xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision ae213c44)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
8 
9 #include "xfs.h"
10 #include "xfs_fs.h"
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
15 #include "xfs_sb.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
21 #include "xfs_dir2.h"
22 #include "xfs_attr_sf.h"
23 #include "xfs_attr.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_bmap.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_log.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
44 
45 kmem_zone_t *xfs_inode_zone;
46 
47 /*
48  * Used in xfs_itruncate_extents().  This is the maximum number of extents
49  * freed from a file in a single transaction.
50  */
51 #define	XFS_ITRUNC_MAX_EXTENTS	2
52 
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
56 
57 /*
58  * helper function to extract extent size hint from inode
59  */
60 xfs_extlen_t
61 xfs_get_extsz_hint(
62 	struct xfs_inode	*ip)
63 {
64 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 		return ip->i_d.di_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_d.di_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_sem locking order:
148  *
149  * i_rwsem -> page lock -> mmap_sem
150  * mmap_sem -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_sem locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_sem.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	xfs_inode_t	**ips,
445 	int		inodes,
446 	uint		lock_mode)
447 {
448 	int		attempts = 0, i, j, try_lock;
449 	xfs_log_item_t	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	xfs_log_item_t		*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = (xfs_log_item_t *)ip0->i_itemp;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 void
602 __xfs_iflock(
603 	struct xfs_inode	*ip)
604 {
605 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607 
608 	do {
609 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 		if (xfs_isiflocked(ip))
611 			io_schedule();
612 	} while (!xfs_iflock_nowait(ip));
613 
614 	finish_wait(wq, &wait.wq_entry);
615 }
616 
617 STATIC uint
618 _xfs_dic2xflags(
619 	uint16_t		di_flags,
620 	uint64_t		di_flags2,
621 	bool			has_attr)
622 {
623 	uint			flags = 0;
624 
625 	if (di_flags & XFS_DIFLAG_ANY) {
626 		if (di_flags & XFS_DIFLAG_REALTIME)
627 			flags |= FS_XFLAG_REALTIME;
628 		if (di_flags & XFS_DIFLAG_PREALLOC)
629 			flags |= FS_XFLAG_PREALLOC;
630 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 			flags |= FS_XFLAG_IMMUTABLE;
632 		if (di_flags & XFS_DIFLAG_APPEND)
633 			flags |= FS_XFLAG_APPEND;
634 		if (di_flags & XFS_DIFLAG_SYNC)
635 			flags |= FS_XFLAG_SYNC;
636 		if (di_flags & XFS_DIFLAG_NOATIME)
637 			flags |= FS_XFLAG_NOATIME;
638 		if (di_flags & XFS_DIFLAG_NODUMP)
639 			flags |= FS_XFLAG_NODUMP;
640 		if (di_flags & XFS_DIFLAG_RTINHERIT)
641 			flags |= FS_XFLAG_RTINHERIT;
642 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 			flags |= FS_XFLAG_PROJINHERIT;
644 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 			flags |= FS_XFLAG_NOSYMLINKS;
646 		if (di_flags & XFS_DIFLAG_EXTSIZE)
647 			flags |= FS_XFLAG_EXTSIZE;
648 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 			flags |= FS_XFLAG_EXTSZINHERIT;
650 		if (di_flags & XFS_DIFLAG_NODEFRAG)
651 			flags |= FS_XFLAG_NODEFRAG;
652 		if (di_flags & XFS_DIFLAG_FILESTREAM)
653 			flags |= FS_XFLAG_FILESTREAM;
654 	}
655 
656 	if (di_flags2 & XFS_DIFLAG2_ANY) {
657 		if (di_flags2 & XFS_DIFLAG2_DAX)
658 			flags |= FS_XFLAG_DAX;
659 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 			flags |= FS_XFLAG_COWEXTSIZE;
661 	}
662 
663 	if (has_attr)
664 		flags |= FS_XFLAG_HASATTR;
665 
666 	return flags;
667 }
668 
669 uint
670 xfs_ip2xflags(
671 	struct xfs_inode	*ip)
672 {
673 	struct xfs_icdinode	*dic = &ip->i_d;
674 
675 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 	if (error)
701 		goto out_unlock;
702 
703 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 	if (error)
705 		goto out_free_name;
706 
707 	return 0;
708 
709 out_free_name:
710 	if (ci_name)
711 		kmem_free(ci_name->name);
712 out_unlock:
713 	*ipp = NULL;
714 	return error;
715 }
716 
717 /*
718  * Allocate an inode on disk and return a copy of its in-core version.
719  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
720  * appropriately within the inode.  The uid and gid for the inode are
721  * set according to the contents of the given cred structure.
722  *
723  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724  * has a free inode available, call xfs_iget() to obtain the in-core
725  * version of the allocated inode.  Finally, fill in the inode and
726  * log its initial contents.  In this case, ialloc_context would be
727  * set to NULL.
728  *
729  * If xfs_dialloc() does not have an available inode, it will replenish
730  * its supply by doing an allocation. Since we can only do one
731  * allocation within a transaction without deadlocks, we must commit
732  * the current transaction before returning the inode itself.
733  * In this case, therefore, we will set ialloc_context and return.
734  * The caller should then commit the current transaction, start a new
735  * transaction, and call xfs_ialloc() again to actually get the inode.
736  *
737  * To ensure that some other process does not grab the inode that
738  * was allocated during the first call to xfs_ialloc(), this routine
739  * also returns the [locked] bp pointing to the head of the freelist
740  * as ialloc_context.  The caller should hold this buffer across
741  * the commit and pass it back into this routine on the second call.
742  *
743  * If we are allocating quota inodes, we do not have a parent inode
744  * to attach to or associate with (i.e. pip == NULL) because they
745  * are not linked into the directory structure - they are attached
746  * directly to the superblock - and so have no parent.
747  */
748 static int
749 xfs_ialloc(
750 	xfs_trans_t	*tp,
751 	xfs_inode_t	*pip,
752 	umode_t		mode,
753 	xfs_nlink_t	nlink,
754 	dev_t		rdev,
755 	prid_t		prid,
756 	xfs_buf_t	**ialloc_context,
757 	xfs_inode_t	**ipp)
758 {
759 	struct xfs_mount *mp = tp->t_mountp;
760 	xfs_ino_t	ino;
761 	xfs_inode_t	*ip;
762 	uint		flags;
763 	int		error;
764 	struct timespec64 tv;
765 	struct inode	*inode;
766 
767 	/*
768 	 * Call the space management code to pick
769 	 * the on-disk inode to be allocated.
770 	 */
771 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 			    ialloc_context, &ino);
773 	if (error)
774 		return error;
775 	if (*ialloc_context || ino == NULLFSINO) {
776 		*ipp = NULL;
777 		return 0;
778 	}
779 	ASSERT(*ialloc_context == NULL);
780 
781 	/*
782 	 * Protect against obviously corrupt allocation btree records. Later
783 	 * xfs_iget checks will catch re-allocation of other active in-memory
784 	 * and on-disk inodes. If we don't catch reallocating the parent inode
785 	 * here we will deadlock in xfs_iget() so we have to do these checks
786 	 * first.
787 	 */
788 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 		return -EFSCORRUPTED;
791 	}
792 
793 	/*
794 	 * Get the in-core inode with the lock held exclusively.
795 	 * This is because we're setting fields here we need
796 	 * to prevent others from looking at until we're done.
797 	 */
798 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 			 XFS_ILOCK_EXCL, &ip);
800 	if (error)
801 		return error;
802 	ASSERT(ip != NULL);
803 	inode = VFS_I(ip);
804 
805 	/*
806 	 * We always convert v1 inodes to v2 now - we only support filesystems
807 	 * with >= v2 inode capability, so there is no reason for ever leaving
808 	 * an inode in v1 format.
809 	 */
810 	if (ip->i_d.di_version == 1)
811 		ip->i_d.di_version = 2;
812 
813 	inode->i_mode = mode;
814 	set_nlink(inode, nlink);
815 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 	inode->i_rdev = rdev;
818 	xfs_set_projid(ip, prid);
819 
820 	if (pip && XFS_INHERIT_GID(pip)) {
821 		ip->i_d.di_gid = pip->i_d.di_gid;
822 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 			inode->i_mode |= S_ISGID;
824 	}
825 
826 	/*
827 	 * If the group ID of the new file does not match the effective group
828 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 	 * (and only if the irix_sgid_inherit compatibility variable is set).
830 	 */
831 	if ((irix_sgid_inherit) &&
832 	    (inode->i_mode & S_ISGID) &&
833 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 		inode->i_mode &= ~S_ISGID;
835 
836 	ip->i_d.di_size = 0;
837 	ip->i_d.di_nextents = 0;
838 	ASSERT(ip->i_d.di_nblocks == 0);
839 
840 	tv = current_time(inode);
841 	inode->i_mtime = tv;
842 	inode->i_atime = tv;
843 	inode->i_ctime = tv;
844 
845 	ip->i_d.di_extsize = 0;
846 	ip->i_d.di_dmevmask = 0;
847 	ip->i_d.di_dmstate = 0;
848 	ip->i_d.di_flags = 0;
849 
850 	if (ip->i_d.di_version == 3) {
851 		inode_set_iversion(inode, 1);
852 		ip->i_d.di_flags2 = 0;
853 		ip->i_d.di_cowextsize = 0;
854 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
856 	}
857 
858 
859 	flags = XFS_ILOG_CORE;
860 	switch (mode & S_IFMT) {
861 	case S_IFIFO:
862 	case S_IFCHR:
863 	case S_IFBLK:
864 	case S_IFSOCK:
865 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 		ip->i_df.if_flags = 0;
867 		flags |= XFS_ILOG_DEV;
868 		break;
869 	case S_IFREG:
870 	case S_IFDIR:
871 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 			uint		di_flags = 0;
873 
874 			if (S_ISDIR(mode)) {
875 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 					di_flags |= XFS_DIFLAG_RTINHERIT;
877 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 					ip->i_d.di_extsize = pip->i_d.di_extsize;
880 				}
881 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 					di_flags |= XFS_DIFLAG_PROJINHERIT;
883 			} else if (S_ISREG(mode)) {
884 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 					di_flags |= XFS_DIFLAG_REALTIME;
886 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 					di_flags |= XFS_DIFLAG_EXTSIZE;
888 					ip->i_d.di_extsize = pip->i_d.di_extsize;
889 				}
890 			}
891 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 			    xfs_inherit_noatime)
893 				di_flags |= XFS_DIFLAG_NOATIME;
894 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 			    xfs_inherit_nodump)
896 				di_flags |= XFS_DIFLAG_NODUMP;
897 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 			    xfs_inherit_sync)
899 				di_flags |= XFS_DIFLAG_SYNC;
900 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 			    xfs_inherit_nosymlinks)
902 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 			    xfs_inherit_nodefrag)
905 				di_flags |= XFS_DIFLAG_NODEFRAG;
906 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 				di_flags |= XFS_DIFLAG_FILESTREAM;
908 
909 			ip->i_d.di_flags |= di_flags;
910 		}
911 		if (pip &&
912 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 		    pip->i_d.di_version == 3 &&
914 		    ip->i_d.di_version == 3) {
915 			uint64_t	di_flags2 = 0;
916 
917 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 			}
921 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 				di_flags2 |= XFS_DIFLAG2_DAX;
923 
924 			ip->i_d.di_flags2 |= di_flags2;
925 		}
926 		/* FALLTHROUGH */
927 	case S_IFLNK:
928 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 		ip->i_df.if_flags = XFS_IFEXTENTS;
930 		ip->i_df.if_bytes = 0;
931 		ip->i_df.if_u1.if_root = NULL;
932 		break;
933 	default:
934 		ASSERT(0);
935 	}
936 	/*
937 	 * Attribute fork settings for new inode.
938 	 */
939 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 	ip->i_d.di_anextents = 0;
941 
942 	/*
943 	 * Log the new values stuffed into the inode.
944 	 */
945 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 	xfs_trans_log_inode(tp, ip, flags);
947 
948 	/* now that we have an i_mode we can setup the inode structure */
949 	xfs_setup_inode(ip);
950 
951 	*ipp = ip;
952 	return 0;
953 }
954 
955 /*
956  * Allocates a new inode from disk and return a pointer to the
957  * incore copy. This routine will internally commit the current
958  * transaction and allocate a new one if the Space Manager needed
959  * to do an allocation to replenish the inode free-list.
960  *
961  * This routine is designed to be called from xfs_create and
962  * xfs_create_dir.
963  *
964  */
965 int
966 xfs_dir_ialloc(
967 	xfs_trans_t	**tpp,		/* input: current transaction;
968 					   output: may be a new transaction. */
969 	xfs_inode_t	*dp,		/* directory within whose allocate
970 					   the inode. */
971 	umode_t		mode,
972 	xfs_nlink_t	nlink,
973 	dev_t		rdev,
974 	prid_t		prid,		/* project id */
975 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
976 					   locked. */
977 {
978 	xfs_trans_t	*tp;
979 	xfs_inode_t	*ip;
980 	xfs_buf_t	*ialloc_context = NULL;
981 	int		code;
982 	void		*dqinfo;
983 	uint		tflags;
984 
985 	tp = *tpp;
986 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987 
988 	/*
989 	 * xfs_ialloc will return a pointer to an incore inode if
990 	 * the Space Manager has an available inode on the free
991 	 * list. Otherwise, it will do an allocation and replenish
992 	 * the freelist.  Since we can only do one allocation per
993 	 * transaction without deadlocks, we will need to commit the
994 	 * current transaction and start a new one.  We will then
995 	 * need to call xfs_ialloc again to get the inode.
