1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 50 51 /* 52 * helper function to extract extent size hint from inode 53 */ 54 xfs_extlen_t 55 xfs_get_extsz_hint( 56 struct xfs_inode *ip) 57 { 58 /* 59 * No point in aligning allocations if we need to COW to actually 60 * write to them. 61 */ 62 if (xfs_is_always_cow_inode(ip)) 63 return 0; 64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 65 return ip->i_d.di_extsize; 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return ip->i_mount->m_sb.sb_rextsize; 68 return 0; 69 } 70 71 /* 72 * Helper function to extract CoW extent size hint from inode. 73 * Between the extent size hint and the CoW extent size hint, we 74 * return the greater of the two. If the value is zero (automatic), 75 * use the default size. 76 */ 77 xfs_extlen_t 78 xfs_get_cowextsz_hint( 79 struct xfs_inode *ip) 80 { 81 xfs_extlen_t a, b; 82 83 a = 0; 84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 85 a = ip->i_d.di_cowextsize; 86 b = xfs_get_extsz_hint(ip); 87 88 a = max(a, b); 89 if (a == 0) 90 return XFS_DEFAULT_COWEXTSZ_HINT; 91 return a; 92 } 93 94 /* 95 * These two are wrapper routines around the xfs_ilock() routine used to 96 * centralize some grungy code. They are used in places that wish to lock the 97 * inode solely for reading the extents. The reason these places can't just 98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 99 * bringing in of the extents from disk for a file in b-tree format. If the 100 * inode is in b-tree format, then we need to lock the inode exclusively until 101 * the extents are read in. Locking it exclusively all the time would limit 102 * our parallelism unnecessarily, though. What we do instead is check to see 103 * if the extents have been read in yet, and only lock the inode exclusively 104 * if they have not. 105 * 106 * The functions return a value which should be given to the corresponding 107 * xfs_iunlock() call. 108 */ 109 uint 110 xfs_ilock_data_map_shared( 111 struct xfs_inode *ip) 112 { 113 uint lock_mode = XFS_ILOCK_SHARED; 114 115 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 117 lock_mode = XFS_ILOCK_EXCL; 118 xfs_ilock(ip, lock_mode); 119 return lock_mode; 120 } 121 122 uint 123 xfs_ilock_attr_map_shared( 124 struct xfs_inode *ip) 125 { 126 uint lock_mode = XFS_ILOCK_SHARED; 127 128 if (ip->i_afp && 129 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 130 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 131 lock_mode = XFS_ILOCK_EXCL; 132 xfs_ilock(ip, lock_mode); 133 return lock_mode; 134 } 135 136 /* 137 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 138 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 139 * various combinations of the locks to be obtained. 140 * 141 * The 3 locks should always be ordered so that the IO lock is obtained first, 142 * the mmap lock second and the ilock last in order to prevent deadlock. 143 * 144 * Basic locking order: 145 * 146 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 147 * 148 * mmap_lock locking order: 149 * 150 * i_rwsem -> page lock -> mmap_lock 151 * mmap_lock -> i_mmap_lock -> page_lock 152 * 153 * The difference in mmap_lock locking order mean that we cannot hold the 154 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 155 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 156 * in get_user_pages() to map the user pages into the kernel address space for 157 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 158 * page faults already hold the mmap_lock. 159 * 160 * Hence to serialise fully against both syscall and mmap based IO, we need to 161 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 162 * taken in places where we need to invalidate the page cache in a race 163 * free manner (e.g. truncate, hole punch and other extent manipulation 164 * functions). 165 */ 166 void 167 xfs_ilock( 168 xfs_inode_t *ip, 169 uint lock_flags) 170 { 171 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 172 173 /* 174 * You can't set both SHARED and EXCL for the same lock, 175 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 176 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 177 */ 178 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 179 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 180 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 181 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 182 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 183 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 184 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 185 186 if (lock_flags & XFS_IOLOCK_EXCL) { 187 down_write_nested(&VFS_I(ip)->i_rwsem, 188 XFS_IOLOCK_DEP(lock_flags)); 189 } else if (lock_flags & XFS_IOLOCK_SHARED) { 190 down_read_nested(&VFS_I(ip)->i_rwsem, 191 XFS_IOLOCK_DEP(lock_flags)); 192 } 193 194 if (lock_flags & XFS_MMAPLOCK_EXCL) 195 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 196 else if (lock_flags & XFS_MMAPLOCK_SHARED) 197 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 198 199 if (lock_flags & XFS_ILOCK_EXCL) 200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_ILOCK_SHARED) 202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 203 } 204 205 /* 206 * This is just like xfs_ilock(), except that the caller 207 * is guaranteed not to sleep. It returns 1 if it gets 208 * the requested locks and 0 otherwise. If the IO lock is 209 * obtained but the inode lock cannot be, then the IO lock 210 * is dropped before returning. 211 * 212 * ip -- the inode being locked 213 * lock_flags -- this parameter indicates the inode's locks to be 214 * to be locked. See the comment for xfs_ilock() for a list 215 * of valid values. 216 */ 217 int 218 xfs_ilock_nowait( 219 xfs_inode_t *ip, 220 uint lock_flags) 221 { 222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 223 224 /* 225 * You can't set both SHARED and EXCL for the same lock, 226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 228 */ 229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 236 237 if (lock_flags & XFS_IOLOCK_EXCL) { 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 239 goto out; 240 } else if (lock_flags & XFS_IOLOCK_SHARED) { 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 242 goto out; 243 } 244 245 if (lock_flags & XFS_MMAPLOCK_EXCL) { 246 if (!mrtryupdate(&ip->i_mmaplock)) 247 goto out_undo_iolock; 248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 249 if (!mrtryaccess(&ip->i_mmaplock)) 250 goto out_undo_iolock; 251 } 252 253 if (lock_flags & XFS_ILOCK_EXCL) { 254 if (!mrtryupdate(&ip->i_lock)) 255 goto out_undo_mmaplock; 256 } else if (lock_flags & XFS_ILOCK_SHARED) { 257 if (!mrtryaccess(&ip->i_lock)) 258 goto out_undo_mmaplock; 259 } 260 return 1; 261 262 out_undo_mmaplock: 263 if (lock_flags & XFS_MMAPLOCK_EXCL) 264 mrunlock_excl(&ip->i_mmaplock); 265 else if (lock_flags & XFS_MMAPLOCK_SHARED) 266 mrunlock_shared(&ip->i_mmaplock); 267 out_undo_iolock: 268 if (lock_flags & XFS_IOLOCK_EXCL) 269 up_write(&VFS_I(ip)->i_rwsem); 270 else if (lock_flags & XFS_IOLOCK_SHARED) 271 up_read(&VFS_I(ip)->i_rwsem); 272 out: 273 return 0; 274 } 275 276 /* 277 * xfs_iunlock() is used to drop the inode locks acquired with 278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 280 * that we know which locks to drop. 281 * 282 * ip -- the inode being unlocked 283 * lock_flags -- this parameter indicates the inode's locks to be 284 * to be unlocked. See the comment for xfs_ilock() for a list 285 * of valid values for this parameter. 286 * 287 */ 288 void 289 xfs_iunlock( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 /* 294 * You can't set both SHARED and EXCL for the same lock, 295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 297 */ 298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 305 ASSERT(lock_flags != 0); 306 307 if (lock_flags & XFS_IOLOCK_EXCL) 308 up_write(&VFS_I(ip)->i_rwsem); 309 else if (lock_flags & XFS_IOLOCK_SHARED) 310 up_read(&VFS_I(ip)->i_rwsem); 311 312 if (lock_flags & XFS_MMAPLOCK_EXCL) 313 mrunlock_excl(&ip->i_mmaplock); 314 else if (lock_flags & XFS_MMAPLOCK_SHARED) 315 mrunlock_shared(&ip->i_mmaplock); 316 317 if (lock_flags & XFS_ILOCK_EXCL) 318 mrunlock_excl(&ip->i_lock); 319 else if (lock_flags & XFS_ILOCK_SHARED) 320 mrunlock_shared(&ip->i_lock); 321 322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 323 } 324 325 /* 326 * give up write locks. the i/o lock cannot be held nested 327 * if it is being demoted. 328 */ 329 void 330 xfs_ilock_demote( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 335 ASSERT((lock_flags & 336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 337 338 if (lock_flags & XFS_ILOCK_EXCL) 339 mrdemote(&ip->i_lock); 340 if (lock_flags & XFS_MMAPLOCK_EXCL) 341 mrdemote(&ip->i_mmaplock); 342 if (lock_flags & XFS_IOLOCK_EXCL) 343 downgrade_write(&VFS_I(ip)->i_rwsem); 344 345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 346 } 347 348 #if defined(DEBUG) || defined(XFS_WARN) 349 int 350 xfs_isilocked( 351 xfs_inode_t *ip, 352 uint lock_flags) 353 { 354 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 355 if (!(lock_flags & XFS_ILOCK_SHARED)) 356 return !!ip->i_lock.mr_writer; 357 return rwsem_is_locked(&ip->i_lock.mr_lock); 358 } 359 360 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 361 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 362 return !!ip->i_mmaplock.mr_writer; 363 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 364 } 365 366 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 367 if (!(lock_flags & XFS_IOLOCK_SHARED)) 368 return !debug_locks || 369 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 370 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 371 } 372 373 ASSERT(0); 374 return 0; 375 } 376 #endif 377 378 /* 379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 382 * errors and warnings. 383 */ 384 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 385 static bool 386 xfs_lockdep_subclass_ok( 387 int subclass) 388 { 389 return subclass < MAX_LOCKDEP_SUBCLASSES; 390 } 391 #else 392 #define xfs_lockdep_subclass_ok(subclass) (true) 393 #endif 394 395 /* 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 397 * value. This can be called for any type of inode lock combination, including 398 * parent locking. Care must be taken to ensure we don't overrun the subclass 399 * storage fields in the class mask we build. 400 */ 401 static inline int 402 xfs_lock_inumorder(int lock_mode, int subclass) 403 { 404 int class = 0; 405 406 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 407 XFS_ILOCK_RTSUM))); 408 ASSERT(xfs_lockdep_subclass_ok(subclass)); 409 410 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 411 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 412 class += subclass << XFS_IOLOCK_SHIFT; 413 } 414 415 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 416 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 417 class += subclass << XFS_MMAPLOCK_SHIFT; 418 } 419 420 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 421 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 422 class += subclass << XFS_ILOCK_SHIFT; 423 } 424 425 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 426 } 427 428 /* 429 * The following routine will lock n inodes in exclusive mode. We assume the 430 * caller calls us with the inodes in i_ino order. 431 * 432 * We need to detect deadlock where an inode that we lock is in the AIL and we 433 * start waiting for another inode that is locked by a thread in a long running 434 * transaction (such as truncate). This can result in deadlock since the long 435 * running trans might need to wait for the inode we just locked in order to 436 * push the tail and free space in the log. 437 * 438 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 439 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 440 * lock more than one at a time, lockdep will report false positives saying we 441 * have violated locking orders. 442 */ 443 static void 444 xfs_lock_inodes( 445 struct xfs_inode **ips, 446 int inodes, 447 uint lock_mode) 448 { 449 int attempts = 0, i, j, try_lock; 450 struct xfs_log_item *lp; 451 452 /* 453 * Currently supports between 2 and 5 inodes with exclusive locking. We 454 * support an arbitrary depth of locking here, but absolute limits on 455 * inodes depend on the the type of locking and the limits placed by 456 * lockdep annotations in xfs_lock_inumorder. These are all checked by 457 * the asserts. 458 */ 459 ASSERT(ips && inodes >= 2 && inodes <= 5); 460 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 461 XFS_ILOCK_EXCL)); 462 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 463 XFS_ILOCK_SHARED))); 464 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 465 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 466 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 467 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 468 469 if (lock_mode & XFS_IOLOCK_EXCL) { 470 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 471 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 472 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 473 474 try_lock = 0; 475 i = 0; 476 again: 477 for (; i < inodes; i++) { 478 ASSERT(ips[i]); 479 480 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 481 continue; 482 483 /* 484 * If try_lock is not set yet, make sure all locked inodes are 485 * not in the AIL. If any are, set try_lock to be used later. 486 */ 487 if (!try_lock) { 488 for (j = (i - 1); j >= 0 && !try_lock; j--) { 489 lp = &ips[j]->i_itemp->ili_item; 490 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 491 try_lock++; 492 } 493 } 494 495 /* 496 * If any of the previous locks we have locked is in the AIL, 497 * we must TRY to get the second and subsequent locks. If 498 * we can't get any, we must release all we have 499 * and try again. 500 */ 501 if (!try_lock) { 502 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 503 continue; 504 } 505 506 /* try_lock means we have an inode locked that is in the AIL. */ 507 ASSERT(i != 0); 508 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 509 continue; 510 511 /* 512 * Unlock all previous guys and try again. xfs_iunlock will try 513 * to push the tail if the inode is in the AIL. 514 */ 515 attempts++; 516 for (j = i - 1; j >= 0; j--) { 517 /* 518 * Check to see if we've already unlocked this one. Not 519 * the first one going back, and the inode ptr is the 520 * same. 521 */ 522 if (j != (i - 1) && ips[j] == ips[j + 1]) 523 continue; 524 525 xfs_iunlock(ips[j], lock_mode); 526 } 527 528 if ((attempts % 5) == 0) { 529 delay(1); /* Don't just spin the CPU */ 530 } 531 i = 0; 532 try_lock = 0; 533 goto again; 534 } 535 } 536 537 /* 538 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 539 * the mmaplock or the ilock, but not more than one type at a time. If we lock 540 * more than one at a time, lockdep will report false positives saying we have 541 * violated locking orders. The iolock must be double-locked separately since 542 * we use i_rwsem for that. We now support taking one lock EXCL and the other 543 * SHARED. 