size; 316 int error; 317 xfs_fsize_t di_size; 318 ip->i_df.if_ext_max = 319 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 320 error = 0; 321 322 if (unlikely(be32_to_cpu(dip->di_nextents) + 323 be16_to_cpu(dip->di_anextents) > 324 be64_to_cpu(dip->di_nblocks))) { 325 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 327 (unsigned long long)ip->i_ino, 328 (int)(be32_to_cpu(dip->di_nextents) + 329 be16_to_cpu(dip->di_anextents)), 330 (unsigned long long) 331 be64_to_cpu(dip->di_nblocks)); 332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 333 ip->i_mount, dip); 334 return XFS_ERROR(EFSCORRUPTED); 335 } 336 337 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 338 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 339 "corrupt dinode %Lu, forkoff = 0x%x.", 340 (unsigned long long)ip->i_ino, 341 dip->di_forkoff); 342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 343 ip->i_mount, dip); 344 return XFS_ERROR(EFSCORRUPTED); 345 } 346 347 switch (ip->i_d.di_mode & S_IFMT) { 348 case S_IFIFO: 349 case S_IFCHR: 350 case S_IFBLK: 351 case S_IFSOCK: 352 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 354 ip->i_mount, dip); 355 return XFS_ERROR(EFSCORRUPTED); 356 } 357 ip->i_d.di_size = 0; 358 ip->i_size = 0; 359 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 360 break; 361 362 case S_IFREG: 363 case S_IFLNK: 364 case S_IFDIR: 365 switch (dip->di_format) { 366 case XFS_DINODE_FMT_LOCAL: 367 /* 368 * no local regular files yet 369 */ 370 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) { 371 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 372 "corrupt inode %Lu " 373 "(local format for regular file).", 374 (unsigned long long) ip->i_ino); 375 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 376 XFS_ERRLEVEL_LOW, 377 ip->i_mount, dip); 378 return XFS_ERROR(EFSCORRUPTED); 379 } 380 381 di_size = be64_to_cpu(dip->di_size); 382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 383 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 384 "corrupt inode %Lu " 385 "(bad size %Ld for local inode).", 386 (unsigned long long) ip->i_ino, 387 (long long) di_size); 388 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 389 XFS_ERRLEVEL_LOW, 390 ip->i_mount, dip); 391 return XFS_ERROR(EFSCORRUPTED); 392 } 393 394 size = (int)di_size; 395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 396 break; 397 case XFS_DINODE_FMT_EXTENTS: 398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 399 break; 400 case XFS_DINODE_FMT_BTREE: 401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 402 break; 403 default: 404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 405 ip->i_mount); 406 return XFS_ERROR(EFSCORRUPTED); 407 } 408 break; 409 410 default: 411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 412 return XFS_ERROR(EFSCORRUPTED); 413 } 414 if (error) { 415 return error; 416 } 417 if (!XFS_DFORK_Q(dip)) 418 return 0; 419 ASSERT(ip->i_afp == NULL); 420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); 421 ip->i_afp->if_ext_max = 422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 423 switch (dip->di_aformat) { 424 case XFS_DINODE_FMT_LOCAL: 425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 426 size = be16_to_cpu(atp->hdr.totsize); 427 428 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 429 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 430 "corrupt inode %Lu " 431 "(bad attr fork size %Ld).", 432 (unsigned long long) ip->i_ino, 433 (long long) size); 434 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 435 XFS_ERRLEVEL_LOW, 436 ip->i_mount, dip); 437 return XFS_ERROR(EFSCORRUPTED); 438 } 439 440 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 441 break; 442 case XFS_DINODE_FMT_EXTENTS: 443 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 444 break; 445 case XFS_DINODE_FMT_BTREE: 446 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 447 break; 448 default: 449 error = XFS_ERROR(EFSCORRUPTED); 450 break; 451 } 452 if (error) { 453 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 454 ip->i_afp = NULL; 455 xfs_idestroy_fork(ip, XFS_DATA_FORK); 456 } 457 return error; 458 } 459 460 /* 461 * The file is in-lined in the on-disk inode. 462 * If it fits into if_inline_data, then copy 463 * it there, otherwise allocate a buffer for it 464 * and copy the data there. Either way, set 465 * if_data to point at the data. 466 * If we allocate a buffer for the data, make 467 * sure that its size is a multiple of 4 and 468 * record the real size in i_real_bytes. 469 */ 470 STATIC int 471 xfs_iformat_local( 472 xfs_inode_t *ip, 473 xfs_dinode_t *dip, 474 int whichfork, 475 int size) 476 { 477 xfs_ifork_t *ifp; 478 int real_size; 479 480 /* 481 * If the size is unreasonable, then something 482 * is wrong and we just bail out rather than crash in 483 * kmem_alloc() or memcpy() below. 484 */ 485 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 486 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 487 "corrupt inode %Lu " 488 "(bad size %d for local fork, size = %d).", 489 (unsigned long long) ip->i_ino, size, 490 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 492 ip->i_mount, dip); 493 return XFS_ERROR(EFSCORRUPTED); 494 } 495 ifp = XFS_IFORK_PTR(ip, whichfork); 496 real_size = 0; 497 if (size == 0) 498 ifp->if_u1.if_data = NULL; 499 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 500 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 501 else { 502 real_size = roundup(size, 4); 503 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 504 } 505 ifp->if_bytes = size; 506 ifp->if_real_bytes = real_size; 507 if (size) 508 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 509 ifp->if_flags &= ~XFS_IFEXTENTS; 510 ifp->if_flags |= XFS_IFINLINE; 511 return 0; 512 } 513 514 /* 515 * The file consists of a set of extents all 516 * of which fit into the on-disk inode. 517 * If there are few enough extents to fit into 518 * the if_inline_ext, then copy them there. 519 * Otherwise allocate a buffer for them and copy 520 * them into it. Either way, set if_extents 521 * to point at the extents. 522 */ 523 STATIC int 524 xfs_iformat_extents( 525 xfs_inode_t *ip, 526 xfs_dinode_t *dip, 527 int whichfork) 528 { 529 xfs_bmbt_rec_t *dp; 530 xfs_ifork_t *ifp; 531 int nex; 532 int size; 533 int i; 534 535 ifp = XFS_IFORK_PTR(ip, whichfork); 536 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 537 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 538 539 /* 540 * If the number of extents is unreasonable, then something 541 * is wrong and we just bail out rather than crash in 542 * kmem_alloc() or memcpy() below. 543 */ 544 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 545 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 546 "corrupt inode %Lu ((a)extents = %d).", 547 (unsigned long long) ip->i_ino, nex); 548 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 549 ip->i_mount, dip); 550 return XFS_ERROR(EFSCORRUPTED); 551 } 552 553 ifp->if_real_bytes = 0; 554 if (nex == 0) 555 ifp->if_u1.if_extents = NULL; 556 else if (nex <= XFS_INLINE_EXTS) 557 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 558 else 559 xfs_iext_add(ifp, 0, nex); 560 561 ifp->if_bytes = size; 562 if (size) { 563 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 564 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 565 for (i = 0; i < nex; i++, dp++) { 566 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 567 ep->l0 = get_unaligned_be64(&dp->l0); 568 ep->l1 = get_unaligned_be64(&dp->l1); 569 } 570 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 571 if (whichfork != XFS_DATA_FORK || 572 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 573 if (unlikely(xfs_check_nostate_extents( 574 ifp, 0, nex))) { 575 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 576 XFS_ERRLEVEL_LOW, 577 ip->i_mount); 578 return XFS_ERROR(EFSCORRUPTED); 579 } 580 } 581 ifp->if_flags |= XFS_IFEXTENTS; 582 return 0; 583 } 584 585 /* 586 * The file has too many extents to fit into 587 * the inode, so they are in B-tree format. 588 * Allocate a buffer for the root of the B-tree 589 * and copy the root into it. The i_extents 590 * field will remain NULL until all of the 591 * extents are read in (when they are needed). 592 */ 593 STATIC int 594 xfs_iformat_btree( 595 xfs_inode_t *ip, 596 xfs_dinode_t *dip, 597 int whichfork) 598 { 599 xfs_bmdr_block_t *dfp; 600 xfs_ifork_t *ifp; 601 /* REFERENCED */ 602 int nrecs; 603 int size; 604 605 ifp = XFS_IFORK_PTR(ip, whichfork); 606 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 607 size = XFS_BMAP_BROOT_SPACE(dfp); 608 nrecs = be16_to_cpu(dfp->bb_numrecs); 609 610 /* 611 * blow out if -- fork has less extents than can fit in 612 * fork (fork shouldn't be a btree format), root btree 613 * block has more records than can fit into the fork, 614 * or the number of extents is greater than the number of 615 * blocks. 616 */ 617 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max 618 || XFS_BMDR_SPACE_CALC(nrecs) > 619 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) 620 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, 622 "corrupt inode %Lu (btree).", 623 (unsigned long long) ip->i_ino); 624 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 625 ip->i_mount); 626 return XFS_ERROR(EFSCORRUPTED); 627 } 628 629 ifp->if_broot_bytes = size; 630 ifp->if_broot = kmem_alloc(size, KM_SLEEP); 631 ASSERT(ifp->if_broot != NULL); 632 /* 633 * Copy and convert from the on-disk structure 634 * to the in-memory structure. 635 */ 636 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 638 ifp->if_broot, size); 639 ifp->if_flags &= ~XFS_IFEXTENTS; 640 ifp->if_flags |= XFS_IFBROOT; 641 642 return 0; 643 } 644 645 void 646 xfs_dinode_from_disk( 647 xfs_icdinode_t *to, 648 xfs_dinode_t *from) 649 { 650 to->di_magic = be16_to_cpu(from->di_magic); 651 to->di_mode = be16_to_cpu(from->di_mode); 652 to->di_version = from ->di_version; 653 to->di_format = from->di_format; 654 to->di_onlink = be16_to_cpu(from->di_onlink); 655 to->di_uid = be32_to_cpu(from->di_uid); 656 to->di_gid = be32_to_cpu(from->di_gid); 657 to->di_nlink = be32_to_cpu(from->di_nlink); 658 to->di_projid = be16_to_cpu(from->di_projid); 659 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 660 to->di_flushiter = be16_to_cpu(from->di_flushiter); 661 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 662 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 663 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 664 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 665 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 666 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 667 to->di_size = be64_to_cpu(from->di_size); 668 to->di_nblocks = be64_to_cpu(from->di_nblocks); 669 to->di_extsize = be32_to_cpu(from->di_extsize); 670 to->di_nextents = be32_to_cpu(from->di_nextents); 671 to->di_anextents = be16_to_cpu(from->di_anextents); 672 to->di_forkoff = from->di_forkoff; 673 to->di_aformat = from->di_aformat; 674 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 675 to->di_dmstate = be16_to_cpu(from->di_dmstate); 676 to->di_flags = be16_to_cpu(from->di_flags); 677 to->di_gen = be32_to_cpu(from->di_gen); 678 } 679 680 void 681 xfs_dinode_to_disk( 682 xfs_dinode_t *to, 683 xfs_icdinode_t *from) 684 { 685 to->di_magic = cpu_to_be16(from->di_magic); 686 to->di_mode = cpu_to_be16(from->di_mode); 687 to->di_version = from ->di_version; 688 to->di_format = from->di_format; 689 to->di_onlink = cpu_to_be16(from->di_onlink); 690 to->di_uid = cpu_to_be32(from->di_uid); 691 to->di_gid = cpu_to_be32(from->di_gid); 692 to->di_nlink = cpu_to_be32(from->di_nlink); 693 to->di_projid = cpu_to_be16(from->di_projid); 694 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 695 to->di_flushiter = cpu_to_be16(from->di_flushiter); 696 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 697 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 698 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 699 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 700 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 701 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 702 to->di_size = cpu_to_be64(from->di_size); 703 to->di_nblocks = cpu_to_be64(from->di_nblocks); 704 to->di_extsize = cpu_to_be32(from->di_extsize); 705 to->di_nextents = cpu_to_be32(from->di_nextents); 706 to->di_anextents = cpu_to_be16(from->di_anextents); 707 to->di_forkoff = from->di_forkoff; 708 to->di_aformat = from->di_aformat; 709 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 710 to->di_dmstate = cpu_to_be16(from->di_dmstate); 711 to->di_flags = cpu_to_be16(from->di_flags); 712 to->di_gen = cpu_to_be32(from->di_gen); 713 } 714 715 STATIC uint 716 _xfs_dic2xflags( 717 __uint16_t di_flags) 718 { 719 uint flags = 0; 720 721 if (di_flags & XFS_DIFLAG_ANY) { 722 if (di_flags & XFS_DIFLAG_REALTIME) 723 flags |= XFS_XFLAG_REALTIME; 724 if (di_flags & XFS_DIFLAG_PREALLOC) 725 flags |= XFS_XFLAG_PREALLOC; 726 if (di_flags & XFS_DIFLAG_IMMUTABLE) 727 flags |= XFS_XFLAG_IMMUTABLE; 728 if (di_flags & XFS_DIFLAG_APPEND) 729 flags |= XFS_XFLAG_APPEND; 730 if (di_flags & XFS_DIFLAG_SYNC) 731 flags |= XFS_XFLAG_SYNC; 732 if (di_flags & XFS_DIFLAG_NOATIME) 733 flags |= XFS_XFLAG_NOATIME; 734 if (di_flags & XFS_DIFLAG_NODUMP) 735 flags |= XFS_XFLAG_NODUMP; 736 if (di_flags & XFS_DIFLAG_RTINHERIT) 737 flags |= XFS_XFLAG_RTINHERIT; 738 if (di_flags & XFS_DIFLAG_PROJINHERIT) 739 flags |= XFS_XFLAG_PROJINHERIT; 740 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 741 flags |= XFS_XFLAG_NOSYMLINKS; 742 if (di_flags & XFS_DIFLAG_EXTSIZE) 743 flags |= XFS_XFLAG_EXTSIZE; 744 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 745 flags |= XFS_XFLAG_EXTSZINHERIT; 746 if (di_flags & XFS_DIFLAG_NODEFRAG) 747 flags |= XFS_XFLAG_NODEFRAG; 748 if (di_flags & XFS_DIFLAG_FILESTREAM) 749 flags |= XFS_XFLAG_FILESTREAM; 750 } 751 752 return flags; 753 } 754 755 uint 756 xfs_ip2xflags( 757 xfs_inode_t *ip) 758 { 759 xfs_icdinode_t *dic = &ip->i_d; 760 761 return _xfs_dic2xflags(dic->di_flags) | 762 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 763 } 764 765 uint 766 xfs_dic2xflags( 767 xfs_dinode_t *dip) 768 { 769 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 770 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 771 } 772 773 /* 774 * Read the disk inode attributes into the in-core inode structure. 775 */ 776 int 777 xfs_iread( 778 xfs_mount_t *mp, 779 xfs_trans_t *tp, 780 xfs_inode_t *ip, 781 xfs_daddr_t bno, 782 uint iget_flags) 783 { 784 xfs_buf_t *bp; 785 xfs_dinode_t *dip; 786 int error; 787 788 /* 789 * Fill in the location information in the in-core inode. 790 */ 791 ip->i_imap.im_blkno = bno; 792 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 793 if (error) 794 return error; 795 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno); 796 797 /* 798 * Get pointers to the on-disk inode and the buffer containing it. 799 */ 800 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 801 XFS_BUF_LOCK, iget_flags); 802 if (error) 803 return error; 804 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 805 806 /* 807 * If we got something that isn't an inode it means someone 808 * (nfs or dmi) has a stale handle. 809 */ 810 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) { 811 #ifdef DEBUG 812 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 813 "dip->di_magic (0x%x) != " 814 "XFS_DINODE_MAGIC (0x%x)", 815 be16_to_cpu(dip->di_magic), 816 XFS_DINODE_MAGIC); 817 #endif /* DEBUG */ 818 error = XFS_ERROR(EINVAL); 819 goto out_brelse; 820 } 821 822 /* 823 * If the on-disk inode is already linked to a directory 824 * entry, copy all of the inode into the in-core inode. 825 * xfs_iformat() handles copying in the inode format 826 * specific information. 827 * Otherwise, just get the truly permanent information. 828 */ 829 if (dip->di_mode) { 830 xfs_dinode_from_disk(&ip->i_d, dip); 831 error = xfs_iformat(ip, dip); 832 if (error) { 833 #ifdef DEBUG 834 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " 835 "xfs_iformat() returned error %d", 836 error); 837 #endif /* DEBUG */ 838 goto out_brelse; 839 } 840 } else { 841 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 842 ip->i_d.di_version = dip->di_version; 843 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 844 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 845 /* 846 * Make sure to pull in the mode here as well in 847 * case the inode is released without being used. 848 * This ensures that xfs_inactive() will see that 849 * the inode is already free and not try to mess 850 * with the uninitialized part of it. 851 */ 852 ip->i_d.di_mode = 0; 853 /* 854 * Initialize the per-fork minima and maxima for a new 855 * inode here. xfs_iformat will do it for old inodes. 