1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 59 return ip->i_d.di_extsize; 60 if (XFS_IS_REALTIME_INODE(ip)) 61 return ip->i_mount->m_sb.sb_rextsize; 62 return 0; 63 } 64 65 /* 66 * Helper function to extract CoW extent size hint from inode. 67 * Between the extent size hint and the CoW extent size hint, we 68 * return the greater of the two. If the value is zero (automatic), 69 * use the default size. 70 */ 71 xfs_extlen_t 72 xfs_get_cowextsz_hint( 73 struct xfs_inode *ip) 74 { 75 xfs_extlen_t a, b; 76 77 a = 0; 78 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 79 a = ip->i_d.di_cowextsize; 80 b = xfs_get_extsz_hint(ip); 81 82 a = max(a, b); 83 if (a == 0) 84 return XFS_DEFAULT_COWEXTSZ_HINT; 85 return a; 86 } 87 88 /* 89 * These two are wrapper routines around the xfs_ilock() routine used to 90 * centralize some grungy code. They are used in places that wish to lock the 91 * inode solely for reading the extents. The reason these places can't just 92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 93 * bringing in of the extents from disk for a file in b-tree format. If the 94 * inode is in b-tree format, then we need to lock the inode exclusively until 95 * the extents are read in. Locking it exclusively all the time would limit 96 * our parallelism unnecessarily, though. What we do instead is check to see 97 * if the extents have been read in yet, and only lock the inode exclusively 98 * if they have not. 99 * 100 * The functions return a value which should be given to the corresponding 101 * xfs_iunlock() call. 102 */ 103 uint 104 xfs_ilock_data_map_shared( 105 struct xfs_inode *ip) 106 { 107 uint lock_mode = XFS_ILOCK_SHARED; 108 109 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 110 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 111 lock_mode = XFS_ILOCK_EXCL; 112 xfs_ilock(ip, lock_mode); 113 return lock_mode; 114 } 115 116 uint 117 xfs_ilock_attr_map_shared( 118 struct xfs_inode *ip) 119 { 120 uint lock_mode = XFS_ILOCK_SHARED; 121 122 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 123 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 124 lock_mode = XFS_ILOCK_EXCL; 125 xfs_ilock(ip, lock_mode); 126 return lock_mode; 127 } 128 129 /* 130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 131 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 132 * various combinations of the locks to be obtained. 133 * 134 * The 3 locks should always be ordered so that the IO lock is obtained first, 135 * the mmap lock second and the ilock last in order to prevent deadlock. 136 * 137 * Basic locking order: 138 * 139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 140 * 141 * mmap_sem locking order: 142 * 143 * i_rwsem -> page lock -> mmap_sem 144 * mmap_sem -> i_mmap_lock -> page_lock 145 * 146 * The difference in mmap_sem locking order mean that we cannot hold the 147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 149 * in get_user_pages() to map the user pages into the kernel address space for 150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 151 * page faults already hold the mmap_sem. 152 * 153 * Hence to serialise fully against both syscall and mmap based IO, we need to 154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 155 * taken in places where we need to invalidate the page cache in a race 156 * free manner (e.g. truncate, hole punch and other extent manipulation 157 * functions). 158 */ 159 void 160 xfs_ilock( 161 xfs_inode_t *ip, 162 uint lock_flags) 163 { 164 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 165 166 /* 167 * You can't set both SHARED and EXCL for the same lock, 168 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 169 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 170 */ 171 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 172 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 173 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 174 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 175 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 176 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 177 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 178 179 if (lock_flags & XFS_IOLOCK_EXCL) { 180 down_write_nested(&VFS_I(ip)->i_rwsem, 181 XFS_IOLOCK_DEP(lock_flags)); 182 } else if (lock_flags & XFS_IOLOCK_SHARED) { 183 down_read_nested(&VFS_I(ip)->i_rwsem, 184 XFS_IOLOCK_DEP(lock_flags)); 185 } 186 187 if (lock_flags & XFS_MMAPLOCK_EXCL) 188 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 189 else if (lock_flags & XFS_MMAPLOCK_SHARED) 190 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 191 192 if (lock_flags & XFS_ILOCK_EXCL) 193 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 194 else if (lock_flags & XFS_ILOCK_SHARED) 195 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 196 } 197 198 /* 199 * This is just like xfs_ilock(), except that the caller 200 * is guaranteed not to sleep. It returns 1 if it gets 201 * the requested locks and 0 otherwise. If the IO lock is 202 * obtained but the inode lock cannot be, then the IO lock 203 * is dropped before returning. 204 * 205 * ip -- the inode being locked 206 * lock_flags -- this parameter indicates the inode's locks to be 207 * to be locked. See the comment for xfs_ilock() for a list 208 * of valid values. 209 */ 210 int 211 xfs_ilock_nowait( 212 xfs_inode_t *ip, 213 uint lock_flags) 214 { 215 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 216 217 /* 218 * You can't set both SHARED and EXCL for the same lock, 219 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 220 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 221 */ 222 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 223 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 224 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 225 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 226 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 227 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 228 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 229 230 if (lock_flags & XFS_IOLOCK_EXCL) { 231 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 232 goto out; 233 } else if (lock_flags & XFS_IOLOCK_SHARED) { 234 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 235 goto out; 236 } 237 238 if (lock_flags & XFS_MMAPLOCK_EXCL) { 239 if (!mrtryupdate(&ip->i_mmaplock)) 240 goto out_undo_iolock; 241 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 242 if (!mrtryaccess(&ip->i_mmaplock)) 243 goto out_undo_iolock; 244 } 245 246 if (lock_flags & XFS_ILOCK_EXCL) { 247 if (!mrtryupdate(&ip->i_lock)) 248 goto out_undo_mmaplock; 249 } else if (lock_flags & XFS_ILOCK_SHARED) { 250 if (!mrtryaccess(&ip->i_lock)) 251 goto out_undo_mmaplock; 252 } 253 return 1; 254 255 out_undo_mmaplock: 256 if (lock_flags & XFS_MMAPLOCK_EXCL) 257 mrunlock_excl(&ip->i_mmaplock); 258 else if (lock_flags & XFS_MMAPLOCK_SHARED) 259 mrunlock_shared(&ip->i_mmaplock); 260 out_undo_iolock: 261 if (lock_flags & XFS_IOLOCK_EXCL) 262 up_write(&VFS_I(ip)->i_rwsem); 263 else if (lock_flags & XFS_IOLOCK_SHARED) 264 up_read(&VFS_I(ip)->i_rwsem); 265 out: 266 return 0; 267 } 268 269 /* 270 * xfs_iunlock() is used to drop the inode locks acquired with 271 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 273 * that we know which locks to drop. 274 * 275 * ip -- the inode being unlocked 276 * lock_flags -- this parameter indicates the inode's locks to be 277 * to be unlocked. See the comment for xfs_ilock() for a list 278 * of valid values for this parameter. 279 * 280 */ 281 void 282 xfs_iunlock( 283 xfs_inode_t *ip, 284 uint lock_flags) 285 { 286 /* 287 * You can't set both SHARED and EXCL for the same lock, 288 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 289 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 290 */ 291 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 292 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 293 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 294 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 295 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 296 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 297 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 298 ASSERT(lock_flags != 0); 299 300 if (lock_flags & XFS_IOLOCK_EXCL) 301 up_write(&VFS_I(ip)->i_rwsem); 302 else if (lock_flags & XFS_IOLOCK_SHARED) 303 up_read(&VFS_I(ip)->i_rwsem); 304 305 if (lock_flags & XFS_MMAPLOCK_EXCL) 306 mrunlock_excl(&ip->i_mmaplock); 307 else if (lock_flags & XFS_MMAPLOCK_SHARED) 308 mrunlock_shared(&ip->i_mmaplock); 309 310 if (lock_flags & XFS_ILOCK_EXCL) 311 mrunlock_excl(&ip->i_lock); 312 else if (lock_flags & XFS_ILOCK_SHARED) 313 mrunlock_shared(&ip->i_lock); 314 315 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 316 } 317 318 /* 319 * give up write locks. the i/o lock cannot be held nested 320 * if it is being demoted. 321 */ 322 void 323 xfs_ilock_demote( 324 xfs_inode_t *ip, 325 uint lock_flags) 326 { 327 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 328 ASSERT((lock_flags & 329 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 330 331 if (lock_flags & XFS_ILOCK_EXCL) 332 mrdemote(&ip->i_lock); 333 if (lock_flags & XFS_MMAPLOCK_EXCL) 334 mrdemote(&ip->i_mmaplock); 335 if (lock_flags & XFS_IOLOCK_EXCL) 336 downgrade_write(&VFS_I(ip)->i_rwsem); 337 338 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 339 } 340 341 #if defined(DEBUG) || defined(XFS_WARN) 342 int 343 xfs_isilocked( 344 xfs_inode_t *ip, 345 uint lock_flags) 346 { 347 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 348 if (!(lock_flags & XFS_ILOCK_SHARED)) 349 return !!ip->i_lock.mr_writer; 350 return rwsem_is_locked(&ip->i_lock.mr_lock); 351 } 352 353 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 354 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 355 return !!ip->i_mmaplock.mr_writer; 356 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 360 if (!(lock_flags & XFS_IOLOCK_SHARED)) 361 return !debug_locks || 362 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 363 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 364 } 365 366 ASSERT(0); 367 return 0; 368 } 369 #endif 370 371 /* 372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 375 * errors and warnings. 376 */ 377 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 378 static bool 379 xfs_lockdep_subclass_ok( 380 int subclass) 381 { 382 return subclass < MAX_LOCKDEP_SUBCLASSES; 383 } 384 #else 385 #define xfs_lockdep_subclass_ok(subclass) (true) 386 #endif 387 388 /* 389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 390 * value. This can be called for any type of inode lock combination, including 391 * parent locking. Care must be taken to ensure we don't overrun the subclass 392 * storage fields in the class mask we build. 393 */ 394 static inline int 395 xfs_lock_inumorder(int lock_mode, int subclass) 396 { 397 int class = 0; 398 399 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 400 XFS_ILOCK_RTSUM))); 401 ASSERT(xfs_lockdep_subclass_ok(subclass)); 402 403 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 404 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 405 class += subclass << XFS_IOLOCK_SHIFT; 406 } 407 408 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 409 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 410 class += subclass << XFS_MMAPLOCK_SHIFT; 411 } 412 413 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 414 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 415 class += subclass << XFS_ILOCK_SHIFT; 416 } 417 418 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 419 } 420 421 /* 422 * The following routine will lock n inodes in exclusive mode. We assume the 423 * caller calls us with the inodes in i_ino order. 424 * 425 * We need to detect deadlock where an inode that we lock is in the AIL and we 426 * start waiting for another inode that is locked by a thread in a long running 427 * transaction (such as truncate). This can result in deadlock since the long 428 * running trans might need to wait for the inode we just locked in order to 429 * push the tail and free space in the log. 430 * 431 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 433 * lock more than one at a time, lockdep will report false positives saying we 434 * have violated locking orders. 435 */ 436 static void 437 xfs_lock_inodes( 438 struct xfs_inode **ips, 439 int inodes, 440 uint lock_mode) 441 { 442 int attempts = 0, i, j, try_lock; 443 struct xfs_log_item *lp; 444 445 /* 446 * Currently supports between 2 and 5 inodes with exclusive locking. We 447 * support an arbitrary depth of locking here, but absolute limits on 448 * inodes depend on the the type of locking and the limits placed by 449 * lockdep annotations in xfs_lock_inumorder. These are all checked by 450 * the asserts. 451 */ 452 ASSERT(ips && inodes >= 2 && inodes <= 5); 453 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 454 XFS_ILOCK_EXCL)); 455 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 456 XFS_ILOCK_SHARED))); 457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 461 462 if (lock_mode & XFS_IOLOCK_EXCL) { 463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 464 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 466 467 try_lock = 0; 468 i = 0; 469 again: 470 for (; i < inodes; i++) { 471 ASSERT(ips[i]); 472 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 474 continue; 475 476 /* 477 * If try_lock is not set yet, make sure all locked inodes are 478 * not in the AIL. If any are, set try_lock to be used later. 479 */ 480 if (!try_lock) { 481 for (j = (i - 1); j >= 0 && !try_lock; j--) { 482 lp = &ips[j]->i_itemp->ili_item; 483 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 484 try_lock++; 485 } 486 } 487 488 /* 489 * If any of the previous locks we have locked is in the AIL, 490 * we must TRY to get the second and subsequent locks. If 491 * we can't get any, we must release all we have 492 * and try again. 493 */ 494 if (!try_lock) { 495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 496 continue; 497 } 498 499 /* try_lock means we have an inode locked that is in the AIL. */ 500 ASSERT(i != 0); 501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 502 continue; 503 504 /* 505 * Unlock all previous guys and try again. xfs_iunlock will try 506 * to push the tail if the inode is in the AIL. 507 */ 508 attempts++; 509 for (j = i - 1; j >= 0; j--) { 510 /* 511 * Check to see if we've already unlocked this one. Not 512 * the first one going back, and the inode ptr is the 513 * same. 514 */ 515 if (j != (i - 1) && ips[j] == ips[j + 1]) 516 continue; 517 518 xfs_iunlock(ips[j], lock_mode); 519 } 520 521 if ((attempts % 5) == 0) { 522 delay(1); /* Don't just spin the CPU */ 523 } 524 i = 0; 525 try_lock = 0; 526 goto again; 527 } 528 } 529 530 /* 531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 532 * the mmaplock or the ilock, but not more than one type at a time. If we lock 533 * more than one at a time, lockdep will report false positives saying we have 534 * violated locking orders. The iolock must be double-locked separately since 535 * we use i_rwsem for that. We now support taking one lock EXCL and the other 536 * SHARED. 