xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision a8fe58ce)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369  * errors and warnings.
370  */
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
373 xfs_lockdep_subclass_ok(
374 	int subclass)
375 {
376 	return subclass < MAX_LOCKDEP_SUBCLASSES;
377 }
378 #else
379 #define xfs_lockdep_subclass_ok(subclass)	(true)
380 #endif
381 
382 /*
383  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384  * value. This can be called for any type of inode lock combination, including
385  * parent locking. Care must be taken to ensure we don't overrun the subclass
386  * storage fields in the class mask we build.
387  */
388 static inline int
389 xfs_lock_inumorder(int lock_mode, int subclass)
390 {
391 	int	class = 0;
392 
393 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 			      XFS_ILOCK_RTSUM)));
395 	ASSERT(xfs_lockdep_subclass_ok(subclass));
396 
397 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 		ASSERT(xfs_lockdep_subclass_ok(subclass +
400 						XFS_IOLOCK_PARENT_VAL));
401 		class += subclass << XFS_IOLOCK_SHIFT;
402 		if (lock_mode & XFS_IOLOCK_PARENT)
403 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
404 	}
405 
406 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_MMAPLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_ILOCK_SHIFT;
414 	}
415 
416 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
417 }
418 
419 /*
420  * The following routine will lock n inodes in exclusive mode.  We assume the
421  * caller calls us with the inodes in i_ino order.
422  *
423  * We need to detect deadlock where an inode that we lock is in the AIL and we
424  * start waiting for another inode that is locked by a thread in a long running
425  * transaction (such as truncate). This can result in deadlock since the long
426  * running trans might need to wait for the inode we just locked in order to
427  * push the tail and free space in the log.
428  *
429  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431  * lock more than one at a time, lockdep will report false positives saying we
432  * have violated locking orders.
433  */
434 void
435 xfs_lock_inodes(
436 	xfs_inode_t	**ips,
437 	int		inodes,
438 	uint		lock_mode)
439 {
440 	int		attempts = 0, i, j, try_lock;
441 	xfs_log_item_t	*lp;
442 
443 	/*
444 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
445 	 * support an arbitrary depth of locking here, but absolute limits on
446 	 * inodes depend on the the type of locking and the limits placed by
447 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
448 	 * the asserts.
449 	 */
450 	ASSERT(ips && inodes >= 2 && inodes <= 5);
451 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 			    XFS_ILOCK_EXCL));
453 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 			      XFS_ILOCK_SHARED)));
455 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 			xfs_lock_delays++;
525 #endif
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 
532 #ifdef DEBUG
533 	if (attempts) {
534 		if (attempts < 5) xfs_small_retries++;
535 		else if (attempts < 100) xfs_middle_retries++;
536 		else xfs_lots_retries++;
537 	} else {
538 		xfs_locked_n++;
539 	}
540 #endif
541 }
542 
543 /*
544  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546  * lock more than one at a time, lockdep will report false positives saying we
547  * have violated locking orders.
548  */
549 void
550 xfs_lock_two_inodes(
551 	xfs_inode_t		*ip0,
552 	xfs_inode_t		*ip1,
553 	uint			lock_mode)
554 {
555 	xfs_inode_t		*temp;
556 	int			attempts = 0;
557 	xfs_log_item_t		*lp;
558 
559 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 
565 	ASSERT(ip0->i_ino != ip1->i_ino);
566 
567 	if (ip0->i_ino > ip1->i_ino) {
568 		temp = ip0;
569 		ip0 = ip1;
570 		ip1 = temp;
571 	}
572 
573  again:
574 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575 
576 	/*
577 	 * If the first lock we have locked is in the AIL, we must TRY to get
578 	 * the second lock. If we can't get it, we must release the first one
579 	 * and try again.
580 	 */
581 	lp = (xfs_log_item_t *)ip0->i_itemp;
582 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 			xfs_iunlock(ip0, lock_mode);
585 			if ((++attempts % 5) == 0)
586 				delay(1); /* Don't just spin the CPU */
587 			goto again;
588 		}
589 	} else {
590 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 	}
592 }
593 
594 
595 void
596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wait);
609 }
610 
611 STATIC uint
612 _xfs_dic2xflags(
613 	__uint16_t		di_flags,
614 	uint64_t		di_flags2,
615 	bool			has_attr)
616 {
617 	uint			flags = 0;
618 
619 	if (di_flags & XFS_DIFLAG_ANY) {
620 		if (di_flags & XFS_DIFLAG_REALTIME)
621 			flags |= FS_XFLAG_REALTIME;
622 		if (di_flags & XFS_DIFLAG_PREALLOC)
623 			flags |= FS_XFLAG_PREALLOC;
624 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 			flags |= FS_XFLAG_IMMUTABLE;
626 		if (di_flags & XFS_DIFLAG_APPEND)
627 			flags |= FS_XFLAG_APPEND;
628 		if (di_flags & XFS_DIFLAG_SYNC)
629 			flags |= FS_XFLAG_SYNC;
630 		if (di_flags & XFS_DIFLAG_NOATIME)
631 			flags |= FS_XFLAG_NOATIME;
632 		if (di_flags & XFS_DIFLAG_NODUMP)
633 			flags |= FS_XFLAG_NODUMP;
634 		if (di_flags & XFS_DIFLAG_RTINHERIT)
635 			flags |= FS_XFLAG_RTINHERIT;
636 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 			flags |= FS_XFLAG_PROJINHERIT;
638 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 			flags |= FS_XFLAG_NOSYMLINKS;
640 		if (di_flags & XFS_DIFLAG_EXTSIZE)
641 			flags |= FS_XFLAG_EXTSIZE;
642 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 			flags |= FS_XFLAG_EXTSZINHERIT;
644 		if (di_flags & XFS_DIFLAG_NODEFRAG)
645 			flags |= FS_XFLAG_NODEFRAG;
646 		if (di_flags & XFS_DIFLAG_FILESTREAM)
647 			flags |= FS_XFLAG_FILESTREAM;
648 	}
649 
650 	if (di_flags2 & XFS_DIFLAG2_ANY) {
651 		if (di_flags2 & XFS_DIFLAG2_DAX)
652 			flags |= FS_XFLAG_DAX;
653 	}
654 
655 	if (has_attr)
656 		flags |= FS_XFLAG_HASATTR;
657 
658 	return flags;
659 }
660 
661 uint
662 xfs_ip2xflags(
663 	struct xfs_inode	*ip)
664 {
665 	struct xfs_icdinode	*dic = &ip->i_d;
666 
667 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
668 }
669 
670 uint
671 xfs_dic2xflags(
672 	struct xfs_dinode	*dip)
673 {
674 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
676 }
677 
678 /*
679  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680  * is allowed, otherwise it has to be an exact match. If a CI match is found,
681  * ci_name->name will point to a the actual name (caller must free) or
682  * will be set to NULL if an exact match is found.
683  */
684 int
685 xfs_lookup(
686 	xfs_inode_t		*dp,
687 	struct xfs_name		*name,
688 	xfs_inode_t		**ipp,
689 	struct xfs_name		*ci_name)
690 {
691 	xfs_ino_t		inum;
692 	int			error;
693 
694 	trace_xfs_lookup(dp, name);
695 
696 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 		return -EIO;
698 
699 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 	if (error)
702 		goto out_unlock;
703 
704 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 	if (error)
706 		goto out_free_name;
707 
708 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 	return 0;
710 
711 out_free_name:
712 	if (ci_name)
713 		kmem_free(ci_name->name);
714 out_unlock:
715 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 	*ipp = NULL;
717 	return error;
718 }
719 
720 /*
721  * Allocate an inode on disk and return a copy of its in-core version.
722  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
723  * appropriately within the inode.  The uid and gid for the inode are
724  * set according to the contents of the given cred structure.
725  *
726  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727  * has a free inode available, call xfs_iget() to obtain the in-core
728  * version of the allocated inode.  Finally, fill in the inode and
729  * log its initial contents.  In this case, ialloc_context would be
730  * set to NULL.
731  *
732  * If xfs_dialloc() does not have an available inode, it will replenish
733  * its supply by doing an allocation. Since we can only do one
734  * allocation within a transaction without deadlocks, we must commit
735  * the current transaction before returning the inode itself.
736  * In this case, therefore, we will set ialloc_context and return.
737  * The caller should then commit the current transaction, start a new
738  * transaction, and call xfs_ialloc() again to actually get the inode.
739  *
740  * To ensure that some other process does not grab the inode that
741  * was allocated during the first call to xfs_ialloc(), this routine
742  * also returns the [locked] bp pointing to the head of the freelist
743  * as ialloc_context.  The caller should hold this buffer across
744  * the commit and pass it back into this routine on the second call.
745  *
746  * If we are allocating quota inodes, we do not have a parent inode
747  * to attach to or associate with (i.e. pip == NULL) because they
748  * are not linked into the directory structure - they are attached
749  * directly to the superblock - and so have no parent.
750  */
751 int
752 xfs_ialloc(
753 	xfs_trans_t	*tp,
754 	xfs_inode_t	*pip,
755 	umode_t		mode,
756 	xfs_nlink_t	nlink,
757 	xfs_dev_t	rdev,
758 	prid_t		prid,
759 	int		okalloc,
760 	xfs_buf_t	**ialloc_context,
761 	xfs_inode_t	**ipp)
762 {
763 	struct xfs_mount *mp = tp->t_mountp;
764 	xfs_ino_t	ino;
765 	xfs_inode_t	*ip;
766 	uint		flags;
767 	int		error;
768 	struct timespec	tv;
769 
770 	/*
771 	 * Call the space management code to pick
772 	 * the on-disk inode to be allocated.
773 	 */
774 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
775 			    ialloc_context, &ino);
776 	if (error)
777 		return error;
778 	if (*ialloc_context || ino == NULLFSINO) {
779 		*ipp = NULL;
780 		return 0;
781 	}
782 	ASSERT(*ialloc_context == NULL);
783 
784 	/*
785 	 * Get the in-core inode with the lock held exclusively.
786 	 * This is because we're setting fields here we need
787 	 * to prevent others from looking at until we're done.
788 	 */
789 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
790 			 XFS_ILOCK_EXCL, &ip);
791 	if (error)
792 		return error;
793 	ASSERT(ip != NULL);
794 
795 	/*
796 	 * We always convert v1 inodes to v2 now - we only support filesystems
797 	 * with >= v2 inode capability, so there is no reason for ever leaving
798 	 * an inode in v1 format.