856 */ 857 ip->i_df.if_ext_max = 858 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 859 } 860 861 /* 862 * The inode format changed when we moved the link count and 863 * made it 32 bits long. If this is an old format inode, 864 * convert it in memory to look like a new one. If it gets 865 * flushed to disk we will convert back before flushing or 866 * logging it. We zero out the new projid field and the old link 867 * count field. We'll handle clearing the pad field (the remains 868 * of the old uuid field) when we actually convert the inode to 869 * the new format. We don't change the version number so that we 870 * can distinguish this from a real new format inode. 871 */ 872 if (ip->i_d.di_version == 1) { 873 ip->i_d.di_nlink = ip->i_d.di_onlink; 874 ip->i_d.di_onlink = 0; 875 ip->i_d.di_projid = 0; 876 } 877 878 ip->i_delayed_blks = 0; 879 ip->i_size = ip->i_d.di_size; 880 881 /* 882 * Mark the buffer containing the inode as something to keep 883 * around for a while. This helps to keep recently accessed 884 * meta-data in-core longer. 885 */ 886 XFS_BUF_SET_REF(bp, XFS_INO_REF); 887 888 /* 889 * Use xfs_trans_brelse() to release the buffer containing the 890 * on-disk inode, because it was acquired with xfs_trans_read_buf() 891 * in xfs_itobp() above. If tp is NULL, this is just a normal 892 * brelse(). If we're within a transaction, then xfs_trans_brelse() 893 * will only release the buffer if it is not dirty within the 894 * transaction. It will be OK to release the buffer in this case, 895 * because inodes on disk are never destroyed and we will be 896 * locking the new in-core inode before putting it in the hash 897 * table where other processes can find it. Thus we don't have 898 * to worry about the inode being changed just because we released 899 * the buffer. 900 */ 901 out_brelse: 902 xfs_trans_brelse(tp, bp); 903 return error; 904 } 905 906 /* 907 * Read in extents from a btree-format inode. 908 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 909 */ 910 int 911 xfs_iread_extents( 912 xfs_trans_t *tp, 913 xfs_inode_t *ip, 914 int whichfork) 915 { 916 int error; 917 xfs_ifork_t *ifp; 918 xfs_extnum_t nextents; 919 size_t size; 920 921 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 922 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 923 ip->i_mount); 924 return XFS_ERROR(EFSCORRUPTED); 925 } 926 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 927 size = nextents * sizeof(xfs_bmbt_rec_t); 928 ifp = XFS_IFORK_PTR(ip, whichfork); 929 930 /* 931 * We know that the size is valid (it's checked in iformat_btree) 932 */ 933 ifp->if_lastex = NULLEXTNUM; 934 ifp->if_bytes = ifp->if_real_bytes = 0; 935 ifp->if_flags |= XFS_IFEXTENTS; 936 xfs_iext_add(ifp, 0, nextents); 937 error = xfs_bmap_read_extents(tp, ip, whichfork); 938 if (error) { 939 xfs_iext_destroy(ifp); 940 ifp->if_flags &= ~XFS_IFEXTENTS; 941 return error; 942 } 943 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 944 return 0; 945 } 946 947 /* 948 * Allocate an inode on disk and return a copy of its in-core version. 949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 950 * appropriately within the inode. The uid and gid for the inode are 951 * set according to the contents of the given cred structure. 952 * 953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 954 * has a free inode available, call xfs_iget() 955 * to obtain the in-core version of the allocated inode. Finally, 956 * fill in the inode and log its initial contents. In this case, 957 * ialloc_context would be set to NULL and call_again set to false. 958 * 959 * If xfs_dialloc() does not have an available inode, 960 * it will replenish its supply by doing an allocation. Since we can 961 * only do one allocation within a transaction without deadlocks, we 962 * must commit the current transaction before returning the inode itself. 963 * In this case, therefore, we will set call_again to true and return. 964 * The caller should then commit the current transaction, start a new 965 * transaction, and call xfs_ialloc() again to actually get the inode. 966 * 967 * To ensure that some other process does not grab the inode that 968 * was allocated during the first call to xfs_ialloc(), this routine 969 * also returns the [locked] bp pointing to the head of the freelist 970 * as ialloc_context. The caller should hold this buffer across 971 * the commit and pass it back into this routine on the second call. 972 * 973 * If we are allocating quota inodes, we do not have a parent inode 974 * to attach to or associate with (i.e. pip == NULL) because they 975 * are not linked into the directory structure - they are attached 976 * directly to the superblock - and so have no parent. 977 */ 978 int 979 xfs_ialloc( 980 xfs_trans_t *tp, 981 xfs_inode_t *pip, 982 mode_t mode, 983 xfs_nlink_t nlink, 984 xfs_dev_t rdev, 985 cred_t *cr, 986 xfs_prid_t prid, 987 int okalloc, 988 xfs_buf_t **ialloc_context, 989 boolean_t *call_again, 990 xfs_inode_t **ipp) 991 { 992 xfs_ino_t ino; 993 xfs_inode_t *ip; 994 uint flags; 995 int error; 996 timespec_t tv; 997 int filestreams = 0; 998 999 /* 1000 * Call the space management code to pick 1001 * the on-disk inode to be allocated. 1002 */ 1003 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 1004 ialloc_context, call_again, &ino); 1005 if (error) 1006 return error; 1007 if (*call_again || ino == NULLFSINO) { 1008 *ipp = NULL; 1009 return 0; 1010 } 1011 ASSERT(*ialloc_context == NULL); 1012 1013 /* 1014 * Get the in-core inode with the lock held exclusively. 1015 * This is because we're setting fields here we need 1016 * to prevent others from looking at until we're done. 1017 */ 1018 error = xfs_trans_iget(tp->t_mountp, tp, ino, 1019 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 1020 if (error) 1021 return error; 1022 ASSERT(ip != NULL); 1023 1024 ip->i_d.di_mode = (__uint16_t)mode; 1025 ip->i_d.di_onlink = 0; 1026 ip->i_d.di_nlink = nlink; 1027 ASSERT(ip->i_d.di_nlink == nlink); 1028 ip->i_d.di_uid = current_fsuid(); 1029 ip->i_d.di_gid = current_fsgid(); 1030 ip->i_d.di_projid = prid; 1031 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1032 1033 /* 1034 * If the superblock version is up to where we support new format 1035 * inodes and this is currently an old format inode, then change 1036 * the inode version number now. This way we only do the conversion 1037 * here rather than here and in the flush/logging code. 1038 */ 1039 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1040 ip->i_d.di_version == 1) { 1041 ip->i_d.di_version = 2; 1042 /* 1043 * We've already zeroed the old link count, the projid field, 1044 * and the pad field. 1045 */ 1046 } 1047 1048 /* 1049 * Project ids won't be stored on disk if we are using a version 1 inode. 1050 */ 1051 if ((prid != 0) && (ip->i_d.di_version == 1)) 1052 xfs_bump_ino_vers2(tp, ip); 1053 1054 if (pip && XFS_INHERIT_GID(pip)) { 1055 ip->i_d.di_gid = pip->i_d.di_gid; 1056 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { 1057 ip->i_d.di_mode |= S_ISGID; 1058 } 1059 } 1060 1061 /* 1062 * If the group ID of the new file does not match the effective group 1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1064 * (and only if the irix_sgid_inherit compatibility variable is set). 1065 */ 1066 if ((irix_sgid_inherit) && 1067 (ip->i_d.di_mode & S_ISGID) && 1068 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1069 ip->i_d.di_mode &= ~S_ISGID; 1070 } 1071 1072 ip->i_d.di_size = 0; 1073 ip->i_size = 0; 1074 ip->i_d.di_nextents = 0; 1075 ASSERT(ip->i_d.di_nblocks == 0); 1076 1077 nanotime(&tv); 1078 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1079 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1080 ip->i_d.di_atime = ip->i_d.di_mtime; 1081 ip->i_d.di_ctime = ip->i_d.di_mtime; 1082 1083 /* 1084 * di_gen will have been taken care of in xfs_iread. 1085 */ 1086 ip->i_d.di_extsize = 0; 1087 ip->i_d.di_dmevmask = 0; 1088 ip->i_d.di_dmstate = 0; 1089 ip->i_d.di_flags = 0; 1090 flags = XFS_ILOG_CORE; 1091 switch (mode & S_IFMT) { 1092 case S_IFIFO: 1093 case S_IFCHR: 1094 case S_IFBLK: 1095 case S_IFSOCK: 1096 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1097 ip->i_df.if_u2.if_rdev = rdev; 1098 ip->i_df.if_flags = 0; 1099 flags |= XFS_ILOG_DEV; 1100 break; 1101 case S_IFREG: 1102 /* 1103 * we can't set up filestreams until after the VFS inode 1104 * is set up properly. 1105 */ 1106 if (pip && xfs_inode_is_filestream(pip)) 1107 filestreams = 1; 1108 /* fall through */ 1109 case S_IFDIR: 1110 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1111 uint di_flags = 0; 1112 1113 if ((mode & S_IFMT) == S_IFDIR) { 1114 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1115 di_flags |= XFS_DIFLAG_RTINHERIT; 1116 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1117 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1118 ip->i_d.di_extsize = pip->i_d.di_extsize; 1119 } 1120 } else if ((mode & S_IFMT) == S_IFREG) { 1121 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1122 di_flags |= XFS_DIFLAG_REALTIME; 1123 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1124 di_flags |= XFS_DIFLAG_EXTSIZE; 1125 ip->i_d.di_extsize = pip->i_d.di_extsize; 1126 } 1127 } 1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1129 xfs_inherit_noatime) 1130 di_flags |= XFS_DIFLAG_NOATIME; 1131 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1132 xfs_inherit_nodump) 1133 di_flags |= XFS_DIFLAG_NODUMP; 1134 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1135 xfs_inherit_sync) 1136 di_flags |= XFS_DIFLAG_SYNC; 1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1138 xfs_inherit_nosymlinks) 1139 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1140 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1141 di_flags |= XFS_DIFLAG_PROJINHERIT; 1142 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1143 xfs_inherit_nodefrag) 1144 di_flags |= XFS_DIFLAG_NODEFRAG; 1145 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1146 di_flags |= XFS_DIFLAG_FILESTREAM; 1147 ip->i_d.di_flags |= di_flags; 1148 } 1149 /* FALLTHROUGH */ 1150 case S_IFLNK: 1151 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1152 ip->i_df.if_flags = XFS_IFEXTENTS; 1153 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1154 ip->i_df.if_u1.if_extents = NULL; 1155 break; 1156 default: 1157 ASSERT(0); 1158 } 1159 /* 1160 * Attribute fork settings for new inode. 1161 */ 1162 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1163 ip->i_d.di_anextents = 0; 1164 1165 /* 1166 * Log the new values stuffed into the inode. 1167 */ 1168 xfs_trans_log_inode(tp, ip, flags); 1169 1170 /* now that we have an i_mode we can setup inode ops and unlock */ 1171 xfs_setup_inode(ip); 1172 1173 /* now we have set up the vfs inode we can associate the filestream */ 1174 if (filestreams) { 1175 error = xfs_filestream_associate(pip, ip); 1176 if (error < 0) 1177 return -error; 1178 if (!error) 1179 xfs_iflags_set(ip, XFS_IFILESTREAM); 1180 } 1181 1182 *ipp = ip; 1183 return 0; 1184 } 1185 1186 /* 1187 * Check to make sure that there are no blocks allocated to the 1188 * file beyond the size of the file. We don't check this for 1189 * files with fixed size extents or real time extents, but we 1190 * at least do it for regular files. 1191 */ 1192 #ifdef DEBUG 1193 void 1194 xfs_isize_check( 1195 xfs_mount_t *mp, 1196 xfs_inode_t *ip, 1197 xfs_fsize_t isize) 1198 { 1199 xfs_fileoff_t map_first; 1200 int nimaps; 1201 xfs_bmbt_irec_t imaps[2]; 1202 1203 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) 1204 return; 1205 1206 if (XFS_IS_REALTIME_INODE(ip)) 1207 return; 1208 1209 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) 1210 return; 1211 1212 nimaps = 2; 1213 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 1214 /* 1215 * The filesystem could be shutting down, so bmapi may return 1216 * an error. 1217 */ 1218 if (xfs_bmapi(NULL, ip, map_first, 1219 (XFS_B_TO_FSB(mp, 1220 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - 1221 map_first), 1222 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, 1223 NULL, NULL)) 1224 return; 1225 ASSERT(nimaps == 1); 1226 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); 1227 } 1228 #endif /* DEBUG */ 1229 1230 /* 1231 * Calculate the last possible buffered byte in a file. This must 1232 * include data that was buffered beyond the EOF by the write code. 1233 * This also needs to deal with overflowing the xfs_fsize_t type 1234 * which can happen for sizes near the limit. 1235 * 1236 * We also need to take into account any blocks beyond the EOF. It 1237 * may be the case that they were buffered by a write which failed. 1238 * In that case the pages will still be in memory, but the inode size 1239 * will never have been updated. 1240 */ 1241 xfs_fsize_t 1242 xfs_file_last_byte( 1243 xfs_inode_t *ip) 1244 { 1245 xfs_mount_t *mp; 1246 xfs_fsize_t last_byte; 1247 xfs_fileoff_t last_block; 1248 xfs_fileoff_t size_last_block; 1249 int error; 1250 1251 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)); 1252 1253 mp = ip->i_mount; 1254 /* 1255 * Only check for blocks beyond the EOF if the extents have 1256 * been read in. This eliminates the need for the inode lock, 1257 * and it also saves us from looking when it really isn't 1258 * necessary. 1259 */ 1260 if (ip->i_df.if_flags & XFS_IFEXTENTS) { 1261 error = xfs_bmap_last_offset(NULL, ip, &last_block, 1262 XFS_DATA_FORK); 1263 if (error) { 1264 last_block = 0; 1265 } 1266 } else { 1267 last_block = 0; 1268 } 1269 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size); 1270 last_block = XFS_FILEOFF_MAX(last_block, size_last_block); 1271 1272 last_byte = XFS_FSB_TO_B(mp, last_block); 1273 if (last_byte < 0) { 1274 return XFS_MAXIOFFSET(mp); 1275 } 1276 last_byte += (1 << mp->m_writeio_log); 1277 if (last_byte < 0) { 1278 return XFS_MAXIOFFSET(mp); 1279 } 1280 return last_byte; 1281 } 1282 1283 #if defined(XFS_RW_TRACE) 1284 STATIC void 1285 xfs_itrunc_trace( 1286 int tag, 1287 xfs_inode_t *ip, 1288 int flag, 1289 xfs_fsize_t new_size, 1290 xfs_off_t toss_start, 1291 xfs_off_t toss_finish) 1292 { 1293 if (ip->i_rwtrace == NULL) { 1294 return; 1295 } 1296 1297 ktrace_enter(ip->i_rwtrace, 1298 (void*)((long)tag), 1299 (void*)ip, 1300 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), 1301 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), 1302 (void*)((long)flag), 1303 (void*)(unsigned long)((new_size >> 32) & 0xffffffff), 1304 (void*)(unsigned long)(new_size & 0xffffffff), 1305 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), 1306 (void*)(unsigned long)(toss_start & 0xffffffff), 1307 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), 1308 (void*)(unsigned long)(toss_finish & 0xffffffff), 1309 (void*)(unsigned long)current_cpu(), 1310 (void*)(unsigned long)current_pid(), 1311 (void*)NULL, 1312 (void*)NULL, 1313 (void*)NULL); 1314 } 1315 #else 1316 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) 1317 #endif 1318 1319 /* 1320 * Start the truncation of the file to new_size. The new size 1321 * must be smaller than the current size. This routine will 1322 * clear the buffer and page caches of file data in the removed 1323 * range, and xfs_itruncate_finish() will remove the underlying 1324 * disk blocks. 1325 * 1326 * The inode must have its I/O lock locked EXCLUSIVELY, and it 1327 * must NOT have the inode lock held at all. This is because we're 1328 * calling into the buffer/page cache code and we can't hold the 1329 * inode lock when we do so. 1330 * 1331 * We need to wait for any direct I/Os in flight to complete before we 1332 * proceed with the truncate. This is needed to prevent the extents 1333 * being read or written by the direct I/Os from being removed while the 1334 * I/O is in flight as there is no other method of synchronising 1335 * direct I/O with the truncate operation. Also, because we hold 1336 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being 1337 * started until the truncate completes and drops the lock. Essentially, 1338 * the xfs_ioend_wait() call forms an I/O barrier that provides strict 1339 * ordering between direct I/Os and the truncate operation. 