1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_inum.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_error.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_cksum.h" 47 #include "xfs_trace.h" 48 #include "xfs_icache.h" 49 #include "xfs_symlink.h" 50 #include "xfs_trans_priv.h" 51 #include "xfs_log.h" 52 #include "xfs_bmap_btree.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 63 64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * These two are wrapper routines around the xfs_ilock() routine used to 82 * centralize some grungy code. They are used in places that wish to lock the 83 * inode solely for reading the extents. The reason these places can't just 84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 85 * bringing in of the extents from disk for a file in b-tree format. If the 86 * inode is in b-tree format, then we need to lock the inode exclusively until 87 * the extents are read in. Locking it exclusively all the time would limit 88 * our parallelism unnecessarily, though. What we do instead is check to see 89 * if the extents have been read in yet, and only lock the inode exclusively 90 * if they have not. 91 * 92 * The functions return a value which should be given to the corresponding 93 * xfs_iunlock() call. 94 */ 95 uint 96 xfs_ilock_data_map_shared( 97 struct xfs_inode *ip) 98 { 99 uint lock_mode = XFS_ILOCK_SHARED; 100 101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 103 lock_mode = XFS_ILOCK_EXCL; 104 xfs_ilock(ip, lock_mode); 105 return lock_mode; 106 } 107 108 uint 109 xfs_ilock_attr_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 /* 122 * The xfs inode contains 2 locks: a multi-reader lock called the 123 * i_iolock and a multi-reader lock called the i_lock. This routine 124 * allows either or both of the locks to be obtained. 125 * 126 * The 2 locks should always be ordered so that the IO lock is 127 * obtained first in order to prevent deadlock. 128 * 129 * ip -- the inode being locked 130 * lock_flags -- this parameter indicates the inode's locks 131 * to be locked. It can be: 132 * XFS_IOLOCK_SHARED, 133 * XFS_IOLOCK_EXCL, 134 * XFS_ILOCK_SHARED, 135 * XFS_ILOCK_EXCL, 136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 140 */ 141 void 142 xfs_ilock( 143 xfs_inode_t *ip, 144 uint lock_flags) 145 { 146 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 147 148 /* 149 * You can't set both SHARED and EXCL for the same lock, 150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 152 */ 153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 158 159 if (lock_flags & XFS_IOLOCK_EXCL) 160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 161 else if (lock_flags & XFS_IOLOCK_SHARED) 162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 /* 190 * You can't set both SHARED and EXCL for the same lock, 191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 193 */ 194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 199 200 if (lock_flags & XFS_IOLOCK_EXCL) { 201 if (!mrtryupdate(&ip->i_iolock)) 202 goto out; 203 } else if (lock_flags & XFS_IOLOCK_SHARED) { 204 if (!mrtryaccess(&ip->i_iolock)) 205 goto out; 206 } 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!mrtryupdate(&ip->i_lock)) 209 goto out_undo_iolock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!mrtryaccess(&ip->i_lock)) 212 goto out_undo_iolock; 213 } 214 return 1; 215 216 out_undo_iolock: 217 if (lock_flags & XFS_IOLOCK_EXCL) 218 mrunlock_excl(&ip->i_iolock); 219 else if (lock_flags & XFS_IOLOCK_SHARED) 220 mrunlock_shared(&ip->i_iolock); 221 out: 222 return 0; 223 } 224 225 /* 226 * xfs_iunlock() is used to drop the inode locks acquired with 227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 229 * that we know which locks to drop. 230 * 231 * ip -- the inode being unlocked 232 * lock_flags -- this parameter indicates the inode's locks to be 233 * to be unlocked. See the comment for xfs_ilock() for a list 234 * of valid values for this parameter. 235 * 236 */ 237 void 238 xfs_iunlock( 239 xfs_inode_t *ip, 240 uint lock_flags) 241 { 242 /* 243 * You can't set both SHARED and EXCL for the same lock, 244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 246 */ 247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 252 ASSERT(lock_flags != 0); 253 254 if (lock_flags & XFS_IOLOCK_EXCL) 255 mrunlock_excl(&ip->i_iolock); 256 else if (lock_flags & XFS_IOLOCK_SHARED) 257 mrunlock_shared(&ip->i_iolock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 mrunlock_excl(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 mrunlock_shared(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 mrdemote(&ip->i_lock); 281 if (lock_flags & XFS_IOLOCK_EXCL) 282 mrdemote(&ip->i_iolock); 283 284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 285 } 286 287 #if defined(DEBUG) || defined(XFS_WARN) 288 int 289 xfs_isilocked( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 294 if (!(lock_flags & XFS_ILOCK_SHARED)) 295 return !!ip->i_lock.mr_writer; 296 return rwsem_is_locked(&ip->i_lock.mr_lock); 297 } 298 299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 300 if (!(lock_flags & XFS_IOLOCK_SHARED)) 301 return !!ip->i_iolock.mr_writer; 302 return rwsem_is_locked(&ip->i_iolock.mr_lock); 303 } 304 305 ASSERT(0); 306 return 0; 307 } 308 #endif 309 310 #ifdef DEBUG 311 int xfs_locked_n; 312 int xfs_small_retries; 313 int xfs_middle_retries; 314 int xfs_lots_retries; 315 int xfs_lock_delays; 316 #endif 317 318 /* 319 * Bump the subclass so xfs_lock_inodes() acquires each lock with 320 * a different value 321 */ 322 static inline int 323 xfs_lock_inumorder(int lock_mode, int subclass) 324 { 325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 329 330 return lock_mode; 331 } 332 333 /* 334 * The following routine will lock n inodes in exclusive mode. 335 * We assume the caller calls us with the inodes in i_ino order. 336 * 337 * We need to detect deadlock where an inode that we lock 338 * is in the AIL and we start waiting for another inode that is locked 339 * by a thread in a long running transaction (such as truncate). This can 340 * result in deadlock since the long running trans might need to wait 341 * for the inode we just locked in order to push the tail and free space 342 * in the log. 343 */ 344 void 345 xfs_lock_inodes( 346 xfs_inode_t **ips, 347 int inodes, 348 uint lock_mode) 349 { 350 int attempts = 0, i, j, try_lock; 351 xfs_log_item_t *lp; 352 353 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 354 355 try_lock = 0; 356 i = 0; 357 358 again: 359 for (; i < inodes; i++) { 360 ASSERT(ips[i]); 361 362 if (i && (ips[i] == ips[i-1])) /* Already locked */ 363 continue; 364 365 /* 366 * If try_lock is not set yet, make sure all locked inodes 367 * are not in the AIL. 368 * If any are, set try_lock to be used later. 369 */ 370 371 if (!try_lock) { 372 for (j = (i - 1); j >= 0 && !try_lock; j--) { 373 lp = (xfs_log_item_t *)ips[j]->i_itemp; 374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 375 try_lock++; 376 } 377 } 378 } 379 380 /* 381 * If any of the previous locks we have locked is in the AIL, 382 * we must TRY to get the second and subsequent locks. If 383 * we can't get any, we must release all we have 384 * and try again. 385 */ 386 387 if (try_lock) { 388 /* try_lock must be 0 if i is 0. */ 389 /* 390 * try_lock means we have an inode locked 391 * that is in the AIL. 392 */ 393 ASSERT(i != 0); 394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 395 attempts++; 396 397 /* 398 * Unlock all previous guys and try again. 399 * xfs_iunlock will try to push the tail 400 * if the inode is in the AIL. 401 */ 402 403 for(j = i - 1; j >= 0; j--) { 404 405 /* 406 * Check to see if we've already 407 * unlocked this one. 408 * Not the first one going back, 409 * and the inode ptr is the same. 410 */ 411 if ((j != (i - 1)) && ips[j] == 412 ips[j+1]) 413 continue; 414 415 xfs_iunlock(ips[j], lock_mode); 416 } 417 418 if ((attempts % 5) == 0) { 419 delay(1); /* Don't just spin the CPU */ 420 #ifdef DEBUG 421 xfs_lock_delays++; 422 #endif 423 } 424 i = 0; 425 try_lock = 0; 426 goto again; 427 } 428 } else { 429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 430 } 431 } 432 433 #ifdef DEBUG 434 if (attempts) { 435 if (attempts < 5) xfs_small_retries++; 436 else if (attempts < 100) xfs_middle_retries++; 437 else xfs_lots_retries++; 438 } else { 439 xfs_locked_n++; 440 } 441 #endif 442 } 443 444 /* 445 * xfs_lock_two_inodes() can only be used to lock one type of lock 446 * at a time - the iolock or the ilock, but not both at once. If 447 * we lock both at once, lockdep will report false positives saying 448 * we have violated locking orders. 449 */ 450 void 451 xfs_lock_two_inodes( 452 xfs_inode_t *ip0, 453 xfs_inode_t *ip1, 454 uint lock_mode) 455 { 456 xfs_inode_t *temp; 457 int attempts = 0; 458 xfs_log_item_t *lp; 459 460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 462 ASSERT(ip0->i_ino != ip1->i_ino); 463 464 if (ip0->i_ino > ip1->i_ino) { 465 temp = ip0; 466 ip0 = ip1; 467 ip1 = temp; 468 } 469 470 again: 471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 472 473 /* 474 * If the first lock we have locked is in the AIL, we must TRY to get 475 * the second lock. If we can't get it, we must release the first one 476 * and try again. 477 */ 478 lp = (xfs_log_item_t *)ip0->i_itemp; 479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 481 xfs_iunlock(ip0, lock_mode); 482 if ((++attempts % 5) == 0) 483 delay(1); /* Don't just spin the CPU */ 484 goto again; 485 } 486 } else { 487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 488 } 489 } 490 491 492 void 493 __xfs_iflock( 494 struct xfs_inode *ip) 495 { 496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 498 499 do { 500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 501 if (xfs_isiflocked(ip)) 502 io_schedule(); 503 } while (!xfs_iflock_nowait(ip)); 504 505 finish_wait(wq, &wait.wait); 506 } 507 508 STATIC uint 509 _xfs_dic2xflags( 510 __uint16_t di_flags) 511 { 512 uint flags = 0; 513 514 if (di_flags & XFS_DIFLAG_ANY) { 515 if (di_flags & XFS_DIFLAG_REALTIME) 516 flags |= XFS_XFLAG_REALTIME; 517 if (di_flags & XFS_DIFLAG_PREALLOC) 518 flags |= XFS_XFLAG_PREALLOC; 519 if (di_flags & XFS_DIFLAG_IMMUTABLE) 520 flags |= XFS_XFLAG_IMMUTABLE; 521 if (di_flags & XFS_DIFLAG_APPEND) 522 flags |= XFS_XFLAG_APPEND; 523 if (di_flags & XFS_DIFLAG_SYNC) 524 flags |= XFS_XFLAG_SYNC; 525 if (di_flags & XFS_DIFLAG_NOATIME) 526 flags |= XFS_XFLAG_NOATIME; 527 if (di_flags & XFS_DIFLAG_NODUMP) 528 flags |= XFS_XFLAG_NODUMP; 529 if (di_flags & XFS_DIFLAG_RTINHERIT) 530 flags |= XFS_XFLAG_RTINHERIT; 531 if (di_flags & XFS_DIFLAG_PROJINHERIT) 532 flags |= XFS_XFLAG_PROJINHERIT; 533 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 534 flags |= XFS_XFLAG_NOSYMLINKS; 535 if (di_flags & XFS_DIFLAG_EXTSIZE) 536 flags |= XFS_XFLAG_EXTSIZE; 537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 538 flags |= XFS_XFLAG_EXTSZINHERIT; 539 if (di_flags & XFS_DIFLAG_NODEFRAG) 540 flags |= XFS_XFLAG_NODEFRAG; 541 if (di_flags & XFS_DIFLAG_FILESTREAM) 542 flags |= XFS_XFLAG_FILESTREAM; 543 } 544 545 return flags; 546 } 547 548 uint 549 xfs_ip2xflags( 550 xfs_inode_t *ip) 551 { 552 xfs_icdinode_t *dic = &ip->i_d; 553 554 return _xfs_dic2xflags(dic->di_flags) | 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 556 } 557 558 uint 559 xfs_dic2xflags( 560 xfs_dinode_t *dip) 561 { 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 564 } 565 566 /* 567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 568 * is allowed, otherwise it has to be an exact match. If a CI match is found, 569 * ci_name->name will point to a the actual name (caller must free) or 570 * will be set to NULL if an exact match is found. 571 */ 572 int 573 xfs_lookup( 574 xfs_inode_t *dp, 575 struct xfs_name *name, 576 xfs_inode_t **ipp, 577 struct xfs_name *ci_name) 578 { 579 xfs_ino_t inum; 580 int error; 581 uint lock_mode; 582 583 trace_xfs_lookup(dp, name); 584 585 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 586 return XFS_ERROR(EIO); 587 588 lock_mode = xfs_ilock_data_map_shared(dp); 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 590 xfs_iunlock(dp, lock_mode); 591 592 if (error) 593 goto out; 594 595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 596 if (error) 597 goto out_free_name; 598 599 return 0; 600 601 out_free_name: 602 if (ci_name) 603 kmem_free(ci_name->name); 604 out: 605 *ipp = NULL; 606 return error; 607 } 608 609 /* 610 * Allocate an inode on disk and return a copy of its in-core version. 