xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision b34081f1)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2_format.h"
33 #include "xfs_dir2.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_attr.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_bmap_util.h"
48 #include "xfs_error.h"
49 #include "xfs_quota.h"
50 #include "xfs_filestream.h"
51 #include "xfs_cksum.h"
52 #include "xfs_trace.h"
53 #include "xfs_icache.h"
54 #include "xfs_symlink.h"
55 
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate_extents().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 
66 /*
67  * helper function to extract extent size hint from inode
68  */
69 xfs_extlen_t
70 xfs_get_extsz_hint(
71 	struct xfs_inode	*ip)
72 {
73 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 		return ip->i_d.di_extsize;
75 	if (XFS_IS_REALTIME_INODE(ip))
76 		return ip->i_mount->m_sb.sb_rextsize;
77 	return 0;
78 }
79 
80 /*
81  * This is a wrapper routine around the xfs_ilock() routine used to centralize
82  * some grungy code.  It is used in places that wish to lock the inode solely
83  * for reading the extents.  The reason these places can't just call
84  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
85  * extents from disk for a file in b-tree format.  If the inode is in b-tree
86  * format, then we need to lock the inode exclusively until the extents are read
87  * in.  Locking it exclusively all the time would limit our parallelism
88  * unnecessarily, though.  What we do instead is check to see if the extents
89  * have been read in yet, and only lock the inode exclusively if they have not.
90  *
91  * The function returns a value which should be given to the corresponding
92  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
93  * actually taken.
94  */
95 uint
96 xfs_ilock_map_shared(
97 	xfs_inode_t	*ip)
98 {
99 	uint	lock_mode;
100 
101 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
102 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
103 		lock_mode = XFS_ILOCK_EXCL;
104 	} else {
105 		lock_mode = XFS_ILOCK_SHARED;
106 	}
107 
108 	xfs_ilock(ip, lock_mode);
109 
110 	return lock_mode;
111 }
112 
113 /*
114  * This is simply the unlock routine to go with xfs_ilock_map_shared().
115  * All it does is call xfs_iunlock() with the given lock_mode.
116  */
117 void
118 xfs_iunlock_map_shared(
119 	xfs_inode_t	*ip,
120 	unsigned int	lock_mode)
121 {
122 	xfs_iunlock(ip, lock_mode);
123 }
124 
125 /*
126  * The xfs inode contains 2 locks: a multi-reader lock called the
127  * i_iolock and a multi-reader lock called the i_lock.  This routine
128  * allows either or both of the locks to be obtained.
129  *
130  * The 2 locks should always be ordered so that the IO lock is
131  * obtained first in order to prevent deadlock.
132  *
133  * ip -- the inode being locked
134  * lock_flags -- this parameter indicates the inode's locks
135  *       to be locked.  It can be:
136  *		XFS_IOLOCK_SHARED,
137  *		XFS_IOLOCK_EXCL,
138  *		XFS_ILOCK_SHARED,
139  *		XFS_ILOCK_EXCL,
140  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
141  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
142  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
143  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
144  */
145 void
146 xfs_ilock(
147 	xfs_inode_t		*ip,
148 	uint			lock_flags)
149 {
150 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
151 
152 	/*
153 	 * You can't set both SHARED and EXCL for the same lock,
154 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
155 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
156 	 */
157 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
158 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
159 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
160 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
161 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
162 
163 	if (lock_flags & XFS_IOLOCK_EXCL)
164 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165 	else if (lock_flags & XFS_IOLOCK_SHARED)
166 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
167 
168 	if (lock_flags & XFS_ILOCK_EXCL)
169 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170 	else if (lock_flags & XFS_ILOCK_SHARED)
171 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
172 }
173 
174 /*
175  * This is just like xfs_ilock(), except that the caller
176  * is guaranteed not to sleep.  It returns 1 if it gets
177  * the requested locks and 0 otherwise.  If the IO lock is
178  * obtained but the inode lock cannot be, then the IO lock
179  * is dropped before returning.
180  *
181  * ip -- the inode being locked
182  * lock_flags -- this parameter indicates the inode's locks to be
183  *       to be locked.  See the comment for xfs_ilock() for a list
184  *	 of valid values.
185  */
186 int
187 xfs_ilock_nowait(
188 	xfs_inode_t		*ip,
189 	uint			lock_flags)
190 {
191 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
192 
193 	/*
194 	 * You can't set both SHARED and EXCL for the same lock,
195 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
196 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
197 	 */
198 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
199 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
200 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
201 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
202 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
203 
204 	if (lock_flags & XFS_IOLOCK_EXCL) {
205 		if (!mrtryupdate(&ip->i_iolock))
206 			goto out;
207 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
208 		if (!mrtryaccess(&ip->i_iolock))
209 			goto out;
210 	}
211 	if (lock_flags & XFS_ILOCK_EXCL) {
212 		if (!mrtryupdate(&ip->i_lock))
213 			goto out_undo_iolock;
214 	} else if (lock_flags & XFS_ILOCK_SHARED) {
215 		if (!mrtryaccess(&ip->i_lock))
216 			goto out_undo_iolock;
217 	}
218 	return 1;
219 
220  out_undo_iolock:
221 	if (lock_flags & XFS_IOLOCK_EXCL)
222 		mrunlock_excl(&ip->i_iolock);
223 	else if (lock_flags & XFS_IOLOCK_SHARED)
224 		mrunlock_shared(&ip->i_iolock);
225  out:
226 	return 0;
227 }
228 
229 /*
230  * xfs_iunlock() is used to drop the inode locks acquired with
231  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
232  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233  * that we know which locks to drop.
234  *
235  * ip -- the inode being unlocked
236  * lock_flags -- this parameter indicates the inode's locks to be
237  *       to be unlocked.  See the comment for xfs_ilock() for a list
238  *	 of valid values for this parameter.
239  *
240  */
241 void
242 xfs_iunlock(
243 	xfs_inode_t		*ip,
244 	uint			lock_flags)
245 {
246 	/*
247 	 * You can't set both SHARED and EXCL for the same lock,
248 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
249 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
250 	 */
251 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
252 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
253 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
254 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
255 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
256 	ASSERT(lock_flags != 0);
257 
258 	if (lock_flags & XFS_IOLOCK_EXCL)
259 		mrunlock_excl(&ip->i_iolock);
260 	else if (lock_flags & XFS_IOLOCK_SHARED)
261 		mrunlock_shared(&ip->i_iolock);
262 
263 	if (lock_flags & XFS_ILOCK_EXCL)
264 		mrunlock_excl(&ip->i_lock);
265 	else if (lock_flags & XFS_ILOCK_SHARED)
266 		mrunlock_shared(&ip->i_lock);
267 
268 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
269 }
270 
271 /*
272  * give up write locks.  the i/o lock cannot be held nested
273  * if it is being demoted.
274  */
275 void
276 xfs_ilock_demote(
277 	xfs_inode_t		*ip,
278 	uint			lock_flags)
279 {
280 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
281 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
282 
283 	if (lock_flags & XFS_ILOCK_EXCL)
284 		mrdemote(&ip->i_lock);
285 	if (lock_flags & XFS_IOLOCK_EXCL)
286 		mrdemote(&ip->i_iolock);
287 
288 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
289 }
290 
291 #if defined(DEBUG) || defined(XFS_WARN)
292 int
293 xfs_isilocked(
294 	xfs_inode_t		*ip,
295 	uint			lock_flags)
296 {
297 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
298 		if (!(lock_flags & XFS_ILOCK_SHARED))
299 			return !!ip->i_lock.mr_writer;
300 		return rwsem_is_locked(&ip->i_lock.mr_lock);
301 	}
302 
303 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
304 		if (!(lock_flags & XFS_IOLOCK_SHARED))
305 			return !!ip->i_iolock.mr_writer;
306 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
307 	}
308 
309 	ASSERT(0);
310 	return 0;
311 }
312 #endif
313 
314 #ifdef DEBUG
315 int xfs_locked_n;
316 int xfs_small_retries;
317 int xfs_middle_retries;
318 int xfs_lots_retries;
319 int xfs_lock_delays;
320 #endif
321 
322 /*
323  * Bump the subclass so xfs_lock_inodes() acquires each lock with
324  * a different value
325  */
326 static inline int
327 xfs_lock_inumorder(int lock_mode, int subclass)
328 {
329 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
330 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
331 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
332 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
333 
334 	return lock_mode;
335 }
336 
337 /*
338  * The following routine will lock n inodes in exclusive mode.
339  * We assume the caller calls us with the inodes in i_ino order.
340  *
341  * We need to detect deadlock where an inode that we lock
342  * is in the AIL and we start waiting for another inode that is locked
343  * by a thread in a long running transaction (such as truncate). This can
344  * result in deadlock since the long running trans might need to wait
345  * for the inode we just locked in order to push the tail and free space
346  * in the log.
347  */
348 void
349 xfs_lock_inodes(
350 	xfs_inode_t	**ips,
351 	int		inodes,
352 	uint		lock_mode)
353 {
354 	int		attempts = 0, i, j, try_lock;
355 	xfs_log_item_t	*lp;
356 
357 	ASSERT(ips && (inodes >= 2)); /* we need at least two */
358 
359 	try_lock = 0;
360 	i = 0;
361 
362 again:
363 	for (; i < inodes; i++) {
364 		ASSERT(ips[i]);
365 
366 		if (i && (ips[i] == ips[i-1]))	/* Already locked */
367 			continue;
368 
369 		/*
370 		 * If try_lock is not set yet, make sure all locked inodes
371 		 * are not in the AIL.
372 		 * If any are, set try_lock to be used later.
373 		 */
374 
375 		if (!try_lock) {
376 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
377 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
378 				if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
379 					try_lock++;
380 				}
381 			}
382 		}
383 
384 		/*
385 		 * If any of the previous locks we have locked is in the AIL,
386 		 * we must TRY to get the second and subsequent locks. If
387 		 * we can't get any, we must release all we have
388 		 * and try again.
389 		 */
390 
391 		if (try_lock) {
392 			/* try_lock must be 0 if i is 0. */
393 			/*
394 			 * try_lock means we have an inode locked
395 			 * that is in the AIL.
396 			 */
397 			ASSERT(i != 0);
398 			if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
399 				attempts++;
400 
401 				/*
402 				 * Unlock all previous guys and try again.
403 				 * xfs_iunlock will try to push the tail
404 				 * if the inode is in the AIL.
405 				 */
406 
407 				for(j = i - 1; j >= 0; j--) {
408 
409 					/*
410 					 * Check to see if we've already
411 					 * unlocked this one.
412 					 * Not the first one going back,
413 					 * and the inode ptr is the same.
414 					 */
415 					if ((j != (i - 1)) && ips[j] ==
416 								ips[j+1])
417 						continue;
418 
419 					xfs_iunlock(ips[j], lock_mode);
420 				}
421 
422 				if ((attempts % 5) == 0) {
423 					delay(1); /* Don't just spin the CPU */
424 #ifdef DEBUG
425 					xfs_lock_delays++;
426 #endif
427 				}
428 				i = 0;
429 				try_lock = 0;
430 				goto again;
431 			}
432 		} else {
433 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
434 		}
435 	}
436 
437 #ifdef DEBUG
438 	if (attempts) {
439 		if (attempts < 5) xfs_small_retries++;
440 		else if (attempts < 100) xfs_middle_retries++;
441 		else xfs_lots_retries++;
442 	} else {
443 		xfs_locked_n++;
444 	}
445 #endif
446 }
447 
448 /*
449  * xfs_lock_two_inodes() can only be used to lock one type of lock
450  * at a time - the iolock or the ilock, but not both at once. If
451  * we lock both at once, lockdep will report false positives saying
452  * we have violated locking orders.
453  */
454 void
455 xfs_lock_two_inodes(
456 	xfs_inode_t		*ip0,
457 	xfs_inode_t		*ip1,
458 	uint			lock_mode)
459 {
460 	xfs_inode_t		*temp;
461 	int			attempts = 0;
462 	xfs_log_item_t		*lp;
463 
464 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
465 		ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
466 	ASSERT(ip0->i_ino != ip1->i_ino);
467 
468 	if (ip0->i_ino > ip1->i_ino) {
469 		temp = ip0;
470 		ip0 = ip1;
471 		ip1 = temp;
472 	}
473 
474  again:
475 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
476 
477 	/*
478 	 * If the first lock we have locked is in the AIL, we must TRY to get
479 	 * the second lock. If we can't get it, we must release the first one
480 	 * and try again.