799 	 */
800 	if (ip->i_d.di_version == 1)
801 		ip->i_d.di_version = 2;
802 
803 	ip->i_d.di_mode = mode;
804 	ip->i_d.di_onlink = 0;
805 	ip->i_d.di_nlink = nlink;
806 	ASSERT(ip->i_d.di_nlink == nlink);
807 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 	xfs_set_projid(ip, prid);
810 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
811 
812 	if (pip && XFS_INHERIT_GID(pip)) {
813 		ip->i_d.di_gid = pip->i_d.di_gid;
814 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
815 			ip->i_d.di_mode |= S_ISGID;
816 		}
817 	}
818 
819 	/*
820 	 * If the group ID of the new file does not match the effective group
821 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
822 	 * (and only if the irix_sgid_inherit compatibility variable is set).
823 	 */
824 	if ((irix_sgid_inherit) &&
825 	    (ip->i_d.di_mode & S_ISGID) &&
826 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
827 		ip->i_d.di_mode &= ~S_ISGID;
828 	}
829 
830 	ip->i_d.di_size = 0;
831 	ip->i_d.di_nextents = 0;
832 	ASSERT(ip->i_d.di_nblocks == 0);
833 
834 	tv = current_fs_time(mp->m_super);
835 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
836 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
837 	ip->i_d.di_atime = ip->i_d.di_mtime;
838 	ip->i_d.di_ctime = ip->i_d.di_mtime;
839 
840 	/*
841 	 * di_gen will have been taken care of in xfs_iread.
842 	 */
843 	ip->i_d.di_extsize = 0;
844 	ip->i_d.di_dmevmask = 0;
845 	ip->i_d.di_dmstate = 0;
846 	ip->i_d.di_flags = 0;
847 
848 	if (ip->i_d.di_version == 3) {
849 		ASSERT(ip->i_d.di_ino == ino);
850 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
851 		ip->i_d.di_crc = 0;
852 		ip->i_d.di_changecount = 1;
853 		ip->i_d.di_lsn = 0;
854 		ip->i_d.di_flags2 = 0;
855 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
856 		ip->i_d.di_crtime = ip->i_d.di_mtime;
857 	}
858 
859 
860 	flags = XFS_ILOG_CORE;
861 	switch (mode & S_IFMT) {
862 	case S_IFIFO:
863 	case S_IFCHR:
864 	case S_IFBLK:
865 	case S_IFSOCK:
866 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
867 		ip->i_df.if_u2.if_rdev = rdev;
868 		ip->i_df.if_flags = 0;
869 		flags |= XFS_ILOG_DEV;
870 		break;
871 	case S_IFREG:
872 	case S_IFDIR:
873 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
874 			uint64_t	di_flags2 = 0;
875 			uint		di_flags = 0;
876 
877 			if (S_ISDIR(mode)) {
878 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
879 					di_flags |= XFS_DIFLAG_RTINHERIT;
880 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
882 					ip->i_d.di_extsize = pip->i_d.di_extsize;
883 				}
884 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
885 					di_flags |= XFS_DIFLAG_PROJINHERIT;
886 			} else if (S_ISREG(mode)) {
887 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 					di_flags |= XFS_DIFLAG_REALTIME;
889 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 					di_flags |= XFS_DIFLAG_EXTSIZE;
891 					ip->i_d.di_extsize = pip->i_d.di_extsize;
892 				}
893 			}
894 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
895 			    xfs_inherit_noatime)
896 				di_flags |= XFS_DIFLAG_NOATIME;
897 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
898 			    xfs_inherit_nodump)
899 				di_flags |= XFS_DIFLAG_NODUMP;
900 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
901 			    xfs_inherit_sync)
902 				di_flags |= XFS_DIFLAG_SYNC;
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
904 			    xfs_inherit_nosymlinks)
905 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
906 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
907 			    xfs_inherit_nodefrag)
908 				di_flags |= XFS_DIFLAG_NODEFRAG;
909 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
910 				di_flags |= XFS_DIFLAG_FILESTREAM;
911 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
912 				di_flags2 |= XFS_DIFLAG2_DAX;
913 
914 			ip->i_d.di_flags |= di_flags;
915 			ip->i_d.di_flags2 |= di_flags2;
916 		}
917 		/* FALLTHROUGH */
918 	case S_IFLNK:
919 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
920 		ip->i_df.if_flags = XFS_IFEXTENTS;
921 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
922 		ip->i_df.if_u1.if_extents = NULL;
923 		break;
924 	default:
925 		ASSERT(0);
926 	}
927 	/*
928 	 * Attribute fork settings for new inode.
929 	 */
930 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
931 	ip->i_d.di_anextents = 0;
932 
933 	/*
934 	 * Log the new values stuffed into the inode.
935 	 */
936 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
937 	xfs_trans_log_inode(tp, ip, flags);
938 
939 	/* now that we have an i_mode we can setup the inode structure */
940 	xfs_setup_inode(ip);
941 
942 	*ipp = ip;
943 	return 0;
944 }
945 
946 /*
947  * Allocates a new inode from disk and return a pointer to the
948  * incore copy. This routine will internally commit the current
949  * transaction and allocate a new one if the Space Manager needed
950  * to do an allocation to replenish the inode free-list.
951  *
952  * This routine is designed to be called from xfs_create and
953  * xfs_create_dir.
954  *
955  */
956 int
957 xfs_dir_ialloc(
958 	xfs_trans_t	**tpp,		/* input: current transaction;
959 					   output: may be a new transaction. */
960 	xfs_inode_t	*dp,		/* directory within whose allocate
961 					   the inode. */
962 	umode_t		mode,
963 	xfs_nlink_t	nlink,
964 	xfs_dev_t	rdev,
965 	prid_t		prid,		/* project id */
966 	int		okalloc,	/* ok to allocate new space */
967 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
968 					   locked. */
969 	int		*committed)
970 
971 {
972 	xfs_trans_t	*tp;
973 	xfs_inode_t	*ip;
974 	xfs_buf_t	*ialloc_context = NULL;
975 	int		code;
976 	void		*dqinfo;
977 	uint		tflags;
978 
979 	tp = *tpp;
980 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981 
982 	/*
983 	 * xfs_ialloc will return a pointer to an incore inode if
984 	 * the Space Manager has an available inode on the free
985 	 * list. Otherwise, it will do an allocation and replenish
986 	 * the freelist.  Since we can only do one allocation per
987 	 * transaction without deadlocks, we will need to commit the
988 	 * current transaction and start a new one.  We will then
989 	 * need to call xfs_ialloc again to get the inode.
990 	 *
991 	 * If xfs_ialloc did an allocation to replenish the freelist,
992 	 * it returns the bp containing the head of the freelist as
993 	 * ialloc_context. We will hold a lock on it across the
994 	 * transaction commit so that no other process can steal
995 	 * the inode(s) that we've just allocated.
996 	 */
997 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
998 			  &ialloc_context, &ip);
999 
1000 	/*
1001 	 * Return an error if we were unable to allocate a new inode.
1002 	 * This should only happen if we run out of space on disk or
1003 	 * encounter a disk error.
1004 	 */
1005 	if (code) {
1006 		*ipp = NULL;
1007 		return code;
1008 	}
1009 	if (!ialloc_context && !ip) {
1010 		*ipp = NULL;
1011 		return -ENOSPC;
1012 	}
1013 
1014 	/*
1015 	 * If the AGI buffer is non-NULL, then we were unable to get an
1016 	 * inode in one operation.  We need to commit the current
1017 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1018 	 * to succeed the second time.
1019 	 */
1020 	if (ialloc_context) {
1021 		/*
1022 		 * Normally, xfs_trans_commit releases all the locks.
1023 		 * We call bhold to hang on to the ialloc_context across
1024 		 * the commit.  Holding this buffer prevents any other
1025 		 * processes from doing any allocations in this
1026 		 * allocation group.
1027 		 */
1028 		xfs_trans_bhold(tp, ialloc_context);
1029 
1030 		/*
1031 		 * We want the quota changes to be associated with the next
1032 		 * transaction, NOT this one. So, detach the dqinfo from this
1033 		 * and attach it to the next transaction.
1034 		 */
1035 		dqinfo = NULL;
1036 		tflags = 0;
1037 		if (tp->t_dqinfo) {
1038 			dqinfo = (void *)tp->t_dqinfo;
1039 			tp->t_dqinfo = NULL;
1040 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 		}
1043 
1044 		code = xfs_trans_roll(&tp, 0);
1045 		if (committed != NULL)
1046 			*committed = 1;
1047 
1048 		/*
1049 		 * Re-attach the quota info that we detached from prev trx.
1050 		 */
1051 		if (dqinfo) {
1052 			tp->t_dqinfo = dqinfo;
1053 			tp->t_flags |= tflags;
1054 		}
1055 
1056 		if (code) {
1057 			xfs_buf_relse(ialloc_context);
1058 			*tpp = tp;
1059 			*ipp = NULL;
1060 			return code;
1061 		}
1062 		xfs_trans_bjoin(tp, ialloc_context);
1063 
1064 		/*
1065 		 * Call ialloc again. Since we've locked out all
1066 		 * other allocations in this allocation group,
1067 		 * this call should always succeed.
1068 		 */
1069 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1070 				  okalloc, &ialloc_context, &ip);
1071 
1072 		/*
1073 		 * If we get an error at this point, return to the caller
1074 		 * so that the current transaction can be aborted.
1075 		 */
1076 		if (code) {
1077 			*tpp = tp;
1078 			*ipp = NULL;
1079 			return code;
1080 		}
1081 		ASSERT(!ialloc_context && ip);
1082 
1083 	} else {
1084 		if (committed != NULL)
1085 			*committed = 0;
1086 	}
1087 
1088 	*ipp = ip;
1089 	*tpp = tp;
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Decrement the link count on an inode & log the change.
1096  * If this causes the link count to go to zero, initiate the
1097  * logging activity required to truncate a file.
1098  */
1099 int				/* error */
1100 xfs_droplink(
1101 	xfs_trans_t *tp,
1102 	xfs_inode_t *ip)
1103 {
1104 	int	error;
1105 
1106 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 
1108 	ASSERT (ip->i_d.di_nlink > 0);
1109 	ip->i_d.di_nlink--;
1110 	drop_nlink(VFS_I(ip));
1111 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1112 
1113 	error = 0;
1114 	if (ip->i_d.di_nlink == 0) {
1115 		/*
1116 		 * We're dropping the last link to this file.