1340 * 1341 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE 1342 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used 1343 * in the case that the caller is locking things out of order and 1344 * may not be able to call xfs_itruncate_finish() with the inode lock 1345 * held without dropping the I/O lock. If the caller must drop the 1346 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() 1347 * must be called again with all the same restrictions as the initial 1348 * call. 1349 */ 1350 int 1351 xfs_itruncate_start( 1352 xfs_inode_t *ip, 1353 uint flags, 1354 xfs_fsize_t new_size) 1355 { 1356 xfs_fsize_t last_byte; 1357 xfs_off_t toss_start; 1358 xfs_mount_t *mp; 1359 int error = 0; 1360 1361 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1362 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1363 ASSERT((flags == XFS_ITRUNC_DEFINITE) || 1364 (flags == XFS_ITRUNC_MAYBE)); 1365 1366 mp = ip->i_mount; 1367 1368 /* wait for the completion of any pending DIOs */ 1369 if (new_size == 0 || new_size < ip->i_size) 1370 xfs_ioend_wait(ip); 1371 1372 /* 1373 * Call toss_pages or flushinval_pages to get rid of pages 1374 * overlapping the region being removed. We have to use 1375 * the less efficient flushinval_pages in the case that the 1376 * caller may not be able to finish the truncate without 1377 * dropping the inode's I/O lock. Make sure 1378 * to catch any pages brought in by buffers overlapping 1379 * the EOF by searching out beyond the isize by our 1380 * block size. We round new_size up to a block boundary 1381 * so that we don't toss things on the same block as 1382 * new_size but before it. 1383 * 1384 * Before calling toss_page or flushinval_pages, make sure to 1385 * call remapf() over the same region if the file is mapped. 1386 * This frees up mapped file references to the pages in the 1387 * given range and for the flushinval_pages case it ensures 1388 * that we get the latest mapped changes flushed out. 1389 */ 1390 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1391 toss_start = XFS_FSB_TO_B(mp, toss_start); 1392 if (toss_start < 0) { 1393 /* 1394 * The place to start tossing is beyond our maximum 1395 * file size, so there is no way that the data extended 1396 * out there. 1397 */ 1398 return 0; 1399 } 1400 last_byte = xfs_file_last_byte(ip); 1401 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, 1402 last_byte); 1403 if (last_byte > toss_start) { 1404 if (flags & XFS_ITRUNC_DEFINITE) { 1405 xfs_tosspages(ip, toss_start, 1406 -1, FI_REMAPF_LOCKED); 1407 } else { 1408 error = xfs_flushinval_pages(ip, toss_start, 1409 -1, FI_REMAPF_LOCKED); 1410 } 1411 } 1412 1413 #ifdef DEBUG 1414 if (new_size == 0) { 1415 ASSERT(VN_CACHED(VFS_I(ip)) == 0); 1416 } 1417 #endif 1418 return error; 1419 } 1420 1421 /* 1422 * Shrink the file to the given new_size. The new size must be smaller than 1423 * the current size. This will free up the underlying blocks in the removed 1424 * range after a call to xfs_itruncate_start() or xfs_atruncate_start(). 1425 * 1426 * The transaction passed to this routine must have made a permanent log 1427 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1428 * given transaction and start new ones, so make sure everything involved in 1429 * the transaction is tidy before calling here. Some transaction will be 1430 * returned to the caller to be committed. The incoming transaction must 1431 * already include the inode, and both inode locks must be held exclusively. 1432 * The inode must also be "held" within the transaction. On return the inode 1433 * will be "held" within the returned transaction. This routine does NOT 1434 * require any disk space to be reserved for it within the transaction. 1435 * 1436 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it 1437 * indicates the fork which is to be truncated. For the attribute fork we only 1438 * support truncation to size 0. 1439 * 1440 * We use the sync parameter to indicate whether or not the first transaction 1441 * we perform might have to be synchronous. For the attr fork, it needs to be 1442 * so if the unlink of the inode is not yet known to be permanent in the log. 1443 * This keeps us from freeing and reusing the blocks of the attribute fork 1444 * before the unlink of the inode becomes permanent. 1445 * 1446 * For the data fork, we normally have to run synchronously if we're being 1447 * called out of the inactive path or we're being called out of the create path 1448 * where we're truncating an existing file. Either way, the truncate needs to 1449 * be sync so blocks don't reappear in the file with altered data in case of a 1450 * crash. wsync filesystems can run the first case async because anything that 1451 * shrinks the inode has to run sync so by the time we're called here from 1452 * inactive, the inode size is permanently set to 0. 1453 * 1454 * Calls from the truncate path always need to be sync unless we're in a wsync 1455 * filesystem and the file has already been unlinked. 1456 * 1457 * The caller is responsible for correctly setting the sync parameter. It gets 1458 * too hard for us to guess here which path we're being called out of just 1459 * based on inode state. 1460 * 1461 * If we get an error, we must return with the inode locked and linked into the 1462 * current transaction. This keeps things simple for the higher level code, 1463 * because it always knows that the inode is locked and held in the transaction 1464 * that returns to it whether errors occur or not. We don't mark the inode 1465 * dirty on error so that transactions can be easily aborted if possible. 1466 */ 1467 int 1468 xfs_itruncate_finish( 1469 xfs_trans_t **tp, 1470 xfs_inode_t *ip, 1471 xfs_fsize_t new_size, 1472 int fork, 1473 int sync) 1474 { 1475 xfs_fsblock_t first_block; 1476 xfs_fileoff_t first_unmap_block; 1477 xfs_fileoff_t last_block; 1478 xfs_filblks_t unmap_len=0; 1479 xfs_mount_t *mp; 1480 xfs_trans_t *ntp; 1481 int done; 1482 int committed; 1483 xfs_bmap_free_t free_list; 1484 int error; 1485 1486 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1487 ASSERT((new_size == 0) || (new_size <= ip->i_size)); 1488 ASSERT(*tp != NULL); 1489 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 1490 ASSERT(ip->i_transp == *tp); 1491 ASSERT(ip->i_itemp != NULL); 1492 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); 1493 1494 1495 ntp = *tp; 1496 mp = (ntp)->t_mountp; 1497 ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); 1498 1499 /* 1500 * We only support truncating the entire attribute fork. 1501 */ 1502 if (fork == XFS_ATTR_FORK) { 1503 new_size = 0LL; 1504 } 1505 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1506 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); 1507 /* 1508 * The first thing we do is set the size to new_size permanently 1509 * on disk. This way we don't have to worry about anyone ever 1510 * being able to look at the data being freed even in the face 1511 * of a crash. What we're getting around here is the case where 1512 * we free a block, it is allocated to another file, it is written 1513 * to, and then we crash. If the new data gets written to the 1514 * file but the log buffers containing the free and reallocation 1515 * don't, then we'd end up with garbage in the blocks being freed. 1516 * As long as we make the new_size permanent before actually 1517 * freeing any blocks it doesn't matter if they get writtten to. 1518 * 1519 * The callers must signal into us whether or not the size 1520 * setting here must be synchronous. There are a few cases 1521 * where it doesn't have to be synchronous. Those cases 1522 * occur if the file is unlinked and we know the unlink is 1523 * permanent or if the blocks being truncated are guaranteed 1524 * to be beyond the inode eof (regardless of the link count) 1525 * and the eof value is permanent. Both of these cases occur 1526 * only on wsync-mounted filesystems. In those cases, we're 1527 * guaranteed that no user will ever see the data in the blocks 1528 * that are being truncated so the truncate can run async. 1529 * In the free beyond eof case, the file may wind up with 1530 * more blocks allocated to it than it needs if we crash 1531 * and that won't get fixed until the next time the file 1532 * is re-opened and closed but that's ok as that shouldn't 1533 * be too many blocks. 1534 * 1535 * However, we can't just make all wsync xactions run async 1536 * because there's one call out of the create path that needs 1537 * to run sync where it's truncating an existing file to size 1538 * 0 whose size is > 0. 1539 * 1540 * It's probably possible to come up with a test in this 1541 * routine that would correctly distinguish all the above 1542 * cases from the values of the function parameters and the 1543 * inode state but for sanity's sake, I've decided to let the 1544 * layers above just tell us. It's simpler to correctly figure 1545 * out in the layer above exactly under what conditions we 1546 * can run async and I think it's easier for others read and 1547 * follow the logic in case something has to be changed. 1548 * cscope is your friend -- rcc. 1549 * 1550 * The attribute fork is much simpler. 1551 * 1552 * For the attribute fork we allow the caller to tell us whether 1553 * the unlink of the inode that led to this call is yet permanent 1554 * in the on disk log. If it is not and we will be freeing extents 1555 * in this inode then we make the first transaction synchronous 1556 * to make sure that the unlink is permanent by the time we free 1557 * the blocks. 1558 */ 1559 if (fork == XFS_DATA_FORK) { 1560 if (ip->i_d.di_nextents > 0) { 1561 /* 1562 * If we are not changing the file size then do 1563 * not update the on-disk file size - we may be 1564 * called from xfs_inactive_free_eofblocks(). If we 1565 * update the on-disk file size and then the system 1566 * crashes before the contents of the file are 1567 * flushed to disk then the files may be full of 1568 * holes (ie NULL files bug). 1569 */ 1570 if (ip->i_size != new_size) { 1571 ip->i_d.di_size = new_size; 1572 ip->i_size = new_size; 1573 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1574 } 1575 } 1576 } else if (sync) { 1577 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); 1578 if (ip->i_d.di_anextents > 0) 1579 xfs_trans_set_sync(ntp); 1580 } 1581 ASSERT(fork == XFS_DATA_FORK || 1582 (fork == XFS_ATTR_FORK && 1583 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || 1584 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); 1585 1586 /* 1587 * Since it is possible for space to become allocated beyond 1588 * the end of the file (in a crash where the space is allocated 1589 * but the inode size is not yet updated), simply remove any 1590 * blocks which show up between the new EOF and the maximum 1591 * possible file size. If the first block to be removed is 1592 * beyond the maximum file size (ie it is the same as last_block), 1593 * then there is nothing to do. 1594 */ 1595 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1596 ASSERT(first_unmap_block <= last_block); 1597 done = 0; 1598 if (last_block == first_unmap_block) { 1599 done = 1; 1600 } else { 1601 unmap_len = last_block - first_unmap_block + 1; 1602 } 1603 while (!done) { 1604 /* 1605 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() 1606 * will tell us whether it freed the entire range or 1607 * not. If this is a synchronous mount (wsync), 1608 * then we can tell bunmapi to keep all the 1609 * transactions asynchronous since the unlink 1610 * transaction that made this inode inactive has 1611 * already hit the disk. There's no danger of 1612 * the freed blocks being reused, there being a 1613 * crash, and the reused blocks suddenly reappearing 1614 * in this file with garbage in them once recovery 1615 * runs. 1616 */ 1617 xfs_bmap_init(&free_list, &first_block); 1618 error = xfs_bunmapi(ntp, ip, 1619 first_unmap_block, unmap_len, 1620 xfs_bmapi_aflag(fork) | 1621 (sync ? 0 : XFS_BMAPI_ASYNC), 1622 XFS_ITRUNC_MAX_EXTENTS, 1623 &first_block, &free_list, 1624 NULL, &done); 1625 if (error) { 1626 /* 1627 * If the bunmapi call encounters an error, 1628 * return to the caller where the transaction 1629 * can be properly aborted. We just need to 1630 * make sure we're not holding any resources 1631 * that we were not when we came in. 1632 */ 1633 xfs_bmap_cancel(&free_list); 1634 return error; 1635 } 1636 1637 /* 1638 * Duplicate the transaction that has the permanent 1639 * reservation and commit the old transaction. 1640 */ 1641 error = xfs_bmap_finish(tp, &free_list, &committed); 1642 ntp = *tp; 1643 if (committed) { 1644 /* link the inode into the next xact in the chain */ 1645 xfs_trans_ijoin(ntp, ip, 1646 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1647 xfs_trans_ihold(ntp, ip); 1648 } 1649 1650 if (error) { 1651 /* 1652 * If the bmap finish call encounters an error, return 1653 * to the caller where the transaction can be properly 1654 * aborted. We just need to make sure we're not 1655 * holding any resources that we were not when we came 1656 * in. 1657 * 1658 * Aborting from this point might lose some blocks in 1659 * the file system, but oh well. 1660 */ 1661 xfs_bmap_cancel(&free_list); 1662 return error; 1663 } 1664 1665 if (committed) { 1666 /* 1667 * Mark the inode dirty so it will be logged and 1668 * moved forward in the log as part of every commit. 1669 */ 1670 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1671 } 1672 1673 ntp = xfs_trans_dup(ntp); 1674 error = xfs_trans_commit(*tp, 0); 1675 *tp = ntp; 1676 1677 /* link the inode into the next transaction in the chain */ 1678 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); 1679 xfs_trans_ihold(ntp, ip); 1680 1681 if (error) 1682 return error; 1683 /* 1684 * transaction commit worked ok so we can drop the extra ticket 1685 * reference that we gained in xfs_trans_dup() 1686 */ 1687 xfs_log_ticket_put(ntp->t_ticket); 1688 error = xfs_trans_reserve(ntp, 0, 1689 XFS_ITRUNCATE_LOG_RES(mp), 0, 1690 XFS_TRANS_PERM_LOG_RES, 1691 XFS_ITRUNCATE_LOG_COUNT); 1692 if (error) 1693 return error; 1694 } 1695 /* 1696 * Only update the size in the case of the data fork, but 1697 * always re-log the inode so that our permanent transaction 1698 * can keep on rolling it forward in the log. 1699 */ 1700 if (fork == XFS_DATA_FORK) { 1701 xfs_isize_check(mp, ip, new_size); 1702 /* 1703 * If we are not changing the file size then do 1704 * not update the on-disk file size - we may be 1705 * called from xfs_inactive_free_eofblocks(). If we 1706 * update the on-disk file size and then the system 1707 * crashes before the contents of the file are 1708 * flushed to disk then the files may be full of 1709 * holes (ie NULL files bug). 1710 */ 1711 if (ip->i_size != new_size) { 1712 ip->i_d.di_size = new_size; 1713 ip->i_size = new_size; 1714 } 1715 } 1716 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); 1717 ASSERT((new_size != 0) || 1718 (fork == XFS_ATTR_FORK) || 1719 (ip->i_delayed_blks == 0)); 1720 ASSERT((new_size != 0) || 1721 (fork == XFS_ATTR_FORK) || 1722 (ip->i_d.di_nextents == 0)); 1723 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); 1724 return 0; 1725 } 1726 1727 /* 1728 * This is called when the inode's link count goes to 0. 1729 * We place the on-disk inode on a list in the AGI. It 1730 * will be pulled from this list when the inode is freed. 