537 */ 538 void 539 xfs_lock_two_inodes( 540 struct xfs_inode *ip0, 541 uint ip0_mode, 542 struct xfs_inode *ip1, 543 uint ip1_mode) 544 { 545 struct xfs_inode *temp; 546 uint mode_temp; 547 int attempts = 0; 548 struct xfs_log_item *lp; 549 550 ASSERT(hweight32(ip0_mode) == 1); 551 ASSERT(hweight32(ip1_mode) == 1); 552 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 553 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 554 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 555 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 556 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 557 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 558 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 559 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 563 ASSERT(ip0->i_ino != ip1->i_ino); 564 565 if (ip0->i_ino > ip1->i_ino) { 566 temp = ip0; 567 ip0 = ip1; 568 ip1 = temp; 569 mode_temp = ip0_mode; 570 ip0_mode = ip1_mode; 571 ip1_mode = mode_temp; 572 } 573 574 again: 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 576 577 /* 578 * If the first lock we have locked is in the AIL, we must TRY to get 579 * the second lock. If we can't get it, we must release the first one 580 * and try again. 581 */ 582 lp = &ip0->i_itemp->ili_item; 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 585 xfs_iunlock(ip0, ip0_mode); 586 if ((++attempts % 5) == 0) 587 delay(1); /* Don't just spin the CPU */ 588 goto again; 589 } 590 } else { 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 592 } 593 } 594 595 void 596 __xfs_iflock( 597 struct xfs_inode *ip) 598 { 599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 601 602 do { 603 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 604 if (xfs_isiflocked(ip)) 605 io_schedule(); 606 } while (!xfs_iflock_nowait(ip)); 607 608 finish_wait(wq, &wait.wq_entry); 609 } 610 611 STATIC uint 612 _xfs_dic2xflags( 613 uint16_t di_flags, 614 uint64_t di_flags2, 615 bool has_attr) 616 { 617 uint flags = 0; 618 619 if (di_flags & XFS_DIFLAG_ANY) { 620 if (di_flags & XFS_DIFLAG_REALTIME) 621 flags |= FS_XFLAG_REALTIME; 622 if (di_flags & XFS_DIFLAG_PREALLOC) 623 flags |= FS_XFLAG_PREALLOC; 624 if (di_flags & XFS_DIFLAG_IMMUTABLE) 625 flags |= FS_XFLAG_IMMUTABLE; 626 if (di_flags & XFS_DIFLAG_APPEND) 627 flags |= FS_XFLAG_APPEND; 628 if (di_flags & XFS_DIFLAG_SYNC) 629 flags |= FS_XFLAG_SYNC; 630 if (di_flags & XFS_DIFLAG_NOATIME) 631 flags |= FS_XFLAG_NOATIME; 632 if (di_flags & XFS_DIFLAG_NODUMP) 633 flags |= FS_XFLAG_NODUMP; 634 if (di_flags & XFS_DIFLAG_RTINHERIT) 635 flags |= FS_XFLAG_RTINHERIT; 636 if (di_flags & XFS_DIFLAG_PROJINHERIT) 637 flags |= FS_XFLAG_PROJINHERIT; 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 639 flags |= FS_XFLAG_NOSYMLINKS; 640 if (di_flags & XFS_DIFLAG_EXTSIZE) 641 flags |= FS_XFLAG_EXTSIZE; 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 643 flags |= FS_XFLAG_EXTSZINHERIT; 644 if (di_flags & XFS_DIFLAG_NODEFRAG) 645 flags |= FS_XFLAG_NODEFRAG; 646 if (di_flags & XFS_DIFLAG_FILESTREAM) 647 flags |= FS_XFLAG_FILESTREAM; 648 } 649 650 if (di_flags2 & XFS_DIFLAG2_ANY) { 651 if (di_flags2 & XFS_DIFLAG2_DAX) 652 flags |= FS_XFLAG_DAX; 653 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 654 flags |= FS_XFLAG_COWEXTSIZE; 655 } 656 657 if (has_attr) 658 flags |= FS_XFLAG_HASATTR; 659 660 return flags; 661 } 662 663 uint 664 xfs_ip2xflags( 665 struct xfs_inode *ip) 666 { 667 struct xfs_icdinode *dic = &ip->i_d; 668 669 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 670 } 671 672 /* 673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 674 * is allowed, otherwise it has to be an exact match. If a CI match is found, 675 * ci_name->name will point to a the actual name (caller must free) or 676 * will be set to NULL if an exact match is found. 677 */ 678 int 679 xfs_lookup( 680 xfs_inode_t *dp, 681 struct xfs_name *name, 682 xfs_inode_t **ipp, 683 struct xfs_name *ci_name) 684 { 685 xfs_ino_t inum; 686 int error; 687 688 trace_xfs_lookup(dp, name); 689 690 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 691 return -EIO; 692 693 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 694 if (error) 695 goto out_unlock; 696 697 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 698 if (error) 699 goto out_free_name; 700 701 return 0; 702 703 out_free_name: 704 if (ci_name) 705 kmem_free(ci_name->name); 706 out_unlock: 707 *ipp = NULL; 708 return error; 709 } 710 711 /* 712 * Allocate an inode on disk and return a copy of its in-core version. 713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 714 * appropriately within the inode. The uid and gid for the inode are 715 * set according to the contents of the given cred structure. 716 * 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 718 * has a free inode available, call xfs_iget() to obtain the in-core 719 * version of the allocated inode. Finally, fill in the inode and 720 * log its initial contents. In this case, ialloc_context would be 721 * set to NULL. 722 * 723 * If xfs_dialloc() does not have an available inode, it will replenish 724 * its supply by doing an allocation. Since we can only do one 725 * allocation within a transaction without deadlocks, we must commit 726 * the current transaction before returning the inode itself. 727 * In this case, therefore, we will set ialloc_context and return. 728 * The caller should then commit the current transaction, start a new 729 * transaction, and call xfs_ialloc() again to actually get the inode. 730 * 731 * To ensure that some other process does not grab the inode that 732 * was allocated during the first call to xfs_ialloc(), this routine 733 * also returns the [locked] bp pointing to the head of the freelist 734 * as ialloc_context. The caller should hold this buffer across 735 * the commit and pass it back into this routine on the second call. 736 * 737 * If we are allocating quota inodes, we do not have a parent inode 738 * to attach to or associate with (i.e. pip == NULL) because they 739 * are not linked into the directory structure - they are attached 740 * directly to the superblock - and so have no parent. 741 */ 742 static int 743 xfs_ialloc( 744 xfs_trans_t *tp, 745 xfs_inode_t *pip, 746 umode_t mode, 747 xfs_nlink_t nlink, 748 dev_t rdev, 749 prid_t prid, 750 xfs_buf_t **ialloc_context, 751 xfs_inode_t **ipp) 752 { 753 struct xfs_mount *mp = tp->t_mountp; 754 xfs_ino_t ino; 755 xfs_inode_t *ip; 756 uint flags; 757 int error; 758 struct timespec64 tv; 759 struct inode *inode; 760 761 /* 762 * Call the space management code to pick 763 * the on-disk inode to be allocated. 764 */ 765 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 766 ialloc_context, &ino); 767 if (error) 768 return error; 769 if (*ialloc_context || ino == NULLFSINO) { 770 *ipp = NULL; 771 return 0; 772 } 773 ASSERT(*ialloc_context == NULL); 774 775 /* 776 * Protect against obviously corrupt allocation btree records. Later 777 * xfs_iget checks will catch re-allocation of other active in-memory 778 * and on-disk inodes. If we don't catch reallocating the parent inode 779 * here we will deadlock in xfs_iget() so we have to do these checks 780 * first. 781 */ 782 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 783 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 784 return -EFSCORRUPTED; 785 } 786 787 /* 788 * Get the in-core inode with the lock held exclusively. 789 * This is because we're setting fields here we need 790 * to prevent others from looking at until we're done. 791 */ 792 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 793 XFS_ILOCK_EXCL, &ip); 794 if (error) 795 return error; 796 ASSERT(ip != NULL); 797 inode = VFS_I(ip); 798 799 /* 800 * We always convert v1 inodes to v2 now - we only support filesystems 801 * with >= v2 inode capability, so there is no reason for ever leaving 802 * an inode in v1 format. 803 */ 804 if (ip->i_d.di_version == 1) 805 ip->i_d.di_version = 2; 806 807 inode->i_mode = mode; 808 set_nlink(inode, nlink); 809 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 810 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 811 inode->i_rdev = rdev; 812 xfs_set_projid(ip, prid); 813 814 if (pip && XFS_INHERIT_GID(pip)) { 815 ip->i_d.di_gid = pip->i_d.di_gid; 816 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 817 inode->i_mode |= S_ISGID; 818 } 819 820 /* 821 * If the group ID of the new file does not match the effective group 822 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 823 * (and only if the irix_sgid_inherit compatibility variable is set). 824 */ 825 if ((irix_sgid_inherit) && 826 (inode->i_mode & S_ISGID) && 827 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 828 inode->i_mode &= ~S_ISGID; 829 830 ip->i_d.di_size = 0; 831 ip->i_d.di_nextents = 0; 832 ASSERT(ip->i_d.di_nblocks == 0); 833 834 tv = current_time(inode); 835 inode->i_mtime = tv; 836 inode->i_atime = tv; 837 inode->i_ctime = tv; 838 839 ip->i_d.di_extsize = 0; 840 ip->i_d.di_dmevmask = 0; 841 ip->i_d.di_dmstate = 0; 842 ip->i_d.di_flags = 0; 843 844 if (ip->i_d.di_version == 3) { 845 inode_set_iversion(inode, 1); 846 ip->i_d.di_flags2 = 0; 847 ip->i_d.di_cowextsize = 0; 848 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 849 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 850 } 851 852 853 flags = XFS_ILOG_CORE; 854 switch (mode & S_IFMT) { 855 case S_IFIFO: 856 case S_IFCHR: 857 case S_IFBLK: 858 case S_IFSOCK: 859 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 860 ip->i_df.if_flags = 0; 861 flags |= XFS_ILOG_DEV; 862 break; 863 case S_IFREG: 864 case S_IFDIR: 865 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 866 uint di_flags = 0; 867 868 if (S_ISDIR(mode)) { 869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 870 di_flags |= XFS_DIFLAG_RTINHERIT; 871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 872 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 873 ip->i_d.di_extsize = pip->i_d.di_extsize; 874 } 875 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 876 di_flags |= XFS_DIFLAG_PROJINHERIT; 877 } else if (S_ISREG(mode)) { 878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 879 di_flags |= XFS_DIFLAG_REALTIME; 880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 881 di_flags |= XFS_DIFLAG_EXTSIZE; 882 ip->i_d.di_extsize = pip->i_d.di_extsize; 883 } 884 } 885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 886 xfs_inherit_noatime) 887 di_flags |= XFS_DIFLAG_NOATIME; 888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 889 xfs_inherit_nodump) 890 di_flags |= XFS_DIFLAG_NODUMP; 891 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 892 xfs_inherit_sync) 893 di_flags |= XFS_DIFLAG_SYNC; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 895 xfs_inherit_nosymlinks) 896 di_flags |= XFS_DIFLAG_NOSYMLINKS; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 898 xfs_inherit_nodefrag) 899 di_flags |= XFS_DIFLAG_NODEFRAG; 900 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 901 di_flags |= XFS_DIFLAG_FILESTREAM; 902 903 ip->i_d.di_flags |= di_flags; 904 } 905 if (pip && 906 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 907 pip->i_d.di_version == 3 && 908 ip->i_d.di_version == 3) { 909 uint64_t di_flags2 = 0; 910 911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 912 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 913 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 914 } 915 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 916 di_flags2 |= XFS_DIFLAG2_DAX; 917 918 ip->i_d.di_flags2 |= di_flags2; 919 } 920 /* FALLTHROUGH */ 921 case S_IFLNK: 922 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 923 ip->i_df.if_flags = XFS_IFEXTENTS; 924 ip->i_df.if_bytes = 0; 925 ip->i_df.if_u1.if_root = NULL; 926 break; 927 default: 928 ASSERT(0); 929 } 930 /* 931 * Attribute fork settings for new inode. 932 */ 933 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 934 ip->i_d.di_anextents = 0; 935 936 /* 937 * Log the new values stuffed into the inode. 938 */ 939 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 940 xfs_trans_log_inode(tp, ip, flags); 941 942 /* now that we have an i_mode we can setup the inode structure */ 943 xfs_setup_inode(ip); 944 945 *ipp = ip; 946 return 0; 947 } 948 949 /* 950 * Allocates a new inode from disk and return a pointer to the 951 * incore copy. This routine will internally commit the current 952 * transaction and allocate a new one if the Space Manager needed 953 * to do an allocation to replenish the inode free-list. 954 * 955 * This routine is designed to be called from xfs_create and 956 * xfs_create_dir. 957 * 958 */ 959 int 960 xfs_dir_ialloc( 961 xfs_trans_t **tpp, /* input: current transaction; 962 output: may be a new transaction. */ 963 xfs_inode_t *dp, /* directory within whose allocate 964 the inode. */ 965 umode_t mode, 966 xfs_nlink_t nlink, 967 dev_t rdev, 968 prid_t prid, /* project id */ 969 xfs_inode_t **ipp) /* pointer to inode; it will be 970 locked. */ 971 { 972 xfs_trans_t *tp; 973 xfs_inode_t *ip; 974 xfs_buf_t *ialloc_context = NULL; 975 int code; 976 void *dqinfo; 977 uint tflags; 978 979 tp = *tpp; 980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 981 982 /* 983 * xfs_ialloc will return a pointer to an incore inode if 984 * the Space Manager has an available inode on the free 985 * list. Otherwise, it will do an allocation and replenish 986 * the freelist. Since we can only do one allocation per 987 * transaction without deadlocks, we will need to commit the 988 * current transaction and start a new one. We will then 989 * need to call xfs_ialloc again to get the inode. 990 * 991 * If xfs_ialloc did an allocation to replenish the freelist, 992 * it returns the bp containing the head of the freelist as 993 * ialloc_context. We will hold a lock on it across the 994 * transaction commit so that no other process can steal 995 * the inode(s) that we've just allocated. 996 */ 997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 998 &ip); 999 1000 /* 1001 * Return an error if we were unable to allocate a new inode. 1002 * This should only happen if we run out of space on disk or 1003 * encounter a disk error. 