1117 		 * Move the on-disk inode to the AGI unlinked list.
1118 		 * From xfs_inactive() we will pull the inode from
1119 		 * the list and free it.
1120 		 */
1121 		error = xfs_iunlink(tp, ip);
1122 	}
1123 	return error;
1124 }
1125 
1126 /*
1127  * Increment the link count on an inode & log the change.
1128  */
1129 int
1130 xfs_bumplink(
1131 	xfs_trans_t *tp,
1132 	xfs_inode_t *ip)
1133 {
1134 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1135 
1136 	ASSERT(ip->i_d.di_version > 1);
1137 	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1138 	ip->i_d.di_nlink++;
1139 	inc_nlink(VFS_I(ip));
1140 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1141 	return 0;
1142 }
1143 
1144 int
1145 xfs_create(
1146 	xfs_inode_t		*dp,
1147 	struct xfs_name		*name,
1148 	umode_t			mode,
1149 	xfs_dev_t		rdev,
1150 	xfs_inode_t		**ipp)
1151 {
1152 	int			is_dir = S_ISDIR(mode);
1153 	struct xfs_mount	*mp = dp->i_mount;
1154 	struct xfs_inode	*ip = NULL;
1155 	struct xfs_trans	*tp = NULL;
1156 	int			error;
1157 	xfs_bmap_free_t		free_list;
1158 	xfs_fsblock_t		first_block;
1159 	bool                    unlock_dp_on_error = false;
1160 	prid_t			prid;
1161 	struct xfs_dquot	*udqp = NULL;
1162 	struct xfs_dquot	*gdqp = NULL;
1163 	struct xfs_dquot	*pdqp = NULL;
1164 	struct xfs_trans_res	*tres;
1165 	uint			resblks;
1166 
1167 	trace_xfs_create(dp, name);
1168 
1169 	if (XFS_FORCED_SHUTDOWN(mp))
1170 		return -EIO;
1171 
1172 	prid = xfs_get_initial_prid(dp);
1173 
1174 	/*
1175 	 * Make sure that we have allocated dquot(s) on disk.
1176 	 */
1177 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1178 					xfs_kgid_to_gid(current_fsgid()), prid,
1179 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1180 					&udqp, &gdqp, &pdqp);
1181 	if (error)
1182 		return error;
1183 
1184 	if (is_dir) {
1185 		rdev = 0;
1186 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1187 		tres = &M_RES(mp)->tr_mkdir;
1188 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1189 	} else {
1190 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1191 		tres = &M_RES(mp)->tr_create;
1192 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1193 	}
1194 
1195 	/*
1196 	 * Initially assume that the file does not exist and
1197 	 * reserve the resources for that case.  If that is not
1198 	 * the case we'll drop the one we have and get a more
1199 	 * appropriate transaction later.
1200 	 */
1201 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1202 	if (error == -ENOSPC) {
1203 		/* flush outstanding delalloc blocks and retry */
1204 		xfs_flush_inodes(mp);
1205 		error = xfs_trans_reserve(tp, tres, resblks, 0);
1206 	}
1207 	if (error == -ENOSPC) {
1208 		/* No space at all so try a "no-allocation" reservation */
1209 		resblks = 0;
1210 		error = xfs_trans_reserve(tp, tres, 0, 0);
1211 	}
1212 	if (error)
1213 		goto out_trans_cancel;
1214 
1215 
1216 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1217 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1218 	unlock_dp_on_error = true;
1219 
1220 	xfs_bmap_init(&free_list, &first_block);
1221 
1222 	/*
1223 	 * Reserve disk quota and the inode.
1224 	 */
1225 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1226 						pdqp, resblks, 1, 0);
1227 	if (error)
1228 		goto out_trans_cancel;
1229 
1230 	if (!resblks) {
1231 		error = xfs_dir_canenter(tp, dp, name);
1232 		if (error)
1233 			goto out_trans_cancel;
1234 	}
1235 
1236 	/*
1237 	 * A newly created regular or special file just has one directory
1238 	 * entry pointing to them, but a directory also the "." entry
1239 	 * pointing to itself.
1240 	 */
1241 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1242 			       prid, resblks > 0, &ip, NULL);
1243 	if (error)
1244 		goto out_trans_cancel;
1245 
1246 	/*
1247 	 * Now we join the directory inode to the transaction.  We do not do it
1248 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1249 	 * (and release all the locks).  An error from here on will result in
1250 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1251 	 * error path.
1252 	 */
1253 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1254 	unlock_dp_on_error = false;
1255 
1256 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1257 					&first_block, &free_list, resblks ?
1258 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1259 	if (error) {
1260 		ASSERT(error != -ENOSPC);
1261 		goto out_trans_cancel;
1262 	}
1263 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1265 
1266 	if (is_dir) {
1267 		error = xfs_dir_init(tp, ip, dp);
1268 		if (error)
1269 			goto out_bmap_cancel;
1270 
1271 		error = xfs_bumplink(tp, dp);
1272 		if (error)
1273 			goto out_bmap_cancel;
1274 	}
1275 
1276 	/*
1277 	 * If this is a synchronous mount, make sure that the
1278 	 * create transaction goes to disk before returning to
1279 	 * the user.
1280 	 */
1281 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1282 		xfs_trans_set_sync(tp);
1283 
1284 	/*
1285 	 * Attach the dquot(s) to the inodes and modify them incore.
1286 	 * These ids of the inode couldn't have changed since the new
1287 	 * inode has been locked ever since it was created.
1288 	 */
1289 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1290 
1291 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1292 	if (error)
1293 		goto out_bmap_cancel;
1294 
1295 	error = xfs_trans_commit(tp);
1296 	if (error)
1297 		goto out_release_inode;
1298 
1299 	xfs_qm_dqrele(udqp);
1300 	xfs_qm_dqrele(gdqp);
1301 	xfs_qm_dqrele(pdqp);
1302 
1303 	*ipp = ip;
1304 	return 0;
1305 
1306  out_bmap_cancel:
1307 	xfs_bmap_cancel(&free_list);
1308  out_trans_cancel:
1309 	xfs_trans_cancel(tp);
1310  out_release_inode:
1311 	/*
1312 	 * Wait until after the current transaction is aborted to finish the
1313 	 * setup of the inode and release the inode.  This prevents recursive
1314 	 * transactions and deadlocks from xfs_inactive.
1315 	 */
1316 	if (ip) {
1317 		xfs_finish_inode_setup(ip);
1318 		IRELE(ip);
1319 	}
1320 
1321 	xfs_qm_dqrele(udqp);
1322 	xfs_qm_dqrele(gdqp);
1323 	xfs_qm_dqrele(pdqp);
1324 
1325 	if (unlock_dp_on_error)
1326 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1327 	return error;
1328 }
1329 
1330 int
1331 xfs_create_tmpfile(
1332 	struct xfs_inode	*dp,
1333 	struct dentry		*dentry,
1334 	umode_t			mode,
1335 	struct xfs_inode	**ipp)
1336 {
1337 	struct xfs_mount	*mp = dp->i_mount;
1338 	struct xfs_inode	*ip = NULL;
1339 	struct xfs_trans	*tp = NULL;
1340 	int			error;
1341 	prid_t                  prid;
1342 	struct xfs_dquot	*udqp = NULL;
1343 	struct xfs_dquot	*gdqp = NULL;
1344 	struct xfs_dquot	*pdqp = NULL;
1345 	struct xfs_trans_res	*tres;
1346 	uint			resblks;
1347 
1348 	if (XFS_FORCED_SHUTDOWN(mp))
1349 		return -EIO;
1350 
1351 	prid = xfs_get_initial_prid(dp);
1352 
1353 	/*
1354 	 * Make sure that we have allocated dquot(s) on disk.
1355 	 */
1356 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1357 				xfs_kgid_to_gid(current_fsgid()), prid,
1358 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1359 				&udqp, &gdqp, &pdqp);
1360 	if (error)
1361 		return error;
1362 
1363 	resblks = XFS_IALLOC_SPACE_RES(mp);
1364 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1365 
1366 	tres = &M_RES(mp)->tr_create_tmpfile;
1367 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1368 	if (error == -ENOSPC) {
1369 		/* No space at all so try a "no-allocation" reservation */
1370 		resblks = 0;
1371 		error = xfs_trans_reserve(tp, tres, 0, 0);
1372 	}
1373 	if (error)
1374 		goto out_trans_cancel;
1375 
1376 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1377 						pdqp, resblks, 1, 0);
1378 	if (error)
1379 		goto out_trans_cancel;
1380 
1381 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1382 				prid, resblks > 0, &ip, NULL);
1383 	if (error)
1384 		goto out_trans_cancel;
1385 
1386 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1387 		xfs_trans_set_sync(tp);
1388 
1389 	/*
1390 	 * Attach the dquot(s) to the inodes and modify them incore.
1391 	 * These ids of the inode couldn't have changed since the new
1392 	 * inode has been locked ever since it was created.
1393 	 */
1394 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1395 
1396 	ip->i_d.di_nlink--;
1397 	error = xfs_iunlink(tp, ip);
1398 	if (error)
1399 		goto out_trans_cancel;
1400 
1401 	error = xfs_trans_commit(tp);
1402 	if (error)
1403 		goto out_release_inode;
1404 
1405 	xfs_qm_dqrele(udqp);
1406 	xfs_qm_dqrele(gdqp);
1407 	xfs_qm_dqrele(pdqp);
1408 
1409 	*ipp = ip;
1410 	return 0;
1411 
1412  out_trans_cancel:
1413 	xfs_trans_cancel(tp);
1414  out_release_inode:
1415 	/*
1416 	 * Wait until after the current transaction is aborted to finish the
1417 	 * setup of the inode and release the inode.  This prevents recursive
1418 	 * transactions and deadlocks from xfs_inactive.