996 	 *
997 	 * If xfs_ialloc did an allocation to replenish the freelist,
998 	 * it returns the bp containing the head of the freelist as
999 	 * ialloc_context. We will hold a lock on it across the
1000 	 * transaction commit so that no other process can steal
1001 	 * the inode(s) that we've just allocated.
1002 	 */
1003 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 			&ip);
1005 
1006 	/*
1007 	 * Return an error if we were unable to allocate a new inode.
1008 	 * This should only happen if we run out of space on disk or
1009 	 * encounter a disk error.
1010 	 */
1011 	if (code) {
1012 		*ipp = NULL;
1013 		return code;
1014 	}
1015 	if (!ialloc_context && !ip) {
1016 		*ipp = NULL;
1017 		return -ENOSPC;
1018 	}
1019 
1020 	/*
1021 	 * If the AGI buffer is non-NULL, then we were unable to get an
1022 	 * inode in one operation.  We need to commit the current
1023 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1024 	 * to succeed the second time.
1025 	 */
1026 	if (ialloc_context) {
1027 		/*
1028 		 * Normally, xfs_trans_commit releases all the locks.
1029 		 * We call bhold to hang on to the ialloc_context across
1030 		 * the commit.  Holding this buffer prevents any other
1031 		 * processes from doing any allocations in this
1032 		 * allocation group.
1033 		 */
1034 		xfs_trans_bhold(tp, ialloc_context);
1035 
1036 		/*
1037 		 * We want the quota changes to be associated with the next
1038 		 * transaction, NOT this one. So, detach the dqinfo from this
1039 		 * and attach it to the next transaction.
1040 		 */
1041 		dqinfo = NULL;
1042 		tflags = 0;
1043 		if (tp->t_dqinfo) {
1044 			dqinfo = (void *)tp->t_dqinfo;
1045 			tp->t_dqinfo = NULL;
1046 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 		}
1049 
1050 		code = xfs_trans_roll(&tp);
1051 
1052 		/*
1053 		 * Re-attach the quota info that we detached from prev trx.
1054 		 */
1055 		if (dqinfo) {
1056 			tp->t_dqinfo = dqinfo;
1057 			tp->t_flags |= tflags;
1058 		}
1059 
1060 		if (code) {
1061 			xfs_buf_relse(ialloc_context);
1062 			*tpp = tp;
1063 			*ipp = NULL;
1064 			return code;
1065 		}
1066 		xfs_trans_bjoin(tp, ialloc_context);
1067 
1068 		/*
1069 		 * Call ialloc again. Since we've locked out all
1070 		 * other allocations in this allocation group,
1071 		 * this call should always succeed.
1072 		 */
1073 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 				  &ialloc_context, &ip);
1075 
1076 		/*
1077 		 * If we get an error at this point, return to the caller
1078 		 * so that the current transaction can be aborted.
1079 		 */
1080 		if (code) {
1081 			*tpp = tp;
1082 			*ipp = NULL;
1083 			return code;
1084 		}
1085 		ASSERT(!ialloc_context && ip);
1086 
1087 	}
1088 
1089 	*ipp = ip;
1090 	*tpp = tp;
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Decrement the link count on an inode & log the change.  If this causes the
1097  * link count to go to zero, move the inode to AGI unlinked list so that it can
1098  * be freed when the last active reference goes away via xfs_inactive().
1099  */
1100 static int			/* error */
1101 xfs_droplink(
1102 	xfs_trans_t *tp,
1103 	xfs_inode_t *ip)
1104 {
1105 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106 
1107 	drop_nlink(VFS_I(ip));
1108 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109 
1110 	if (VFS_I(ip)->i_nlink)
1111 		return 0;
1112 
1113 	return xfs_iunlink(tp, ip);
1114 }
1115 
1116 /*
1117  * Increment the link count on an inode & log the change.
1118  */
1119 static void
1120 xfs_bumplink(
1121 	xfs_trans_t *tp,
1122 	xfs_inode_t *ip)
1123 {
1124 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125 
1126 	ASSERT(ip->i_d.di_version > 1);
1127 	inc_nlink(VFS_I(ip));
1128 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 }
1130 
1131 int
1132 xfs_create(
1133 	xfs_inode_t		*dp,
1134 	struct xfs_name		*name,
1135 	umode_t			mode,
1136 	dev_t			rdev,
1137 	xfs_inode_t		**ipp)
1138 {
1139 	int			is_dir = S_ISDIR(mode);
1140 	struct xfs_mount	*mp = dp->i_mount;
1141 	struct xfs_inode	*ip = NULL;
1142 	struct xfs_trans	*tp = NULL;
1143 	int			error;
1144 	bool                    unlock_dp_on_error = false;
1145 	prid_t			prid;
1146 	struct xfs_dquot	*udqp = NULL;
1147 	struct xfs_dquot	*gdqp = NULL;
1148 	struct xfs_dquot	*pdqp = NULL;
1149 	struct xfs_trans_res	*tres;
1150 	uint			resblks;
1151 
1152 	trace_xfs_create(dp, name);
1153 
1154 	if (XFS_FORCED_SHUTDOWN(mp))
1155 		return -EIO;
1156 
1157 	prid = xfs_get_initial_prid(dp);
1158 
1159 	/*
1160 	 * Make sure that we have allocated dquot(s) on disk.
1161 	 */
1162 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1163 					xfs_kgid_to_gid(current_fsgid()), prid,
1164 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1165 					&udqp, &gdqp, &pdqp);
1166 	if (error)
1167 		return error;
1168 
1169 	if (is_dir) {
1170 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1171 		tres = &M_RES(mp)->tr_mkdir;
1172 	} else {
1173 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1174 		tres = &M_RES(mp)->tr_create;
1175 	}
1176 
1177 	/*
1178 	 * Initially assume that the file does not exist and
1179 	 * reserve the resources for that case.  If that is not
1180 	 * the case we'll drop the one we have and get a more
1181 	 * appropriate transaction later.
1182 	 */
1183 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1184 	if (error == -ENOSPC) {
1185 		/* flush outstanding delalloc blocks and retry */
1186 		xfs_flush_inodes(mp);
1187 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1188 	}
1189 	if (error)
1190 		goto out_release_inode;
1191 
1192 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1193 	unlock_dp_on_error = true;
1194 
1195 	/*
1196 	 * Reserve disk quota and the inode.
1197 	 */
1198 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1199 						pdqp, resblks, 1, 0);
1200 	if (error)
1201 		goto out_trans_cancel;
1202 
1203 	/*
1204 	 * A newly created regular or special file just has one directory
1205 	 * entry pointing to them, but a directory also the "." entry
1206 	 * pointing to itself.
1207 	 */
1208 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1209 	if (error)
1210 		goto out_trans_cancel;
1211 
1212 	/*
1213 	 * Now we join the directory inode to the transaction.  We do not do it
1214 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1215 	 * (and release all the locks).  An error from here on will result in
1216 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1217 	 * error path.
1218 	 */
1219 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1220 	unlock_dp_on_error = false;
1221 
1222 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1223 				   resblks ?
1224 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1225 	if (error) {
1226 		ASSERT(error != -ENOSPC);
1227 		goto out_trans_cancel;
1228 	}
1229 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1230 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1231 
1232 	if (is_dir) {
1233 		error = xfs_dir_init(tp, ip, dp);
1234 		if (error)
1235 			goto out_trans_cancel;
1236 
1237 		xfs_bumplink(tp, dp);
1238 	}
1239 
1240 	/*
1241 	 * If this is a synchronous mount, make sure that the
1242 	 * create transaction goes to disk before returning to
1243 	 * the user.
1244 	 */
1245 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1246 		xfs_trans_set_sync(tp);
1247 
1248 	/*
1249 	 * Attach the dquot(s) to the inodes and modify them incore.
1250 	 * These ids of the inode couldn't have changed since the new
1251 	 * inode has been locked ever since it was created.
1252 	 */
1253 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1254 
1255 	error = xfs_trans_commit(tp);
1256 	if (error)
1257 		goto out_release_inode;
1258 
1259 	xfs_qm_dqrele(udqp);
1260 	xfs_qm_dqrele(gdqp);
1261 	xfs_qm_dqrele(pdqp);
1262 
1263 	*ipp = ip;
1264 	return 0;
1265 
1266  out_trans_cancel:
1267 	xfs_trans_cancel(tp);
1268  out_release_inode:
1269 	/*
1270 	 * Wait until after the current transaction is aborted to finish the
1271 	 * setup of the inode and release the inode.  This prevents recursive
1272 	 * transactions and deadlocks from xfs_inactive.
1273 	 */
1274 	if (ip) {
1275 		xfs_finish_inode_setup(ip);
1276 		xfs_irele(ip);
1277 	}
1278 
1279 	xfs_qm_dqrele(udqp);
1280 	xfs_qm_dqrele(gdqp);
1281 	xfs_qm_dqrele(pdqp);
1282 
1283 	if (unlock_dp_on_error)
1284 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1285 	return error;
1286 }
1287 
1288 int
1289 xfs_create_tmpfile(
1290 	struct xfs_inode	*dp,
1291 	umode_t			mode,
1292 	struct xfs_inode	**ipp)
1293 {
1294 	struct xfs_mount	*mp = dp->i_mount;
1295 	struct xfs_inode	*ip = NULL;
1296 	struct xfs_trans	*tp = NULL;
1297 	int			error;
1298 	prid_t                  prid;
1299 	struct xfs_dquot	*udqp = NULL;
1300 	struct xfs_dquot	*gdqp = NULL;
1301 	struct xfs_dquot	*pdqp = NULL;
1302 	struct xfs_trans_res	*tres;
1303 	uint			resblks;
1304 
1305 	if (XFS_FORCED_SHUTDOWN(mp))
1306 		return -EIO;
1307 
1308 	prid = xfs_get_initial_prid(dp);
1309 
1310 	/*
1311 	 * Make sure that we have allocated dquot(s) on disk.
1312 	 */
1313 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1314 				xfs_kgid_to_gid(current_fsgid()), prid,
1315 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1316 				&udqp, &gdqp, &pdqp);
1317 	if (error)
1318 		return error;
1319 
1320 	resblks = XFS_IALLOC_SPACE_RES(mp);
1321 	tres = &M_RES(mp)->tr_create_tmpfile;
1322 
1323 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1324 	if (error)
1325 		goto out_release_inode;
1326 
1327 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1328 						pdqp, resblks, 1, 0);
1329 	if (error)
1330 		goto out_trans_cancel;
1331 
1332 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1333 	if (error)
1334 		goto out_trans_cancel;
1335 
1336 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1337 		xfs_trans_set_sync(tp);
1338 
1339 	/*
1340 	 * Attach the dquot(s) to the inodes and modify them incore.
1341 	 * These ids of the inode couldn't have changed since the new
1342 	 * inode has been locked ever since it was created.
1343 	 */
1344 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1345 
1346 	error = xfs_iunlink(tp, ip);
1347 	if (error)
1348 		goto out_trans_cancel;
1349 
1350 	error = xfs_trans_commit(tp);
1351 	if (error)
1352 		goto out_release_inode;
1353 
1354 	xfs_qm_dqrele(udqp);
1355 	xfs_qm_dqrele(gdqp);
1356 	xfs_qm_dqrele(pdqp);
1357 
1358 	*ipp = ip;
1359 	return 0;
1360 
1361  out_trans_cancel:
1362 	xfs_trans_cancel(tp);
1363  out_release_inode:
1364 	/*
1365 	 * Wait until after the current transaction is aborted to finish the
1366 	 * setup of the inode and release the inode.  This prevents recursive
1367 	 * transactions and deadlocks from xfs_inactive.
1368 	 */
1369 	if (ip) {
1370 		xfs_finish_inode_setup(ip);
1371 		xfs_irele(ip);
1372 	}
1373 
1374 	xfs_qm_dqrele(udqp);
1375 	xfs_qm_dqrele(gdqp);
1376 	xfs_qm_dqrele(pdqp);
1377 
1378 	return error;
1379 }
1380 
1381 int
1382 xfs_link(
1383 	xfs_inode_t		*tdp,
1384 	xfs_inode_t		*sip,
1385 	struct xfs_name		*target_name)
1386 {
1387 	xfs_mount_t		*mp = tdp->i_mount;
1388 	xfs_trans_t		*tp;
1389 	int			error;
1390 	int			resblks;
1391 
1392 	trace_xfs_link(tdp, target_name);
1393 
1394 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1395 
1396 	if (XFS_FORCED_SHUTDOWN(mp))
1397 		return -EIO;
1398 
1399 	error = xfs_qm_dqattach(sip);
1400 	if (error)
1401 		goto std_return;
1402 
1403 	error = xfs_qm_dqattach(tdp);
1404 	if (error)
1405 		goto std_return;
1406 
1407 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1408 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1409 	if (error == -ENOSPC) {
1410 		resblks = 0;
1411 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1412 	}
1413 	if (error)
1414 		goto std_return;
1415 
1416 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1417 
1418 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1419 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1420 
1421 	/*
1422 	 * If we are using project inheritance, we only allow hard link
1423 	 * creation in our tree when the project IDs are the same; else
1424 	 * the tree quota mechanism could be circumvented.