1004 */ 1005 if (code) { 1006 *ipp = NULL; 1007 return code; 1008 } 1009 if (!ialloc_context && !ip) { 1010 *ipp = NULL; 1011 return -ENOSPC; 1012 } 1013 1014 /* 1015 * If the AGI buffer is non-NULL, then we were unable to get an 1016 * inode in one operation. We need to commit the current 1017 * transaction and call xfs_ialloc() again. It is guaranteed 1018 * to succeed the second time. 1019 */ 1020 if (ialloc_context) { 1021 /* 1022 * Normally, xfs_trans_commit releases all the locks. 1023 * We call bhold to hang on to the ialloc_context across 1024 * the commit. Holding this buffer prevents any other 1025 * processes from doing any allocations in this 1026 * allocation group. 1027 */ 1028 xfs_trans_bhold(tp, ialloc_context); 1029 1030 /* 1031 * We want the quota changes to be associated with the next 1032 * transaction, NOT this one. So, detach the dqinfo from this 1033 * and attach it to the next transaction. 1034 */ 1035 dqinfo = NULL; 1036 tflags = 0; 1037 if (tp->t_dqinfo) { 1038 dqinfo = (void *)tp->t_dqinfo; 1039 tp->t_dqinfo = NULL; 1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1042 } 1043 1044 code = xfs_trans_roll(&tp); 1045 1046 /* 1047 * Re-attach the quota info that we detached from prev trx. 1048 */ 1049 if (dqinfo) { 1050 tp->t_dqinfo = dqinfo; 1051 tp->t_flags |= tflags; 1052 } 1053 1054 if (code) { 1055 xfs_buf_relse(ialloc_context); 1056 *tpp = tp; 1057 *ipp = NULL; 1058 return code; 1059 } 1060 xfs_trans_bjoin(tp, ialloc_context); 1061 1062 /* 1063 * Call ialloc again. Since we've locked out all 1064 * other allocations in this allocation group, 1065 * this call should always succeed. 1066 */ 1067 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1068 &ialloc_context, &ip); 1069 1070 /* 1071 * If we get an error at this point, return to the caller 1072 * so that the current transaction can be aborted. 1073 */ 1074 if (code) { 1075 *tpp = tp; 1076 *ipp = NULL; 1077 return code; 1078 } 1079 ASSERT(!ialloc_context && ip); 1080 1081 } 1082 1083 *ipp = ip; 1084 *tpp = tp; 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * Decrement the link count on an inode & log the change. If this causes the 1091 * link count to go to zero, move the inode to AGI unlinked list so that it can 1092 * be freed when the last active reference goes away via xfs_inactive(). 1093 */ 1094 static int /* error */ 1095 xfs_droplink( 1096 xfs_trans_t *tp, 1097 xfs_inode_t *ip) 1098 { 1099 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1100 1101 drop_nlink(VFS_I(ip)); 1102 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1103 1104 if (VFS_I(ip)->i_nlink) 1105 return 0; 1106 1107 return xfs_iunlink(tp, ip); 1108 } 1109 1110 /* 1111 * Increment the link count on an inode & log the change. 1112 */ 1113 static void 1114 xfs_bumplink( 1115 xfs_trans_t *tp, 1116 xfs_inode_t *ip) 1117 { 1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1119 1120 ASSERT(ip->i_d.di_version > 1); 1121 inc_nlink(VFS_I(ip)); 1122 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1123 } 1124 1125 int 1126 xfs_create( 1127 xfs_inode_t *dp, 1128 struct xfs_name *name, 1129 umode_t mode, 1130 dev_t rdev, 1131 xfs_inode_t **ipp) 1132 { 1133 int is_dir = S_ISDIR(mode); 1134 struct xfs_mount *mp = dp->i_mount; 1135 struct xfs_inode *ip = NULL; 1136 struct xfs_trans *tp = NULL; 1137 int error; 1138 bool unlock_dp_on_error = false; 1139 prid_t prid; 1140 struct xfs_dquot *udqp = NULL; 1141 struct xfs_dquot *gdqp = NULL; 1142 struct xfs_dquot *pdqp = NULL; 1143 struct xfs_trans_res *tres; 1144 uint resblks; 1145 1146 trace_xfs_create(dp, name); 1147 1148 if (XFS_FORCED_SHUTDOWN(mp)) 1149 return -EIO; 1150 1151 prid = xfs_get_initial_prid(dp); 1152 1153 /* 1154 * Make sure that we have allocated dquot(s) on disk. 1155 */ 1156 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1157 xfs_kgid_to_gid(current_fsgid()), prid, 1158 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1159 &udqp, &gdqp, &pdqp); 1160 if (error) 1161 return error; 1162 1163 if (is_dir) { 1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1165 tres = &M_RES(mp)->tr_mkdir; 1166 } else { 1167 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1168 tres = &M_RES(mp)->tr_create; 1169 } 1170 1171 /* 1172 * Initially assume that the file does not exist and 1173 * reserve the resources for that case. If that is not 1174 * the case we'll drop the one we have and get a more 1175 * appropriate transaction later. 1176 */ 1177 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1178 if (error == -ENOSPC) { 1179 /* flush outstanding delalloc blocks and retry */ 1180 xfs_flush_inodes(mp); 1181 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1182 } 1183 if (error) 1184 goto out_release_inode; 1185 1186 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1187 unlock_dp_on_error = true; 1188 1189 /* 1190 * Reserve disk quota and the inode. 1191 */ 1192 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1193 pdqp, resblks, 1, 0); 1194 if (error) 1195 goto out_trans_cancel; 1196 1197 /* 1198 * A newly created regular or special file just has one directory 1199 * entry pointing to them, but a directory also the "." entry 1200 * pointing to itself. 1201 */ 1202 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1203 if (error) 1204 goto out_trans_cancel; 1205 1206 /* 1207 * Now we join the directory inode to the transaction. We do not do it 1208 * earlier because xfs_dir_ialloc might commit the previous transaction 1209 * (and release all the locks). An error from here on will result in 1210 * the transaction cancel unlocking dp so don't do it explicitly in the 1211 * error path. 1212 */ 1213 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1214 unlock_dp_on_error = false; 1215 1216 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1217 resblks ? 1218 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1219 if (error) { 1220 ASSERT(error != -ENOSPC); 1221 goto out_trans_cancel; 1222 } 1223 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1224 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1225 1226 if (is_dir) { 1227 error = xfs_dir_init(tp, ip, dp); 1228 if (error) 1229 goto out_trans_cancel; 1230 1231 xfs_bumplink(tp, dp); 1232 } 1233 1234 /* 1235 * If this is a synchronous mount, make sure that the 1236 * create transaction goes to disk before returning to 1237 * the user. 1238 */ 1239 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1240 xfs_trans_set_sync(tp); 1241 1242 /* 1243 * Attach the dquot(s) to the inodes and modify them incore. 1244 * These ids of the inode couldn't have changed since the new 1245 * inode has been locked ever since it was created. 1246 */ 1247 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1248 1249 error = xfs_trans_commit(tp); 1250 if (error) 1251 goto out_release_inode; 1252 1253 xfs_qm_dqrele(udqp); 1254 xfs_qm_dqrele(gdqp); 1255 xfs_qm_dqrele(pdqp); 1256 1257 *ipp = ip; 1258 return 0; 1259 1260 out_trans_cancel: 1261 xfs_trans_cancel(tp); 1262 out_release_inode: 1263 /* 1264 * Wait until after the current transaction is aborted to finish the 1265 * setup of the inode and release the inode. This prevents recursive 1266 * transactions and deadlocks from xfs_inactive. 1267 */ 1268 if (ip) { 1269 xfs_finish_inode_setup(ip); 1270 xfs_irele(ip); 1271 } 1272 1273 xfs_qm_dqrele(udqp); 1274 xfs_qm_dqrele(gdqp); 1275 xfs_qm_dqrele(pdqp); 1276 1277 if (unlock_dp_on_error) 1278 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1279 return error; 1280 } 1281 1282 int 1283 xfs_create_tmpfile( 1284 struct xfs_inode *dp, 1285 umode_t mode, 1286 struct xfs_inode **ipp) 1287 { 1288 struct xfs_mount *mp = dp->i_mount; 1289 struct xfs_inode *ip = NULL; 1290 struct xfs_trans *tp = NULL; 1291 int error; 1292 prid_t prid; 1293 struct xfs_dquot *udqp = NULL; 1294 struct xfs_dquot *gdqp = NULL; 1295 struct xfs_dquot *pdqp = NULL; 1296 struct xfs_trans_res *tres; 1297 uint resblks; 1298 1299 if (XFS_FORCED_SHUTDOWN(mp)) 1300 return -EIO; 1301 1302 prid = xfs_get_initial_prid(dp); 1303 1304 /* 1305 * Make sure that we have allocated dquot(s) on disk. 1306 */ 1307 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1308 xfs_kgid_to_gid(current_fsgid()), prid, 1309 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1310 &udqp, &gdqp, &pdqp); 1311 if (error) 1312 return error; 1313 1314 resblks = XFS_IALLOC_SPACE_RES(mp); 1315 tres = &M_RES(mp)->tr_create_tmpfile; 1316 1317 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1318 if (error) 1319 goto out_release_inode; 1320 1321 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1322 pdqp, resblks, 1, 0); 1323 if (error) 1324 goto out_trans_cancel; 1325 1326 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1327 if (error) 1328 goto out_trans_cancel; 1329 1330 if (mp->m_flags & XFS_MOUNT_WSYNC) 1331 xfs_trans_set_sync(tp); 1332 1333 /* 1334 * Attach the dquot(s) to the inodes and modify them incore. 1335 * These ids of the inode couldn't have changed since the new 1336 * inode has been locked ever since it was created. 1337 */ 1338 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1339 1340 error = xfs_iunlink(tp, ip); 1341 if (error) 1342 goto out_trans_cancel; 1343 1344 error = xfs_trans_commit(tp); 1345 if (error) 1346 goto out_release_inode; 1347 1348 xfs_qm_dqrele(udqp); 1349 xfs_qm_dqrele(gdqp); 1350 xfs_qm_dqrele(pdqp); 1351 1352 *ipp = ip; 1353 return 0; 1354 1355 out_trans_cancel: 1356 xfs_trans_cancel(tp); 1357 out_release_inode: 1358 /* 1359 * Wait until after the current transaction is aborted to finish the 1360 * setup of the inode and release the inode. This prevents recursive 1361 * transactions and deadlocks from xfs_inactive. 1362 */ 1363 if (ip) { 1364 xfs_finish_inode_setup(ip); 1365 xfs_irele(ip); 1366 } 1367 1368 xfs_qm_dqrele(udqp); 1369 xfs_qm_dqrele(gdqp); 1370 xfs_qm_dqrele(pdqp); 1371 1372 return error; 1373 } 1374 1375 int 1376 xfs_link( 1377 xfs_inode_t *tdp, 1378 xfs_inode_t *sip, 1379 struct xfs_name *target_name) 1380 { 1381 xfs_mount_t *mp = tdp->i_mount; 1382 xfs_trans_t *tp; 1383 int error; 1384 int resblks; 1385 1386 trace_xfs_link(tdp, target_name); 1387 1388 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1389 1390 if (XFS_FORCED_SHUTDOWN(mp)) 1391 return -EIO; 1392 1393 error = xfs_qm_dqattach(sip); 1394 if (error) 1395 goto std_return; 1396 1397 error = xfs_qm_dqattach(tdp); 1398 if (error) 1399 goto std_return; 1400 1401 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1402 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1403 if (error == -ENOSPC) { 1404 resblks = 0; 1405 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1406 } 1407 if (error) 1408 goto std_return; 1409 1410 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1411 1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1414 1415 /* 1416 * If we are using project inheritance, we only allow hard link 1417 * creation in our tree when the project IDs are the same; else 1418 * the tree quota mechanism could be circumvented. 1419 */ 1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1422 error = -EXDEV; 1423 goto error_return; 1424 } 1425 1426 if (!resblks) { 1427 error = xfs_dir_canenter(tp, tdp, target_name); 1428 if (error) 1429 goto error_return; 1430 } 1431 1432 /* 1433 * Handle initial link state of O_TMPFILE inode 1434 */ 1435 if (VFS_I(sip)->i_nlink == 0) { 1436 error = xfs_iunlink_remove(tp, sip); 1437 if (error) 1438 goto error_return; 1439 } 1440 1441 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1442 resblks); 1443 if (error) 1444 goto error_return; 1445 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1446 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1447 1448 xfs_bumplink(tp, sip); 1449 1450 /* 1451 * If this is a synchronous mount, make sure that the 1452 * link transaction goes to disk before returning to 1453 * the user. 1454 */ 1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1456 xfs_trans_set_sync(tp); 1457 1458 return xfs_trans_commit(tp); 1459 1460 error_return: 1461 xfs_trans_cancel(tp); 1462 std_return: 1463 return error; 1464 } 1465 1466 /* Clear the reflink flag and the cowblocks tag if possible. */ 1467 static void 1468 xfs_itruncate_clear_reflink_flags( 1469 struct xfs_inode *ip) 1470 { 1471 struct xfs_ifork *dfork; 1472 struct xfs_ifork *cfork; 1473 1474 if (!xfs_is_reflink_inode(ip)) 1475 return; 1476 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1477 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1478 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1479 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1480 if (cfork->if_bytes == 0) 1481 xfs_inode_clear_cowblocks_tag(ip); 1482 } 1483 1484 /* 1485 * Free up the underlying blocks past new_size. The new size must be smaller 1486 * than the current size. This routine can be used both for the attribute and 1487 * data fork, and does not modify the inode size, which is left to the caller. 1488 * 1489 * The transaction passed to this routine must have made a permanent log 1490 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1491 * given transaction and start new ones, so make sure everything involved in 1492 * the transaction is tidy before calling here. Some transaction will be 1493 * returned to the caller to be committed. The incoming transaction must 1494 * already include the inode, and both inode locks must be held exclusively. 1495 * The inode must also be "held" within the transaction. On return the inode 1496 * will be "held" within the returned transaction. This routine does NOT 1497 * require any disk space to be reserved for it within the transaction. 1498 * 1499 * If we get an error, we must return with the inode locked and linked into the 1500 * current transaction. This keeps things simple for the higher level code, 1501 * because it always knows that the inode is locked and held in the transaction 1502 * that returns to it whether errors occur or not. We don't mark the inode 1503 * dirty on error so that transactions can be easily aborted if possible. 