544 */ 545 void 546 xfs_lock_two_inodes( 547 struct xfs_inode *ip0, 548 uint ip0_mode, 549 struct xfs_inode *ip1, 550 uint ip1_mode) 551 { 552 struct xfs_inode *temp; 553 uint mode_temp; 554 int attempts = 0; 555 struct xfs_log_item *lp; 556 557 ASSERT(hweight32(ip0_mode) == 1); 558 ASSERT(hweight32(ip1_mode) == 1); 559 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 561 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 562 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 563 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 564 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 566 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 567 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 568 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 569 570 ASSERT(ip0->i_ino != ip1->i_ino); 571 572 if (ip0->i_ino > ip1->i_ino) { 573 temp = ip0; 574 ip0 = ip1; 575 ip1 = temp; 576 mode_temp = ip0_mode; 577 ip0_mode = ip1_mode; 578 ip1_mode = mode_temp; 579 } 580 581 again: 582 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 583 584 /* 585 * If the first lock we have locked is in the AIL, we must TRY to get 586 * the second lock. If we can't get it, we must release the first one 587 * and try again. 588 */ 589 lp = &ip0->i_itemp->ili_item; 590 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 591 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 592 xfs_iunlock(ip0, ip0_mode); 593 if ((++attempts % 5) == 0) 594 delay(1); /* Don't just spin the CPU */ 595 goto again; 596 } 597 } else { 598 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 599 } 600 } 601 602 void 603 __xfs_iflock( 604 struct xfs_inode *ip) 605 { 606 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 607 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 608 609 do { 610 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 611 if (xfs_isiflocked(ip)) 612 io_schedule(); 613 } while (!xfs_iflock_nowait(ip)); 614 615 finish_wait(wq, &wait.wq_entry); 616 } 617 618 STATIC uint 619 _xfs_dic2xflags( 620 uint16_t di_flags, 621 uint64_t di_flags2, 622 bool has_attr) 623 { 624 uint flags = 0; 625 626 if (di_flags & XFS_DIFLAG_ANY) { 627 if (di_flags & XFS_DIFLAG_REALTIME) 628 flags |= FS_XFLAG_REALTIME; 629 if (di_flags & XFS_DIFLAG_PREALLOC) 630 flags |= FS_XFLAG_PREALLOC; 631 if (di_flags & XFS_DIFLAG_IMMUTABLE) 632 flags |= FS_XFLAG_IMMUTABLE; 633 if (di_flags & XFS_DIFLAG_APPEND) 634 flags |= FS_XFLAG_APPEND; 635 if (di_flags & XFS_DIFLAG_SYNC) 636 flags |= FS_XFLAG_SYNC; 637 if (di_flags & XFS_DIFLAG_NOATIME) 638 flags |= FS_XFLAG_NOATIME; 639 if (di_flags & XFS_DIFLAG_NODUMP) 640 flags |= FS_XFLAG_NODUMP; 641 if (di_flags & XFS_DIFLAG_RTINHERIT) 642 flags |= FS_XFLAG_RTINHERIT; 643 if (di_flags & XFS_DIFLAG_PROJINHERIT) 644 flags |= FS_XFLAG_PROJINHERIT; 645 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 646 flags |= FS_XFLAG_NOSYMLINKS; 647 if (di_flags & XFS_DIFLAG_EXTSIZE) 648 flags |= FS_XFLAG_EXTSIZE; 649 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 650 flags |= FS_XFLAG_EXTSZINHERIT; 651 if (di_flags & XFS_DIFLAG_NODEFRAG) 652 flags |= FS_XFLAG_NODEFRAG; 653 if (di_flags & XFS_DIFLAG_FILESTREAM) 654 flags |= FS_XFLAG_FILESTREAM; 655 } 656 657 if (di_flags2 & XFS_DIFLAG2_ANY) { 658 if (di_flags2 & XFS_DIFLAG2_DAX) 659 flags |= FS_XFLAG_DAX; 660 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 661 flags |= FS_XFLAG_COWEXTSIZE; 662 } 663 664 if (has_attr) 665 flags |= FS_XFLAG_HASATTR; 666 667 return flags; 668 } 669 670 uint 671 xfs_ip2xflags( 672 struct xfs_inode *ip) 673 { 674 struct xfs_icdinode *dic = &ip->i_d; 675 676 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 677 } 678 679 /* 680 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 681 * is allowed, otherwise it has to be an exact match. If a CI match is found, 682 * ci_name->name will point to a the actual name (caller must free) or 683 * will be set to NULL if an exact match is found. 684 */ 685 int 686 xfs_lookup( 687 xfs_inode_t *dp, 688 struct xfs_name *name, 689 xfs_inode_t **ipp, 690 struct xfs_name *ci_name) 691 { 692 xfs_ino_t inum; 693 int error; 694 695 trace_xfs_lookup(dp, name); 696 697 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 698 return -EIO; 699 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 701 if (error) 702 goto out_unlock; 703 704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 705 if (error) 706 goto out_free_name; 707 708 return 0; 709 710 out_free_name: 711 if (ci_name) 712 kmem_free(ci_name->name); 713 out_unlock: 714 *ipp = NULL; 715 return error; 716 } 717 718 /* 719 * Allocate an inode on disk and return a copy of its in-core version. 720 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 721 * appropriately within the inode. The uid and gid for the inode are 722 * set according to the contents of the given cred structure. 723 * 724 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 725 * has a free inode available, call xfs_iget() to obtain the in-core 726 * version of the allocated inode. Finally, fill in the inode and 727 * log its initial contents. In this case, ialloc_context would be 728 * set to NULL. 729 * 730 * If xfs_dialloc() does not have an available inode, it will replenish 731 * its supply by doing an allocation. Since we can only do one 732 * allocation within a transaction without deadlocks, we must commit 733 * the current transaction before returning the inode itself. 734 * In this case, therefore, we will set ialloc_context and return. 735 * The caller should then commit the current transaction, start a new 736 * transaction, and call xfs_ialloc() again to actually get the inode. 737 * 738 * To ensure that some other process does not grab the inode that 739 * was allocated during the first call to xfs_ialloc(), this routine 740 * also returns the [locked] bp pointing to the head of the freelist 741 * as ialloc_context. The caller should hold this buffer across 742 * the commit and pass it back into this routine on the second call. 743 * 744 * If we are allocating quota inodes, we do not have a parent inode 745 * to attach to or associate with (i.e. pip == NULL) because they 746 * are not linked into the directory structure - they are attached 747 * directly to the superblock - and so have no parent. 748 */ 749 static int 750 xfs_ialloc( 751 xfs_trans_t *tp, 752 xfs_inode_t *pip, 753 umode_t mode, 754 xfs_nlink_t nlink, 755 dev_t rdev, 756 prid_t prid, 757 xfs_buf_t **ialloc_context, 758 xfs_inode_t **ipp) 759 { 760 struct xfs_mount *mp = tp->t_mountp; 761 xfs_ino_t ino; 762 xfs_inode_t *ip; 763 uint flags; 764 int error; 765 struct timespec64 tv; 766 struct inode *inode; 767 768 /* 769 * Call the space management code to pick 770 * the on-disk inode to be allocated. 771 */ 772 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 773 ialloc_context, &ino); 774 if (error) 775 return error; 776 if (*ialloc_context || ino == NULLFSINO) { 777 *ipp = NULL; 778 return 0; 779 } 780 ASSERT(*ialloc_context == NULL); 781 782 /* 783 * Protect against obviously corrupt allocation btree records. Later 784 * xfs_iget checks will catch re-allocation of other active in-memory 785 * and on-disk inodes. If we don't catch reallocating the parent inode 786 * here we will deadlock in xfs_iget() so we have to do these checks 787 * first. 788 */ 789 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 790 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 791 return -EFSCORRUPTED; 792 } 793 794 /* 795 * Get the in-core inode with the lock held exclusively. 796 * This is because we're setting fields here we need 797 * to prevent others from looking at until we're done. 798 */ 799 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 800 XFS_ILOCK_EXCL, &ip); 801 if (error) 802 return error; 803 ASSERT(ip != NULL); 804 inode = VFS_I(ip); 805 inode->i_mode = mode; 806 set_nlink(inode, nlink); 807 inode->i_uid = current_fsuid(); 808 inode->i_rdev = rdev; 809 ip->i_d.di_projid = prid; 810 811 if (pip && XFS_INHERIT_GID(pip)) { 812 inode->i_gid = VFS_I(pip)->i_gid; 813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 814 inode->i_mode |= S_ISGID; 815 } else { 816 inode->i_gid = current_fsgid(); 817 } 818 819 /* 820 * If the group ID of the new file does not match the effective group 821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 822 * (and only if the irix_sgid_inherit compatibility variable is set). 823 */ 824 if (irix_sgid_inherit && 825 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 826 inode->i_mode &= ~S_ISGID; 827 828 ip->i_d.di_size = 0; 829 ip->i_df.if_nextents = 0; 830 ASSERT(ip->i_d.di_nblocks == 0); 831 832 tv = current_time(inode); 833 inode->i_mtime = tv; 834 inode->i_atime = tv; 835 inode->i_ctime = tv; 836 837 ip->i_d.di_extsize = 0; 838 ip->i_d.di_dmevmask = 0; 839 ip->i_d.di_dmstate = 0; 840 ip->i_d.di_flags = 0; 841 842 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 843 inode_set_iversion(inode, 1); 844 ip->i_d.di_flags2 = 0; 845 ip->i_d.di_cowextsize = 0; 846 ip->i_d.di_crtime = tv; 847 } 848 849 flags = XFS_ILOG_CORE; 850 switch (mode & S_IFMT) { 851 case S_IFIFO: 852 case S_IFCHR: 853 case S_IFBLK: 854 case S_IFSOCK: 855 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 856 ip->i_df.if_flags = 0; 857 flags |= XFS_ILOG_DEV; 858 break; 859 case S_IFREG: 860 case S_IFDIR: 861 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 862 uint di_flags = 0; 863 864 if (S_ISDIR(mode)) { 865 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 866 di_flags |= XFS_DIFLAG_RTINHERIT; 867 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 868 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 869 ip->i_d.di_extsize = pip->i_d.di_extsize; 870 } 871 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 872 di_flags |= XFS_DIFLAG_PROJINHERIT; 873 } else if (S_ISREG(mode)) { 874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 875 di_flags |= XFS_DIFLAG_REALTIME; 876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 877 di_flags |= XFS_DIFLAG_EXTSIZE; 878 ip->i_d.di_extsize = pip->i_d.di_extsize; 879 } 880 } 881 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 882 xfs_inherit_noatime) 883 di_flags |= XFS_DIFLAG_NOATIME; 884 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 885 xfs_inherit_nodump) 886 di_flags |= XFS_DIFLAG_NODUMP; 887 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 888 xfs_inherit_sync) 889 di_flags |= XFS_DIFLAG_SYNC; 890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 891 xfs_inherit_nosymlinks) 892 di_flags |= XFS_DIFLAG_NOSYMLINKS; 893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 894 xfs_inherit_nodefrag) 895 di_flags |= XFS_DIFLAG_NODEFRAG; 896 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 897 di_flags |= XFS_DIFLAG_FILESTREAM; 898 899 ip->i_d.di_flags |= di_flags; 900 } 901 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) { 902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 903 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 904 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 905 } 906 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 907 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 908 } 909 /* FALLTHROUGH */ 910 case S_IFLNK: 911 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 912 ip->i_df.if_flags = XFS_IFEXTENTS; 913 ip->i_df.if_bytes = 0; 914 ip->i_df.if_u1.if_root = NULL; 915 break; 916 default: 917 ASSERT(0); 918 } 919 920 /* 921 * Log the new values stuffed into the inode. 922 */ 923 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 924 xfs_trans_log_inode(tp, ip, flags); 925 926 /* now that we have an i_mode we can setup the inode structure */ 927 xfs_setup_inode(ip); 928 929 *ipp = ip; 930 return 0; 931 } 932 933 /* 934 * Allocates a new inode from disk and return a pointer to the 935 * incore copy. This routine will internally commit the current 936 * transaction and allocate a new one if the Space Manager needed 937 * to do an allocation to replenish the inode free-list. 938 * 939 * This routine is designed to be called from xfs_create and 940 * xfs_create_dir. 941 * 942 */ 943 int 944 xfs_dir_ialloc( 945 xfs_trans_t **tpp, /* input: current transaction; 946 output: may be a new transaction. */ 947 xfs_inode_t *dp, /* directory within whose allocate 948 the inode. */ 949 umode_t mode, 950 xfs_nlink_t nlink, 951 dev_t rdev, 952 prid_t prid, /* project id */ 953 xfs_inode_t **ipp) /* pointer to inode; it will be 954 locked. */ 955 { 956 xfs_trans_t *tp; 957 xfs_inode_t *ip; 958 xfs_buf_t *ialloc_context = NULL; 959 int code; 960 void *dqinfo; 961 uint tflags; 962 963 tp = *tpp; 964 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 965 966 /* 967 * xfs_ialloc will return a pointer to an incore inode if 968 * the Space Manager has an available inode on the free 969 * list. Otherwise, it will do an allocation and replenish 970 * the freelist. Since we can only do one allocation per 971 * transaction without deadlocks, we will need to commit the 972 * current transaction and start a new one. We will then 973 * need to call xfs_ialloc again to get the inode. 974 * 975 * If xfs_ialloc did an allocation to replenish the freelist, 976 * it returns the bp containing the head of the freelist as 977 * ialloc_context. We will hold a lock on it across the 978 * transaction commit so that no other process can steal 979 * the inode(s) that we've just allocated. 980 */ 981 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 982 &ip); 983 984 /* 985 * Return an error if we were unable to allocate a new inode. 986 * This should only happen if we run out of space on disk or 987 * encounter a disk error. 988 */ 989 if (code) { 990 *ipp = NULL; 991 return code; 992 } 993 if (!ialloc_context && !ip) { 994 *ipp = NULL; 995 return -ENOSPC; 996 } 997 998 /* 999 * If the AGI buffer is non-NULL, then we were unable to get an 1000 * inode in one operation. We need to commit the current 1001 * transaction and call xfs_ialloc() again. It is guaranteed 1002 * to succeed the second time. 1003 */ 1004 if (ialloc_context) { 1005 /* 1006 * Normally, xfs_trans_commit releases all the locks. 