481 	 */
482 	lp = (xfs_log_item_t *)ip0->i_itemp;
483 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
484 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
485 			xfs_iunlock(ip0, lock_mode);
486 			if ((++attempts % 5) == 0)
487 				delay(1); /* Don't just spin the CPU */
488 			goto again;
489 		}
490 	} else {
491 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
492 	}
493 }
494 
495 
496 void
497 __xfs_iflock(
498 	struct xfs_inode	*ip)
499 {
500 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
501 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
502 
503 	do {
504 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
505 		if (xfs_isiflocked(ip))
506 			io_schedule();
507 	} while (!xfs_iflock_nowait(ip));
508 
509 	finish_wait(wq, &wait.wait);
510 }
511 
512 STATIC uint
513 _xfs_dic2xflags(
514 	__uint16_t		di_flags)
515 {
516 	uint			flags = 0;
517 
518 	if (di_flags & XFS_DIFLAG_ANY) {
519 		if (di_flags & XFS_DIFLAG_REALTIME)
520 			flags |= XFS_XFLAG_REALTIME;
521 		if (di_flags & XFS_DIFLAG_PREALLOC)
522 			flags |= XFS_XFLAG_PREALLOC;
523 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
524 			flags |= XFS_XFLAG_IMMUTABLE;
525 		if (di_flags & XFS_DIFLAG_APPEND)
526 			flags |= XFS_XFLAG_APPEND;
527 		if (di_flags & XFS_DIFLAG_SYNC)
528 			flags |= XFS_XFLAG_SYNC;
529 		if (di_flags & XFS_DIFLAG_NOATIME)
530 			flags |= XFS_XFLAG_NOATIME;
531 		if (di_flags & XFS_DIFLAG_NODUMP)
532 			flags |= XFS_XFLAG_NODUMP;
533 		if (di_flags & XFS_DIFLAG_RTINHERIT)
534 			flags |= XFS_XFLAG_RTINHERIT;
535 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
536 			flags |= XFS_XFLAG_PROJINHERIT;
537 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
538 			flags |= XFS_XFLAG_NOSYMLINKS;
539 		if (di_flags & XFS_DIFLAG_EXTSIZE)
540 			flags |= XFS_XFLAG_EXTSIZE;
541 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
542 			flags |= XFS_XFLAG_EXTSZINHERIT;
543 		if (di_flags & XFS_DIFLAG_NODEFRAG)
544 			flags |= XFS_XFLAG_NODEFRAG;
545 		if (di_flags & XFS_DIFLAG_FILESTREAM)
546 			flags |= XFS_XFLAG_FILESTREAM;
547 	}
548 
549 	return flags;
550 }
551 
552 uint
553 xfs_ip2xflags(
554 	xfs_inode_t		*ip)
555 {
556 	xfs_icdinode_t		*dic = &ip->i_d;
557 
558 	return _xfs_dic2xflags(dic->di_flags) |
559 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
560 }
561 
562 uint
563 xfs_dic2xflags(
564 	xfs_dinode_t		*dip)
565 {
566 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
567 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
568 }
569 
570 /*
571  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
572  * is allowed, otherwise it has to be an exact match. If a CI match is found,
573  * ci_name->name will point to a the actual name (caller must free) or
574  * will be set to NULL if an exact match is found.
575  */
576 int
577 xfs_lookup(
578 	xfs_inode_t		*dp,
579 	struct xfs_name		*name,
580 	xfs_inode_t		**ipp,
581 	struct xfs_name		*ci_name)
582 {
583 	xfs_ino_t		inum;
584 	int			error;
585 	uint			lock_mode;
586 
587 	trace_xfs_lookup(dp, name);
588 
589 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
590 		return XFS_ERROR(EIO);
591 
592 	lock_mode = xfs_ilock_map_shared(dp);
593 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
594 	xfs_iunlock_map_shared(dp, lock_mode);
595 
596 	if (error)
597 		goto out;
598 
599 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
600 	if (error)
601 		goto out_free_name;
602 
603 	return 0;
604 
605 out_free_name:
606 	if (ci_name)
607 		kmem_free(ci_name->name);
608 out:
609 	*ipp = NULL;
610 	return error;
611 }
612 
613 /*
614  * Allocate an inode on disk and return a copy of its in-core version.
615  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
616  * appropriately within the inode.  The uid and gid for the inode are
617  * set according to the contents of the given cred structure.
618  *
619  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
620  * has a free inode available, call xfs_iget() to obtain the in-core
621  * version of the allocated inode.  Finally, fill in the inode and
622  * log its initial contents.  In this case, ialloc_context would be
623  * set to NULL.
624  *
625  * If xfs_dialloc() does not have an available inode, it will replenish
626  * its supply by doing an allocation. Since we can only do one
627  * allocation within a transaction without deadlocks, we must commit
628  * the current transaction before returning the inode itself.
629  * In this case, therefore, we will set ialloc_context and return.
630  * The caller should then commit the current transaction, start a new
631  * transaction, and call xfs_ialloc() again to actually get the inode.
632  *
633  * To ensure that some other process does not grab the inode that
634  * was allocated during the first call to xfs_ialloc(), this routine
635  * also returns the [locked] bp pointing to the head of the freelist
636  * as ialloc_context.  The caller should hold this buffer across
637  * the commit and pass it back into this routine on the second call.
638  *
639  * If we are allocating quota inodes, we do not have a parent inode
640  * to attach to or associate with (i.e. pip == NULL) because they
641  * are not linked into the directory structure - they are attached
642  * directly to the superblock - and so have no parent.
643  */
644 int
645 xfs_ialloc(
646 	xfs_trans_t	*tp,
647 	xfs_inode_t	*pip,
648 	umode_t		mode,
649 	xfs_nlink_t	nlink,
650 	xfs_dev_t	rdev,
651 	prid_t		prid,
652 	int		okalloc,
653 	xfs_buf_t	**ialloc_context,
654 	xfs_inode_t	**ipp)
655 {
656 	struct xfs_mount *mp = tp->t_mountp;
657 	xfs_ino_t	ino;
658 	xfs_inode_t	*ip;
659 	uint		flags;
660 	int		error;
661 	timespec_t	tv;
662 	int		filestreams = 0;
663 
664 	/*
665 	 * Call the space management code to pick
666 	 * the on-disk inode to be allocated.
667 	 */
668 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
669 			    ialloc_context, &ino);
670 	if (error)
671 		return error;
672 	if (*ialloc_context || ino == NULLFSINO) {
673 		*ipp = NULL;
674 		return 0;
675 	}
676 	ASSERT(*ialloc_context == NULL);
677 
678 	/*
679 	 * Get the in-core inode with the lock held exclusively.
680 	 * This is because we're setting fields here we need
681 	 * to prevent others from looking at until we're done.
682 	 */
683 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
684 			 XFS_ILOCK_EXCL, &ip);
685 	if (error)
686 		return error;
687 	ASSERT(ip != NULL);
688 
689 	ip->i_d.di_mode = mode;
690 	ip->i_d.di_onlink = 0;
691 	ip->i_d.di_nlink = nlink;
692 	ASSERT(ip->i_d.di_nlink == nlink);
693 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
694 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
695 	xfs_set_projid(ip, prid);
696 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
697 
698 	/*
699 	 * If the superblock version is up to where we support new format
700 	 * inodes and this is currently an old format inode, then change
701 	 * the inode version number now.  This way we only do the conversion
702 	 * here rather than here and in the flush/logging code.
703 	 */
704 	if (xfs_sb_version_hasnlink(&mp->m_sb) &&
705 	    ip->i_d.di_version == 1) {
706 		ip->i_d.di_version = 2;
707 		/*
708 		 * We've already zeroed the old link count, the projid field,
709 		 * and the pad field.
710 		 */
711 	}
712 
713 	/*
714 	 * Project ids won't be stored on disk if we are using a version 1 inode.
715 	 */
716 	if ((prid != 0) && (ip->i_d.di_version == 1))
717 		xfs_bump_ino_vers2(tp, ip);
718 
719 	if (pip && XFS_INHERIT_GID(pip)) {
720 		ip->i_d.di_gid = pip->i_d.di_gid;
721 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
722 			ip->i_d.di_mode |= S_ISGID;
723 		}
724 	}
725 
726 	/*
727 	 * If the group ID of the new file does not match the effective group
728 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
729 	 * (and only if the irix_sgid_inherit compatibility variable is set).
730 	 */
731 	if ((irix_sgid_inherit) &&
732 	    (ip->i_d.di_mode & S_ISGID) &&
733 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
734 		ip->i_d.di_mode &= ~S_ISGID;
735 	}
736 
737 	ip->i_d.di_size = 0;
738 	ip->i_d.di_nextents = 0;
739 	ASSERT(ip->i_d.di_nblocks == 0);
740 
741 	nanotime(&tv);
742 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
743 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
744 	ip->i_d.di_atime = ip->i_d.di_mtime;
745 	ip->i_d.di_ctime = ip->i_d.di_mtime;
746 
747 	/*
748 	 * di_gen will have been taken care of in xfs_iread.
749 	 */
750 	ip->i_d.di_extsize = 0;
751 	ip->i_d.di_dmevmask = 0;
752 	ip->i_d.di_dmstate = 0;
753 	ip->i_d.di_flags = 0;
754 
755 	if (ip->i_d.di_version == 3) {
756 		ASSERT(ip->i_d.di_ino == ino);
757 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
758 		ip->i_d.di_crc = 0;
759 		ip->i_d.di_changecount = 1;
760 		ip->i_d.di_lsn = 0;
761 		ip->i_d.di_flags2 = 0;
762 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
763 		ip->i_d.di_crtime = ip->i_d.di_mtime;
764 	}
765 
766 
767 	flags = XFS_ILOG_CORE;
768 	switch (mode & S_IFMT) {
769 	case S_IFIFO:
770 	case S_IFCHR:
771 	case S_IFBLK:
772 	case S_IFSOCK:
773 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
774 		ip->i_df.if_u2.if_rdev = rdev;
775 		ip->i_df.if_flags = 0;
776 		flags |= XFS_ILOG_DEV;
777 		break;
778 	case S_IFREG:
779 		/*
780 		 * we can't set up filestreams until after the VFS inode
781 		 * is set up properly.
782 		 */
783 		if (pip && xfs_inode_is_filestream(pip))
784 			filestreams = 1;
785 		/* fall through */
786 	case S_IFDIR:
787 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
788 			uint	di_flags = 0;
789 
790 			if (S_ISDIR(mode)) {
791 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
792 					di_flags |= XFS_DIFLAG_RTINHERIT;
793 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
794 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
795 					ip->i_d.di_extsize = pip->i_d.di_extsize;
796 				}
797 			} else if (S_ISREG(mode)) {
798 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
799 					di_flags |= XFS_DIFLAG_REALTIME;
800 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
801 					di_flags |= XFS_DIFLAG_EXTSIZE;
802 					ip->i_d.di_extsize = pip->i_d.di_extsize;
803 				}
804 			}
805 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
806 			    xfs_inherit_noatime)
807 				di_flags |= XFS_DIFLAG_NOATIME;
808 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
809 			    xfs_inherit_nodump)
810 				di_flags |= XFS_DIFLAG_NODUMP;
811 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
812 			    xfs_inherit_sync)
813 				di_flags |= XFS_DIFLAG_SYNC;
814 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
815 			    xfs_inherit_nosymlinks)
816 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
817 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
818 				di_flags |= XFS_DIFLAG_PROJINHERIT;
819 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
820 			    xfs_inherit_nodefrag)
821 				di_flags |= XFS_DIFLAG_NODEFRAG;
822 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
823 				di_flags |= XFS_DIFLAG_FILESTREAM;
824 			ip->i_d.di_flags |= di_flags;
825 		}
826 		/* FALLTHROUGH */
827 	case S_IFLNK:
828 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
829 		ip->i_df.if_flags = XFS_IFEXTENTS;
830 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
831 		ip->i_df.if_u1.if_extents = NULL;
832 		break;
833 	default:
834 		ASSERT(0);
835 	}
836 	/*
837 	 * Attribute fork settings for new inode.
838 	 */
839 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
840 	ip->i_d.di_anextents = 0;
841 
842 	/*
843 	 * Log the new values stuffed into the inode.
844 	 */
845 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
846 	xfs_trans_log_inode(tp, ip, flags);
847 
848 	/* now that we have an i_mode we can setup inode ops and unlock */
849 	xfs_setup_inode(ip);
850 
851 	/* now we have set up the vfs inode we can associate the filestream */
852 	if (filestreams) {
853 		error = xfs_filestream_associate(pip, ip);
854 		if (error < 0)
855 			return -error;
856 		if (!error)
857 			xfs_iflags_set(ip, XFS_IFILESTREAM);
858 	}
859 
860 	*ipp = ip;
861 	return 0;
862 }
863 
864 /*
865  * Allocates a new inode from disk and return a pointer to the
866  * incore copy. This routine will internally commit the current
867  * transaction and allocate a new one if the Space Manager needed
868  * to do an allocation to replenish the inode free-list.
869  *
870  * This routine is designed to be called from xfs_create and
871  * xfs_create_dir.