611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 612 * appropriately within the inode. The uid and gid for the inode are 613 * set according to the contents of the given cred structure. 614 * 615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 616 * has a free inode available, call xfs_iget() to obtain the in-core 617 * version of the allocated inode. Finally, fill in the inode and 618 * log its initial contents. In this case, ialloc_context would be 619 * set to NULL. 620 * 621 * If xfs_dialloc() does not have an available inode, it will replenish 622 * its supply by doing an allocation. Since we can only do one 623 * allocation within a transaction without deadlocks, we must commit 624 * the current transaction before returning the inode itself. 625 * In this case, therefore, we will set ialloc_context and return. 626 * The caller should then commit the current transaction, start a new 627 * transaction, and call xfs_ialloc() again to actually get the inode. 628 * 629 * To ensure that some other process does not grab the inode that 630 * was allocated during the first call to xfs_ialloc(), this routine 631 * also returns the [locked] bp pointing to the head of the freelist 632 * as ialloc_context. The caller should hold this buffer across 633 * the commit and pass it back into this routine on the second call. 634 * 635 * If we are allocating quota inodes, we do not have a parent inode 636 * to attach to or associate with (i.e. pip == NULL) because they 637 * are not linked into the directory structure - they are attached 638 * directly to the superblock - and so have no parent. 639 */ 640 int 641 xfs_ialloc( 642 xfs_trans_t *tp, 643 xfs_inode_t *pip, 644 umode_t mode, 645 xfs_nlink_t nlink, 646 xfs_dev_t rdev, 647 prid_t prid, 648 int okalloc, 649 xfs_buf_t **ialloc_context, 650 xfs_inode_t **ipp) 651 { 652 struct xfs_mount *mp = tp->t_mountp; 653 xfs_ino_t ino; 654 xfs_inode_t *ip; 655 uint flags; 656 int error; 657 timespec_t tv; 658 int filestreams = 0; 659 660 /* 661 * Call the space management code to pick 662 * the on-disk inode to be allocated. 663 */ 664 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 665 ialloc_context, &ino); 666 if (error) 667 return error; 668 if (*ialloc_context || ino == NULLFSINO) { 669 *ipp = NULL; 670 return 0; 671 } 672 ASSERT(*ialloc_context == NULL); 673 674 /* 675 * Get the in-core inode with the lock held exclusively. 676 * This is because we're setting fields here we need 677 * to prevent others from looking at until we're done. 678 */ 679 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 680 XFS_ILOCK_EXCL, &ip); 681 if (error) 682 return error; 683 ASSERT(ip != NULL); 684 685 ip->i_d.di_mode = mode; 686 ip->i_d.di_onlink = 0; 687 ip->i_d.di_nlink = nlink; 688 ASSERT(ip->i_d.di_nlink == nlink); 689 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 690 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 691 xfs_set_projid(ip, prid); 692 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 693 694 /* 695 * If the superblock version is up to where we support new format 696 * inodes and this is currently an old format inode, then change 697 * the inode version number now. This way we only do the conversion 698 * here rather than here and in the flush/logging code. 699 */ 700 if (xfs_sb_version_hasnlink(&mp->m_sb) && 701 ip->i_d.di_version == 1) { 702 ip->i_d.di_version = 2; 703 /* 704 * We've already zeroed the old link count, the projid field, 705 * and the pad field. 706 */ 707 } 708 709 /* 710 * Project ids won't be stored on disk if we are using a version 1 inode. 711 */ 712 if ((prid != 0) && (ip->i_d.di_version == 1)) 713 xfs_bump_ino_vers2(tp, ip); 714 715 if (pip && XFS_INHERIT_GID(pip)) { 716 ip->i_d.di_gid = pip->i_d.di_gid; 717 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 718 ip->i_d.di_mode |= S_ISGID; 719 } 720 } 721 722 /* 723 * If the group ID of the new file does not match the effective group 724 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 725 * (and only if the irix_sgid_inherit compatibility variable is set). 726 */ 727 if ((irix_sgid_inherit) && 728 (ip->i_d.di_mode & S_ISGID) && 729 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 730 ip->i_d.di_mode &= ~S_ISGID; 731 } 732 733 ip->i_d.di_size = 0; 734 ip->i_d.di_nextents = 0; 735 ASSERT(ip->i_d.di_nblocks == 0); 736 737 nanotime(&tv); 738 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 739 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 740 ip->i_d.di_atime = ip->i_d.di_mtime; 741 ip->i_d.di_ctime = ip->i_d.di_mtime; 742 743 /* 744 * di_gen will have been taken care of in xfs_iread. 745 */ 746 ip->i_d.di_extsize = 0; 747 ip->i_d.di_dmevmask = 0; 748 ip->i_d.di_dmstate = 0; 749 ip->i_d.di_flags = 0; 750 751 if (ip->i_d.di_version == 3) { 752 ASSERT(ip->i_d.di_ino == ino); 753 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 754 ip->i_d.di_crc = 0; 755 ip->i_d.di_changecount = 1; 756 ip->i_d.di_lsn = 0; 757 ip->i_d.di_flags2 = 0; 758 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 759 ip->i_d.di_crtime = ip->i_d.di_mtime; 760 } 761 762 763 flags = XFS_ILOG_CORE; 764 switch (mode & S_IFMT) { 765 case S_IFIFO: 766 case S_IFCHR: 767 case S_IFBLK: 768 case S_IFSOCK: 769 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 770 ip->i_df.if_u2.if_rdev = rdev; 771 ip->i_df.if_flags = 0; 772 flags |= XFS_ILOG_DEV; 773 break; 774 case S_IFREG: 775 /* 776 * we can't set up filestreams until after the VFS inode 777 * is set up properly. 778 */ 779 if (pip && xfs_inode_is_filestream(pip)) 780 filestreams = 1; 781 /* fall through */ 782 case S_IFDIR: 783 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 784 uint di_flags = 0; 785 786 if (S_ISDIR(mode)) { 787 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 788 di_flags |= XFS_DIFLAG_RTINHERIT; 789 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 790 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 791 ip->i_d.di_extsize = pip->i_d.di_extsize; 792 } 793 } else if (S_ISREG(mode)) { 794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 795 di_flags |= XFS_DIFLAG_REALTIME; 796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 797 di_flags |= XFS_DIFLAG_EXTSIZE; 798 ip->i_d.di_extsize = pip->i_d.di_extsize; 799 } 800 } 801 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 802 xfs_inherit_noatime) 803 di_flags |= XFS_DIFLAG_NOATIME; 804 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 805 xfs_inherit_nodump) 806 di_flags |= XFS_DIFLAG_NODUMP; 807 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 808 xfs_inherit_sync) 809 di_flags |= XFS_DIFLAG_SYNC; 810 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 811 xfs_inherit_nosymlinks) 812 di_flags |= XFS_DIFLAG_NOSYMLINKS; 813 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 814 di_flags |= XFS_DIFLAG_PROJINHERIT; 815 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 816 xfs_inherit_nodefrag) 817 di_flags |= XFS_DIFLAG_NODEFRAG; 818 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 819 di_flags |= XFS_DIFLAG_FILESTREAM; 820 ip->i_d.di_flags |= di_flags; 821 } 822 /* FALLTHROUGH */ 823 case S_IFLNK: 824 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 825 ip->i_df.if_flags = XFS_IFEXTENTS; 826 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 827 ip->i_df.if_u1.if_extents = NULL; 828 break; 829 default: 830 ASSERT(0); 831 } 832 /* 833 * Attribute fork settings for new inode. 834 */ 835 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 836 ip->i_d.di_anextents = 0; 837 838 /* 839 * Log the new values stuffed into the inode. 840 */ 841 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 842 xfs_trans_log_inode(tp, ip, flags); 843 844 /* now that we have an i_mode we can setup inode ops and unlock */ 845 xfs_setup_inode(ip); 846 847 /* now we have set up the vfs inode we can associate the filestream */ 848 if (filestreams) { 849 error = xfs_filestream_associate(pip, ip); 850 if (error < 0) 851 return -error; 852 if (!error) 853 xfs_iflags_set(ip, XFS_IFILESTREAM); 854 } 855 856 *ipp = ip; 857 return 0; 858 } 859 860 /* 861 * Allocates a new inode from disk and return a pointer to the 862 * incore copy. This routine will internally commit the current 863 * transaction and allocate a new one if the Space Manager needed 864 * to do an allocation to replenish the inode free-list. 865 * 866 * This routine is designed to be called from xfs_create and 867 * xfs_create_dir. 868 * 869 */ 870 int 871 xfs_dir_ialloc( 872 xfs_trans_t **tpp, /* input: current transaction; 873 output: may be a new transaction. */ 874 xfs_inode_t *dp, /* directory within whose allocate 875 the inode. */ 876 umode_t mode, 877 xfs_nlink_t nlink, 878 xfs_dev_t rdev, 879 prid_t prid, /* project id */ 880 int okalloc, /* ok to allocate new space */ 881 xfs_inode_t **ipp, /* pointer to inode; it will be 882 locked. */ 883 int *committed) 884 885 { 886 xfs_trans_t *tp; 887 xfs_trans_t *ntp; 888 xfs_inode_t *ip; 889 xfs_buf_t *ialloc_context = NULL; 890 int code; 891 void *dqinfo; 892 uint tflags; 893 894 tp = *tpp; 895 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 896 897 /* 898 * xfs_ialloc will return a pointer to an incore inode if 899 * the Space Manager has an available inode on the free 900 * list. Otherwise, it will do an allocation and replenish 901 * the freelist. Since we can only do one allocation per 902 * transaction without deadlocks, we will need to commit the 903 * current transaction and start a new one. We will then 904 * need to call xfs_ialloc again to get the inode. 905 * 906 * If xfs_ialloc did an allocation to replenish the freelist, 907 * it returns the bp containing the head of the freelist as 908 * ialloc_context. We will hold a lock on it across the 909 * transaction commit so that no other process can steal 910 * the inode(s) that we've just allocated. 911 */ 912 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 913 &ialloc_context, &ip); 914 915 /* 916 * Return an error if we were unable to allocate a new inode. 917 * This should only happen if we run out of space on disk or 918 * encounter a disk error. 919 */ 920 if (code) { 921 *ipp = NULL; 922 return code; 923 } 924 if (!ialloc_context && !ip) { 925 *ipp = NULL; 926 return XFS_ERROR(ENOSPC); 927 } 928 929 /* 930 * If the AGI buffer is non-NULL, then we were unable to get an 931 * inode in one operation. We need to commit the current 932 * transaction and call xfs_ialloc() again. It is guaranteed 933 * to succeed the second time. 934 */ 935 if (ialloc_context) { 936 struct xfs_trans_res tres; 937 938 /* 939 * Normally, xfs_trans_commit releases all the locks. 940 * We call bhold to hang on to the ialloc_context across 941 * the commit. Holding this buffer prevents any other 942 * processes from doing any allocations in this 943 * allocation group. 944 */ 945 xfs_trans_bhold(tp, ialloc_context); 946 /* 947 * Save the log reservation so we can use 948 * them in the next transaction. 949 */ 950 tres.tr_logres = xfs_trans_get_log_res(tp); 951 tres.tr_logcount = xfs_trans_get_log_count(tp); 952 953 /* 954 * We want the quota changes to be associated with the next 955 * transaction, NOT this one. So, detach the dqinfo from this 956 * and attach it to the next transaction. 957 */ 958 dqinfo = NULL; 959 tflags = 0; 960 if (tp->t_dqinfo) { 961 dqinfo = (void *)tp->t_dqinfo; 962 tp->t_dqinfo = NULL; 963 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 964 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 965 } 966 967 ntp = xfs_trans_dup(tp); 968 code = xfs_trans_commit(tp, 0); 969 tp = ntp; 970 if (committed != NULL) { 971 *committed = 1; 972 } 973 /* 974 * If we get an error during the commit processing, 975 * release the buffer that is still held and return 976 * to the caller. 