1007 * We call bhold to hang on to the ialloc_context across 1008 * the commit. Holding this buffer prevents any other 1009 * processes from doing any allocations in this 1010 * allocation group. 1011 */ 1012 xfs_trans_bhold(tp, ialloc_context); 1013 1014 /* 1015 * We want the quota changes to be associated with the next 1016 * transaction, NOT this one. So, detach the dqinfo from this 1017 * and attach it to the next transaction. 1018 */ 1019 dqinfo = NULL; 1020 tflags = 0; 1021 if (tp->t_dqinfo) { 1022 dqinfo = (void *)tp->t_dqinfo; 1023 tp->t_dqinfo = NULL; 1024 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1025 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1026 } 1027 1028 code = xfs_trans_roll(&tp); 1029 1030 /* 1031 * Re-attach the quota info that we detached from prev trx. 1032 */ 1033 if (dqinfo) { 1034 tp->t_dqinfo = dqinfo; 1035 tp->t_flags |= tflags; 1036 } 1037 1038 if (code) { 1039 xfs_buf_relse(ialloc_context); 1040 *tpp = tp; 1041 *ipp = NULL; 1042 return code; 1043 } 1044 xfs_trans_bjoin(tp, ialloc_context); 1045 1046 /* 1047 * Call ialloc again. Since we've locked out all 1048 * other allocations in this allocation group, 1049 * this call should always succeed. 1050 */ 1051 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1052 &ialloc_context, &ip); 1053 1054 /* 1055 * If we get an error at this point, return to the caller 1056 * so that the current transaction can be aborted. 1057 */ 1058 if (code) { 1059 *tpp = tp; 1060 *ipp = NULL; 1061 return code; 1062 } 1063 ASSERT(!ialloc_context && ip); 1064 1065 } 1066 1067 *ipp = ip; 1068 *tpp = tp; 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * Decrement the link count on an inode & log the change. If this causes the 1075 * link count to go to zero, move the inode to AGI unlinked list so that it can 1076 * be freed when the last active reference goes away via xfs_inactive(). 1077 */ 1078 static int /* error */ 1079 xfs_droplink( 1080 xfs_trans_t *tp, 1081 xfs_inode_t *ip) 1082 { 1083 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1084 1085 drop_nlink(VFS_I(ip)); 1086 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1087 1088 if (VFS_I(ip)->i_nlink) 1089 return 0; 1090 1091 return xfs_iunlink(tp, ip); 1092 } 1093 1094 /* 1095 * Increment the link count on an inode & log the change. 1096 */ 1097 static void 1098 xfs_bumplink( 1099 xfs_trans_t *tp, 1100 xfs_inode_t *ip) 1101 { 1102 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1103 1104 inc_nlink(VFS_I(ip)); 1105 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1106 } 1107 1108 int 1109 xfs_create( 1110 xfs_inode_t *dp, 1111 struct xfs_name *name, 1112 umode_t mode, 1113 dev_t rdev, 1114 xfs_inode_t **ipp) 1115 { 1116 int is_dir = S_ISDIR(mode); 1117 struct xfs_mount *mp = dp->i_mount; 1118 struct xfs_inode *ip = NULL; 1119 struct xfs_trans *tp = NULL; 1120 int error; 1121 bool unlock_dp_on_error = false; 1122 prid_t prid; 1123 struct xfs_dquot *udqp = NULL; 1124 struct xfs_dquot *gdqp = NULL; 1125 struct xfs_dquot *pdqp = NULL; 1126 struct xfs_trans_res *tres; 1127 uint resblks; 1128 1129 trace_xfs_create(dp, name); 1130 1131 if (XFS_FORCED_SHUTDOWN(mp)) 1132 return -EIO; 1133 1134 prid = xfs_get_initial_prid(dp); 1135 1136 /* 1137 * Make sure that we have allocated dquot(s) on disk. 1138 */ 1139 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1140 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1141 &udqp, &gdqp, &pdqp); 1142 if (error) 1143 return error; 1144 1145 if (is_dir) { 1146 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1147 tres = &M_RES(mp)->tr_mkdir; 1148 } else { 1149 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1150 tres = &M_RES(mp)->tr_create; 1151 } 1152 1153 /* 1154 * Initially assume that the file does not exist and 1155 * reserve the resources for that case. If that is not 1156 * the case we'll drop the one we have and get a more 1157 * appropriate transaction later. 1158 */ 1159 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1160 if (error == -ENOSPC) { 1161 /* flush outstanding delalloc blocks and retry */ 1162 xfs_flush_inodes(mp); 1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1164 } 1165 if (error) 1166 goto out_release_inode; 1167 1168 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1169 unlock_dp_on_error = true; 1170 1171 /* 1172 * Reserve disk quota and the inode. 1173 */ 1174 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1175 pdqp, resblks, 1, 0); 1176 if (error) 1177 goto out_trans_cancel; 1178 1179 /* 1180 * A newly created regular or special file just has one directory 1181 * entry pointing to them, but a directory also the "." entry 1182 * pointing to itself. 1183 */ 1184 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1185 if (error) 1186 goto out_trans_cancel; 1187 1188 /* 1189 * Now we join the directory inode to the transaction. We do not do it 1190 * earlier because xfs_dir_ialloc might commit the previous transaction 1191 * (and release all the locks). An error from here on will result in 1192 * the transaction cancel unlocking dp so don't do it explicitly in the 1193 * error path. 1194 */ 1195 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1196 unlock_dp_on_error = false; 1197 1198 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1199 resblks - XFS_IALLOC_SPACE_RES(mp)); 1200 if (error) { 1201 ASSERT(error != -ENOSPC); 1202 goto out_trans_cancel; 1203 } 1204 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1205 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1206 1207 if (is_dir) { 1208 error = xfs_dir_init(tp, ip, dp); 1209 if (error) 1210 goto out_trans_cancel; 1211 1212 xfs_bumplink(tp, dp); 1213 } 1214 1215 /* 1216 * If this is a synchronous mount, make sure that the 1217 * create transaction goes to disk before returning to 1218 * the user. 1219 */ 1220 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1221 xfs_trans_set_sync(tp); 1222 1223 /* 1224 * Attach the dquot(s) to the inodes and modify them incore. 1225 * These ids of the inode couldn't have changed since the new 1226 * inode has been locked ever since it was created. 1227 */ 1228 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1229 1230 error = xfs_trans_commit(tp); 1231 if (error) 1232 goto out_release_inode; 1233 1234 xfs_qm_dqrele(udqp); 1235 xfs_qm_dqrele(gdqp); 1236 xfs_qm_dqrele(pdqp); 1237 1238 *ipp = ip; 1239 return 0; 1240 1241 out_trans_cancel: 1242 xfs_trans_cancel(tp); 1243 out_release_inode: 1244 /* 1245 * Wait until after the current transaction is aborted to finish the 1246 * setup of the inode and release the inode. This prevents recursive 1247 * transactions and deadlocks from xfs_inactive. 1248 */ 1249 if (ip) { 1250 xfs_finish_inode_setup(ip); 1251 xfs_irele(ip); 1252 } 1253 1254 xfs_qm_dqrele(udqp); 1255 xfs_qm_dqrele(gdqp); 1256 xfs_qm_dqrele(pdqp); 1257 1258 if (unlock_dp_on_error) 1259 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1260 return error; 1261 } 1262 1263 int 1264 xfs_create_tmpfile( 1265 struct xfs_inode *dp, 1266 umode_t mode, 1267 struct xfs_inode **ipp) 1268 { 1269 struct xfs_mount *mp = dp->i_mount; 1270 struct xfs_inode *ip = NULL; 1271 struct xfs_trans *tp = NULL; 1272 int error; 1273 prid_t prid; 1274 struct xfs_dquot *udqp = NULL; 1275 struct xfs_dquot *gdqp = NULL; 1276 struct xfs_dquot *pdqp = NULL; 1277 struct xfs_trans_res *tres; 1278 uint resblks; 1279 1280 if (XFS_FORCED_SHUTDOWN(mp)) 1281 return -EIO; 1282 1283 prid = xfs_get_initial_prid(dp); 1284 1285 /* 1286 * Make sure that we have allocated dquot(s) on disk. 1287 */ 1288 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1289 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1290 &udqp, &gdqp, &pdqp); 1291 if (error) 1292 return error; 1293 1294 resblks = XFS_IALLOC_SPACE_RES(mp); 1295 tres = &M_RES(mp)->tr_create_tmpfile; 1296 1297 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1298 if (error) 1299 goto out_release_inode; 1300 1301 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1302 pdqp, resblks, 1, 0); 1303 if (error) 1304 goto out_trans_cancel; 1305 1306 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1307 if (error) 1308 goto out_trans_cancel; 1309 1310 if (mp->m_flags & XFS_MOUNT_WSYNC) 1311 xfs_trans_set_sync(tp); 1312 1313 /* 1314 * Attach the dquot(s) to the inodes and modify them incore. 1315 * These ids of the inode couldn't have changed since the new 1316 * inode has been locked ever since it was created. 1317 */ 1318 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1319 1320 error = xfs_iunlink(tp, ip); 1321 if (error) 1322 goto out_trans_cancel; 1323 1324 error = xfs_trans_commit(tp); 1325 if (error) 1326 goto out_release_inode; 1327 1328 xfs_qm_dqrele(udqp); 1329 xfs_qm_dqrele(gdqp); 1330 xfs_qm_dqrele(pdqp); 1331 1332 *ipp = ip; 1333 return 0; 1334 1335 out_trans_cancel: 1336 xfs_trans_cancel(tp); 1337 out_release_inode: 1338 /* 1339 * Wait until after the current transaction is aborted to finish the 1340 * setup of the inode and release the inode. This prevents recursive 1341 * transactions and deadlocks from xfs_inactive. 1342 */ 1343 if (ip) { 1344 xfs_finish_inode_setup(ip); 1345 xfs_irele(ip); 1346 } 1347 1348 xfs_qm_dqrele(udqp); 1349 xfs_qm_dqrele(gdqp); 1350 xfs_qm_dqrele(pdqp); 1351 1352 return error; 1353 } 1354 1355 int 1356 xfs_link( 1357 xfs_inode_t *tdp, 1358 xfs_inode_t *sip, 1359 struct xfs_name *target_name) 1360 { 1361 xfs_mount_t *mp = tdp->i_mount; 1362 xfs_trans_t *tp; 1363 int error; 1364 int resblks; 1365 1366 trace_xfs_link(tdp, target_name); 1367 1368 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1369 1370 if (XFS_FORCED_SHUTDOWN(mp)) 1371 return -EIO; 1372 1373 error = xfs_qm_dqattach(sip); 1374 if (error) 1375 goto std_return; 1376 1377 error = xfs_qm_dqattach(tdp); 1378 if (error) 1379 goto std_return; 1380 1381 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1382 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1383 if (error == -ENOSPC) { 1384 resblks = 0; 1385 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1386 } 1387 if (error) 1388 goto std_return; 1389 1390 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1391 1392 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1393 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1394 1395 /* 1396 * If we are using project inheritance, we only allow hard link 1397 * creation in our tree when the project IDs are the same; else 1398 * the tree quota mechanism could be circumvented. 1399 */ 1400 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1401 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1402 error = -EXDEV; 1403 goto error_return; 1404 } 1405 1406 if (!resblks) { 1407 error = xfs_dir_canenter(tp, tdp, target_name); 1408 if (error) 1409 goto error_return; 1410 } 1411 1412 /* 1413 * Handle initial link state of O_TMPFILE inode 1414 */ 1415 if (VFS_I(sip)->i_nlink == 0) { 1416 error = xfs_iunlink_remove(tp, sip); 1417 if (error) 1418 goto error_return; 1419 } 1420 1421 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1422 resblks); 1423 if (error) 1424 goto error_return; 1425 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1426 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1427 1428 xfs_bumplink(tp, sip); 1429 1430 /* 1431 * If this is a synchronous mount, make sure that the 1432 * link transaction goes to disk before returning to 1433 * the user. 1434 */ 1435 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1436 xfs_trans_set_sync(tp); 1437 1438 return xfs_trans_commit(tp); 1439 1440 error_return: 1441 xfs_trans_cancel(tp); 1442 std_return: 1443 return error; 1444 } 1445 1446 /* Clear the reflink flag and the cowblocks tag if possible. */ 1447 static void 1448 xfs_itruncate_clear_reflink_flags( 1449 struct xfs_inode *ip) 1450 { 1451 struct xfs_ifork *dfork; 1452 struct xfs_ifork *cfork; 1453 1454 if (!xfs_is_reflink_inode(ip)) 1455 return; 1456 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1457 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1458 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1459 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1460 if (cfork->if_bytes == 0) 1461 xfs_inode_clear_cowblocks_tag(ip); 1462 } 1463 1464 /* 1465 * Free up the underlying blocks past new_size. The new size must be smaller 1466 * than the current size. This routine can be used both for the attribute and 1467 * data fork, and does not modify the inode size, which is left to the caller. 1468 * 1469 * The transaction passed to this routine must have made a permanent log 1470 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1471 * given transaction and start new ones, so make sure everything involved in 1472 * the transaction is tidy before calling here. Some transaction will be 1473 * returned to the caller to be committed. The incoming transaction must 1474 * already include the inode, and both inode locks must be held exclusively. 1475 * The inode must also be "held" within the transaction. On return the inode 1476 * will be "held" within the returned transaction. This routine does NOT 1477 * require any disk space to be reserved for it within the transaction. 1478 * 1479 * If we get an error, we must return with the inode locked and linked into the 1480 * current transaction. This keeps things simple for the higher level code, 1481 * because it always knows that the inode is locked and held in the transaction 1482 * that returns to it whether errors occur or not. We don't mark the inode 1483 * dirty on error so that transactions can be easily aborted if possible. 1484 */ 1485 int 1486 xfs_itruncate_extents_flags( 1487 struct xfs_trans **tpp, 1488 struct xfs_inode *ip, 1489 int whichfork, 1490 xfs_fsize_t new_size, 1491 int flags) 1492 { 1493 struct xfs_mount *mp = ip->i_mount; 1494 struct xfs_trans *tp = *tpp; 1495 xfs_fileoff_t first_unmap_block; 1496 xfs_filblks_t unmap_len; 1497 int error = 0; 1498 1499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1500 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1501 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1502 ASSERT(new_size <= XFS_ISIZE(ip)); 1503 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1504 ASSERT(ip->i_itemp != NULL); 1505 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1506 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1507 1508 trace_xfs_itruncate_extents_start(ip, new_size); 1509 1510 flags |= xfs_bmapi_aflag(whichfork); 1511 1512 /* 1513 * Since it is possible for space to become allocated beyond 1514 * the end of the file (in a crash where the space is allocated 1515 * but the inode size is not yet updated), simply remove any 1516 * blocks which show up between the new EOF and the maximum 1517 * possible file size. 1518 * 1519 * We have to free all the blocks to the bmbt maximum offset, even if 1520 * the page cache can't scale that far. 1521 */ 1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1523 if (first_unmap_block >= XFS_MAX_FILEOFF) { 1524 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1525 return 0; 1526 } 1527 1528 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1529 while (unmap_len > 0) { 1530 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1531 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1532 flags, XFS_ITRUNC_MAX_EXTENTS); 1533 if (error) 1534 goto out; 1535 1536 /* 1537 * Duplicate the transaction that has the permanent 1538 * reservation and commit the old transaction. 