1731 */ 1732 int 1733 xfs_iunlink( 1734 xfs_trans_t *tp, 1735 xfs_inode_t *ip) 1736 { 1737 xfs_mount_t *mp; 1738 xfs_agi_t *agi; 1739 xfs_dinode_t *dip; 1740 xfs_buf_t *agibp; 1741 xfs_buf_t *ibp; 1742 xfs_agino_t agino; 1743 short bucket_index; 1744 int offset; 1745 int error; 1746 1747 ASSERT(ip->i_d.di_nlink == 0); 1748 ASSERT(ip->i_d.di_mode != 0); 1749 ASSERT(ip->i_transp == tp); 1750 1751 mp = tp->t_mountp; 1752 1753 /* 1754 * Get the agi buffer first. It ensures lock ordering 1755 * on the list. 1756 */ 1757 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1758 if (error) 1759 return error; 1760 agi = XFS_BUF_TO_AGI(agibp); 1761 1762 /* 1763 * Get the index into the agi hash table for the 1764 * list this inode will go on. 1765 */ 1766 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1767 ASSERT(agino != 0); 1768 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1769 ASSERT(agi->agi_unlinked[bucket_index]); 1770 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1771 1772 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { 1773 /* 1774 * There is already another inode in the bucket we need 1775 * to add ourselves to. Add us at the front of the list. 1776 * Here we put the head pointer into our next pointer, 1777 * and then we fall through to point the head at us. 1778 */ 1779 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1780 if (error) 1781 return error; 1782 1783 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO); 1784 /* both on-disk, don't endian flip twice */ 1785 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1786 offset = ip->i_imap.im_boffset + 1787 offsetof(xfs_dinode_t, di_next_unlinked); 1788 xfs_trans_inode_buf(tp, ibp); 1789 xfs_trans_log_buf(tp, ibp, offset, 1790 (offset + sizeof(xfs_agino_t) - 1)); 1791 xfs_inobp_check(mp, ibp); 1792 } 1793 1794 /* 1795 * Point the bucket head pointer at the inode being inserted. 1796 */ 1797 ASSERT(agino != 0); 1798 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1799 offset = offsetof(xfs_agi_t, agi_unlinked) + 1800 (sizeof(xfs_agino_t) * bucket_index); 1801 xfs_trans_log_buf(tp, agibp, offset, 1802 (offset + sizeof(xfs_agino_t) - 1)); 1803 return 0; 1804 } 1805 1806 /* 1807 * Pull the on-disk inode from the AGI unlinked list. 1808 */ 1809 STATIC int 1810 xfs_iunlink_remove( 1811 xfs_trans_t *tp, 1812 xfs_inode_t *ip) 1813 { 1814 xfs_ino_t next_ino; 1815 xfs_mount_t *mp; 1816 xfs_agi_t *agi; 1817 xfs_dinode_t *dip; 1818 xfs_buf_t *agibp; 1819 xfs_buf_t *ibp; 1820 xfs_agnumber_t agno; 1821 xfs_agino_t agino; 1822 xfs_agino_t next_agino; 1823 xfs_buf_t *last_ibp; 1824 xfs_dinode_t *last_dip = NULL; 1825 short bucket_index; 1826 int offset, last_offset = 0; 1827 int error; 1828 1829 mp = tp->t_mountp; 1830 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1831 1832 /* 1833 * Get the agi buffer first. It ensures lock ordering 1834 * on the list. 1835 */ 1836 error = xfs_read_agi(mp, tp, agno, &agibp); 1837 if (error) 1838 return error; 1839 1840 agi = XFS_BUF_TO_AGI(agibp); 1841 1842 /* 1843 * Get the index into the agi hash table for the 1844 * list this inode will go on. 1845 */ 1846 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1847 ASSERT(agino != 0); 1848 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1849 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); 1850 ASSERT(agi->agi_unlinked[bucket_index]); 1851 1852 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1853 /* 1854 * We're at the head of the list. Get the inode's 1855 * on-disk buffer to see if there is anyone after us 1856 * on the list. Only modify our next pointer if it 1857 * is not already NULLAGINO. This saves us the overhead 1858 * of dealing with the buffer when there is no need to 1859 * change it. 1860 */ 1861 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1862 if (error) { 1863 cmn_err(CE_WARN, 1864 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1865 error, mp->m_fsname); 1866 return error; 1867 } 1868 next_agino = be32_to_cpu(dip->di_next_unlinked); 1869 ASSERT(next_agino != 0); 1870 if (next_agino != NULLAGINO) { 1871 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1872 offset = ip->i_imap.im_boffset + 1873 offsetof(xfs_dinode_t, di_next_unlinked); 1874 xfs_trans_inode_buf(tp, ibp); 1875 xfs_trans_log_buf(tp, ibp, offset, 1876 (offset + sizeof(xfs_agino_t) - 1)); 1877 xfs_inobp_check(mp, ibp); 1878 } else { 1879 xfs_trans_brelse(tp, ibp); 1880 } 1881 /* 1882 * Point the bucket head pointer at the next inode. 1883 */ 1884 ASSERT(next_agino != 0); 1885 ASSERT(next_agino != agino); 1886 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1887 offset = offsetof(xfs_agi_t, agi_unlinked) + 1888 (sizeof(xfs_agino_t) * bucket_index); 1889 xfs_trans_log_buf(tp, agibp, offset, 1890 (offset + sizeof(xfs_agino_t) - 1)); 1891 } else { 1892 /* 1893 * We need to search the list for the inode being freed. 1894 */ 1895 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1896 last_ibp = NULL; 1897 while (next_agino != agino) { 1898 /* 1899 * If the last inode wasn't the one pointing to 1900 * us, then release its buffer since we're not 1901 * going to do anything with it. 1902 */ 1903 if (last_ibp != NULL) { 1904 xfs_trans_brelse(tp, last_ibp); 1905 } 1906 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1907 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1908 &last_ibp, &last_offset, 0); 1909 if (error) { 1910 cmn_err(CE_WARN, 1911 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", 1912 error, mp->m_fsname); 1913 return error; 1914 } 1915 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1916 ASSERT(next_agino != NULLAGINO); 1917 ASSERT(next_agino != 0); 1918 } 1919 /* 1920 * Now last_ibp points to the buffer previous to us on 1921 * the unlinked list. Pull us from the list. 1922 */ 1923 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 1924 if (error) { 1925 cmn_err(CE_WARN, 1926 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", 1927 error, mp->m_fsname); 1928 return error; 1929 } 1930 next_agino = be32_to_cpu(dip->di_next_unlinked); 1931 ASSERT(next_agino != 0); 1932 ASSERT(next_agino != agino); 1933 if (next_agino != NULLAGINO) { 1934 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1935 offset = ip->i_imap.im_boffset + 1936 offsetof(xfs_dinode_t, di_next_unlinked); 1937 xfs_trans_inode_buf(tp, ibp); 1938 xfs_trans_log_buf(tp, ibp, offset, 1939 (offset + sizeof(xfs_agino_t) - 1)); 1940 xfs_inobp_check(mp, ibp); 1941 } else { 1942 xfs_trans_brelse(tp, ibp); 1943 } 1944 /* 1945 * Point the previous inode on the list to the next inode. 1946 */ 1947 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1948 ASSERT(next_agino != 0); 1949 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1950 xfs_trans_inode_buf(tp, last_ibp); 1951 xfs_trans_log_buf(tp, last_ibp, offset, 1952 (offset + sizeof(xfs_agino_t) - 1)); 1953 xfs_inobp_check(mp, last_ibp); 1954 } 1955 return 0; 1956 } 1957 1958 STATIC void 1959 xfs_ifree_cluster( 1960 xfs_inode_t *free_ip, 1961 xfs_trans_t *tp, 1962 xfs_ino_t inum) 1963 { 1964 xfs_mount_t *mp = free_ip->i_mount; 1965 int blks_per_cluster; 1966 int nbufs; 1967 int ninodes; 1968 int i, j, found, pre_flushed; 1969 xfs_daddr_t blkno; 1970 xfs_buf_t *bp; 1971 xfs_inode_t *ip, **ip_found; 1972 xfs_inode_log_item_t *iip; 1973 xfs_log_item_t *lip; 1974 xfs_perag_t *pag = xfs_get_perag(mp, inum); 1975 1976 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1977 blks_per_cluster = 1; 1978 ninodes = mp->m_sb.sb_inopblock; 1979 nbufs = XFS_IALLOC_BLOCKS(mp); 1980 } else { 1981 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1982 mp->m_sb.sb_blocksize; 1983 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1984 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1985 } 1986 1987 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); 1988 1989 for (j = 0; j < nbufs; j++, inum += ninodes) { 1990 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1991 XFS_INO_TO_AGBNO(mp, inum)); 1992 1993 1994 /* 1995 * Look for each inode in memory and attempt to lock it, 1996 * we can be racing with flush and tail pushing here. 1997 * any inode we get the locks on, add to an array of 1998 * inode items to process later. 1999 * 2000 * The get the buffer lock, we could beat a flush 2001 * or tail pushing thread to the lock here, in which 2002 * case they will go looking for the inode buffer 2003 * and fail, we need some other form of interlock 2004 * here. 2005 */ 2006 found = 0; 2007 for (i = 0; i < ninodes; i++) { 2008 read_lock(&pag->pag_ici_lock); 2009 ip = radix_tree_lookup(&pag->pag_ici_root, 2010 XFS_INO_TO_AGINO(mp, (inum + i))); 2011 2012 /* Inode not in memory or we found it already, 2013 * nothing to do 2014 */ 2015 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) { 2016 read_unlock(&pag->pag_ici_lock); 2017 continue; 2018 } 2019 2020 if (xfs_inode_clean(ip)) { 2021 read_unlock(&pag->pag_ici_lock); 2022 continue; 2023 } 2024 2025 /* If we can get the locks then add it to the 2026 * list, otherwise by the time we get the bp lock 2027 * below it will already be attached to the 2028 * inode buffer. 2029 */ 2030 2031 /* This inode will already be locked - by us, lets 2032 * keep it that way. 2033 */ 2034 2035 if (ip == free_ip) { 2036 if (xfs_iflock_nowait(ip)) { 2037 xfs_iflags_set(ip, XFS_ISTALE); 2038 if (xfs_inode_clean(ip)) { 2039 xfs_ifunlock(ip); 2040 } else { 2041 ip_found[found++] = ip; 2042 } 2043 } 2044 read_unlock(&pag->pag_ici_lock); 2045 continue; 2046 } 2047 2048 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2049 if (xfs_iflock_nowait(ip)) { 2050 xfs_iflags_set(ip, XFS_ISTALE); 2051 2052 if (xfs_inode_clean(ip)) { 2053 xfs_ifunlock(ip); 2054 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2055 } else { 2056 ip_found[found++] = ip; 2057 } 2058 } else { 2059 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2060 } 2061 } 2062 read_unlock(&pag->pag_ici_lock); 2063 } 2064 2065 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2066 mp->m_bsize * blks_per_cluster, 2067 XFS_BUF_LOCK); 2068 2069 pre_flushed = 0; 2070 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 2071 while (lip) { 2072 if (lip->li_type == XFS_LI_INODE) { 2073 iip = (xfs_inode_log_item_t *)lip; 2074 ASSERT(iip->ili_logged == 1); 2075 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; 2076 xfs_trans_ail_copy_lsn(mp->m_ail, 2077 &iip->ili_flush_lsn, 2078 &iip->ili_item.li_lsn); 2079 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2080 pre_flushed++; 2081 } 2082 lip = lip->li_bio_list; 2083 } 2084 2085 for (i = 0; i < found; i++) { 2086 ip = ip_found[i]; 2087 iip = ip->i_itemp; 2088 2089 if (!iip) { 2090 ip->i_update_core = 0; 2091 xfs_ifunlock(ip); 2092 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2093 continue; 2094 } 2095 2096 iip->ili_last_fields = iip->ili_format.ilf_fields; 2097 iip->ili_format.ilf_fields = 0; 2098 iip->ili_logged = 1; 2099 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2100 &iip->ili_item.li_lsn); 2101 2102 xfs_buf_attach_iodone(bp, 2103 (void(*)(xfs_buf_t*,xfs_log_item_t*)) 2104 xfs_istale_done, (xfs_log_item_t *)iip); 2105 if (ip != free_ip) { 2106 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2107 } 2108 } 2109 2110 if (found || pre_flushed) 2111 xfs_trans_stale_inode_buf(tp, bp); 2112 xfs_trans_binval(tp, bp); 2113 } 2114 2115 kmem_free(ip_found); 2116 xfs_put_perag(mp, pag); 2117 } 2118 2119 /* 2120 * This is called to return an inode to the inode free list. 2121 * The inode should already be truncated to 0 length and have 2122 * no pages associated with it. This routine also assumes that 2123 * the inode is already a part of the transaction. 2124 * 2125 * The on-disk copy of the inode will have been added to the list 2126 * of unlinked inodes in the AGI. We need to remove the inode from 2127 * that list atomically with respect to freeing it here. 2128 */ 2129 int 2130 xfs_ifree( 2131 xfs_trans_t *tp, 2132 xfs_inode_t *ip, 2133 xfs_bmap_free_t *flist) 2134 { 2135 int error; 2136 int delete; 2137 xfs_ino_t first_ino; 2138 xfs_dinode_t *dip; 2139 xfs_buf_t *ibp; 2140 2141 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2142 ASSERT(ip->i_transp == tp); 2143 ASSERT(ip->i_d.di_nlink == 0); 2144 ASSERT(ip->i_d.di_nextents == 0); 2145 ASSERT(ip->i_d.di_anextents == 0); 2146 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) || 2147 ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); 2148 ASSERT(ip->i_d.di_nblocks == 0); 2149 2150 /* 2151 * Pull the on-disk inode from the AGI unlinked list. 2152 */ 2153 error = xfs_iunlink_remove(tp, ip); 2154 if (error != 0) { 2155 return error; 2156 } 2157 2158 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2159 if (error != 0) { 2160 return error; 2161 } 2162 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2163 ip->i_d.di_flags = 0; 2164 ip->i_d.di_dmevmask = 0; 2165 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2166 ip->i_df.if_ext_max = 2167 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); 2168 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2169 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2170 /* 2171 * Bump the generation count so no one will be confused 2172 * by reincarnations of this inode. 2173 */ 2174 ip->i_d.di_gen++; 2175 2176 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2177 2178 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK); 2179 if (error) 2180 return error; 2181 2182 /* 2183 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 2184 * from picking up this inode when it is reclaimed (its incore state 2185 * initialzed but not flushed to disk yet). The in-core di_mode is 2186 * already cleared and a corresponding transaction logged. 2187 * The hack here just synchronizes the in-core to on-disk 2188 * di_mode value in advance before the actual inode sync to disk. 2189 * This is OK because the inode is already unlinked and would never 2190 * change its di_mode again for this inode generation. 2191 * This is a temporary hack that would require a proper fix 2192 * in the future. 2193 */ 2194 dip->di_mode = 0; 2195 2196 if (delete) { 2197 xfs_ifree_cluster(ip, tp, first_ino); 2198 } 2199 2200 return 0; 2201 } 2202 2203 /* 2204 * Reallocate the space for if_broot based on the number of records 2205 * being added or deleted as indicated in rec_diff. Move the records 2206 * and pointers in if_broot to fit the new size. When shrinking this 2207 * will eliminate holes between the records and pointers created by 2208 * the caller. When growing this will create holes to be filled in 2209 * by the caller. 2210 * 2211 * The caller must not request to add more records than would fit in 2212 * the on-disk inode root. If the if_broot is currently NULL, then 2213 * if we adding records one will be allocated. The caller must also 2214 * not request that the number of records go below zero, although 2215 * it can go to zero. 2216 * 2217 * ip -- the inode whose if_broot area is changing 2218 * ext_diff -- the change in the number of records, positive or negative, 2219 * requested for the if_broot array. 2220 */ 2221 void 2222 xfs_iroot_realloc( 2223 xfs_inode_t *ip, 2224 int rec_diff, 2225 int whichfork) 2226 { 2227 struct xfs_mount *mp = ip->i_mount; 2228 int cur_max; 2229 xfs_ifork_t *ifp; 2230 struct xfs_btree_block *new_broot; 2231 int new_max; 2232 size_t new_size; 2233 char *np; 2234 char *op; 2235 2236 /* 2237 * Handle the degenerate case quietly. 2238 */ 2239 if (rec_diff == 0) { 2240 return; 2241 } 2242 2243 ifp = XFS_IFORK_PTR(ip, whichfork); 2244 if (rec_diff > 0) { 2245 /* 2246 * If there wasn't any memory allocated before, just 2247 * allocate it now and get out. 2248 */ 2249 if (ifp->if_broot_bytes == 0) { 2250 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 2251 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP); 2252 ifp->if_broot_bytes = (int)new_size; 2253 return; 2254 } 2255 2256 /* 2257 * If there is already an existing if_broot, then we need 2258 * to realloc() it and shift the pointers to their new 2259 * location. The records don't change location because 2260 * they are kept butted up against the btree block header. 2261 */ 2262 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2263 new_max = cur_max + rec_diff; 2264 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2265 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 2266 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 2267 KM_SLEEP); 2268 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2269 ifp->if_broot_bytes); 2270 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2271 (int)new_size); 2272 ifp->if_broot_bytes = (int)new_size; 2273 ASSERT(ifp->if_broot_bytes <= 2274 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2275 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 2276 return; 2277 } 2278 2279 /* 2280 * rec_diff is less than 0. In this case, we are shrinking the 2281 * if_broot buffer. It must already exist. If we go to zero 2282 * records, just get rid of the root and clear the status bit. 2283 */ 2284 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 2285 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 2286 new_max = cur_max + rec_diff; 2287 ASSERT(new_max >= 0); 2288 if (new_max > 0) 2289 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 2290 else 2291 new_size = 0; 2292 if (new_size > 0) { 2293 new_broot = kmem_alloc(new_size, KM_SLEEP); 2294 /* 2295 * First copy over the btree block header. 