1419 	 */
1420 	if (ip) {
1421 		xfs_finish_inode_setup(ip);
1422 		IRELE(ip);
1423 	}
1424 
1425 	xfs_qm_dqrele(udqp);
1426 	xfs_qm_dqrele(gdqp);
1427 	xfs_qm_dqrele(pdqp);
1428 
1429 	return error;
1430 }
1431 
1432 int
1433 xfs_link(
1434 	xfs_inode_t		*tdp,
1435 	xfs_inode_t		*sip,
1436 	struct xfs_name		*target_name)
1437 {
1438 	xfs_mount_t		*mp = tdp->i_mount;
1439 	xfs_trans_t		*tp;
1440 	int			error;
1441 	xfs_bmap_free_t         free_list;
1442 	xfs_fsblock_t           first_block;
1443 	int			resblks;
1444 
1445 	trace_xfs_link(tdp, target_name);
1446 
1447 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1448 
1449 	if (XFS_FORCED_SHUTDOWN(mp))
1450 		return -EIO;
1451 
1452 	error = xfs_qm_dqattach(sip, 0);
1453 	if (error)
1454 		goto std_return;
1455 
1456 	error = xfs_qm_dqattach(tdp, 0);
1457 	if (error)
1458 		goto std_return;
1459 
1460 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1461 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1462 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1463 	if (error == -ENOSPC) {
1464 		resblks = 0;
1465 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1466 	}
1467 	if (error)
1468 		goto error_return;
1469 
1470 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1471 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1472 
1473 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1474 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1475 
1476 	/*
1477 	 * If we are using project inheritance, we only allow hard link
1478 	 * creation in our tree when the project IDs are the same; else
1479 	 * the tree quota mechanism could be circumvented.
1480 	 */
1481 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1482 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1483 		error = -EXDEV;
1484 		goto error_return;
1485 	}
1486 
1487 	if (!resblks) {
1488 		error = xfs_dir_canenter(tp, tdp, target_name);
1489 		if (error)
1490 			goto error_return;
1491 	}
1492 
1493 	xfs_bmap_init(&free_list, &first_block);
1494 
1495 	if (sip->i_d.di_nlink == 0) {
1496 		error = xfs_iunlink_remove(tp, sip);
1497 		if (error)
1498 			goto error_return;
1499 	}
1500 
1501 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1502 					&first_block, &free_list, resblks);
1503 	if (error)
1504 		goto error_return;
1505 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1506 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1507 
1508 	error = xfs_bumplink(tp, sip);
1509 	if (error)
1510 		goto error_return;
1511 
1512 	/*
1513 	 * If this is a synchronous mount, make sure that the
1514 	 * link transaction goes to disk before returning to
1515 	 * the user.
1516 	 */
1517 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1518 		xfs_trans_set_sync(tp);
1519 
1520 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1521 	if (error) {
1522 		xfs_bmap_cancel(&free_list);
1523 		goto error_return;
1524 	}
1525 
1526 	return xfs_trans_commit(tp);
1527 
1528  error_return:
1529 	xfs_trans_cancel(tp);
1530  std_return:
1531 	return error;
1532 }
1533 
1534 /*
1535  * Free up the underlying blocks past new_size.  The new size must be smaller
1536  * than the current size.  This routine can be used both for the attribute and
1537  * data fork, and does not modify the inode size, which is left to the caller.
1538  *
1539  * The transaction passed to this routine must have made a permanent log
1540  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1541  * given transaction and start new ones, so make sure everything involved in
1542  * the transaction is tidy before calling here.  Some transaction will be
1543  * returned to the caller to be committed.  The incoming transaction must
1544  * already include the inode, and both inode locks must be held exclusively.
1545  * The inode must also be "held" within the transaction.  On return the inode
1546  * will be "held" within the returned transaction.  This routine does NOT
1547  * require any disk space to be reserved for it within the transaction.
1548  *
1549  * If we get an error, we must return with the inode locked and linked into the
1550  * current transaction. This keeps things simple for the higher level code,
1551  * because it always knows that the inode is locked and held in the transaction
1552  * that returns to it whether errors occur or not.  We don't mark the inode
1553  * dirty on error so that transactions can be easily aborted if possible.
1554  */
1555 int
1556 xfs_itruncate_extents(
1557 	struct xfs_trans	**tpp,
1558 	struct xfs_inode	*ip,
1559 	int			whichfork,
1560 	xfs_fsize_t		new_size)
1561 {
1562 	struct xfs_mount	*mp = ip->i_mount;
1563 	struct xfs_trans	*tp = *tpp;
1564 	xfs_bmap_free_t		free_list;
1565 	xfs_fsblock_t		first_block;
1566 	xfs_fileoff_t		first_unmap_block;
1567 	xfs_fileoff_t		last_block;
1568 	xfs_filblks_t		unmap_len;
1569 	int			error = 0;
1570 	int			done = 0;
1571 
1572 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1573 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1574 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1575 	ASSERT(new_size <= XFS_ISIZE(ip));
1576 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1577 	ASSERT(ip->i_itemp != NULL);
1578 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1579 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1580 
1581 	trace_xfs_itruncate_extents_start(ip, new_size);
1582 
1583 	/*
1584 	 * Since it is possible for space to become allocated beyond
1585 	 * the end of the file (in a crash where the space is allocated
1586 	 * but the inode size is not yet updated), simply remove any
1587 	 * blocks which show up between the new EOF and the maximum
1588 	 * possible file size.  If the first block to be removed is
1589 	 * beyond the maximum file size (ie it is the same as last_block),
1590 	 * then there is nothing to do.
1591 	 */
1592 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1593 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1594 	if (first_unmap_block == last_block)
1595 		return 0;
1596 
1597 	ASSERT(first_unmap_block < last_block);
1598 	unmap_len = last_block - first_unmap_block + 1;
1599 	while (!done) {
1600 		xfs_bmap_init(&free_list, &first_block);
1601 		error = xfs_bunmapi(tp, ip,
1602 				    first_unmap_block, unmap_len,
1603 				    xfs_bmapi_aflag(whichfork),
1604 				    XFS_ITRUNC_MAX_EXTENTS,
1605 				    &first_block, &free_list,
1606 				    &done);
1607 		if (error)
1608 			goto out_bmap_cancel;
1609 
1610 		/*
1611 		 * Duplicate the transaction that has the permanent
1612 		 * reservation and commit the old transaction.
1613 		 */
1614 		error = xfs_bmap_finish(&tp, &free_list, ip);
1615 		if (error)
1616 			goto out_bmap_cancel;
1617 
1618 		error = xfs_trans_roll(&tp, ip);
1619 		if (error)
1620 			goto out;
1621 	}
1622 
1623 	/*
1624 	 * Always re-log the inode so that our permanent transaction can keep
1625 	 * on rolling it forward in the log.
1626 	 */
1627 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1628 
1629 	trace_xfs_itruncate_extents_end(ip, new_size);
1630 
1631 out:
1632 	*tpp = tp;
1633 	return error;
1634 out_bmap_cancel:
1635 	/*
1636 	 * If the bunmapi call encounters an error, return to the caller where
1637 	 * the transaction can be properly aborted.  We just need to make sure
1638 	 * we're not holding any resources that we were not when we came in.
1639 	 */
1640 	xfs_bmap_cancel(&free_list);
1641 	goto out;
1642 }
1643 
1644 int
1645 xfs_release(
1646 	xfs_inode_t	*ip)
1647 {
1648 	xfs_mount_t	*mp = ip->i_mount;
1649 	int		error;
1650 
1651 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1652 		return 0;
1653 
1654 	/* If this is a read-only mount, don't do this (would generate I/O) */
1655 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1656 		return 0;
1657 
1658 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1659 		int truncated;
1660 
1661 		/*
1662 		 * If we previously truncated this file and removed old data
1663 		 * in the process, we want to initiate "early" writeout on
1664 		 * the last close.  This is an attempt to combat the notorious
1665 		 * NULL files problem which is particularly noticeable from a
1666 		 * truncate down, buffered (re-)write (delalloc), followed by
1667 		 * a crash.  What we are effectively doing here is
1668 		 * significantly reducing the time window where we'd otherwise
1669 		 * be exposed to that problem.
1670 		 */
1671 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1672 		if (truncated) {
1673 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1674 			if (ip->i_delayed_blks > 0) {
1675 				error = filemap_flush(VFS_I(ip)->i_mapping);
1676 				if (error)
1677 					return error;
1678 			}
1679 		}
1680 	}
1681 
1682 	if (ip->i_d.di_nlink == 0)
1683 		return 0;
1684 
1685 	if (xfs_can_free_eofblocks(ip, false)) {
1686 
1687 		/*
1688 		 * If we can't get the iolock just skip truncating the blocks
1689 		 * past EOF because we could deadlock with the mmap_sem
1690 		 * otherwise.  We'll get another chance to drop them once the
1691 		 * last reference to the inode is dropped, so we'll never leak
1692 		 * blocks permanently.
1693 		 *
1694 		 * Further, check if the inode is being opened, written and
1695 		 * closed frequently and we have delayed allocation blocks
1696 		 * outstanding (e.g. streaming writes from the NFS server),
1697 		 * truncating the blocks past EOF will cause fragmentation to
1698 		 * occur.
1699 		 *
1700 		 * In this case don't do the truncation, either, but we have to
1701 		 * be careful how we detect this case. Blocks beyond EOF show
1702 		 * up as i_delayed_blks even when the inode is clean, so we
1703 		 * need to truncate them away first before checking for a dirty
1704 		 * release. Hence on the first dirty close we will still remove
1705 		 * the speculative allocation, but after that we will leave it
1706 		 * in place.
1707 		 */
1708 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1709 			return 0;
1710 
1711 		error = xfs_free_eofblocks(mp, ip, true);
1712 		if (error && error != -EAGAIN)
1713 			return error;
1714 
1715 		/* delalloc blocks after truncation means it really is dirty */
1716 		if (ip->i_delayed_blks)
1717 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1718 	}
1719 	return 0;
1720 }
1721 
1722 /*
1723  * xfs_inactive_truncate
1724  *
1725  * Called to perform a truncate when an inode becomes unlinked.
1726  */
1727 STATIC int
1728 xfs_inactive_truncate(
1729 	struct xfs_inode *ip)
1730 {
1731 	struct xfs_mount	*mp = ip->i_mount;
1732 	struct xfs_trans	*tp;
1733 	int			error;
1734 
1735 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1736 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1737 	if (error) {
1738 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1739 		xfs_trans_cancel(tp);
1740 		return error;
1741 	}
1742 
1743 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1744 	xfs_trans_ijoin(tp, ip, 0);
1745 
1746 	/*
1747 	 * Log the inode size first to prevent stale data exposure in the event
1748 	 * of a system crash before the truncate completes. See the related
1749 	 * comment in xfs_setattr_size() for details.