872  *
873  */
874 int
875 xfs_dir_ialloc(
876 	xfs_trans_t	**tpp,		/* input: current transaction;
877 					   output: may be a new transaction. */
878 	xfs_inode_t	*dp,		/* directory within whose allocate
879 					   the inode. */
880 	umode_t		mode,
881 	xfs_nlink_t	nlink,
882 	xfs_dev_t	rdev,
883 	prid_t		prid,		/* project id */
884 	int		okalloc,	/* ok to allocate new space */
885 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
886 					   locked. */
887 	int		*committed)
888 
889 {
890 	xfs_trans_t	*tp;
891 	xfs_trans_t	*ntp;
892 	xfs_inode_t	*ip;
893 	xfs_buf_t	*ialloc_context = NULL;
894 	int		code;
895 	void		*dqinfo;
896 	uint		tflags;
897 
898 	tp = *tpp;
899 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
900 
901 	/*
902 	 * xfs_ialloc will return a pointer to an incore inode if
903 	 * the Space Manager has an available inode on the free
904 	 * list. Otherwise, it will do an allocation and replenish
905 	 * the freelist.  Since we can only do one allocation per
906 	 * transaction without deadlocks, we will need to commit the
907 	 * current transaction and start a new one.  We will then
908 	 * need to call xfs_ialloc again to get the inode.
909 	 *
910 	 * If xfs_ialloc did an allocation to replenish the freelist,
911 	 * it returns the bp containing the head of the freelist as
912 	 * ialloc_context. We will hold a lock on it across the
913 	 * transaction commit so that no other process can steal
914 	 * the inode(s) that we've just allocated.
915 	 */
916 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
917 			  &ialloc_context, &ip);
918 
919 	/*
920 	 * Return an error if we were unable to allocate a new inode.
921 	 * This should only happen if we run out of space on disk or
922 	 * encounter a disk error.
923 	 */
924 	if (code) {
925 		*ipp = NULL;
926 		return code;
927 	}
928 	if (!ialloc_context && !ip) {
929 		*ipp = NULL;
930 		return XFS_ERROR(ENOSPC);
931 	}
932 
933 	/*
934 	 * If the AGI buffer is non-NULL, then we were unable to get an
935 	 * inode in one operation.  We need to commit the current
936 	 * transaction and call xfs_ialloc() again.  It is guaranteed
937 	 * to succeed the second time.
938 	 */
939 	if (ialloc_context) {
940 		struct xfs_trans_res tres;
941 
942 		/*
943 		 * Normally, xfs_trans_commit releases all the locks.
944 		 * We call bhold to hang on to the ialloc_context across
945 		 * the commit.  Holding this buffer prevents any other
946 		 * processes from doing any allocations in this
947 		 * allocation group.
948 		 */
949 		xfs_trans_bhold(tp, ialloc_context);
950 		/*
951 		 * Save the log reservation so we can use
952 		 * them in the next transaction.
953 		 */
954 		tres.tr_logres = xfs_trans_get_log_res(tp);
955 		tres.tr_logcount = xfs_trans_get_log_count(tp);
956 
957 		/*
958 		 * We want the quota changes to be associated with the next
959 		 * transaction, NOT this one. So, detach the dqinfo from this
960 		 * and attach it to the next transaction.
961 		 */
962 		dqinfo = NULL;
963 		tflags = 0;
964 		if (tp->t_dqinfo) {
965 			dqinfo = (void *)tp->t_dqinfo;
966 			tp->t_dqinfo = NULL;
967 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
968 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
969 		}
970 
971 		ntp = xfs_trans_dup(tp);
972 		code = xfs_trans_commit(tp, 0);
973 		tp = ntp;
974 		if (committed != NULL) {
975 			*committed = 1;
976 		}
977 		/*
978 		 * If we get an error during the commit processing,
979 		 * release the buffer that is still held and return
980 		 * to the caller.
981 		 */
982 		if (code) {
983 			xfs_buf_relse(ialloc_context);
984 			if (dqinfo) {
985 				tp->t_dqinfo = dqinfo;
986 				xfs_trans_free_dqinfo(tp);
987 			}
988 			*tpp = ntp;
989 			*ipp = NULL;
990 			return code;
991 		}
992 
993 		/*
994 		 * transaction commit worked ok so we can drop the extra ticket
995 		 * reference that we gained in xfs_trans_dup()
996 		 */
997 		xfs_log_ticket_put(tp->t_ticket);
998 		tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
999 		code = xfs_trans_reserve(tp, &tres, 0, 0);
1000 
1001 		/*
1002 		 * Re-attach the quota info that we detached from prev trx.
1003 		 */
1004 		if (dqinfo) {
1005 			tp->t_dqinfo = dqinfo;
1006 			tp->t_flags |= tflags;
1007 		}
1008 
1009 		if (code) {
1010 			xfs_buf_relse(ialloc_context);
1011 			*tpp = ntp;
1012 			*ipp = NULL;
1013 			return code;
1014 		}
1015 		xfs_trans_bjoin(tp, ialloc_context);
1016 
1017 		/*
1018 		 * Call ialloc again. Since we've locked out all
1019 		 * other allocations in this allocation group,
1020 		 * this call should always succeed.
1021 		 */
1022 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1023 				  okalloc, &ialloc_context, &ip);
1024 
1025 		/*
1026 		 * If we get an error at this point, return to the caller
1027 		 * so that the current transaction can be aborted.
1028 		 */
1029 		if (code) {
1030 			*tpp = tp;
1031 			*ipp = NULL;
1032 			return code;
1033 		}
1034 		ASSERT(!ialloc_context && ip);
1035 
1036 	} else {
1037 		if (committed != NULL)
1038 			*committed = 0;
1039 	}
1040 
1041 	*ipp = ip;
1042 	*tpp = tp;
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Decrement the link count on an inode & log the change.
1049  * If this causes the link count to go to zero, initiate the
1050  * logging activity required to truncate a file.
1051  */
1052 int				/* error */
1053 xfs_droplink(
1054 	xfs_trans_t *tp,
1055 	xfs_inode_t *ip)
1056 {
1057 	int	error;
1058 
1059 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1060 
1061 	ASSERT (ip->i_d.di_nlink > 0);
1062 	ip->i_d.di_nlink--;
1063 	drop_nlink(VFS_I(ip));
1064 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1065 
1066 	error = 0;
1067 	if (ip->i_d.di_nlink == 0) {
1068 		/*
1069 		 * We're dropping the last link to this file.
1070 		 * Move the on-disk inode to the AGI unlinked list.
1071 		 * From xfs_inactive() we will pull the inode from
1072 		 * the list and free it.
1073 		 */
1074 		error = xfs_iunlink(tp, ip);
1075 	}
1076 	return error;
1077 }
1078 
1079 /*
1080  * This gets called when the inode's version needs to be changed from 1 to 2.
1081  * Currently this happens when the nlink field overflows the old 16-bit value
1082  * or when chproj is called to change the project for the first time.
1083  * As a side effect the superblock version will also get rev'd
1084  * to contain the NLINK bit.
1085  */
1086 void
1087 xfs_bump_ino_vers2(
1088 	xfs_trans_t	*tp,
1089 	xfs_inode_t	*ip)
1090 {
1091 	xfs_mount_t	*mp;
1092 
1093 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1094 	ASSERT(ip->i_d.di_version == 1);
1095 
1096 	ip->i_d.di_version = 2;
1097 	ip->i_d.di_onlink = 0;
1098 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1099 	mp = tp->t_mountp;
1100 	if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1101 		spin_lock(&mp->m_sb_lock);
1102 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1103 			xfs_sb_version_addnlink(&mp->m_sb);
1104 			spin_unlock(&mp->m_sb_lock);
1105 			xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1106 		} else {
1107 			spin_unlock(&mp->m_sb_lock);
1108 		}
1109 	}
1110 	/* Caller must log the inode */
1111 }
1112 
1113 /*
1114  * Increment the link count on an inode & log the change.
1115  */
1116 int
1117 xfs_bumplink(
1118 	xfs_trans_t *tp,
1119 	xfs_inode_t *ip)
1120 {
1121 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1122 
1123 	ASSERT(ip->i_d.di_nlink > 0);
1124 	ip->i_d.di_nlink++;
1125 	inc_nlink(VFS_I(ip));
1126 	if ((ip->i_d.di_version == 1) &&
1127 	    (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1128 		/*
1129 		 * The inode has increased its number of links beyond
1130 		 * what can fit in an old format inode.  It now needs
1131 		 * to be converted to a version 2 inode with a 32 bit
1132 		 * link count.  If this is the first inode in the file
1133 		 * system to do this, then we need to bump the superblock
1134 		 * version number as well.
1135 		 */
1136 		xfs_bump_ino_vers2(tp, ip);
1137 	}
1138 
1139 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140 	return 0;
1141 }
1142 
1143 int
1144 xfs_create(
1145 	xfs_inode_t		*dp,
1146 	struct xfs_name		*name,
1147 	umode_t			mode,
1148 	xfs_dev_t		rdev,
1149 	xfs_inode_t		**ipp)
1150 {
1151 	int			is_dir = S_ISDIR(mode);
1152 	struct xfs_mount	*mp = dp->i_mount;
1153 	struct xfs_inode	*ip = NULL;
1154 	struct xfs_trans	*tp = NULL;
1155 	int			error;
1156 	xfs_bmap_free_t		free_list;
1157 	xfs_fsblock_t		first_block;
1158 	bool                    unlock_dp_on_error = false;
1159 	uint			cancel_flags;
1160 	int			committed;
1161 	prid_t			prid;
1162 	struct xfs_dquot	*udqp = NULL;
1163 	struct xfs_dquot	*gdqp = NULL;
1164 	struct xfs_dquot	*pdqp = NULL;
1165 	struct xfs_trans_res	tres;
1166 	uint			resblks;
1167 
1168 	trace_xfs_create(dp, name);
1169 
1170 	if (XFS_FORCED_SHUTDOWN(mp))
1171 		return XFS_ERROR(EIO);
1172 
1173 	if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1174 		prid = xfs_get_projid(dp);
1175 	else
1176 		prid = XFS_PROJID_DEFAULT;
1177 
1178 	/*
1179 	 * Make sure that we have allocated dquot(s) on disk.
1180 	 */
1181 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1182 					xfs_kgid_to_gid(current_fsgid()), prid,
1183 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1184 					&udqp, &gdqp, &pdqp);
1185 	if (error)
1186 		return error;
1187 
1188 	if (is_dir) {
1189 		rdev = 0;
1190 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1191 		tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1192 		tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1193 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1194 	} else {
1195 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1196 		tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1197 		tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1198 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1199 	}
1200 
1201 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1202 
1203 	/*
1204 	 * Initially assume that the file does not exist and
1205 	 * reserve the resources for that case.  If that is not
1206 	 * the case we'll drop the one we have and get a more
1207 	 * appropriate transaction later.
1208 	 */
1209 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1210 	error = xfs_trans_reserve(tp, &tres, resblks, 0);
1211 	if (error == ENOSPC) {
1212 		/* flush outstanding delalloc blocks and retry */
1213 		xfs_flush_inodes(mp);
1214 		error = xfs_trans_reserve(tp, &tres, resblks, 0);
1215 	}
1216 	if (error == ENOSPC) {
1217 		/* No space at all so try a "no-allocation" reservation */
1218 		resblks = 0;
1219 		error = xfs_trans_reserve(tp, &tres, 0, 0);
1220 	}
1221 	if (error) {
1222 		cancel_flags = 0;
1223 		goto out_trans_cancel;
1224 	}
1225 
1226 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1227 	unlock_dp_on_error = true;
1228 
1229 	xfs_bmap_init(&free_list, &first_block);
1230 
1231 	/*
1232 	 * Reserve disk quota and the inode.
1233 	 */
1234 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1235 						pdqp, resblks, 1, 0);
1236 	if (error)
1237 		goto out_trans_cancel;
1238 
1239 	error = xfs_dir_canenter(tp, dp, name, resblks);
1240 	if (error)
1241 		goto out_trans_cancel;
1242 
1243 	/*
1244 	 * A newly created regular or special file just has one directory
1245 	 * entry pointing to them, but a directory also the "." entry
1246 	 * pointing to itself.
1247 	 */
1248 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1249 			       prid, resblks > 0, &ip, &committed);
1250 	if (error) {
1251 		if (error == ENOSPC)
1252 			goto out_trans_cancel;
1253 		goto out_trans_abort;
1254 	}
1255 
1256 	/*
1257 	 * Now we join the directory inode to the transaction.  We do not do it
1258 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1259 	 * (and release all the locks).  An error from here on will result in
1260 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1261 	 * error path.
1262 	 */
1263 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1264 	unlock_dp_on_error = false;
1265 
1266 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1267 					&first_block, &free_list, resblks ?
1268 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1269 	if (error) {
1270 		ASSERT(error != ENOSPC);
1271 		goto out_trans_abort;
1272 	}
1273 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1274 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1275 
1276 	if (is_dir) {
1277 		error = xfs_dir_init(tp, ip, dp);
1278 		if (error)
1279 			goto out_bmap_cancel;
1280 
1281 		error = xfs_bumplink(tp, dp);
1282 		if (error)
1283 			goto out_bmap_cancel;
1284 	}
1285 
1286 	/*
1287 	 * If this is a synchronous mount, make sure that the
1288 	 * create transaction goes to disk before returning to
1289 	 * the user.