1425 	 */
1426 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1427 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1428 		error = -EXDEV;
1429 		goto error_return;
1430 	}
1431 
1432 	if (!resblks) {
1433 		error = xfs_dir_canenter(tp, tdp, target_name);
1434 		if (error)
1435 			goto error_return;
1436 	}
1437 
1438 	/*
1439 	 * Handle initial link state of O_TMPFILE inode
1440 	 */
1441 	if (VFS_I(sip)->i_nlink == 0) {
1442 		error = xfs_iunlink_remove(tp, sip);
1443 		if (error)
1444 			goto error_return;
1445 	}
1446 
1447 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1448 				   resblks);
1449 	if (error)
1450 		goto error_return;
1451 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1452 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1453 
1454 	xfs_bumplink(tp, sip);
1455 
1456 	/*
1457 	 * If this is a synchronous mount, make sure that the
1458 	 * link transaction goes to disk before returning to
1459 	 * the user.
1460 	 */
1461 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1462 		xfs_trans_set_sync(tp);
1463 
1464 	return xfs_trans_commit(tp);
1465 
1466  error_return:
1467 	xfs_trans_cancel(tp);
1468  std_return:
1469 	return error;
1470 }
1471 
1472 /* Clear the reflink flag and the cowblocks tag if possible. */
1473 static void
1474 xfs_itruncate_clear_reflink_flags(
1475 	struct xfs_inode	*ip)
1476 {
1477 	struct xfs_ifork	*dfork;
1478 	struct xfs_ifork	*cfork;
1479 
1480 	if (!xfs_is_reflink_inode(ip))
1481 		return;
1482 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1483 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1484 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1485 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1486 	if (cfork->if_bytes == 0)
1487 		xfs_inode_clear_cowblocks_tag(ip);
1488 }
1489 
1490 /*
1491  * Free up the underlying blocks past new_size.  The new size must be smaller
1492  * than the current size.  This routine can be used both for the attribute and
1493  * data fork, and does not modify the inode size, which is left to the caller.
1494  *
1495  * The transaction passed to this routine must have made a permanent log
1496  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1497  * given transaction and start new ones, so make sure everything involved in
1498  * the transaction is tidy before calling here.  Some transaction will be
1499  * returned to the caller to be committed.  The incoming transaction must
1500  * already include the inode, and both inode locks must be held exclusively.
1501  * The inode must also be "held" within the transaction.  On return the inode
1502  * will be "held" within the returned transaction.  This routine does NOT
1503  * require any disk space to be reserved for it within the transaction.
1504  *
1505  * If we get an error, we must return with the inode locked and linked into the
1506  * current transaction. This keeps things simple for the higher level code,
1507  * because it always knows that the inode is locked and held in the transaction
1508  * that returns to it whether errors occur or not.  We don't mark the inode
1509  * dirty on error so that transactions can be easily aborted if possible.
1510  */
1511 int
1512 xfs_itruncate_extents_flags(
1513 	struct xfs_trans	**tpp,
1514 	struct xfs_inode	*ip,
1515 	int			whichfork,
1516 	xfs_fsize_t		new_size,
1517 	int			flags)
1518 {
1519 	struct xfs_mount	*mp = ip->i_mount;
1520 	struct xfs_trans	*tp = *tpp;
1521 	xfs_fileoff_t		first_unmap_block;
1522 	xfs_fileoff_t		last_block;
1523 	xfs_filblks_t		unmap_len;
1524 	int			error = 0;
1525 	int			done = 0;
1526 
1527 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1528 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1529 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1530 	ASSERT(new_size <= XFS_ISIZE(ip));
1531 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1532 	ASSERT(ip->i_itemp != NULL);
1533 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1534 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1535 
1536 	trace_xfs_itruncate_extents_start(ip, new_size);
1537 
1538 	flags |= xfs_bmapi_aflag(whichfork);
1539 
1540 	/*
1541 	 * Since it is possible for space to become allocated beyond
1542 	 * the end of the file (in a crash where the space is allocated
1543 	 * but the inode size is not yet updated), simply remove any
1544 	 * blocks which show up between the new EOF and the maximum
1545 	 * possible file size.  If the first block to be removed is
1546 	 * beyond the maximum file size (ie it is the same as last_block),
1547 	 * then there is nothing to do.
1548 	 */
1549 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1550 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1551 	if (first_unmap_block == last_block)
1552 		return 0;
1553 
1554 	ASSERT(first_unmap_block < last_block);
1555 	unmap_len = last_block - first_unmap_block + 1;
1556 	while (!done) {
1557 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1558 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1559 				    XFS_ITRUNC_MAX_EXTENTS, &done);
1560 		if (error)
1561 			goto out;
1562 
1563 		/*
1564 		 * Duplicate the transaction that has the permanent
1565 		 * reservation and commit the old transaction.
1566 		 */
1567 		error = xfs_defer_finish(&tp);
1568 		if (error)
1569 			goto out;
1570 
1571 		error = xfs_trans_roll_inode(&tp, ip);
1572 		if (error)
1573 			goto out;
1574 	}
1575 
1576 	if (whichfork == XFS_DATA_FORK) {
1577 		/* Remove all pending CoW reservations. */
1578 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1579 				first_unmap_block, last_block, true);
1580 		if (error)
1581 			goto out;
1582 
1583 		xfs_itruncate_clear_reflink_flags(ip);
1584 	}
1585 
1586 	/*
1587 	 * Always re-log the inode so that our permanent transaction can keep
1588 	 * on rolling it forward in the log.
1589 	 */
1590 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1591 
1592 	trace_xfs_itruncate_extents_end(ip, new_size);
1593 
1594 out:
1595 	*tpp = tp;
1596 	return error;
1597 }
1598 
1599 int
1600 xfs_release(
1601 	xfs_inode_t	*ip)
1602 {
1603 	xfs_mount_t	*mp = ip->i_mount;
1604 	int		error;
1605 
1606 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1607 		return 0;
1608 
1609 	/* If this is a read-only mount, don't do this (would generate I/O) */
1610 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1611 		return 0;
1612 
1613 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1614 		int truncated;
1615 
1616 		/*
1617 		 * If we previously truncated this file and removed old data
1618 		 * in the process, we want to initiate "early" writeout on
1619 		 * the last close.  This is an attempt to combat the notorious
1620 		 * NULL files problem which is particularly noticeable from a
1621 		 * truncate down, buffered (re-)write (delalloc), followed by
1622 		 * a crash.  What we are effectively doing here is
1623 		 * significantly reducing the time window where we'd otherwise
1624 		 * be exposed to that problem.
1625 		 */
1626 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1627 		if (truncated) {
1628 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1629 			if (ip->i_delayed_blks > 0) {
1630 				error = filemap_flush(VFS_I(ip)->i_mapping);
1631 				if (error)
1632 					return error;
1633 			}
1634 		}
1635 	}
1636 
1637 	if (VFS_I(ip)->i_nlink == 0)
1638 		return 0;
1639 
1640 	if (xfs_can_free_eofblocks(ip, false)) {
1641 
1642 		/*
1643 		 * Check if the inode is being opened, written and closed
1644 		 * frequently and we have delayed allocation blocks outstanding
1645 		 * (e.g. streaming writes from the NFS server), truncating the
1646 		 * blocks past EOF will cause fragmentation to occur.
1647 		 *
1648 		 * In this case don't do the truncation, but we have to be
1649 		 * careful how we detect this case. Blocks beyond EOF show up as
1650 		 * i_delayed_blks even when the inode is clean, so we need to
1651 		 * truncate them away first before checking for a dirty release.
1652 		 * Hence on the first dirty close we will still remove the
1653 		 * speculative allocation, but after that we will leave it in
1654 		 * place.
1655 		 */
1656 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1657 			return 0;
1658 		/*
1659 		 * If we can't get the iolock just skip truncating the blocks
1660 		 * past EOF because we could deadlock with the mmap_sem
1661 		 * otherwise. We'll get another chance to drop them once the
1662 		 * last reference to the inode is dropped, so we'll never leak
1663 		 * blocks permanently.
1664 		 */
1665 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1666 			error = xfs_free_eofblocks(ip);
1667 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1668 			if (error)
1669 				return error;
1670 		}
1671 
1672 		/* delalloc blocks after truncation means it really is dirty */
1673 		if (ip->i_delayed_blks)
1674 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1675 	}
1676 	return 0;
1677 }
1678 
1679 /*
1680  * xfs_inactive_truncate
1681  *
1682  * Called to perform a truncate when an inode becomes unlinked.
1683  */
1684 STATIC int
1685 xfs_inactive_truncate(
1686 	struct xfs_inode *ip)
1687 {
1688 	struct xfs_mount	*mp = ip->i_mount;
1689 	struct xfs_trans	*tp;
1690 	int			error;
1691 
1692 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1693 	if (error) {
1694 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1695 		return error;
1696 	}
1697 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1698 	xfs_trans_ijoin(tp, ip, 0);
1699 
1700 	/*
1701 	 * Log the inode size first to prevent stale data exposure in the event
1702 	 * of a system crash before the truncate completes. See the related
1703 	 * comment in xfs_vn_setattr_size() for details.
1704 	 */
1705 	ip->i_d.di_size = 0;
1706 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1707 
1708 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1709 	if (error)
1710 		goto error_trans_cancel;
1711 
1712 	ASSERT(ip->i_d.di_nextents == 0);
1713 
1714 	error = xfs_trans_commit(tp);
1715 	if (error)
1716 		goto error_unlock;
1717 
1718 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719 	return 0;
1720 
1721 error_trans_cancel:
1722 	xfs_trans_cancel(tp);
1723 error_unlock:
1724 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1725 	return error;
1726 }
1727 
1728 /*
1729  * xfs_inactive_ifree()
1730  *
1731  * Perform the inode free when an inode is unlinked.
1732  */
1733 STATIC int
1734 xfs_inactive_ifree(
1735 	struct xfs_inode *ip)
1736 {
1737 	struct xfs_mount	*mp = ip->i_mount;
1738 	struct xfs_trans	*tp;
1739 	int			error;
1740 
1741 	/*
1742 	 * We try to use a per-AG reservation for any block needed by the finobt
1743 	 * tree, but as the finobt feature predates the per-AG reservation
1744 	 * support a degraded file system might not have enough space for the
1745 	 * reservation at mount time.  In that case try to dip into the reserved
1746 	 * pool and pray.
1747 	 *
1748 	 * Send a warning if the reservation does happen to fail, as the inode
1749 	 * now remains allocated and sits on the unlinked list until the fs is
1750 	 * repaired.
1751 	 */
1752 	if (unlikely(mp->m_finobt_nores)) {
1753 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1754 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1755 				&tp);
1756 	} else {
1757 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1758 	}
1759 	if (error) {
1760 		if (error == -ENOSPC) {
1761 			xfs_warn_ratelimited(mp,
1762 			"Failed to remove inode(s) from unlinked list. "
1763 			"Please free space, unmount and run xfs_repair.");
1764 		} else {
1765 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1766 		}
1767 		return error;
1768 	}
1769 
1770 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1771 	xfs_trans_ijoin(tp, ip, 0);
1772 
1773 	error = xfs_ifree(tp, ip);
1774 	if (error) {
1775 		/*
1776 		 * If we fail to free the inode, shut down.  The cancel
1777 		 * might do that, we need to make sure.  Otherwise the
1778 		 * inode might be lost for a long time or forever.
1779 		 */
1780 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1781 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1782 				__func__, error);
1783 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1784 		}
1785 		xfs_trans_cancel(tp);
1786 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1787 		return error;
1788 	}
1789 
1790 	/*
1791 	 * Credit the quota account(s). The inode is gone.
1792 	 */
1793 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1794 
1795 	/*
1796 	 * Just ignore errors at this point.  There is nothing we can do except
1797 	 * to try to keep going. Make sure it's not a silent error.
1798 	 */
1799 	error = xfs_trans_commit(tp);
1800 	if (error)
1801 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1802 			__func__, error);
1803 
1804 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1805 	return 0;
1806 }
1807 
1808 /*
1809  * xfs_inactive
1810  *
1811  * This is called when the vnode reference count for the vnode
1812  * goes to zero.  If the file has been unlinked, then it must
1813  * now be truncated.  Also, we clear all of the read-ahead state
1814  * kept for the inode here since the file is now closed.
1815  */
1816 void
1817 xfs_inactive(
1818 	xfs_inode_t	*ip)
1819 {
1820 	struct xfs_mount	*mp;
1821 	int			error;
1822 	int			truncate = 0;
1823 
1824 	/*
1825 	 * If the inode is already free, then there can be nothing
1826 	 * to clean up here.
1827 	 */
1828 	if (VFS_I(ip)->i_mode == 0) {
1829 		ASSERT(ip->i_df.if_broot_bytes == 0);
1830 		return;
1831 	}
1832 
1833 	mp = ip->i_mount;
1834 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1835 
1836 	/* If this is a read-only mount, don't do this (would generate I/O) */
1837 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1838 		return;
1839 
1840 	/* Try to clean out the cow blocks if there are any. */
1841 	if (xfs_inode_has_cow_data(ip))
1842 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1843 
1844 	if (VFS_I(ip)->i_nlink != 0) {
1845 		/*
1846 		 * force is true because we are evicting an inode from the
1847 		 * cache. Post-eof blocks must be freed, lest we end up with
1848 		 * broken free space accounting.