977 */ 978 if (code) { 979 xfs_buf_relse(ialloc_context); 980 if (dqinfo) { 981 tp->t_dqinfo = dqinfo; 982 xfs_trans_free_dqinfo(tp); 983 } 984 *tpp = ntp; 985 *ipp = NULL; 986 return code; 987 } 988 989 /* 990 * transaction commit worked ok so we can drop the extra ticket 991 * reference that we gained in xfs_trans_dup() 992 */ 993 xfs_log_ticket_put(tp->t_ticket); 994 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 995 code = xfs_trans_reserve(tp, &tres, 0, 0); 996 997 /* 998 * Re-attach the quota info that we detached from prev trx. 999 */ 1000 if (dqinfo) { 1001 tp->t_dqinfo = dqinfo; 1002 tp->t_flags |= tflags; 1003 } 1004 1005 if (code) { 1006 xfs_buf_relse(ialloc_context); 1007 *tpp = ntp; 1008 *ipp = NULL; 1009 return code; 1010 } 1011 xfs_trans_bjoin(tp, ialloc_context); 1012 1013 /* 1014 * Call ialloc again. Since we've locked out all 1015 * other allocations in this allocation group, 1016 * this call should always succeed. 1017 */ 1018 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1019 okalloc, &ialloc_context, &ip); 1020 1021 /* 1022 * If we get an error at this point, return to the caller 1023 * so that the current transaction can be aborted. 1024 */ 1025 if (code) { 1026 *tpp = tp; 1027 *ipp = NULL; 1028 return code; 1029 } 1030 ASSERT(!ialloc_context && ip); 1031 1032 } else { 1033 if (committed != NULL) 1034 *committed = 0; 1035 } 1036 1037 *ipp = ip; 1038 *tpp = tp; 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * Decrement the link count on an inode & log the change. 1045 * If this causes the link count to go to zero, initiate the 1046 * logging activity required to truncate a file. 1047 */ 1048 int /* error */ 1049 xfs_droplink( 1050 xfs_trans_t *tp, 1051 xfs_inode_t *ip) 1052 { 1053 int error; 1054 1055 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1056 1057 ASSERT (ip->i_d.di_nlink > 0); 1058 ip->i_d.di_nlink--; 1059 drop_nlink(VFS_I(ip)); 1060 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1061 1062 error = 0; 1063 if (ip->i_d.di_nlink == 0) { 1064 /* 1065 * We're dropping the last link to this file. 1066 * Move the on-disk inode to the AGI unlinked list. 1067 * From xfs_inactive() we will pull the inode from 1068 * the list and free it. 1069 */ 1070 error = xfs_iunlink(tp, ip); 1071 } 1072 return error; 1073 } 1074 1075 /* 1076 * This gets called when the inode's version needs to be changed from 1 to 2. 1077 * Currently this happens when the nlink field overflows the old 16-bit value 1078 * or when chproj is called to change the project for the first time. 1079 * As a side effect the superblock version will also get rev'd 1080 * to contain the NLINK bit. 1081 */ 1082 void 1083 xfs_bump_ino_vers2( 1084 xfs_trans_t *tp, 1085 xfs_inode_t *ip) 1086 { 1087 xfs_mount_t *mp; 1088 1089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1090 ASSERT(ip->i_d.di_version == 1); 1091 1092 ip->i_d.di_version = 2; 1093 ip->i_d.di_onlink = 0; 1094 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1095 mp = tp->t_mountp; 1096 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1097 spin_lock(&mp->m_sb_lock); 1098 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1099 xfs_sb_version_addnlink(&mp->m_sb); 1100 spin_unlock(&mp->m_sb_lock); 1101 xfs_mod_sb(tp, XFS_SB_VERSIONNUM); 1102 } else { 1103 spin_unlock(&mp->m_sb_lock); 1104 } 1105 } 1106 /* Caller must log the inode */ 1107 } 1108 1109 /* 1110 * Increment the link count on an inode & log the change. 1111 */ 1112 int 1113 xfs_bumplink( 1114 xfs_trans_t *tp, 1115 xfs_inode_t *ip) 1116 { 1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1118 1119 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1120 ip->i_d.di_nlink++; 1121 inc_nlink(VFS_I(ip)); 1122 if ((ip->i_d.di_version == 1) && 1123 (ip->i_d.di_nlink > XFS_MAXLINK_1)) { 1124 /* 1125 * The inode has increased its number of links beyond 1126 * what can fit in an old format inode. It now needs 1127 * to be converted to a version 2 inode with a 32 bit 1128 * link count. If this is the first inode in the file 1129 * system to do this, then we need to bump the superblock 1130 * version number as well. 1131 */ 1132 xfs_bump_ino_vers2(tp, ip); 1133 } 1134 1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1136 return 0; 1137 } 1138 1139 int 1140 xfs_create( 1141 xfs_inode_t *dp, 1142 struct xfs_name *name, 1143 umode_t mode, 1144 xfs_dev_t rdev, 1145 xfs_inode_t **ipp) 1146 { 1147 int is_dir = S_ISDIR(mode); 1148 struct xfs_mount *mp = dp->i_mount; 1149 struct xfs_inode *ip = NULL; 1150 struct xfs_trans *tp = NULL; 1151 int error; 1152 xfs_bmap_free_t free_list; 1153 xfs_fsblock_t first_block; 1154 bool unlock_dp_on_error = false; 1155 uint cancel_flags; 1156 int committed; 1157 prid_t prid; 1158 struct xfs_dquot *udqp = NULL; 1159 struct xfs_dquot *gdqp = NULL; 1160 struct xfs_dquot *pdqp = NULL; 1161 struct xfs_trans_res tres; 1162 uint resblks; 1163 1164 trace_xfs_create(dp, name); 1165 1166 if (XFS_FORCED_SHUTDOWN(mp)) 1167 return XFS_ERROR(EIO); 1168 1169 prid = xfs_get_initial_prid(dp); 1170 1171 /* 1172 * Make sure that we have allocated dquot(s) on disk. 1173 */ 1174 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1175 xfs_kgid_to_gid(current_fsgid()), prid, 1176 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1177 &udqp, &gdqp, &pdqp); 1178 if (error) 1179 return error; 1180 1181 if (is_dir) { 1182 rdev = 0; 1183 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1184 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres; 1185 tres.tr_logcount = XFS_MKDIR_LOG_COUNT; 1186 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1187 } else { 1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1189 tres.tr_logres = M_RES(mp)->tr_create.tr_logres; 1190 tres.tr_logcount = XFS_CREATE_LOG_COUNT; 1191 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1192 } 1193 1194 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1195 1196 /* 1197 * Initially assume that the file does not exist and 1198 * reserve the resources for that case. If that is not 1199 * the case we'll drop the one we have and get a more 1200 * appropriate transaction later. 1201 */ 1202 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1203 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1204 if (error == ENOSPC) { 1205 /* flush outstanding delalloc blocks and retry */ 1206 xfs_flush_inodes(mp); 1207 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1208 } 1209 if (error == ENOSPC) { 1210 /* No space at all so try a "no-allocation" reservation */ 1211 resblks = 0; 1212 error = xfs_trans_reserve(tp, &tres, 0, 0); 1213 } 1214 if (error) { 1215 cancel_flags = 0; 1216 goto out_trans_cancel; 1217 } 1218 1219 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1220 unlock_dp_on_error = true; 1221 1222 xfs_bmap_init(&free_list, &first_block); 1223 1224 /* 1225 * Reserve disk quota and the inode. 1226 */ 1227 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1228 pdqp, resblks, 1, 0); 1229 if (error) 1230 goto out_trans_cancel; 1231 1232 error = xfs_dir_canenter(tp, dp, name, resblks); 1233 if (error) 1234 goto out_trans_cancel; 1235 1236 /* 1237 * A newly created regular or special file just has one directory 1238 * entry pointing to them, but a directory also the "." entry 1239 * pointing to itself. 1240 */ 1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1242 prid, resblks > 0, &ip, &committed); 1243 if (error) { 1244 if (error == ENOSPC) 1245 goto out_trans_cancel; 1246 goto out_trans_abort; 1247 } 1248 1249 /* 1250 * Now we join the directory inode to the transaction. We do not do it 1251 * earlier because xfs_dir_ialloc might commit the previous transaction 1252 * (and release all the locks). An error from here on will result in 1253 * the transaction cancel unlocking dp so don't do it explicitly in the 1254 * error path. 1255 */ 1256 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1257 unlock_dp_on_error = false; 1258 1259 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1260 &first_block, &free_list, resblks ? 1261 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1262 if (error) { 1263 ASSERT(error != ENOSPC); 1264 goto out_trans_abort; 1265 } 1266 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1267 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1268 1269 if (is_dir) { 1270 error = xfs_dir_init(tp, ip, dp); 1271 if (error) 1272 goto out_bmap_cancel; 1273 1274 error = xfs_bumplink(tp, dp); 1275 if (error) 1276 goto out_bmap_cancel; 1277 } 1278 1279 /* 1280 * If this is a synchronous mount, make sure that the 1281 * create transaction goes to disk before returning to 1282 * the user. 1283 */ 1284 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1285 xfs_trans_set_sync(tp); 1286 1287 /* 1288 * Attach the dquot(s) to the inodes and modify them incore. 1289 * These ids of the inode couldn't have changed since the new 1290 * inode has been locked ever since it was created. 1291 */ 1292 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1293 1294 error = xfs_bmap_finish(&tp, &free_list, &committed); 1295 if (error) 1296 goto out_bmap_cancel; 1297 1298 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1299 if (error) 1300 goto out_release_inode; 1301 1302 xfs_qm_dqrele(udqp); 1303 xfs_qm_dqrele(gdqp); 1304 xfs_qm_dqrele(pdqp); 1305 1306 *ipp = ip; 1307 return 0; 1308 1309 out_bmap_cancel: 1310 xfs_bmap_cancel(&free_list); 1311 out_trans_abort: 1312 cancel_flags |= XFS_TRANS_ABORT; 1313 out_trans_cancel: 1314 xfs_trans_cancel(tp, cancel_flags); 1315 out_release_inode: 1316 /* 1317 * Wait until after the current transaction is aborted to 1318 * release the inode. This prevents recursive transactions 1319 * and deadlocks from xfs_inactive. 1320 */ 1321 if (ip) 1322 IRELE(ip); 1323 1324 xfs_qm_dqrele(udqp); 1325 xfs_qm_dqrele(gdqp); 1326 xfs_qm_dqrele(pdqp); 1327 1328 if (unlock_dp_on_error) 1329 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1330 return error; 1331 } 1332 1333 int 1334 xfs_create_tmpfile( 1335 struct xfs_inode *dp, 1336 struct dentry *dentry, 1337 umode_t mode) 1338 { 1339 struct xfs_mount *mp = dp->i_mount; 1340 struct xfs_inode *ip = NULL; 1341 struct xfs_trans *tp = NULL; 1342 int error; 1343 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1344 prid_t prid; 1345 struct xfs_dquot *udqp = NULL; 1346 struct xfs_dquot *gdqp = NULL; 1347 struct xfs_dquot *pdqp = NULL; 1348 struct xfs_trans_res *tres; 1349 uint resblks; 1350 1351 if (XFS_FORCED_SHUTDOWN(mp)) 1352 return XFS_ERROR(EIO); 1353 1354 prid = xfs_get_initial_prid(dp); 1355 1356 /* 1357 * Make sure that we have allocated dquot(s) on disk. 1358 */ 1359 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1360 xfs_kgid_to_gid(current_fsgid()), prid, 1361 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1362 &udqp, &gdqp, &pdqp); 1363 if (error) 1364 return error; 1365 1366 resblks = XFS_IALLOC_SPACE_RES(mp); 1367 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1368 1369 tres = &M_RES(mp)->tr_create_tmpfile; 1370 error = xfs_trans_reserve(tp, tres, resblks, 0); 1371 if (error == ENOSPC) { 1372 /* No space at all so try a "no-allocation" reservation */ 1373 resblks = 0; 1374 error = xfs_trans_reserve(tp, tres, 0, 0); 1375 } 1376 if (error) { 1377 cancel_flags = 0; 1378 goto out_trans_cancel; 1379 } 1380 1381 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1382 pdqp, resblks, 1, 0); 1383 if (error) 1384 goto out_trans_cancel; 1385 1386 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1387 prid, resblks > 0, &ip, NULL); 1388 if (error) { 1389 if (error == ENOSPC) 1390 goto out_trans_cancel; 1391 goto out_trans_abort; 1392 } 1393 1394 if (mp->m_flags & XFS_MOUNT_WSYNC) 1395 xfs_trans_set_sync(tp); 1396 1397 /* 1398 * Attach the dquot(s) to the inodes and modify them incore. 1399 * These ids of the inode couldn't have changed since the new 1400 * inode has been locked ever since it was created. 1401 */ 1402 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1403 1404 ip->i_d.di_nlink--; 1405 d_tmpfile(dentry, VFS_I(ip)); 1406 error = xfs_iunlink(tp, ip); 1407 if (error) 1408 goto out_trans_abort; 1409 1410 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1411 if (error) 1412 goto out_release_inode; 1413 1414 xfs_qm_dqrele(udqp); 1415 xfs_qm_dqrele(gdqp); 1416 xfs_qm_dqrele(pdqp); 1417 1418 return 0; 1419 1420 out_trans_abort: 1421 cancel_flags |= XFS_TRANS_ABORT; 1422 out_trans_cancel: 1423 xfs_trans_cancel(tp, cancel_flags); 1424 out_release_inode: 1425 /* 1426 * Wait until after the current transaction is aborted to 1427 * release the inode. This prevents recursive transactions 1428 * and deadlocks from xfs_inactive. 