1290 	 */
1291 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1292 		xfs_trans_set_sync(tp);
1293 
1294 	/*
1295 	 * Attach the dquot(s) to the inodes and modify them incore.
1296 	 * These ids of the inode couldn't have changed since the new
1297 	 * inode has been locked ever since it was created.
1298 	 */
1299 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1300 
1301 	error = xfs_bmap_finish(&tp, &free_list, &committed);
1302 	if (error)
1303 		goto out_bmap_cancel;
1304 
1305 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1306 	if (error)
1307 		goto out_release_inode;
1308 
1309 	xfs_qm_dqrele(udqp);
1310 	xfs_qm_dqrele(gdqp);
1311 	xfs_qm_dqrele(pdqp);
1312 
1313 	*ipp = ip;
1314 	return 0;
1315 
1316  out_bmap_cancel:
1317 	xfs_bmap_cancel(&free_list);
1318  out_trans_abort:
1319 	cancel_flags |= XFS_TRANS_ABORT;
1320  out_trans_cancel:
1321 	xfs_trans_cancel(tp, cancel_flags);
1322  out_release_inode:
1323 	/*
1324 	 * Wait until after the current transaction is aborted to
1325 	 * release the inode.  This prevents recursive transactions
1326 	 * and deadlocks from xfs_inactive.
1327 	 */
1328 	if (ip)
1329 		IRELE(ip);
1330 
1331 	xfs_qm_dqrele(udqp);
1332 	xfs_qm_dqrele(gdqp);
1333 	xfs_qm_dqrele(pdqp);
1334 
1335 	if (unlock_dp_on_error)
1336 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1337 	return error;
1338 }
1339 
1340 int
1341 xfs_link(
1342 	xfs_inode_t		*tdp,
1343 	xfs_inode_t		*sip,
1344 	struct xfs_name		*target_name)
1345 {
1346 	xfs_mount_t		*mp = tdp->i_mount;
1347 	xfs_trans_t		*tp;
1348 	int			error;
1349 	xfs_bmap_free_t         free_list;
1350 	xfs_fsblock_t           first_block;
1351 	int			cancel_flags;
1352 	int			committed;
1353 	int			resblks;
1354 
1355 	trace_xfs_link(tdp, target_name);
1356 
1357 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1358 
1359 	if (XFS_FORCED_SHUTDOWN(mp))
1360 		return XFS_ERROR(EIO);
1361 
1362 	error = xfs_qm_dqattach(sip, 0);
1363 	if (error)
1364 		goto std_return;
1365 
1366 	error = xfs_qm_dqattach(tdp, 0);
1367 	if (error)
1368 		goto std_return;
1369 
1370 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1371 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1372 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1373 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1374 	if (error == ENOSPC) {
1375 		resblks = 0;
1376 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1377 	}
1378 	if (error) {
1379 		cancel_flags = 0;
1380 		goto error_return;
1381 	}
1382 
1383 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1384 
1385 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1386 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1387 
1388 	/*
1389 	 * If we are using project inheritance, we only allow hard link
1390 	 * creation in our tree when the project IDs are the same; else
1391 	 * the tree quota mechanism could be circumvented.
1392 	 */
1393 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1394 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1395 		error = XFS_ERROR(EXDEV);
1396 		goto error_return;
1397 	}
1398 
1399 	error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1400 	if (error)
1401 		goto error_return;
1402 
1403 	xfs_bmap_init(&free_list, &first_block);
1404 
1405 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1406 					&first_block, &free_list, resblks);
1407 	if (error)
1408 		goto abort_return;
1409 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1410 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1411 
1412 	error = xfs_bumplink(tp, sip);
1413 	if (error)
1414 		goto abort_return;
1415 
1416 	/*
1417 	 * If this is a synchronous mount, make sure that the
1418 	 * link transaction goes to disk before returning to
1419 	 * the user.
1420 	 */
1421 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1422 		xfs_trans_set_sync(tp);
1423 	}
1424 
1425 	error = xfs_bmap_finish (&tp, &free_list, &committed);
1426 	if (error) {
1427 		xfs_bmap_cancel(&free_list);
1428 		goto abort_return;
1429 	}
1430 
1431 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1432 
1433  abort_return:
1434 	cancel_flags |= XFS_TRANS_ABORT;
1435  error_return:
1436 	xfs_trans_cancel(tp, cancel_flags);
1437  std_return:
1438 	return error;
1439 }
1440 
1441 /*
1442  * Free up the underlying blocks past new_size.  The new size must be smaller
1443  * than the current size.  This routine can be used both for the attribute and
1444  * data fork, and does not modify the inode size, which is left to the caller.
1445  *
1446  * The transaction passed to this routine must have made a permanent log
1447  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1448  * given transaction and start new ones, so make sure everything involved in
1449  * the transaction is tidy before calling here.  Some transaction will be
1450  * returned to the caller to be committed.  The incoming transaction must
1451  * already include the inode, and both inode locks must be held exclusively.
1452  * The inode must also be "held" within the transaction.  On return the inode
1453  * will be "held" within the returned transaction.  This routine does NOT
1454  * require any disk space to be reserved for it within the transaction.
1455  *
1456  * If we get an error, we must return with the inode locked and linked into the
1457  * current transaction. This keeps things simple for the higher level code,
1458  * because it always knows that the inode is locked and held in the transaction
1459  * that returns to it whether errors occur or not.  We don't mark the inode
1460  * dirty on error so that transactions can be easily aborted if possible.
1461  */
1462 int
1463 xfs_itruncate_extents(
1464 	struct xfs_trans	**tpp,
1465 	struct xfs_inode	*ip,
1466 	int			whichfork,
1467 	xfs_fsize_t		new_size)
1468 {
1469 	struct xfs_mount	*mp = ip->i_mount;
1470 	struct xfs_trans	*tp = *tpp;
1471 	struct xfs_trans	*ntp;
1472 	xfs_bmap_free_t		free_list;
1473 	xfs_fsblock_t		first_block;
1474 	xfs_fileoff_t		first_unmap_block;
1475 	xfs_fileoff_t		last_block;
1476 	xfs_filblks_t		unmap_len;
1477 	int			committed;
1478 	int			error = 0;
1479 	int			done = 0;
1480 
1481 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1482 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1483 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1484 	ASSERT(new_size <= XFS_ISIZE(ip));
1485 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486 	ASSERT(ip->i_itemp != NULL);
1487 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1488 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1489 
1490 	trace_xfs_itruncate_extents_start(ip, new_size);
1491 
1492 	/*
1493 	 * Since it is possible for space to become allocated beyond
1494 	 * the end of the file (in a crash where the space is allocated
1495 	 * but the inode size is not yet updated), simply remove any
1496 	 * blocks which show up between the new EOF and the maximum
1497 	 * possible file size.  If the first block to be removed is
1498 	 * beyond the maximum file size (ie it is the same as last_block),
1499 	 * then there is nothing to do.
1500 	 */
1501 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1502 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1503 	if (first_unmap_block == last_block)
1504 		return 0;
1505 
1506 	ASSERT(first_unmap_block < last_block);
1507 	unmap_len = last_block - first_unmap_block + 1;
1508 	while (!done) {
1509 		xfs_bmap_init(&free_list, &first_block);
1510 		error = xfs_bunmapi(tp, ip,
1511 				    first_unmap_block, unmap_len,
1512 				    xfs_bmapi_aflag(whichfork),
1513 				    XFS_ITRUNC_MAX_EXTENTS,
1514 				    &first_block, &free_list,
1515 				    &done);
1516 		if (error)
1517 			goto out_bmap_cancel;
1518 
1519 		/*
1520 		 * Duplicate the transaction that has the permanent
1521 		 * reservation and commit the old transaction.
1522 		 */
1523 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1524 		if (committed)
1525 			xfs_trans_ijoin(tp, ip, 0);
1526 		if (error)
1527 			goto out_bmap_cancel;
1528 
1529 		if (committed) {
1530 			/*
1531 			 * Mark the inode dirty so it will be logged and
1532 			 * moved forward in the log as part of every commit.
1533 			 */
1534 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1535 		}
1536 
1537 		ntp = xfs_trans_dup(tp);
1538 		error = xfs_trans_commit(tp, 0);
1539 		tp = ntp;
1540 
1541 		xfs_trans_ijoin(tp, ip, 0);
1542 
1543 		if (error)
1544 			goto out;
1545 
1546 		/*
1547 		 * Transaction commit worked ok so we can drop the extra ticket
1548 		 * reference that we gained in xfs_trans_dup()
1549 		 */
1550 		xfs_log_ticket_put(tp->t_ticket);
1551 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1552 		if (error)
1553 			goto out;
1554 	}
1555 
1556 	/*
1557 	 * Always re-log the inode so that our permanent transaction can keep
1558 	 * on rolling it forward in the log.
1559 	 */
1560 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1561 
1562 	trace_xfs_itruncate_extents_end(ip, new_size);
1563 
1564 out:
1565 	*tpp = tp;
1566 	return error;
1567 out_bmap_cancel:
1568 	/*
1569 	 * If the bunmapi call encounters an error, return to the caller where
1570 	 * the transaction can be properly aborted.  We just need to make sure
1571 	 * we're not holding any resources that we were not when we came in.
1572 	 */
1573 	xfs_bmap_cancel(&free_list);
1574 	goto out;
1575 }
1576 
1577 int
1578 xfs_release(
1579 	xfs_inode_t	*ip)
1580 {
1581 	xfs_mount_t	*mp = ip->i_mount;
1582 	int		error;
1583 
1584 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1585 		return 0;
1586 
1587 	/* If this is a read-only mount, don't do this (would generate I/O) */
1588 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1589 		return 0;
1590 
1591 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1592 		int truncated;
1593 
1594 		/*
1595 		 * If we are using filestreams, and we have an unlinked
1596 		 * file that we are processing the last close on, then nothing
1597 		 * will be able to reopen and write to this file. Purge this
1598 		 * inode from the filestreams cache so that it doesn't delay
1599 		 * teardown of the inode.
1600 		 */
1601 		if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1602 			xfs_filestream_deassociate(ip);
1603 
1604 		/*
1605 		 * If we previously truncated this file and removed old data
1606 		 * in the process, we want to initiate "early" writeout on
1607 		 * the last close.  This is an attempt to combat the notorious
1608 		 * NULL files problem which is particularly noticeable from a
1609 		 * truncate down, buffered (re-)write (delalloc), followed by
1610 		 * a crash.  What we are effectively doing here is
1611 		 * significantly reducing the time window where we'd otherwise
1612 		 * be exposed to that problem.
1613 		 */
1614 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1615 		if (truncated) {
1616 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1617 			if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1618 				error = -filemap_flush(VFS_I(ip)->i_mapping);
1619 				if (error)
1620 					return error;
1621 			}
1622 		}
1623 	}
1624 
1625 	if (ip->i_d.di_nlink == 0)
1626 		return 0;
1627 
1628 	if (xfs_can_free_eofblocks(ip, false)) {
1629 
1630 		/*
1631 		 * If we can't get the iolock just skip truncating the blocks
1632 		 * past EOF because we could deadlock with the mmap_sem
1633 		 * otherwise.  We'll get another chance to drop them once the
1634 		 * last reference to the inode is dropped, so we'll never leak
1635 		 * blocks permanently.
1636 		 *
1637 		 * Further, check if the inode is being opened, written and
1638 		 * closed frequently and we have delayed allocation blocks
1639 		 * outstanding (e.g. streaming writes from the NFS server),
1640 		 * truncating the blocks past EOF will cause fragmentation to
1641 		 * occur.
1642 		 *
1643 		 * In this case don't do the truncation, either, but we have to
1644 		 * be careful how we detect this case. Blocks beyond EOF show
1645 		 * up as i_delayed_blks even when the inode is clean, so we
1646 		 * need to truncate them away first before checking for a dirty
1647 		 * release. Hence on the first dirty close we will still remove
1648 		 * the speculative allocation, but after that we will leave it
1649 		 * in place.
1650 		 */
1651 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1652 			return 0;
1653 
1654 		error = xfs_free_eofblocks(mp, ip, true);
1655 		if (error && error != EAGAIN)
1656 			return error;
1657 
1658 		/* delalloc blocks after truncation means it really is dirty */
1659 		if (ip->i_delayed_blks)
1660 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1661 	}
1662 	return 0;
1663 }
1664 
1665 /*
1666  * xfs_inactive
1667  *
1668  * This is called when the vnode reference count for the vnode
1669  * goes to zero.  If the file has been unlinked, then it must
1670  * now be truncated.  Also, we clear all of the read-ahead state
1671  * kept for the inode here since the file is now closed.