1849 		 *
1850 		 * Note: don't bother with iolock here since lockdep complains
1851 		 * about acquiring it in reclaim context. We have the only
1852 		 * reference to the inode at this point anyways.
1853 		 */
1854 		if (xfs_can_free_eofblocks(ip, true))
1855 			xfs_free_eofblocks(ip);
1856 
1857 		return;
1858 	}
1859 
1860 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1861 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1862 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1863 		truncate = 1;
1864 
1865 	error = xfs_qm_dqattach(ip);
1866 	if (error)
1867 		return;
1868 
1869 	if (S_ISLNK(VFS_I(ip)->i_mode))
1870 		error = xfs_inactive_symlink(ip);
1871 	else if (truncate)
1872 		error = xfs_inactive_truncate(ip);
1873 	if (error)
1874 		return;
1875 
1876 	/*
1877 	 * If there are attributes associated with the file then blow them away
1878 	 * now.  The code calls a routine that recursively deconstructs the
1879 	 * attribute fork. If also blows away the in-core attribute fork.
1880 	 */
1881 	if (XFS_IFORK_Q(ip)) {
1882 		error = xfs_attr_inactive(ip);
1883 		if (error)
1884 			return;
1885 	}
1886 
1887 	ASSERT(!ip->i_afp);
1888 	ASSERT(ip->i_d.di_anextents == 0);
1889 	ASSERT(ip->i_d.di_forkoff == 0);
1890 
1891 	/*
1892 	 * Free the inode.
1893 	 */
1894 	error = xfs_inactive_ifree(ip);
1895 	if (error)
1896 		return;
1897 
1898 	/*
1899 	 * Release the dquots held by inode, if any.
1900 	 */
1901 	xfs_qm_dqdetach(ip);
1902 }
1903 
1904 /*
1905  * In-Core Unlinked List Lookups
1906  * =============================
1907  *
1908  * Every inode is supposed to be reachable from some other piece of metadata
1909  * with the exception of the root directory.  Inodes with a connection to a
1910  * file descriptor but not linked from anywhere in the on-disk directory tree
1911  * are collectively known as unlinked inodes, though the filesystem itself
1912  * maintains links to these inodes so that on-disk metadata are consistent.
1913  *
1914  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1915  * header contains a number of buckets that point to an inode, and each inode
1916  * record has a pointer to the next inode in the hash chain.  This
1917  * singly-linked list causes scaling problems in the iunlink remove function
1918  * because we must walk that list to find the inode that points to the inode
1919  * being removed from the unlinked hash bucket list.
1920  *
1921  * What if we modelled the unlinked list as a collection of records capturing
1922  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1923  * have a fast way to look up unlinked list predecessors, which avoids the
1924  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1925  * rhashtable.
1926  *
1927  * Because this is a backref cache, we ignore operational failures since the
1928  * iunlink code can fall back to the slow bucket walk.  The only errors that
1929  * should bubble out are for obviously incorrect situations.
1930  *
1931  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1932  * access or have otherwise provided for concurrency control.
1933  */
1934 
1935 /* Capture a "X.next_unlinked = Y" relationship. */
1936 struct xfs_iunlink {
1937 	struct rhash_head	iu_rhash_head;
1938 	xfs_agino_t		iu_agino;		/* X */
1939 	xfs_agino_t		iu_next_unlinked;	/* Y */
1940 };
1941 
1942 /* Unlinked list predecessor lookup hashtable construction */
1943 static int
1944 xfs_iunlink_obj_cmpfn(
1945 	struct rhashtable_compare_arg	*arg,
1946 	const void			*obj)
1947 {
1948 	const xfs_agino_t		*key = arg->key;
1949 	const struct xfs_iunlink	*iu = obj;
1950 
1951 	if (iu->iu_next_unlinked != *key)
1952 		return 1;
1953 	return 0;
1954 }
1955 
1956 static const struct rhashtable_params xfs_iunlink_hash_params = {
1957 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1958 	.key_len		= sizeof(xfs_agino_t),
1959 	.key_offset		= offsetof(struct xfs_iunlink,
1960 					   iu_next_unlinked),
1961 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1962 	.automatic_shrinking	= true,
1963 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1964 };
1965 
1966 /*
1967  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1968  * relation is found.
1969  */
1970 static xfs_agino_t
1971 xfs_iunlink_lookup_backref(
1972 	struct xfs_perag	*pag,
1973 	xfs_agino_t		agino)
1974 {
1975 	struct xfs_iunlink	*iu;
1976 
1977 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1978 			xfs_iunlink_hash_params);
1979 	return iu ? iu->iu_agino : NULLAGINO;
1980 }
1981 
1982 /*
1983  * Take ownership of an iunlink cache entry and insert it into the hash table.
1984  * If successful, the entry will be owned by the cache; if not, it is freed.
1985  * Either way, the caller does not own @iu after this call.
1986  */
1987 static int
1988 xfs_iunlink_insert_backref(
1989 	struct xfs_perag	*pag,
1990 	struct xfs_iunlink	*iu)
1991 {
1992 	int			error;
1993 
1994 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1995 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1996 	/*
1997 	 * Fail loudly if there already was an entry because that's a sign of
1998 	 * corruption of in-memory data.  Also fail loudly if we see an error
1999 	 * code we didn't anticipate from the rhashtable code.  Currently we
2000 	 * only anticipate ENOMEM.
2001 	 */
2002 	if (error) {
2003 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
2004 		kmem_free(iu);
2005 	}
2006 	/*
2007 	 * Absorb any runtime errors that aren't a result of corruption because
2008 	 * this is a cache and we can always fall back to bucket list scanning.
2009 	 */
2010 	if (error != 0 && error != -EEXIST)
2011 		error = 0;
2012 	return error;
2013 }
2014 
2015 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2016 static int
2017 xfs_iunlink_add_backref(
2018 	struct xfs_perag	*pag,
2019 	xfs_agino_t		prev_agino,
2020 	xfs_agino_t		this_agino)
2021 {
2022 	struct xfs_iunlink	*iu;
2023 
2024 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2025 		return 0;
2026 
2027 	iu = kmem_zalloc(sizeof(*iu), KM_SLEEP | KM_NOFS);
2028 	iu->iu_agino = prev_agino;
2029 	iu->iu_next_unlinked = this_agino;
2030 
2031 	return xfs_iunlink_insert_backref(pag, iu);
2032 }
2033 
2034 /*
2035  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2036  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2037  * wasn't any such entry then we don't bother.
2038  */
2039 static int
2040 xfs_iunlink_change_backref(
2041 	struct xfs_perag	*pag,
2042 	xfs_agino_t		agino,
2043 	xfs_agino_t		next_unlinked)
2044 {
2045 	struct xfs_iunlink	*iu;
2046 	int			error;
2047 
2048 	/* Look up the old entry; if there wasn't one then exit. */
2049 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2050 			xfs_iunlink_hash_params);
2051 	if (!iu)
2052 		return 0;
2053 
2054 	/*
2055 	 * Remove the entry.  This shouldn't ever return an error, but if we
2056 	 * couldn't remove the old entry we don't want to add it again to the
2057 	 * hash table, and if the entry disappeared on us then someone's
2058 	 * violated the locking rules and we need to fail loudly.  Either way
2059 	 * we cannot remove the inode because internal state is or would have
2060 	 * been corrupt.
2061 	 */
2062 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2063 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2064 	if (error)
2065 		return error;
2066 
2067 	/* If there is no new next entry just free our item and return. */
2068 	if (next_unlinked == NULLAGINO) {
2069 		kmem_free(iu);
2070 		return 0;
2071 	}
2072 
2073 	/* Update the entry and re-add it to the hash table. */
2074 	iu->iu_next_unlinked = next_unlinked;
2075 	return xfs_iunlink_insert_backref(pag, iu);
2076 }
2077 
2078 /* Set up the in-core predecessor structures. */
2079 int
2080 xfs_iunlink_init(
2081 	struct xfs_perag	*pag)
2082 {
2083 	return rhashtable_init(&pag->pagi_unlinked_hash,
2084 			&xfs_iunlink_hash_params);
2085 }
2086 
2087 /* Free the in-core predecessor structures. */
2088 static void
2089 xfs_iunlink_free_item(
2090 	void			*ptr,
2091 	void			*arg)
2092 {
2093 	struct xfs_iunlink	*iu = ptr;
2094 	bool			*freed_anything = arg;
2095 
2096 	*freed_anything = true;
2097 	kmem_free(iu);
2098 }
2099 
2100 void
2101 xfs_iunlink_destroy(
2102 	struct xfs_perag	*pag)
2103 {
2104 	bool			freed_anything = false;
2105 
2106 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2107 			xfs_iunlink_free_item, &freed_anything);
2108 
2109 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2110 }
2111 
2112 /*
2113  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2114  * is responsible for validating the old value.
2115  */
2116 STATIC int
2117 xfs_iunlink_update_bucket(
2118 	struct xfs_trans	*tp,
2119 	xfs_agnumber_t		agno,
2120 	struct xfs_buf		*agibp,
2121 	unsigned int		bucket_index,
2122 	xfs_agino_t		new_agino)
2123 {
2124 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2125 	xfs_agino_t		old_value;
2126 	int			offset;
2127 
2128 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2129 
2130 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2131 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2132 			old_value, new_agino);
2133 
2134 	/*
2135 	 * We should never find the head of the list already set to the value
2136 	 * passed in because either we're adding or removing ourselves from the
2137 	 * head of the list.
2138 	 */
2139 	if (old_value == new_agino)
2140 		return -EFSCORRUPTED;
2141 
2142 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2143 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2144 			(sizeof(xfs_agino_t) * bucket_index);
2145 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2146 	return 0;
2147 }
2148 
2149 /* Set an on-disk inode's next_unlinked pointer. */
2150 STATIC void
2151 xfs_iunlink_update_dinode(
2152 	struct xfs_trans	*tp,
2153 	xfs_agnumber_t		agno,
2154 	xfs_agino_t		agino,
2155 	struct xfs_buf		*ibp,
2156 	struct xfs_dinode	*dip,
2157 	struct xfs_imap		*imap,
2158 	xfs_agino_t		next_agino)
2159 {
2160 	struct xfs_mount	*mp = tp->t_mountp;
2161 	int			offset;
2162 
2163 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2164 
2165 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2166 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2167 
2168 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2169 	offset = imap->im_boffset +
2170 			offsetof(struct xfs_dinode, di_next_unlinked);
2171 
2172 	/* need to recalc the inode CRC if appropriate */
2173 	xfs_dinode_calc_crc(mp, dip);
2174 	xfs_trans_inode_buf(tp, ibp);
2175 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2176 	xfs_inobp_check(mp, ibp);
2177 }
2178 
2179 /* Set an in-core inode's unlinked pointer and return the old value. */
2180 STATIC int
2181 xfs_iunlink_update_inode(
2182 	struct xfs_trans	*tp,
2183 	struct xfs_inode	*ip,
2184 	xfs_agnumber_t		agno,
2185 	xfs_agino_t		next_agino,
2186 	xfs_agino_t		*old_next_agino)
2187 {
2188 	struct xfs_mount	*mp = tp->t_mountp;
2189 	struct xfs_dinode	*dip;
2190 	struct xfs_buf		*ibp;
2191 	xfs_agino_t		old_value;
2192 	int			error;
2193 
2194 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2195 
2196 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2197 	if (error)
2198 		return error;
2199 
2200 	/* Make sure the old pointer isn't garbage. */
2201 	old_value = be32_to_cpu(dip->di_next_unlinked);
2202 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2203 		error = -EFSCORRUPTED;
2204 		goto out;
2205 	}
2206 
2207 	/*
2208 	 * Since we're updating a linked list, we should never find that the
2209 	 * current pointer is the same as the new value, unless we're
2210 	 * terminating the list.
2211 	 */
2212 	*old_next_agino = old_value;
2213 	if (old_value == next_agino) {
2214 		if (next_agino != NULLAGINO)
2215 			error = -EFSCORRUPTED;
2216 		goto out;
2217 	}
2218 
2219 	/* Ok, update the new pointer. */
2220 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2221 			ibp, dip, &ip->i_imap, next_agino);
2222 	return 0;
2223 out:
2224 	xfs_trans_brelse(tp, ibp);
2225 	return error;
2226 }
2227 
2228 /*
2229  * This is called when the inode's link count has gone to 0 or we are creating
2230  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2231  *
2232  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2233  * list when the inode is freed.