1429 */ 1430 if (ip) 1431 IRELE(ip); 1432 1433 xfs_qm_dqrele(udqp); 1434 xfs_qm_dqrele(gdqp); 1435 xfs_qm_dqrele(pdqp); 1436 1437 return error; 1438 } 1439 1440 int 1441 xfs_link( 1442 xfs_inode_t *tdp, 1443 xfs_inode_t *sip, 1444 struct xfs_name *target_name) 1445 { 1446 xfs_mount_t *mp = tdp->i_mount; 1447 xfs_trans_t *tp; 1448 int error; 1449 xfs_bmap_free_t free_list; 1450 xfs_fsblock_t first_block; 1451 int cancel_flags; 1452 int committed; 1453 int resblks; 1454 1455 trace_xfs_link(tdp, target_name); 1456 1457 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1458 1459 if (XFS_FORCED_SHUTDOWN(mp)) 1460 return XFS_ERROR(EIO); 1461 1462 error = xfs_qm_dqattach(sip, 0); 1463 if (error) 1464 goto std_return; 1465 1466 error = xfs_qm_dqattach(tdp, 0); 1467 if (error) 1468 goto std_return; 1469 1470 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1471 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1472 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1473 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1474 if (error == ENOSPC) { 1475 resblks = 0; 1476 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1477 } 1478 if (error) { 1479 cancel_flags = 0; 1480 goto error_return; 1481 } 1482 1483 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1484 1485 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1486 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1487 1488 /* 1489 * If we are using project inheritance, we only allow hard link 1490 * creation in our tree when the project IDs are the same; else 1491 * the tree quota mechanism could be circumvented. 1492 */ 1493 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1494 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1495 error = XFS_ERROR(EXDEV); 1496 goto error_return; 1497 } 1498 1499 error = xfs_dir_canenter(tp, tdp, target_name, resblks); 1500 if (error) 1501 goto error_return; 1502 1503 xfs_bmap_init(&free_list, &first_block); 1504 1505 if (sip->i_d.di_nlink == 0) { 1506 error = xfs_iunlink_remove(tp, sip); 1507 if (error) 1508 goto abort_return; 1509 } 1510 1511 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1512 &first_block, &free_list, resblks); 1513 if (error) 1514 goto abort_return; 1515 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1516 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1517 1518 error = xfs_bumplink(tp, sip); 1519 if (error) 1520 goto abort_return; 1521 1522 /* 1523 * If this is a synchronous mount, make sure that the 1524 * link transaction goes to disk before returning to 1525 * the user. 1526 */ 1527 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1528 xfs_trans_set_sync(tp); 1529 } 1530 1531 error = xfs_bmap_finish (&tp, &free_list, &committed); 1532 if (error) { 1533 xfs_bmap_cancel(&free_list); 1534 goto abort_return; 1535 } 1536 1537 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1538 1539 abort_return: 1540 cancel_flags |= XFS_TRANS_ABORT; 1541 error_return: 1542 xfs_trans_cancel(tp, cancel_flags); 1543 std_return: 1544 return error; 1545 } 1546 1547 /* 1548 * Free up the underlying blocks past new_size. The new size must be smaller 1549 * than the current size. This routine can be used both for the attribute and 1550 * data fork, and does not modify the inode size, which is left to the caller. 1551 * 1552 * The transaction passed to this routine must have made a permanent log 1553 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1554 * given transaction and start new ones, so make sure everything involved in 1555 * the transaction is tidy before calling here. Some transaction will be 1556 * returned to the caller to be committed. The incoming transaction must 1557 * already include the inode, and both inode locks must be held exclusively. 1558 * The inode must also be "held" within the transaction. On return the inode 1559 * will be "held" within the returned transaction. This routine does NOT 1560 * require any disk space to be reserved for it within the transaction. 1561 * 1562 * If we get an error, we must return with the inode locked and linked into the 1563 * current transaction. This keeps things simple for the higher level code, 1564 * because it always knows that the inode is locked and held in the transaction 1565 * that returns to it whether errors occur or not. We don't mark the inode 1566 * dirty on error so that transactions can be easily aborted if possible. 1567 */ 1568 int 1569 xfs_itruncate_extents( 1570 struct xfs_trans **tpp, 1571 struct xfs_inode *ip, 1572 int whichfork, 1573 xfs_fsize_t new_size) 1574 { 1575 struct xfs_mount *mp = ip->i_mount; 1576 struct xfs_trans *tp = *tpp; 1577 struct xfs_trans *ntp; 1578 xfs_bmap_free_t free_list; 1579 xfs_fsblock_t first_block; 1580 xfs_fileoff_t first_unmap_block; 1581 xfs_fileoff_t last_block; 1582 xfs_filblks_t unmap_len; 1583 int committed; 1584 int error = 0; 1585 int done = 0; 1586 1587 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1588 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1589 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1590 ASSERT(new_size <= XFS_ISIZE(ip)); 1591 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1592 ASSERT(ip->i_itemp != NULL); 1593 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1594 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1595 1596 trace_xfs_itruncate_extents_start(ip, new_size); 1597 1598 /* 1599 * Since it is possible for space to become allocated beyond 1600 * the end of the file (in a crash where the space is allocated 1601 * but the inode size is not yet updated), simply remove any 1602 * blocks which show up between the new EOF and the maximum 1603 * possible file size. If the first block to be removed is 1604 * beyond the maximum file size (ie it is the same as last_block), 1605 * then there is nothing to do. 1606 */ 1607 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1608 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1609 if (first_unmap_block == last_block) 1610 return 0; 1611 1612 ASSERT(first_unmap_block < last_block); 1613 unmap_len = last_block - first_unmap_block + 1; 1614 while (!done) { 1615 xfs_bmap_init(&free_list, &first_block); 1616 error = xfs_bunmapi(tp, ip, 1617 first_unmap_block, unmap_len, 1618 xfs_bmapi_aflag(whichfork), 1619 XFS_ITRUNC_MAX_EXTENTS, 1620 &first_block, &free_list, 1621 &done); 1622 if (error) 1623 goto out_bmap_cancel; 1624 1625 /* 1626 * Duplicate the transaction that has the permanent 1627 * reservation and commit the old transaction. 1628 */ 1629 error = xfs_bmap_finish(&tp, &free_list, &committed); 1630 if (committed) 1631 xfs_trans_ijoin(tp, ip, 0); 1632 if (error) 1633 goto out_bmap_cancel; 1634 1635 if (committed) { 1636 /* 1637 * Mark the inode dirty so it will be logged and 1638 * moved forward in the log as part of every commit. 1639 */ 1640 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1641 } 1642 1643 ntp = xfs_trans_dup(tp); 1644 error = xfs_trans_commit(tp, 0); 1645 tp = ntp; 1646 1647 xfs_trans_ijoin(tp, ip, 0); 1648 1649 if (error) 1650 goto out; 1651 1652 /* 1653 * Transaction commit worked ok so we can drop the extra ticket 1654 * reference that we gained in xfs_trans_dup() 1655 */ 1656 xfs_log_ticket_put(tp->t_ticket); 1657 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1658 if (error) 1659 goto out; 1660 } 1661 1662 /* 1663 * Always re-log the inode so that our permanent transaction can keep 1664 * on rolling it forward in the log. 1665 */ 1666 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1667 1668 trace_xfs_itruncate_extents_end(ip, new_size); 1669 1670 out: 1671 *tpp = tp; 1672 return error; 1673 out_bmap_cancel: 1674 /* 1675 * If the bunmapi call encounters an error, return to the caller where 1676 * the transaction can be properly aborted. We just need to make sure 1677 * we're not holding any resources that we were not when we came in. 1678 */ 1679 xfs_bmap_cancel(&free_list); 1680 goto out; 1681 } 1682 1683 int 1684 xfs_release( 1685 xfs_inode_t *ip) 1686 { 1687 xfs_mount_t *mp = ip->i_mount; 1688 int error; 1689 1690 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1691 return 0; 1692 1693 /* If this is a read-only mount, don't do this (would generate I/O) */ 1694 if (mp->m_flags & XFS_MOUNT_RDONLY) 1695 return 0; 1696 1697 if (!XFS_FORCED_SHUTDOWN(mp)) { 1698 int truncated; 1699 1700 /* 1701 * If we are using filestreams, and we have an unlinked 1702 * file that we are processing the last close on, then nothing 1703 * will be able to reopen and write to this file. Purge this 1704 * inode from the filestreams cache so that it doesn't delay 1705 * teardown of the inode. 1706 */ 1707 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip)) 1708 xfs_filestream_deassociate(ip); 1709 1710 /* 1711 * If we previously truncated this file and removed old data 1712 * in the process, we want to initiate "early" writeout on 1713 * the last close. This is an attempt to combat the notorious 1714 * NULL files problem which is particularly noticeable from a 1715 * truncate down, buffered (re-)write (delalloc), followed by 1716 * a crash. What we are effectively doing here is 1717 * significantly reducing the time window where we'd otherwise 1718 * be exposed to that problem. 1719 */ 1720 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1721 if (truncated) { 1722 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1723 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) { 1724 error = -filemap_flush(VFS_I(ip)->i_mapping); 1725 if (error) 1726 return error; 1727 } 1728 } 1729 } 1730 1731 if (ip->i_d.di_nlink == 0) 1732 return 0; 1733 1734 if (xfs_can_free_eofblocks(ip, false)) { 1735 1736 /* 1737 * If we can't get the iolock just skip truncating the blocks 1738 * past EOF because we could deadlock with the mmap_sem 1739 * otherwise. We'll get another chance to drop them once the 1740 * last reference to the inode is dropped, so we'll never leak 1741 * blocks permanently. 1742 * 1743 * Further, check if the inode is being opened, written and 1744 * closed frequently and we have delayed allocation blocks 1745 * outstanding (e.g. streaming writes from the NFS server), 1746 * truncating the blocks past EOF will cause fragmentation to 1747 * occur. 1748 * 1749 * In this case don't do the truncation, either, but we have to 1750 * be careful how we detect this case. Blocks beyond EOF show 1751 * up as i_delayed_blks even when the inode is clean, so we 1752 * need to truncate them away first before checking for a dirty 1753 * release. Hence on the first dirty close we will still remove 1754 * the speculative allocation, but after that we will leave it 1755 * in place. 1756 */ 1757 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1758 return 0; 1759 1760 error = xfs_free_eofblocks(mp, ip, true); 1761 if (error && error != EAGAIN) 1762 return error; 1763 1764 /* delalloc blocks after truncation means it really is dirty */ 1765 if (ip->i_delayed_blks) 1766 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1767 } 1768 return 0; 1769 } 1770 1771 /* 1772 * xfs_inactive_truncate 1773 * 1774 * Called to perform a truncate when an inode becomes unlinked. 1775 */ 1776 STATIC int 1777 xfs_inactive_truncate( 1778 struct xfs_inode *ip) 1779 { 1780 struct xfs_mount *mp = ip->i_mount; 1781 struct xfs_trans *tp; 1782 int error; 1783 1784 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1785 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1786 if (error) { 1787 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1788 xfs_trans_cancel(tp, 0); 1789 return error; 1790 } 1791 1792 xfs_ilock(ip, XFS_ILOCK_EXCL); 1793 xfs_trans_ijoin(tp, ip, 0); 1794 1795 /* 1796 * Log the inode size first to prevent stale data exposure in the event 1797 * of a system crash before the truncate completes. See the related 1798 * comment in xfs_setattr_size() for details. 1799 */ 1800 ip->i_d.di_size = 0; 1801 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1802 1803 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1804 if (error) 1805 goto error_trans_cancel; 1806 1807 ASSERT(ip->i_d.di_nextents == 0); 1808 1809 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1810 if (error) 1811 goto error_unlock; 1812 1813 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1814 return 0; 1815 1816 error_trans_cancel: 1817 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1818 error_unlock: 1819 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1820 return error; 1821 } 1822 1823 /* 1824 * xfs_inactive_ifree() 1825 * 1826 * Perform the inode free when an inode is unlinked. 