1672  */
1673 int
1674 xfs_inactive(
1675 	xfs_inode_t	*ip)
1676 {
1677 	xfs_bmap_free_t		free_list;
1678 	xfs_fsblock_t		first_block;
1679 	int			committed;
1680 	struct xfs_trans	*tp;
1681 	struct xfs_mount	*mp;
1682 	struct xfs_trans_res	*resp;
1683 	int			error;
1684 	int			truncate = 0;
1685 
1686 	/*
1687 	 * If the inode is already free, then there can be nothing
1688 	 * to clean up here.
1689 	 */
1690 	if (ip->i_d.di_mode == 0 || is_bad_inode(VFS_I(ip))) {
1691 		ASSERT(ip->i_df.if_real_bytes == 0);
1692 		ASSERT(ip->i_df.if_broot_bytes == 0);
1693 		return VN_INACTIVE_CACHE;
1694 	}
1695 
1696 	mp = ip->i_mount;
1697 
1698 	error = 0;
1699 
1700 	/* If this is a read-only mount, don't do this (would generate I/O) */
1701 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1702 		goto out;
1703 
1704 	if (ip->i_d.di_nlink != 0) {
1705 		/*
1706 		 * force is true because we are evicting an inode from the
1707 		 * cache. Post-eof blocks must be freed, lest we end up with
1708 		 * broken free space accounting.
1709 		 */
1710 		if (xfs_can_free_eofblocks(ip, true)) {
1711 			error = xfs_free_eofblocks(mp, ip, false);
1712 			if (error)
1713 				return VN_INACTIVE_CACHE;
1714 		}
1715 		goto out;
1716 	}
1717 
1718 	if (S_ISREG(ip->i_d.di_mode) &&
1719 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1720 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1721 		truncate = 1;
1722 
1723 	error = xfs_qm_dqattach(ip, 0);
1724 	if (error)
1725 		return VN_INACTIVE_CACHE;
1726 
1727 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728 	resp = (truncate || S_ISLNK(ip->i_d.di_mode)) ?
1729 		&M_RES(mp)->tr_itruncate : &M_RES(mp)->tr_ifree;
1730 
1731 	error = xfs_trans_reserve(tp, resp, 0, 0);
1732 	if (error) {
1733 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1734 		xfs_trans_cancel(tp, 0);
1735 		return VN_INACTIVE_CACHE;
1736 	}
1737 
1738 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1739 	xfs_trans_ijoin(tp, ip, 0);
1740 
1741 	if (S_ISLNK(ip->i_d.di_mode)) {
1742 		error = xfs_inactive_symlink(ip, &tp);
1743 		if (error)
1744 			goto out_cancel;
1745 	} else if (truncate) {
1746 		ip->i_d.di_size = 0;
1747 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1748 
1749 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1750 		if (error)
1751 			goto out_cancel;
1752 
1753 		ASSERT(ip->i_d.di_nextents == 0);
1754 	}
1755 
1756 	/*
1757 	 * If there are attributes associated with the file then blow them away
1758 	 * now.  The code calls a routine that recursively deconstructs the
1759 	 * attribute fork.  We need to just commit the current transaction
1760 	 * because we can't use it for xfs_attr_inactive().
1761 	 */
1762 	if (ip->i_d.di_anextents > 0) {
1763 		ASSERT(ip->i_d.di_forkoff != 0);
1764 
1765 		error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1766 		if (error)
1767 			goto out_unlock;
1768 
1769 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1770 
1771 		error = xfs_attr_inactive(ip);
1772 		if (error)
1773 			goto out;
1774 
1775 		tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1776 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1777 		if (error) {
1778 			xfs_trans_cancel(tp, 0);
1779 			goto out;
1780 		}
1781 
1782 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1783 		xfs_trans_ijoin(tp, ip, 0);
1784 	}
1785 
1786 	if (ip->i_afp)
1787 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1788 
1789 	ASSERT(ip->i_d.di_anextents == 0);
1790 
1791 	/*
1792 	 * Free the inode.
1793 	 */
1794 	xfs_bmap_init(&free_list, &first_block);
1795 	error = xfs_ifree(tp, ip, &free_list);
1796 	if (error) {
1797 		/*
1798 		 * If we fail to free the inode, shut down.  The cancel
1799 		 * might do that, we need to make sure.  Otherwise the
1800 		 * inode might be lost for a long time or forever.
1801 		 */
1802 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1803 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1804 				__func__, error);
1805 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1806 		}
1807 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1808 	} else {
1809 		/*
1810 		 * Credit the quota account(s). The inode is gone.
1811 		 */
1812 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1813 
1814 		/*
1815 		 * Just ignore errors at this point.  There is nothing we can
1816 		 * do except to try to keep going. Make sure it's not a silent
1817 		 * error.
1818 		 */
1819 		error = xfs_bmap_finish(&tp,  &free_list, &committed);
1820 		if (error)
1821 			xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1822 				__func__, error);
1823 		error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1824 		if (error)
1825 			xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1826 				__func__, error);
1827 	}
1828 
1829 	/*
1830 	 * Release the dquots held by inode, if any.
1831 	 */
1832 	xfs_qm_dqdetach(ip);
1833 out_unlock:
1834 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1835 out:
1836 	return VN_INACTIVE_CACHE;
1837 out_cancel:
1838 	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1839 	goto out_unlock;
1840 }
1841 
1842 /*
1843  * This is called when the inode's link count goes to 0.
1844  * We place the on-disk inode on a list in the AGI.  It
1845  * will be pulled from this list when the inode is freed.
1846  */
1847 int
1848 xfs_iunlink(
1849 	xfs_trans_t	*tp,
1850 	xfs_inode_t	*ip)
1851 {
1852 	xfs_mount_t	*mp;
1853 	xfs_agi_t	*agi;
1854 	xfs_dinode_t	*dip;
1855 	xfs_buf_t	*agibp;
1856 	xfs_buf_t	*ibp;
1857 	xfs_agino_t	agino;
1858 	short		bucket_index;
1859 	int		offset;
1860 	int		error;
1861 
1862 	ASSERT(ip->i_d.di_nlink == 0);
1863 	ASSERT(ip->i_d.di_mode != 0);
1864 
1865 	mp = tp->t_mountp;
1866 
1867 	/*
1868 	 * Get the agi buffer first.  It ensures lock ordering
1869 	 * on the list.
1870 	 */
1871 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1872 	if (error)
1873 		return error;
1874 	agi = XFS_BUF_TO_AGI(agibp);
1875 
1876 	/*
1877 	 * Get the index into the agi hash table for the
1878 	 * list this inode will go on.
1879 	 */
1880 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1881 	ASSERT(agino != 0);
1882 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1883 	ASSERT(agi->agi_unlinked[bucket_index]);
1884 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1885 
1886 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1887 		/*
1888 		 * There is already another inode in the bucket we need
1889 		 * to add ourselves to.  Add us at the front of the list.
1890 		 * Here we put the head pointer into our next pointer,
1891 		 * and then we fall through to point the head at us.
1892 		 */
1893 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1894 				       0, 0);
1895 		if (error)
1896 			return error;
1897 
1898 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1899 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1900 		offset = ip->i_imap.im_boffset +
1901 			offsetof(xfs_dinode_t, di_next_unlinked);
1902 
1903 		/* need to recalc the inode CRC if appropriate */
1904 		xfs_dinode_calc_crc(mp, dip);
1905 
1906 		xfs_trans_inode_buf(tp, ibp);
1907 		xfs_trans_log_buf(tp, ibp, offset,
1908 				  (offset + sizeof(xfs_agino_t) - 1));
1909 		xfs_inobp_check(mp, ibp);
1910 	}
1911 
1912 	/*
1913 	 * Point the bucket head pointer at the inode being inserted.
1914 	 */
1915 	ASSERT(agino != 0);
1916 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1917 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1918 		(sizeof(xfs_agino_t) * bucket_index);
1919 	xfs_trans_log_buf(tp, agibp, offset,
1920 			  (offset + sizeof(xfs_agino_t) - 1));
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Pull the on-disk inode from the AGI unlinked list.
1926  */
1927 STATIC int
1928 xfs_iunlink_remove(
1929 	xfs_trans_t	*tp,
1930 	xfs_inode_t	*ip)
1931 {
1932 	xfs_ino_t	next_ino;
1933 	xfs_mount_t	*mp;
1934 	xfs_agi_t	*agi;
1935 	xfs_dinode_t	*dip;
1936 	xfs_buf_t	*agibp;
1937 	xfs_buf_t	*ibp;
1938 	xfs_agnumber_t	agno;
1939 	xfs_agino_t	agino;
1940 	xfs_agino_t	next_agino;
1941 	xfs_buf_t	*last_ibp;
1942 	xfs_dinode_t	*last_dip = NULL;
1943 	short		bucket_index;
1944 	int		offset, last_offset = 0;
1945 	int		error;
1946 
1947 	mp = tp->t_mountp;
1948 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1949 
1950 	/*
1951 	 * Get the agi buffer first.  It ensures lock ordering
1952 	 * on the list.
1953 	 */
1954 	error = xfs_read_agi(mp, tp, agno, &agibp);
1955 	if (error)
1956 		return error;
1957 
1958 	agi = XFS_BUF_TO_AGI(agibp);
1959 
1960 	/*
1961 	 * Get the index into the agi hash table for the
1962 	 * list this inode will go on.
1963 	 */
1964 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1965 	ASSERT(agino != 0);
1966 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1967 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1968 	ASSERT(agi->agi_unlinked[bucket_index]);
1969 
1970 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1971 		/*
1972 		 * We're at the head of the list.  Get the inode's on-disk
1973 		 * buffer to see if there is anyone after us on the list.
1974 		 * Only modify our next pointer if it is not already NULLAGINO.
1975 		 * This saves us the overhead of dealing with the buffer when
1976 		 * there is no need to change it.
1977 		 */
1978 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1979 				       0, 0);
1980 		if (error) {
1981 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1982 				__func__, error);
1983 			return error;
1984 		}
1985 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1986 		ASSERT(next_agino != 0);
1987 		if (next_agino != NULLAGINO) {
1988 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1989 			offset = ip->i_imap.im_boffset +
1990 				offsetof(xfs_dinode_t, di_next_unlinked);
1991 
1992 			/* need to recalc the inode CRC if appropriate */
1993 			xfs_dinode_calc_crc(mp, dip);
1994 
1995 			xfs_trans_inode_buf(tp, ibp);
1996 			xfs_trans_log_buf(tp, ibp, offset,
1997 					  (offset + sizeof(xfs_agino_t) - 1));
1998 			xfs_inobp_check(mp, ibp);
1999 		} else {
2000 			xfs_trans_brelse(tp, ibp);
2001 		}
2002 		/*
2003 		 * Point the bucket head pointer at the next inode.
2004 		 */
2005 		ASSERT(next_agino != 0);
2006 		ASSERT(next_agino != agino);
2007 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2008 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2009 			(sizeof(xfs_agino_t) * bucket_index);
2010 		xfs_trans_log_buf(tp, agibp, offset,
2011 				  (offset + sizeof(xfs_agino_t) - 1));
2012 	} else {
2013 		/*
2014 		 * We need to search the list for the inode being freed.
2015 		 */
2016 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2017 		last_ibp = NULL;
2018 		while (next_agino != agino) {
2019 			struct xfs_imap	imap;
2020 
2021 			if (last_ibp)
2022 				xfs_trans_brelse(tp, last_ibp);
2023 
2024 			imap.im_blkno = 0;
2025 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2026 
2027 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2028 			if (error) {
2029 				xfs_warn(mp,
2030 	"%s: xfs_imap returned error %d.",
2031 					 __func__, error);
2032 				return error;
2033 			}
2034 
2035 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2036 					       &last_ibp, 0, 0);
2037 			if (error) {
2038 				xfs_warn(mp,
2039 	"%s: xfs_imap_to_bp returned error %d.",
2040 					__func__, error);
2041 				return error;
2042 			}
2043 
2044 			last_offset = imap.im_boffset;
2045 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2046 			ASSERT(next_agino != NULLAGINO);
2047 			ASSERT(next_agino != 0);
2048 		}
2049 
2050 		/*
2051 		 * Now last_ibp points to the buffer previous to us on the
2052 		 * unlinked list.  Pull us from the list.
2053 		 */
2054 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2055 				       0, 0);
2056 		if (error) {
2057 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2058 				__func__, error);
2059 			return error;
2060 		}
2061 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2062 		ASSERT(next_agino != 0);
2063 		ASSERT(next_agino != agino);
2064 		if (next_agino != NULLAGINO) {
2065 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2066 			offset = ip->i_imap.im_boffset +
2067 				offsetof(xfs_dinode_t, di_next_unlinked);
2068 
2069 			/* need to recalc the inode CRC if appropriate */
2070 			xfs_dinode_calc_crc(mp, dip);
2071 
2072 			xfs_trans_inode_buf(tp, ibp);
2073 			xfs_trans_log_buf(tp, ibp, offset,
2074 					  (offset + sizeof(xfs_agino_t) - 1));
2075 			xfs_inobp_check(mp, ibp);
2076 		} else {
2077 			xfs_trans_brelse(tp, ibp);
2078 		}
2079 		/*
2080 		 * Point the previous inode on the list to the next inode.