1539 */ 1540 error = xfs_defer_finish(&tp); 1541 if (error) 1542 goto out; 1543 1544 error = xfs_trans_roll_inode(&tp, ip); 1545 if (error) 1546 goto out; 1547 } 1548 1549 if (whichfork == XFS_DATA_FORK) { 1550 /* Remove all pending CoW reservations. */ 1551 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1552 first_unmap_block, XFS_MAX_FILEOFF, true); 1553 if (error) 1554 goto out; 1555 1556 xfs_itruncate_clear_reflink_flags(ip); 1557 } 1558 1559 /* 1560 * Always re-log the inode so that our permanent transaction can keep 1561 * on rolling it forward in the log. 1562 */ 1563 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1564 1565 trace_xfs_itruncate_extents_end(ip, new_size); 1566 1567 out: 1568 *tpp = tp; 1569 return error; 1570 } 1571 1572 int 1573 xfs_release( 1574 xfs_inode_t *ip) 1575 { 1576 xfs_mount_t *mp = ip->i_mount; 1577 int error; 1578 1579 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1580 return 0; 1581 1582 /* If this is a read-only mount, don't do this (would generate I/O) */ 1583 if (mp->m_flags & XFS_MOUNT_RDONLY) 1584 return 0; 1585 1586 if (!XFS_FORCED_SHUTDOWN(mp)) { 1587 int truncated; 1588 1589 /* 1590 * If we previously truncated this file and removed old data 1591 * in the process, we want to initiate "early" writeout on 1592 * the last close. This is an attempt to combat the notorious 1593 * NULL files problem which is particularly noticeable from a 1594 * truncate down, buffered (re-)write (delalloc), followed by 1595 * a crash. What we are effectively doing here is 1596 * significantly reducing the time window where we'd otherwise 1597 * be exposed to that problem. 1598 */ 1599 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1600 if (truncated) { 1601 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1602 if (ip->i_delayed_blks > 0) { 1603 error = filemap_flush(VFS_I(ip)->i_mapping); 1604 if (error) 1605 return error; 1606 } 1607 } 1608 } 1609 1610 if (VFS_I(ip)->i_nlink == 0) 1611 return 0; 1612 1613 if (xfs_can_free_eofblocks(ip, false)) { 1614 1615 /* 1616 * Check if the inode is being opened, written and closed 1617 * frequently and we have delayed allocation blocks outstanding 1618 * (e.g. streaming writes from the NFS server), truncating the 1619 * blocks past EOF will cause fragmentation to occur. 1620 * 1621 * In this case don't do the truncation, but we have to be 1622 * careful how we detect this case. Blocks beyond EOF show up as 1623 * i_delayed_blks even when the inode is clean, so we need to 1624 * truncate them away first before checking for a dirty release. 1625 * Hence on the first dirty close we will still remove the 1626 * speculative allocation, but after that we will leave it in 1627 * place. 1628 */ 1629 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1630 return 0; 1631 /* 1632 * If we can't get the iolock just skip truncating the blocks 1633 * past EOF because we could deadlock with the mmap_lock 1634 * otherwise. We'll get another chance to drop them once the 1635 * last reference to the inode is dropped, so we'll never leak 1636 * blocks permanently. 1637 */ 1638 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1639 error = xfs_free_eofblocks(ip); 1640 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1641 if (error) 1642 return error; 1643 } 1644 1645 /* delalloc blocks after truncation means it really is dirty */ 1646 if (ip->i_delayed_blks) 1647 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1648 } 1649 return 0; 1650 } 1651 1652 /* 1653 * xfs_inactive_truncate 1654 * 1655 * Called to perform a truncate when an inode becomes unlinked. 1656 */ 1657 STATIC int 1658 xfs_inactive_truncate( 1659 struct xfs_inode *ip) 1660 { 1661 struct xfs_mount *mp = ip->i_mount; 1662 struct xfs_trans *tp; 1663 int error; 1664 1665 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1666 if (error) { 1667 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1668 return error; 1669 } 1670 xfs_ilock(ip, XFS_ILOCK_EXCL); 1671 xfs_trans_ijoin(tp, ip, 0); 1672 1673 /* 1674 * Log the inode size first to prevent stale data exposure in the event 1675 * of a system crash before the truncate completes. See the related 1676 * comment in xfs_vn_setattr_size() for details. 1677 */ 1678 ip->i_d.di_size = 0; 1679 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1680 1681 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1682 if (error) 1683 goto error_trans_cancel; 1684 1685 ASSERT(ip->i_df.if_nextents == 0); 1686 1687 error = xfs_trans_commit(tp); 1688 if (error) 1689 goto error_unlock; 1690 1691 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1692 return 0; 1693 1694 error_trans_cancel: 1695 xfs_trans_cancel(tp); 1696 error_unlock: 1697 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1698 return error; 1699 } 1700 1701 /* 1702 * xfs_inactive_ifree() 1703 * 1704 * Perform the inode free when an inode is unlinked. 1705 */ 1706 STATIC int 1707 xfs_inactive_ifree( 1708 struct xfs_inode *ip) 1709 { 1710 struct xfs_mount *mp = ip->i_mount; 1711 struct xfs_trans *tp; 1712 int error; 1713 1714 /* 1715 * We try to use a per-AG reservation for any block needed by the finobt 1716 * tree, but as the finobt feature predates the per-AG reservation 1717 * support a degraded file system might not have enough space for the 1718 * reservation at mount time. In that case try to dip into the reserved 1719 * pool and pray. 1720 * 1721 * Send a warning if the reservation does happen to fail, as the inode 1722 * now remains allocated and sits on the unlinked list until the fs is 1723 * repaired. 1724 */ 1725 if (unlikely(mp->m_finobt_nores)) { 1726 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1727 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1728 &tp); 1729 } else { 1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1731 } 1732 if (error) { 1733 if (error == -ENOSPC) { 1734 xfs_warn_ratelimited(mp, 1735 "Failed to remove inode(s) from unlinked list. " 1736 "Please free space, unmount and run xfs_repair."); 1737 } else { 1738 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1739 } 1740 return error; 1741 } 1742 1743 xfs_ilock(ip, XFS_ILOCK_EXCL); 1744 xfs_trans_ijoin(tp, ip, 0); 1745 1746 error = xfs_ifree(tp, ip); 1747 if (error) { 1748 /* 1749 * If we fail to free the inode, shut down. The cancel 1750 * might do that, we need to make sure. Otherwise the 1751 * inode might be lost for a long time or forever. 1752 */ 1753 if (!XFS_FORCED_SHUTDOWN(mp)) { 1754 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1755 __func__, error); 1756 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1757 } 1758 xfs_trans_cancel(tp); 1759 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1760 return error; 1761 } 1762 1763 /* 1764 * Credit the quota account(s). The inode is gone. 1765 */ 1766 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1767 1768 /* 1769 * Just ignore errors at this point. There is nothing we can do except 1770 * to try to keep going. Make sure it's not a silent error. 1771 */ 1772 error = xfs_trans_commit(tp); 1773 if (error) 1774 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1775 __func__, error); 1776 1777 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1778 return 0; 1779 } 1780 1781 /* 1782 * xfs_inactive 1783 * 1784 * This is called when the vnode reference count for the vnode 1785 * goes to zero. If the file has been unlinked, then it must 1786 * now be truncated. Also, we clear all of the read-ahead state 1787 * kept for the inode here since the file is now closed. 1788 */ 1789 void 1790 xfs_inactive( 1791 xfs_inode_t *ip) 1792 { 1793 struct xfs_mount *mp; 1794 int error; 1795 int truncate = 0; 1796 1797 /* 1798 * If the inode is already free, then there can be nothing 1799 * to clean up here. 1800 */ 1801 if (VFS_I(ip)->i_mode == 0) { 1802 ASSERT(ip->i_df.if_broot_bytes == 0); 1803 return; 1804 } 1805 1806 mp = ip->i_mount; 1807 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1808 1809 /* If this is a read-only mount, don't do this (would generate I/O) */ 1810 if (mp->m_flags & XFS_MOUNT_RDONLY) 1811 return; 1812 1813 /* Try to clean out the cow blocks if there are any. */ 1814 if (xfs_inode_has_cow_data(ip)) 1815 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1816 1817 if (VFS_I(ip)->i_nlink != 0) { 1818 /* 1819 * force is true because we are evicting an inode from the 1820 * cache. Post-eof blocks must be freed, lest we end up with 1821 * broken free space accounting. 1822 * 1823 * Note: don't bother with iolock here since lockdep complains 1824 * about acquiring it in reclaim context. We have the only 1825 * reference to the inode at this point anyways. 1826 */ 1827 if (xfs_can_free_eofblocks(ip, true)) 1828 xfs_free_eofblocks(ip); 1829 1830 return; 1831 } 1832 1833 if (S_ISREG(VFS_I(ip)->i_mode) && 1834 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1835 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1836 truncate = 1; 1837 1838 error = xfs_qm_dqattach(ip); 1839 if (error) 1840 return; 1841 1842 if (S_ISLNK(VFS_I(ip)->i_mode)) 1843 error = xfs_inactive_symlink(ip); 1844 else if (truncate) 1845 error = xfs_inactive_truncate(ip); 1846 if (error) 1847 return; 1848 1849 /* 1850 * If there are attributes associated with the file then blow them away 1851 * now. The code calls a routine that recursively deconstructs the 1852 * attribute fork. If also blows away the in-core attribute fork. 1853 */ 1854 if (XFS_IFORK_Q(ip)) { 1855 error = xfs_attr_inactive(ip); 1856 if (error) 1857 return; 1858 } 1859 1860 ASSERT(!ip->i_afp); 1861 ASSERT(ip->i_d.di_forkoff == 0); 1862 1863 /* 1864 * Free the inode. 1865 */ 1866 error = xfs_inactive_ifree(ip); 1867 if (error) 1868 return; 1869 1870 /* 1871 * Release the dquots held by inode, if any. 1872 */ 1873 xfs_qm_dqdetach(ip); 1874 } 1875 1876 /* 1877 * In-Core Unlinked List Lookups 1878 * ============================= 1879 * 1880 * Every inode is supposed to be reachable from some other piece of metadata 1881 * with the exception of the root directory. Inodes with a connection to a 1882 * file descriptor but not linked from anywhere in the on-disk directory tree 1883 * are collectively known as unlinked inodes, though the filesystem itself 1884 * maintains links to these inodes so that on-disk metadata are consistent. 1885 * 1886 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1887 * header contains a number of buckets that point to an inode, and each inode 1888 * record has a pointer to the next inode in the hash chain. This 1889 * singly-linked list causes scaling problems in the iunlink remove function 1890 * because we must walk that list to find the inode that points to the inode 1891 * being removed from the unlinked hash bucket list. 1892 * 1893 * What if we modelled the unlinked list as a collection of records capturing 1894 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1895 * have a fast way to look up unlinked list predecessors, which avoids the 1896 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1897 * rhashtable. 1898 * 1899 * Because this is a backref cache, we ignore operational failures since the 1900 * iunlink code can fall back to the slow bucket walk. The only errors that 1901 * should bubble out are for obviously incorrect situations. 1902 * 1903 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1904 * access or have otherwise provided for concurrency control. 1905 */ 1906 1907 /* Capture a "X.next_unlinked = Y" relationship. */ 1908 struct xfs_iunlink { 1909 struct rhash_head iu_rhash_head; 1910 xfs_agino_t iu_agino; /* X */ 1911 xfs_agino_t iu_next_unlinked; /* Y */ 1912 }; 1913 1914 /* Unlinked list predecessor lookup hashtable construction */ 1915 static int 1916 xfs_iunlink_obj_cmpfn( 1917 struct rhashtable_compare_arg *arg, 1918 const void *obj) 1919 { 1920 const xfs_agino_t *key = arg->key; 1921 const struct xfs_iunlink *iu = obj; 1922 1923 if (iu->iu_next_unlinked != *key) 1924 return 1; 1925 return 0; 1926 } 1927 1928 static const struct rhashtable_params xfs_iunlink_hash_params = { 1929 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1930 .key_len = sizeof(xfs_agino_t), 1931 .key_offset = offsetof(struct xfs_iunlink, 1932 iu_next_unlinked), 1933 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1934 .automatic_shrinking = true, 1935 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1936 }; 1937 1938 /* 1939 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1940 * relation is found. 1941 */ 1942 static xfs_agino_t 1943 xfs_iunlink_lookup_backref( 1944 struct xfs_perag *pag, 1945 xfs_agino_t agino) 1946 { 1947 struct xfs_iunlink *iu; 1948 1949 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1950 xfs_iunlink_hash_params); 1951 return iu ? iu->iu_agino : NULLAGINO; 1952 } 1953 1954 /* 1955 * Take ownership of an iunlink cache entry and insert it into the hash table. 1956 * If successful, the entry will be owned by the cache; if not, it is freed. 1957 * Either way, the caller does not own @iu after this call. 1958 */ 1959 static int 1960 xfs_iunlink_insert_backref( 1961 struct xfs_perag *pag, 1962 struct xfs_iunlink *iu) 1963 { 1964 int error; 1965 1966 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1967 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1968 /* 1969 * Fail loudly if there already was an entry because that's a sign of 1970 * corruption of in-memory data. Also fail loudly if we see an error 1971 * code we didn't anticipate from the rhashtable code. Currently we 1972 * only anticipate ENOMEM. 1973 */ 1974 if (error) { 1975 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1976 kmem_free(iu); 1977 } 1978 /* 1979 * Absorb any runtime errors that aren't a result of corruption because 1980 * this is a cache and we can always fall back to bucket list scanning. 