1827 */ 1828 STATIC int 1829 xfs_inactive_ifree( 1830 struct xfs_inode *ip) 1831 { 1832 xfs_bmap_free_t free_list; 1833 xfs_fsblock_t first_block; 1834 int committed; 1835 struct xfs_mount *mp = ip->i_mount; 1836 struct xfs_trans *tp; 1837 int error; 1838 1839 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1840 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0); 1841 if (error) { 1842 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1843 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1844 return error; 1845 } 1846 1847 xfs_ilock(ip, XFS_ILOCK_EXCL); 1848 xfs_trans_ijoin(tp, ip, 0); 1849 1850 xfs_bmap_init(&free_list, &first_block); 1851 error = xfs_ifree(tp, ip, &free_list); 1852 if (error) { 1853 /* 1854 * If we fail to free the inode, shut down. The cancel 1855 * might do that, we need to make sure. Otherwise the 1856 * inode might be lost for a long time or forever. 1857 */ 1858 if (!XFS_FORCED_SHUTDOWN(mp)) { 1859 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1860 __func__, error); 1861 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1862 } 1863 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1864 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1865 return error; 1866 } 1867 1868 /* 1869 * Credit the quota account(s). The inode is gone. 1870 */ 1871 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1872 1873 /* 1874 * Just ignore errors at this point. There is nothing we can 1875 * do except to try to keep going. Make sure it's not a silent 1876 * error. 1877 */ 1878 error = xfs_bmap_finish(&tp, &free_list, &committed); 1879 if (error) 1880 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1881 __func__, error); 1882 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1883 if (error) 1884 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1885 __func__, error); 1886 1887 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1888 return 0; 1889 } 1890 1891 /* 1892 * xfs_inactive 1893 * 1894 * This is called when the vnode reference count for the vnode 1895 * goes to zero. If the file has been unlinked, then it must 1896 * now be truncated. Also, we clear all of the read-ahead state 1897 * kept for the inode here since the file is now closed. 1898 */ 1899 void 1900 xfs_inactive( 1901 xfs_inode_t *ip) 1902 { 1903 struct xfs_mount *mp; 1904 int error; 1905 int truncate = 0; 1906 1907 /* 1908 * If the inode is already free, then there can be nothing 1909 * to clean up here. 1910 */ 1911 if (ip->i_d.di_mode == 0) { 1912 ASSERT(ip->i_df.if_real_bytes == 0); 1913 ASSERT(ip->i_df.if_broot_bytes == 0); 1914 return; 1915 } 1916 1917 mp = ip->i_mount; 1918 1919 /* If this is a read-only mount, don't do this (would generate I/O) */ 1920 if (mp->m_flags & XFS_MOUNT_RDONLY) 1921 return; 1922 1923 if (ip->i_d.di_nlink != 0) { 1924 /* 1925 * force is true because we are evicting an inode from the 1926 * cache. Post-eof blocks must be freed, lest we end up with 1927 * broken free space accounting. 1928 */ 1929 if (xfs_can_free_eofblocks(ip, true)) 1930 xfs_free_eofblocks(mp, ip, false); 1931 1932 return; 1933 } 1934 1935 if (S_ISREG(ip->i_d.di_mode) && 1936 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1937 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1938 truncate = 1; 1939 1940 error = xfs_qm_dqattach(ip, 0); 1941 if (error) 1942 return; 1943 1944 if (S_ISLNK(ip->i_d.di_mode)) 1945 error = xfs_inactive_symlink(ip); 1946 else if (truncate) 1947 error = xfs_inactive_truncate(ip); 1948 if (error) 1949 return; 1950 1951 /* 1952 * If there are attributes associated with the file then blow them away 1953 * now. The code calls a routine that recursively deconstructs the 1954 * attribute fork. We need to just commit the current transaction 1955 * because we can't use it for xfs_attr_inactive(). 1956 */ 1957 if (ip->i_d.di_anextents > 0) { 1958 ASSERT(ip->i_d.di_forkoff != 0); 1959 1960 error = xfs_attr_inactive(ip); 1961 if (error) 1962 return; 1963 } 1964 1965 if (ip->i_afp) 1966 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1967 1968 ASSERT(ip->i_d.di_anextents == 0); 1969 1970 /* 1971 * Free the inode. 1972 */ 1973 error = xfs_inactive_ifree(ip); 1974 if (error) 1975 return; 1976 1977 /* 1978 * Release the dquots held by inode, if any. 1979 */ 1980 xfs_qm_dqdetach(ip); 1981 } 1982 1983 /* 1984 * This is called when the inode's link count goes to 0. 1985 * We place the on-disk inode on a list in the AGI. It 1986 * will be pulled from this list when the inode is freed. 1987 */ 1988 int 1989 xfs_iunlink( 1990 xfs_trans_t *tp, 1991 xfs_inode_t *ip) 1992 { 1993 xfs_mount_t *mp; 1994 xfs_agi_t *agi; 1995 xfs_dinode_t *dip; 1996 xfs_buf_t *agibp; 1997 xfs_buf_t *ibp; 1998 xfs_agino_t agino; 1999 short bucket_index; 2000 int offset; 2001 int error; 2002 2003 ASSERT(ip->i_d.di_nlink == 0); 2004 ASSERT(ip->i_d.di_mode != 0); 2005 2006 mp = tp->t_mountp; 2007 2008 /* 2009 * Get the agi buffer first. It ensures lock ordering 2010 * on the list. 2011 */ 2012 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 2013 if (error) 2014 return error; 2015 agi = XFS_BUF_TO_AGI(agibp); 2016 2017 /* 2018 * Get the index into the agi hash table for the 2019 * list this inode will go on. 2020 */ 2021 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2022 ASSERT(agino != 0); 2023 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2024 ASSERT(agi->agi_unlinked[bucket_index]); 2025 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2026 2027 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2028 /* 2029 * There is already another inode in the bucket we need 2030 * to add ourselves to. Add us at the front of the list. 2031 * Here we put the head pointer into our next pointer, 2032 * and then we fall through to point the head at us. 2033 */ 2034 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2035 0, 0); 2036 if (error) 2037 return error; 2038 2039 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2040 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2041 offset = ip->i_imap.im_boffset + 2042 offsetof(xfs_dinode_t, di_next_unlinked); 2043 2044 /* need to recalc the inode CRC if appropriate */ 2045 xfs_dinode_calc_crc(mp, dip); 2046 2047 xfs_trans_inode_buf(tp, ibp); 2048 xfs_trans_log_buf(tp, ibp, offset, 2049 (offset + sizeof(xfs_agino_t) - 1)); 2050 xfs_inobp_check(mp, ibp); 2051 } 2052 2053 /* 2054 * Point the bucket head pointer at the inode being inserted. 2055 */ 2056 ASSERT(agino != 0); 2057 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2058 offset = offsetof(xfs_agi_t, agi_unlinked) + 2059 (sizeof(xfs_agino_t) * bucket_index); 2060 xfs_trans_log_buf(tp, agibp, offset, 2061 (offset + sizeof(xfs_agino_t) - 1)); 2062 return 0; 2063 } 2064 2065 /* 2066 * Pull the on-disk inode from the AGI unlinked list. 2067 */ 2068 STATIC int 2069 xfs_iunlink_remove( 2070 xfs_trans_t *tp, 2071 xfs_inode_t *ip) 2072 { 2073 xfs_ino_t next_ino; 2074 xfs_mount_t *mp; 2075 xfs_agi_t *agi; 2076 xfs_dinode_t *dip; 2077 xfs_buf_t *agibp; 2078 xfs_buf_t *ibp; 2079 xfs_agnumber_t agno; 2080 xfs_agino_t agino; 2081 xfs_agino_t next_agino; 2082 xfs_buf_t *last_ibp; 2083 xfs_dinode_t *last_dip = NULL; 2084 short bucket_index; 2085 int offset, last_offset = 0; 2086 int error; 2087 2088 mp = tp->t_mountp; 2089 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2090 2091 /* 2092 * Get the agi buffer first. It ensures lock ordering 2093 * on the list. 2094 */ 2095 error = xfs_read_agi(mp, tp, agno, &agibp); 2096 if (error) 2097 return error; 2098 2099 agi = XFS_BUF_TO_AGI(agibp); 2100 2101 /* 2102 * Get the index into the agi hash table for the 2103 * list this inode will go on. 2104 */ 2105 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2106 ASSERT(agino != 0); 2107 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2108 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2109 ASSERT(agi->agi_unlinked[bucket_index]); 2110 2111 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2112 /* 2113 * We're at the head of the list. Get the inode's on-disk 2114 * buffer to see if there is anyone after us on the list. 2115 * Only modify our next pointer if it is not already NULLAGINO. 2116 * This saves us the overhead of dealing with the buffer when 2117 * there is no need to change it. 2118 */ 2119 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2120 0, 0); 2121 if (error) { 2122 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2123 __func__, error); 2124 return error; 2125 } 2126 next_agino = be32_to_cpu(dip->di_next_unlinked); 2127 ASSERT(next_agino != 0); 2128 if (next_agino != NULLAGINO) { 2129 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2130 offset = ip->i_imap.im_boffset + 2131 offsetof(xfs_dinode_t, di_next_unlinked); 2132 2133 /* need to recalc the inode CRC if appropriate */ 2134 xfs_dinode_calc_crc(mp, dip); 2135 2136 xfs_trans_inode_buf(tp, ibp); 2137 xfs_trans_log_buf(tp, ibp, offset, 2138 (offset + sizeof(xfs_agino_t) - 1)); 2139 xfs_inobp_check(mp, ibp); 2140 } else { 2141 xfs_trans_brelse(tp, ibp); 2142 } 2143 /* 2144 * Point the bucket head pointer at the next inode. 2145 */ 2146 ASSERT(next_agino != 0); 2147 ASSERT(next_agino != agino); 2148 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2149 offset = offsetof(xfs_agi_t, agi_unlinked) + 2150 (sizeof(xfs_agino_t) * bucket_index); 2151 xfs_trans_log_buf(tp, agibp, offset, 2152 (offset + sizeof(xfs_agino_t) - 1)); 2153 } else { 2154 /* 2155 * We need to search the list for the inode being freed. 2156 */ 2157 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2158 last_ibp = NULL; 2159 while (next_agino != agino) { 2160 struct xfs_imap imap; 2161 2162 if (last_ibp) 2163 xfs_trans_brelse(tp, last_ibp); 2164 2165 imap.im_blkno = 0; 2166 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2167 2168 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2169 if (error) { 2170 xfs_warn(mp, 2171 "%s: xfs_imap returned error %d.", 2172 __func__, error); 2173 return error; 2174 } 2175 2176 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2177 &last_ibp, 0, 0); 2178 if (error) { 2179 xfs_warn(mp, 2180 "%s: xfs_imap_to_bp returned error %d.", 2181 __func__, error); 2182 return error; 2183 } 2184 2185 last_offset = imap.im_boffset; 2186 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2187 ASSERT(next_agino != NULLAGINO); 2188 ASSERT(next_agino != 0); 2189 } 2190 2191 /* 2192 * Now last_ibp points to the buffer previous to us on the 2193 * unlinked list. Pull us from the list. 2194 */ 2195 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2196 0, 0); 2197 if (error) { 2198 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2199 __func__, error); 2200 return error; 2201 } 2202 next_agino = be32_to_cpu(dip->di_next_unlinked); 2203 ASSERT(next_agino != 0); 2204 ASSERT(next_agino != agino); 2205 if (next_agino != NULLAGINO) { 2206 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2207 offset = ip->i_imap.im_boffset + 2208 offsetof(xfs_dinode_t, di_next_unlinked); 2209 2210 /* need to recalc the inode CRC if appropriate */ 2211 xfs_dinode_calc_crc(mp, dip); 2212 2213 xfs_trans_inode_buf(tp, ibp); 2214 xfs_trans_log_buf(tp, ibp, offset, 2215 (offset + sizeof(xfs_agino_t) - 1)); 2216 xfs_inobp_check(mp, ibp); 2217 } else { 2218 xfs_trans_brelse(tp, ibp); 2219 } 2220 /* 2221 * Point the previous inode on the list to the next inode. 2222 */ 2223 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2224 ASSERT(next_agino != 0); 2225 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2226 2227 /* need to recalc the inode CRC if appropriate */ 2228 xfs_dinode_calc_crc(mp, last_dip); 2229 2230 xfs_trans_inode_buf(tp, last_ibp); 2231 xfs_trans_log_buf(tp, last_ibp, offset, 2232 (offset + sizeof(xfs_agino_t) - 1)); 2233 xfs_inobp_check(mp, last_ibp); 2234 } 2235 return 0; 2236 } 2237 2238 /* 2239 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2240 * inodes that are in memory - they all must be marked stale and attached to 2241 * the cluster buffer. 