2081 		 */
2082 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2083 		ASSERT(next_agino != 0);
2084 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2085 
2086 		/* need to recalc the inode CRC if appropriate */
2087 		xfs_dinode_calc_crc(mp, last_dip);
2088 
2089 		xfs_trans_inode_buf(tp, last_ibp);
2090 		xfs_trans_log_buf(tp, last_ibp, offset,
2091 				  (offset + sizeof(xfs_agino_t) - 1));
2092 		xfs_inobp_check(mp, last_ibp);
2093 	}
2094 	return 0;
2095 }
2096 
2097 /*
2098  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2099  * inodes that are in memory - they all must be marked stale and attached to
2100  * the cluster buffer.
2101  */
2102 STATIC int
2103 xfs_ifree_cluster(
2104 	xfs_inode_t	*free_ip,
2105 	xfs_trans_t	*tp,
2106 	xfs_ino_t	inum)
2107 {
2108 	xfs_mount_t		*mp = free_ip->i_mount;
2109 	int			blks_per_cluster;
2110 	int			nbufs;
2111 	int			ninodes;
2112 	int			i, j;
2113 	xfs_daddr_t		blkno;
2114 	xfs_buf_t		*bp;
2115 	xfs_inode_t		*ip;
2116 	xfs_inode_log_item_t	*iip;
2117 	xfs_log_item_t		*lip;
2118 	struct xfs_perag	*pag;
2119 
2120 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2121 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2122 		blks_per_cluster = 1;
2123 		ninodes = mp->m_sb.sb_inopblock;
2124 		nbufs = XFS_IALLOC_BLOCKS(mp);
2125 	} else {
2126 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2127 					mp->m_sb.sb_blocksize;
2128 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2129 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2130 	}
2131 
2132 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2133 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2134 					 XFS_INO_TO_AGBNO(mp, inum));
2135 
2136 		/*
2137 		 * We obtain and lock the backing buffer first in the process
2138 		 * here, as we have to ensure that any dirty inode that we
2139 		 * can't get the flush lock on is attached to the buffer.
2140 		 * If we scan the in-memory inodes first, then buffer IO can
2141 		 * complete before we get a lock on it, and hence we may fail
2142 		 * to mark all the active inodes on the buffer stale.
2143 		 */
2144 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2145 					mp->m_bsize * blks_per_cluster,
2146 					XBF_UNMAPPED);
2147 
2148 		if (!bp)
2149 			return ENOMEM;
2150 
2151 		/*
2152 		 * This buffer may not have been correctly initialised as we
2153 		 * didn't read it from disk. That's not important because we are
2154 		 * only using to mark the buffer as stale in the log, and to
2155 		 * attach stale cached inodes on it. That means it will never be
2156 		 * dispatched for IO. If it is, we want to know about it, and we
2157 		 * want it to fail. We can acheive this by adding a write
2158 		 * verifier to the buffer.
2159 		 */
2160 		 bp->b_ops = &xfs_inode_buf_ops;
2161 
2162 		/*
2163 		 * Walk the inodes already attached to the buffer and mark them
2164 		 * stale. These will all have the flush locks held, so an
2165 		 * in-memory inode walk can't lock them. By marking them all
2166 		 * stale first, we will not attempt to lock them in the loop
2167 		 * below as the XFS_ISTALE flag will be set.
2168 		 */
2169 		lip = bp->b_fspriv;
2170 		while (lip) {
2171 			if (lip->li_type == XFS_LI_INODE) {
2172 				iip = (xfs_inode_log_item_t *)lip;
2173 				ASSERT(iip->ili_logged == 1);
2174 				lip->li_cb = xfs_istale_done;
2175 				xfs_trans_ail_copy_lsn(mp->m_ail,
2176 							&iip->ili_flush_lsn,
2177 							&iip->ili_item.li_lsn);
2178 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2179 			}
2180 			lip = lip->li_bio_list;
2181 		}
2182 
2183 
2184 		/*
2185 		 * For each inode in memory attempt to add it to the inode
2186 		 * buffer and set it up for being staled on buffer IO
2187 		 * completion.  This is safe as we've locked out tail pushing
2188 		 * and flushing by locking the buffer.
2189 		 *
2190 		 * We have already marked every inode that was part of a
2191 		 * transaction stale above, which means there is no point in
2192 		 * even trying to lock them.
2193 		 */
2194 		for (i = 0; i < ninodes; i++) {
2195 retry:
2196 			rcu_read_lock();
2197 			ip = radix_tree_lookup(&pag->pag_ici_root,
2198 					XFS_INO_TO_AGINO(mp, (inum + i)));
2199 
2200 			/* Inode not in memory, nothing to do */
2201 			if (!ip) {
2202 				rcu_read_unlock();
2203 				continue;
2204 			}
2205 
2206 			/*
2207 			 * because this is an RCU protected lookup, we could
2208 			 * find a recently freed or even reallocated inode
2209 			 * during the lookup. We need to check under the
2210 			 * i_flags_lock for a valid inode here. Skip it if it
2211 			 * is not valid, the wrong inode or stale.
2212 			 */
2213 			spin_lock(&ip->i_flags_lock);
2214 			if (ip->i_ino != inum + i ||
2215 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2216 				spin_unlock(&ip->i_flags_lock);
2217 				rcu_read_unlock();
2218 				continue;
2219 			}
2220 			spin_unlock(&ip->i_flags_lock);
2221 
2222 			/*
2223 			 * Don't try to lock/unlock the current inode, but we
2224 			 * _cannot_ skip the other inodes that we did not find
2225 			 * in the list attached to the buffer and are not
2226 			 * already marked stale. If we can't lock it, back off
2227 			 * and retry.
2228 			 */
2229 			if (ip != free_ip &&
2230 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2231 				rcu_read_unlock();
2232 				delay(1);
2233 				goto retry;
2234 			}
2235 			rcu_read_unlock();
2236 
2237 			xfs_iflock(ip);
2238 			xfs_iflags_set(ip, XFS_ISTALE);
2239 
2240 			/*
2241 			 * we don't need to attach clean inodes or those only
2242 			 * with unlogged changes (which we throw away, anyway).
2243 			 */
2244 			iip = ip->i_itemp;
2245 			if (!iip || xfs_inode_clean(ip)) {
2246 				ASSERT(ip != free_ip);
2247 				xfs_ifunlock(ip);
2248 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249 				continue;
2250 			}
2251 
2252 			iip->ili_last_fields = iip->ili_fields;
2253 			iip->ili_fields = 0;
2254 			iip->ili_logged = 1;
2255 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2256 						&iip->ili_item.li_lsn);
2257 
2258 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2259 						  &iip->ili_item);
2260 
2261 			if (ip != free_ip)
2262 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2263 		}
2264 
2265 		xfs_trans_stale_inode_buf(tp, bp);
2266 		xfs_trans_binval(tp, bp);
2267 	}
2268 
2269 	xfs_perag_put(pag);
2270 	return 0;
2271 }
2272 
2273 /*
2274  * This is called to return an inode to the inode free list.
2275  * The inode should already be truncated to 0 length and have
2276  * no pages associated with it.  This routine also assumes that
2277  * the inode is already a part of the transaction.
2278  *
2279  * The on-disk copy of the inode will have been added to the list
2280  * of unlinked inodes in the AGI. We need to remove the inode from
2281  * that list atomically with respect to freeing it here.
2282  */
2283 int
2284 xfs_ifree(
2285 	xfs_trans_t	*tp,
2286 	xfs_inode_t	*ip,
2287 	xfs_bmap_free_t	*flist)
2288 {
2289 	int			error;
2290 	int			delete;
2291 	xfs_ino_t		first_ino;
2292 
2293 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2294 	ASSERT(ip->i_d.di_nlink == 0);
2295 	ASSERT(ip->i_d.di_nextents == 0);
2296 	ASSERT(ip->i_d.di_anextents == 0);
2297 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2298 	ASSERT(ip->i_d.di_nblocks == 0);
2299 
2300 	/*
2301 	 * Pull the on-disk inode from the AGI unlinked list.
2302 	 */
2303 	error = xfs_iunlink_remove(tp, ip);
2304 	if (error)
2305 		return error;
2306 
2307 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2308 	if (error)
2309 		return error;
2310 
2311 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2312 	ip->i_d.di_flags = 0;
2313 	ip->i_d.di_dmevmask = 0;
2314 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2315 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2316 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2317 	/*
2318 	 * Bump the generation count so no one will be confused
2319 	 * by reincarnations of this inode.
2320 	 */
2321 	ip->i_d.di_gen++;
2322 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2323 
2324 	if (delete)
2325 		error = xfs_ifree_cluster(ip, tp, first_ino);
2326 
2327 	return error;
2328 }
2329 
2330 /*
2331  * This is called to unpin an inode.  The caller must have the inode locked
2332  * in at least shared mode so that the buffer cannot be subsequently pinned
2333  * once someone is waiting for it to be unpinned.
2334  */
2335 static void
2336 xfs_iunpin(
2337 	struct xfs_inode	*ip)
2338 {
2339 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2340 
2341 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2342 
2343 	/* Give the log a push to start the unpinning I/O */
2344 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2345 
2346 }
2347 
2348 static void
2349 __xfs_iunpin_wait(
2350 	struct xfs_inode	*ip)
2351 {
2352 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2353 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2354 
2355 	xfs_iunpin(ip);
2356 
2357 	do {
2358 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2359 		if (xfs_ipincount(ip))
2360 			io_schedule();
2361 	} while (xfs_ipincount(ip));
2362 	finish_wait(wq, &wait.wait);
2363 }
2364 
2365 void
2366 xfs_iunpin_wait(
2367 	struct xfs_inode	*ip)
2368 {
2369 	if (xfs_ipincount(ip))
2370 		__xfs_iunpin_wait(ip);
2371 }
2372 
2373 int
2374 xfs_remove(
2375 	xfs_inode_t             *dp,
2376 	struct xfs_name		*name,
2377 	xfs_inode_t		*ip)
2378 {
2379 	xfs_mount_t		*mp = dp->i_mount;
2380 	xfs_trans_t             *tp = NULL;
2381 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2382 	int                     error = 0;
2383 	xfs_bmap_free_t         free_list;
2384 	xfs_fsblock_t           first_block;
2385 	int			cancel_flags;
2386 	int			committed;
2387 	int			link_zero;
2388 	uint			resblks;
2389 	uint			log_count;
2390 
2391 	trace_xfs_remove(dp, name);
2392 
2393 	if (XFS_FORCED_SHUTDOWN(mp))
2394 		return XFS_ERROR(EIO);
2395 
2396 	error = xfs_qm_dqattach(dp, 0);
2397 	if (error)
2398 		goto std_return;
2399 
2400 	error = xfs_qm_dqattach(ip, 0);
2401 	if (error)
2402 		goto std_return;
2403 
2404 	if (is_dir) {
2405 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2406 		log_count = XFS_DEFAULT_LOG_COUNT;
2407 	} else {
2408 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2409 		log_count = XFS_REMOVE_LOG_COUNT;
2410 	}
2411 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2412 
2413 	/*
2414 	 * We try to get the real space reservation first,
2415 	 * allowing for directory btree deletion(s) implying
2416 	 * possible bmap insert(s).  If we can't get the space
2417 	 * reservation then we use 0 instead, and avoid the bmap
2418 	 * btree insert(s) in the directory code by, if the bmap
2419 	 * insert tries to happen, instead trimming the LAST
2420 	 * block from the directory.
2421 	 */
2422 	resblks = XFS_REMOVE_SPACE_RES(mp);
2423 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2424 	if (error == ENOSPC) {
2425 		resblks = 0;
2426 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2427 	}
2428 	if (error) {
2429 		ASSERT(error != ENOSPC);
2430 		cancel_flags = 0;
2431 		goto out_trans_cancel;
2432 	}
2433 
2434 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2435 
2436 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2437 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2438 
2439 	/*
2440 	 * If we're removing a directory perform some additional validation.
2441 	 */
2442 	if (is_dir) {
2443 		ASSERT(ip->i_d.di_nlink >= 2);
2444 		if (ip->i_d.di_nlink != 2) {
2445 			error = XFS_ERROR(ENOTEMPTY);
2446 			goto out_trans_cancel;
2447 		}
2448 		if (!xfs_dir_isempty(ip)) {
2449 			error = XFS_ERROR(ENOTEMPTY);
2450 			goto out_trans_cancel;
2451 		}
2452 	}
2453 
2454 	xfs_bmap_init(&free_list, &first_block);
2455 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2456 					&first_block, &free_list, resblks);
2457 	if (error) {
2458 		ASSERT(error != ENOENT);
2459 		goto out_bmap_cancel;
2460 	}
2461 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2462 
2463 	if (is_dir) {
2464 		/*
2465 		 * Drop the link from ip's "..".