1504 */ 1505 int 1506 xfs_itruncate_extents_flags( 1507 struct xfs_trans **tpp, 1508 struct xfs_inode *ip, 1509 int whichfork, 1510 xfs_fsize_t new_size, 1511 int flags) 1512 { 1513 struct xfs_mount *mp = ip->i_mount; 1514 struct xfs_trans *tp = *tpp; 1515 xfs_fileoff_t first_unmap_block; 1516 xfs_fileoff_t last_block; 1517 xfs_filblks_t unmap_len; 1518 int error = 0; 1519 int done = 0; 1520 1521 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1522 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1523 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1524 ASSERT(new_size <= XFS_ISIZE(ip)); 1525 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1526 ASSERT(ip->i_itemp != NULL); 1527 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1528 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1529 1530 trace_xfs_itruncate_extents_start(ip, new_size); 1531 1532 flags |= xfs_bmapi_aflag(whichfork); 1533 1534 /* 1535 * Since it is possible for space to become allocated beyond 1536 * the end of the file (in a crash where the space is allocated 1537 * but the inode size is not yet updated), simply remove any 1538 * blocks which show up between the new EOF and the maximum 1539 * possible file size. If the first block to be removed is 1540 * beyond the maximum file size (ie it is the same as last_block), 1541 * then there is nothing to do. 1542 */ 1543 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1544 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1545 if (first_unmap_block == last_block) 1546 return 0; 1547 1548 ASSERT(first_unmap_block < last_block); 1549 unmap_len = last_block - first_unmap_block + 1; 1550 while (!done) { 1551 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1552 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, 1553 XFS_ITRUNC_MAX_EXTENTS, &done); 1554 if (error) 1555 goto out; 1556 1557 /* 1558 * Duplicate the transaction that has the permanent 1559 * reservation and commit the old transaction. 1560 */ 1561 error = xfs_defer_finish(&tp); 1562 if (error) 1563 goto out; 1564 1565 error = xfs_trans_roll_inode(&tp, ip); 1566 if (error) 1567 goto out; 1568 } 1569 1570 if (whichfork == XFS_DATA_FORK) { 1571 /* Remove all pending CoW reservations. */ 1572 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1573 first_unmap_block, last_block, true); 1574 if (error) 1575 goto out; 1576 1577 xfs_itruncate_clear_reflink_flags(ip); 1578 } 1579 1580 /* 1581 * Always re-log the inode so that our permanent transaction can keep 1582 * on rolling it forward in the log. 1583 */ 1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1585 1586 trace_xfs_itruncate_extents_end(ip, new_size); 1587 1588 out: 1589 *tpp = tp; 1590 return error; 1591 } 1592 1593 int 1594 xfs_release( 1595 xfs_inode_t *ip) 1596 { 1597 xfs_mount_t *mp = ip->i_mount; 1598 int error; 1599 1600 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1601 return 0; 1602 1603 /* If this is a read-only mount, don't do this (would generate I/O) */ 1604 if (mp->m_flags & XFS_MOUNT_RDONLY) 1605 return 0; 1606 1607 if (!XFS_FORCED_SHUTDOWN(mp)) { 1608 int truncated; 1609 1610 /* 1611 * If we previously truncated this file and removed old data 1612 * in the process, we want to initiate "early" writeout on 1613 * the last close. This is an attempt to combat the notorious 1614 * NULL files problem which is particularly noticeable from a 1615 * truncate down, buffered (re-)write (delalloc), followed by 1616 * a crash. What we are effectively doing here is 1617 * significantly reducing the time window where we'd otherwise 1618 * be exposed to that problem. 1619 */ 1620 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1621 if (truncated) { 1622 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1623 if (ip->i_delayed_blks > 0) { 1624 error = filemap_flush(VFS_I(ip)->i_mapping); 1625 if (error) 1626 return error; 1627 } 1628 } 1629 } 1630 1631 if (VFS_I(ip)->i_nlink == 0) 1632 return 0; 1633 1634 if (xfs_can_free_eofblocks(ip, false)) { 1635 1636 /* 1637 * Check if the inode is being opened, written and closed 1638 * frequently and we have delayed allocation blocks outstanding 1639 * (e.g. streaming writes from the NFS server), truncating the 1640 * blocks past EOF will cause fragmentation to occur. 1641 * 1642 * In this case don't do the truncation, but we have to be 1643 * careful how we detect this case. Blocks beyond EOF show up as 1644 * i_delayed_blks even when the inode is clean, so we need to 1645 * truncate them away first before checking for a dirty release. 1646 * Hence on the first dirty close we will still remove the 1647 * speculative allocation, but after that we will leave it in 1648 * place. 1649 */ 1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1651 return 0; 1652 /* 1653 * If we can't get the iolock just skip truncating the blocks 1654 * past EOF because we could deadlock with the mmap_sem 1655 * otherwise. We'll get another chance to drop them once the 1656 * last reference to the inode is dropped, so we'll never leak 1657 * blocks permanently. 1658 */ 1659 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1660 error = xfs_free_eofblocks(ip); 1661 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1662 if (error) 1663 return error; 1664 } 1665 1666 /* delalloc blocks after truncation means it really is dirty */ 1667 if (ip->i_delayed_blks) 1668 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1669 } 1670 return 0; 1671 } 1672 1673 /* 1674 * xfs_inactive_truncate 1675 * 1676 * Called to perform a truncate when an inode becomes unlinked. 1677 */ 1678 STATIC int 1679 xfs_inactive_truncate( 1680 struct xfs_inode *ip) 1681 { 1682 struct xfs_mount *mp = ip->i_mount; 1683 struct xfs_trans *tp; 1684 int error; 1685 1686 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1687 if (error) { 1688 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1689 return error; 1690 } 1691 xfs_ilock(ip, XFS_ILOCK_EXCL); 1692 xfs_trans_ijoin(tp, ip, 0); 1693 1694 /* 1695 * Log the inode size first to prevent stale data exposure in the event 1696 * of a system crash before the truncate completes. See the related 1697 * comment in xfs_vn_setattr_size() for details. 1698 */ 1699 ip->i_d.di_size = 0; 1700 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1701 1702 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1703 if (error) 1704 goto error_trans_cancel; 1705 1706 ASSERT(ip->i_d.di_nextents == 0); 1707 1708 error = xfs_trans_commit(tp); 1709 if (error) 1710 goto error_unlock; 1711 1712 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1713 return 0; 1714 1715 error_trans_cancel: 1716 xfs_trans_cancel(tp); 1717 error_unlock: 1718 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1719 return error; 1720 } 1721 1722 /* 1723 * xfs_inactive_ifree() 1724 * 1725 * Perform the inode free when an inode is unlinked. 1726 */ 1727 STATIC int 1728 xfs_inactive_ifree( 1729 struct xfs_inode *ip) 1730 { 1731 struct xfs_mount *mp = ip->i_mount; 1732 struct xfs_trans *tp; 1733 int error; 1734 1735 /* 1736 * We try to use a per-AG reservation for any block needed by the finobt 1737 * tree, but as the finobt feature predates the per-AG reservation 1738 * support a degraded file system might not have enough space for the 1739 * reservation at mount time. In that case try to dip into the reserved 1740 * pool and pray. 1741 * 1742 * Send a warning if the reservation does happen to fail, as the inode 1743 * now remains allocated and sits on the unlinked list until the fs is 1744 * repaired. 1745 */ 1746 if (unlikely(mp->m_finobt_nores)) { 1747 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1748 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1749 &tp); 1750 } else { 1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1752 } 1753 if (error) { 1754 if (error == -ENOSPC) { 1755 xfs_warn_ratelimited(mp, 1756 "Failed to remove inode(s) from unlinked list. " 1757 "Please free space, unmount and run xfs_repair."); 1758 } else { 1759 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1760 } 1761 return error; 1762 } 1763 1764 xfs_ilock(ip, XFS_ILOCK_EXCL); 1765 xfs_trans_ijoin(tp, ip, 0); 1766 1767 error = xfs_ifree(tp, ip); 1768 if (error) { 1769 /* 1770 * If we fail to free the inode, shut down. The cancel 1771 * might do that, we need to make sure. Otherwise the 1772 * inode might be lost for a long time or forever. 1773 */ 1774 if (!XFS_FORCED_SHUTDOWN(mp)) { 1775 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1776 __func__, error); 1777 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1778 } 1779 xfs_trans_cancel(tp); 1780 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1781 return error; 1782 } 1783 1784 /* 1785 * Credit the quota account(s). The inode is gone. 1786 */ 1787 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1788 1789 /* 1790 * Just ignore errors at this point. There is nothing we can do except 1791 * to try to keep going. Make sure it's not a silent error. 1792 */ 1793 error = xfs_trans_commit(tp); 1794 if (error) 1795 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1796 __func__, error); 1797 1798 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1799 return 0; 1800 } 1801 1802 /* 1803 * xfs_inactive 1804 * 1805 * This is called when the vnode reference count for the vnode 1806 * goes to zero. If the file has been unlinked, then it must 1807 * now be truncated. Also, we clear all of the read-ahead state 1808 * kept for the inode here since the file is now closed. 1809 */ 1810 void 1811 xfs_inactive( 1812 xfs_inode_t *ip) 1813 { 1814 struct xfs_mount *mp; 1815 int error; 1816 int truncate = 0; 1817 1818 /* 1819 * If the inode is already free, then there can be nothing 1820 * to clean up here. 1821 */ 1822 if (VFS_I(ip)->i_mode == 0) { 1823 ASSERT(ip->i_df.if_broot_bytes == 0); 1824 return; 1825 } 1826 1827 mp = ip->i_mount; 1828 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1829 1830 /* If this is a read-only mount, don't do this (would generate I/O) */ 1831 if (mp->m_flags & XFS_MOUNT_RDONLY) 1832 return; 1833 1834 /* Try to clean out the cow blocks if there are any. */ 1835 if (xfs_inode_has_cow_data(ip)) 1836 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1837 1838 if (VFS_I(ip)->i_nlink != 0) { 1839 /* 1840 * force is true because we are evicting an inode from the 1841 * cache. Post-eof blocks must be freed, lest we end up with 1842 * broken free space accounting. 1843 * 1844 * Note: don't bother with iolock here since lockdep complains 1845 * about acquiring it in reclaim context. We have the only 1846 * reference to the inode at this point anyways. 1847 */ 1848 if (xfs_can_free_eofblocks(ip, true)) 1849 xfs_free_eofblocks(ip); 1850 1851 return; 1852 } 1853 1854 if (S_ISREG(VFS_I(ip)->i_mode) && 1855 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1856 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1857 truncate = 1; 1858 1859 error = xfs_qm_dqattach(ip); 1860 if (error) 1861 return; 1862 1863 if (S_ISLNK(VFS_I(ip)->i_mode)) 1864 error = xfs_inactive_symlink(ip); 1865 else if (truncate) 1866 error = xfs_inactive_truncate(ip); 1867 if (error) 1868 return; 1869 1870 /* 1871 * If there are attributes associated with the file then blow them away 1872 * now. The code calls a routine that recursively deconstructs the 1873 * attribute fork. If also blows away the in-core attribute fork. 1874 */ 1875 if (XFS_IFORK_Q(ip)) { 1876 error = xfs_attr_inactive(ip); 1877 if (error) 1878 return; 1879 } 1880 1881 ASSERT(!ip->i_afp); 1882 ASSERT(ip->i_d.di_anextents == 0); 1883 ASSERT(ip->i_d.di_forkoff == 0); 1884 1885 /* 1886 * Free the inode. 1887 */ 1888 error = xfs_inactive_ifree(ip); 1889 if (error) 1890 return; 1891 1892 /* 1893 * Release the dquots held by inode, if any. 1894 */ 1895 xfs_qm_dqdetach(ip); 1896 } 1897 1898 /* 1899 * In-Core Unlinked List Lookups 1900 * ============================= 1901 * 1902 * Every inode is supposed to be reachable from some other piece of metadata 1903 * with the exception of the root directory. Inodes with a connection to a 1904 * file descriptor but not linked from anywhere in the on-disk directory tree 1905 * are collectively known as unlinked inodes, though the filesystem itself 1906 * maintains links to these inodes so that on-disk metadata are consistent. 1907 * 1908 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1909 * header contains a number of buckets that point to an inode, and each inode 1910 * record has a pointer to the next inode in the hash chain. This 1911 * singly-linked list causes scaling problems in the iunlink remove function 1912 * because we must walk that list to find the inode that points to the inode 1913 * being removed from the unlinked hash bucket list. 1914 * 1915 * What if we modelled the unlinked list as a collection of records capturing 1916 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1917 * have a fast way to look up unlinked list predecessors, which avoids the 1918 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1919 * rhashtable. 1920 * 1921 * Because this is a backref cache, we ignore operational failures since the 1922 * iunlink code can fall back to the slow bucket walk. The only errors that 1923 * should bubble out are for obviously incorrect situations. 1924 * 1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1926 * access or have otherwise provided for concurrency control. 1927 */ 1928 1929 /* Capture a "X.next_unlinked = Y" relationship. */ 1930 struct xfs_iunlink { 1931 struct rhash_head iu_rhash_head; 1932 xfs_agino_t iu_agino; /* X */ 1933 xfs_agino_t iu_next_unlinked; /* Y */ 1934 }; 1935 1936 /* Unlinked list predecessor lookup hashtable construction */ 1937 static int 1938 xfs_iunlink_obj_cmpfn( 1939 struct rhashtable_compare_arg *arg, 1940 const void *obj) 1941 { 1942 const xfs_agino_t *key = arg->key; 1943 const struct xfs_iunlink *iu = obj; 1944 1945 if (iu->iu_next_unlinked != *key) 1946 return 1; 1947 return 0; 1948 } 1949 1950 static const struct rhashtable_params xfs_iunlink_hash_params = { 1951 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1952 .key_len = sizeof(xfs_agino_t), 1953 .key_offset = offsetof(struct xfs_iunlink, 1954 iu_next_unlinked), 1955 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1956 .automatic_shrinking = true, 1957 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1958 }; 1959 1960 /* 1961 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1962 * relation is found. 1963 */ 1964 static xfs_agino_t 1965 xfs_iunlink_lookup_backref( 1966 struct xfs_perag *pag, 1967 xfs_agino_t agino) 1968 { 1969 struct xfs_iunlink *iu; 1970 1971 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1972 xfs_iunlink_hash_params); 1973 return iu ? iu->iu_agino : NULLAGINO; 1974 } 1975 1976 /* 1977 * Take ownership of an iunlink cache entry and insert it into the hash table. 1978 * If successful, the entry will be owned by the cache; if not, it is freed. 1979 * Either way, the caller does not own @iu after this call. 1980 */ 1981 static int 1982 xfs_iunlink_insert_backref( 1983 struct xfs_perag *pag, 1984 struct xfs_iunlink *iu) 1985 { 1986 int error; 1987 1988 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1989 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1990 /* 1991 * Fail loudly if there already was an entry because that's a sign of 1992 * corruption of in-memory data. Also fail loudly if we see an error 1993 * code we didn't anticipate from the rhashtable code. Currently we 1994 * only anticipate ENOMEM. 1995 */ 1996 if (error) { 1997 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1998 kmem_free(iu); 1999 } 2000 /* 2001 * Absorb any runtime errors that aren't a result of corruption because 2002 * this is a cache and we can always fall back to bucket list scanning. 