2242 */ 2243 STATIC int 2244 xfs_ifree_cluster( 2245 xfs_inode_t *free_ip, 2246 xfs_trans_t *tp, 2247 xfs_ino_t inum) 2248 { 2249 xfs_mount_t *mp = free_ip->i_mount; 2250 int blks_per_cluster; 2251 int inodes_per_cluster; 2252 int nbufs; 2253 int i, j; 2254 xfs_daddr_t blkno; 2255 xfs_buf_t *bp; 2256 xfs_inode_t *ip; 2257 xfs_inode_log_item_t *iip; 2258 xfs_log_item_t *lip; 2259 struct xfs_perag *pag; 2260 2261 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2262 blks_per_cluster = xfs_icluster_size_fsb(mp); 2263 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2264 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2265 2266 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2267 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2268 XFS_INO_TO_AGBNO(mp, inum)); 2269 2270 /* 2271 * We obtain and lock the backing buffer first in the process 2272 * here, as we have to ensure that any dirty inode that we 2273 * can't get the flush lock on is attached to the buffer. 2274 * If we scan the in-memory inodes first, then buffer IO can 2275 * complete before we get a lock on it, and hence we may fail 2276 * to mark all the active inodes on the buffer stale. 2277 */ 2278 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2279 mp->m_bsize * blks_per_cluster, 2280 XBF_UNMAPPED); 2281 2282 if (!bp) 2283 return ENOMEM; 2284 2285 /* 2286 * This buffer may not have been correctly initialised as we 2287 * didn't read it from disk. That's not important because we are 2288 * only using to mark the buffer as stale in the log, and to 2289 * attach stale cached inodes on it. That means it will never be 2290 * dispatched for IO. If it is, we want to know about it, and we 2291 * want it to fail. We can acheive this by adding a write 2292 * verifier to the buffer. 2293 */ 2294 bp->b_ops = &xfs_inode_buf_ops; 2295 2296 /* 2297 * Walk the inodes already attached to the buffer and mark them 2298 * stale. These will all have the flush locks held, so an 2299 * in-memory inode walk can't lock them. By marking them all 2300 * stale first, we will not attempt to lock them in the loop 2301 * below as the XFS_ISTALE flag will be set. 2302 */ 2303 lip = bp->b_fspriv; 2304 while (lip) { 2305 if (lip->li_type == XFS_LI_INODE) { 2306 iip = (xfs_inode_log_item_t *)lip; 2307 ASSERT(iip->ili_logged == 1); 2308 lip->li_cb = xfs_istale_done; 2309 xfs_trans_ail_copy_lsn(mp->m_ail, 2310 &iip->ili_flush_lsn, 2311 &iip->ili_item.li_lsn); 2312 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2313 } 2314 lip = lip->li_bio_list; 2315 } 2316 2317 2318 /* 2319 * For each inode in memory attempt to add it to the inode 2320 * buffer and set it up for being staled on buffer IO 2321 * completion. This is safe as we've locked out tail pushing 2322 * and flushing by locking the buffer. 2323 * 2324 * We have already marked every inode that was part of a 2325 * transaction stale above, which means there is no point in 2326 * even trying to lock them. 2327 */ 2328 for (i = 0; i < inodes_per_cluster; i++) { 2329 retry: 2330 rcu_read_lock(); 2331 ip = radix_tree_lookup(&pag->pag_ici_root, 2332 XFS_INO_TO_AGINO(mp, (inum + i))); 2333 2334 /* Inode not in memory, nothing to do */ 2335 if (!ip) { 2336 rcu_read_unlock(); 2337 continue; 2338 } 2339 2340 /* 2341 * because this is an RCU protected lookup, we could 2342 * find a recently freed or even reallocated inode 2343 * during the lookup. We need to check under the 2344 * i_flags_lock for a valid inode here. Skip it if it 2345 * is not valid, the wrong inode or stale. 2346 */ 2347 spin_lock(&ip->i_flags_lock); 2348 if (ip->i_ino != inum + i || 2349 __xfs_iflags_test(ip, XFS_ISTALE)) { 2350 spin_unlock(&ip->i_flags_lock); 2351 rcu_read_unlock(); 2352 continue; 2353 } 2354 spin_unlock(&ip->i_flags_lock); 2355 2356 /* 2357 * Don't try to lock/unlock the current inode, but we 2358 * _cannot_ skip the other inodes that we did not find 2359 * in the list attached to the buffer and are not 2360 * already marked stale. If we can't lock it, back off 2361 * and retry. 2362 */ 2363 if (ip != free_ip && 2364 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2365 rcu_read_unlock(); 2366 delay(1); 2367 goto retry; 2368 } 2369 rcu_read_unlock(); 2370 2371 xfs_iflock(ip); 2372 xfs_iflags_set(ip, XFS_ISTALE); 2373 2374 /* 2375 * we don't need to attach clean inodes or those only 2376 * with unlogged changes (which we throw away, anyway). 2377 */ 2378 iip = ip->i_itemp; 2379 if (!iip || xfs_inode_clean(ip)) { 2380 ASSERT(ip != free_ip); 2381 xfs_ifunlock(ip); 2382 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2383 continue; 2384 } 2385 2386 iip->ili_last_fields = iip->ili_fields; 2387 iip->ili_fields = 0; 2388 iip->ili_logged = 1; 2389 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2390 &iip->ili_item.li_lsn); 2391 2392 xfs_buf_attach_iodone(bp, xfs_istale_done, 2393 &iip->ili_item); 2394 2395 if (ip != free_ip) 2396 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2397 } 2398 2399 xfs_trans_stale_inode_buf(tp, bp); 2400 xfs_trans_binval(tp, bp); 2401 } 2402 2403 xfs_perag_put(pag); 2404 return 0; 2405 } 2406 2407 /* 2408 * This is called to return an inode to the inode free list. 2409 * The inode should already be truncated to 0 length and have 2410 * no pages associated with it. This routine also assumes that 2411 * the inode is already a part of the transaction. 2412 * 2413 * The on-disk copy of the inode will have been added to the list 2414 * of unlinked inodes in the AGI. We need to remove the inode from 2415 * that list atomically with respect to freeing it here. 2416 */ 2417 int 2418 xfs_ifree( 2419 xfs_trans_t *tp, 2420 xfs_inode_t *ip, 2421 xfs_bmap_free_t *flist) 2422 { 2423 int error; 2424 int delete; 2425 xfs_ino_t first_ino; 2426 2427 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2428 ASSERT(ip->i_d.di_nlink == 0); 2429 ASSERT(ip->i_d.di_nextents == 0); 2430 ASSERT(ip->i_d.di_anextents == 0); 2431 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2432 ASSERT(ip->i_d.di_nblocks == 0); 2433 2434 /* 2435 * Pull the on-disk inode from the AGI unlinked list. 2436 */ 2437 error = xfs_iunlink_remove(tp, ip); 2438 if (error) 2439 return error; 2440 2441 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2442 if (error) 2443 return error; 2444 2445 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2446 ip->i_d.di_flags = 0; 2447 ip->i_d.di_dmevmask = 0; 2448 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2449 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2450 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2451 /* 2452 * Bump the generation count so no one will be confused 2453 * by reincarnations of this inode. 2454 */ 2455 ip->i_d.di_gen++; 2456 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2457 2458 if (delete) 2459 error = xfs_ifree_cluster(ip, tp, first_ino); 2460 2461 return error; 2462 } 2463 2464 /* 2465 * This is called to unpin an inode. The caller must have the inode locked 2466 * in at least shared mode so that the buffer cannot be subsequently pinned 2467 * once someone is waiting for it to be unpinned. 2468 */ 2469 static void 2470 xfs_iunpin( 2471 struct xfs_inode *ip) 2472 { 2473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2474 2475 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2476 2477 /* Give the log a push to start the unpinning I/O */ 2478 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2479 2480 } 2481 2482 static void 2483 __xfs_iunpin_wait( 2484 struct xfs_inode *ip) 2485 { 2486 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2487 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2488 2489 xfs_iunpin(ip); 2490 2491 do { 2492 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2493 if (xfs_ipincount(ip)) 2494 io_schedule(); 2495 } while (xfs_ipincount(ip)); 2496 finish_wait(wq, &wait.wait); 2497 } 2498 2499 void 2500 xfs_iunpin_wait( 2501 struct xfs_inode *ip) 2502 { 2503 if (xfs_ipincount(ip)) 2504 __xfs_iunpin_wait(ip); 2505 } 2506 2507 /* 2508 * Removing an inode from the namespace involves removing the directory entry 2509 * and dropping the link count on the inode. Removing the directory entry can 2510 * result in locking an AGF (directory blocks were freed) and removing a link 2511 * count can result in placing the inode on an unlinked list which results in 2512 * locking an AGI. 2513 * 2514 * The big problem here is that we have an ordering constraint on AGF and AGI 2515 * locking - inode allocation locks the AGI, then can allocate a new extent for 2516 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2517 * removes the inode from the unlinked list, requiring that we lock the AGI 2518 * first, and then freeing the inode can result in an inode chunk being freed 2519 * and hence freeing disk space requiring that we lock an AGF. 2520 * 2521 * Hence the ordering that is imposed by other parts of the code is AGI before 2522 * AGF. This means we cannot remove the directory entry before we drop the inode 2523 * reference count and put it on the unlinked list as this results in a lock 2524 * order of AGF then AGI, and this can deadlock against inode allocation and 2525 * freeing. Therefore we must drop the link counts before we remove the 2526 * directory entry. 2527 * 2528 * This is still safe from a transactional point of view - it is not until we 2529 * get to xfs_bmap_finish() that we have the possibility of multiple 2530 * transactions in this operation. Hence as long as we remove the directory 2531 * entry and drop the link count in the first transaction of the remove 2532 * operation, there are no transactional constraints on the ordering here. 2533 */ 2534 int 2535 xfs_remove( 2536 xfs_inode_t *dp, 2537 struct xfs_name *name, 2538 xfs_inode_t *ip) 2539 { 2540 xfs_mount_t *mp = dp->i_mount; 2541 xfs_trans_t *tp = NULL; 2542 int is_dir = S_ISDIR(ip->i_d.di_mode); 2543 int error = 0; 2544 xfs_bmap_free_t free_list; 2545 xfs_fsblock_t first_block; 2546 int cancel_flags; 2547 int committed; 2548 int link_zero; 2549 uint resblks; 2550 uint log_count; 2551 2552 trace_xfs_remove(dp, name); 2553 2554 if (XFS_FORCED_SHUTDOWN(mp)) 2555 return XFS_ERROR(EIO); 2556 2557 error = xfs_qm_dqattach(dp, 0); 2558 if (error) 2559 goto std_return; 2560 2561 error = xfs_qm_dqattach(ip, 0); 2562 if (error) 2563 goto std_return; 2564 2565 if (is_dir) { 2566 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2567 log_count = XFS_DEFAULT_LOG_COUNT; 2568 } else { 2569 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2570 log_count = XFS_REMOVE_LOG_COUNT; 2571 } 2572 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2573 2574 /* 2575 * We try to get the real space reservation first, 2576 * allowing for directory btree deletion(s) implying 2577 * possible bmap insert(s). If we can't get the space 2578 * reservation then we use 0 instead, and avoid the bmap 2579 * btree insert(s) in the directory code by, if the bmap 2580 * insert tries to happen, instead trimming the LAST 2581 * block from the directory. 2582 */ 2583 resblks = XFS_REMOVE_SPACE_RES(mp); 2584 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2585 if (error == ENOSPC) { 2586 resblks = 0; 2587 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2588 } 2589 if (error) { 2590 ASSERT(error != ENOSPC); 2591 cancel_flags = 0; 2592 goto out_trans_cancel; 2593 } 2594 2595 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2596 2597 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2598 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2599 2600 /* 2601 * If we're removing a directory perform some additional validation. 2602 */ 2603 cancel_flags |= XFS_TRANS_ABORT; 2604 if (is_dir) { 2605 ASSERT(ip->i_d.di_nlink >= 2); 2606 if (ip->i_d.di_nlink != 2) { 2607 error = XFS_ERROR(ENOTEMPTY); 2608 goto out_trans_cancel; 2609 } 2610 if (!xfs_dir_isempty(ip)) { 2611 error = XFS_ERROR(ENOTEMPTY); 2612 goto out_trans_cancel; 2613 } 2614 2615 /* Drop the link from ip's "..". */ 2616 error = xfs_droplink(tp, dp); 2617 if (error) 2618 goto out_trans_cancel; 2619 2620 /* Drop the "." link from ip to self. */ 2621 error = xfs_droplink(tp, ip); 2622 if (error) 2623 goto out_trans_cancel; 2624 } else { 2625 /* 2626 * When removing a non-directory we need to log the parent 2627 * inode here. For a directory this is done implicitly 2628 * by the xfs_droplink call for the ".." entry. 