1981 */ 1982 if (error != 0 && error != -EEXIST) 1983 error = 0; 1984 return error; 1985 } 1986 1987 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1988 static int 1989 xfs_iunlink_add_backref( 1990 struct xfs_perag *pag, 1991 xfs_agino_t prev_agino, 1992 xfs_agino_t this_agino) 1993 { 1994 struct xfs_iunlink *iu; 1995 1996 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1997 return 0; 1998 1999 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2000 iu->iu_agino = prev_agino; 2001 iu->iu_next_unlinked = this_agino; 2002 2003 return xfs_iunlink_insert_backref(pag, iu); 2004 } 2005 2006 /* 2007 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2008 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2009 * wasn't any such entry then we don't bother. 2010 */ 2011 static int 2012 xfs_iunlink_change_backref( 2013 struct xfs_perag *pag, 2014 xfs_agino_t agino, 2015 xfs_agino_t next_unlinked) 2016 { 2017 struct xfs_iunlink *iu; 2018 int error; 2019 2020 /* Look up the old entry; if there wasn't one then exit. */ 2021 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2022 xfs_iunlink_hash_params); 2023 if (!iu) 2024 return 0; 2025 2026 /* 2027 * Remove the entry. This shouldn't ever return an error, but if we 2028 * couldn't remove the old entry we don't want to add it again to the 2029 * hash table, and if the entry disappeared on us then someone's 2030 * violated the locking rules and we need to fail loudly. Either way 2031 * we cannot remove the inode because internal state is or would have 2032 * been corrupt. 2033 */ 2034 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2035 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2036 if (error) 2037 return error; 2038 2039 /* If there is no new next entry just free our item and return. */ 2040 if (next_unlinked == NULLAGINO) { 2041 kmem_free(iu); 2042 return 0; 2043 } 2044 2045 /* Update the entry and re-add it to the hash table. */ 2046 iu->iu_next_unlinked = next_unlinked; 2047 return xfs_iunlink_insert_backref(pag, iu); 2048 } 2049 2050 /* Set up the in-core predecessor structures. */ 2051 int 2052 xfs_iunlink_init( 2053 struct xfs_perag *pag) 2054 { 2055 return rhashtable_init(&pag->pagi_unlinked_hash, 2056 &xfs_iunlink_hash_params); 2057 } 2058 2059 /* Free the in-core predecessor structures. */ 2060 static void 2061 xfs_iunlink_free_item( 2062 void *ptr, 2063 void *arg) 2064 { 2065 struct xfs_iunlink *iu = ptr; 2066 bool *freed_anything = arg; 2067 2068 *freed_anything = true; 2069 kmem_free(iu); 2070 } 2071 2072 void 2073 xfs_iunlink_destroy( 2074 struct xfs_perag *pag) 2075 { 2076 bool freed_anything = false; 2077 2078 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2079 xfs_iunlink_free_item, &freed_anything); 2080 2081 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2082 } 2083 2084 /* 2085 * Point the AGI unlinked bucket at an inode and log the results. The caller 2086 * is responsible for validating the old value. 2087 */ 2088 STATIC int 2089 xfs_iunlink_update_bucket( 2090 struct xfs_trans *tp, 2091 xfs_agnumber_t agno, 2092 struct xfs_buf *agibp, 2093 unsigned int bucket_index, 2094 xfs_agino_t new_agino) 2095 { 2096 struct xfs_agi *agi = agibp->b_addr; 2097 xfs_agino_t old_value; 2098 int offset; 2099 2100 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2101 2102 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2103 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2104 old_value, new_agino); 2105 2106 /* 2107 * We should never find the head of the list already set to the value 2108 * passed in because either we're adding or removing ourselves from the 2109 * head of the list. 2110 */ 2111 if (old_value == new_agino) { 2112 xfs_buf_mark_corrupt(agibp); 2113 return -EFSCORRUPTED; 2114 } 2115 2116 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2117 offset = offsetof(struct xfs_agi, agi_unlinked) + 2118 (sizeof(xfs_agino_t) * bucket_index); 2119 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2120 return 0; 2121 } 2122 2123 /* Set an on-disk inode's next_unlinked pointer. */ 2124 STATIC void 2125 xfs_iunlink_update_dinode( 2126 struct xfs_trans *tp, 2127 xfs_agnumber_t agno, 2128 xfs_agino_t agino, 2129 struct xfs_buf *ibp, 2130 struct xfs_dinode *dip, 2131 struct xfs_imap *imap, 2132 xfs_agino_t next_agino) 2133 { 2134 struct xfs_mount *mp = tp->t_mountp; 2135 int offset; 2136 2137 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2138 2139 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2140 be32_to_cpu(dip->di_next_unlinked), next_agino); 2141 2142 dip->di_next_unlinked = cpu_to_be32(next_agino); 2143 offset = imap->im_boffset + 2144 offsetof(struct xfs_dinode, di_next_unlinked); 2145 2146 /* need to recalc the inode CRC if appropriate */ 2147 xfs_dinode_calc_crc(mp, dip); 2148 xfs_trans_inode_buf(tp, ibp); 2149 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2150 xfs_inobp_check(mp, ibp); 2151 } 2152 2153 /* Set an in-core inode's unlinked pointer and return the old value. */ 2154 STATIC int 2155 xfs_iunlink_update_inode( 2156 struct xfs_trans *tp, 2157 struct xfs_inode *ip, 2158 xfs_agnumber_t agno, 2159 xfs_agino_t next_agino, 2160 xfs_agino_t *old_next_agino) 2161 { 2162 struct xfs_mount *mp = tp->t_mountp; 2163 struct xfs_dinode *dip; 2164 struct xfs_buf *ibp; 2165 xfs_agino_t old_value; 2166 int error; 2167 2168 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2169 2170 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2171 if (error) 2172 return error; 2173 2174 /* Make sure the old pointer isn't garbage. */ 2175 old_value = be32_to_cpu(dip->di_next_unlinked); 2176 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2177 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2178 sizeof(*dip), __this_address); 2179 error = -EFSCORRUPTED; 2180 goto out; 2181 } 2182 2183 /* 2184 * Since we're updating a linked list, we should never find that the 2185 * current pointer is the same as the new value, unless we're 2186 * terminating the list. 2187 */ 2188 *old_next_agino = old_value; 2189 if (old_value == next_agino) { 2190 if (next_agino != NULLAGINO) { 2191 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2192 dip, sizeof(*dip), __this_address); 2193 error = -EFSCORRUPTED; 2194 } 2195 goto out; 2196 } 2197 2198 /* Ok, update the new pointer. */ 2199 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2200 ibp, dip, &ip->i_imap, next_agino); 2201 return 0; 2202 out: 2203 xfs_trans_brelse(tp, ibp); 2204 return error; 2205 } 2206 2207 /* 2208 * This is called when the inode's link count has gone to 0 or we are creating 2209 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2210 * 2211 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2212 * list when the inode is freed. 2213 */ 2214 STATIC int 2215 xfs_iunlink( 2216 struct xfs_trans *tp, 2217 struct xfs_inode *ip) 2218 { 2219 struct xfs_mount *mp = tp->t_mountp; 2220 struct xfs_agi *agi; 2221 struct xfs_buf *agibp; 2222 xfs_agino_t next_agino; 2223 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2224 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2225 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2226 int error; 2227 2228 ASSERT(VFS_I(ip)->i_nlink == 0); 2229 ASSERT(VFS_I(ip)->i_mode != 0); 2230 trace_xfs_iunlink(ip); 2231 2232 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2233 error = xfs_read_agi(mp, tp, agno, &agibp); 2234 if (error) 2235 return error; 2236 agi = agibp->b_addr; 2237 2238 /* 2239 * Get the index into the agi hash table for the list this inode will 2240 * go on. Make sure the pointer isn't garbage and that this inode 2241 * isn't already on the list. 2242 */ 2243 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2244 if (next_agino == agino || 2245 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2246 xfs_buf_mark_corrupt(agibp); 2247 return -EFSCORRUPTED; 2248 } 2249 2250 if (next_agino != NULLAGINO) { 2251 struct xfs_perag *pag; 2252 xfs_agino_t old_agino; 2253 2254 /* 2255 * There is already another inode in the bucket, so point this 2256 * inode to the current head of the list. 2257 */ 2258 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2259 &old_agino); 2260 if (error) 2261 return error; 2262 ASSERT(old_agino == NULLAGINO); 2263 2264 /* 2265 * agino has been unlinked, add a backref from the next inode 2266 * back to agino. 2267 */ 2268 pag = xfs_perag_get(mp, agno); 2269 error = xfs_iunlink_add_backref(pag, agino, next_agino); 2270 xfs_perag_put(pag); 2271 if (error) 2272 return error; 2273 } 2274 2275 /* Point the head of the list to point to this inode. */ 2276 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2277 } 2278 2279 /* Return the imap, dinode pointer, and buffer for an inode. */ 2280 STATIC int 2281 xfs_iunlink_map_ino( 2282 struct xfs_trans *tp, 2283 xfs_agnumber_t agno, 2284 xfs_agino_t agino, 2285 struct xfs_imap *imap, 2286 struct xfs_dinode **dipp, 2287 struct xfs_buf **bpp) 2288 { 2289 struct xfs_mount *mp = tp->t_mountp; 2290 int error; 2291 2292 imap->im_blkno = 0; 2293 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2294 if (error) { 2295 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2296 __func__, error); 2297 return error; 2298 } 2299 2300 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2301 if (error) { 2302 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2303 __func__, error); 2304 return error; 2305 } 2306 2307 return 0; 2308 } 2309 2310 /* 2311 * Walk the unlinked chain from @head_agino until we find the inode that 2312 * points to @target_agino. Return the inode number, map, dinode pointer, 2313 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2314 * 2315 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2316 * @agino, @imap, @dipp, and @bpp are all output parameters. 2317 * 2318 * Do not call this function if @target_agino is the head of the list. 2319 */ 2320 STATIC int 2321 xfs_iunlink_map_prev( 2322 struct xfs_trans *tp, 2323 xfs_agnumber_t agno, 2324 xfs_agino_t head_agino, 2325 xfs_agino_t target_agino, 2326 xfs_agino_t *agino, 2327 struct xfs_imap *imap, 2328 struct xfs_dinode **dipp, 2329 struct xfs_buf **bpp, 2330 struct xfs_perag *pag) 2331 { 2332 struct xfs_mount *mp = tp->t_mountp; 2333 xfs_agino_t next_agino; 2334 int error; 2335 2336 ASSERT(head_agino != target_agino); 2337 *bpp = NULL; 2338 2339 /* See if our backref cache can find it faster. */ 2340 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2341 if (*agino != NULLAGINO) { 2342 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2343 if (error) 2344 return error; 2345 2346 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2347 return 0; 2348 2349 /* 2350 * If we get here the cache contents were corrupt, so drop the 2351 * buffer and fall back to walking the bucket list. 2352 */ 2353 xfs_trans_brelse(tp, *bpp); 2354 *bpp = NULL; 2355 WARN_ON_ONCE(1); 2356 } 2357 2358 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2359 2360 /* Otherwise, walk the entire bucket until we find it. */ 2361 next_agino = head_agino; 2362 while (next_agino != target_agino) { 2363 xfs_agino_t unlinked_agino; 2364 2365 if (*bpp) 2366 xfs_trans_brelse(tp, *bpp); 2367 2368 *agino = next_agino; 2369 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2370 bpp); 2371 if (error) 2372 return error; 2373 2374 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2375 /* 2376 * Make sure this pointer is valid and isn't an obvious 2377 * infinite loop. 2378 */ 2379 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2380 next_agino == unlinked_agino) { 2381 XFS_CORRUPTION_ERROR(__func__, 2382 XFS_ERRLEVEL_LOW, mp, 2383 *dipp, sizeof(**dipp)); 2384 error = -EFSCORRUPTED; 2385 return error; 2386 } 2387 next_agino = unlinked_agino; 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * Pull the on-disk inode from the AGI unlinked list. 2395 */ 2396 STATIC int 2397 xfs_iunlink_remove( 2398 struct xfs_trans *tp, 2399 struct xfs_inode *ip) 2400 { 2401 struct xfs_mount *mp = tp->t_mountp; 2402 struct xfs_agi *agi; 2403 struct xfs_buf *agibp; 2404 struct xfs_buf *last_ibp; 2405 struct xfs_dinode *last_dip = NULL; 2406 struct xfs_perag *pag = NULL; 2407 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2408 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2409 xfs_agino_t next_agino; 2410 xfs_agino_t head_agino; 2411 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2412 int error; 2413 2414 trace_xfs_iunlink_remove(ip); 2415 2416 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2417 error = xfs_read_agi(mp, tp, agno, &agibp); 2418 if (error) 2419 return error; 2420 agi = agibp->b_addr; 2421 2422 /* 2423 * Get the index into the agi hash table for the list this inode will 2424 * go on. Make sure the head pointer isn't garbage. 2425 */ 2426 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2427 if (!xfs_verify_agino(mp, agno, head_agino)) { 2428 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2429 agi, sizeof(*agi)); 2430 return -EFSCORRUPTED; 2431 } 2432 2433 /* 2434 * Set our inode's next_unlinked pointer to NULL and then return 2435 * the old pointer value so that we can update whatever was previous 2436 * to us in the list to point to whatever was next in the list. 2437 */ 2438 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2439 if (error) 2440 return error; 2441 2442 /* 2443 * If there was a backref pointing from the next inode back to this 2444 * one, remove it because we've removed this inode from the list. 2445 * 2446 * Later, if this inode was in the middle of the list we'll update 2447 * this inode's backref to point from the next inode. 2448 */ 2449 if (next_agino != NULLAGINO) { 2450 pag = xfs_perag_get(mp, agno); 2451 error = xfs_iunlink_change_backref(pag, next_agino, 2452 NULLAGINO); 2453 if (error) 2454 goto out; 2455 } 2456 2457 if (head_agino == agino) { 2458 /* Point the head of the list to the next unlinked inode. */ 2459 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2460 next_agino); 2461 if (error) 2462 goto out; 2463 } else { 2464 struct xfs_imap imap; 2465 xfs_agino_t prev_agino; 2466 2467 if (!pag) 2468 pag = xfs_perag_get(mp, agno); 2469 2470 /* We need to search the list for the inode being freed. */ 2471 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2472 &prev_agino, &imap, &last_dip, &last_ibp, 2473 pag); 2474 if (error) 2475 goto out; 2476 2477 /* Point the previous inode on the list to the next inode. */ 2478 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2479 last_dip, &imap, next_agino); 2480 2481 /* 2482 * Now we deal with the backref for this inode. If this inode 2483 * pointed at a real inode, change the backref that pointed to 2484 * us to point to our old next. If this inode was the end of 2485 * the list, delete the backref that pointed to us. Note that 2486 * change_backref takes care of deleting the backref if 2487 * next_agino is NULLAGINO. 