2003 */ 2004 if (error != 0 && error != -EEXIST) 2005 error = 0; 2006 return error; 2007 } 2008 2009 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 2010 static int 2011 xfs_iunlink_add_backref( 2012 struct xfs_perag *pag, 2013 xfs_agino_t prev_agino, 2014 xfs_agino_t this_agino) 2015 { 2016 struct xfs_iunlink *iu; 2017 2018 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 2019 return 0; 2020 2021 iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS); 2022 iu->iu_agino = prev_agino; 2023 iu->iu_next_unlinked = this_agino; 2024 2025 return xfs_iunlink_insert_backref(pag, iu); 2026 } 2027 2028 /* 2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2031 * wasn't any such entry then we don't bother. 2032 */ 2033 static int 2034 xfs_iunlink_change_backref( 2035 struct xfs_perag *pag, 2036 xfs_agino_t agino, 2037 xfs_agino_t next_unlinked) 2038 { 2039 struct xfs_iunlink *iu; 2040 int error; 2041 2042 /* Look up the old entry; if there wasn't one then exit. */ 2043 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2044 xfs_iunlink_hash_params); 2045 if (!iu) 2046 return 0; 2047 2048 /* 2049 * Remove the entry. This shouldn't ever return an error, but if we 2050 * couldn't remove the old entry we don't want to add it again to the 2051 * hash table, and if the entry disappeared on us then someone's 2052 * violated the locking rules and we need to fail loudly. Either way 2053 * we cannot remove the inode because internal state is or would have 2054 * been corrupt. 2055 */ 2056 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2057 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2058 if (error) 2059 return error; 2060 2061 /* If there is no new next entry just free our item and return. */ 2062 if (next_unlinked == NULLAGINO) { 2063 kmem_free(iu); 2064 return 0; 2065 } 2066 2067 /* Update the entry and re-add it to the hash table. */ 2068 iu->iu_next_unlinked = next_unlinked; 2069 return xfs_iunlink_insert_backref(pag, iu); 2070 } 2071 2072 /* Set up the in-core predecessor structures. */ 2073 int 2074 xfs_iunlink_init( 2075 struct xfs_perag *pag) 2076 { 2077 return rhashtable_init(&pag->pagi_unlinked_hash, 2078 &xfs_iunlink_hash_params); 2079 } 2080 2081 /* Free the in-core predecessor structures. */ 2082 static void 2083 xfs_iunlink_free_item( 2084 void *ptr, 2085 void *arg) 2086 { 2087 struct xfs_iunlink *iu = ptr; 2088 bool *freed_anything = arg; 2089 2090 *freed_anything = true; 2091 kmem_free(iu); 2092 } 2093 2094 void 2095 xfs_iunlink_destroy( 2096 struct xfs_perag *pag) 2097 { 2098 bool freed_anything = false; 2099 2100 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2101 xfs_iunlink_free_item, &freed_anything); 2102 2103 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2104 } 2105 2106 /* 2107 * Point the AGI unlinked bucket at an inode and log the results. The caller 2108 * is responsible for validating the old value. 2109 */ 2110 STATIC int 2111 xfs_iunlink_update_bucket( 2112 struct xfs_trans *tp, 2113 xfs_agnumber_t agno, 2114 struct xfs_buf *agibp, 2115 unsigned int bucket_index, 2116 xfs_agino_t new_agino) 2117 { 2118 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 2119 xfs_agino_t old_value; 2120 int offset; 2121 2122 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2123 2124 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2125 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2126 old_value, new_agino); 2127 2128 /* 2129 * We should never find the head of the list already set to the value 2130 * passed in because either we're adding or removing ourselves from the 2131 * head of the list. 2132 */ 2133 if (old_value == new_agino) 2134 return -EFSCORRUPTED; 2135 2136 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2137 offset = offsetof(struct xfs_agi, agi_unlinked) + 2138 (sizeof(xfs_agino_t) * bucket_index); 2139 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2140 return 0; 2141 } 2142 2143 /* Set an on-disk inode's next_unlinked pointer. */ 2144 STATIC void 2145 xfs_iunlink_update_dinode( 2146 struct xfs_trans *tp, 2147 xfs_agnumber_t agno, 2148 xfs_agino_t agino, 2149 struct xfs_buf *ibp, 2150 struct xfs_dinode *dip, 2151 struct xfs_imap *imap, 2152 xfs_agino_t next_agino) 2153 { 2154 struct xfs_mount *mp = tp->t_mountp; 2155 int offset; 2156 2157 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2158 2159 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2160 be32_to_cpu(dip->di_next_unlinked), next_agino); 2161 2162 dip->di_next_unlinked = cpu_to_be32(next_agino); 2163 offset = imap->im_boffset + 2164 offsetof(struct xfs_dinode, di_next_unlinked); 2165 2166 /* need to recalc the inode CRC if appropriate */ 2167 xfs_dinode_calc_crc(mp, dip); 2168 xfs_trans_inode_buf(tp, ibp); 2169 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2170 xfs_inobp_check(mp, ibp); 2171 } 2172 2173 /* Set an in-core inode's unlinked pointer and return the old value. */ 2174 STATIC int 2175 xfs_iunlink_update_inode( 2176 struct xfs_trans *tp, 2177 struct xfs_inode *ip, 2178 xfs_agnumber_t agno, 2179 xfs_agino_t next_agino, 2180 xfs_agino_t *old_next_agino) 2181 { 2182 struct xfs_mount *mp = tp->t_mountp; 2183 struct xfs_dinode *dip; 2184 struct xfs_buf *ibp; 2185 xfs_agino_t old_value; 2186 int error; 2187 2188 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2189 2190 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0); 2191 if (error) 2192 return error; 2193 2194 /* Make sure the old pointer isn't garbage. */ 2195 old_value = be32_to_cpu(dip->di_next_unlinked); 2196 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2197 error = -EFSCORRUPTED; 2198 goto out; 2199 } 2200 2201 /* 2202 * Since we're updating a linked list, we should never find that the 2203 * current pointer is the same as the new value, unless we're 2204 * terminating the list. 2205 */ 2206 *old_next_agino = old_value; 2207 if (old_value == next_agino) { 2208 if (next_agino != NULLAGINO) 2209 error = -EFSCORRUPTED; 2210 goto out; 2211 } 2212 2213 /* Ok, update the new pointer. */ 2214 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2215 ibp, dip, &ip->i_imap, next_agino); 2216 return 0; 2217 out: 2218 xfs_trans_brelse(tp, ibp); 2219 return error; 2220 } 2221 2222 /* 2223 * This is called when the inode's link count has gone to 0 or we are creating 2224 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2225 * 2226 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2227 * list when the inode is freed. 2228 */ 2229 STATIC int 2230 xfs_iunlink( 2231 struct xfs_trans *tp, 2232 struct xfs_inode *ip) 2233 { 2234 struct xfs_mount *mp = tp->t_mountp; 2235 struct xfs_agi *agi; 2236 struct xfs_buf *agibp; 2237 xfs_agino_t next_agino; 2238 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2239 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2240 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2241 int error; 2242 2243 ASSERT(VFS_I(ip)->i_nlink == 0); 2244 ASSERT(VFS_I(ip)->i_mode != 0); 2245 trace_xfs_iunlink(ip); 2246 2247 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2248 error = xfs_read_agi(mp, tp, agno, &agibp); 2249 if (error) 2250 return error; 2251 agi = XFS_BUF_TO_AGI(agibp); 2252 2253 /* 2254 * Get the index into the agi hash table for the list this inode will 2255 * go on. Make sure the pointer isn't garbage and that this inode 2256 * isn't already on the list. 2257 */ 2258 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2259 if (next_agino == agino || 2260 !xfs_verify_agino_or_null(mp, agno, next_agino)) 2261 return -EFSCORRUPTED; 2262 2263 if (next_agino != NULLAGINO) { 2264 struct xfs_perag *pag; 2265 xfs_agino_t old_agino; 2266 2267 /* 2268 * There is already another inode in the bucket, so point this 2269 * inode to the current head of the list. 2270 */ 2271 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2272 &old_agino); 2273 if (error) 2274 return error; 2275 ASSERT(old_agino == NULLAGINO); 2276 2277 /* 2278 * agino has been unlinked, add a backref from the next inode 2279 * back to agino. 2280 */ 2281 pag = xfs_perag_get(mp, agno); 2282 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2283 xfs_perag_put(pag); 2284 if (error) 2285 return error; 2286 } 2287 2288 /* Point the head of the list to point to this inode. */ 2289 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2290 } 2291 2292 /* Return the imap, dinode pointer, and buffer for an inode. */ 2293 STATIC int 2294 xfs_iunlink_map_ino( 2295 struct xfs_trans *tp, 2296 xfs_agnumber_t agno, 2297 xfs_agino_t agino, 2298 struct xfs_imap *imap, 2299 struct xfs_dinode **dipp, 2300 struct xfs_buf **bpp) 2301 { 2302 struct xfs_mount *mp = tp->t_mountp; 2303 int error; 2304 2305 imap->im_blkno = 0; 2306 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2307 if (error) { 2308 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2309 __func__, error); 2310 return error; 2311 } 2312 2313 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0); 2314 if (error) { 2315 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2316 __func__, error); 2317 return error; 2318 } 2319 2320 return 0; 2321 } 2322 2323 /* 2324 * Walk the unlinked chain from @head_agino until we find the inode that 2325 * points to @target_agino. Return the inode number, map, dinode pointer, 2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2327 * 2328 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2329 * @agino, @imap, @dipp, and @bpp are all output parameters. 2330 * 2331 * Do not call this function if @target_agino is the head of the list. 2332 */ 2333 STATIC int 2334 xfs_iunlink_map_prev( 2335 struct xfs_trans *tp, 2336 xfs_agnumber_t agno, 2337 xfs_agino_t head_agino, 2338 xfs_agino_t target_agino, 2339 xfs_agino_t *agino, 2340 struct xfs_imap *imap, 2341 struct xfs_dinode **dipp, 2342 struct xfs_buf **bpp, 2343 struct xfs_perag *pag) 2344 { 2345 struct xfs_mount *mp = tp->t_mountp; 2346 xfs_agino_t next_agino; 2347 int error; 2348 2349 ASSERT(head_agino != target_agino); 2350 *bpp = NULL; 2351 2352 /* See if our backref cache can find it faster. */ 2353 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2354 if (*agino != NULLAGINO) { 2355 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2356 if (error) 2357 return error; 2358 2359 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2360 return 0; 2361 2362 /* 2363 * If we get here the cache contents were corrupt, so drop the 2364 * buffer and fall back to walking the bucket list. 2365 */ 2366 xfs_trans_brelse(tp, *bpp); 2367 *bpp = NULL; 2368 WARN_ON_ONCE(1); 2369 } 2370 2371 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2372 2373 /* Otherwise, walk the entire bucket until we find it. */ 2374 next_agino = head_agino; 2375 while (next_agino != target_agino) { 2376 xfs_agino_t unlinked_agino; 2377 2378 if (*bpp) 2379 xfs_trans_brelse(tp, *bpp); 2380 2381 *agino = next_agino; 2382 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2383 bpp); 2384 if (error) 2385 return error; 2386 2387 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2388 /* 2389 * Make sure this pointer is valid and isn't an obvious 2390 * infinite loop. 2391 */ 2392 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2393 next_agino == unlinked_agino) { 2394 XFS_CORRUPTION_ERROR(__func__, 2395 XFS_ERRLEVEL_LOW, mp, 2396 *dipp, sizeof(**dipp)); 2397 error = -EFSCORRUPTED; 2398 return error; 2399 } 2400 next_agino = unlinked_agino; 2401 } 2402 2403 return 0; 2404 } 2405 2406 /* 2407 * Pull the on-disk inode from the AGI unlinked list. 2408 */ 2409 STATIC int 2410 xfs_iunlink_remove( 2411 struct xfs_trans *tp, 2412 struct xfs_inode *ip) 2413 { 2414 struct xfs_mount *mp = tp->t_mountp; 2415 struct xfs_agi *agi; 2416 struct xfs_buf *agibp; 2417 struct xfs_buf *last_ibp; 2418 struct xfs_dinode *last_dip = NULL; 2419 struct xfs_perag *pag = NULL; 2420 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2421 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2422 xfs_agino_t next_agino; 2423 xfs_agino_t head_agino; 2424 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2425 int error; 2426 2427 trace_xfs_iunlink_remove(ip); 2428 2429 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2430 error = xfs_read_agi(mp, tp, agno, &agibp); 2431 if (error) 2432 return error; 2433 agi = XFS_BUF_TO_AGI(agibp); 2434 2435 /* 2436 * Get the index into the agi hash table for the list this inode will 2437 * go on. Make sure the head pointer isn't garbage. 2438 */ 2439 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2440 if (!xfs_verify_agino(mp, agno, head_agino)) { 2441 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2442 agi, sizeof(*agi)); 2443 return -EFSCORRUPTED; 2444 } 2445 2446 /* 2447 * Set our inode's next_unlinked pointer to NULL and then return 2448 * the old pointer value so that we can update whatever was previous 2449 * to us in the list to point to whatever was next in the list. 2450 */ 2451 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2452 if (error) 2453 return error; 2454 2455 /* 2456 * If there was a backref pointing from the next inode back to this 2457 * one, remove it because we've removed this inode from the list. 2458 * 2459 * Later, if this inode was in the middle of the list we'll update 2460 * this inode's backref to point from the next inode. 2461 */ 2462 if (next_agino != NULLAGINO) { 2463 pag = xfs_perag_get(mp, agno); 2464 error = xfs_iunlink_change_backref(pag, next_agino, 2465 NULLAGINO); 2466 if (error) 2467 goto out; 2468 } 2469 2470 if (head_agino == agino) { 2471 /* Point the head of the list to the next unlinked inode. */ 2472 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2473 next_agino); 2474 if (error) 2475 goto out; 2476 } else { 2477 struct xfs_imap imap; 2478 xfs_agino_t prev_agino; 2479 2480 if (!pag) 2481 pag = xfs_perag_get(mp, agno); 2482 2483 /* We need to search the list for the inode being freed. */ 2484 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2485 &prev_agino, &imap, &last_dip, &last_ibp, 2486 pag); 2487 if (error) 2488 goto out; 2489 2490 /* Point the previous inode on the list to the next inode. */ 2491 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2492 last_dip, &imap, next_agino); 2493 2494 /* 2495 * Now we deal with the backref for this inode. If this inode 2496 * pointed at a real inode, change the backref that pointed to 2497 * us to point to our old next. If this inode was the end of 2498 * the list, delete the backref that pointed to us. Note that 2499 * change_backref takes care of deleting the backref if 2500 * next_agino is NULLAGINO. 