2629 */ 2630 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2631 } 2632 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2633 2634 /* Drop the link from dp to ip. */ 2635 error = xfs_droplink(tp, ip); 2636 if (error) 2637 goto out_trans_cancel; 2638 2639 /* Determine if this is the last link while the inode is locked */ 2640 link_zero = (ip->i_d.di_nlink == 0); 2641 2642 xfs_bmap_init(&free_list, &first_block); 2643 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2644 &first_block, &free_list, resblks); 2645 if (error) { 2646 ASSERT(error != ENOENT); 2647 goto out_bmap_cancel; 2648 } 2649 2650 /* 2651 * If this is a synchronous mount, make sure that the 2652 * remove transaction goes to disk before returning to 2653 * the user. 2654 */ 2655 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2656 xfs_trans_set_sync(tp); 2657 2658 error = xfs_bmap_finish(&tp, &free_list, &committed); 2659 if (error) 2660 goto out_bmap_cancel; 2661 2662 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2663 if (error) 2664 goto std_return; 2665 2666 /* 2667 * If we are using filestreams, kill the stream association. 2668 * If the file is still open it may get a new one but that 2669 * will get killed on last close in xfs_close() so we don't 2670 * have to worry about that. 2671 */ 2672 if (!is_dir && link_zero && xfs_inode_is_filestream(ip)) 2673 xfs_filestream_deassociate(ip); 2674 2675 return 0; 2676 2677 out_bmap_cancel: 2678 xfs_bmap_cancel(&free_list); 2679 out_trans_cancel: 2680 xfs_trans_cancel(tp, cancel_flags); 2681 std_return: 2682 return error; 2683 } 2684 2685 /* 2686 * Enter all inodes for a rename transaction into a sorted array. 2687 */ 2688 STATIC void 2689 xfs_sort_for_rename( 2690 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2691 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2692 xfs_inode_t *ip1, /* in: inode of old entry */ 2693 xfs_inode_t *ip2, /* in: inode of new entry, if it 2694 already exists, NULL otherwise. */ 2695 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2696 int *num_inodes) /* out: number of inodes in array */ 2697 { 2698 xfs_inode_t *temp; 2699 int i, j; 2700 2701 /* 2702 * i_tab contains a list of pointers to inodes. We initialize 2703 * the table here & we'll sort it. We will then use it to 2704 * order the acquisition of the inode locks. 2705 * 2706 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2707 */ 2708 i_tab[0] = dp1; 2709 i_tab[1] = dp2; 2710 i_tab[2] = ip1; 2711 if (ip2) { 2712 *num_inodes = 4; 2713 i_tab[3] = ip2; 2714 } else { 2715 *num_inodes = 3; 2716 i_tab[3] = NULL; 2717 } 2718 2719 /* 2720 * Sort the elements via bubble sort. (Remember, there are at 2721 * most 4 elements to sort, so this is adequate.) 2722 */ 2723 for (i = 0; i < *num_inodes; i++) { 2724 for (j = 1; j < *num_inodes; j++) { 2725 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2726 temp = i_tab[j]; 2727 i_tab[j] = i_tab[j-1]; 2728 i_tab[j-1] = temp; 2729 } 2730 } 2731 } 2732 } 2733 2734 /* 2735 * xfs_rename 2736 */ 2737 int 2738 xfs_rename( 2739 xfs_inode_t *src_dp, 2740 struct xfs_name *src_name, 2741 xfs_inode_t *src_ip, 2742 xfs_inode_t *target_dp, 2743 struct xfs_name *target_name, 2744 xfs_inode_t *target_ip) 2745 { 2746 xfs_trans_t *tp = NULL; 2747 xfs_mount_t *mp = src_dp->i_mount; 2748 int new_parent; /* moving to a new dir */ 2749 int src_is_directory; /* src_name is a directory */ 2750 int error; 2751 xfs_bmap_free_t free_list; 2752 xfs_fsblock_t first_block; 2753 int cancel_flags; 2754 int committed; 2755 xfs_inode_t *inodes[4]; 2756 int spaceres; 2757 int num_inodes; 2758 2759 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2760 2761 new_parent = (src_dp != target_dp); 2762 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2763 2764 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2765 inodes, &num_inodes); 2766 2767 xfs_bmap_init(&free_list, &first_block); 2768 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2769 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2770 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2771 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2772 if (error == ENOSPC) { 2773 spaceres = 0; 2774 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2775 } 2776 if (error) { 2777 xfs_trans_cancel(tp, 0); 2778 goto std_return; 2779 } 2780 2781 /* 2782 * Attach the dquots to the inodes 2783 */ 2784 error = xfs_qm_vop_rename_dqattach(inodes); 2785 if (error) { 2786 xfs_trans_cancel(tp, cancel_flags); 2787 goto std_return; 2788 } 2789 2790 /* 2791 * Lock all the participating inodes. Depending upon whether 2792 * the target_name exists in the target directory, and 2793 * whether the target directory is the same as the source 2794 * directory, we can lock from 2 to 4 inodes. 2795 */ 2796 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2797 2798 /* 2799 * Join all the inodes to the transaction. From this point on, 2800 * we can rely on either trans_commit or trans_cancel to unlock 2801 * them. 2802 */ 2803 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2804 if (new_parent) 2805 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2806 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2807 if (target_ip) 2808 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2809 2810 /* 2811 * If we are using project inheritance, we only allow renames 2812 * into our tree when the project IDs are the same; else the 2813 * tree quota mechanism would be circumvented. 2814 */ 2815 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2816 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2817 error = XFS_ERROR(EXDEV); 2818 goto error_return; 2819 } 2820 2821 /* 2822 * Set up the target. 2823 */ 2824 if (target_ip == NULL) { 2825 /* 2826 * If there's no space reservation, check the entry will 2827 * fit before actually inserting it. 2828 */ 2829 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres); 2830 if (error) 2831 goto error_return; 2832 /* 2833 * If target does not exist and the rename crosses 2834 * directories, adjust the target directory link count 2835 * to account for the ".." reference from the new entry. 2836 */ 2837 error = xfs_dir_createname(tp, target_dp, target_name, 2838 src_ip->i_ino, &first_block, 2839 &free_list, spaceres); 2840 if (error == ENOSPC) 2841 goto error_return; 2842 if (error) 2843 goto abort_return; 2844 2845 xfs_trans_ichgtime(tp, target_dp, 2846 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2847 2848 if (new_parent && src_is_directory) { 2849 error = xfs_bumplink(tp, target_dp); 2850 if (error) 2851 goto abort_return; 2852 } 2853 } else { /* target_ip != NULL */ 2854 /* 2855 * If target exists and it's a directory, check that both 2856 * target and source are directories and that target can be 2857 * destroyed, or that neither is a directory. 2858 */ 2859 if (S_ISDIR(target_ip->i_d.di_mode)) { 2860 /* 2861 * Make sure target dir is empty. 2862 */ 2863 if (!(xfs_dir_isempty(target_ip)) || 2864 (target_ip->i_d.di_nlink > 2)) { 2865 error = XFS_ERROR(EEXIST); 2866 goto error_return; 2867 } 2868 } 2869 2870 /* 2871 * Link the source inode under the target name. 2872 * If the source inode is a directory and we are moving 2873 * it across directories, its ".." entry will be 2874 * inconsistent until we replace that down below. 2875 * 2876 * In case there is already an entry with the same 2877 * name at the destination directory, remove it first. 2878 */ 2879 error = xfs_dir_replace(tp, target_dp, target_name, 2880 src_ip->i_ino, 2881 &first_block, &free_list, spaceres); 2882 if (error) 2883 goto abort_return; 2884 2885 xfs_trans_ichgtime(tp, target_dp, 2886 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2887 2888 /* 2889 * Decrement the link count on the target since the target 2890 * dir no longer points to it. 2891 */ 2892 error = xfs_droplink(tp, target_ip); 2893 if (error) 2894 goto abort_return; 2895 2896 if (src_is_directory) { 2897 /* 2898 * Drop the link from the old "." entry. 2899 */ 2900 error = xfs_droplink(tp, target_ip); 2901 if (error) 2902 goto abort_return; 2903 } 2904 } /* target_ip != NULL */ 2905 2906 /* 2907 * Remove the source. 2908 */ 2909 if (new_parent && src_is_directory) { 2910 /* 2911 * Rewrite the ".." entry to point to the new 2912 * directory. 2913 */ 2914 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2915 target_dp->i_ino, 2916 &first_block, &free_list, spaceres); 2917 ASSERT(error != EEXIST); 2918 if (error) 2919 goto abort_return; 2920 } 2921 2922 /* 2923 * We always want to hit the ctime on the source inode. 2924 * 2925 * This isn't strictly required by the standards since the source 2926 * inode isn't really being changed, but old unix file systems did 2927 * it and some incremental backup programs won't work without it. 2928 */ 2929 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2930 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2931 2932 /* 2933 * Adjust the link count on src_dp. This is necessary when 2934 * renaming a directory, either within one parent when 2935 * the target existed, or across two parent directories. 2936 */ 2937 if (src_is_directory && (new_parent || target_ip != NULL)) { 2938 2939 /* 2940 * Decrement link count on src_directory since the 2941 * entry that's moved no longer points to it. 2942 */ 2943 error = xfs_droplink(tp, src_dp); 2944 if (error) 2945 goto abort_return; 2946 } 2947 2948 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2949 &first_block, &free_list, spaceres); 2950 if (error) 2951 goto abort_return; 2952 2953 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2954 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2955 if (new_parent) 2956 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2957 2958 /* 2959 * If this is a synchronous mount, make sure that the 2960 * rename transaction goes to disk before returning to 2961 * the user. 2962 */ 2963 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2964 xfs_trans_set_sync(tp); 2965 } 2966 2967 error = xfs_bmap_finish(&tp, &free_list, &committed); 2968 if (error) { 2969 xfs_bmap_cancel(&free_list); 2970 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2971 XFS_TRANS_ABORT)); 2972 goto std_return; 2973 } 2974 2975 /* 2976 * trans_commit will unlock src_ip, target_ip & decrement 2977 * the vnode references. 2978 */ 2979 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2980 2981 abort_return: 2982 cancel_flags |= XFS_TRANS_ABORT; 2983 error_return: 2984 xfs_bmap_cancel(&free_list); 2985 xfs_trans_cancel(tp, cancel_flags); 2986 std_return: 2987 return error; 2988 } 2989 2990 STATIC int 2991 xfs_iflush_cluster( 2992 xfs_inode_t *ip, 2993 xfs_buf_t *bp) 2994 { 2995 xfs_mount_t *mp = ip->i_mount; 2996 struct xfs_perag *pag; 2997 unsigned long first_index, mask; 2998 unsigned long inodes_per_cluster; 2999 int ilist_size; 3000 xfs_inode_t **ilist; 3001 xfs_inode_t *iq; 3002 int nr_found; 3003 int clcount = 0; 3004 int bufwasdelwri; 3005 int i; 3006 3007 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3008 3009 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3010 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3011 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3012 if (!ilist) 3013 goto out_put; 3014 3015 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3016 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3017 rcu_read_lock(); 3018 /* really need a gang lookup range call here */ 3019 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3020 first_index, inodes_per_cluster); 3021 if (nr_found == 0) 3022 goto out_free; 3023 3024 for (i = 0; i < nr_found; i++) { 3025 iq = ilist[i]; 3026 if (iq == ip) 3027 continue; 3028 3029 /* 3030 * because this is an RCU protected lookup, we could find a 3031 * recently freed or even reallocated inode during the lookup. 3032 * We need to check under the i_flags_lock for a valid inode 3033 * here. Skip it if it is not valid or the wrong inode. 3034 */ 3035 spin_lock(&ip->i_flags_lock); 3036 if (!ip->i_ino || 3037 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3038 spin_unlock(&ip->i_flags_lock); 3039 continue; 3040 } 3041 spin_unlock(&ip->i_flags_lock); 3042 3043 /* 3044 * Do an un-protected check to see if the inode is dirty and 3045 * is a candidate for flushing. These checks will be repeated 3046 * later after the appropriate locks are acquired. 3047 */ 3048 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3049 continue; 3050 3051 /* 3052 * Try to get locks. If any are unavailable or it is pinned, 3053 * then this inode cannot be flushed and is skipped. 