2488 */ 2489 error = xfs_iunlink_change_backref(pag, agino, next_agino); 2490 if (error) 2491 goto out; 2492 } 2493 2494 out: 2495 if (pag) 2496 xfs_perag_put(pag); 2497 return error; 2498 } 2499 2500 /* 2501 * Look up the inode number specified and mark it stale if it is found. If it is 2502 * dirty, return the inode so it can be attached to the cluster buffer so it can 2503 * be processed appropriately when the cluster free transaction completes. 2504 */ 2505 static struct xfs_inode * 2506 xfs_ifree_get_one_inode( 2507 struct xfs_perag *pag, 2508 struct xfs_inode *free_ip, 2509 xfs_ino_t inum) 2510 { 2511 struct xfs_mount *mp = pag->pag_mount; 2512 struct xfs_inode *ip; 2513 2514 retry: 2515 rcu_read_lock(); 2516 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2517 2518 /* Inode not in memory, nothing to do */ 2519 if (!ip) 2520 goto out_rcu_unlock; 2521 2522 /* 2523 * because this is an RCU protected lookup, we could find a recently 2524 * freed or even reallocated inode during the lookup. We need to check 2525 * under the i_flags_lock for a valid inode here. Skip it if it is not 2526 * valid, the wrong inode or stale. 2527 */ 2528 spin_lock(&ip->i_flags_lock); 2529 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) { 2530 spin_unlock(&ip->i_flags_lock); 2531 goto out_rcu_unlock; 2532 } 2533 spin_unlock(&ip->i_flags_lock); 2534 2535 /* 2536 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2537 * other inodes that we did not find in the list attached to the buffer 2538 * and are not already marked stale. If we can't lock it, back off and 2539 * retry. 2540 */ 2541 if (ip != free_ip) { 2542 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2543 rcu_read_unlock(); 2544 delay(1); 2545 goto retry; 2546 } 2547 2548 /* 2549 * Check the inode number again in case we're racing with 2550 * freeing in xfs_reclaim_inode(). See the comments in that 2551 * function for more information as to why the initial check is 2552 * not sufficient. 2553 */ 2554 if (ip->i_ino != inum) { 2555 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2556 goto out_rcu_unlock; 2557 } 2558 } 2559 rcu_read_unlock(); 2560 2561 xfs_iflock(ip); 2562 xfs_iflags_set(ip, XFS_ISTALE); 2563 2564 /* 2565 * We don't need to attach clean inodes or those only with unlogged 2566 * changes (which we throw away, anyway). 2567 */ 2568 if (!ip->i_itemp || xfs_inode_clean(ip)) { 2569 ASSERT(ip != free_ip); 2570 xfs_ifunlock(ip); 2571 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2572 goto out_no_inode; 2573 } 2574 return ip; 2575 2576 out_rcu_unlock: 2577 rcu_read_unlock(); 2578 out_no_inode: 2579 return NULL; 2580 } 2581 2582 /* 2583 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2584 * inodes that are in memory - they all must be marked stale and attached to 2585 * the cluster buffer. 2586 */ 2587 STATIC int 2588 xfs_ifree_cluster( 2589 xfs_inode_t *free_ip, 2590 xfs_trans_t *tp, 2591 struct xfs_icluster *xic) 2592 { 2593 xfs_mount_t *mp = free_ip->i_mount; 2594 int nbufs; 2595 int i, j; 2596 int ioffset; 2597 xfs_daddr_t blkno; 2598 xfs_buf_t *bp; 2599 xfs_inode_t *ip; 2600 struct xfs_inode_log_item *iip; 2601 struct xfs_log_item *lip; 2602 struct xfs_perag *pag; 2603 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2604 xfs_ino_t inum; 2605 int error; 2606 2607 inum = xic->first_ino; 2608 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2609 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2610 2611 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2612 /* 2613 * The allocation bitmap tells us which inodes of the chunk were 2614 * physically allocated. Skip the cluster if an inode falls into 2615 * a sparse region. 2616 */ 2617 ioffset = inum - xic->first_ino; 2618 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2619 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2620 continue; 2621 } 2622 2623 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2624 XFS_INO_TO_AGBNO(mp, inum)); 2625 2626 /* 2627 * We obtain and lock the backing buffer first in the process 2628 * here, as we have to ensure that any dirty inode that we 2629 * can't get the flush lock on is attached to the buffer. 2630 * If we scan the in-memory inodes first, then buffer IO can 2631 * complete before we get a lock on it, and hence we may fail 2632 * to mark all the active inodes on the buffer stale. 2633 */ 2634 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2635 mp->m_bsize * igeo->blocks_per_cluster, 2636 XBF_UNMAPPED, &bp); 2637 if (error) 2638 return error; 2639 2640 /* 2641 * This buffer may not have been correctly initialised as we 2642 * didn't read it from disk. That's not important because we are 2643 * only using to mark the buffer as stale in the log, and to 2644 * attach stale cached inodes on it. That means it will never be 2645 * dispatched for IO. If it is, we want to know about it, and we 2646 * want it to fail. We can acheive this by adding a write 2647 * verifier to the buffer. 2648 */ 2649 bp->b_ops = &xfs_inode_buf_ops; 2650 2651 /* 2652 * Walk the inodes already attached to the buffer and mark them 2653 * stale. These will all have the flush locks held, so an 2654 * in-memory inode walk can't lock them. By marking them all 2655 * stale first, we will not attempt to lock them in the loop 2656 * below as the XFS_ISTALE flag will be set. 2657 */ 2658 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2659 if (lip->li_type == XFS_LI_INODE) { 2660 iip = (struct xfs_inode_log_item *)lip; 2661 ASSERT(iip->ili_logged == 1); 2662 lip->li_cb = xfs_istale_done; 2663 xfs_trans_ail_copy_lsn(mp->m_ail, 2664 &iip->ili_flush_lsn, 2665 &iip->ili_item.li_lsn); 2666 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2667 } 2668 } 2669 2670 2671 /* 2672 * For each inode in memory attempt to add it to the inode 2673 * buffer and set it up for being staled on buffer IO 2674 * completion. This is safe as we've locked out tail pushing 2675 * and flushing by locking the buffer. 2676 * 2677 * We have already marked every inode that was part of a 2678 * transaction stale above, which means there is no point in 2679 * even trying to lock them. 2680 */ 2681 for (i = 0; i < igeo->inodes_per_cluster; i++) { 2682 ip = xfs_ifree_get_one_inode(pag, free_ip, inum + i); 2683 if (!ip) 2684 continue; 2685 2686 iip = ip->i_itemp; 2687 iip->ili_last_fields = iip->ili_fields; 2688 iip->ili_fields = 0; 2689 iip->ili_fsync_fields = 0; 2690 iip->ili_logged = 1; 2691 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2692 &iip->ili_item.li_lsn); 2693 2694 xfs_buf_attach_iodone(bp, xfs_istale_done, 2695 &iip->ili_item); 2696 2697 if (ip != free_ip) 2698 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2699 } 2700 2701 xfs_trans_stale_inode_buf(tp, bp); 2702 xfs_trans_binval(tp, bp); 2703 } 2704 2705 xfs_perag_put(pag); 2706 return 0; 2707 } 2708 2709 /* 2710 * This is called to return an inode to the inode free list. 2711 * The inode should already be truncated to 0 length and have 2712 * no pages associated with it. This routine also assumes that 2713 * the inode is already a part of the transaction. 2714 * 2715 * The on-disk copy of the inode will have been added to the list 2716 * of unlinked inodes in the AGI. We need to remove the inode from 2717 * that list atomically with respect to freeing it here. 2718 */ 2719 int 2720 xfs_ifree( 2721 struct xfs_trans *tp, 2722 struct xfs_inode *ip) 2723 { 2724 int error; 2725 struct xfs_icluster xic = { 0 }; 2726 2727 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2728 ASSERT(VFS_I(ip)->i_nlink == 0); 2729 ASSERT(ip->i_df.if_nextents == 0); 2730 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2731 ASSERT(ip->i_d.di_nblocks == 0); 2732 2733 /* 2734 * Pull the on-disk inode from the AGI unlinked list. 2735 */ 2736 error = xfs_iunlink_remove(tp, ip); 2737 if (error) 2738 return error; 2739 2740 error = xfs_difree(tp, ip->i_ino, &xic); 2741 if (error) 2742 return error; 2743 2744 /* 2745 * Free any local-format data sitting around before we reset the 2746 * data fork to extents format. Note that the attr fork data has 2747 * already been freed by xfs_attr_inactive. 2748 */ 2749 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2750 kmem_free(ip->i_df.if_u1.if_data); 2751 ip->i_df.if_u1.if_data = NULL; 2752 ip->i_df.if_bytes = 0; 2753 } 2754 2755 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2756 ip->i_d.di_flags = 0; 2757 ip->i_d.di_flags2 = 0; 2758 ip->i_d.di_dmevmask = 0; 2759 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2760 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2761 2762 /* Don't attempt to replay owner changes for a deleted inode */ 2763 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); 2764 2765 /* 2766 * Bump the generation count so no one will be confused 2767 * by reincarnations of this inode. 2768 */ 2769 VFS_I(ip)->i_generation++; 2770 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2771 2772 if (xic.deleted) 2773 error = xfs_ifree_cluster(ip, tp, &xic); 2774 2775 return error; 2776 } 2777 2778 /* 2779 * This is called to unpin an inode. The caller must have the inode locked 2780 * in at least shared mode so that the buffer cannot be subsequently pinned 2781 * once someone is waiting for it to be unpinned. 2782 */ 2783 static void 2784 xfs_iunpin( 2785 struct xfs_inode *ip) 2786 { 2787 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2788 2789 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2790 2791 /* Give the log a push to start the unpinning I/O */ 2792 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2793 2794 } 2795 2796 static void 2797 __xfs_iunpin_wait( 2798 struct xfs_inode *ip) 2799 { 2800 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2801 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2802 2803 xfs_iunpin(ip); 2804 2805 do { 2806 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2807 if (xfs_ipincount(ip)) 2808 io_schedule(); 2809 } while (xfs_ipincount(ip)); 2810 finish_wait(wq, &wait.wq_entry); 2811 } 2812 2813 void 2814 xfs_iunpin_wait( 2815 struct xfs_inode *ip) 2816 { 2817 if (xfs_ipincount(ip)) 2818 __xfs_iunpin_wait(ip); 2819 } 2820 2821 /* 2822 * Removing an inode from the namespace involves removing the directory entry 2823 * and dropping the link count on the inode. Removing the directory entry can 2824 * result in locking an AGF (directory blocks were freed) and removing a link 2825 * count can result in placing the inode on an unlinked list which results in 2826 * locking an AGI. 2827 * 2828 * The big problem here is that we have an ordering constraint on AGF and AGI 2829 * locking - inode allocation locks the AGI, then can allocate a new extent for 2830 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2831 * removes the inode from the unlinked list, requiring that we lock the AGI 2832 * first, and then freeing the inode can result in an inode chunk being freed 2833 * and hence freeing disk space requiring that we lock an AGF. 2834 * 2835 * Hence the ordering that is imposed by other parts of the code is AGI before 2836 * AGF. This means we cannot remove the directory entry before we drop the inode 2837 * reference count and put it on the unlinked list as this results in a lock 2838 * order of AGF then AGI, and this can deadlock against inode allocation and 2839 * freeing. Therefore we must drop the link counts before we remove the 2840 * directory entry. 2841 * 2842 * This is still safe from a transactional point of view - it is not until we 2843 * get to xfs_defer_finish() that we have the possibility of multiple 2844 * transactions in this operation. Hence as long as we remove the directory 2845 * entry and drop the link count in the first transaction of the remove 2846 * operation, there are no transactional constraints on the ordering here. 2847 */ 2848 int 2849 xfs_remove( 2850 xfs_inode_t *dp, 2851 struct xfs_name *name, 2852 xfs_inode_t *ip) 2853 { 2854 xfs_mount_t *mp = dp->i_mount; 2855 xfs_trans_t *tp = NULL; 2856 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2857 int error = 0; 2858 uint resblks; 2859 2860 trace_xfs_remove(dp, name); 2861 2862 if (XFS_FORCED_SHUTDOWN(mp)) 2863 return -EIO; 2864 2865 error = xfs_qm_dqattach(dp); 2866 if (error) 2867 goto std_return; 2868 2869 error = xfs_qm_dqattach(ip); 2870 if (error) 2871 goto std_return; 2872 2873 /* 2874 * We try to get the real space reservation first, 2875 * allowing for directory btree deletion(s) implying 2876 * possible bmap insert(s). If we can't get the space 2877 * reservation then we use 0 instead, and avoid the bmap 2878 * btree insert(s) in the directory code by, if the bmap 2879 * insert tries to happen, instead trimming the LAST 2880 * block from the directory. 2881 */ 2882 resblks = XFS_REMOVE_SPACE_RES(mp); 2883 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2884 if (error == -ENOSPC) { 2885 resblks = 0; 2886 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2887 &tp); 2888 } 2889 if (error) { 2890 ASSERT(error != -ENOSPC); 2891 goto std_return; 2892 } 2893 2894 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2895 2896 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2897 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2898 2899 /* 2900 * If we're removing a directory perform some additional validation. 2901 */ 2902 if (is_dir) { 2903 ASSERT(VFS_I(ip)->i_nlink >= 2); 2904 if (VFS_I(ip)->i_nlink != 2) { 2905 error = -ENOTEMPTY; 2906 goto out_trans_cancel; 2907 } 2908 if (!xfs_dir_isempty(ip)) { 2909 error = -ENOTEMPTY; 2910 goto out_trans_cancel; 2911 } 2912 2913 /* Drop the link from ip's "..". */ 2914 error = xfs_droplink(tp, dp); 2915 if (error) 2916 goto out_trans_cancel; 2917 2918 /* Drop the "." link from ip to self. */ 2919 error = xfs_droplink(tp, ip); 2920 if (error) 2921 goto out_trans_cancel; 2922 } else { 2923 /* 2924 * When removing a non-directory we need to log the parent 2925 * inode here. For a directory this is done implicitly 2926 * by the xfs_droplink call for the ".." entry. 