2466 		 */
2467 		error = xfs_droplink(tp, dp);
2468 		if (error)
2469 			goto out_bmap_cancel;
2470 
2471 		/*
2472 		 * Drop the "." link from ip to self.
2473 		 */
2474 		error = xfs_droplink(tp, ip);
2475 		if (error)
2476 			goto out_bmap_cancel;
2477 	} else {
2478 		/*
2479 		 * When removing a non-directory we need to log the parent
2480 		 * inode here.  For a directory this is done implicitly
2481 		 * by the xfs_droplink call for the ".." entry.
2482 		 */
2483 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2484 	}
2485 
2486 	/*
2487 	 * Drop the link from dp to ip.
2488 	 */
2489 	error = xfs_droplink(tp, ip);
2490 	if (error)
2491 		goto out_bmap_cancel;
2492 
2493 	/*
2494 	 * Determine if this is the last link while
2495 	 * we are in the transaction.
2496 	 */
2497 	link_zero = (ip->i_d.di_nlink == 0);
2498 
2499 	/*
2500 	 * If this is a synchronous mount, make sure that the
2501 	 * remove transaction goes to disk before returning to
2502 	 * the user.
2503 	 */
2504 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2505 		xfs_trans_set_sync(tp);
2506 
2507 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2508 	if (error)
2509 		goto out_bmap_cancel;
2510 
2511 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2512 	if (error)
2513 		goto std_return;
2514 
2515 	/*
2516 	 * If we are using filestreams, kill the stream association.
2517 	 * If the file is still open it may get a new one but that
2518 	 * will get killed on last close in xfs_close() so we don't
2519 	 * have to worry about that.
2520 	 */
2521 	if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2522 		xfs_filestream_deassociate(ip);
2523 
2524 	return 0;
2525 
2526  out_bmap_cancel:
2527 	xfs_bmap_cancel(&free_list);
2528 	cancel_flags |= XFS_TRANS_ABORT;
2529  out_trans_cancel:
2530 	xfs_trans_cancel(tp, cancel_flags);
2531  std_return:
2532 	return error;
2533 }
2534 
2535 /*
2536  * Enter all inodes for a rename transaction into a sorted array.
2537  */
2538 STATIC void
2539 xfs_sort_for_rename(
2540 	xfs_inode_t	*dp1,	/* in: old (source) directory inode */
2541 	xfs_inode_t	*dp2,	/* in: new (target) directory inode */
2542 	xfs_inode_t	*ip1,	/* in: inode of old entry */
2543 	xfs_inode_t	*ip2,	/* in: inode of new entry, if it
2544 				   already exists, NULL otherwise. */
2545 	xfs_inode_t	**i_tab,/* out: array of inode returned, sorted */
2546 	int		*num_inodes)  /* out: number of inodes in array */
2547 {
2548 	xfs_inode_t		*temp;
2549 	int			i, j;
2550 
2551 	/*
2552 	 * i_tab contains a list of pointers to inodes.  We initialize
2553 	 * the table here & we'll sort it.  We will then use it to
2554 	 * order the acquisition of the inode locks.
2555 	 *
2556 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2557 	 */
2558 	i_tab[0] = dp1;
2559 	i_tab[1] = dp2;
2560 	i_tab[2] = ip1;
2561 	if (ip2) {
2562 		*num_inodes = 4;
2563 		i_tab[3] = ip2;
2564 	} else {
2565 		*num_inodes = 3;
2566 		i_tab[3] = NULL;
2567 	}
2568 
2569 	/*
2570 	 * Sort the elements via bubble sort.  (Remember, there are at
2571 	 * most 4 elements to sort, so this is adequate.)
2572 	 */
2573 	for (i = 0; i < *num_inodes; i++) {
2574 		for (j = 1; j < *num_inodes; j++) {
2575 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2576 				temp = i_tab[j];
2577 				i_tab[j] = i_tab[j-1];
2578 				i_tab[j-1] = temp;
2579 			}
2580 		}
2581 	}
2582 }
2583 
2584 /*
2585  * xfs_rename
2586  */
2587 int
2588 xfs_rename(
2589 	xfs_inode_t	*src_dp,
2590 	struct xfs_name	*src_name,
2591 	xfs_inode_t	*src_ip,
2592 	xfs_inode_t	*target_dp,
2593 	struct xfs_name	*target_name,
2594 	xfs_inode_t	*target_ip)
2595 {
2596 	xfs_trans_t	*tp = NULL;
2597 	xfs_mount_t	*mp = src_dp->i_mount;
2598 	int		new_parent;		/* moving to a new dir */
2599 	int		src_is_directory;	/* src_name is a directory */
2600 	int		error;
2601 	xfs_bmap_free_t free_list;
2602 	xfs_fsblock_t   first_block;
2603 	int		cancel_flags;
2604 	int		committed;
2605 	xfs_inode_t	*inodes[4];
2606 	int		spaceres;
2607 	int		num_inodes;
2608 
2609 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2610 
2611 	new_parent = (src_dp != target_dp);
2612 	src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2613 
2614 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2615 				inodes, &num_inodes);
2616 
2617 	xfs_bmap_init(&free_list, &first_block);
2618 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2619 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2620 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2621 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2622 	if (error == ENOSPC) {
2623 		spaceres = 0;
2624 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2625 	}
2626 	if (error) {
2627 		xfs_trans_cancel(tp, 0);
2628 		goto std_return;
2629 	}
2630 
2631 	/*
2632 	 * Attach the dquots to the inodes
2633 	 */
2634 	error = xfs_qm_vop_rename_dqattach(inodes);
2635 	if (error) {
2636 		xfs_trans_cancel(tp, cancel_flags);
2637 		goto std_return;
2638 	}
2639 
2640 	/*
2641 	 * Lock all the participating inodes. Depending upon whether
2642 	 * the target_name exists in the target directory, and
2643 	 * whether the target directory is the same as the source
2644 	 * directory, we can lock from 2 to 4 inodes.
2645 	 */
2646 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2647 
2648 	/*
2649 	 * Join all the inodes to the transaction. From this point on,
2650 	 * we can rely on either trans_commit or trans_cancel to unlock
2651 	 * them.
2652 	 */
2653 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2654 	if (new_parent)
2655 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2656 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2657 	if (target_ip)
2658 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2659 
2660 	/*
2661 	 * If we are using project inheritance, we only allow renames
2662 	 * into our tree when the project IDs are the same; else the
2663 	 * tree quota mechanism would be circumvented.
2664 	 */
2665 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2666 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2667 		error = XFS_ERROR(EXDEV);
2668 		goto error_return;
2669 	}
2670 
2671 	/*
2672 	 * Set up the target.
2673 	 */
2674 	if (target_ip == NULL) {
2675 		/*
2676 		 * If there's no space reservation, check the entry will
2677 		 * fit before actually inserting it.
2678 		 */
2679 		error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2680 		if (error)
2681 			goto error_return;
2682 		/*
2683 		 * If target does not exist and the rename crosses
2684 		 * directories, adjust the target directory link count
2685 		 * to account for the ".." reference from the new entry.
2686 		 */
2687 		error = xfs_dir_createname(tp, target_dp, target_name,
2688 						src_ip->i_ino, &first_block,
2689 						&free_list, spaceres);
2690 		if (error == ENOSPC)
2691 			goto error_return;
2692 		if (error)
2693 			goto abort_return;
2694 
2695 		xfs_trans_ichgtime(tp, target_dp,
2696 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2697 
2698 		if (new_parent && src_is_directory) {
2699 			error = xfs_bumplink(tp, target_dp);
2700 			if (error)
2701 				goto abort_return;
2702 		}
2703 	} else { /* target_ip != NULL */
2704 		/*
2705 		 * If target exists and it's a directory, check that both
2706 		 * target and source are directories and that target can be
2707 		 * destroyed, or that neither is a directory.
2708 		 */
2709 		if (S_ISDIR(target_ip->i_d.di_mode)) {
2710 			/*
2711 			 * Make sure target dir is empty.
2712 			 */
2713 			if (!(xfs_dir_isempty(target_ip)) ||
2714 			    (target_ip->i_d.di_nlink > 2)) {
2715 				error = XFS_ERROR(EEXIST);
2716 				goto error_return;
2717 			}
2718 		}
2719 
2720 		/*
2721 		 * Link the source inode under the target name.
2722 		 * If the source inode is a directory and we are moving
2723 		 * it across directories, its ".." entry will be
2724 		 * inconsistent until we replace that down below.
2725 		 *
2726 		 * In case there is already an entry with the same
2727 		 * name at the destination directory, remove it first.
2728 		 */
2729 		error = xfs_dir_replace(tp, target_dp, target_name,
2730 					src_ip->i_ino,
2731 					&first_block, &free_list, spaceres);
2732 		if (error)
2733 			goto abort_return;
2734 
2735 		xfs_trans_ichgtime(tp, target_dp,
2736 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2737 
2738 		/*
2739 		 * Decrement the link count on the target since the target
2740 		 * dir no longer points to it.
2741 		 */
2742 		error = xfs_droplink(tp, target_ip);
2743 		if (error)
2744 			goto abort_return;
2745 
2746 		if (src_is_directory) {
2747 			/*
2748 			 * Drop the link from the old "." entry.
2749 			 */
2750 			error = xfs_droplink(tp, target_ip);
2751 			if (error)
2752 				goto abort_return;
2753 		}
2754 	} /* target_ip != NULL */
2755 
2756 	/*
2757 	 * Remove the source.
2758 	 */
2759 	if (new_parent && src_is_directory) {
2760 		/*
2761 		 * Rewrite the ".." entry to point to the new
2762 		 * directory.
2763 		 */
2764 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2765 					target_dp->i_ino,
2766 					&first_block, &free_list, spaceres);
2767 		ASSERT(error != EEXIST);
2768 		if (error)
2769 			goto abort_return;
2770 	}
2771 
2772 	/*
2773 	 * We always want to hit the ctime on the source inode.
2774 	 *
2775 	 * This isn't strictly required by the standards since the source
2776 	 * inode isn't really being changed, but old unix file systems did
2777 	 * it and some incremental backup programs won't work without it.
2778 	 */
2779 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2780 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2781 
2782 	/*
2783 	 * Adjust the link count on src_dp.  This is necessary when
2784 	 * renaming a directory, either within one parent when
2785 	 * the target existed, or across two parent directories.
2786 	 */
2787 	if (src_is_directory && (new_parent || target_ip != NULL)) {
2788 
2789 		/*
2790 		 * Decrement link count on src_directory since the
2791 		 * entry that's moved no longer points to it.
2792 		 */
2793 		error = xfs_droplink(tp, src_dp);
2794 		if (error)
2795 			goto abort_return;
2796 	}
2797 
2798 	error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2799 					&first_block, &free_list, spaceres);
2800 	if (error)
2801 		goto abort_return;
2802 
2803 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2804 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2805 	if (new_parent)
2806 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2807 
2808 	/*
2809 	 * If this is a synchronous mount, make sure that the
2810 	 * rename transaction goes to disk before returning to
2811 	 * the user.
2812 	 */
2813 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2814 		xfs_trans_set_sync(tp);
2815 	}
2816 
2817 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2818 	if (error) {
2819 		xfs_bmap_cancel(&free_list);
2820 		xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2821 				 XFS_TRANS_ABORT));
2822 		goto std_return;
2823 	}
2824 
2825 	/*
2826 	 * trans_commit will unlock src_ip, target_ip & decrement
2827 	 * the vnode references.
2828 	 */
2829 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2830 
2831  abort_return:
2832 	cancel_flags |= XFS_TRANS_ABORT;
2833  error_return:
2834 	xfs_bmap_cancel(&free_list);
2835 	xfs_trans_cancel(tp, cancel_flags);
2836  std_return:
2837 	return error;
2838 }
2839 
2840 STATIC int
2841 xfs_iflush_cluster(
2842 	xfs_inode_t	*ip,
2843 	xfs_buf_t	*bp)
2844 {
2845 	xfs_mount_t		*mp = ip->i_mount;
2846 	struct xfs_perag	*pag;
2847 	unsigned long		first_index, mask;
2848 	unsigned long		inodes_per_cluster;
2849 	int			ilist_size;
2850 	xfs_inode_t		**ilist;
2851 	xfs_inode_t		*iq;
2852 	int			nr_found;
2853 	int			clcount = 0;
2854 	int			bufwasdelwri;
2855 	int			i;
2856 
2857 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2858 
2859 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2860 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2861 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2862 	if (!ilist)
2863 		goto out_put;
2864 
2865 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2866 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2867 	rcu_read_lock();
2868 	/* really need a gang lookup range call here */
2869 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2870 					first_index, inodes_per_cluster);
2871 	if (nr_found == 0)
2872 		goto out_free;
2873 
2874 	for (i = 0; i < nr_found; i++) {
2875 		iq = ilist[i];
2876 		if (iq == ip)
2877 			continue;
2878 
2879 		/*
2880 		 * because this is an RCU protected lookup, we could find a
2881 		 * recently freed or even reallocated inode during the lookup.