2501 */ 2502 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2503 if (error) 2504 goto out; 2505 } 2506 2507 out: 2508 if (pag) 2509 xfs_perag_put(pag); 2510 return error; 2511 } 2512 2513 /* 2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2515 * inodes that are in memory - they all must be marked stale and attached to 2516 * the cluster buffer. 2517 */ 2518 STATIC int 2519 xfs_ifree_cluster( 2520 xfs_inode_t *free_ip, 2521 xfs_trans_t *tp, 2522 struct xfs_icluster *xic) 2523 { 2524 xfs_mount_t *mp = free_ip->i_mount; 2525 int nbufs; 2526 int i, j; 2527 int ioffset; 2528 xfs_daddr_t blkno; 2529 xfs_buf_t *bp; 2530 xfs_inode_t *ip; 2531 xfs_inode_log_item_t *iip; 2532 struct xfs_log_item *lip; 2533 struct xfs_perag *pag; 2534 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2535 xfs_ino_t inum; 2536 2537 inum = xic->first_ino; 2538 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2539 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2540 2541 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2542 /* 2543 * The allocation bitmap tells us which inodes of the chunk were 2544 * physically allocated. Skip the cluster if an inode falls into 2545 * a sparse region. 2546 */ 2547 ioffset = inum - xic->first_ino; 2548 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2549 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2550 continue; 2551 } 2552 2553 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2554 XFS_INO_TO_AGBNO(mp, inum)); 2555 2556 /* 2557 * We obtain and lock the backing buffer first in the process 2558 * here, as we have to ensure that any dirty inode that we 2559 * can't get the flush lock on is attached to the buffer. 2560 * If we scan the in-memory inodes first, then buffer IO can 2561 * complete before we get a lock on it, and hence we may fail 2562 * to mark all the active inodes on the buffer stale. 2563 */ 2564 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2565 mp->m_bsize * igeo->blocks_per_cluster, 2566 XBF_UNMAPPED); 2567 2568 if (!bp) 2569 return -ENOMEM; 2570 2571 /* 2572 * This buffer may not have been correctly initialised as we 2573 * didn't read it from disk. That's not important because we are 2574 * only using to mark the buffer as stale in the log, and to 2575 * attach stale cached inodes on it. That means it will never be 2576 * dispatched for IO. If it is, we want to know about it, and we 2577 * want it to fail. We can acheive this by adding a write 2578 * verifier to the buffer. 2579 */ 2580 bp->b_ops = &xfs_inode_buf_ops; 2581 2582 /* 2583 * Walk the inodes already attached to the buffer and mark them 2584 * stale. These will all have the flush locks held, so an 2585 * in-memory inode walk can't lock them. By marking them all 2586 * stale first, we will not attempt to lock them in the loop 2587 * below as the XFS_ISTALE flag will be set. 2588 */ 2589 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2590 if (lip->li_type == XFS_LI_INODE) { 2591 iip = (xfs_inode_log_item_t *)lip; 2592 ASSERT(iip->ili_logged == 1); 2593 lip->li_cb = xfs_istale_done; 2594 xfs_trans_ail_copy_lsn(mp->m_ail, 2595 &iip->ili_flush_lsn, 2596 &iip->ili_item.li_lsn); 2597 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2598 } 2599 } 2600 2601 2602 /* 2603 * For each inode in memory attempt to add it to the inode 2604 * buffer and set it up for being staled on buffer IO 2605 * completion. This is safe as we've locked out tail pushing 2606 * and flushing by locking the buffer. 2607 * 2608 * We have already marked every inode that was part of a 2609 * transaction stale above, which means there is no point in 2610 * even trying to lock them. 2611 */ 2612 for (i = 0; i < igeo->inodes_per_cluster; i++) { 2613 retry: 2614 rcu_read_lock(); 2615 ip = radix_tree_lookup(&pag->pag_ici_root, 2616 XFS_INO_TO_AGINO(mp, (inum + i))); 2617 2618 /* Inode not in memory, nothing to do */ 2619 if (!ip) { 2620 rcu_read_unlock(); 2621 continue; 2622 } 2623 2624 /* 2625 * because this is an RCU protected lookup, we could 2626 * find a recently freed or even reallocated inode 2627 * during the lookup. We need to check under the 2628 * i_flags_lock for a valid inode here. Skip it if it 2629 * is not valid, the wrong inode or stale. 2630 */ 2631 spin_lock(&ip->i_flags_lock); 2632 if (ip->i_ino != inum + i || 2633 __xfs_iflags_test(ip, XFS_ISTALE)) { 2634 spin_unlock(&ip->i_flags_lock); 2635 rcu_read_unlock(); 2636 continue; 2637 } 2638 spin_unlock(&ip->i_flags_lock); 2639 2640 /* 2641 * Don't try to lock/unlock the current inode, but we 2642 * _cannot_ skip the other inodes that we did not find 2643 * in the list attached to the buffer and are not 2644 * already marked stale. If we can't lock it, back off 2645 * and retry. 2646 */ 2647 if (ip != free_ip) { 2648 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2649 rcu_read_unlock(); 2650 delay(1); 2651 goto retry; 2652 } 2653 2654 /* 2655 * Check the inode number again in case we're 2656 * racing with freeing in xfs_reclaim_inode(). 2657 * See the comments in that function for more 2658 * information as to why the initial check is 2659 * not sufficient. 2660 */ 2661 if (ip->i_ino != inum + i) { 2662 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2663 rcu_read_unlock(); 2664 continue; 2665 } 2666 } 2667 rcu_read_unlock(); 2668 2669 xfs_iflock(ip); 2670 xfs_iflags_set(ip, XFS_ISTALE); 2671 2672 /* 2673 * we don't need to attach clean inodes or those only 2674 * with unlogged changes (which we throw away, anyway). 2675 */ 2676 iip = ip->i_itemp; 2677 if (!iip || xfs_inode_clean(ip)) { 2678 ASSERT(ip != free_ip); 2679 xfs_ifunlock(ip); 2680 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2681 continue; 2682 } 2683 2684 iip->ili_last_fields = iip->ili_fields; 2685 iip->ili_fields = 0; 2686 iip->ili_fsync_fields = 0; 2687 iip->ili_logged = 1; 2688 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2689 &iip->ili_item.li_lsn); 2690 2691 xfs_buf_attach_iodone(bp, xfs_istale_done, 2692 &iip->ili_item); 2693 2694 if (ip != free_ip) 2695 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2696 } 2697 2698 xfs_trans_stale_inode_buf(tp, bp); 2699 xfs_trans_binval(tp, bp); 2700 } 2701 2702 xfs_perag_put(pag); 2703 return 0; 2704 } 2705 2706 /* 2707 * Free any local-format buffers sitting around before we reset to 2708 * extents format. 2709 */ 2710 static inline void 2711 xfs_ifree_local_data( 2712 struct xfs_inode *ip, 2713 int whichfork) 2714 { 2715 struct xfs_ifork *ifp; 2716 2717 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2718 return; 2719 2720 ifp = XFS_IFORK_PTR(ip, whichfork); 2721 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2722 } 2723 2724 /* 2725 * This is called to return an inode to the inode free list. 2726 * The inode should already be truncated to 0 length and have 2727 * no pages associated with it. This routine also assumes that 2728 * the inode is already a part of the transaction. 2729 * 2730 * The on-disk copy of the inode will have been added to the list 2731 * of unlinked inodes in the AGI. We need to remove the inode from 2732 * that list atomically with respect to freeing it here. 2733 */ 2734 int 2735 xfs_ifree( 2736 struct xfs_trans *tp, 2737 struct xfs_inode *ip) 2738 { 2739 int error; 2740 struct xfs_icluster xic = { 0 }; 2741 2742 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2743 ASSERT(VFS_I(ip)->i_nlink == 0); 2744 ASSERT(ip->i_d.di_nextents == 0); 2745 ASSERT(ip->i_d.di_anextents == 0); 2746 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2747 ASSERT(ip->i_d.di_nblocks == 0); 2748 2749 /* 2750 * Pull the on-disk inode from the AGI unlinked list. 2751 */ 2752 error = xfs_iunlink_remove(tp, ip); 2753 if (error) 2754 return error; 2755 2756 error = xfs_difree(tp, ip->i_ino, &xic); 2757 if (error) 2758 return error; 2759 2760 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2761 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2762 2763 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2764 ip->i_d.di_flags = 0; 2765 ip->i_d.di_flags2 = 0; 2766 ip->i_d.di_dmevmask = 0; 2767 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2768 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2769 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2770 2771 /* Don't attempt to replay owner changes for a deleted inode */ 2772 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2773 2774 /* 2775 * Bump the generation count so no one will be confused 2776 * by reincarnations of this inode. 2777 */ 2778 VFS_I(ip)->i_generation++; 2779 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2780 2781 if (xic.deleted) 2782 error = xfs_ifree_cluster(ip, tp, &xic); 2783 2784 return error; 2785 } 2786 2787 /* 2788 * This is called to unpin an inode. The caller must have the inode locked 2789 * in at least shared mode so that the buffer cannot be subsequently pinned 2790 * once someone is waiting for it to be unpinned. 2791 */ 2792 static void 2793 xfs_iunpin( 2794 struct xfs_inode *ip) 2795 { 2796 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2797 2798 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2799 2800 /* Give the log a push to start the unpinning I/O */ 2801 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2802 2803 } 2804 2805 static void 2806 __xfs_iunpin_wait( 2807 struct xfs_inode *ip) 2808 { 2809 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2810 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2811 2812 xfs_iunpin(ip); 2813 2814 do { 2815 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2816 if (xfs_ipincount(ip)) 2817 io_schedule(); 2818 } while (xfs_ipincount(ip)); 2819 finish_wait(wq, &wait.wq_entry); 2820 } 2821 2822 void 2823 xfs_iunpin_wait( 2824 struct xfs_inode *ip) 2825 { 2826 if (xfs_ipincount(ip)) 2827 __xfs_iunpin_wait(ip); 2828 } 2829 2830 /* 2831 * Removing an inode from the namespace involves removing the directory entry 2832 * and dropping the link count on the inode. Removing the directory entry can 2833 * result in locking an AGF (directory blocks were freed) and removing a link 2834 * count can result in placing the inode on an unlinked list which results in 2835 * locking an AGI. 2836 * 2837 * The big problem here is that we have an ordering constraint on AGF and AGI 2838 * locking - inode allocation locks the AGI, then can allocate a new extent for 2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2840 * removes the inode from the unlinked list, requiring that we lock the AGI 2841 * first, and then freeing the inode can result in an inode chunk being freed 2842 * and hence freeing disk space requiring that we lock an AGF. 2843 * 2844 * Hence the ordering that is imposed by other parts of the code is AGI before 2845 * AGF. This means we cannot remove the directory entry before we drop the inode 2846 * reference count and put it on the unlinked list as this results in a lock 2847 * order of AGF then AGI, and this can deadlock against inode allocation and 2848 * freeing. Therefore we must drop the link counts before we remove the 2849 * directory entry. 2850 * 2851 * This is still safe from a transactional point of view - it is not until we 2852 * get to xfs_defer_finish() that we have the possibility of multiple 2853 * transactions in this operation. Hence as long as we remove the directory 2854 * entry and drop the link count in the first transaction of the remove 2855 * operation, there are no transactional constraints on the ordering here. 2856 */ 2857 int 2858 xfs_remove( 2859 xfs_inode_t *dp, 2860 struct xfs_name *name, 2861 xfs_inode_t *ip) 2862 { 2863 xfs_mount_t *mp = dp->i_mount; 2864 xfs_trans_t *tp = NULL; 2865 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2866 int error = 0; 2867 uint resblks; 2868 2869 trace_xfs_remove(dp, name); 2870 2871 if (XFS_FORCED_SHUTDOWN(mp)) 2872 return -EIO; 2873 2874 error = xfs_qm_dqattach(dp); 2875 if (error) 2876 goto std_return; 2877 2878 error = xfs_qm_dqattach(ip); 2879 if (error) 2880 goto std_return; 2881 2882 /* 2883 * We try to get the real space reservation first, 2884 * allowing for directory btree deletion(s) implying 2885 * possible bmap insert(s). If we can't get the space 2886 * reservation then we use 0 instead, and avoid the bmap 2887 * btree insert(s) in the directory code by, if the bmap 2888 * insert tries to happen, instead trimming the LAST 2889 * block from the directory. 2890 */ 2891 resblks = XFS_REMOVE_SPACE_RES(mp); 2892 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2893 if (error == -ENOSPC) { 2894 resblks = 0; 2895 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2896 &tp); 2897 } 2898 if (error) { 2899 ASSERT(error != -ENOSPC); 2900 goto std_return; 2901 } 2902 2903 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2904 2905 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2906 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2907 2908 /* 2909 * If we're removing a directory perform some additional validation. 2910 */ 2911 if (is_dir) { 2912 ASSERT(VFS_I(ip)->i_nlink >= 2); 2913 if (VFS_I(ip)->i_nlink != 2) { 2914 error = -ENOTEMPTY; 2915 goto out_trans_cancel; 2916 } 2917 if (!xfs_dir_isempty(ip)) { 2918 error = -ENOTEMPTY; 2919 goto out_trans_cancel; 2920 } 2921 2922 /* Drop the link from ip's "..". */ 2923 error = xfs_droplink(tp, dp); 2924 if (error) 2925 goto out_trans_cancel; 2926 2927 /* Drop the "." link from ip to self. */ 2928 error = xfs_droplink(tp, ip); 2929 if (error) 2930 goto out_trans_cancel; 2931 } else { 2932 /* 2933 * When removing a non-directory we need to log the parent 2934 * inode here. For a directory this is done implicitly 2935 * by the xfs_droplink call for the ".." entry. 2936 */ 2937 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2938 } 2939 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2940 2941 /* Drop the link from dp to ip. */ 2942 error = xfs_droplink(tp, ip); 2943 if (error) 2944 goto out_trans_cancel; 2945 2946 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2947 if (error) { 2948 ASSERT(error != -ENOENT); 2949 goto out_trans_cancel; 2950 } 2951 2952 /* 2953 * If this is a synchronous mount, make sure that the 2954 * remove transaction goes to disk before returning to 2955 * the user. 2956 */ 2957 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2958 xfs_trans_set_sync(tp); 2959 2960 error = xfs_trans_commit(tp); 2961 if (error) 2962 goto std_return; 2963 2964 if (is_dir && xfs_inode_is_filestream(ip)) 2965 xfs_filestream_deassociate(ip); 2966 2967 return 0; 2968 2969 out_trans_cancel: 2970 xfs_trans_cancel(tp); 2971 std_return: 2972 return error; 2973 } 2974 2975 /* 2976 * Enter all inodes for a rename transaction into a sorted array. 