2234  */
2235 STATIC int
2236 xfs_iunlink(
2237 	struct xfs_trans	*tp,
2238 	struct xfs_inode	*ip)
2239 {
2240 	struct xfs_mount	*mp = tp->t_mountp;
2241 	struct xfs_agi		*agi;
2242 	struct xfs_buf		*agibp;
2243 	xfs_agino_t		next_agino;
2244 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2245 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2246 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2247 	int			error;
2248 
2249 	ASSERT(VFS_I(ip)->i_nlink == 0);
2250 	ASSERT(VFS_I(ip)->i_mode != 0);
2251 	trace_xfs_iunlink(ip);
2252 
2253 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2254 	error = xfs_read_agi(mp, tp, agno, &agibp);
2255 	if (error)
2256 		return error;
2257 	agi = XFS_BUF_TO_AGI(agibp);
2258 
2259 	/*
2260 	 * Get the index into the agi hash table for the list this inode will
2261 	 * go on.  Make sure the pointer isn't garbage and that this inode
2262 	 * isn't already on the list.
2263 	 */
2264 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2265 	if (next_agino == agino ||
2266 	    !xfs_verify_agino_or_null(mp, agno, next_agino))
2267 		return -EFSCORRUPTED;
2268 
2269 	if (next_agino != NULLAGINO) {
2270 		struct xfs_perag	*pag;
2271 		xfs_agino_t		old_agino;
2272 
2273 		/*
2274 		 * There is already another inode in the bucket, so point this
2275 		 * inode to the current head of the list.
2276 		 */
2277 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2278 				&old_agino);
2279 		if (error)
2280 			return error;
2281 		ASSERT(old_agino == NULLAGINO);
2282 
2283 		/*
2284 		 * agino has been unlinked, add a backref from the next inode
2285 		 * back to agino.
2286 		 */
2287 		pag = xfs_perag_get(mp, agno);
2288 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2289 		xfs_perag_put(pag);
2290 		if (error)
2291 			return error;
2292 	}
2293 
2294 	/* Point the head of the list to point to this inode. */
2295 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2296 }
2297 
2298 /* Return the imap, dinode pointer, and buffer for an inode. */
2299 STATIC int
2300 xfs_iunlink_map_ino(
2301 	struct xfs_trans	*tp,
2302 	xfs_agnumber_t		agno,
2303 	xfs_agino_t		agino,
2304 	struct xfs_imap		*imap,
2305 	struct xfs_dinode	**dipp,
2306 	struct xfs_buf		**bpp)
2307 {
2308 	struct xfs_mount	*mp = tp->t_mountp;
2309 	int			error;
2310 
2311 	imap->im_blkno = 0;
2312 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2313 	if (error) {
2314 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2315 				__func__, error);
2316 		return error;
2317 	}
2318 
2319 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2320 	if (error) {
2321 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2322 				__func__, error);
2323 		return error;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Walk the unlinked chain from @head_agino until we find the inode that
2331  * points to @target_agino.  Return the inode number, map, dinode pointer,
2332  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2333  *
2334  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2335  * @agino, @imap, @dipp, and @bpp are all output parameters.
2336  *
2337  * Do not call this function if @target_agino is the head of the list.
2338  */
2339 STATIC int
2340 xfs_iunlink_map_prev(
2341 	struct xfs_trans	*tp,
2342 	xfs_agnumber_t		agno,
2343 	xfs_agino_t		head_agino,
2344 	xfs_agino_t		target_agino,
2345 	xfs_agino_t		*agino,
2346 	struct xfs_imap		*imap,
2347 	struct xfs_dinode	**dipp,
2348 	struct xfs_buf		**bpp,
2349 	struct xfs_perag	*pag)
2350 {
2351 	struct xfs_mount	*mp = tp->t_mountp;
2352 	xfs_agino_t		next_agino;
2353 	int			error;
2354 
2355 	ASSERT(head_agino != target_agino);
2356 	*bpp = NULL;
2357 
2358 	/* See if our backref cache can find it faster. */
2359 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2360 	if (*agino != NULLAGINO) {
2361 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2362 		if (error)
2363 			return error;
2364 
2365 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2366 			return 0;
2367 
2368 		/*
2369 		 * If we get here the cache contents were corrupt, so drop the
2370 		 * buffer and fall back to walking the bucket list.
2371 		 */
2372 		xfs_trans_brelse(tp, *bpp);
2373 		*bpp = NULL;
2374 		WARN_ON_ONCE(1);
2375 	}
2376 
2377 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2378 
2379 	/* Otherwise, walk the entire bucket until we find it. */
2380 	next_agino = head_agino;
2381 	while (next_agino != target_agino) {
2382 		xfs_agino_t	unlinked_agino;
2383 
2384 		if (*bpp)
2385 			xfs_trans_brelse(tp, *bpp);
2386 
2387 		*agino = next_agino;
2388 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2389 				bpp);
2390 		if (error)
2391 			return error;
2392 
2393 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2394 		/*
2395 		 * Make sure this pointer is valid and isn't an obvious
2396 		 * infinite loop.
2397 		 */
2398 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2399 		    next_agino == unlinked_agino) {
2400 			XFS_CORRUPTION_ERROR(__func__,
2401 					XFS_ERRLEVEL_LOW, mp,
2402 					*dipp, sizeof(**dipp));
2403 			error = -EFSCORRUPTED;
2404 			return error;
2405 		}
2406 		next_agino = unlinked_agino;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 /*
2413  * Pull the on-disk inode from the AGI unlinked list.
2414  */
2415 STATIC int
2416 xfs_iunlink_remove(
2417 	struct xfs_trans	*tp,
2418 	struct xfs_inode	*ip)
2419 {
2420 	struct xfs_mount	*mp = tp->t_mountp;
2421 	struct xfs_agi		*agi;
2422 	struct xfs_buf		*agibp;
2423 	struct xfs_buf		*last_ibp;
2424 	struct xfs_dinode	*last_dip = NULL;
2425 	struct xfs_perag	*pag = NULL;
2426 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2427 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2428 	xfs_agino_t		next_agino;
2429 	xfs_agino_t		head_agino;
2430 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2431 	int			error;
2432 
2433 	trace_xfs_iunlink_remove(ip);
2434 
2435 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2436 	error = xfs_read_agi(mp, tp, agno, &agibp);
2437 	if (error)
2438 		return error;
2439 	agi = XFS_BUF_TO_AGI(agibp);
2440 
2441 	/*
2442 	 * Get the index into the agi hash table for the list this inode will
2443 	 * go on.  Make sure the head pointer isn't garbage.
2444 	 */
2445 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2446 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2447 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2448 				agi, sizeof(*agi));
2449 		return -EFSCORRUPTED;
2450 	}
2451 
2452 	/*
2453 	 * Set our inode's next_unlinked pointer to NULL and then return
2454 	 * the old pointer value so that we can update whatever was previous
2455 	 * to us in the list to point to whatever was next in the list.
2456 	 */
2457 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2458 	if (error)
2459 		return error;
2460 
2461 	/*
2462 	 * If there was a backref pointing from the next inode back to this
2463 	 * one, remove it because we've removed this inode from the list.
2464 	 *
2465 	 * Later, if this inode was in the middle of the list we'll update
2466 	 * this inode's backref to point from the next inode.
2467 	 */
2468 	if (next_agino != NULLAGINO) {
2469 		pag = xfs_perag_get(mp, agno);
2470 		error = xfs_iunlink_change_backref(pag, next_agino,
2471 				NULLAGINO);
2472 		if (error)
2473 			goto out;
2474 	}
2475 
2476 	if (head_agino == agino) {
2477 		/* Point the head of the list to the next unlinked inode. */
2478 		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2479 				next_agino);
2480 		if (error)
2481 			goto out;
2482 	} else {
2483 		struct xfs_imap	imap;
2484 		xfs_agino_t	prev_agino;
2485 
2486 		if (!pag)
2487 			pag = xfs_perag_get(mp, agno);
2488 
2489 		/* We need to search the list for the inode being freed. */
2490 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2491 				&prev_agino, &imap, &last_dip, &last_ibp,
2492 				pag);
2493 		if (error)
2494 			goto out;
2495 
2496 		/* Point the previous inode on the list to the next inode. */
2497 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2498 				last_dip, &imap, next_agino);
2499 
2500 		/*
2501 		 * Now we deal with the backref for this inode.  If this inode
2502 		 * pointed at a real inode, change the backref that pointed to
2503 		 * us to point to our old next.  If this inode was the end of
2504 		 * the list, delete the backref that pointed to us.  Note that
2505 		 * change_backref takes care of deleting the backref if
2506 		 * next_agino is NULLAGINO.
2507 		 */
2508 		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2509 		if (error)
2510 			goto out;
2511 	}
2512 
2513 out:
2514 	if (pag)
2515 		xfs_perag_put(pag);
2516 	return error;
2517 }
2518 
2519 /*
2520  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2521  * inodes that are in memory - they all must be marked stale and attached to
2522  * the cluster buffer.
2523  */
2524 STATIC int
2525 xfs_ifree_cluster(
2526 	xfs_inode_t		*free_ip,
2527 	xfs_trans_t		*tp,
2528 	struct xfs_icluster	*xic)
2529 {
2530 	xfs_mount_t		*mp = free_ip->i_mount;
2531 	int			nbufs;
2532 	int			i, j;
2533 	int			ioffset;
2534 	xfs_daddr_t		blkno;
2535 	xfs_buf_t		*bp;
2536 	xfs_inode_t		*ip;
2537 	xfs_inode_log_item_t	*iip;
2538 	struct xfs_log_item	*lip;
2539 	struct xfs_perag	*pag;
2540 	xfs_ino_t		inum;
2541 
2542 	inum = xic->first_ino;
2543 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2544 	nbufs = mp->m_ialloc_blks / mp->m_blocks_per_cluster;
2545 
2546 	for (j = 0; j < nbufs; j++, inum += mp->m_inodes_per_cluster) {
2547 		/*
2548 		 * The allocation bitmap tells us which inodes of the chunk were
2549 		 * physically allocated. Skip the cluster if an inode falls into
2550 		 * a sparse region.
2551 		 */
2552 		ioffset = inum - xic->first_ino;
2553 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2554 			ASSERT(ioffset % mp->m_inodes_per_cluster == 0);
2555 			continue;
2556 		}
2557 
2558 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2559 					 XFS_INO_TO_AGBNO(mp, inum));
2560 
2561 		/*
2562 		 * We obtain and lock the backing buffer first in the process
2563 		 * here, as we have to ensure that any dirty inode that we
2564 		 * can't get the flush lock on is attached to the buffer.
2565 		 * If we scan the in-memory inodes first, then buffer IO can
2566 		 * complete before we get a lock on it, and hence we may fail
2567 		 * to mark all the active inodes on the buffer stale.
2568 		 */
2569 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2570 					mp->m_bsize * mp->m_blocks_per_cluster,
2571 					XBF_UNMAPPED);
2572 
2573 		if (!bp)
2574 			return -ENOMEM;
2575 
2576 		/*
2577 		 * This buffer may not have been correctly initialised as we
2578 		 * didn't read it from disk. That's not important because we are
2579 		 * only using to mark the buffer as stale in the log, and to
2580 		 * attach stale cached inodes on it. That means it will never be
2581 		 * dispatched for IO. If it is, we want to know about it, and we
2582 		 * want it to fail. We can acheive this by adding a write
2583 		 * verifier to the buffer.
2584 		 */
2585 		bp->b_ops = &xfs_inode_buf_ops;
2586 
2587 		/*
2588 		 * Walk the inodes already attached to the buffer and mark them
2589 		 * stale. These will all have the flush locks held, so an
2590 		 * in-memory inode walk can't lock them. By marking them all
2591 		 * stale first, we will not attempt to lock them in the loop
2592 		 * below as the XFS_ISTALE flag will be set.
2593 		 */
2594 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2595 			if (lip->li_type == XFS_LI_INODE) {
2596 				iip = (xfs_inode_log_item_t *)lip;
2597 				ASSERT(iip->ili_logged == 1);
2598 				lip->li_cb = xfs_istale_done;
2599 				xfs_trans_ail_copy_lsn(mp->m_ail,
2600 							&iip->ili_flush_lsn,
2601 							&iip->ili_item.li_lsn);
2602 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2603 			}
2604 		}
2605 
2606 
2607 		/*
2608 		 * For each inode in memory attempt to add it to the inode
2609 		 * buffer and set it up for being staled on buffer IO
2610 		 * completion.  This is safe as we've locked out tail pushing
2611 		 * and flushing by locking the buffer.
2612 		 *
2613 		 * We have already marked every inode that was part of a
2614 		 * transaction stale above, which means there is no point in
2615 		 * even trying to lock them.
2616 		 */
2617 		for (i = 0; i < mp->m_inodes_per_cluster; i++) {
2618 retry:
2619 			rcu_read_lock();
2620 			ip = radix_tree_lookup(&pag->pag_ici_root,
2621 					XFS_INO_TO_AGINO(mp, (inum + i)));
2622 
2623 			/* Inode not in memory, nothing to do */
2624 			if (!ip) {
2625 				rcu_read_unlock();
2626 				continue;
2627 			}
2628 
2629 			/*
2630 			 * because this is an RCU protected lookup, we could
2631 			 * find a recently freed or even reallocated inode
2632 			 * during the lookup. We need to check under the
2633 			 * i_flags_lock for a valid inode here. Skip it if it
2634 			 * is not valid, the wrong inode or stale.