2296 */ 2297 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 2298 } else { 2299 new_broot = NULL; 2300 ifp->if_flags &= ~XFS_IFBROOT; 2301 } 2302 2303 /* 2304 * Only copy the records and pointers if there are any. 2305 */ 2306 if (new_max > 0) { 2307 /* 2308 * First copy the records. 2309 */ 2310 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 2311 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 2312 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 2313 2314 /* 2315 * Then copy the pointers. 2316 */ 2317 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 2318 ifp->if_broot_bytes); 2319 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 2320 (int)new_size); 2321 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 2322 } 2323 kmem_free(ifp->if_broot); 2324 ifp->if_broot = new_broot; 2325 ifp->if_broot_bytes = (int)new_size; 2326 ASSERT(ifp->if_broot_bytes <= 2327 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 2328 return; 2329 } 2330 2331 2332 /* 2333 * This is called when the amount of space needed for if_data 2334 * is increased or decreased. The change in size is indicated by 2335 * the number of bytes that need to be added or deleted in the 2336 * byte_diff parameter. 2337 * 2338 * If the amount of space needed has decreased below the size of the 2339 * inline buffer, then switch to using the inline buffer. Otherwise, 2340 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 2341 * to what is needed. 2342 * 2343 * ip -- the inode whose if_data area is changing 2344 * byte_diff -- the change in the number of bytes, positive or negative, 2345 * requested for the if_data array. 2346 */ 2347 void 2348 xfs_idata_realloc( 2349 xfs_inode_t *ip, 2350 int byte_diff, 2351 int whichfork) 2352 { 2353 xfs_ifork_t *ifp; 2354 int new_size; 2355 int real_size; 2356 2357 if (byte_diff == 0) { 2358 return; 2359 } 2360 2361 ifp = XFS_IFORK_PTR(ip, whichfork); 2362 new_size = (int)ifp->if_bytes + byte_diff; 2363 ASSERT(new_size >= 0); 2364 2365 if (new_size == 0) { 2366 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2367 kmem_free(ifp->if_u1.if_data); 2368 } 2369 ifp->if_u1.if_data = NULL; 2370 real_size = 0; 2371 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 2372 /* 2373 * If the valid extents/data can fit in if_inline_ext/data, 2374 * copy them from the malloc'd vector and free it. 2375 */ 2376 if (ifp->if_u1.if_data == NULL) { 2377 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2378 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2379 ASSERT(ifp->if_real_bytes != 0); 2380 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 2381 new_size); 2382 kmem_free(ifp->if_u1.if_data); 2383 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 2384 } 2385 real_size = 0; 2386 } else { 2387 /* 2388 * Stuck with malloc/realloc. 2389 * For inline data, the underlying buffer must be 2390 * a multiple of 4 bytes in size so that it can be 2391 * logged and stay on word boundaries. We enforce 2392 * that here. 2393 */ 2394 real_size = roundup(new_size, 4); 2395 if (ifp->if_u1.if_data == NULL) { 2396 ASSERT(ifp->if_real_bytes == 0); 2397 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2398 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 2399 /* 2400 * Only do the realloc if the underlying size 2401 * is really changing. 2402 */ 2403 if (ifp->if_real_bytes != real_size) { 2404 ifp->if_u1.if_data = 2405 kmem_realloc(ifp->if_u1.if_data, 2406 real_size, 2407 ifp->if_real_bytes, 2408 KM_SLEEP); 2409 } 2410 } else { 2411 ASSERT(ifp->if_real_bytes == 0); 2412 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); 2413 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 2414 ifp->if_bytes); 2415 } 2416 } 2417 ifp->if_real_bytes = real_size; 2418 ifp->if_bytes = new_size; 2419 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2420 } 2421 2422 void 2423 xfs_idestroy_fork( 2424 xfs_inode_t *ip, 2425 int whichfork) 2426 { 2427 xfs_ifork_t *ifp; 2428 2429 ifp = XFS_IFORK_PTR(ip, whichfork); 2430 if (ifp->if_broot != NULL) { 2431 kmem_free(ifp->if_broot); 2432 ifp->if_broot = NULL; 2433 } 2434 2435 /* 2436 * If the format is local, then we can't have an extents 2437 * array so just look for an inline data array. If we're 2438 * not local then we may or may not have an extents list, 2439 * so check and free it up if we do. 2440 */ 2441 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2442 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2443 (ifp->if_u1.if_data != NULL)) { 2444 ASSERT(ifp->if_real_bytes != 0); 2445 kmem_free(ifp->if_u1.if_data); 2446 ifp->if_u1.if_data = NULL; 2447 ifp->if_real_bytes = 0; 2448 } 2449 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2450 ((ifp->if_flags & XFS_IFEXTIREC) || 2451 ((ifp->if_u1.if_extents != NULL) && 2452 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2453 ASSERT(ifp->if_real_bytes != 0); 2454 xfs_iext_destroy(ifp); 2455 } 2456 ASSERT(ifp->if_u1.if_extents == NULL || 2457 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2458 ASSERT(ifp->if_real_bytes == 0); 2459 if (whichfork == XFS_ATTR_FORK) { 2460 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2461 ip->i_afp = NULL; 2462 } 2463 } 2464 2465 /* 2466 * Increment the pin count of the given buffer. 2467 * This value is protected by ipinlock spinlock in the mount structure. 2468 */ 2469 void 2470 xfs_ipin( 2471 xfs_inode_t *ip) 2472 { 2473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2474 2475 atomic_inc(&ip->i_pincount); 2476 } 2477 2478 /* 2479 * Decrement the pin count of the given inode, and wake up 2480 * anyone in xfs_iwait_unpin() if the count goes to 0. The 2481 * inode must have been previously pinned with a call to xfs_ipin(). 2482 */ 2483 void 2484 xfs_iunpin( 2485 xfs_inode_t *ip) 2486 { 2487 ASSERT(atomic_read(&ip->i_pincount) > 0); 2488 2489 if (atomic_dec_and_test(&ip->i_pincount)) 2490 wake_up(&ip->i_ipin_wait); 2491 } 2492 2493 /* 2494 * This is called to unpin an inode. It can be directed to wait or to return 2495 * immediately without waiting for the inode to be unpinned. The caller must 2496 * have the inode locked in at least shared mode so that the buffer cannot be 2497 * subsequently pinned once someone is waiting for it to be unpinned. 2498 */ 2499 STATIC void 2500 __xfs_iunpin_wait( 2501 xfs_inode_t *ip, 2502 int wait) 2503 { 2504 xfs_inode_log_item_t *iip = ip->i_itemp; 2505 2506 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2507 if (atomic_read(&ip->i_pincount) == 0) 2508 return; 2509 2510 /* Give the log a push to start the unpinning I/O */ 2511 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ? 2512 iip->ili_last_lsn : 0, XFS_LOG_FORCE); 2513 if (wait) 2514 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); 2515 } 2516 2517 static inline void 2518 xfs_iunpin_wait( 2519 xfs_inode_t *ip) 2520 { 2521 __xfs_iunpin_wait(ip, 1); 2522 } 2523 2524 static inline void 2525 xfs_iunpin_nowait( 2526 xfs_inode_t *ip) 2527 { 2528 __xfs_iunpin_wait(ip, 0); 2529 } 2530 2531 2532 /* 2533 * xfs_iextents_copy() 2534 * 2535 * This is called to copy the REAL extents (as opposed to the delayed 2536 * allocation extents) from the inode into the given buffer. It 2537 * returns the number of bytes copied into the buffer. 2538 * 2539 * If there are no delayed allocation extents, then we can just 2540 * memcpy() the extents into the buffer. Otherwise, we need to 2541 * examine each extent in turn and skip those which are delayed. 2542 */ 2543 int 2544 xfs_iextents_copy( 2545 xfs_inode_t *ip, 2546 xfs_bmbt_rec_t *dp, 2547 int whichfork) 2548 { 2549 int copied; 2550 int i; 2551 xfs_ifork_t *ifp; 2552 int nrecs; 2553 xfs_fsblock_t start_block; 2554 2555 ifp = XFS_IFORK_PTR(ip, whichfork); 2556 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2557 ASSERT(ifp->if_bytes > 0); 2558 2559 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2560 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2561 ASSERT(nrecs > 0); 2562 2563 /* 2564 * There are some delayed allocation extents in the 2565 * inode, so copy the extents one at a time and skip 2566 * the delayed ones. There must be at least one 2567 * non-delayed extent. 2568 */ 2569 copied = 0; 2570 for (i = 0; i < nrecs; i++) { 2571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2572 start_block = xfs_bmbt_get_startblock(ep); 2573 if (isnullstartblock(start_block)) { 2574 /* 2575 * It's a delayed allocation extent, so skip it. 2576 */ 2577 continue; 2578 } 2579 2580 /* Translate to on disk format */ 2581 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2582 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2583 dp++; 2584 copied++; 2585 } 2586 ASSERT(copied != 0); 2587 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2588 2589 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2590 } 2591 2592 /* 2593 * Each of the following cases stores data into the same region 2594 * of the on-disk inode, so only one of them can be valid at 2595 * any given time. While it is possible to have conflicting formats 2596 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2597 * in EXTENTS format, this can only happen when the fork has 2598 * changed formats after being modified but before being flushed. 2599 * In these cases, the format always takes precedence, because the 2600 * format indicates the current state of the fork. 2601 */ 2602 /*ARGSUSED*/ 2603 STATIC void 2604 xfs_iflush_fork( 2605 xfs_inode_t *ip, 2606 xfs_dinode_t *dip, 2607 xfs_inode_log_item_t *iip, 2608 int whichfork, 2609 xfs_buf_t *bp) 2610 { 2611 char *cp; 2612 xfs_ifork_t *ifp; 2613 xfs_mount_t *mp; 2614 #ifdef XFS_TRANS_DEBUG 2615 int first; 2616 #endif 2617 static const short brootflag[2] = 2618 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2619 static const short dataflag[2] = 2620 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2621 static const short extflag[2] = 2622 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2623 2624 if (!iip) 2625 return; 2626 ifp = XFS_IFORK_PTR(ip, whichfork); 2627 /* 2628 * This can happen if we gave up in iformat in an error path, 2629 * for the attribute fork. 2630 */ 2631 if (!ifp) { 2632 ASSERT(whichfork == XFS_ATTR_FORK); 2633 return; 2634 } 2635 cp = XFS_DFORK_PTR(dip, whichfork); 2636 mp = ip->i_mount; 2637 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2638 case XFS_DINODE_FMT_LOCAL: 2639 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && 2640 (ifp->if_bytes > 0)) { 2641 ASSERT(ifp->if_u1.if_data != NULL); 2642 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2643 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2644 } 2645 break; 2646 2647 case XFS_DINODE_FMT_EXTENTS: 2648 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2649 !(iip->ili_format.ilf_fields & extflag[whichfork])); 2650 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || 2651 (ifp->if_bytes == 0)); 2652 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || 2653 (ifp->if_bytes > 0)); 2654 if ((iip->ili_format.ilf_fields & extflag[whichfork]) && 2655 (ifp->if_bytes > 0)) { 2656 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2657 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2658 whichfork); 2659 } 2660 break; 2661 2662 case XFS_DINODE_FMT_BTREE: 2663 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && 2664 (ifp->if_broot_bytes > 0)) { 2665 ASSERT(ifp->if_broot != NULL); 2666 ASSERT(ifp->if_broot_bytes <= 2667 (XFS_IFORK_SIZE(ip, whichfork) + 2668 XFS_BROOT_SIZE_ADJ)); 2669 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2670 (xfs_bmdr_block_t *)cp, 2671 XFS_DFORK_SIZE(dip, mp, whichfork)); 2672 } 2673 break; 2674 2675 case XFS_DINODE_FMT_DEV: 2676 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { 2677 ASSERT(whichfork == XFS_DATA_FORK); 2678 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2679 } 2680 break; 2681 2682 case XFS_DINODE_FMT_UUID: 2683 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { 2684 ASSERT(whichfork == XFS_DATA_FORK); 2685 memcpy(XFS_DFORK_DPTR(dip), 2686 &ip->i_df.if_u2.if_uuid, 2687 sizeof(uuid_t)); 2688 } 2689 break; 2690 2691 default: 2692 ASSERT(0); 2693 break; 2694 } 2695 } 2696 2697 STATIC int 2698 xfs_iflush_cluster( 2699 xfs_inode_t *ip, 2700 xfs_buf_t *bp) 2701 { 2702 xfs_mount_t *mp = ip->i_mount; 2703 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino); 2704 unsigned long first_index, mask; 2705 unsigned long inodes_per_cluster; 2706 int ilist_size; 2707 xfs_inode_t **ilist; 2708 xfs_inode_t *iq; 2709 int nr_found; 2710 int clcount = 0; 2711 int bufwasdelwri; 2712 int i; 2713 2714 ASSERT(pag->pagi_inodeok); 2715 ASSERT(pag->pag_ici_init); 2716 2717 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2718 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2719 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2720 if (!ilist) 2721 return 0; 2722 2723 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2724 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2725 read_lock(&pag->pag_ici_lock); 2726 /* really need a gang lookup range call here */ 2727 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2728 first_index, inodes_per_cluster); 2729 if (nr_found == 0) 2730 goto out_free; 2731 2732 for (i = 0; i < nr_found; i++) { 2733 iq = ilist[i]; 2734 if (iq == ip) 2735 continue; 2736 /* if the inode lies outside this cluster, we're done. */ 2737 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) 2738 break; 2739 /* 2740 * Do an un-protected check to see if the inode is dirty and 2741 * is a candidate for flushing. These checks will be repeated 2742 * later after the appropriate locks are acquired. 2743 */ 2744 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2745 continue; 2746 2747 /* 2748 * Try to get locks. If any are unavailable or it is pinned, 2749 * then this inode cannot be flushed and is skipped. 2750 */ 2751 2752 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2753 continue; 2754 if (!xfs_iflock_nowait(iq)) { 2755 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2756 continue; 2757 } 2758 if (xfs_ipincount(iq)) { 2759 xfs_ifunlock(iq); 2760 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2761 continue; 2762 } 2763 2764 /* 2765 * arriving here means that this inode can be flushed. First 2766 * re-check that it's dirty before flushing. 2767 */ 2768 if (!xfs_inode_clean(iq)) { 2769 int error; 2770 error = xfs_iflush_int(iq, bp); 2771 if (error) { 2772 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2773 goto cluster_corrupt_out; 2774 } 2775 clcount++; 2776 } else { 2777 xfs_ifunlock(iq); 2778 } 2779 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2780 } 2781 2782 if (clcount) { 2783 XFS_STATS_INC(xs_icluster_flushcnt); 2784 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2785 } 2786 2787 out_free: 2788 read_unlock(&pag->pag_ici_lock); 2789 kmem_free(ilist); 2790 return 0; 2791 2792 2793 cluster_corrupt_out: 2794 /* 2795 * Corruption detected in the clustering loop. Invalidate the 2796 * inode buffer and shut down the filesystem. 2797 */ 2798 read_unlock(&pag->pag_ici_lock); 2799 /* 2800 * Clean up the buffer. If it was B_DELWRI, just release it -- 2801 * brelse can handle it with no problems. If not, shut down the 2802 * filesystem before releasing the buffer. 2803 */ 2804 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2805 if (bufwasdelwri) 2806 xfs_buf_relse(bp); 2807 2808 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2809 2810 if (!bufwasdelwri) { 2811 /* 2812 * Just like incore_relse: if we have b_iodone functions, 2813 * mark the buffer as an error and call them. Otherwise 2814 * mark it as stale and brelse. 