1750 	 */
1751 	ip->i_d.di_size = 0;
1752 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1753 
1754 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1755 	if (error)
1756 		goto error_trans_cancel;
1757 
1758 	ASSERT(ip->i_d.di_nextents == 0);
1759 
1760 	error = xfs_trans_commit(tp);
1761 	if (error)
1762 		goto error_unlock;
1763 
1764 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1765 	return 0;
1766 
1767 error_trans_cancel:
1768 	xfs_trans_cancel(tp);
1769 error_unlock:
1770 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1771 	return error;
1772 }
1773 
1774 /*
1775  * xfs_inactive_ifree()
1776  *
1777  * Perform the inode free when an inode is unlinked.
1778  */
1779 STATIC int
1780 xfs_inactive_ifree(
1781 	struct xfs_inode *ip)
1782 {
1783 	xfs_bmap_free_t		free_list;
1784 	xfs_fsblock_t		first_block;
1785 	struct xfs_mount	*mp = ip->i_mount;
1786 	struct xfs_trans	*tp;
1787 	int			error;
1788 
1789 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1790 
1791 	/*
1792 	 * The ifree transaction might need to allocate blocks for record
1793 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1794 	 * allow ifree to dip into the reserved block pool if necessary.
1795 	 *
1796 	 * Freeing large sets of inodes generally means freeing inode chunks,
1797 	 * directory and file data blocks, so this should be relatively safe.
1798 	 * Only under severe circumstances should it be possible to free enough
1799 	 * inodes to exhaust the reserve block pool via finobt expansion while
1800 	 * at the same time not creating free space in the filesystem.
1801 	 *
1802 	 * Send a warning if the reservation does happen to fail, as the inode
1803 	 * now remains allocated and sits on the unlinked list until the fs is
1804 	 * repaired.
1805 	 */
1806 	tp->t_flags |= XFS_TRANS_RESERVE;
1807 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1808 				  XFS_IFREE_SPACE_RES(mp), 0);
1809 	if (error) {
1810 		if (error == -ENOSPC) {
1811 			xfs_warn_ratelimited(mp,
1812 			"Failed to remove inode(s) from unlinked list. "
1813 			"Please free space, unmount and run xfs_repair.");
1814 		} else {
1815 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1816 		}
1817 		xfs_trans_cancel(tp);
1818 		return error;
1819 	}
1820 
1821 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1822 	xfs_trans_ijoin(tp, ip, 0);
1823 
1824 	xfs_bmap_init(&free_list, &first_block);
1825 	error = xfs_ifree(tp, ip, &free_list);
1826 	if (error) {
1827 		/*
1828 		 * If we fail to free the inode, shut down.  The cancel
1829 		 * might do that, we need to make sure.  Otherwise the
1830 		 * inode might be lost for a long time or forever.
1831 		 */
1832 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1833 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1834 				__func__, error);
1835 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1836 		}
1837 		xfs_trans_cancel(tp);
1838 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1839 		return error;
1840 	}
1841 
1842 	/*
1843 	 * Credit the quota account(s). The inode is gone.
1844 	 */
1845 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1846 
1847 	/*
1848 	 * Just ignore errors at this point.  There is nothing we can do except
1849 	 * to try to keep going. Make sure it's not a silent error.
1850 	 */
1851 	error = xfs_bmap_finish(&tp, &free_list, NULL);
1852 	if (error) {
1853 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1854 			__func__, error);
1855 		xfs_bmap_cancel(&free_list);
1856 	}
1857 	error = xfs_trans_commit(tp);
1858 	if (error)
1859 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1860 			__func__, error);
1861 
1862 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1863 	return 0;
1864 }
1865 
1866 /*
1867  * xfs_inactive
1868  *
1869  * This is called when the vnode reference count for the vnode
1870  * goes to zero.  If the file has been unlinked, then it must
1871  * now be truncated.  Also, we clear all of the read-ahead state
1872  * kept for the inode here since the file is now closed.
1873  */
1874 void
1875 xfs_inactive(
1876 	xfs_inode_t	*ip)
1877 {
1878 	struct xfs_mount	*mp;
1879 	int			error;
1880 	int			truncate = 0;
1881 
1882 	/*
1883 	 * If the inode is already free, then there can be nothing
1884 	 * to clean up here.
1885 	 */
1886 	if (ip->i_d.di_mode == 0) {
1887 		ASSERT(ip->i_df.if_real_bytes == 0);
1888 		ASSERT(ip->i_df.if_broot_bytes == 0);
1889 		return;
1890 	}
1891 
1892 	mp = ip->i_mount;
1893 
1894 	/* If this is a read-only mount, don't do this (would generate I/O) */
1895 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1896 		return;
1897 
1898 	if (ip->i_d.di_nlink != 0) {
1899 		/*
1900 		 * force is true because we are evicting an inode from the
1901 		 * cache. Post-eof blocks must be freed, lest we end up with
1902 		 * broken free space accounting.
1903 		 */
1904 		if (xfs_can_free_eofblocks(ip, true))
1905 			xfs_free_eofblocks(mp, ip, false);
1906 
1907 		return;
1908 	}
1909 
1910 	if (S_ISREG(ip->i_d.di_mode) &&
1911 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1912 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1913 		truncate = 1;
1914 
1915 	error = xfs_qm_dqattach(ip, 0);
1916 	if (error)
1917 		return;
1918 
1919 	if (S_ISLNK(ip->i_d.di_mode))
1920 		error = xfs_inactive_symlink(ip);
1921 	else if (truncate)
1922 		error = xfs_inactive_truncate(ip);
1923 	if (error)
1924 		return;
1925 
1926 	/*
1927 	 * If there are attributes associated with the file then blow them away
1928 	 * now.  The code calls a routine that recursively deconstructs the
1929 	 * attribute fork. If also blows away the in-core attribute fork.
1930 	 */
1931 	if (XFS_IFORK_Q(ip)) {
1932 		error = xfs_attr_inactive(ip);
1933 		if (error)
1934 			return;
1935 	}
1936 
1937 	ASSERT(!ip->i_afp);
1938 	ASSERT(ip->i_d.di_anextents == 0);
1939 	ASSERT(ip->i_d.di_forkoff == 0);
1940 
1941 	/*
1942 	 * Free the inode.
1943 	 */
1944 	error = xfs_inactive_ifree(ip);
1945 	if (error)
1946 		return;
1947 
1948 	/*
1949 	 * Release the dquots held by inode, if any.
1950 	 */
1951 	xfs_qm_dqdetach(ip);
1952 }
1953 
1954 /*
1955  * This is called when the inode's link count goes to 0.
1956  * We place the on-disk inode on a list in the AGI.  It
1957  * will be pulled from this list when the inode is freed.
1958  */
1959 int
1960 xfs_iunlink(
1961 	xfs_trans_t	*tp,
1962 	xfs_inode_t	*ip)
1963 {
1964 	xfs_mount_t	*mp;
1965 	xfs_agi_t	*agi;
1966 	xfs_dinode_t	*dip;
1967 	xfs_buf_t	*agibp;
1968 	xfs_buf_t	*ibp;
1969 	xfs_agino_t	agino;
1970 	short		bucket_index;
1971 	int		offset;
1972 	int		error;
1973 
1974 	ASSERT(ip->i_d.di_nlink == 0);
1975 	ASSERT(ip->i_d.di_mode != 0);
1976 
1977 	mp = tp->t_mountp;
1978 
1979 	/*
1980 	 * Get the agi buffer first.  It ensures lock ordering
1981 	 * on the list.
1982 	 */
1983 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1984 	if (error)
1985 		return error;
1986 	agi = XFS_BUF_TO_AGI(agibp);
1987 
1988 	/*
1989 	 * Get the index into the agi hash table for the
1990 	 * list this inode will go on.
1991 	 */
1992 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1993 	ASSERT(agino != 0);
1994 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1995 	ASSERT(agi->agi_unlinked[bucket_index]);
1996 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1997 
1998 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1999 		/*
2000 		 * There is already another inode in the bucket we need
2001 		 * to add ourselves to.  Add us at the front of the list.
2002 		 * Here we put the head pointer into our next pointer,
2003 		 * and then we fall through to point the head at us.
2004 		 */
2005 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2006 				       0, 0);
2007 		if (error)
2008 			return error;
2009 
2010 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2011 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2012 		offset = ip->i_imap.im_boffset +
2013 			offsetof(xfs_dinode_t, di_next_unlinked);
2014 
2015 		/* need to recalc the inode CRC if appropriate */
2016 		xfs_dinode_calc_crc(mp, dip);
2017 
2018 		xfs_trans_inode_buf(tp, ibp);
2019 		xfs_trans_log_buf(tp, ibp, offset,
2020 				  (offset + sizeof(xfs_agino_t) - 1));
2021 		xfs_inobp_check(mp, ibp);
2022 	}
2023 
2024 	/*
2025 	 * Point the bucket head pointer at the inode being inserted.
2026 	 */
2027 	ASSERT(agino != 0);
2028 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2029 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2030 		(sizeof(xfs_agino_t) * bucket_index);
2031 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2032 	xfs_trans_log_buf(tp, agibp, offset,
2033 			  (offset + sizeof(xfs_agino_t) - 1));
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Pull the on-disk inode from the AGI unlinked list.
2039  */
2040 STATIC int
2041 xfs_iunlink_remove(
2042 	xfs_trans_t	*tp,
2043 	xfs_inode_t	*ip)
2044 {
2045 	xfs_ino_t	next_ino;
2046 	xfs_mount_t	*mp;
2047 	xfs_agi_t	*agi;
2048 	xfs_dinode_t	*dip;
2049 	xfs_buf_t	*agibp;
2050 	xfs_buf_t	*ibp;
2051 	xfs_agnumber_t	agno;
2052 	xfs_agino_t	agino;
2053 	xfs_agino_t	next_agino;
2054 	xfs_buf_t	*last_ibp;
2055 	xfs_dinode_t	*last_dip = NULL;
2056 	short		bucket_index;
2057 	int		offset, last_offset = 0;
2058 	int		error;
2059 
2060 	mp = tp->t_mountp;
2061 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2062 
2063 	/*
2064 	 * Get the agi buffer first.  It ensures lock ordering
2065 	 * on the list.
2066 	 */
2067 	error = xfs_read_agi(mp, tp, agno, &agibp);
2068 	if (error)
2069 		return error;
2070 
2071 	agi = XFS_BUF_TO_AGI(agibp);
2072 
2073 	/*
2074 	 * Get the index into the agi hash table for the
2075 	 * list this inode will go on.