2635 			 */
2636 			spin_lock(&ip->i_flags_lock);
2637 			if (ip->i_ino != inum + i ||
2638 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2639 				spin_unlock(&ip->i_flags_lock);
2640 				rcu_read_unlock();
2641 				continue;
2642 			}
2643 			spin_unlock(&ip->i_flags_lock);
2644 
2645 			/*
2646 			 * Don't try to lock/unlock the current inode, but we
2647 			 * _cannot_ skip the other inodes that we did not find
2648 			 * in the list attached to the buffer and are not
2649 			 * already marked stale. If we can't lock it, back off
2650 			 * and retry.
2651 			 */
2652 			if (ip != free_ip) {
2653 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2654 					rcu_read_unlock();
2655 					delay(1);
2656 					goto retry;
2657 				}
2658 
2659 				/*
2660 				 * Check the inode number again in case we're
2661 				 * racing with freeing in xfs_reclaim_inode().
2662 				 * See the comments in that function for more
2663 				 * information as to why the initial check is
2664 				 * not sufficient.
2665 				 */
2666 				if (ip->i_ino != inum + i) {
2667 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2668 					rcu_read_unlock();
2669 					continue;
2670 				}
2671 			}
2672 			rcu_read_unlock();
2673 
2674 			xfs_iflock(ip);
2675 			xfs_iflags_set(ip, XFS_ISTALE);
2676 
2677 			/*
2678 			 * we don't need to attach clean inodes or those only
2679 			 * with unlogged changes (which we throw away, anyway).
2680 			 */
2681 			iip = ip->i_itemp;
2682 			if (!iip || xfs_inode_clean(ip)) {
2683 				ASSERT(ip != free_ip);
2684 				xfs_ifunlock(ip);
2685 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2686 				continue;
2687 			}
2688 
2689 			iip->ili_last_fields = iip->ili_fields;
2690 			iip->ili_fields = 0;
2691 			iip->ili_fsync_fields = 0;
2692 			iip->ili_logged = 1;
2693 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2694 						&iip->ili_item.li_lsn);
2695 
2696 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2697 						  &iip->ili_item);
2698 
2699 			if (ip != free_ip)
2700 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2701 		}
2702 
2703 		xfs_trans_stale_inode_buf(tp, bp);
2704 		xfs_trans_binval(tp, bp);
2705 	}
2706 
2707 	xfs_perag_put(pag);
2708 	return 0;
2709 }
2710 
2711 /*
2712  * Free any local-format buffers sitting around before we reset to
2713  * extents format.
2714  */
2715 static inline void
2716 xfs_ifree_local_data(
2717 	struct xfs_inode	*ip,
2718 	int			whichfork)
2719 {
2720 	struct xfs_ifork	*ifp;
2721 
2722 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2723 		return;
2724 
2725 	ifp = XFS_IFORK_PTR(ip, whichfork);
2726 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2727 }
2728 
2729 /*
2730  * This is called to return an inode to the inode free list.
2731  * The inode should already be truncated to 0 length and have
2732  * no pages associated with it.  This routine also assumes that
2733  * the inode is already a part of the transaction.
2734  *
2735  * The on-disk copy of the inode will have been added to the list
2736  * of unlinked inodes in the AGI. We need to remove the inode from
2737  * that list atomically with respect to freeing it here.
2738  */
2739 int
2740 xfs_ifree(
2741 	struct xfs_trans	*tp,
2742 	struct xfs_inode	*ip)
2743 {
2744 	int			error;
2745 	struct xfs_icluster	xic = { 0 };
2746 
2747 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2748 	ASSERT(VFS_I(ip)->i_nlink == 0);
2749 	ASSERT(ip->i_d.di_nextents == 0);
2750 	ASSERT(ip->i_d.di_anextents == 0);
2751 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2752 	ASSERT(ip->i_d.di_nblocks == 0);
2753 
2754 	/*
2755 	 * Pull the on-disk inode from the AGI unlinked list.
2756 	 */
2757 	error = xfs_iunlink_remove(tp, ip);
2758 	if (error)
2759 		return error;
2760 
2761 	error = xfs_difree(tp, ip->i_ino, &xic);
2762 	if (error)
2763 		return error;
2764 
2765 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2766 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2767 
2768 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2769 	ip->i_d.di_flags = 0;
2770 	ip->i_d.di_flags2 = 0;
2771 	ip->i_d.di_dmevmask = 0;
2772 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2773 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2774 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2775 
2776 	/* Don't attempt to replay owner changes for a deleted inode */
2777 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2778 
2779 	/*
2780 	 * Bump the generation count so no one will be confused
2781 	 * by reincarnations of this inode.
2782 	 */
2783 	VFS_I(ip)->i_generation++;
2784 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2785 
2786 	if (xic.deleted)
2787 		error = xfs_ifree_cluster(ip, tp, &xic);
2788 
2789 	return error;
2790 }
2791 
2792 /*
2793  * This is called to unpin an inode.  The caller must have the inode locked
2794  * in at least shared mode so that the buffer cannot be subsequently pinned
2795  * once someone is waiting for it to be unpinned.
2796  */
2797 static void
2798 xfs_iunpin(
2799 	struct xfs_inode	*ip)
2800 {
2801 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2802 
2803 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2804 
2805 	/* Give the log a push to start the unpinning I/O */
2806 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2807 
2808 }
2809 
2810 static void
2811 __xfs_iunpin_wait(
2812 	struct xfs_inode	*ip)
2813 {
2814 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2815 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2816 
2817 	xfs_iunpin(ip);
2818 
2819 	do {
2820 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2821 		if (xfs_ipincount(ip))
2822 			io_schedule();
2823 	} while (xfs_ipincount(ip));
2824 	finish_wait(wq, &wait.wq_entry);
2825 }
2826 
2827 void
2828 xfs_iunpin_wait(
2829 	struct xfs_inode	*ip)
2830 {
2831 	if (xfs_ipincount(ip))
2832 		__xfs_iunpin_wait(ip);
2833 }
2834 
2835 /*
2836  * Removing an inode from the namespace involves removing the directory entry
2837  * and dropping the link count on the inode. Removing the directory entry can
2838  * result in locking an AGF (directory blocks were freed) and removing a link
2839  * count can result in placing the inode on an unlinked list which results in
2840  * locking an AGI.
2841  *
2842  * The big problem here is that we have an ordering constraint on AGF and AGI
2843  * locking - inode allocation locks the AGI, then can allocate a new extent for
2844  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2845  * removes the inode from the unlinked list, requiring that we lock the AGI
2846  * first, and then freeing the inode can result in an inode chunk being freed
2847  * and hence freeing disk space requiring that we lock an AGF.
2848  *
2849  * Hence the ordering that is imposed by other parts of the code is AGI before
2850  * AGF. This means we cannot remove the directory entry before we drop the inode
2851  * reference count and put it on the unlinked list as this results in a lock
2852  * order of AGF then AGI, and this can deadlock against inode allocation and
2853  * freeing. Therefore we must drop the link counts before we remove the
2854  * directory entry.
2855  *
2856  * This is still safe from a transactional point of view - it is not until we
2857  * get to xfs_defer_finish() that we have the possibility of multiple
2858  * transactions in this operation. Hence as long as we remove the directory
2859  * entry and drop the link count in the first transaction of the remove
2860  * operation, there are no transactional constraints on the ordering here.
2861  */
2862 int
2863 xfs_remove(
2864 	xfs_inode_t             *dp,
2865 	struct xfs_name		*name,
2866 	xfs_inode_t		*ip)
2867 {
2868 	xfs_mount_t		*mp = dp->i_mount;
2869 	xfs_trans_t             *tp = NULL;
2870 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2871 	int                     error = 0;
2872 	uint			resblks;
2873 
2874 	trace_xfs_remove(dp, name);
2875 
2876 	if (XFS_FORCED_SHUTDOWN(mp))
2877 		return -EIO;
2878 
2879 	error = xfs_qm_dqattach(dp);
2880 	if (error)
2881 		goto std_return;
2882 
2883 	error = xfs_qm_dqattach(ip);
2884 	if (error)
2885 		goto std_return;
2886 
2887 	/*
2888 	 * We try to get the real space reservation first,
2889 	 * allowing for directory btree deletion(s) implying
2890 	 * possible bmap insert(s).  If we can't get the space
2891 	 * reservation then we use 0 instead, and avoid the bmap
2892 	 * btree insert(s) in the directory code by, if the bmap
2893 	 * insert tries to happen, instead trimming the LAST
2894 	 * block from the directory.
2895 	 */
2896 	resblks = XFS_REMOVE_SPACE_RES(mp);
2897 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2898 	if (error == -ENOSPC) {
2899 		resblks = 0;
2900 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2901 				&tp);
2902 	}
2903 	if (error) {
2904 		ASSERT(error != -ENOSPC);
2905 		goto std_return;
2906 	}
2907 
2908 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2909 
2910 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2911 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2912 
2913 	/*
2914 	 * If we're removing a directory perform some additional validation.
2915 	 */
2916 	if (is_dir) {
2917 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2918 		if (VFS_I(ip)->i_nlink != 2) {
2919 			error = -ENOTEMPTY;
2920 			goto out_trans_cancel;
2921 		}
2922 		if (!xfs_dir_isempty(ip)) {
2923 			error = -ENOTEMPTY;
2924 			goto out_trans_cancel;
2925 		}
2926 
2927 		/* Drop the link from ip's "..".  */
2928 		error = xfs_droplink(tp, dp);
2929 		if (error)
2930 			goto out_trans_cancel;
2931 
2932 		/* Drop the "." link from ip to self.  */
2933 		error = xfs_droplink(tp, ip);
2934 		if (error)
2935 			goto out_trans_cancel;
2936 	} else {
2937 		/*
2938 		 * When removing a non-directory we need to log the parent
2939 		 * inode here.  For a directory this is done implicitly
2940 		 * by the xfs_droplink call for the ".." entry.
2941 		 */
2942 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2943 	}
2944 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2945 
2946 	/* Drop the link from dp to ip. */
2947 	error = xfs_droplink(tp, ip);
2948 	if (error)
2949 		goto out_trans_cancel;
2950 
2951 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2952 	if (error) {
2953 		ASSERT(error != -ENOENT);
2954 		goto out_trans_cancel;
2955 	}
2956 
2957 	/*
2958 	 * If this is a synchronous mount, make sure that the
2959 	 * remove transaction goes to disk before returning to
2960 	 * the user.
2961 	 */
2962 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2963 		xfs_trans_set_sync(tp);
2964 
2965 	error = xfs_trans_commit(tp);
2966 	if (error)
2967 		goto std_return;
2968 
2969 	if (is_dir && xfs_inode_is_filestream(ip))
2970 		xfs_filestream_deassociate(ip);
2971 
2972 	return 0;
2973 
2974  out_trans_cancel:
2975 	xfs_trans_cancel(tp);
2976  std_return:
2977 	return error;
2978 }
2979 
2980 /*
2981  * Enter all inodes for a rename transaction into a sorted array.
2982  */
2983 #define __XFS_SORT_INODES	5
2984 STATIC void
2985 xfs_sort_for_rename(
2986 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2987 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2988 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2989 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2990 	struct xfs_inode	*wip,	/* in: whiteout inode */
2991 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2992 	int			*num_inodes)  /* in/out: inodes in array */
2993 {
2994 	int			i, j;
2995 
2996 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2997 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2998 
2999 	/*
3000 	 * i_tab contains a list of pointers to inodes.  We initialize
3001 	 * the table here & we'll sort it.  We will then use it to
3002 	 * order the acquisition of the inode locks.
3003 	 *
3004 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3005 	 */
3006 	i = 0;
3007 	i_tab[i++] = dp1;
3008 	i_tab[i++] = dp2;
3009 	i_tab[i++] = ip1;
3010 	if (ip2)
3011 		i_tab[i++] = ip2;
3012 	if (wip)
3013 		i_tab[i++] = wip;
3014 	*num_inodes = i;
3015 
3016 	/*
3017 	 * Sort the elements via bubble sort.  (Remember, there are at
3018 	 * most 5 elements to sort, so this is adequate.)
3019 	 */
3020 	for (i = 0; i < *num_inodes; i++) {
3021 		for (j = 1; j < *num_inodes; j++) {
3022 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3023 				struct xfs_inode *temp = i_tab[j];
3024 				i_tab[j] = i_tab[j-1];
3025 				i_tab[j-1] = temp;
3026 			}
3027 		}
3028 	}
3029 }
3030 
3031 static int
3032 xfs_finish_rename(
3033 	struct xfs_trans	*tp)
3034 {
3035 	/*
3036 	 * If this is a synchronous mount, make sure that the rename transaction
3037 	 * goes to disk before returning to the user.
3038 	 */
3039 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3040 		xfs_trans_set_sync(tp);
3041 
3042 	return xfs_trans_commit(tp);
3043 }
3044 
3045 /*
3046  * xfs_cross_rename()
3047  *
3048  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3049  */
3050 STATIC int
3051 xfs_cross_rename(
3052 	struct xfs_trans	*tp,
3053 	struct xfs_inode	*dp1,
3054 	struct xfs_name		*name1,
3055 	struct xfs_inode	*ip1,
3056 	struct xfs_inode	*dp2,
3057 	struct xfs_name		*name2,
3058 	struct xfs_inode	*ip2,
3059 	int			spaceres)
3060 {
3061 	int		error = 0;
3062 	int		ip1_flags = 0;
3063 	int		ip2_flags = 0;
3064 	int		dp2_flags = 0;
3065 
3066 	/* Swap inode number for dirent in first parent */
3067 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3068 	if (error)
3069 		goto out_trans_abort;
3070 
3071 	/* Swap inode number for dirent in second parent */
3072 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3073 	if (error)
3074 		goto out_trans_abort;
3075 
3076 	/*
3077 	 * If we're renaming one or more directories across different parents,
3078 	 * update the respective ".." entries (and link counts) to match the new
3079 	 * parents.