2815 */ 2816 if (XFS_BUF_IODONE_FUNC(bp)) { 2817 XFS_BUF_CLR_BDSTRAT_FUNC(bp); 2818 XFS_BUF_UNDONE(bp); 2819 XFS_BUF_STALE(bp); 2820 XFS_BUF_ERROR(bp,EIO); 2821 xfs_biodone(bp); 2822 } else { 2823 XFS_BUF_STALE(bp); 2824 xfs_buf_relse(bp); 2825 } 2826 } 2827 2828 /* 2829 * Unlocks the flush lock 2830 */ 2831 xfs_iflush_abort(iq); 2832 kmem_free(ilist); 2833 return XFS_ERROR(EFSCORRUPTED); 2834 } 2835 2836 /* 2837 * xfs_iflush() will write a modified inode's changes out to the 2838 * inode's on disk home. The caller must have the inode lock held 2839 * in at least shared mode and the inode flush completion must be 2840 * active as well. The inode lock will still be held upon return from 2841 * the call and the caller is free to unlock it. 2842 * The inode flush will be completed when the inode reaches the disk. 2843 * The flags indicate how the inode's buffer should be written out. 2844 */ 2845 int 2846 xfs_iflush( 2847 xfs_inode_t *ip, 2848 uint flags) 2849 { 2850 xfs_inode_log_item_t *iip; 2851 xfs_buf_t *bp; 2852 xfs_dinode_t *dip; 2853 xfs_mount_t *mp; 2854 int error; 2855 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK); 2856 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; 2857 2858 XFS_STATS_INC(xs_iflush_count); 2859 2860 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2861 ASSERT(!completion_done(&ip->i_flush)); 2862 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2863 ip->i_d.di_nextents > ip->i_df.if_ext_max); 2864 2865 iip = ip->i_itemp; 2866 mp = ip->i_mount; 2867 2868 /* 2869 * If the inode isn't dirty, then just release the inode 2870 * flush lock and do nothing. 2871 */ 2872 if (xfs_inode_clean(ip)) { 2873 xfs_ifunlock(ip); 2874 return 0; 2875 } 2876 2877 /* 2878 * We can't flush the inode until it is unpinned, so wait for it if we 2879 * are allowed to block. We know noone new can pin it, because we are 2880 * holding the inode lock shared and you need to hold it exclusively to 2881 * pin the inode. 2882 * 2883 * If we are not allowed to block, force the log out asynchronously so 2884 * that when we come back the inode will be unpinned. If other inodes 2885 * in the same cluster are dirty, they will probably write the inode 2886 * out for us if they occur after the log force completes. 2887 */ 2888 if (noblock && xfs_ipincount(ip)) { 2889 xfs_iunpin_nowait(ip); 2890 xfs_ifunlock(ip); 2891 return EAGAIN; 2892 } 2893 xfs_iunpin_wait(ip); 2894 2895 /* 2896 * This may have been unpinned because the filesystem is shutting 2897 * down forcibly. If that's the case we must not write this inode 2898 * to disk, because the log record didn't make it to disk! 2899 */ 2900 if (XFS_FORCED_SHUTDOWN(mp)) { 2901 ip->i_update_core = 0; 2902 if (iip) 2903 iip->ili_format.ilf_fields = 0; 2904 xfs_ifunlock(ip); 2905 return XFS_ERROR(EIO); 2906 } 2907 2908 /* 2909 * Decide how buffer will be flushed out. This is done before 2910 * the call to xfs_iflush_int because this field is zeroed by it. 2911 */ 2912 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 2913 /* 2914 * Flush out the inode buffer according to the directions 2915 * of the caller. In the cases where the caller has given 2916 * us a choice choose the non-delwri case. This is because 2917 * the inode is in the AIL and we need to get it out soon. 2918 */ 2919 switch (flags) { 2920 case XFS_IFLUSH_SYNC: 2921 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 2922 flags = 0; 2923 break; 2924 case XFS_IFLUSH_ASYNC_NOBLOCK: 2925 case XFS_IFLUSH_ASYNC: 2926 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 2927 flags = INT_ASYNC; 2928 break; 2929 case XFS_IFLUSH_DELWRI: 2930 flags = INT_DELWRI; 2931 break; 2932 default: 2933 ASSERT(0); 2934 flags = 0; 2935 break; 2936 } 2937 } else { 2938 switch (flags) { 2939 case XFS_IFLUSH_DELWRI_ELSE_SYNC: 2940 case XFS_IFLUSH_DELWRI_ELSE_ASYNC: 2941 case XFS_IFLUSH_DELWRI: 2942 flags = INT_DELWRI; 2943 break; 2944 case XFS_IFLUSH_ASYNC_NOBLOCK: 2945 case XFS_IFLUSH_ASYNC: 2946 flags = INT_ASYNC; 2947 break; 2948 case XFS_IFLUSH_SYNC: 2949 flags = 0; 2950 break; 2951 default: 2952 ASSERT(0); 2953 flags = 0; 2954 break; 2955 } 2956 } 2957 2958 /* 2959 * Get the buffer containing the on-disk inode. 2960 */ 2961 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2962 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK); 2963 if (error || !bp) { 2964 xfs_ifunlock(ip); 2965 return error; 2966 } 2967 2968 /* 2969 * First flush out the inode that xfs_iflush was called with. 2970 */ 2971 error = xfs_iflush_int(ip, bp); 2972 if (error) 2973 goto corrupt_out; 2974 2975 /* 2976 * If the buffer is pinned then push on the log now so we won't 2977 * get stuck waiting in the write for too long. 2978 */ 2979 if (XFS_BUF_ISPINNED(bp)) 2980 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); 2981 2982 /* 2983 * inode clustering: 2984 * see if other inodes can be gathered into this write 2985 */ 2986 error = xfs_iflush_cluster(ip, bp); 2987 if (error) 2988 goto cluster_corrupt_out; 2989 2990 if (flags & INT_DELWRI) { 2991 xfs_bdwrite(mp, bp); 2992 } else if (flags & INT_ASYNC) { 2993 error = xfs_bawrite(mp, bp); 2994 } else { 2995 error = xfs_bwrite(mp, bp); 2996 } 2997 return error; 2998 2999 corrupt_out: 3000 xfs_buf_relse(bp); 3001 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3002 cluster_corrupt_out: 3003 /* 3004 * Unlocks the flush lock 3005 */ 3006 xfs_iflush_abort(ip); 3007 return XFS_ERROR(EFSCORRUPTED); 3008 } 3009 3010 3011 STATIC int 3012 xfs_iflush_int( 3013 xfs_inode_t *ip, 3014 xfs_buf_t *bp) 3015 { 3016 xfs_inode_log_item_t *iip; 3017 xfs_dinode_t *dip; 3018 xfs_mount_t *mp; 3019 #ifdef XFS_TRANS_DEBUG 3020 int first; 3021 #endif 3022 3023 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3024 ASSERT(!completion_done(&ip->i_flush)); 3025 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3026 ip->i_d.di_nextents > ip->i_df.if_ext_max); 3027 3028 iip = ip->i_itemp; 3029 mp = ip->i_mount; 3030 3031 3032 /* 3033 * If the inode isn't dirty, then just release the inode 3034 * flush lock and do nothing. 3035 */ 3036 if (xfs_inode_clean(ip)) { 3037 xfs_ifunlock(ip); 3038 return 0; 3039 } 3040 3041 /* set *dip = inode's place in the buffer */ 3042 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3043 3044 /* 3045 * Clear i_update_core before copying out the data. 3046 * This is for coordination with our timestamp updates 3047 * that don't hold the inode lock. They will always 3048 * update the timestamps BEFORE setting i_update_core, 3049 * so if we clear i_update_core after they set it we 3050 * are guaranteed to see their updates to the timestamps. 3051 * I believe that this depends on strongly ordered memory 3052 * semantics, but we have that. We use the SYNCHRONIZE 3053 * macro to make sure that the compiler does not reorder 3054 * the i_update_core access below the data copy below. 3055 */ 3056 ip->i_update_core = 0; 3057 SYNCHRONIZE(); 3058 3059 /* 3060 * Make sure to get the latest atime from the Linux inode. 3061 */ 3062 xfs_synchronize_atime(ip); 3063 3064 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC, 3065 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3066 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3067 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3068 ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3069 goto corrupt_out; 3070 } 3071 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3072 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3073 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3074 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3075 ip->i_ino, ip, ip->i_d.di_magic); 3076 goto corrupt_out; 3077 } 3078 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { 3079 if (XFS_TEST_ERROR( 3080 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3081 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3082 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3083 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3084 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", 3085 ip->i_ino, ip); 3086 goto corrupt_out; 3087 } 3088 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 3089 if (XFS_TEST_ERROR( 3090 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3091 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3092 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3093 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3094 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3095 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", 3096 ip->i_ino, ip); 3097 goto corrupt_out; 3098 } 3099 } 3100 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3101 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3102 XFS_RANDOM_IFLUSH_5)) { 3103 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3104 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", 3105 ip->i_ino, 3106 ip->i_d.di_nextents + ip->i_d.di_anextents, 3107 ip->i_d.di_nblocks, 3108 ip); 3109 goto corrupt_out; 3110 } 3111 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3112 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3113 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, 3114 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3115 ip->i_ino, ip->i_d.di_forkoff, ip); 3116 goto corrupt_out; 3117 } 3118 /* 3119 * bump the flush iteration count, used to detect flushes which 3120 * postdate a log record during recovery. 3121 */ 3122 3123 ip->i_d.di_flushiter++; 3124 3125 /* 3126 * Copy the dirty parts of the inode into the on-disk 3127 * inode. We always copy out the core of the inode, 3128 * because if the inode is dirty at all the core must 3129 * be. 3130 */ 3131 xfs_dinode_to_disk(dip, &ip->i_d); 3132 3133 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3134 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3135 ip->i_d.di_flushiter = 0; 3136 3137 /* 3138 * If this is really an old format inode and the superblock version 3139 * has not been updated to support only new format inodes, then 3140 * convert back to the old inode format. If the superblock version 3141 * has been updated, then make the conversion permanent. 3142 */ 3143 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3144 if (ip->i_d.di_version == 1) { 3145 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3146 /* 3147 * Convert it back. 3148 */ 3149 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3150 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3151 } else { 3152 /* 3153 * The superblock version has already been bumped, 3154 * so just make the conversion to the new inode 3155 * format permanent. 3156 */ 3157 ip->i_d.di_version = 2; 3158 dip->di_version = 2; 3159 ip->i_d.di_onlink = 0; 3160 dip->di_onlink = 0; 3161 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3162 memset(&(dip->di_pad[0]), 0, 3163 sizeof(dip->di_pad)); 3164 ASSERT(ip->i_d.di_projid == 0); 3165 } 3166 } 3167 3168 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3169 if (XFS_IFORK_Q(ip)) 3170 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3171 xfs_inobp_check(mp, bp); 3172 3173 /* 3174 * We've recorded everything logged in the inode, so we'd 3175 * like to clear the ilf_fields bits so we don't log and 3176 * flush things unnecessarily. However, we can't stop 3177 * logging all this information until the data we've copied 3178 * into the disk buffer is written to disk. If we did we might 3179 * overwrite the copy of the inode in the log with all the 3180 * data after re-logging only part of it, and in the face of 3181 * a crash we wouldn't have all the data we need to recover. 3182 * 3183 * What we do is move the bits to the ili_last_fields field. 3184 * When logging the inode, these bits are moved back to the 3185 * ilf_fields field. In the xfs_iflush_done() routine we 3186 * clear ili_last_fields, since we know that the information 3187 * those bits represent is permanently on disk. As long as 3188 * the flush completes before the inode is logged again, then 3189 * both ilf_fields and ili_last_fields will be cleared. 3190 * 3191 * We can play with the ilf_fields bits here, because the inode 3192 * lock must be held exclusively in order to set bits there 3193 * and the flush lock protects the ili_last_fields bits. 3194 * Set ili_logged so the flush done 3195 * routine can tell whether or not to look in the AIL. 3196 * Also, store the current LSN of the inode so that we can tell 3197 * whether the item has moved in the AIL from xfs_iflush_done(). 3198 * In order to read the lsn we need the AIL lock, because 3199 * it is a 64 bit value that cannot be read atomically. 3200 */ 3201 if (iip != NULL && iip->ili_format.ilf_fields != 0) { 3202 iip->ili_last_fields = iip->ili_format.ilf_fields; 3203 iip->ili_format.ilf_fields = 0; 3204 iip->ili_logged = 1; 3205 3206 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3207 &iip->ili_item.li_lsn); 3208 3209 /* 3210 * Attach the function xfs_iflush_done to the inode's 3211 * buffer. This will remove the inode from the AIL 3212 * and unlock the inode's flush lock when the inode is 3213 * completely written to disk. 3214 */ 3215 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) 3216 xfs_iflush_done, (xfs_log_item_t *)iip); 3217 3218 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 3219 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); 3220 } else { 3221 /* 3222 * We're flushing an inode which is not in the AIL and has 3223 * not been logged but has i_update_core set. For this 3224 * case we can use a B_DELWRI flush and immediately drop 3225 * the inode flush lock because we can avoid the whole 3226 * AIL state thing. It's OK to drop the flush lock now, 3227 * because we've already locked the buffer and to do anything 3228 * you really need both. 3229 */ 3230 if (iip != NULL) { 3231 ASSERT(iip->ili_logged == 0); 3232 ASSERT(iip->ili_last_fields == 0); 3233 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 3234 } 3235 xfs_ifunlock(ip); 3236 } 3237 3238 return 0; 3239 3240 corrupt_out: 3241 return XFS_ERROR(EFSCORRUPTED); 3242 } 3243 3244 3245 3246 #ifdef XFS_ILOCK_TRACE 3247 void 3248 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) 3249 { 3250 ktrace_enter(ip->i_lock_trace, 3251 (void *)ip, 3252 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ 3253 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ 3254 (void *)ra, /* caller of ilock */ 3255 (void *)(unsigned long)current_cpu(), 3256 (void *)(unsigned long)current_pid(), 3257 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); 3258 } 3259 #endif 3260 3261 /* 3262 * Return a pointer to the extent record at file index idx. 3263 */ 3264 xfs_bmbt_rec_host_t * 3265 xfs_iext_get_ext( 3266 xfs_ifork_t *ifp, /* inode fork pointer */ 3267 xfs_extnum_t idx) /* index of target extent */ 3268 { 3269 ASSERT(idx >= 0); 3270 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 3271 return ifp->if_u1.if_ext_irec->er_extbuf; 3272 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3273 xfs_ext_irec_t *erp; /* irec pointer */ 3274 int erp_idx = 0; /* irec index */ 3275 xfs_extnum_t page_idx = idx; /* ext index in target list */ 3276 3277 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3278 return &erp->er_extbuf[page_idx]; 3279 } else if (ifp->if_bytes) { 3280 return &ifp->if_u1.if_extents[idx]; 3281 } else { 3282 return NULL; 3283 } 3284 } 3285 3286 /* 3287 * Insert new item(s) into the extent records for incore inode 3288 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 3289 */ 3290 void 3291 xfs_iext_insert( 3292 xfs_ifork_t *ifp, /* inode fork pointer */ 3293 xfs_extnum_t idx, /* starting index of new items */ 3294 xfs_extnum_t count, /* number of inserted items */ 3295 xfs_bmbt_irec_t *new) /* items to insert */ 3296 { 3297 xfs_extnum_t i; /* extent record index */ 3298 3299 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3300 xfs_iext_add(ifp, idx, count); 3301 for (i = idx; i < idx + count; i++, new++) 3302 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 3303 } 3304 3305 /* 3306 * This is called when the amount of space required for incore file 3307 * extents needs to be increased. The ext_diff parameter stores the 3308 * number of new extents being added and the idx parameter contains 3309 * the extent index where the new extents will be added. If the new 3310 * extents are being appended, then we just need to (re)allocate and 3311 * initialize the space. Otherwise, if the new extents are being 3312 * inserted into the middle of the existing entries, a bit more work 3313 * is required to make room for the new extents to be inserted. The 3314 * caller is responsible for filling in the new extent entries upon 3315 * return. 