2977 */ 2978 #define __XFS_SORT_INODES 5 2979 STATIC void 2980 xfs_sort_for_rename( 2981 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2982 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2983 struct xfs_inode *ip1, /* in: inode of old entry */ 2984 struct xfs_inode *ip2, /* in: inode of new entry */ 2985 struct xfs_inode *wip, /* in: whiteout inode */ 2986 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2987 int *num_inodes) /* in/out: inodes in array */ 2988 { 2989 int i, j; 2990 2991 ASSERT(*num_inodes == __XFS_SORT_INODES); 2992 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2993 2994 /* 2995 * i_tab contains a list of pointers to inodes. We initialize 2996 * the table here & we'll sort it. We will then use it to 2997 * order the acquisition of the inode locks. 2998 * 2999 * Note that the table may contain duplicates. e.g., dp1 == dp2. 3000 */ 3001 i = 0; 3002 i_tab[i++] = dp1; 3003 i_tab[i++] = dp2; 3004 i_tab[i++] = ip1; 3005 if (ip2) 3006 i_tab[i++] = ip2; 3007 if (wip) 3008 i_tab[i++] = wip; 3009 *num_inodes = i; 3010 3011 /* 3012 * Sort the elements via bubble sort. (Remember, there are at 3013 * most 5 elements to sort, so this is adequate.) 3014 */ 3015 for (i = 0; i < *num_inodes; i++) { 3016 for (j = 1; j < *num_inodes; j++) { 3017 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3018 struct xfs_inode *temp = i_tab[j]; 3019 i_tab[j] = i_tab[j-1]; 3020 i_tab[j-1] = temp; 3021 } 3022 } 3023 } 3024 } 3025 3026 static int 3027 xfs_finish_rename( 3028 struct xfs_trans *tp) 3029 { 3030 /* 3031 * If this is a synchronous mount, make sure that the rename transaction 3032 * goes to disk before returning to the user. 3033 */ 3034 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3035 xfs_trans_set_sync(tp); 3036 3037 return xfs_trans_commit(tp); 3038 } 3039 3040 /* 3041 * xfs_cross_rename() 3042 * 3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3044 */ 3045 STATIC int 3046 xfs_cross_rename( 3047 struct xfs_trans *tp, 3048 struct xfs_inode *dp1, 3049 struct xfs_name *name1, 3050 struct xfs_inode *ip1, 3051 struct xfs_inode *dp2, 3052 struct xfs_name *name2, 3053 struct xfs_inode *ip2, 3054 int spaceres) 3055 { 3056 int error = 0; 3057 int ip1_flags = 0; 3058 int ip2_flags = 0; 3059 int dp2_flags = 0; 3060 3061 /* Swap inode number for dirent in first parent */ 3062 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3063 if (error) 3064 goto out_trans_abort; 3065 3066 /* Swap inode number for dirent in second parent */ 3067 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3068 if (error) 3069 goto out_trans_abort; 3070 3071 /* 3072 * If we're renaming one or more directories across different parents, 3073 * update the respective ".." entries (and link counts) to match the new 3074 * parents. 3075 */ 3076 if (dp1 != dp2) { 3077 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3078 3079 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3080 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3081 dp1->i_ino, spaceres); 3082 if (error) 3083 goto out_trans_abort; 3084 3085 /* transfer ip2 ".." reference to dp1 */ 3086 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3087 error = xfs_droplink(tp, dp2); 3088 if (error) 3089 goto out_trans_abort; 3090 xfs_bumplink(tp, dp1); 3091 } 3092 3093 /* 3094 * Although ip1 isn't changed here, userspace needs 3095 * to be warned about the change, so that applications 3096 * relying on it (like backup ones), will properly 3097 * notify the change 3098 */ 3099 ip1_flags |= XFS_ICHGTIME_CHG; 3100 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3101 } 3102 3103 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3104 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3105 dp2->i_ino, spaceres); 3106 if (error) 3107 goto out_trans_abort; 3108 3109 /* transfer ip1 ".." reference to dp2 */ 3110 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3111 error = xfs_droplink(tp, dp1); 3112 if (error) 3113 goto out_trans_abort; 3114 xfs_bumplink(tp, dp2); 3115 } 3116 3117 /* 3118 * Although ip2 isn't changed here, userspace needs 3119 * to be warned about the change, so that applications 3120 * relying on it (like backup ones), will properly 3121 * notify the change 3122 */ 3123 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3124 ip2_flags |= XFS_ICHGTIME_CHG; 3125 } 3126 } 3127 3128 if (ip1_flags) { 3129 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3130 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3131 } 3132 if (ip2_flags) { 3133 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3134 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3135 } 3136 if (dp2_flags) { 3137 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3138 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3139 } 3140 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3141 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3142 return xfs_finish_rename(tp); 3143 3144 out_trans_abort: 3145 xfs_trans_cancel(tp); 3146 return error; 3147 } 3148 3149 /* 3150 * xfs_rename_alloc_whiteout() 3151 * 3152 * Return a referenced, unlinked, unlocked inode that that can be used as a 3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3154 * crash between allocating the inode and linking it into the rename transaction 3155 * recovery will free the inode and we won't leak it. 3156 */ 3157 static int 3158 xfs_rename_alloc_whiteout( 3159 struct xfs_inode *dp, 3160 struct xfs_inode **wip) 3161 { 3162 struct xfs_inode *tmpfile; 3163 int error; 3164 3165 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3166 if (error) 3167 return error; 3168 3169 /* 3170 * Prepare the tmpfile inode as if it were created through the VFS. 3171 * Complete the inode setup and flag it as linkable. nlink is already 3172 * zero, so we can skip the drop_nlink. 3173 */ 3174 xfs_setup_iops(tmpfile); 3175 xfs_finish_inode_setup(tmpfile); 3176 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3177 3178 *wip = tmpfile; 3179 return 0; 3180 } 3181 3182 /* 3183 * xfs_rename 3184 */ 3185 int 3186 xfs_rename( 3187 struct xfs_inode *src_dp, 3188 struct xfs_name *src_name, 3189 struct xfs_inode *src_ip, 3190 struct xfs_inode *target_dp, 3191 struct xfs_name *target_name, 3192 struct xfs_inode *target_ip, 3193 unsigned int flags) 3194 { 3195 struct xfs_mount *mp = src_dp->i_mount; 3196 struct xfs_trans *tp; 3197 struct xfs_inode *wip = NULL; /* whiteout inode */ 3198 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3199 int num_inodes = __XFS_SORT_INODES; 3200 bool new_parent = (src_dp != target_dp); 3201 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3202 int spaceres; 3203 int error; 3204 3205 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3206 3207 if ((flags & RENAME_EXCHANGE) && !target_ip) 3208 return -EINVAL; 3209 3210 /* 3211 * If we are doing a whiteout operation, allocate the whiteout inode 3212 * we will be placing at the target and ensure the type is set 3213 * appropriately. 3214 */ 3215 if (flags & RENAME_WHITEOUT) { 3216 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3217 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3218 if (error) 3219 return error; 3220 3221 /* setup target dirent info as whiteout */ 3222 src_name->type = XFS_DIR3_FT_CHRDEV; 3223 } 3224 3225 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3226 inodes, &num_inodes); 3227 3228 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3229 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3230 if (error == -ENOSPC) { 3231 spaceres = 0; 3232 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3233 &tp); 3234 } 3235 if (error) 3236 goto out_release_wip; 3237 3238 /* 3239 * Attach the dquots to the inodes 3240 */ 3241 error = xfs_qm_vop_rename_dqattach(inodes); 3242 if (error) 3243 goto out_trans_cancel; 3244 3245 /* 3246 * Lock all the participating inodes. Depending upon whether 3247 * the target_name exists in the target directory, and 3248 * whether the target directory is the same as the source 3249 * directory, we can lock from 2 to 4 inodes. 3250 */ 3251 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3252 3253 /* 3254 * Join all the inodes to the transaction. From this point on, 3255 * we can rely on either trans_commit or trans_cancel to unlock 3256 * them. 3257 */ 3258 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3259 if (new_parent) 3260 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3261 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3262 if (target_ip) 3263 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3264 if (wip) 3265 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3266 3267 /* 3268 * If we are using project inheritance, we only allow renames 3269 * into our tree when the project IDs are the same; else the 3270 * tree quota mechanism would be circumvented. 3271 */ 3272 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3273 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3274 error = -EXDEV; 3275 goto out_trans_cancel; 3276 } 3277 3278 /* RENAME_EXCHANGE is unique from here on. */ 3279 if (flags & RENAME_EXCHANGE) 3280 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3281 target_dp, target_name, target_ip, 3282 spaceres); 3283 3284 /* 3285 * Set up the target. 3286 */ 3287 if (target_ip == NULL) { 3288 /* 3289 * If there's no space reservation, check the entry will 3290 * fit before actually inserting it. 3291 */ 3292 if (!spaceres) { 3293 error = xfs_dir_canenter(tp, target_dp, target_name); 3294 if (error) 3295 goto out_trans_cancel; 3296 } 3297 /* 3298 * If target does not exist and the rename crosses 3299 * directories, adjust the target directory link count 3300 * to account for the ".." reference from the new entry. 3301 */ 3302 error = xfs_dir_createname(tp, target_dp, target_name, 3303 src_ip->i_ino, spaceres); 3304 if (error) 3305 goto out_trans_cancel; 3306 3307 xfs_trans_ichgtime(tp, target_dp, 3308 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3309 3310 if (new_parent && src_is_directory) { 3311 xfs_bumplink(tp, target_dp); 3312 } 3313 } else { /* target_ip != NULL */ 3314 /* 3315 * If target exists and it's a directory, check that both 3316 * target and source are directories and that target can be 3317 * destroyed, or that neither is a directory. 3318 */ 3319 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3320 /* 3321 * Make sure target dir is empty. 3322 */ 3323 if (!(xfs_dir_isempty(target_ip)) || 3324 (VFS_I(target_ip)->i_nlink > 2)) { 3325 error = -EEXIST; 3326 goto out_trans_cancel; 3327 } 3328 } 3329 3330 /* 3331 * Link the source inode under the target name. 3332 * If the source inode is a directory and we are moving 3333 * it across directories, its ".." entry will be 3334 * inconsistent until we replace that down below. 3335 * 3336 * In case there is already an entry with the same 3337 * name at the destination directory, remove it first. 3338 */ 3339 error = xfs_dir_replace(tp, target_dp, target_name, 3340 src_ip->i_ino, spaceres); 3341 if (error) 3342 goto out_trans_cancel; 3343 3344 xfs_trans_ichgtime(tp, target_dp, 3345 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3346 3347 /* 3348 * Decrement the link count on the target since the target 3349 * dir no longer points to it. 3350 */ 3351 error = xfs_droplink(tp, target_ip); 3352 if (error) 3353 goto out_trans_cancel; 3354 3355 if (src_is_directory) { 3356 /* 3357 * Drop the link from the old "." entry. 3358 */ 3359 error = xfs_droplink(tp, target_ip); 3360 if (error) 3361 goto out_trans_cancel; 3362 } 3363 } /* target_ip != NULL */ 3364 3365 /* 3366 * Remove the source. 3367 */ 3368 if (new_parent && src_is_directory) { 3369 /* 3370 * Rewrite the ".." entry to point to the new 3371 * directory. 3372 */ 3373 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3374 target_dp->i_ino, spaceres); 3375 ASSERT(error != -EEXIST); 3376 if (error) 3377 goto out_trans_cancel; 3378 } 3379 3380 /* 3381 * We always want to hit the ctime on the source inode. 3382 * 3383 * This isn't strictly required by the standards since the source 3384 * inode isn't really being changed, but old unix file systems did 3385 * it and some incremental backup programs won't work without it. 3386 */ 3387 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3388 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3389 3390 /* 3391 * Adjust the link count on src_dp. This is necessary when 3392 * renaming a directory, either within one parent when 3393 * the target existed, or across two parent directories. 3394 */ 3395 if (src_is_directory && (new_parent || target_ip != NULL)) { 3396 3397 /* 3398 * Decrement link count on src_directory since the 3399 * entry that's moved no longer points to it. 3400 */ 3401 error = xfs_droplink(tp, src_dp); 3402 if (error) 3403 goto out_trans_cancel; 3404 } 3405 3406 /* 3407 * For whiteouts, we only need to update the source dirent with the 3408 * inode number of the whiteout inode rather than removing it 3409 * altogether. 3410 */ 3411 if (wip) { 3412 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3413 spaceres); 3414 } else 3415 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3416 spaceres); 3417 if (error) 3418 goto out_trans_cancel; 3419 3420 /* 3421 * For whiteouts, we need to bump the link count on the whiteout inode. 3422 * This means that failures all the way up to this point leave the inode 3423 * on the unlinked list and so cleanup is a simple matter of dropping 3424 * the remaining reference to it. If we fail here after bumping the link 3425 * count, we're shutting down the filesystem so we'll never see the 3426 * intermediate state on disk. 3427 */ 3428 if (wip) { 3429 ASSERT(VFS_I(wip)->i_nlink == 0); 3430 xfs_bumplink(tp, wip); 3431 error = xfs_iunlink_remove(tp, wip); 3432 if (error) 3433 goto out_trans_cancel; 3434 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3435 3436 /* 3437 * Now we have a real link, clear the "I'm a tmpfile" state 3438 * flag from the inode so it doesn't accidentally get misused in 3439 * future. 3440 */ 3441 VFS_I(wip)->i_state &= ~I_LINKABLE; 3442 } 3443 3444 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3445 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3446 if (new_parent) 3447 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3448 3449 error = xfs_finish_rename(tp); 3450 if (wip) 3451 xfs_irele(wip); 3452 return error; 3453 3454 out_trans_cancel: 3455 xfs_trans_cancel(tp); 3456 out_release_wip: 3457 if (wip) 3458 xfs_irele(wip); 3459 return error; 3460 } 3461 3462 STATIC int 3463 xfs_iflush_cluster( 3464 struct xfs_inode *ip, 3465 struct xfs_buf *bp) 3466 { 3467 struct xfs_mount *mp = ip->i_mount; 3468 struct xfs_perag *pag; 3469 unsigned long first_index, mask; 3470 int cilist_size; 3471 struct xfs_inode **cilist; 3472 struct xfs_inode *cip; 3473 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3474 int nr_found; 3475 int clcount = 0; 3476 int i; 3477 3478 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3479 3480 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); 3481 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3482 if (!cilist) 3483 goto out_put; 3484 3485 mask = ~(igeo->inodes_per_cluster - 1); 3486 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3487 rcu_read_lock(); 3488 /* really need a gang lookup range call here */ 3489 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3490 first_index, igeo->inodes_per_cluster); 3491 if (nr_found == 0) 3492 goto out_free; 3493 3494 for (i = 0; i < nr_found; i++) { 3495 cip = cilist[i]; 3496 if (cip == ip) 3497 continue; 3498 3499 /* 3500 * because this is an RCU protected lookup, we could find a 3501 * recently freed or even reallocated inode during the lookup. 