2076 	 */
2077 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078 	ASSERT(agino != 0);
2079 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2080 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2081 	ASSERT(agi->agi_unlinked[bucket_index]);
2082 
2083 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084 		/*
2085 		 * We're at the head of the list.  Get the inode's on-disk
2086 		 * buffer to see if there is anyone after us on the list.
2087 		 * Only modify our next pointer if it is not already NULLAGINO.
2088 		 * This saves us the overhead of dealing with the buffer when
2089 		 * there is no need to change it.
2090 		 */
2091 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092 				       0, 0);
2093 		if (error) {
2094 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2095 				__func__, error);
2096 			return error;
2097 		}
2098 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2099 		ASSERT(next_agino != 0);
2100 		if (next_agino != NULLAGINO) {
2101 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102 			offset = ip->i_imap.im_boffset +
2103 				offsetof(xfs_dinode_t, di_next_unlinked);
2104 
2105 			/* need to recalc the inode CRC if appropriate */
2106 			xfs_dinode_calc_crc(mp, dip);
2107 
2108 			xfs_trans_inode_buf(tp, ibp);
2109 			xfs_trans_log_buf(tp, ibp, offset,
2110 					  (offset + sizeof(xfs_agino_t) - 1));
2111 			xfs_inobp_check(mp, ibp);
2112 		} else {
2113 			xfs_trans_brelse(tp, ibp);
2114 		}
2115 		/*
2116 		 * Point the bucket head pointer at the next inode.
2117 		 */
2118 		ASSERT(next_agino != 0);
2119 		ASSERT(next_agino != agino);
2120 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2121 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2122 			(sizeof(xfs_agino_t) * bucket_index);
2123 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2124 		xfs_trans_log_buf(tp, agibp, offset,
2125 				  (offset + sizeof(xfs_agino_t) - 1));
2126 	} else {
2127 		/*
2128 		 * We need to search the list for the inode being freed.
2129 		 */
2130 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2131 		last_ibp = NULL;
2132 		while (next_agino != agino) {
2133 			struct xfs_imap	imap;
2134 
2135 			if (last_ibp)
2136 				xfs_trans_brelse(tp, last_ibp);
2137 
2138 			imap.im_blkno = 0;
2139 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2140 
2141 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2142 			if (error) {
2143 				xfs_warn(mp,
2144 	"%s: xfs_imap returned error %d.",
2145 					 __func__, error);
2146 				return error;
2147 			}
2148 
2149 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2150 					       &last_ibp, 0, 0);
2151 			if (error) {
2152 				xfs_warn(mp,
2153 	"%s: xfs_imap_to_bp returned error %d.",
2154 					__func__, error);
2155 				return error;
2156 			}
2157 
2158 			last_offset = imap.im_boffset;
2159 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2160 			ASSERT(next_agino != NULLAGINO);
2161 			ASSERT(next_agino != 0);
2162 		}
2163 
2164 		/*
2165 		 * Now last_ibp points to the buffer previous to us on the
2166 		 * unlinked list.  Pull us from the list.
2167 		 */
2168 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2169 				       0, 0);
2170 		if (error) {
2171 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2172 				__func__, error);
2173 			return error;
2174 		}
2175 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2176 		ASSERT(next_agino != 0);
2177 		ASSERT(next_agino != agino);
2178 		if (next_agino != NULLAGINO) {
2179 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2180 			offset = ip->i_imap.im_boffset +
2181 				offsetof(xfs_dinode_t, di_next_unlinked);
2182 
2183 			/* need to recalc the inode CRC if appropriate */
2184 			xfs_dinode_calc_crc(mp, dip);
2185 
2186 			xfs_trans_inode_buf(tp, ibp);
2187 			xfs_trans_log_buf(tp, ibp, offset,
2188 					  (offset + sizeof(xfs_agino_t) - 1));
2189 			xfs_inobp_check(mp, ibp);
2190 		} else {
2191 			xfs_trans_brelse(tp, ibp);
2192 		}
2193 		/*
2194 		 * Point the previous inode on the list to the next inode.
2195 		 */
2196 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2197 		ASSERT(next_agino != 0);
2198 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2199 
2200 		/* need to recalc the inode CRC if appropriate */
2201 		xfs_dinode_calc_crc(mp, last_dip);
2202 
2203 		xfs_trans_inode_buf(tp, last_ibp);
2204 		xfs_trans_log_buf(tp, last_ibp, offset,
2205 				  (offset + sizeof(xfs_agino_t) - 1));
2206 		xfs_inobp_check(mp, last_ibp);
2207 	}
2208 	return 0;
2209 }
2210 
2211 /*
2212  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2213  * inodes that are in memory - they all must be marked stale and attached to
2214  * the cluster buffer.
2215  */
2216 STATIC int
2217 xfs_ifree_cluster(
2218 	xfs_inode_t		*free_ip,
2219 	xfs_trans_t		*tp,
2220 	struct xfs_icluster	*xic)
2221 {
2222 	xfs_mount_t		*mp = free_ip->i_mount;
2223 	int			blks_per_cluster;
2224 	int			inodes_per_cluster;
2225 	int			nbufs;
2226 	int			i, j;
2227 	int			ioffset;
2228 	xfs_daddr_t		blkno;
2229 	xfs_buf_t		*bp;
2230 	xfs_inode_t		*ip;
2231 	xfs_inode_log_item_t	*iip;
2232 	xfs_log_item_t		*lip;
2233 	struct xfs_perag	*pag;
2234 	xfs_ino_t		inum;
2235 
2236 	inum = xic->first_ino;
2237 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2238 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2239 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2240 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2241 
2242 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2243 		/*
2244 		 * The allocation bitmap tells us which inodes of the chunk were
2245 		 * physically allocated. Skip the cluster if an inode falls into
2246 		 * a sparse region.
2247 		 */
2248 		ioffset = inum - xic->first_ino;
2249 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2250 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2251 			continue;
2252 		}
2253 
2254 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2255 					 XFS_INO_TO_AGBNO(mp, inum));
2256 
2257 		/*
2258 		 * We obtain and lock the backing buffer first in the process
2259 		 * here, as we have to ensure that any dirty inode that we
2260 		 * can't get the flush lock on is attached to the buffer.
2261 		 * If we scan the in-memory inodes first, then buffer IO can
2262 		 * complete before we get a lock on it, and hence we may fail
2263 		 * to mark all the active inodes on the buffer stale.
2264 		 */
2265 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2266 					mp->m_bsize * blks_per_cluster,
2267 					XBF_UNMAPPED);
2268 
2269 		if (!bp)
2270 			return -ENOMEM;
2271 
2272 		/*
2273 		 * This buffer may not have been correctly initialised as we
2274 		 * didn't read it from disk. That's not important because we are
2275 		 * only using to mark the buffer as stale in the log, and to
2276 		 * attach stale cached inodes on it. That means it will never be
2277 		 * dispatched for IO. If it is, we want to know about it, and we
2278 		 * want it to fail. We can acheive this by adding a write
2279 		 * verifier to the buffer.
2280 		 */
2281 		 bp->b_ops = &xfs_inode_buf_ops;
2282 
2283 		/*
2284 		 * Walk the inodes already attached to the buffer and mark them
2285 		 * stale. These will all have the flush locks held, so an
2286 		 * in-memory inode walk can't lock them. By marking them all
2287 		 * stale first, we will not attempt to lock them in the loop
2288 		 * below as the XFS_ISTALE flag will be set.
2289 		 */
2290 		lip = bp->b_fspriv;
2291 		while (lip) {
2292 			if (lip->li_type == XFS_LI_INODE) {
2293 				iip = (xfs_inode_log_item_t *)lip;
2294 				ASSERT(iip->ili_logged == 1);
2295 				lip->li_cb = xfs_istale_done;
2296 				xfs_trans_ail_copy_lsn(mp->m_ail,
2297 							&iip->ili_flush_lsn,
2298 							&iip->ili_item.li_lsn);
2299 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2300 			}
2301 			lip = lip->li_bio_list;
2302 		}
2303 
2304 
2305 		/*
2306 		 * For each inode in memory attempt to add it to the inode
2307 		 * buffer and set it up for being staled on buffer IO
2308 		 * completion.  This is safe as we've locked out tail pushing
2309 		 * and flushing by locking the buffer.
2310 		 *
2311 		 * We have already marked every inode that was part of a
2312 		 * transaction stale above, which means there is no point in
2313 		 * even trying to lock them.
2314 		 */
2315 		for (i = 0; i < inodes_per_cluster; i++) {
2316 retry:
2317 			rcu_read_lock();
2318 			ip = radix_tree_lookup(&pag->pag_ici_root,
2319 					XFS_INO_TO_AGINO(mp, (inum + i)));
2320 
2321 			/* Inode not in memory, nothing to do */
2322 			if (!ip) {
2323 				rcu_read_unlock();
2324 				continue;
2325 			}
2326 
2327 			/*
2328 			 * because this is an RCU protected lookup, we could
2329 			 * find a recently freed or even reallocated inode
2330 			 * during the lookup. We need to check under the
2331 			 * i_flags_lock for a valid inode here. Skip it if it
2332 			 * is not valid, the wrong inode or stale.
2333 			 */
2334 			spin_lock(&ip->i_flags_lock);
2335 			if (ip->i_ino != inum + i ||
2336 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2337 				spin_unlock(&ip->i_flags_lock);
2338 				rcu_read_unlock();
2339 				continue;
2340 			}
2341 			spin_unlock(&ip->i_flags_lock);
2342 
2343 			/*
2344 			 * Don't try to lock/unlock the current inode, but we
2345 			 * _cannot_ skip the other inodes that we did not find
2346 			 * in the list attached to the buffer and are not
2347 			 * already marked stale. If we can't lock it, back off
2348 			 * and retry.
2349 			 */
2350 			if (ip != free_ip &&
2351 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2352 				rcu_read_unlock();
2353 				delay(1);
2354 				goto retry;
2355 			}
2356 			rcu_read_unlock();
2357 
2358 			xfs_iflock(ip);
2359 			xfs_iflags_set(ip, XFS_ISTALE);
2360 
2361 			/*
2362 			 * we don't need to attach clean inodes or those only
2363 			 * with unlogged changes (which we throw away, anyway).