3316 */ 3317 void 3318 xfs_iext_add( 3319 xfs_ifork_t *ifp, /* inode fork pointer */ 3320 xfs_extnum_t idx, /* index to begin adding exts */ 3321 int ext_diff) /* number of extents to add */ 3322 { 3323 int byte_diff; /* new bytes being added */ 3324 int new_size; /* size of extents after adding */ 3325 xfs_extnum_t nextents; /* number of extents in file */ 3326 3327 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3328 ASSERT((idx >= 0) && (idx <= nextents)); 3329 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 3330 new_size = ifp->if_bytes + byte_diff; 3331 /* 3332 * If the new number of extents (nextents + ext_diff) 3333 * fits inside the inode, then continue to use the inline 3334 * extent buffer. 3335 */ 3336 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 3337 if (idx < nextents) { 3338 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 3339 &ifp->if_u2.if_inline_ext[idx], 3340 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3341 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 3342 } 3343 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3344 ifp->if_real_bytes = 0; 3345 ifp->if_lastex = nextents + ext_diff; 3346 } 3347 /* 3348 * Otherwise use a linear (direct) extent list. 3349 * If the extents are currently inside the inode, 3350 * xfs_iext_realloc_direct will switch us from 3351 * inline to direct extent allocation mode. 3352 */ 3353 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 3354 xfs_iext_realloc_direct(ifp, new_size); 3355 if (idx < nextents) { 3356 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 3357 &ifp->if_u1.if_extents[idx], 3358 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 3359 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 3360 } 3361 } 3362 /* Indirection array */ 3363 else { 3364 xfs_ext_irec_t *erp; 3365 int erp_idx = 0; 3366 int page_idx = idx; 3367 3368 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 3369 if (ifp->if_flags & XFS_IFEXTIREC) { 3370 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 3371 } else { 3372 xfs_iext_irec_init(ifp); 3373 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3374 erp = ifp->if_u1.if_ext_irec; 3375 } 3376 /* Extents fit in target extent page */ 3377 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 3378 if (page_idx < erp->er_extcount) { 3379 memmove(&erp->er_extbuf[page_idx + ext_diff], 3380 &erp->er_extbuf[page_idx], 3381 (erp->er_extcount - page_idx) * 3382 sizeof(xfs_bmbt_rec_t)); 3383 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 3384 } 3385 erp->er_extcount += ext_diff; 3386 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3387 } 3388 /* Insert a new extent page */ 3389 else if (erp) { 3390 xfs_iext_add_indirect_multi(ifp, 3391 erp_idx, page_idx, ext_diff); 3392 } 3393 /* 3394 * If extent(s) are being appended to the last page in 3395 * the indirection array and the new extent(s) don't fit 3396 * in the page, then erp is NULL and erp_idx is set to 3397 * the next index needed in the indirection array. 3398 */ 3399 else { 3400 int count = ext_diff; 3401 3402 while (count) { 3403 erp = xfs_iext_irec_new(ifp, erp_idx); 3404 erp->er_extcount = count; 3405 count -= MIN(count, (int)XFS_LINEAR_EXTS); 3406 if (count) { 3407 erp_idx++; 3408 } 3409 } 3410 } 3411 } 3412 ifp->if_bytes = new_size; 3413 } 3414 3415 /* 3416 * This is called when incore extents are being added to the indirection 3417 * array and the new extents do not fit in the target extent list. The 3418 * erp_idx parameter contains the irec index for the target extent list 3419 * in the indirection array, and the idx parameter contains the extent 3420 * index within the list. The number of extents being added is stored 3421 * in the count parameter. 3422 * 3423 * |-------| |-------| 3424 * | | | | idx - number of extents before idx 3425 * | idx | | count | 3426 * | | | | count - number of extents being inserted at idx 3427 * |-------| |-------| 3428 * | count | | nex2 | nex2 - number of extents after idx + count 3429 * |-------| |-------| 3430 */ 3431 void 3432 xfs_iext_add_indirect_multi( 3433 xfs_ifork_t *ifp, /* inode fork pointer */ 3434 int erp_idx, /* target extent irec index */ 3435 xfs_extnum_t idx, /* index within target list */ 3436 int count) /* new extents being added */ 3437 { 3438 int byte_diff; /* new bytes being added */ 3439 xfs_ext_irec_t *erp; /* pointer to irec entry */ 3440 xfs_extnum_t ext_diff; /* number of extents to add */ 3441 xfs_extnum_t ext_cnt; /* new extents still needed */ 3442 xfs_extnum_t nex2; /* extents after idx + count */ 3443 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 3444 int nlists; /* number of irec's (lists) */ 3445 3446 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3447 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3448 nex2 = erp->er_extcount - idx; 3449 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3450 3451 /* 3452 * Save second part of target extent list 3453 * (all extents past */ 3454 if (nex2) { 3455 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3456 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 3457 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 3458 erp->er_extcount -= nex2; 3459 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 3460 memset(&erp->er_extbuf[idx], 0, byte_diff); 3461 } 3462 3463 /* 3464 * Add the new extents to the end of the target 3465 * list, then allocate new irec record(s) and 3466 * extent buffer(s) as needed to store the rest 3467 * of the new extents. 3468 */ 3469 ext_cnt = count; 3470 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 3471 if (ext_diff) { 3472 erp->er_extcount += ext_diff; 3473 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3474 ext_cnt -= ext_diff; 3475 } 3476 while (ext_cnt) { 3477 erp_idx++; 3478 erp = xfs_iext_irec_new(ifp, erp_idx); 3479 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 3480 erp->er_extcount = ext_diff; 3481 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 3482 ext_cnt -= ext_diff; 3483 } 3484 3485 /* Add nex2 extents back to indirection array */ 3486 if (nex2) { 3487 xfs_extnum_t ext_avail; 3488 int i; 3489 3490 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 3491 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 3492 i = 0; 3493 /* 3494 * If nex2 extents fit in the current page, append 3495 * nex2_ep after the new extents. 3496 */ 3497 if (nex2 <= ext_avail) { 3498 i = erp->er_extcount; 3499 } 3500 /* 3501 * Otherwise, check if space is available in the 3502 * next page. 3503 */ 3504 else if ((erp_idx < nlists - 1) && 3505 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 3506 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 3507 erp_idx++; 3508 erp++; 3509 /* Create a hole for nex2 extents */ 3510 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 3511 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 3512 } 3513 /* 3514 * Final choice, create a new extent page for 3515 * nex2 extents. 3516 */ 3517 else { 3518 erp_idx++; 3519 erp = xfs_iext_irec_new(ifp, erp_idx); 3520 } 3521 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 3522 kmem_free(nex2_ep); 3523 erp->er_extcount += nex2; 3524 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 3525 } 3526 } 3527 3528 /* 3529 * This is called when the amount of space required for incore file 3530 * extents needs to be decreased. The ext_diff parameter stores the 3531 * number of extents to be removed and the idx parameter contains 3532 * the extent index where the extents will be removed from. 3533 * 3534 * If the amount of space needed has decreased below the linear 3535 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3536 * extent array. Otherwise, use kmem_realloc() to adjust the 3537 * size to what is needed. 3538 */ 3539 void 3540 xfs_iext_remove( 3541 xfs_ifork_t *ifp, /* inode fork pointer */ 3542 xfs_extnum_t idx, /* index to begin removing exts */ 3543 int ext_diff) /* number of extents to remove */ 3544 { 3545 xfs_extnum_t nextents; /* number of extents in file */ 3546 int new_size; /* size of extents after removal */ 3547 3548 ASSERT(ext_diff > 0); 3549 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3550 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3551 3552 if (new_size == 0) { 3553 xfs_iext_destroy(ifp); 3554 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3555 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3556 } else if (ifp->if_real_bytes) { 3557 xfs_iext_remove_direct(ifp, idx, ext_diff); 3558 } else { 3559 xfs_iext_remove_inline(ifp, idx, ext_diff); 3560 } 3561 ifp->if_bytes = new_size; 3562 } 3563 3564 /* 3565 * This removes ext_diff extents from the inline buffer, beginning 3566 * at extent index idx. 3567 */ 3568 void 3569 xfs_iext_remove_inline( 3570 xfs_ifork_t *ifp, /* inode fork pointer */ 3571 xfs_extnum_t idx, /* index to begin removing exts */ 3572 int ext_diff) /* number of extents to remove */ 3573 { 3574 int nextents; /* number of extents in file */ 3575 3576 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3577 ASSERT(idx < XFS_INLINE_EXTS); 3578 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3579 ASSERT(((nextents - ext_diff) > 0) && 3580 (nextents - ext_diff) < XFS_INLINE_EXTS); 3581 3582 if (idx + ext_diff < nextents) { 3583 memmove(&ifp->if_u2.if_inline_ext[idx], 3584 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3585 (nextents - (idx + ext_diff)) * 3586 sizeof(xfs_bmbt_rec_t)); 3587 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3588 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3589 } else { 3590 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3591 ext_diff * sizeof(xfs_bmbt_rec_t)); 3592 } 3593 } 3594 3595 /* 3596 * This removes ext_diff extents from a linear (direct) extent list, 3597 * beginning at extent index idx. If the extents are being removed 3598 * from the end of the list (ie. truncate) then we just need to re- 3599 * allocate the list to remove the extra space. Otherwise, if the 3600 * extents are being removed from the middle of the existing extent 3601 * entries, then we first need to move the extent records beginning 3602 * at idx + ext_diff up in the list to overwrite the records being 3603 * removed, then remove the extra space via kmem_realloc. 3604 */ 3605 void 3606 xfs_iext_remove_direct( 3607 xfs_ifork_t *ifp, /* inode fork pointer */ 3608 xfs_extnum_t idx, /* index to begin removing exts */ 3609 int ext_diff) /* number of extents to remove */ 3610 { 3611 xfs_extnum_t nextents; /* number of extents in file */ 3612 int new_size; /* size of extents after removal */ 3613 3614 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3615 new_size = ifp->if_bytes - 3616 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3617 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3618 3619 if (new_size == 0) { 3620 xfs_iext_destroy(ifp); 3621 return; 3622 } 3623 /* Move extents up in the list (if needed) */ 3624 if (idx + ext_diff < nextents) { 3625 memmove(&ifp->if_u1.if_extents[idx], 3626 &ifp->if_u1.if_extents[idx + ext_diff], 3627 (nextents - (idx + ext_diff)) * 3628 sizeof(xfs_bmbt_rec_t)); 3629 } 3630 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3631 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3632 /* 3633 * Reallocate the direct extent list. If the extents 3634 * will fit inside the inode then xfs_iext_realloc_direct 3635 * will switch from direct to inline extent allocation 3636 * mode for us. 3637 */ 3638 xfs_iext_realloc_direct(ifp, new_size); 3639 ifp->if_bytes = new_size; 3640 } 3641 3642 /* 3643 * This is called when incore extents are being removed from the 3644 * indirection array and the extents being removed span multiple extent 3645 * buffers. The idx parameter contains the file extent index where we 3646 * want to begin removing extents, and the count parameter contains 3647 * how many extents need to be removed. 3648 * 3649 * |-------| |-------| 3650 * | nex1 | | | nex1 - number of extents before idx 3651 * |-------| | count | 3652 * | | | | count - number of extents being removed at idx 3653 * | count | |-------| 3654 * | | | nex2 | nex2 - number of extents after idx + count 3655 * |-------| |-------| 3656 */ 3657 void 3658 xfs_iext_remove_indirect( 3659 xfs_ifork_t *ifp, /* inode fork pointer */ 3660 xfs_extnum_t idx, /* index to begin removing extents */ 3661 int count) /* number of extents to remove */ 3662 { 3663 xfs_ext_irec_t *erp; /* indirection array pointer */ 3664 int erp_idx = 0; /* indirection array index */ 3665 xfs_extnum_t ext_cnt; /* extents left to remove */ 3666 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3667 xfs_extnum_t nex1; /* number of extents before idx */ 3668 xfs_extnum_t nex2; /* extents after idx + count */ 3669 int nlists; /* entries in indirection array */ 3670 int page_idx = idx; /* index in target extent list */ 3671 3672 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3673 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3674 ASSERT(erp != NULL); 3675 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3676 nex1 = page_idx; 3677 ext_cnt = count; 3678 while (ext_cnt) { 3679 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3680 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3681 /* 3682 * Check for deletion of entire list; 3683 * xfs_iext_irec_remove() updates extent offsets. 3684 */ 3685 if (ext_diff == erp->er_extcount) { 3686 xfs_iext_irec_remove(ifp, erp_idx); 3687 ext_cnt -= ext_diff; 3688 nex1 = 0; 3689 if (ext_cnt) { 3690 ASSERT(erp_idx < ifp->if_real_bytes / 3691 XFS_IEXT_BUFSZ); 3692 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3693 nex1 = 0; 3694 continue; 3695 } else { 3696 break; 3697 } 3698 } 3699 /* Move extents up (if needed) */ 3700 if (nex2) { 3701 memmove(&erp->er_extbuf[nex1], 3702 &erp->er_extbuf[nex1 + ext_diff], 3703 nex2 * sizeof(xfs_bmbt_rec_t)); 3704 } 3705 /* Zero out rest of page */ 3706 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3707 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3708 /* Update remaining counters */ 3709 erp->er_extcount -= ext_diff; 3710 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3711 ext_cnt -= ext_diff; 3712 nex1 = 0; 3713 erp_idx++; 3714 erp++; 3715 } 3716 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3717 xfs_iext_irec_compact(ifp); 3718 } 3719 3720 /* 3721 * Create, destroy, or resize a linear (direct) block of extents. 3722 */ 3723 void 3724 xfs_iext_realloc_direct( 3725 xfs_ifork_t *ifp, /* inode fork pointer */ 3726 int new_size) /* new size of extents */ 3727 { 3728 int rnew_size; /* real new size of extents */ 3729 3730 rnew_size = new_size; 3731 3732 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3733 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3734 (new_size != ifp->if_real_bytes))); 3735 3736 /* Free extent records */ 3737 if (new_size == 0) { 3738 xfs_iext_destroy(ifp); 3739 } 3740 /* Resize direct extent list and zero any new bytes */ 3741 else if (ifp->if_real_bytes) { 3742 /* Check if extents will fit inside the inode */ 3743 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3744 xfs_iext_direct_to_inline(ifp, new_size / 3745 (uint)sizeof(xfs_bmbt_rec_t)); 3746 ifp->if_bytes = new_size; 3747 return; 3748 } 3749 if (!is_power_of_2(new_size)){ 3750 rnew_size = roundup_pow_of_two(new_size); 3751 } 3752 if (rnew_size != ifp->if_real_bytes) { 3753 ifp->if_u1.if_extents = 3754 kmem_realloc(ifp->if_u1.if_extents, 3755 rnew_size, 3756 ifp->if_real_bytes, KM_NOFS); 3757 } 3758 if (rnew_size > ifp->if_real_bytes) { 3759 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3760 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3761 rnew_size - ifp->if_real_bytes); 3762 } 3763 } 3764 /* 3765 * Switch from the inline extent buffer to a direct 3766 * extent list. Be sure to include the inline extent 3767 * bytes in new_size. 3768 */ 3769 else { 3770 new_size += ifp->if_bytes; 3771 if (!is_power_of_2(new_size)) { 3772 rnew_size = roundup_pow_of_two(new_size); 3773 } 3774 xfs_iext_inline_to_direct(ifp, rnew_size); 3775 } 3776 ifp->if_real_bytes = rnew_size; 3777 ifp->if_bytes = new_size; 3778 } 3779 3780 /* 3781 * Switch from linear (direct) extent records to inline buffer. 3782 */ 3783 void 3784 xfs_iext_direct_to_inline( 3785 xfs_ifork_t *ifp, /* inode fork pointer */ 3786 xfs_extnum_t nextents) /* number of extents in file */ 3787 { 3788 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3789 ASSERT(nextents <= XFS_INLINE_EXTS); 3790 /* 3791 * The inline buffer was zeroed when we switched 3792 * from inline to direct extent allocation mode, 3793 * so we don't need to clear it here. 3794 */ 3795 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3796 nextents * sizeof(xfs_bmbt_rec_t)); 3797 kmem_free(ifp->if_u1.if_extents); 3798 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3799 ifp->if_real_bytes = 0; 3800 } 3801 3802 /* 3803 * Switch from inline buffer to linear (direct) extent records. 