2882 		 * We need to check under the i_flags_lock for a valid inode
2883 		 * here. Skip it if it is not valid or the wrong inode.
2884 		 */
2885 		spin_lock(&ip->i_flags_lock);
2886 		if (!ip->i_ino ||
2887 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2888 			spin_unlock(&ip->i_flags_lock);
2889 			continue;
2890 		}
2891 		spin_unlock(&ip->i_flags_lock);
2892 
2893 		/*
2894 		 * Do an un-protected check to see if the inode is dirty and
2895 		 * is a candidate for flushing.  These checks will be repeated
2896 		 * later after the appropriate locks are acquired.
2897 		 */
2898 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2899 			continue;
2900 
2901 		/*
2902 		 * Try to get locks.  If any are unavailable or it is pinned,
2903 		 * then this inode cannot be flushed and is skipped.
2904 		 */
2905 
2906 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2907 			continue;
2908 		if (!xfs_iflock_nowait(iq)) {
2909 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2910 			continue;
2911 		}
2912 		if (xfs_ipincount(iq)) {
2913 			xfs_ifunlock(iq);
2914 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2915 			continue;
2916 		}
2917 
2918 		/*
2919 		 * arriving here means that this inode can be flushed.  First
2920 		 * re-check that it's dirty before flushing.
2921 		 */
2922 		if (!xfs_inode_clean(iq)) {
2923 			int	error;
2924 			error = xfs_iflush_int(iq, bp);
2925 			if (error) {
2926 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2927 				goto cluster_corrupt_out;
2928 			}
2929 			clcount++;
2930 		} else {
2931 			xfs_ifunlock(iq);
2932 		}
2933 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2934 	}
2935 
2936 	if (clcount) {
2937 		XFS_STATS_INC(xs_icluster_flushcnt);
2938 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2939 	}
2940 
2941 out_free:
2942 	rcu_read_unlock();
2943 	kmem_free(ilist);
2944 out_put:
2945 	xfs_perag_put(pag);
2946 	return 0;
2947 
2948 
2949 cluster_corrupt_out:
2950 	/*
2951 	 * Corruption detected in the clustering loop.  Invalidate the
2952 	 * inode buffer and shut down the filesystem.
2953 	 */
2954 	rcu_read_unlock();
2955 	/*
2956 	 * Clean up the buffer.  If it was delwri, just release it --
2957 	 * brelse can handle it with no problems.  If not, shut down the
2958 	 * filesystem before releasing the buffer.
2959 	 */
2960 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2961 	if (bufwasdelwri)
2962 		xfs_buf_relse(bp);
2963 
2964 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2965 
2966 	if (!bufwasdelwri) {
2967 		/*
2968 		 * Just like incore_relse: if we have b_iodone functions,
2969 		 * mark the buffer as an error and call them.  Otherwise
2970 		 * mark it as stale and brelse.
2971 		 */
2972 		if (bp->b_iodone) {
2973 			XFS_BUF_UNDONE(bp);
2974 			xfs_buf_stale(bp);
2975 			xfs_buf_ioerror(bp, EIO);
2976 			xfs_buf_ioend(bp, 0);
2977 		} else {
2978 			xfs_buf_stale(bp);
2979 			xfs_buf_relse(bp);
2980 		}
2981 	}
2982 
2983 	/*
2984 	 * Unlocks the flush lock
2985 	 */
2986 	xfs_iflush_abort(iq, false);
2987 	kmem_free(ilist);
2988 	xfs_perag_put(pag);
2989 	return XFS_ERROR(EFSCORRUPTED);
2990 }
2991 
2992 /*
2993  * Flush dirty inode metadata into the backing buffer.
2994  *
2995  * The caller must have the inode lock and the inode flush lock held.  The
2996  * inode lock will still be held upon return to the caller, and the inode
2997  * flush lock will be released after the inode has reached the disk.
2998  *
2999  * The caller must write out the buffer returned in *bpp and release it.
3000  */
3001 int
3002 xfs_iflush(
3003 	struct xfs_inode	*ip,
3004 	struct xfs_buf		**bpp)
3005 {
3006 	struct xfs_mount	*mp = ip->i_mount;
3007 	struct xfs_buf		*bp;
3008 	struct xfs_dinode	*dip;
3009 	int			error;
3010 
3011 	XFS_STATS_INC(xs_iflush_count);
3012 
3013 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3014 	ASSERT(xfs_isiflocked(ip));
3015 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3016 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3017 
3018 	*bpp = NULL;
3019 
3020 	xfs_iunpin_wait(ip);
3021 
3022 	/*
3023 	 * For stale inodes we cannot rely on the backing buffer remaining
3024 	 * stale in cache for the remaining life of the stale inode and so
3025 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3026 	 * inodes below. We have to check this after ensuring the inode is
3027 	 * unpinned so that it is safe to reclaim the stale inode after the
3028 	 * flush call.
3029 	 */
3030 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3031 		xfs_ifunlock(ip);
3032 		return 0;
3033 	}
3034 
3035 	/*
3036 	 * This may have been unpinned because the filesystem is shutting
3037 	 * down forcibly. If that's the case we must not write this inode
3038 	 * to disk, because the log record didn't make it to disk.
3039 	 *
3040 	 * We also have to remove the log item from the AIL in this case,
3041 	 * as we wait for an empty AIL as part of the unmount process.
3042 	 */
3043 	if (XFS_FORCED_SHUTDOWN(mp)) {
3044 		error = XFS_ERROR(EIO);
3045 		goto abort_out;
3046 	}
3047 
3048 	/*
3049 	 * Get the buffer containing the on-disk inode.
3050 	 */
3051 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3052 			       0);
3053 	if (error || !bp) {
3054 		xfs_ifunlock(ip);
3055 		return error;
3056 	}
3057 
3058 	/*
3059 	 * First flush out the inode that xfs_iflush was called with.
3060 	 */
3061 	error = xfs_iflush_int(ip, bp);
3062 	if (error)
3063 		goto corrupt_out;
3064 
3065 	/*
3066 	 * If the buffer is pinned then push on the log now so we won't
3067 	 * get stuck waiting in the write for too long.
3068 	 */
3069 	if (xfs_buf_ispinned(bp))
3070 		xfs_log_force(mp, 0);
3071 
3072 	/*
3073 	 * inode clustering:
3074 	 * see if other inodes can be gathered into this write
3075 	 */
3076 	error = xfs_iflush_cluster(ip, bp);
3077 	if (error)
3078 		goto cluster_corrupt_out;
3079 
3080 	*bpp = bp;
3081 	return 0;
3082 
3083 corrupt_out:
3084 	xfs_buf_relse(bp);
3085 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3086 cluster_corrupt_out:
3087 	error = XFS_ERROR(EFSCORRUPTED);
3088 abort_out:
3089 	/*
3090 	 * Unlocks the flush lock
3091 	 */
3092 	xfs_iflush_abort(ip, false);
3093 	return error;
3094 }
3095 
3096 STATIC int
3097 xfs_iflush_int(
3098 	struct xfs_inode	*ip,
3099 	struct xfs_buf		*bp)
3100 {
3101 	struct xfs_inode_log_item *iip = ip->i_itemp;
3102 	struct xfs_dinode	*dip;
3103 	struct xfs_mount	*mp = ip->i_mount;
3104 
3105 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3106 	ASSERT(xfs_isiflocked(ip));
3107 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3108 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3109 	ASSERT(iip != NULL && iip->ili_fields != 0);
3110 
3111 	/* set *dip = inode's place in the buffer */
3112 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3113 
3114 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3115 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3116 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3117 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3118 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3119 		goto corrupt_out;
3120 	}
3121 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3122 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3123 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3124 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3125 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3126 		goto corrupt_out;
3127 	}
3128 	if (S_ISREG(ip->i_d.di_mode)) {
3129 		if (XFS_TEST_ERROR(
3130 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3131 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3132 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3133 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3134 				"%s: Bad regular inode %Lu, ptr 0x%p",
3135 				__func__, ip->i_ino, ip);
3136 			goto corrupt_out;
3137 		}
3138 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3139 		if (XFS_TEST_ERROR(
3140 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3141 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3142 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3143 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3144 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3145 				"%s: Bad directory inode %Lu, ptr 0x%p",
3146 				__func__, ip->i_ino, ip);
3147 			goto corrupt_out;
3148 		}
3149 	}
3150 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3151 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3152 				XFS_RANDOM_IFLUSH_5)) {
3153 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3154 			"%s: detected corrupt incore inode %Lu, "
3155 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3156 			__func__, ip->i_ino,
3157 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3158 			ip->i_d.di_nblocks, ip);
3159 		goto corrupt_out;
3160 	}
3161 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3162 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3163 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3164 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3165 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3166 		goto corrupt_out;
3167 	}
3168 
3169 	/*
3170 	 * Inode item log recovery for v1/v2 inodes are dependent on the
3171 	 * di_flushiter count for correct sequencing. We bump the flush
3172 	 * iteration count so we can detect flushes which postdate a log record
3173 	 * during recovery. This is redundant as we now log every change and
3174 	 * hence this can't happen but we need to still do it to ensure
3175 	 * backwards compatibility with old kernels that predate logging all
3176 	 * inode changes.
3177 	 */
3178 	if (ip->i_d.di_version < 3)
3179 		ip->i_d.di_flushiter++;
3180 
3181 	/*
3182 	 * Copy the dirty parts of the inode into the on-disk
3183 	 * inode.  We always copy out the core of the inode,
3184 	 * because if the inode is dirty at all the core must
3185 	 * be.
3186 	 */
3187 	xfs_dinode_to_disk(dip, &ip->i_d);
3188 
3189 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3190 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3191 		ip->i_d.di_flushiter = 0;
3192 
3193 	/*
3194 	 * If this is really an old format inode and the superblock version
3195 	 * has not been updated to support only new format inodes, then
3196 	 * convert back to the old inode format.  If the superblock version
3197 	 * has been updated, then make the conversion permanent.
3198 	 */
3199 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3200 	if (ip->i_d.di_version == 1) {
3201 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3202 			/*
3203 			 * Convert it back.
3204 			 */
3205 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3206 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3207 		} else {
3208 			/*
3209 			 * The superblock version has already been bumped,
3210 			 * so just make the conversion to the new inode
3211 			 * format permanent.
3212 			 */
3213 			ip->i_d.di_version = 2;
3214 			dip->di_version = 2;
3215 			ip->i_d.di_onlink = 0;
3216 			dip->di_onlink = 0;
3217 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3218 			memset(&(dip->di_pad[0]), 0,
3219 			      sizeof(dip->di_pad));
3220 			ASSERT(xfs_get_projid(ip) == 0);
3221 		}
3222 	}
3223 
3224 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3225 	if (XFS_IFORK_Q(ip))
3226 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3227 	xfs_inobp_check(mp, bp);
3228 
3229 	/*
3230 	 * We've recorded everything logged in the inode, so we'd like to clear
3231 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3232 	 * However, we can't stop logging all this information until the data
3233 	 * we've copied into the disk buffer is written to disk.  If we did we
3234 	 * might overwrite the copy of the inode in the log with all the data
3235 	 * after re-logging only part of it, and in the face of a crash we
3236 	 * wouldn't have all the data we need to recover.
3237 	 *
3238 	 * What we do is move the bits to the ili_last_fields field.  When
3239 	 * logging the inode, these bits are moved back to the ili_fields field.
3240 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3241 	 * know that the information those bits represent is permanently on
3242 	 * disk.  As long as the flush completes before the inode is logged
3243 	 * again, then both ili_fields and ili_last_fields will be cleared.
3244 	 *
3245 	 * We can play with the ili_fields bits here, because the inode lock
3246 	 * must be held exclusively in order to set bits there and the flush
3247 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3248 	 * done routine can tell whether or not to look in the AIL.  Also, store
3249 	 * the current LSN of the inode so that we can tell whether the item has
3250 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3251 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3252 	 * atomically.
3253 	 */
3254 	iip->ili_last_fields = iip->ili_fields;
3255 	iip->ili_fields = 0;
3256 	iip->ili_logged = 1;
3257 
3258 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3259 				&iip->ili_item.li_lsn);
3260 
3261 	/*
3262 	 * Attach the function xfs_iflush_done to the inode's
3263 	 * buffer.  This will remove the inode from the AIL
3264 	 * and unlock the inode's flush lock when the inode is
3265 	 * completely written to disk.
3266 	 */
3267 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3268 
3269 	/* update the lsn in the on disk inode if required */
3270 	if (ip->i_d.di_version == 3)
3271 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3272 
3273 	/* generate the checksum. */
3274 	xfs_dinode_calc_crc(mp, dip);
3275 
3276 	ASSERT(bp->b_fspriv != NULL);
3277 	ASSERT(bp->b_iodone != NULL);
3278 	return 0;
3279 
3280 corrupt_out:
3281 	return XFS_ERROR(EFSCORRUPTED);
3282 }
3283