2364 			 */
2365 			iip = ip->i_itemp;
2366 			if (!iip || xfs_inode_clean(ip)) {
2367 				ASSERT(ip != free_ip);
2368 				xfs_ifunlock(ip);
2369 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2370 				continue;
2371 			}
2372 
2373 			iip->ili_last_fields = iip->ili_fields;
2374 			iip->ili_fields = 0;
2375 			iip->ili_fsync_fields = 0;
2376 			iip->ili_logged = 1;
2377 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2378 						&iip->ili_item.li_lsn);
2379 
2380 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2381 						  &iip->ili_item);
2382 
2383 			if (ip != free_ip)
2384 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2385 		}
2386 
2387 		xfs_trans_stale_inode_buf(tp, bp);
2388 		xfs_trans_binval(tp, bp);
2389 	}
2390 
2391 	xfs_perag_put(pag);
2392 	return 0;
2393 }
2394 
2395 /*
2396  * This is called to return an inode to the inode free list.
2397  * The inode should already be truncated to 0 length and have
2398  * no pages associated with it.  This routine also assumes that
2399  * the inode is already a part of the transaction.
2400  *
2401  * The on-disk copy of the inode will have been added to the list
2402  * of unlinked inodes in the AGI. We need to remove the inode from
2403  * that list atomically with respect to freeing it here.
2404  */
2405 int
2406 xfs_ifree(
2407 	xfs_trans_t	*tp,
2408 	xfs_inode_t	*ip,
2409 	xfs_bmap_free_t	*flist)
2410 {
2411 	int			error;
2412 	struct xfs_icluster	xic = { 0 };
2413 
2414 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2415 	ASSERT(ip->i_d.di_nlink == 0);
2416 	ASSERT(ip->i_d.di_nextents == 0);
2417 	ASSERT(ip->i_d.di_anextents == 0);
2418 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2419 	ASSERT(ip->i_d.di_nblocks == 0);
2420 
2421 	/*
2422 	 * Pull the on-disk inode from the AGI unlinked list.
2423 	 */
2424 	error = xfs_iunlink_remove(tp, ip);
2425 	if (error)
2426 		return error;
2427 
2428 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2429 	if (error)
2430 		return error;
2431 
2432 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2433 	ip->i_d.di_flags = 0;
2434 	ip->i_d.di_dmevmask = 0;
2435 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2436 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2437 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2438 	/*
2439 	 * Bump the generation count so no one will be confused
2440 	 * by reincarnations of this inode.
2441 	 */
2442 	ip->i_d.di_gen++;
2443 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2444 
2445 	if (xic.deleted)
2446 		error = xfs_ifree_cluster(ip, tp, &xic);
2447 
2448 	return error;
2449 }
2450 
2451 /*
2452  * This is called to unpin an inode.  The caller must have the inode locked
2453  * in at least shared mode so that the buffer cannot be subsequently pinned
2454  * once someone is waiting for it to be unpinned.
2455  */
2456 static void
2457 xfs_iunpin(
2458 	struct xfs_inode	*ip)
2459 {
2460 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2461 
2462 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2463 
2464 	/* Give the log a push to start the unpinning I/O */
2465 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2466 
2467 }
2468 
2469 static void
2470 __xfs_iunpin_wait(
2471 	struct xfs_inode	*ip)
2472 {
2473 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2474 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2475 
2476 	xfs_iunpin(ip);
2477 
2478 	do {
2479 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2480 		if (xfs_ipincount(ip))
2481 			io_schedule();
2482 	} while (xfs_ipincount(ip));
2483 	finish_wait(wq, &wait.wait);
2484 }
2485 
2486 void
2487 xfs_iunpin_wait(
2488 	struct xfs_inode	*ip)
2489 {
2490 	if (xfs_ipincount(ip))
2491 		__xfs_iunpin_wait(ip);
2492 }
2493 
2494 /*
2495  * Removing an inode from the namespace involves removing the directory entry
2496  * and dropping the link count on the inode. Removing the directory entry can
2497  * result in locking an AGF (directory blocks were freed) and removing a link
2498  * count can result in placing the inode on an unlinked list which results in
2499  * locking an AGI.
2500  *
2501  * The big problem here is that we have an ordering constraint on AGF and AGI
2502  * locking - inode allocation locks the AGI, then can allocate a new extent for
2503  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2504  * removes the inode from the unlinked list, requiring that we lock the AGI
2505  * first, and then freeing the inode can result in an inode chunk being freed
2506  * and hence freeing disk space requiring that we lock an AGF.
2507  *
2508  * Hence the ordering that is imposed by other parts of the code is AGI before
2509  * AGF. This means we cannot remove the directory entry before we drop the inode
2510  * reference count and put it on the unlinked list as this results in a lock
2511  * order of AGF then AGI, and this can deadlock against inode allocation and
2512  * freeing. Therefore we must drop the link counts before we remove the
2513  * directory entry.
2514  *
2515  * This is still safe from a transactional point of view - it is not until we
2516  * get to xfs_bmap_finish() that we have the possibility of multiple
2517  * transactions in this operation. Hence as long as we remove the directory
2518  * entry and drop the link count in the first transaction of the remove
2519  * operation, there are no transactional constraints on the ordering here.
2520  */
2521 int
2522 xfs_remove(
2523 	xfs_inode_t             *dp,
2524 	struct xfs_name		*name,
2525 	xfs_inode_t		*ip)
2526 {
2527 	xfs_mount_t		*mp = dp->i_mount;
2528 	xfs_trans_t             *tp = NULL;
2529 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2530 	int                     error = 0;
2531 	xfs_bmap_free_t         free_list;
2532 	xfs_fsblock_t           first_block;
2533 	uint			resblks;
2534 
2535 	trace_xfs_remove(dp, name);
2536 
2537 	if (XFS_FORCED_SHUTDOWN(mp))
2538 		return -EIO;
2539 
2540 	error = xfs_qm_dqattach(dp, 0);
2541 	if (error)
2542 		goto std_return;
2543 
2544 	error = xfs_qm_dqattach(ip, 0);
2545 	if (error)
2546 		goto std_return;
2547 
2548 	if (is_dir)
2549 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2550 	else
2551 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2552 
2553 	/*
2554 	 * We try to get the real space reservation first,
2555 	 * allowing for directory btree deletion(s) implying
2556 	 * possible bmap insert(s).  If we can't get the space
2557 	 * reservation then we use 0 instead, and avoid the bmap
2558 	 * btree insert(s) in the directory code by, if the bmap
2559 	 * insert tries to happen, instead trimming the LAST
2560 	 * block from the directory.
2561 	 */
2562 	resblks = XFS_REMOVE_SPACE_RES(mp);
2563 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2564 	if (error == -ENOSPC) {
2565 		resblks = 0;
2566 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2567 	}
2568 	if (error) {
2569 		ASSERT(error != -ENOSPC);
2570 		goto out_trans_cancel;
2571 	}
2572 
2573 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2574 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2575 
2576 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2577 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2578 
2579 	/*
2580 	 * If we're removing a directory perform some additional validation.
2581 	 */
2582 	if (is_dir) {
2583 		ASSERT(ip->i_d.di_nlink >= 2);
2584 		if (ip->i_d.di_nlink != 2) {
2585 			error = -ENOTEMPTY;
2586 			goto out_trans_cancel;
2587 		}
2588 		if (!xfs_dir_isempty(ip)) {
2589 			error = -ENOTEMPTY;
2590 			goto out_trans_cancel;
2591 		}
2592 
2593 		/* Drop the link from ip's "..".  */
2594 		error = xfs_droplink(tp, dp);
2595 		if (error)
2596 			goto out_trans_cancel;
2597 
2598 		/* Drop the "." link from ip to self.  */
2599 		error = xfs_droplink(tp, ip);
2600 		if (error)
2601 			goto out_trans_cancel;
2602 	} else {
2603 		/*
2604 		 * When removing a non-directory we need to log the parent
2605 		 * inode here.  For a directory this is done implicitly
2606 		 * by the xfs_droplink call for the ".." entry.
2607 		 */
2608 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2609 	}
2610 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2611 
2612 	/* Drop the link from dp to ip. */
2613 	error = xfs_droplink(tp, ip);
2614 	if (error)
2615 		goto out_trans_cancel;
2616 
2617 	xfs_bmap_init(&free_list, &first_block);
2618 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2619 					&first_block, &free_list, resblks);
2620 	if (error) {
2621 		ASSERT(error != -ENOENT);
2622 		goto out_bmap_cancel;
2623 	}
2624 
2625 	/*
2626 	 * If this is a synchronous mount, make sure that the
2627 	 * remove transaction goes to disk before returning to
2628 	 * the user.
2629 	 */
2630 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2631 		xfs_trans_set_sync(tp);
2632 
2633 	error = xfs_bmap_finish(&tp, &free_list, NULL);
2634 	if (error)
2635 		goto out_bmap_cancel;
2636 
2637 	error = xfs_trans_commit(tp);
2638 	if (error)
2639 		goto std_return;
2640 
2641 	if (is_dir && xfs_inode_is_filestream(ip))
2642 		xfs_filestream_deassociate(ip);
2643 
2644 	return 0;
2645 
2646  out_bmap_cancel:
2647 	xfs_bmap_cancel(&free_list);
2648  out_trans_cancel:
2649 	xfs_trans_cancel(tp);
2650  std_return:
2651 	return error;
2652 }
2653 
2654 /*
2655  * Enter all inodes for a rename transaction into a sorted array.
2656  */
2657 #define __XFS_SORT_INODES	5
2658 STATIC void
2659 xfs_sort_for_rename(
2660 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2661 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2662 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2663 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2664 	struct xfs_inode	*wip,	/* in: whiteout inode */
2665 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2666 	int			*num_inodes)  /* in/out: inodes in array */
2667 {
2668 	int			i, j;
2669 
2670 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2671 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2672 
2673 	/*
2674 	 * i_tab contains a list of pointers to inodes.  We initialize
2675 	 * the table here & we'll sort it.  We will then use it to
2676 	 * order the acquisition of the inode locks.
2677 	 *
2678 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2679 	 */
2680 	i = 0;
2681 	i_tab[i++] = dp1;
2682 	i_tab[i++] = dp2;
2683 	i_tab[i++] = ip1;
2684 	if (ip2)
2685 		i_tab[i++] = ip2;
2686 	if (wip)
2687 		i_tab[i++] = wip;
2688 	*num_inodes = i;
2689 
2690 	/*
2691 	 * Sort the elements via bubble sort.  (Remember, there are at
2692 	 * most 5 elements to sort, so this is adequate.)