3080 	 */
3081 	if (dp1 != dp2) {
3082 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3083 
3084 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3085 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3086 						dp1->i_ino, spaceres);
3087 			if (error)
3088 				goto out_trans_abort;
3089 
3090 			/* transfer ip2 ".." reference to dp1 */
3091 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3092 				error = xfs_droplink(tp, dp2);
3093 				if (error)
3094 					goto out_trans_abort;
3095 				xfs_bumplink(tp, dp1);
3096 			}
3097 
3098 			/*
3099 			 * Although ip1 isn't changed here, userspace needs
3100 			 * to be warned about the change, so that applications
3101 			 * relying on it (like backup ones), will properly
3102 			 * notify the change
3103 			 */
3104 			ip1_flags |= XFS_ICHGTIME_CHG;
3105 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3106 		}
3107 
3108 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3109 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3110 						dp2->i_ino, spaceres);
3111 			if (error)
3112 				goto out_trans_abort;
3113 
3114 			/* transfer ip1 ".." reference to dp2 */
3115 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3116 				error = xfs_droplink(tp, dp1);
3117 				if (error)
3118 					goto out_trans_abort;
3119 				xfs_bumplink(tp, dp2);
3120 			}
3121 
3122 			/*
3123 			 * Although ip2 isn't changed here, userspace needs
3124 			 * to be warned about the change, so that applications
3125 			 * relying on it (like backup ones), will properly
3126 			 * notify the change
3127 			 */
3128 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3129 			ip2_flags |= XFS_ICHGTIME_CHG;
3130 		}
3131 	}
3132 
3133 	if (ip1_flags) {
3134 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3135 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3136 	}
3137 	if (ip2_flags) {
3138 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3139 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3140 	}
3141 	if (dp2_flags) {
3142 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3143 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3144 	}
3145 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3146 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3147 	return xfs_finish_rename(tp);
3148 
3149 out_trans_abort:
3150 	xfs_trans_cancel(tp);
3151 	return error;
3152 }
3153 
3154 /*
3155  * xfs_rename_alloc_whiteout()
3156  *
3157  * Return a referenced, unlinked, unlocked inode that that can be used as a
3158  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3159  * crash between allocating the inode and linking it into the rename transaction
3160  * recovery will free the inode and we won't leak it.
3161  */
3162 static int
3163 xfs_rename_alloc_whiteout(
3164 	struct xfs_inode	*dp,
3165 	struct xfs_inode	**wip)
3166 {
3167 	struct xfs_inode	*tmpfile;
3168 	int			error;
3169 
3170 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3171 	if (error)
3172 		return error;
3173 
3174 	/*
3175 	 * Prepare the tmpfile inode as if it were created through the VFS.
3176 	 * Complete the inode setup and flag it as linkable.  nlink is already
3177 	 * zero, so we can skip the drop_nlink.
3178 	 */
3179 	xfs_setup_iops(tmpfile);
3180 	xfs_finish_inode_setup(tmpfile);
3181 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3182 
3183 	*wip = tmpfile;
3184 	return 0;
3185 }
3186 
3187 /*
3188  * xfs_rename
3189  */
3190 int
3191 xfs_rename(
3192 	struct xfs_inode	*src_dp,
3193 	struct xfs_name		*src_name,
3194 	struct xfs_inode	*src_ip,
3195 	struct xfs_inode	*target_dp,
3196 	struct xfs_name		*target_name,
3197 	struct xfs_inode	*target_ip,
3198 	unsigned int		flags)
3199 {
3200 	struct xfs_mount	*mp = src_dp->i_mount;
3201 	struct xfs_trans	*tp;
3202 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3203 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3204 	int			num_inodes = __XFS_SORT_INODES;
3205 	bool			new_parent = (src_dp != target_dp);
3206 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3207 	int			spaceres;
3208 	int			error;
3209 
3210 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3211 
3212 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3213 		return -EINVAL;
3214 
3215 	/*
3216 	 * If we are doing a whiteout operation, allocate the whiteout inode
3217 	 * we will be placing at the target and ensure the type is set
3218 	 * appropriately.
3219 	 */
3220 	if (flags & RENAME_WHITEOUT) {
3221 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3222 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3223 		if (error)
3224 			return error;
3225 
3226 		/* setup target dirent info as whiteout */
3227 		src_name->type = XFS_DIR3_FT_CHRDEV;
3228 	}
3229 
3230 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3231 				inodes, &num_inodes);
3232 
3233 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3234 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3235 	if (error == -ENOSPC) {
3236 		spaceres = 0;
3237 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3238 				&tp);
3239 	}
3240 	if (error)
3241 		goto out_release_wip;
3242 
3243 	/*
3244 	 * Attach the dquots to the inodes
3245 	 */
3246 	error = xfs_qm_vop_rename_dqattach(inodes);
3247 	if (error)
3248 		goto out_trans_cancel;
3249 
3250 	/*
3251 	 * Lock all the participating inodes. Depending upon whether
3252 	 * the target_name exists in the target directory, and
3253 	 * whether the target directory is the same as the source
3254 	 * directory, we can lock from 2 to 4 inodes.
3255 	 */
3256 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3257 
3258 	/*
3259 	 * Join all the inodes to the transaction. From this point on,
3260 	 * we can rely on either trans_commit or trans_cancel to unlock
3261 	 * them.
3262 	 */
3263 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3264 	if (new_parent)
3265 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3266 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3267 	if (target_ip)
3268 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3269 	if (wip)
3270 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3271 
3272 	/*
3273 	 * If we are using project inheritance, we only allow renames
3274 	 * into our tree when the project IDs are the same; else the
3275 	 * tree quota mechanism would be circumvented.
3276 	 */
3277 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3278 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3279 		error = -EXDEV;
3280 		goto out_trans_cancel;
3281 	}
3282 
3283 	/* RENAME_EXCHANGE is unique from here on. */
3284 	if (flags & RENAME_EXCHANGE)
3285 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3286 					target_dp, target_name, target_ip,
3287 					spaceres);
3288 
3289 	/*
3290 	 * Set up the target.
3291 	 */
3292 	if (target_ip == NULL) {
3293 		/*
3294 		 * If there's no space reservation, check the entry will
3295 		 * fit before actually inserting it.
3296 		 */
3297 		if (!spaceres) {
3298 			error = xfs_dir_canenter(tp, target_dp, target_name);
3299 			if (error)
3300 				goto out_trans_cancel;
3301 		}
3302 		/*
3303 		 * If target does not exist and the rename crosses
3304 		 * directories, adjust the target directory link count
3305 		 * to account for the ".." reference from the new entry.
3306 		 */
3307 		error = xfs_dir_createname(tp, target_dp, target_name,
3308 					   src_ip->i_ino, spaceres);
3309 		if (error)
3310 			goto out_trans_cancel;
3311 
3312 		xfs_trans_ichgtime(tp, target_dp,
3313 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3314 
3315 		if (new_parent && src_is_directory) {
3316 			xfs_bumplink(tp, target_dp);
3317 		}
3318 	} else { /* target_ip != NULL */
3319 		/*
3320 		 * If target exists and it's a directory, check that both
3321 		 * target and source are directories and that target can be
3322 		 * destroyed, or that neither is a directory.
3323 		 */
3324 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3325 			/*
3326 			 * Make sure target dir is empty.
3327 			 */
3328 			if (!(xfs_dir_isempty(target_ip)) ||
3329 			    (VFS_I(target_ip)->i_nlink > 2)) {
3330 				error = -EEXIST;
3331 				goto out_trans_cancel;
3332 			}
3333 		}
3334 
3335 		/*
3336 		 * Link the source inode under the target name.
3337 		 * If the source inode is a directory and we are moving
3338 		 * it across directories, its ".." entry will be
3339 		 * inconsistent until we replace that down below.
3340 		 *
3341 		 * In case there is already an entry with the same
3342 		 * name at the destination directory, remove it first.
3343 		 */
3344 		error = xfs_dir_replace(tp, target_dp, target_name,
3345 					src_ip->i_ino, spaceres);
3346 		if (error)
3347 			goto out_trans_cancel;
3348 
3349 		xfs_trans_ichgtime(tp, target_dp,
3350 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3351 
3352 		/*
3353 		 * Decrement the link count on the target since the target
3354 		 * dir no longer points to it.
3355 		 */
3356 		error = xfs_droplink(tp, target_ip);
3357 		if (error)
3358 			goto out_trans_cancel;
3359 
3360 		if (src_is_directory) {
3361 			/*
3362 			 * Drop the link from the old "." entry.
3363 			 */
3364 			error = xfs_droplink(tp, target_ip);
3365 			if (error)
3366 				goto out_trans_cancel;
3367 		}
3368 	} /* target_ip != NULL */
3369 
3370 	/*
3371 	 * Remove the source.
3372 	 */
3373 	if (new_parent && src_is_directory) {
3374 		/*
3375 		 * Rewrite the ".." entry to point to the new
3376 		 * directory.
3377 		 */
3378 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3379 					target_dp->i_ino, spaceres);
3380 		ASSERT(error != -EEXIST);
3381 		if (error)
3382 			goto out_trans_cancel;
3383 	}
3384 
3385 	/*
3386 	 * We always want to hit the ctime on the source inode.
3387 	 *
3388 	 * This isn't strictly required by the standards since the source
3389 	 * inode isn't really being changed, but old unix file systems did
3390 	 * it and some incremental backup programs won't work without it.
3391 	 */
3392 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3393 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3394 
3395 	/*
3396 	 * Adjust the link count on src_dp.  This is necessary when
3397 	 * renaming a directory, either within one parent when
3398 	 * the target existed, or across two parent directories.
3399 	 */
3400 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3401 
3402 		/*
3403 		 * Decrement link count on src_directory since the
3404 		 * entry that's moved no longer points to it.
3405 		 */
3406 		error = xfs_droplink(tp, src_dp);
3407 		if (error)
3408 			goto out_trans_cancel;
3409 	}
3410 
3411 	/*
3412 	 * For whiteouts, we only need to update the source dirent with the
3413 	 * inode number of the whiteout inode rather than removing it
3414 	 * altogether.
3415 	 */
3416 	if (wip) {
3417 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3418 					spaceres);
3419 	} else
3420 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3421 					   spaceres);
3422 	if (error)
3423 		goto out_trans_cancel;
3424 
3425 	/*
3426 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3427 	 * This means that failures all the way up to this point leave the inode
3428 	 * on the unlinked list and so cleanup is a simple matter of dropping
3429 	 * the remaining reference to it. If we fail here after bumping the link
3430 	 * count, we're shutting down the filesystem so we'll never see the
3431 	 * intermediate state on disk.
3432 	 */
3433 	if (wip) {
3434 		ASSERT(VFS_I(wip)->i_nlink == 0);
3435 		xfs_bumplink(tp, wip);
3436 		error = xfs_iunlink_remove(tp, wip);
3437 		if (error)
3438 			goto out_trans_cancel;
3439 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3440 
3441 		/*
3442 		 * Now we have a real link, clear the "I'm a tmpfile" state
3443 		 * flag from the inode so it doesn't accidentally get misused in
3444 		 * future.
3445 		 */
3446 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3447 	}
3448 
3449 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3450 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3451 	if (new_parent)
3452 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3453 
3454 	error = xfs_finish_rename(tp);
3455 	if (wip)
3456 		xfs_irele(wip);
3457 	return error;
3458 
3459 out_trans_cancel:
3460 	xfs_trans_cancel(tp);
3461 out_release_wip:
3462 	if (wip)
3463 		xfs_irele(wip);
3464 	return error;
3465 }
3466 
3467 STATIC int
3468 xfs_iflush_cluster(
3469 	struct xfs_inode	*ip,
3470 	struct xfs_buf		*bp)
3471 {
3472 	struct xfs_mount	*mp = ip->i_mount;
3473 	struct xfs_perag	*pag;
3474 	unsigned long		first_index, mask;
3475 	unsigned long		inodes_per_cluster;
3476 	int			cilist_size;
3477 	struct xfs_inode	**cilist;
3478 	struct xfs_inode	*cip;
3479 	int			nr_found;
3480 	int			clcount = 0;
3481 	int			i;
3482 
3483 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3484 
3485 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3486 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3487 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3488 	if (!cilist)
3489 		goto out_put;
3490 
3491 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3492 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3493 	rcu_read_lock();
3494 	/* really need a gang lookup range call here */
3495 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3496 					first_index, inodes_per_cluster);
3497 	if (nr_found == 0)
3498 		goto out_free;
3499 
3500 	for (i = 0; i < nr_found; i++) {
3501 		cip = cilist[i];
3502 		if (cip == ip)
3503 			continue;
3504 
3505 		/*
3506 		 * because this is an RCU protected lookup, we could find a
3507 		 * recently freed or even reallocated inode during the lookup.
3508 		 * We need to check under the i_flags_lock for a valid inode
3509 		 * here. Skip it if it is not valid or the wrong inode.