3502 * We need to check under the i_flags_lock for a valid inode 3503 * here. Skip it if it is not valid or the wrong inode. 3504 */ 3505 spin_lock(&cip->i_flags_lock); 3506 if (!cip->i_ino || 3507 __xfs_iflags_test(cip, XFS_ISTALE)) { 3508 spin_unlock(&cip->i_flags_lock); 3509 continue; 3510 } 3511 3512 /* 3513 * Once we fall off the end of the cluster, no point checking 3514 * any more inodes in the list because they will also all be 3515 * outside the cluster. 3516 */ 3517 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3518 spin_unlock(&cip->i_flags_lock); 3519 break; 3520 } 3521 spin_unlock(&cip->i_flags_lock); 3522 3523 /* 3524 * Do an un-protected check to see if the inode is dirty and 3525 * is a candidate for flushing. These checks will be repeated 3526 * later after the appropriate locks are acquired. 3527 */ 3528 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3529 continue; 3530 3531 /* 3532 * Try to get locks. If any are unavailable or it is pinned, 3533 * then this inode cannot be flushed and is skipped. 3534 */ 3535 3536 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3537 continue; 3538 if (!xfs_iflock_nowait(cip)) { 3539 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3540 continue; 3541 } 3542 if (xfs_ipincount(cip)) { 3543 xfs_ifunlock(cip); 3544 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3545 continue; 3546 } 3547 3548 3549 /* 3550 * Check the inode number again, just to be certain we are not 3551 * racing with freeing in xfs_reclaim_inode(). See the comments 3552 * in that function for more information as to why the initial 3553 * check is not sufficient. 3554 */ 3555 if (!cip->i_ino) { 3556 xfs_ifunlock(cip); 3557 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3558 continue; 3559 } 3560 3561 /* 3562 * arriving here means that this inode can be flushed. First 3563 * re-check that it's dirty before flushing. 3564 */ 3565 if (!xfs_inode_clean(cip)) { 3566 int error; 3567 error = xfs_iflush_int(cip, bp); 3568 if (error) { 3569 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3570 goto cluster_corrupt_out; 3571 } 3572 clcount++; 3573 } else { 3574 xfs_ifunlock(cip); 3575 } 3576 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3577 } 3578 3579 if (clcount) { 3580 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3581 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3582 } 3583 3584 out_free: 3585 rcu_read_unlock(); 3586 kmem_free(cilist); 3587 out_put: 3588 xfs_perag_put(pag); 3589 return 0; 3590 3591 3592 cluster_corrupt_out: 3593 /* 3594 * Corruption detected in the clustering loop. Invalidate the 3595 * inode buffer and shut down the filesystem. 3596 */ 3597 rcu_read_unlock(); 3598 3599 /* 3600 * We'll always have an inode attached to the buffer for completion 3601 * process by the time we are called from xfs_iflush(). Hence we have 3602 * always need to do IO completion processing to abort the inodes 3603 * attached to the buffer. handle them just like the shutdown case in 3604 * xfs_buf_submit(). 3605 */ 3606 ASSERT(bp->b_iodone); 3607 bp->b_flags |= XBF_ASYNC; 3608 bp->b_flags &= ~XBF_DONE; 3609 xfs_buf_stale(bp); 3610 xfs_buf_ioerror(bp, -EIO); 3611 xfs_buf_ioend(bp); 3612 3613 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3614 3615 /* abort the corrupt inode, as it was not attached to the buffer */ 3616 xfs_iflush_abort(cip, false); 3617 kmem_free(cilist); 3618 xfs_perag_put(pag); 3619 return -EFSCORRUPTED; 3620 } 3621 3622 /* 3623 * Flush dirty inode metadata into the backing buffer. 3624 * 3625 * The caller must have the inode lock and the inode flush lock held. The 3626 * inode lock will still be held upon return to the caller, and the inode 3627 * flush lock will be released after the inode has reached the disk. 3628 * 3629 * The caller must write out the buffer returned in *bpp and release it. 3630 */ 3631 int 3632 xfs_iflush( 3633 struct xfs_inode *ip, 3634 struct xfs_buf **bpp) 3635 { 3636 struct xfs_mount *mp = ip->i_mount; 3637 struct xfs_buf *bp = NULL; 3638 struct xfs_dinode *dip; 3639 int error; 3640 3641 XFS_STATS_INC(mp, xs_iflush_count); 3642 3643 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3644 ASSERT(xfs_isiflocked(ip)); 3645 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3646 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3647 3648 *bpp = NULL; 3649 3650 xfs_iunpin_wait(ip); 3651 3652 /* 3653 * For stale inodes we cannot rely on the backing buffer remaining 3654 * stale in cache for the remaining life of the stale inode and so 3655 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3656 * inodes below. We have to check this after ensuring the inode is 3657 * unpinned so that it is safe to reclaim the stale inode after the 3658 * flush call. 3659 */ 3660 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3661 xfs_ifunlock(ip); 3662 return 0; 3663 } 3664 3665 /* 3666 * This may have been unpinned because the filesystem is shutting 3667 * down forcibly. If that's the case we must not write this inode 3668 * to disk, because the log record didn't make it to disk. 3669 * 3670 * We also have to remove the log item from the AIL in this case, 3671 * as we wait for an empty AIL as part of the unmount process. 3672 */ 3673 if (XFS_FORCED_SHUTDOWN(mp)) { 3674 error = -EIO; 3675 goto abort_out; 3676 } 3677 3678 /* 3679 * Get the buffer containing the on-disk inode. We are doing a try-lock 3680 * operation here, so we may get an EAGAIN error. In that case, we 3681 * simply want to return with the inode still dirty. 3682 * 3683 * If we get any other error, we effectively have a corruption situation 3684 * and we cannot flush the inode, so we treat it the same as failing 3685 * xfs_iflush_int(). 3686 */ 3687 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3688 0); 3689 if (error == -EAGAIN) { 3690 xfs_ifunlock(ip); 3691 return error; 3692 } 3693 if (error) 3694 goto corrupt_out; 3695 3696 /* 3697 * First flush out the inode that xfs_iflush was called with. 3698 */ 3699 error = xfs_iflush_int(ip, bp); 3700 if (error) 3701 goto corrupt_out; 3702 3703 /* 3704 * If the buffer is pinned then push on the log now so we won't 3705 * get stuck waiting in the write for too long. 3706 */ 3707 if (xfs_buf_ispinned(bp)) 3708 xfs_log_force(mp, 0); 3709 3710 /* 3711 * inode clustering: try to gather other inodes into this write 3712 * 3713 * Note: Any error during clustering will result in the filesystem 3714 * being shut down and completion callbacks run on the cluster buffer. 3715 * As we have already flushed and attached this inode to the buffer, 3716 * it has already been aborted and released by xfs_iflush_cluster() and 3717 * so we have no further error handling to do here. 3718 */ 3719 error = xfs_iflush_cluster(ip, bp); 3720 if (error) 3721 return error; 3722 3723 *bpp = bp; 3724 return 0; 3725 3726 corrupt_out: 3727 if (bp) 3728 xfs_buf_relse(bp); 3729 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3730 abort_out: 3731 /* abort the corrupt inode, as it was not attached to the buffer */ 3732 xfs_iflush_abort(ip, false); 3733 return error; 3734 } 3735 3736 /* 3737 * If there are inline format data / attr forks attached to this inode, 3738 * make sure they're not corrupt. 3739 */ 3740 bool 3741 xfs_inode_verify_forks( 3742 struct xfs_inode *ip) 3743 { 3744 struct xfs_ifork *ifp; 3745 xfs_failaddr_t fa; 3746 3747 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3748 if (fa) { 3749 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3750 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3751 ifp->if_u1.if_data, ifp->if_bytes, fa); 3752 return false; 3753 } 3754 3755 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3756 if (fa) { 3757 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3758 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3759 ifp ? ifp->if_u1.if_data : NULL, 3760 ifp ? ifp->if_bytes : 0, fa); 3761 return false; 3762 } 3763 return true; 3764 } 3765 3766 STATIC int 3767 xfs_iflush_int( 3768 struct xfs_inode *ip, 3769 struct xfs_buf *bp) 3770 { 3771 struct xfs_inode_log_item *iip = ip->i_itemp; 3772 struct xfs_dinode *dip; 3773 struct xfs_mount *mp = ip->i_mount; 3774 3775 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3776 ASSERT(xfs_isiflocked(ip)); 3777 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3778 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3779 ASSERT(iip != NULL && iip->ili_fields != 0); 3780 ASSERT(ip->i_d.di_version > 1); 3781 3782 /* set *dip = inode's place in the buffer */ 3783 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3784 3785 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3786 mp, XFS_ERRTAG_IFLUSH_1)) { 3787 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3788 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3789 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3790 goto corrupt_out; 3791 } 3792 if (S_ISREG(VFS_I(ip)->i_mode)) { 3793 if (XFS_TEST_ERROR( 3794 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3795 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3796 mp, XFS_ERRTAG_IFLUSH_3)) { 3797 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3798 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3799 __func__, ip->i_ino, ip); 3800 goto corrupt_out; 3801 } 3802 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3803 if (XFS_TEST_ERROR( 3804 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3805 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3806 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3807 mp, XFS_ERRTAG_IFLUSH_4)) { 3808 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3809 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3810 __func__, ip->i_ino, ip); 3811 goto corrupt_out; 3812 } 3813 } 3814 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3815 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3816 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3817 "%s: detected corrupt incore inode %Lu, " 3818 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3819 __func__, ip->i_ino, 3820 ip->i_d.di_nextents + ip->i_d.di_anextents, 3821 ip->i_d.di_nblocks, ip); 3822 goto corrupt_out; 3823 } 3824 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3825 mp, XFS_ERRTAG_IFLUSH_6)) { 3826 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3827 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3828 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3829 goto corrupt_out; 3830 } 3831 3832 /* 3833 * Inode item log recovery for v2 inodes are dependent on the 3834 * di_flushiter count for correct sequencing. We bump the flush 3835 * iteration count so we can detect flushes which postdate a log record 3836 * during recovery. This is redundant as we now log every change and 3837 * hence this can't happen but we need to still do it to ensure 3838 * backwards compatibility with old kernels that predate logging all 3839 * inode changes. 3840 */ 3841 if (ip->i_d.di_version < 3) 3842 ip->i_d.di_flushiter++; 3843 3844 /* Check the inline fork data before we write out. */ 3845 if (!xfs_inode_verify_forks(ip)) 3846 goto corrupt_out; 3847 3848 /* 3849 * Copy the dirty parts of the inode into the on-disk inode. We always 3850 * copy out the core of the inode, because if the inode is dirty at all 3851 * the core must be. 3852 */ 3853 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3854 3855 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3856 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3857 ip->i_d.di_flushiter = 0; 3858 3859 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3860 if (XFS_IFORK_Q(ip)) 3861 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3862 xfs_inobp_check(mp, bp); 3863 3864 /* 3865 * We've recorded everything logged in the inode, so we'd like to clear 3866 * the ili_fields bits so we don't log and flush things unnecessarily. 3867 * However, we can't stop logging all this information until the data 3868 * we've copied into the disk buffer is written to disk. If we did we 3869 * might overwrite the copy of the inode in the log with all the data 3870 * after re-logging only part of it, and in the face of a crash we 3871 * wouldn't have all the data we need to recover. 3872 * 3873 * What we do is move the bits to the ili_last_fields field. When 3874 * logging the inode, these bits are moved back to the ili_fields field. 3875 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3876 * know that the information those bits represent is permanently on 3877 * disk. As long as the flush completes before the inode is logged 3878 * again, then both ili_fields and ili_last_fields will be cleared. 3879 * 3880 * We can play with the ili_fields bits here, because the inode lock 3881 * must be held exclusively in order to set bits there and the flush 3882 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3883 * done routine can tell whether or not to look in the AIL. Also, store 3884 * the current LSN of the inode so that we can tell whether the item has 3885 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3886 * need the AIL lock, because it is a 64 bit value that cannot be read 3887 * atomically. 3888 */ 3889 iip->ili_last_fields = iip->ili_fields; 3890 iip->ili_fields = 0; 3891 iip->ili_fsync_fields = 0; 3892 iip->ili_logged = 1; 3893 3894 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3895 &iip->ili_item.li_lsn); 3896 3897 /* 3898 * Attach the function xfs_iflush_done to the inode's 3899 * buffer. This will remove the inode from the AIL 3900 * and unlock the inode's flush lock when the inode is 3901 * completely written to disk. 3902 */ 3903 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3904 3905 /* generate the checksum. */ 3906 xfs_dinode_calc_crc(mp, dip); 3907 3908 ASSERT(!list_empty(&bp->b_li_list)); 3909 ASSERT(bp->b_iodone != NULL); 3910 return 0; 3911 3912 corrupt_out: 3913 return -EFSCORRUPTED; 3914 } 3915 3916 /* Release an inode. */ 3917 void 3918 xfs_irele( 3919 struct xfs_inode *ip) 3920 { 3921 trace_xfs_irele(ip, _RET_IP_); 3922 iput(VFS_I(ip)); 3923 } 3924