2927 */ 2928 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2929 } 2930 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2931 2932 /* Drop the link from dp to ip. */ 2933 error = xfs_droplink(tp, ip); 2934 if (error) 2935 goto out_trans_cancel; 2936 2937 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2938 if (error) { 2939 ASSERT(error != -ENOENT); 2940 goto out_trans_cancel; 2941 } 2942 2943 /* 2944 * If this is a synchronous mount, make sure that the 2945 * remove transaction goes to disk before returning to 2946 * the user. 2947 */ 2948 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2949 xfs_trans_set_sync(tp); 2950 2951 error = xfs_trans_commit(tp); 2952 if (error) 2953 goto std_return; 2954 2955 if (is_dir && xfs_inode_is_filestream(ip)) 2956 xfs_filestream_deassociate(ip); 2957 2958 return 0; 2959 2960 out_trans_cancel: 2961 xfs_trans_cancel(tp); 2962 std_return: 2963 return error; 2964 } 2965 2966 /* 2967 * Enter all inodes for a rename transaction into a sorted array. 2968 */ 2969 #define __XFS_SORT_INODES 5 2970 STATIC void 2971 xfs_sort_for_rename( 2972 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2973 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2974 struct xfs_inode *ip1, /* in: inode of old entry */ 2975 struct xfs_inode *ip2, /* in: inode of new entry */ 2976 struct xfs_inode *wip, /* in: whiteout inode */ 2977 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2978 int *num_inodes) /* in/out: inodes in array */ 2979 { 2980 int i, j; 2981 2982 ASSERT(*num_inodes == __XFS_SORT_INODES); 2983 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2984 2985 /* 2986 * i_tab contains a list of pointers to inodes. We initialize 2987 * the table here & we'll sort it. We will then use it to 2988 * order the acquisition of the inode locks. 2989 * 2990 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2991 */ 2992 i = 0; 2993 i_tab[i++] = dp1; 2994 i_tab[i++] = dp2; 2995 i_tab[i++] = ip1; 2996 if (ip2) 2997 i_tab[i++] = ip2; 2998 if (wip) 2999 i_tab[i++] = wip; 3000 *num_inodes = i; 3001 3002 /* 3003 * Sort the elements via bubble sort. (Remember, there are at 3004 * most 5 elements to sort, so this is adequate.) 3005 */ 3006 for (i = 0; i < *num_inodes; i++) { 3007 for (j = 1; j < *num_inodes; j++) { 3008 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 3009 struct xfs_inode *temp = i_tab[j]; 3010 i_tab[j] = i_tab[j-1]; 3011 i_tab[j-1] = temp; 3012 } 3013 } 3014 } 3015 } 3016 3017 static int 3018 xfs_finish_rename( 3019 struct xfs_trans *tp) 3020 { 3021 /* 3022 * If this is a synchronous mount, make sure that the rename transaction 3023 * goes to disk before returning to the user. 3024 */ 3025 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 3026 xfs_trans_set_sync(tp); 3027 3028 return xfs_trans_commit(tp); 3029 } 3030 3031 /* 3032 * xfs_cross_rename() 3033 * 3034 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 3035 */ 3036 STATIC int 3037 xfs_cross_rename( 3038 struct xfs_trans *tp, 3039 struct xfs_inode *dp1, 3040 struct xfs_name *name1, 3041 struct xfs_inode *ip1, 3042 struct xfs_inode *dp2, 3043 struct xfs_name *name2, 3044 struct xfs_inode *ip2, 3045 int spaceres) 3046 { 3047 int error = 0; 3048 int ip1_flags = 0; 3049 int ip2_flags = 0; 3050 int dp2_flags = 0; 3051 3052 /* Swap inode number for dirent in first parent */ 3053 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3054 if (error) 3055 goto out_trans_abort; 3056 3057 /* Swap inode number for dirent in second parent */ 3058 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3059 if (error) 3060 goto out_trans_abort; 3061 3062 /* 3063 * If we're renaming one or more directories across different parents, 3064 * update the respective ".." entries (and link counts) to match the new 3065 * parents. 3066 */ 3067 if (dp1 != dp2) { 3068 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3069 3070 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3071 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3072 dp1->i_ino, spaceres); 3073 if (error) 3074 goto out_trans_abort; 3075 3076 /* transfer ip2 ".." reference to dp1 */ 3077 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3078 error = xfs_droplink(tp, dp2); 3079 if (error) 3080 goto out_trans_abort; 3081 xfs_bumplink(tp, dp1); 3082 } 3083 3084 /* 3085 * Although ip1 isn't changed here, userspace needs 3086 * to be warned about the change, so that applications 3087 * relying on it (like backup ones), will properly 3088 * notify the change 3089 */ 3090 ip1_flags |= XFS_ICHGTIME_CHG; 3091 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3092 } 3093 3094 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3095 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3096 dp2->i_ino, spaceres); 3097 if (error) 3098 goto out_trans_abort; 3099 3100 /* transfer ip1 ".." reference to dp2 */ 3101 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3102 error = xfs_droplink(tp, dp1); 3103 if (error) 3104 goto out_trans_abort; 3105 xfs_bumplink(tp, dp2); 3106 } 3107 3108 /* 3109 * Although ip2 isn't changed here, userspace needs 3110 * to be warned about the change, so that applications 3111 * relying on it (like backup ones), will properly 3112 * notify the change 3113 */ 3114 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3115 ip2_flags |= XFS_ICHGTIME_CHG; 3116 } 3117 } 3118 3119 if (ip1_flags) { 3120 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3121 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3122 } 3123 if (ip2_flags) { 3124 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3125 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3126 } 3127 if (dp2_flags) { 3128 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3129 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3130 } 3131 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3132 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3133 return xfs_finish_rename(tp); 3134 3135 out_trans_abort: 3136 xfs_trans_cancel(tp); 3137 return error; 3138 } 3139 3140 /* 3141 * xfs_rename_alloc_whiteout() 3142 * 3143 * Return a referenced, unlinked, unlocked inode that that can be used as a 3144 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3145 * crash between allocating the inode and linking it into the rename transaction 3146 * recovery will free the inode and we won't leak it. 3147 */ 3148 static int 3149 xfs_rename_alloc_whiteout( 3150 struct xfs_inode *dp, 3151 struct xfs_inode **wip) 3152 { 3153 struct xfs_inode *tmpfile; 3154 int error; 3155 3156 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3157 if (error) 3158 return error; 3159 3160 /* 3161 * Prepare the tmpfile inode as if it were created through the VFS. 3162 * Complete the inode setup and flag it as linkable. nlink is already 3163 * zero, so we can skip the drop_nlink. 3164 */ 3165 xfs_setup_iops(tmpfile); 3166 xfs_finish_inode_setup(tmpfile); 3167 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3168 3169 *wip = tmpfile; 3170 return 0; 3171 } 3172 3173 /* 3174 * xfs_rename 3175 */ 3176 int 3177 xfs_rename( 3178 struct xfs_inode *src_dp, 3179 struct xfs_name *src_name, 3180 struct xfs_inode *src_ip, 3181 struct xfs_inode *target_dp, 3182 struct xfs_name *target_name, 3183 struct xfs_inode *target_ip, 3184 unsigned int flags) 3185 { 3186 struct xfs_mount *mp = src_dp->i_mount; 3187 struct xfs_trans *tp; 3188 struct xfs_inode *wip = NULL; /* whiteout inode */ 3189 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3190 struct xfs_buf *agibp; 3191 int num_inodes = __XFS_SORT_INODES; 3192 bool new_parent = (src_dp != target_dp); 3193 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3194 int spaceres; 3195 int error; 3196 3197 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3198 3199 if ((flags & RENAME_EXCHANGE) && !target_ip) 3200 return -EINVAL; 3201 3202 /* 3203 * If we are doing a whiteout operation, allocate the whiteout inode 3204 * we will be placing at the target and ensure the type is set 3205 * appropriately. 3206 */ 3207 if (flags & RENAME_WHITEOUT) { 3208 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3209 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3210 if (error) 3211 return error; 3212 3213 /* setup target dirent info as whiteout */ 3214 src_name->type = XFS_DIR3_FT_CHRDEV; 3215 } 3216 3217 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3218 inodes, &num_inodes); 3219 3220 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3221 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3222 if (error == -ENOSPC) { 3223 spaceres = 0; 3224 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3225 &tp); 3226 } 3227 if (error) 3228 goto out_release_wip; 3229 3230 /* 3231 * Attach the dquots to the inodes 3232 */ 3233 error = xfs_qm_vop_rename_dqattach(inodes); 3234 if (error) 3235 goto out_trans_cancel; 3236 3237 /* 3238 * Lock all the participating inodes. Depending upon whether 3239 * the target_name exists in the target directory, and 3240 * whether the target directory is the same as the source 3241 * directory, we can lock from 2 to 4 inodes. 3242 */ 3243 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3244 3245 /* 3246 * Join all the inodes to the transaction. From this point on, 3247 * we can rely on either trans_commit or trans_cancel to unlock 3248 * them. 3249 */ 3250 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3251 if (new_parent) 3252 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3253 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3254 if (target_ip) 3255 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3256 if (wip) 3257 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3258 3259 /* 3260 * If we are using project inheritance, we only allow renames 3261 * into our tree when the project IDs are the same; else the 3262 * tree quota mechanism would be circumvented. 3263 */ 3264 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3265 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3266 error = -EXDEV; 3267 goto out_trans_cancel; 3268 } 3269 3270 /* RENAME_EXCHANGE is unique from here on. */ 3271 if (flags & RENAME_EXCHANGE) 3272 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3273 target_dp, target_name, target_ip, 3274 spaceres); 3275 3276 /* 3277 * Check for expected errors before we dirty the transaction 3278 * so we can return an error without a transaction abort. 3279 */ 3280 if (target_ip == NULL) { 3281 /* 3282 * If there's no space reservation, check the entry will 3283 * fit before actually inserting it. 3284 */ 3285 if (!spaceres) { 3286 error = xfs_dir_canenter(tp, target_dp, target_name); 3287 if (error) 3288 goto out_trans_cancel; 3289 } 3290 } else { 3291 /* 3292 * If target exists and it's a directory, check that whether 3293 * it can be destroyed. 3294 */ 3295 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3296 (!xfs_dir_isempty(target_ip) || 3297 (VFS_I(target_ip)->i_nlink > 2))) { 3298 error = -EEXIST; 3299 goto out_trans_cancel; 3300 } 3301 } 3302 3303 /* 3304 * Directory entry creation below may acquire the AGF. Remove 3305 * the whiteout from the unlinked list first to preserve correct 3306 * AGI/AGF locking order. This dirties the transaction so failures 3307 * after this point will abort and log recovery will clean up the 3308 * mess. 3309 * 3310 * For whiteouts, we need to bump the link count on the whiteout 3311 * inode. After this point, we have a real link, clear the tmpfile 3312 * state flag from the inode so it doesn't accidentally get misused 3313 * in future. 3314 */ 3315 if (wip) { 3316 ASSERT(VFS_I(wip)->i_nlink == 0); 3317 error = xfs_iunlink_remove(tp, wip); 3318 if (error) 3319 goto out_trans_cancel; 3320 3321 xfs_bumplink(tp, wip); 3322 VFS_I(wip)->i_state &= ~I_LINKABLE; 3323 } 3324 3325 /* 3326 * Set up the target. 3327 */ 3328 if (target_ip == NULL) { 3329 /* 3330 * If target does not exist and the rename crosses 3331 * directories, adjust the target directory link count 3332 * to account for the ".." reference from the new entry. 3333 */ 3334 error = xfs_dir_createname(tp, target_dp, target_name, 3335 src_ip->i_ino, spaceres); 3336 if (error) 3337 goto out_trans_cancel; 3338 3339 xfs_trans_ichgtime(tp, target_dp, 3340 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3341 3342 if (new_parent && src_is_directory) { 3343 xfs_bumplink(tp, target_dp); 3344 } 3345 } else { /* target_ip != NULL */ 3346 /* 3347 * Link the source inode under the target name. 3348 * If the source inode is a directory and we are moving 3349 * it across directories, its ".." entry will be 3350 * inconsistent until we replace that down below. 3351 * 3352 * In case there is already an entry with the same 3353 * name at the destination directory, remove it first. 3354 */ 3355 3356 /* 3357 * Check whether the replace operation will need to allocate 3358 * blocks. This happens when the shortform directory lacks 3359 * space and we have to convert it to a block format directory. 3360 * When more blocks are necessary, we must lock the AGI first 3361 * to preserve locking order (AGI -> AGF). 3362 */ 3363 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3364 error = xfs_read_agi(mp, tp, 3365 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3366 &agibp); 3367 if (error) 3368 goto out_trans_cancel; 3369 } 3370 3371 error = xfs_dir_replace(tp, target_dp, target_name, 3372 src_ip->i_ino, spaceres); 3373 if (error) 3374 goto out_trans_cancel; 3375 3376 xfs_trans_ichgtime(tp, target_dp, 3377 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3378 3379 /* 3380 * Decrement the link count on the target since the target 3381 * dir no longer points to it. 3382 */ 3383 error = xfs_droplink(tp, target_ip); 3384 if (error) 3385 goto out_trans_cancel; 3386 3387 if (src_is_directory) { 3388 /* 3389 * Drop the link from the old "." entry. 3390 */ 3391 error = xfs_droplink(tp, target_ip); 3392 if (error) 3393 goto out_trans_cancel; 3394 } 3395 } /* target_ip != NULL */ 3396 3397 /* 3398 * Remove the source. 3399 */ 3400 if (new_parent && src_is_directory) { 3401 /* 3402 * Rewrite the ".." entry to point to the new 3403 * directory. 3404 */ 3405 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3406 target_dp->i_ino, spaceres); 3407 ASSERT(error != -EEXIST); 3408 if (error) 3409 goto out_trans_cancel; 3410 } 3411 3412 /* 3413 * We always want to hit the ctime on the source inode. 3414 * 3415 * This isn't strictly required by the standards since the source 3416 * inode isn't really being changed, but old unix file systems did 3417 * it and some incremental backup programs won't work without it. 3418 */ 3419 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3420 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3421 3422 /* 3423 * Adjust the link count on src_dp. This is necessary when 3424 * renaming a directory, either within one parent when 3425 * the target existed, or across two parent directories. 