3510 		 */
3511 		spin_lock(&cip->i_flags_lock);
3512 		if (!cip->i_ino ||
3513 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3514 			spin_unlock(&cip->i_flags_lock);
3515 			continue;
3516 		}
3517 
3518 		/*
3519 		 * Once we fall off the end of the cluster, no point checking
3520 		 * any more inodes in the list because they will also all be
3521 		 * outside the cluster.
3522 		 */
3523 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3524 			spin_unlock(&cip->i_flags_lock);
3525 			break;
3526 		}
3527 		spin_unlock(&cip->i_flags_lock);
3528 
3529 		/*
3530 		 * Do an un-protected check to see if the inode is dirty and
3531 		 * is a candidate for flushing.  These checks will be repeated
3532 		 * later after the appropriate locks are acquired.
3533 		 */
3534 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3535 			continue;
3536 
3537 		/*
3538 		 * Try to get locks.  If any are unavailable or it is pinned,
3539 		 * then this inode cannot be flushed and is skipped.
3540 		 */
3541 
3542 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3543 			continue;
3544 		if (!xfs_iflock_nowait(cip)) {
3545 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3546 			continue;
3547 		}
3548 		if (xfs_ipincount(cip)) {
3549 			xfs_ifunlock(cip);
3550 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3551 			continue;
3552 		}
3553 
3554 
3555 		/*
3556 		 * Check the inode number again, just to be certain we are not
3557 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3558 		 * in that function for more information as to why the initial
3559 		 * check is not sufficient.
3560 		 */
3561 		if (!cip->i_ino) {
3562 			xfs_ifunlock(cip);
3563 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3564 			continue;
3565 		}
3566 
3567 		/*
3568 		 * arriving here means that this inode can be flushed.  First
3569 		 * re-check that it's dirty before flushing.
3570 		 */
3571 		if (!xfs_inode_clean(cip)) {
3572 			int	error;
3573 			error = xfs_iflush_int(cip, bp);
3574 			if (error) {
3575 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3576 				goto cluster_corrupt_out;
3577 			}
3578 			clcount++;
3579 		} else {
3580 			xfs_ifunlock(cip);
3581 		}
3582 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3583 	}
3584 
3585 	if (clcount) {
3586 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3587 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3588 	}
3589 
3590 out_free:
3591 	rcu_read_unlock();
3592 	kmem_free(cilist);
3593 out_put:
3594 	xfs_perag_put(pag);
3595 	return 0;
3596 
3597 
3598 cluster_corrupt_out:
3599 	/*
3600 	 * Corruption detected in the clustering loop.  Invalidate the
3601 	 * inode buffer and shut down the filesystem.
3602 	 */
3603 	rcu_read_unlock();
3604 
3605 	/*
3606 	 * We'll always have an inode attached to the buffer for completion
3607 	 * process by the time we are called from xfs_iflush(). Hence we have
3608 	 * always need to do IO completion processing to abort the inodes
3609 	 * attached to the buffer.  handle them just like the shutdown case in
3610 	 * xfs_buf_submit().
3611 	 */
3612 	ASSERT(bp->b_iodone);
3613 	bp->b_flags |= XBF_ASYNC;
3614 	bp->b_flags &= ~XBF_DONE;
3615 	xfs_buf_stale(bp);
3616 	xfs_buf_ioerror(bp, -EIO);
3617 	xfs_buf_ioend(bp);
3618 
3619 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3620 
3621 	/* abort the corrupt inode, as it was not attached to the buffer */
3622 	xfs_iflush_abort(cip, false);
3623 	kmem_free(cilist);
3624 	xfs_perag_put(pag);
3625 	return -EFSCORRUPTED;
3626 }
3627 
3628 /*
3629  * Flush dirty inode metadata into the backing buffer.
3630  *
3631  * The caller must have the inode lock and the inode flush lock held.  The
3632  * inode lock will still be held upon return to the caller, and the inode
3633  * flush lock will be released after the inode has reached the disk.
3634  *
3635  * The caller must write out the buffer returned in *bpp and release it.
3636  */
3637 int
3638 xfs_iflush(
3639 	struct xfs_inode	*ip,
3640 	struct xfs_buf		**bpp)
3641 {
3642 	struct xfs_mount	*mp = ip->i_mount;
3643 	struct xfs_buf		*bp = NULL;
3644 	struct xfs_dinode	*dip;
3645 	int			error;
3646 
3647 	XFS_STATS_INC(mp, xs_iflush_count);
3648 
3649 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3650 	ASSERT(xfs_isiflocked(ip));
3651 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3652 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3653 
3654 	*bpp = NULL;
3655 
3656 	xfs_iunpin_wait(ip);
3657 
3658 	/*
3659 	 * For stale inodes we cannot rely on the backing buffer remaining
3660 	 * stale in cache for the remaining life of the stale inode and so
3661 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3662 	 * inodes below. We have to check this after ensuring the inode is
3663 	 * unpinned so that it is safe to reclaim the stale inode after the
3664 	 * flush call.
3665 	 */
3666 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3667 		xfs_ifunlock(ip);
3668 		return 0;
3669 	}
3670 
3671 	/*
3672 	 * This may have been unpinned because the filesystem is shutting
3673 	 * down forcibly. If that's the case we must not write this inode
3674 	 * to disk, because the log record didn't make it to disk.
3675 	 *
3676 	 * We also have to remove the log item from the AIL in this case,
3677 	 * as we wait for an empty AIL as part of the unmount process.
3678 	 */
3679 	if (XFS_FORCED_SHUTDOWN(mp)) {
3680 		error = -EIO;
3681 		goto abort_out;
3682 	}
3683 
3684 	/*
3685 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3686 	 * operation here, so we may get  an EAGAIN error. In that case, we
3687 	 * simply want to return with the inode still dirty.
3688 	 *
3689 	 * If we get any other error, we effectively have a corruption situation
3690 	 * and we cannot flush the inode, so we treat it the same as failing
3691 	 * xfs_iflush_int().
3692 	 */
3693 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3694 			       0);
3695 	if (error == -EAGAIN) {
3696 		xfs_ifunlock(ip);
3697 		return error;
3698 	}
3699 	if (error)
3700 		goto corrupt_out;
3701 
3702 	/*
3703 	 * First flush out the inode that xfs_iflush was called with.
3704 	 */
3705 	error = xfs_iflush_int(ip, bp);
3706 	if (error)
3707 		goto corrupt_out;
3708 
3709 	/*
3710 	 * If the buffer is pinned then push on the log now so we won't
3711 	 * get stuck waiting in the write for too long.
3712 	 */
3713 	if (xfs_buf_ispinned(bp))
3714 		xfs_log_force(mp, 0);
3715 
3716 	/*
3717 	 * inode clustering: try to gather other inodes into this write
3718 	 *
3719 	 * Note: Any error during clustering will result in the filesystem
3720 	 * being shut down and completion callbacks run on the cluster buffer.
3721 	 * As we have already flushed and attached this inode to the buffer,
3722 	 * it has already been aborted and released by xfs_iflush_cluster() and
3723 	 * so we have no further error handling to do here.
3724 	 */
3725 	error = xfs_iflush_cluster(ip, bp);
3726 	if (error)
3727 		return error;
3728 
3729 	*bpp = bp;
3730 	return 0;
3731 
3732 corrupt_out:
3733 	if (bp)
3734 		xfs_buf_relse(bp);
3735 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3736 abort_out:
3737 	/* abort the corrupt inode, as it was not attached to the buffer */
3738 	xfs_iflush_abort(ip, false);
3739 	return error;
3740 }
3741 
3742 /*
3743  * If there are inline format data / attr forks attached to this inode,
3744  * make sure they're not corrupt.
3745  */
3746 bool
3747 xfs_inode_verify_forks(
3748 	struct xfs_inode	*ip)
3749 {
3750 	struct xfs_ifork	*ifp;
3751 	xfs_failaddr_t		fa;
3752 
3753 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3754 	if (fa) {
3755 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3756 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3757 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3758 		return false;
3759 	}
3760 
3761 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3762 	if (fa) {
3763 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3764 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3765 				ifp ? ifp->if_u1.if_data : NULL,
3766 				ifp ? ifp->if_bytes : 0, fa);
3767 		return false;
3768 	}
3769 	return true;
3770 }
3771 
3772 STATIC int
3773 xfs_iflush_int(
3774 	struct xfs_inode	*ip,
3775 	struct xfs_buf		*bp)
3776 {
3777 	struct xfs_inode_log_item *iip = ip->i_itemp;
3778 	struct xfs_dinode	*dip;
3779 	struct xfs_mount	*mp = ip->i_mount;
3780 
3781 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3782 	ASSERT(xfs_isiflocked(ip));
3783 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3784 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3785 	ASSERT(iip != NULL && iip->ili_fields != 0);
3786 	ASSERT(ip->i_d.di_version > 1);
3787 
3788 	/* set *dip = inode's place in the buffer */
3789 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3790 
3791 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3792 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3793 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3794 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3795 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3796 		goto corrupt_out;
3797 	}
3798 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3799 		if (XFS_TEST_ERROR(
3800 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3801 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3802 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3803 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3804 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3805 				__func__, ip->i_ino, ip);
3806 			goto corrupt_out;
3807 		}
3808 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3809 		if (XFS_TEST_ERROR(
3810 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3811 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3812 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3813 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3814 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3815 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3816 				__func__, ip->i_ino, ip);
3817 			goto corrupt_out;
3818 		}
3819 	}
3820 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3821 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3822 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3823 			"%s: detected corrupt incore inode %Lu, "
3824 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3825 			__func__, ip->i_ino,
3826 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3827 			ip->i_d.di_nblocks, ip);
3828 		goto corrupt_out;
3829 	}
3830 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3831 				mp, XFS_ERRTAG_IFLUSH_6)) {
3832 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3833 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3834 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3835 		goto corrupt_out;
3836 	}
3837 
3838 	/*
3839 	 * Inode item log recovery for v2 inodes are dependent on the
3840 	 * di_flushiter count for correct sequencing. We bump the flush
3841 	 * iteration count so we can detect flushes which postdate a log record
3842 	 * during recovery. This is redundant as we now log every change and
3843 	 * hence this can't happen but we need to still do it to ensure
3844 	 * backwards compatibility with old kernels that predate logging all
3845 	 * inode changes.
3846 	 */
3847 	if (ip->i_d.di_version < 3)
3848 		ip->i_d.di_flushiter++;
3849 
3850 	/* Check the inline fork data before we write out. */
3851 	if (!xfs_inode_verify_forks(ip))
3852 		goto corrupt_out;
3853 
3854 	/*
3855 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3856 	 * copy out the core of the inode, because if the inode is dirty at all
3857 	 * the core must be.
3858 	 */
3859 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3860 
3861 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3862 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3863 		ip->i_d.di_flushiter = 0;
3864 
3865 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3866 	if (XFS_IFORK_Q(ip))
3867 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3868 	xfs_inobp_check(mp, bp);
3869 
3870 	/*
3871 	 * We've recorded everything logged in the inode, so we'd like to clear
3872 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3873 	 * However, we can't stop logging all this information until the data
3874 	 * we've copied into the disk buffer is written to disk.  If we did we
3875 	 * might overwrite the copy of the inode in the log with all the data
3876 	 * after re-logging only part of it, and in the face of a crash we
3877 	 * wouldn't have all the data we need to recover.
3878 	 *
3879 	 * What we do is move the bits to the ili_last_fields field.  When
3880 	 * logging the inode, these bits are moved back to the ili_fields field.
3881 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3882 	 * know that the information those bits represent is permanently on
3883 	 * disk.  As long as the flush completes before the inode is logged
3884 	 * again, then both ili_fields and ili_last_fields will be cleared.
3885 	 *
3886 	 * We can play with the ili_fields bits here, because the inode lock
3887 	 * must be held exclusively in order to set bits there and the flush
3888 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3889 	 * done routine can tell whether or not to look in the AIL.  Also, store
3890 	 * the current LSN of the inode so that we can tell whether the item has
3891 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3892 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3893 	 * atomically.
3894 	 */
3895 	iip->ili_last_fields = iip->ili_fields;
3896 	iip->ili_fields = 0;
3897 	iip->ili_fsync_fields = 0;
3898 	iip->ili_logged = 1;
3899 
3900 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3901 				&iip->ili_item.li_lsn);
3902 
3903 	/*
3904 	 * Attach the function xfs_iflush_done to the inode's
3905 	 * buffer.  This will remove the inode from the AIL
3906 	 * and unlock the inode's flush lock when the inode is
3907 	 * completely written to disk.
3908 	 */
3909 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3910 
3911 	/* generate the checksum. */
3912 	xfs_dinode_calc_crc(mp, dip);
3913 
3914 	ASSERT(!list_empty(&bp->b_li_list));
3915 	ASSERT(bp->b_iodone != NULL);
3916 	return 0;
3917 
3918 corrupt_out:
3919 	return -EFSCORRUPTED;
3920 }
3921 
3922 /* Release an inode. */
3923 void
3924 xfs_irele(
3925 	struct xfs_inode	*ip)
3926 {
3927 	trace_xfs_irele(ip, _RET_IP_);
3928 	iput(VFS_I(ip));
3929 }
3930