3804 * new_size should already be rounded up to the next power of 2 3805 * by the caller (when appropriate), so use new_size as it is. 3806 * However, since new_size may be rounded up, we can't update 3807 * if_bytes here. It is the caller's responsibility to update 3808 * if_bytes upon return. 3809 */ 3810 void 3811 xfs_iext_inline_to_direct( 3812 xfs_ifork_t *ifp, /* inode fork pointer */ 3813 int new_size) /* number of extents in file */ 3814 { 3815 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3816 memset(ifp->if_u1.if_extents, 0, new_size); 3817 if (ifp->if_bytes) { 3818 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3819 ifp->if_bytes); 3820 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3821 sizeof(xfs_bmbt_rec_t)); 3822 } 3823 ifp->if_real_bytes = new_size; 3824 } 3825 3826 /* 3827 * Resize an extent indirection array to new_size bytes. 3828 */ 3829 void 3830 xfs_iext_realloc_indirect( 3831 xfs_ifork_t *ifp, /* inode fork pointer */ 3832 int new_size) /* new indirection array size */ 3833 { 3834 int nlists; /* number of irec's (ex lists) */ 3835 int size; /* current indirection array size */ 3836 3837 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3838 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3839 size = nlists * sizeof(xfs_ext_irec_t); 3840 ASSERT(ifp->if_real_bytes); 3841 ASSERT((new_size >= 0) && (new_size != size)); 3842 if (new_size == 0) { 3843 xfs_iext_destroy(ifp); 3844 } else { 3845 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3846 kmem_realloc(ifp->if_u1.if_ext_irec, 3847 new_size, size, KM_NOFS); 3848 } 3849 } 3850 3851 /* 3852 * Switch from indirection array to linear (direct) extent allocations. 3853 */ 3854 void 3855 xfs_iext_indirect_to_direct( 3856 xfs_ifork_t *ifp) /* inode fork pointer */ 3857 { 3858 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3859 xfs_extnum_t nextents; /* number of extents in file */ 3860 int size; /* size of file extents */ 3861 3862 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3863 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3864 ASSERT(nextents <= XFS_LINEAR_EXTS); 3865 size = nextents * sizeof(xfs_bmbt_rec_t); 3866 3867 xfs_iext_irec_compact_pages(ifp); 3868 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3869 3870 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3871 kmem_free(ifp->if_u1.if_ext_irec); 3872 ifp->if_flags &= ~XFS_IFEXTIREC; 3873 ifp->if_u1.if_extents = ep; 3874 ifp->if_bytes = size; 3875 if (nextents < XFS_LINEAR_EXTS) { 3876 xfs_iext_realloc_direct(ifp, size); 3877 } 3878 } 3879 3880 /* 3881 * Free incore file extents. 3882 */ 3883 void 3884 xfs_iext_destroy( 3885 xfs_ifork_t *ifp) /* inode fork pointer */ 3886 { 3887 if (ifp->if_flags & XFS_IFEXTIREC) { 3888 int erp_idx; 3889 int nlists; 3890 3891 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3892 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3893 xfs_iext_irec_remove(ifp, erp_idx); 3894 } 3895 ifp->if_flags &= ~XFS_IFEXTIREC; 3896 } else if (ifp->if_real_bytes) { 3897 kmem_free(ifp->if_u1.if_extents); 3898 } else if (ifp->if_bytes) { 3899 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3900 sizeof(xfs_bmbt_rec_t)); 3901 } 3902 ifp->if_u1.if_extents = NULL; 3903 ifp->if_real_bytes = 0; 3904 ifp->if_bytes = 0; 3905 } 3906 3907 /* 3908 * Return a pointer to the extent record for file system block bno. 3909 */ 3910 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3911 xfs_iext_bno_to_ext( 3912 xfs_ifork_t *ifp, /* inode fork pointer */ 3913 xfs_fileoff_t bno, /* block number to search for */ 3914 xfs_extnum_t *idxp) /* index of target extent */ 3915 { 3916 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3917 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3918 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3919 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3920 int high; /* upper boundary in search */ 3921 xfs_extnum_t idx = 0; /* index of target extent */ 3922 int low; /* lower boundary in search */ 3923 xfs_extnum_t nextents; /* number of file extents */ 3924 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3925 3926 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3927 if (nextents == 0) { 3928 *idxp = 0; 3929 return NULL; 3930 } 3931 low = 0; 3932 if (ifp->if_flags & XFS_IFEXTIREC) { 3933 /* Find target extent list */ 3934 int erp_idx = 0; 3935 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3936 base = erp->er_extbuf; 3937 high = erp->er_extcount - 1; 3938 } else { 3939 base = ifp->if_u1.if_extents; 3940 high = nextents - 1; 3941 } 3942 /* Binary search extent records */ 3943 while (low <= high) { 3944 idx = (low + high) >> 1; 3945 ep = base + idx; 3946 startoff = xfs_bmbt_get_startoff(ep); 3947 blockcount = xfs_bmbt_get_blockcount(ep); 3948 if (bno < startoff) { 3949 high = idx - 1; 3950 } else if (bno >= startoff + blockcount) { 3951 low = idx + 1; 3952 } else { 3953 /* Convert back to file-based extent index */ 3954 if (ifp->if_flags & XFS_IFEXTIREC) { 3955 idx += erp->er_extoff; 3956 } 3957 *idxp = idx; 3958 return ep; 3959 } 3960 } 3961 /* Convert back to file-based extent index */ 3962 if (ifp->if_flags & XFS_IFEXTIREC) { 3963 idx += erp->er_extoff; 3964 } 3965 if (bno >= startoff + blockcount) { 3966 if (++idx == nextents) { 3967 ep = NULL; 3968 } else { 3969 ep = xfs_iext_get_ext(ifp, idx); 3970 } 3971 } 3972 *idxp = idx; 3973 return ep; 3974 } 3975 3976 /* 3977 * Return a pointer to the indirection array entry containing the 3978 * extent record for filesystem block bno. Store the index of the 3979 * target irec in *erp_idxp. 3980 */ 3981 xfs_ext_irec_t * /* pointer to found extent record */ 3982 xfs_iext_bno_to_irec( 3983 xfs_ifork_t *ifp, /* inode fork pointer */ 3984 xfs_fileoff_t bno, /* block number to search for */ 3985 int *erp_idxp) /* irec index of target ext list */ 3986 { 3987 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3988 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3989 int erp_idx; /* indirection array index */ 3990 int nlists; /* number of extent irec's (lists) */ 3991 int high; /* binary search upper limit */ 3992 int low; /* binary search lower limit */ 3993 3994 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3995 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3996 erp_idx = 0; 3997 low = 0; 3998 high = nlists - 1; 3999 while (low <= high) { 4000 erp_idx = (low + high) >> 1; 4001 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4002 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 4003 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 4004 high = erp_idx - 1; 4005 } else if (erp_next && bno >= 4006 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 4007 low = erp_idx + 1; 4008 } else { 4009 break; 4010 } 4011 } 4012 *erp_idxp = erp_idx; 4013 return erp; 4014 } 4015 4016 /* 4017 * Return a pointer to the indirection array entry containing the 4018 * extent record at file extent index *idxp. Store the index of the 4019 * target irec in *erp_idxp and store the page index of the target 4020 * extent record in *idxp. 4021 */ 4022 xfs_ext_irec_t * 4023 xfs_iext_idx_to_irec( 4024 xfs_ifork_t *ifp, /* inode fork pointer */ 4025 xfs_extnum_t *idxp, /* extent index (file -> page) */ 4026 int *erp_idxp, /* pointer to target irec */ 4027 int realloc) /* new bytes were just added */ 4028 { 4029 xfs_ext_irec_t *prev; /* pointer to previous irec */ 4030 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 4031 int erp_idx; /* indirection array index */ 4032 int nlists; /* number of irec's (ex lists) */ 4033 int high; /* binary search upper limit */ 4034 int low; /* binary search lower limit */ 4035 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 4036 4037 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4038 ASSERT(page_idx >= 0 && page_idx <= 4039 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); 4040 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4041 erp_idx = 0; 4042 low = 0; 4043 high = nlists - 1; 4044 4045 /* Binary search extent irec's */ 4046 while (low <= high) { 4047 erp_idx = (low + high) >> 1; 4048 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4049 prev = erp_idx > 0 ? erp - 1 : NULL; 4050 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 4051 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 4052 high = erp_idx - 1; 4053 } else if (page_idx > erp->er_extoff + erp->er_extcount || 4054 (page_idx == erp->er_extoff + erp->er_extcount && 4055 !realloc)) { 4056 low = erp_idx + 1; 4057 } else if (page_idx == erp->er_extoff + erp->er_extcount && 4058 erp->er_extcount == XFS_LINEAR_EXTS) { 4059 ASSERT(realloc); 4060 page_idx = 0; 4061 erp_idx++; 4062 erp = erp_idx < nlists ? erp + 1 : NULL; 4063 break; 4064 } else { 4065 page_idx -= erp->er_extoff; 4066 break; 4067 } 4068 } 4069 *idxp = page_idx; 4070 *erp_idxp = erp_idx; 4071 return(erp); 4072 } 4073 4074 /* 4075 * Allocate and initialize an indirection array once the space needed 4076 * for incore extents increases above XFS_IEXT_BUFSZ. 4077 */ 4078 void 4079 xfs_iext_irec_init( 4080 xfs_ifork_t *ifp) /* inode fork pointer */ 4081 { 4082 xfs_ext_irec_t *erp; /* indirection array pointer */ 4083 xfs_extnum_t nextents; /* number of extents in file */ 4084 4085 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 4086 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4087 ASSERT(nextents <= XFS_LINEAR_EXTS); 4088 4089 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 4090 4091 if (nextents == 0) { 4092 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4093 } else if (!ifp->if_real_bytes) { 4094 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 4095 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 4096 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 4097 } 4098 erp->er_extbuf = ifp->if_u1.if_extents; 4099 erp->er_extcount = nextents; 4100 erp->er_extoff = 0; 4101 4102 ifp->if_flags |= XFS_IFEXTIREC; 4103 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 4104 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 4105 ifp->if_u1.if_ext_irec = erp; 4106 4107 return; 4108 } 4109 4110 /* 4111 * Allocate and initialize a new entry in the indirection array. 4112 */ 4113 xfs_ext_irec_t * 4114 xfs_iext_irec_new( 4115 xfs_ifork_t *ifp, /* inode fork pointer */ 4116 int erp_idx) /* index for new irec */ 4117 { 4118 xfs_ext_irec_t *erp; /* indirection array pointer */ 4119 int i; /* loop counter */ 4120 int nlists; /* number of irec's (ex lists) */ 4121 4122 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4123 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4124 4125 /* Resize indirection array */ 4126 xfs_iext_realloc_indirect(ifp, ++nlists * 4127 sizeof(xfs_ext_irec_t)); 4128 /* 4129 * Move records down in the array so the 4130 * new page can use erp_idx. 4131 */ 4132 erp = ifp->if_u1.if_ext_irec; 4133 for (i = nlists - 1; i > erp_idx; i--) { 4134 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 4135 } 4136 ASSERT(i == erp_idx); 4137 4138 /* Initialize new extent record */ 4139 erp = ifp->if_u1.if_ext_irec; 4140 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 4141 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4142 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 4143 erp[erp_idx].er_extcount = 0; 4144 erp[erp_idx].er_extoff = erp_idx > 0 ? 4145 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 4146 return (&erp[erp_idx]); 4147 } 4148 4149 /* 4150 * Remove a record from the indirection array. 4151 */ 4152 void 4153 xfs_iext_irec_remove( 4154 xfs_ifork_t *ifp, /* inode fork pointer */ 4155 int erp_idx) /* irec index to remove */ 4156 { 4157 xfs_ext_irec_t *erp; /* indirection array pointer */ 4158 int i; /* loop counter */ 4159 int nlists; /* number of irec's (ex lists) */ 4160 4161 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4162 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4163 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4164 if (erp->er_extbuf) { 4165 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 4166 -erp->er_extcount); 4167 kmem_free(erp->er_extbuf); 4168 } 4169 /* Compact extent records */ 4170 erp = ifp->if_u1.if_ext_irec; 4171 for (i = erp_idx; i < nlists - 1; i++) { 4172 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 4173 } 4174 /* 4175 * Manually free the last extent record from the indirection 4176 * array. A call to xfs_iext_realloc_indirect() with a size 4177 * of zero would result in a call to xfs_iext_destroy() which 4178 * would in turn call this function again, creating a nasty 4179 * infinite loop. 4180 */ 4181 if (--nlists) { 4182 xfs_iext_realloc_indirect(ifp, 4183 nlists * sizeof(xfs_ext_irec_t)); 4184 } else { 4185 kmem_free(ifp->if_u1.if_ext_irec); 4186 } 4187 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 4188 } 4189 4190 /* 4191 * This is called to clean up large amounts of unused memory allocated 4192 * by the indirection array. Before compacting anything though, verify 4193 * that the indirection array is still needed and switch back to the 4194 * linear extent list (or even the inline buffer) if possible. The 4195 * compaction policy is as follows: 4196 * 4197 * Full Compaction: Extents fit into a single page (or inline buffer) 4198 * Partial Compaction: Extents occupy less than 50% of allocated space 4199 * No Compaction: Extents occupy at least 50% of allocated space 4200 */ 4201 void 4202 xfs_iext_irec_compact( 4203 xfs_ifork_t *ifp) /* inode fork pointer */ 4204 { 4205 xfs_extnum_t nextents; /* number of extents in file */ 4206 int nlists; /* number of irec's (ex lists) */ 4207 4208 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4209 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4210 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 4211 4212 if (nextents == 0) { 4213 xfs_iext_destroy(ifp); 4214 } else if (nextents <= XFS_INLINE_EXTS) { 4215 xfs_iext_indirect_to_direct(ifp); 4216 xfs_iext_direct_to_inline(ifp, nextents); 4217 } else if (nextents <= XFS_LINEAR_EXTS) { 4218 xfs_iext_indirect_to_direct(ifp); 4219 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 4220 xfs_iext_irec_compact_pages(ifp); 4221 } 4222 } 4223 4224 /* 4225 * Combine extents from neighboring extent pages. 4226 */ 4227 void 4228 xfs_iext_irec_compact_pages( 4229 xfs_ifork_t *ifp) /* inode fork pointer */ 4230 { 4231 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 4232 int erp_idx = 0; /* indirection array index */ 4233 int nlists; /* number of irec's (ex lists) */ 4234 4235 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4236 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4237 while (erp_idx < nlists - 1) { 4238 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 4239 erp_next = erp + 1; 4240 if (erp_next->er_extcount <= 4241 (XFS_LINEAR_EXTS - erp->er_extcount)) { 4242 memcpy(&erp->er_extbuf[erp->er_extcount], 4243 erp_next->er_extbuf, erp_next->er_extcount * 4244 sizeof(xfs_bmbt_rec_t)); 4245 erp->er_extcount += erp_next->er_extcount; 4246 /* 4247 * Free page before removing extent record 4248 * so er_extoffs don't get modified in 4249 * xfs_iext_irec_remove. 4250 */ 4251 kmem_free(erp_next->er_extbuf); 4252 erp_next->er_extbuf = NULL; 4253 xfs_iext_irec_remove(ifp, erp_idx + 1); 4254 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4255 } else { 4256 erp_idx++; 4257 } 4258 } 4259 } 4260 4261 /* 4262 * This is called to update the er_extoff field in the indirection 4263 * array when extents have been added or removed from one of the 4264 * extent lists. erp_idx contains the irec index to begin updating 4265 * at and ext_diff contains the number of extents that were added 4266 * or removed. 4267 */ 4268 void 4269 xfs_iext_irec_update_extoffs( 4270 xfs_ifork_t *ifp, /* inode fork pointer */ 4271 int erp_idx, /* irec index to update */ 4272 int ext_diff) /* number of new extents */ 4273 { 4274 int i; /* loop counter */ 4275 int nlists; /* number of irec's (ex lists */ 4276 4277 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 4278 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 4279 for (i = erp_idx; i < nlists; i++) { 4280 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 4281 } 4282 } 4283