3054 */ 3055 3056 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3057 continue; 3058 if (!xfs_iflock_nowait(iq)) { 3059 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3060 continue; 3061 } 3062 if (xfs_ipincount(iq)) { 3063 xfs_ifunlock(iq); 3064 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3065 continue; 3066 } 3067 3068 /* 3069 * arriving here means that this inode can be flushed. First 3070 * re-check that it's dirty before flushing. 3071 */ 3072 if (!xfs_inode_clean(iq)) { 3073 int error; 3074 error = xfs_iflush_int(iq, bp); 3075 if (error) { 3076 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3077 goto cluster_corrupt_out; 3078 } 3079 clcount++; 3080 } else { 3081 xfs_ifunlock(iq); 3082 } 3083 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3084 } 3085 3086 if (clcount) { 3087 XFS_STATS_INC(xs_icluster_flushcnt); 3088 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3089 } 3090 3091 out_free: 3092 rcu_read_unlock(); 3093 kmem_free(ilist); 3094 out_put: 3095 xfs_perag_put(pag); 3096 return 0; 3097 3098 3099 cluster_corrupt_out: 3100 /* 3101 * Corruption detected in the clustering loop. Invalidate the 3102 * inode buffer and shut down the filesystem. 3103 */ 3104 rcu_read_unlock(); 3105 /* 3106 * Clean up the buffer. If it was delwri, just release it -- 3107 * brelse can handle it with no problems. If not, shut down the 3108 * filesystem before releasing the buffer. 3109 */ 3110 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3111 if (bufwasdelwri) 3112 xfs_buf_relse(bp); 3113 3114 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3115 3116 if (!bufwasdelwri) { 3117 /* 3118 * Just like incore_relse: if we have b_iodone functions, 3119 * mark the buffer as an error and call them. Otherwise 3120 * mark it as stale and brelse. 3121 */ 3122 if (bp->b_iodone) { 3123 XFS_BUF_UNDONE(bp); 3124 xfs_buf_stale(bp); 3125 xfs_buf_ioerror(bp, EIO); 3126 xfs_buf_ioend(bp, 0); 3127 } else { 3128 xfs_buf_stale(bp); 3129 xfs_buf_relse(bp); 3130 } 3131 } 3132 3133 /* 3134 * Unlocks the flush lock 3135 */ 3136 xfs_iflush_abort(iq, false); 3137 kmem_free(ilist); 3138 xfs_perag_put(pag); 3139 return XFS_ERROR(EFSCORRUPTED); 3140 } 3141 3142 /* 3143 * Flush dirty inode metadata into the backing buffer. 3144 * 3145 * The caller must have the inode lock and the inode flush lock held. The 3146 * inode lock will still be held upon return to the caller, and the inode 3147 * flush lock will be released after the inode has reached the disk. 3148 * 3149 * The caller must write out the buffer returned in *bpp and release it. 3150 */ 3151 int 3152 xfs_iflush( 3153 struct xfs_inode *ip, 3154 struct xfs_buf **bpp) 3155 { 3156 struct xfs_mount *mp = ip->i_mount; 3157 struct xfs_buf *bp; 3158 struct xfs_dinode *dip; 3159 int error; 3160 3161 XFS_STATS_INC(xs_iflush_count); 3162 3163 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3164 ASSERT(xfs_isiflocked(ip)); 3165 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3166 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3167 3168 *bpp = NULL; 3169 3170 xfs_iunpin_wait(ip); 3171 3172 /* 3173 * For stale inodes we cannot rely on the backing buffer remaining 3174 * stale in cache for the remaining life of the stale inode and so 3175 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3176 * inodes below. We have to check this after ensuring the inode is 3177 * unpinned so that it is safe to reclaim the stale inode after the 3178 * flush call. 3179 */ 3180 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3181 xfs_ifunlock(ip); 3182 return 0; 3183 } 3184 3185 /* 3186 * This may have been unpinned because the filesystem is shutting 3187 * down forcibly. If that's the case we must not write this inode 3188 * to disk, because the log record didn't make it to disk. 3189 * 3190 * We also have to remove the log item from the AIL in this case, 3191 * as we wait for an empty AIL as part of the unmount process. 3192 */ 3193 if (XFS_FORCED_SHUTDOWN(mp)) { 3194 error = XFS_ERROR(EIO); 3195 goto abort_out; 3196 } 3197 3198 /* 3199 * Get the buffer containing the on-disk inode. 3200 */ 3201 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3202 0); 3203 if (error || !bp) { 3204 xfs_ifunlock(ip); 3205 return error; 3206 } 3207 3208 /* 3209 * First flush out the inode that xfs_iflush was called with. 3210 */ 3211 error = xfs_iflush_int(ip, bp); 3212 if (error) 3213 goto corrupt_out; 3214 3215 /* 3216 * If the buffer is pinned then push on the log now so we won't 3217 * get stuck waiting in the write for too long. 3218 */ 3219 if (xfs_buf_ispinned(bp)) 3220 xfs_log_force(mp, 0); 3221 3222 /* 3223 * inode clustering: 3224 * see if other inodes can be gathered into this write 3225 */ 3226 error = xfs_iflush_cluster(ip, bp); 3227 if (error) 3228 goto cluster_corrupt_out; 3229 3230 *bpp = bp; 3231 return 0; 3232 3233 corrupt_out: 3234 xfs_buf_relse(bp); 3235 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3236 cluster_corrupt_out: 3237 error = XFS_ERROR(EFSCORRUPTED); 3238 abort_out: 3239 /* 3240 * Unlocks the flush lock 3241 */ 3242 xfs_iflush_abort(ip, false); 3243 return error; 3244 } 3245 3246 STATIC int 3247 xfs_iflush_int( 3248 struct xfs_inode *ip, 3249 struct xfs_buf *bp) 3250 { 3251 struct xfs_inode_log_item *iip = ip->i_itemp; 3252 struct xfs_dinode *dip; 3253 struct xfs_mount *mp = ip->i_mount; 3254 3255 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3256 ASSERT(xfs_isiflocked(ip)); 3257 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3258 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3259 ASSERT(iip != NULL && iip->ili_fields != 0); 3260 3261 /* set *dip = inode's place in the buffer */ 3262 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3263 3264 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3265 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3266 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3267 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3268 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3269 goto corrupt_out; 3270 } 3271 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3272 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3273 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3274 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3275 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3276 goto corrupt_out; 3277 } 3278 if (S_ISREG(ip->i_d.di_mode)) { 3279 if (XFS_TEST_ERROR( 3280 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3281 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3282 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3283 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3284 "%s: Bad regular inode %Lu, ptr 0x%p", 3285 __func__, ip->i_ino, ip); 3286 goto corrupt_out; 3287 } 3288 } else if (S_ISDIR(ip->i_d.di_mode)) { 3289 if (XFS_TEST_ERROR( 3290 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3291 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3292 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3293 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3294 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3295 "%s: Bad directory inode %Lu, ptr 0x%p", 3296 __func__, ip->i_ino, ip); 3297 goto corrupt_out; 3298 } 3299 } 3300 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3301 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3302 XFS_RANDOM_IFLUSH_5)) { 3303 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3304 "%s: detected corrupt incore inode %Lu, " 3305 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3306 __func__, ip->i_ino, 3307 ip->i_d.di_nextents + ip->i_d.di_anextents, 3308 ip->i_d.di_nblocks, ip); 3309 goto corrupt_out; 3310 } 3311 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3312 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3313 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3314 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3315 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3316 goto corrupt_out; 3317 } 3318 3319 /* 3320 * Inode item log recovery for v1/v2 inodes are dependent on the 3321 * di_flushiter count for correct sequencing. We bump the flush 3322 * iteration count so we can detect flushes which postdate a log record 3323 * during recovery. This is redundant as we now log every change and 3324 * hence this can't happen but we need to still do it to ensure 3325 * backwards compatibility with old kernels that predate logging all 3326 * inode changes. 3327 */ 3328 if (ip->i_d.di_version < 3) 3329 ip->i_d.di_flushiter++; 3330 3331 /* 3332 * Copy the dirty parts of the inode into the on-disk 3333 * inode. We always copy out the core of the inode, 3334 * because if the inode is dirty at all the core must 3335 * be. 3336 */ 3337 xfs_dinode_to_disk(dip, &ip->i_d); 3338 3339 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3340 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3341 ip->i_d.di_flushiter = 0; 3342 3343 /* 3344 * If this is really an old format inode and the superblock version 3345 * has not been updated to support only new format inodes, then 3346 * convert back to the old inode format. If the superblock version 3347 * has been updated, then make the conversion permanent. 3348 */ 3349 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3350 if (ip->i_d.di_version == 1) { 3351 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3352 /* 3353 * Convert it back. 3354 */ 3355 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3356 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3357 } else { 3358 /* 3359 * The superblock version has already been bumped, 3360 * so just make the conversion to the new inode 3361 * format permanent. 3362 */ 3363 ip->i_d.di_version = 2; 3364 dip->di_version = 2; 3365 ip->i_d.di_onlink = 0; 3366 dip->di_onlink = 0; 3367 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3368 memset(&(dip->di_pad[0]), 0, 3369 sizeof(dip->di_pad)); 3370 ASSERT(xfs_get_projid(ip) == 0); 3371 } 3372 } 3373 3374 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3375 if (XFS_IFORK_Q(ip)) 3376 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3377 xfs_inobp_check(mp, bp); 3378 3379 /* 3380 * We've recorded everything logged in the inode, so we'd like to clear 3381 * the ili_fields bits so we don't log and flush things unnecessarily. 3382 * However, we can't stop logging all this information until the data 3383 * we've copied into the disk buffer is written to disk. If we did we 3384 * might overwrite the copy of the inode in the log with all the data 3385 * after re-logging only part of it, and in the face of a crash we 3386 * wouldn't have all the data we need to recover. 3387 * 3388 * What we do is move the bits to the ili_last_fields field. When 3389 * logging the inode, these bits are moved back to the ili_fields field. 3390 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3391 * know that the information those bits represent is permanently on 3392 * disk. As long as the flush completes before the inode is logged 3393 * again, then both ili_fields and ili_last_fields will be cleared. 3394 * 3395 * We can play with the ili_fields bits here, because the inode lock 3396 * must be held exclusively in order to set bits there and the flush 3397 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3398 * done routine can tell whether or not to look in the AIL. Also, store 3399 * the current LSN of the inode so that we can tell whether the item has 3400 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3401 * need the AIL lock, because it is a 64 bit value that cannot be read 3402 * atomically. 3403 */ 3404 iip->ili_last_fields = iip->ili_fields; 3405 iip->ili_fields = 0; 3406 iip->ili_logged = 1; 3407 3408 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3409 &iip->ili_item.li_lsn); 3410 3411 /* 3412 * Attach the function xfs_iflush_done to the inode's 3413 * buffer. This will remove the inode from the AIL 3414 * and unlock the inode's flush lock when the inode is 3415 * completely written to disk. 3416 */ 3417 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3418 3419 /* update the lsn in the on disk inode if required */ 3420 if (ip->i_d.di_version == 3) 3421 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3422 3423 /* generate the checksum. */ 3424 xfs_dinode_calc_crc(mp, dip); 3425 3426 ASSERT(bp->b_fspriv != NULL); 3427 ASSERT(bp->b_iodone != NULL); 3428 return 0; 3429 3430 corrupt_out: 3431 return XFS_ERROR(EFSCORRUPTED); 3432 } 3433