3426 */ 3427 if (src_is_directory && (new_parent || target_ip != NULL)) { 3428 3429 /* 3430 * Decrement link count on src_directory since the 3431 * entry that's moved no longer points to it. 3432 */ 3433 error = xfs_droplink(tp, src_dp); 3434 if (error) 3435 goto out_trans_cancel; 3436 } 3437 3438 /* 3439 * For whiteouts, we only need to update the source dirent with the 3440 * inode number of the whiteout inode rather than removing it 3441 * altogether. 3442 */ 3443 if (wip) { 3444 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3445 spaceres); 3446 } else 3447 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3448 spaceres); 3449 if (error) 3450 goto out_trans_cancel; 3451 3452 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3453 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3454 if (new_parent) 3455 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3456 3457 error = xfs_finish_rename(tp); 3458 if (wip) 3459 xfs_irele(wip); 3460 return error; 3461 3462 out_trans_cancel: 3463 xfs_trans_cancel(tp); 3464 out_release_wip: 3465 if (wip) 3466 xfs_irele(wip); 3467 return error; 3468 } 3469 3470 STATIC int 3471 xfs_iflush_cluster( 3472 struct xfs_inode *ip, 3473 struct xfs_buf *bp) 3474 { 3475 struct xfs_mount *mp = ip->i_mount; 3476 struct xfs_perag *pag; 3477 unsigned long first_index, mask; 3478 int cilist_size; 3479 struct xfs_inode **cilist; 3480 struct xfs_inode *cip; 3481 struct xfs_ino_geometry *igeo = M_IGEO(mp); 3482 int error = 0; 3483 int nr_found; 3484 int clcount = 0; 3485 int i; 3486 3487 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3488 3489 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *); 3490 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3491 if (!cilist) 3492 goto out_put; 3493 3494 mask = ~(igeo->inodes_per_cluster - 1); 3495 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3496 rcu_read_lock(); 3497 /* really need a gang lookup range call here */ 3498 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3499 first_index, igeo->inodes_per_cluster); 3500 if (nr_found == 0) 3501 goto out_free; 3502 3503 for (i = 0; i < nr_found; i++) { 3504 cip = cilist[i]; 3505 if (cip == ip) 3506 continue; 3507 3508 /* 3509 * because this is an RCU protected lookup, we could find a 3510 * recently freed or even reallocated inode during the lookup. 3511 * We need to check under the i_flags_lock for a valid inode 3512 * here. Skip it if it is not valid or the wrong inode. 3513 */ 3514 spin_lock(&cip->i_flags_lock); 3515 if (!cip->i_ino || 3516 __xfs_iflags_test(cip, XFS_ISTALE)) { 3517 spin_unlock(&cip->i_flags_lock); 3518 continue; 3519 } 3520 3521 /* 3522 * Once we fall off the end of the cluster, no point checking 3523 * any more inodes in the list because they will also all be 3524 * outside the cluster. 3525 */ 3526 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3527 spin_unlock(&cip->i_flags_lock); 3528 break; 3529 } 3530 spin_unlock(&cip->i_flags_lock); 3531 3532 /* 3533 * Do an un-protected check to see if the inode is dirty and 3534 * is a candidate for flushing. These checks will be repeated 3535 * later after the appropriate locks are acquired. 3536 */ 3537 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3538 continue; 3539 3540 /* 3541 * Try to get locks. If any are unavailable or it is pinned, 3542 * then this inode cannot be flushed and is skipped. 3543 */ 3544 3545 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3546 continue; 3547 if (!xfs_iflock_nowait(cip)) { 3548 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3549 continue; 3550 } 3551 if (xfs_ipincount(cip)) { 3552 xfs_ifunlock(cip); 3553 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3554 continue; 3555 } 3556 3557 3558 /* 3559 * Check the inode number again, just to be certain we are not 3560 * racing with freeing in xfs_reclaim_inode(). See the comments 3561 * in that function for more information as to why the initial 3562 * check is not sufficient. 3563 */ 3564 if (!cip->i_ino) { 3565 xfs_ifunlock(cip); 3566 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3567 continue; 3568 } 3569 3570 /* 3571 * arriving here means that this inode can be flushed. First 3572 * re-check that it's dirty before flushing. 3573 */ 3574 if (!xfs_inode_clean(cip)) { 3575 error = xfs_iflush_int(cip, bp); 3576 if (error) { 3577 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3578 goto out_free; 3579 } 3580 clcount++; 3581 } else { 3582 xfs_ifunlock(cip); 3583 } 3584 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3585 } 3586 3587 if (clcount) { 3588 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3589 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3590 } 3591 3592 out_free: 3593 rcu_read_unlock(); 3594 kmem_free(cilist); 3595 out_put: 3596 xfs_perag_put(pag); 3597 return error; 3598 } 3599 3600 /* 3601 * Flush dirty inode metadata into the backing buffer. 3602 * 3603 * The caller must have the inode lock and the inode flush lock held. The 3604 * inode lock will still be held upon return to the caller, and the inode 3605 * flush lock will be released after the inode has reached the disk. 3606 * 3607 * The caller must write out the buffer returned in *bpp and release it. 3608 */ 3609 int 3610 xfs_iflush( 3611 struct xfs_inode *ip, 3612 struct xfs_buf **bpp) 3613 { 3614 struct xfs_mount *mp = ip->i_mount; 3615 struct xfs_buf *bp = NULL; 3616 struct xfs_dinode *dip; 3617 int error; 3618 3619 XFS_STATS_INC(mp, xs_iflush_count); 3620 3621 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3622 ASSERT(xfs_isiflocked(ip)); 3623 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3624 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3625 3626 *bpp = NULL; 3627 3628 xfs_iunpin_wait(ip); 3629 3630 /* 3631 * For stale inodes we cannot rely on the backing buffer remaining 3632 * stale in cache for the remaining life of the stale inode and so 3633 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3634 * inodes below. We have to check this after ensuring the inode is 3635 * unpinned so that it is safe to reclaim the stale inode after the 3636 * flush call. 3637 */ 3638 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3639 xfs_ifunlock(ip); 3640 return 0; 3641 } 3642 3643 /* 3644 * Get the buffer containing the on-disk inode. We are doing a try-lock 3645 * operation here, so we may get an EAGAIN error. In that case, return 3646 * leaving the inode dirty. 3647 * 3648 * If we get any other error, we effectively have a corruption situation 3649 * and we cannot flush the inode. Abort the flush and shut down. 3650 */ 3651 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK); 3652 if (error == -EAGAIN) { 3653 xfs_ifunlock(ip); 3654 return error; 3655 } 3656 if (error) 3657 goto abort; 3658 3659 /* 3660 * If the buffer is pinned then push on the log now so we won't 3661 * get stuck waiting in the write for too long. 3662 */ 3663 if (xfs_buf_ispinned(bp)) 3664 xfs_log_force(mp, 0); 3665 3666 /* 3667 * Flush the provided inode then attempt to gather others from the 3668 * cluster into the write. 3669 * 3670 * Note: Once we attempt to flush an inode, we must run buffer 3671 * completion callbacks on any failure. If this fails, simulate an I/O 3672 * failure on the buffer and shut down. 3673 */ 3674 error = xfs_iflush_int(ip, bp); 3675 if (!error) 3676 error = xfs_iflush_cluster(ip, bp); 3677 if (error) { 3678 bp->b_flags |= XBF_ASYNC; 3679 xfs_buf_ioend_fail(bp); 3680 goto shutdown; 3681 } 3682 3683 *bpp = bp; 3684 return 0; 3685 3686 abort: 3687 xfs_iflush_abort(ip); 3688 shutdown: 3689 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3690 return error; 3691 } 3692 3693 STATIC int 3694 xfs_iflush_int( 3695 struct xfs_inode *ip, 3696 struct xfs_buf *bp) 3697 { 3698 struct xfs_inode_log_item *iip = ip->i_itemp; 3699 struct xfs_dinode *dip; 3700 struct xfs_mount *mp = ip->i_mount; 3701 int error; 3702 3703 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3704 ASSERT(xfs_isiflocked(ip)); 3705 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3706 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3707 ASSERT(iip != NULL && iip->ili_fields != 0); 3708 3709 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3710 3711 /* 3712 * We don't flush the inode if any of the following checks fail, but we 3713 * do still update the log item and attach to the backing buffer as if 3714 * the flush happened. This is a formality to facilitate predictable 3715 * error handling as the caller will shutdown and fail the buffer. 3716 */ 3717 error = -EFSCORRUPTED; 3718 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3719 mp, XFS_ERRTAG_IFLUSH_1)) { 3720 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3721 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3722 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3723 goto flush_out; 3724 } 3725 if (S_ISREG(VFS_I(ip)->i_mode)) { 3726 if (XFS_TEST_ERROR( 3727 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3728 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3729 mp, XFS_ERRTAG_IFLUSH_3)) { 3730 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3731 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3732 __func__, ip->i_ino, ip); 3733 goto flush_out; 3734 } 3735 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3736 if (XFS_TEST_ERROR( 3737 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3738 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3739 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3740 mp, XFS_ERRTAG_IFLUSH_4)) { 3741 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3742 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3743 __func__, ip->i_ino, ip); 3744 goto flush_out; 3745 } 3746 } 3747 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3748 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3749 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3750 "%s: detected corrupt incore inode %Lu, " 3751 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3752 __func__, ip->i_ino, 3753 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3754 ip->i_d.di_nblocks, ip); 3755 goto flush_out; 3756 } 3757 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3758 mp, XFS_ERRTAG_IFLUSH_6)) { 3759 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3760 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3761 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3762 goto flush_out; 3763 } 3764 3765 /* 3766 * Inode item log recovery for v2 inodes are dependent on the 3767 * di_flushiter count for correct sequencing. We bump the flush 3768 * iteration count so we can detect flushes which postdate a log record 3769 * during recovery. This is redundant as we now log every change and 3770 * hence this can't happen but we need to still do it to ensure 3771 * backwards compatibility with old kernels that predate logging all 3772 * inode changes. 3773 */ 3774 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3775 ip->i_d.di_flushiter++; 3776 3777 /* 3778 * If there are inline format data / attr forks attached to this inode, 3779 * make sure they are not corrupt. 3780 */ 3781 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3782 xfs_ifork_verify_local_data(ip)) 3783 goto flush_out; 3784 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3785 xfs_ifork_verify_local_attr(ip)) 3786 goto flush_out; 3787 3788 /* 3789 * Copy the dirty parts of the inode into the on-disk inode. We always 3790 * copy out the core of the inode, because if the inode is dirty at all 3791 * the core must be. 3792 */ 3793 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3794 3795 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3796 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3797 ip->i_d.di_flushiter = 0; 3798 3799 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3800 if (XFS_IFORK_Q(ip)) 3801 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3802 xfs_inobp_check(mp, bp); 3803 3804 /* 3805 * We've recorded everything logged in the inode, so we'd like to clear 3806 * the ili_fields bits so we don't log and flush things unnecessarily. 3807 * However, we can't stop logging all this information until the data 3808 * we've copied into the disk buffer is written to disk. If we did we 3809 * might overwrite the copy of the inode in the log with all the data 3810 * after re-logging only part of it, and in the face of a crash we 3811 * wouldn't have all the data we need to recover. 3812 * 3813 * What we do is move the bits to the ili_last_fields field. When 3814 * logging the inode, these bits are moved back to the ili_fields field. 3815 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3816 * know that the information those bits represent is permanently on 3817 * disk. As long as the flush completes before the inode is logged 3818 * again, then both ili_fields and ili_last_fields will be cleared. 3819 * 3820 * We can play with the ili_fields bits here, because the inode lock 3821 * must be held exclusively in order to set bits there and the flush 3822 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3823 * done routine can tell whether or not to look in the AIL. Also, store 3824 * the current LSN of the inode so that we can tell whether the item has 3825 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3826 * need the AIL lock, because it is a 64 bit value that cannot be read 3827 * atomically. 3828 */ 3829 error = 0; 3830 flush_out: 3831 iip->ili_last_fields = iip->ili_fields; 3832 iip->ili_fields = 0; 3833 iip->ili_fsync_fields = 0; 3834 iip->ili_logged = 1; 3835 3836 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3837 &iip->ili_item.li_lsn); 3838 3839 /* 3840 * Attach the inode item callback to the buffer whether the flush 3841 * succeeded or not. If not, the caller will shut down and fail I/O 3842 * completion on the buffer to remove the inode from the AIL and release 3843 * the flush lock. 3844 */ 3845 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3846 3847 /* generate the checksum. */ 3848 xfs_dinode_calc_crc(mp, dip); 3849 3850 ASSERT(!list_empty(&bp->b_li_list)); 3851 ASSERT(bp->b_iodone != NULL); 3852 return error; 3853 } 3854 3855 /* Release an inode. */ 3856 void 3857 xfs_irele( 3858 struct xfs_inode *ip) 3859 { 3860 trace_xfs_irele(ip, _RET_IP_); 3861 iput(VFS_I(ip)); 3862 } 3863 3864 /* 3865 * Ensure all commited transactions touching the inode are written to the log. 3866 */ 3867 int 3868 xfs_log_force_inode( 3869 struct xfs_inode *ip) 3870 { 3871 xfs_lsn_t lsn = 0; 3872 3873 xfs_ilock(ip, XFS_ILOCK_SHARED); 3874 if (xfs_ipincount(ip)) 3875 lsn = ip->i_itemp->ili_last_lsn; 3876 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3877 3878 if (!lsn) 3879 return 0; 3880 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3881 } 3882