2693 	 */
2694 	for (i = 0; i < *num_inodes; i++) {
2695 		for (j = 1; j < *num_inodes; j++) {
2696 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2697 				struct xfs_inode *temp = i_tab[j];
2698 				i_tab[j] = i_tab[j-1];
2699 				i_tab[j-1] = temp;
2700 			}
2701 		}
2702 	}
2703 }
2704 
2705 static int
2706 xfs_finish_rename(
2707 	struct xfs_trans	*tp,
2708 	struct xfs_bmap_free	*free_list)
2709 {
2710 	int			error;
2711 
2712 	/*
2713 	 * If this is a synchronous mount, make sure that the rename transaction
2714 	 * goes to disk before returning to the user.
2715 	 */
2716 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2717 		xfs_trans_set_sync(tp);
2718 
2719 	error = xfs_bmap_finish(&tp, free_list, NULL);
2720 	if (error) {
2721 		xfs_bmap_cancel(free_list);
2722 		xfs_trans_cancel(tp);
2723 		return error;
2724 	}
2725 
2726 	return xfs_trans_commit(tp);
2727 }
2728 
2729 /*
2730  * xfs_cross_rename()
2731  *
2732  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2733  */
2734 STATIC int
2735 xfs_cross_rename(
2736 	struct xfs_trans	*tp,
2737 	struct xfs_inode	*dp1,
2738 	struct xfs_name		*name1,
2739 	struct xfs_inode	*ip1,
2740 	struct xfs_inode	*dp2,
2741 	struct xfs_name		*name2,
2742 	struct xfs_inode	*ip2,
2743 	struct xfs_bmap_free	*free_list,
2744 	xfs_fsblock_t		*first_block,
2745 	int			spaceres)
2746 {
2747 	int		error = 0;
2748 	int		ip1_flags = 0;
2749 	int		ip2_flags = 0;
2750 	int		dp2_flags = 0;
2751 
2752 	/* Swap inode number for dirent in first parent */
2753 	error = xfs_dir_replace(tp, dp1, name1,
2754 				ip2->i_ino,
2755 				first_block, free_list, spaceres);
2756 	if (error)
2757 		goto out_trans_abort;
2758 
2759 	/* Swap inode number for dirent in second parent */
2760 	error = xfs_dir_replace(tp, dp2, name2,
2761 				ip1->i_ino,
2762 				first_block, free_list, spaceres);
2763 	if (error)
2764 		goto out_trans_abort;
2765 
2766 	/*
2767 	 * If we're renaming one or more directories across different parents,
2768 	 * update the respective ".." entries (and link counts) to match the new
2769 	 * parents.
2770 	 */
2771 	if (dp1 != dp2) {
2772 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2773 
2774 		if (S_ISDIR(ip2->i_d.di_mode)) {
2775 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2776 						dp1->i_ino, first_block,
2777 						free_list, spaceres);
2778 			if (error)
2779 				goto out_trans_abort;
2780 
2781 			/* transfer ip2 ".." reference to dp1 */
2782 			if (!S_ISDIR(ip1->i_d.di_mode)) {
2783 				error = xfs_droplink(tp, dp2);
2784 				if (error)
2785 					goto out_trans_abort;
2786 				error = xfs_bumplink(tp, dp1);
2787 				if (error)
2788 					goto out_trans_abort;
2789 			}
2790 
2791 			/*
2792 			 * Although ip1 isn't changed here, userspace needs
2793 			 * to be warned about the change, so that applications
2794 			 * relying on it (like backup ones), will properly
2795 			 * notify the change
2796 			 */
2797 			ip1_flags |= XFS_ICHGTIME_CHG;
2798 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2799 		}
2800 
2801 		if (S_ISDIR(ip1->i_d.di_mode)) {
2802 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2803 						dp2->i_ino, first_block,
2804 						free_list, spaceres);
2805 			if (error)
2806 				goto out_trans_abort;
2807 
2808 			/* transfer ip1 ".." reference to dp2 */
2809 			if (!S_ISDIR(ip2->i_d.di_mode)) {
2810 				error = xfs_droplink(tp, dp1);
2811 				if (error)
2812 					goto out_trans_abort;
2813 				error = xfs_bumplink(tp, dp2);
2814 				if (error)
2815 					goto out_trans_abort;
2816 			}
2817 
2818 			/*
2819 			 * Although ip2 isn't changed here, userspace needs
2820 			 * to be warned about the change, so that applications
2821 			 * relying on it (like backup ones), will properly
2822 			 * notify the change
2823 			 */
2824 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2825 			ip2_flags |= XFS_ICHGTIME_CHG;
2826 		}
2827 	}
2828 
2829 	if (ip1_flags) {
2830 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2831 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2832 	}
2833 	if (ip2_flags) {
2834 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2835 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2836 	}
2837 	if (dp2_flags) {
2838 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2839 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2840 	}
2841 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2842 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2843 	return xfs_finish_rename(tp, free_list);
2844 
2845 out_trans_abort:
2846 	xfs_bmap_cancel(free_list);
2847 	xfs_trans_cancel(tp);
2848 	return error;
2849 }
2850 
2851 /*
2852  * xfs_rename_alloc_whiteout()
2853  *
2854  * Return a referenced, unlinked, unlocked inode that that can be used as a
2855  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2856  * crash between allocating the inode and linking it into the rename transaction
2857  * recovery will free the inode and we won't leak it.
2858  */
2859 static int
2860 xfs_rename_alloc_whiteout(
2861 	struct xfs_inode	*dp,
2862 	struct xfs_inode	**wip)
2863 {
2864 	struct xfs_inode	*tmpfile;
2865 	int			error;
2866 
2867 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2868 	if (error)
2869 		return error;
2870 
2871 	/*
2872 	 * Prepare the tmpfile inode as if it were created through the VFS.
2873 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2874 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2875 	 * and flag it as linkable.
2876 	 */
2877 	drop_nlink(VFS_I(tmpfile));
2878 	xfs_finish_inode_setup(tmpfile);
2879 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2880 
2881 	*wip = tmpfile;
2882 	return 0;
2883 }
2884 
2885 /*
2886  * xfs_rename
2887  */
2888 int
2889 xfs_rename(
2890 	struct xfs_inode	*src_dp,
2891 	struct xfs_name		*src_name,
2892 	struct xfs_inode	*src_ip,
2893 	struct xfs_inode	*target_dp,
2894 	struct xfs_name		*target_name,
2895 	struct xfs_inode	*target_ip,
2896 	unsigned int		flags)
2897 {
2898 	struct xfs_mount	*mp = src_dp->i_mount;
2899 	struct xfs_trans	*tp;
2900 	struct xfs_bmap_free	free_list;
2901 	xfs_fsblock_t		first_block;
2902 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2903 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2904 	int			num_inodes = __XFS_SORT_INODES;
2905 	bool			new_parent = (src_dp != target_dp);
2906 	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2907 	int			spaceres;
2908 	int			error;
2909 
2910 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2911 
2912 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2913 		return -EINVAL;
2914 
2915 	/*
2916 	 * If we are doing a whiteout operation, allocate the whiteout inode
2917 	 * we will be placing at the target and ensure the type is set
2918 	 * appropriately.
2919 	 */
2920 	if (flags & RENAME_WHITEOUT) {
2921 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2922 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2923 		if (error)
2924 			return error;
2925 
2926 		/* setup target dirent info as whiteout */
2927 		src_name->type = XFS_DIR3_FT_CHRDEV;
2928 	}
2929 
2930 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2931 				inodes, &num_inodes);
2932 
2933 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2934 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2935 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2936 	if (error == -ENOSPC) {
2937 		spaceres = 0;
2938 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2939 	}
2940 	if (error)
2941 		goto out_trans_cancel;
2942 
2943 	/*
2944 	 * Attach the dquots to the inodes
2945 	 */
2946 	error = xfs_qm_vop_rename_dqattach(inodes);
2947 	if (error)
2948 		goto out_trans_cancel;
2949 
2950 	/*
2951 	 * Lock all the participating inodes. Depending upon whether
2952 	 * the target_name exists in the target directory, and
2953 	 * whether the target directory is the same as the source
2954 	 * directory, we can lock from 2 to 4 inodes.
2955 	 */
2956 	if (!new_parent)
2957 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2958 	else
2959 		xfs_lock_two_inodes(src_dp, target_dp,
2960 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2961 
2962 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2963 
2964 	/*
2965 	 * Join all the inodes to the transaction. From this point on,
2966 	 * we can rely on either trans_commit or trans_cancel to unlock
2967 	 * them.
2968 	 */
2969 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2970 	if (new_parent)
2971 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2972 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2973 	if (target_ip)
2974 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2975 	if (wip)
2976 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2977 
2978 	/*
2979 	 * If we are using project inheritance, we only allow renames
2980 	 * into our tree when the project IDs are the same; else the
2981 	 * tree quota mechanism would be circumvented.
2982 	 */
2983 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2984 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2985 		error = -EXDEV;
2986 		goto out_trans_cancel;
2987 	}
2988 
2989 	xfs_bmap_init(&free_list, &first_block);
2990 
2991 	/* RENAME_EXCHANGE is unique from here on. */
2992 	if (flags & RENAME_EXCHANGE)
2993 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2994 					target_dp, target_name, target_ip,
2995 					&free_list, &first_block, spaceres);
2996 
2997 	/*
2998 	 * Set up the target.
2999 	 */
3000 	if (target_ip == NULL) {
3001 		/*
3002 		 * If there's no space reservation, check the entry will
3003 		 * fit before actually inserting it.
3004 		 */
3005 		if (!spaceres) {
3006 			error = xfs_dir_canenter(tp, target_dp, target_name);
3007 			if (error)
3008 				goto out_trans_cancel;
3009 		}
3010 		/*
3011 		 * If target does not exist and the rename crosses
3012 		 * directories, adjust the target directory link count
3013 		 * to account for the ".." reference from the new entry.
3014 		 */
3015 		error = xfs_dir_createname(tp, target_dp, target_name,
3016 						src_ip->i_ino, &first_block,
3017 						&free_list, spaceres);
3018 		if (error)
3019 			goto out_bmap_cancel;
3020 
3021 		xfs_trans_ichgtime(tp, target_dp,
3022 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3023 
3024 		if (new_parent && src_is_directory) {
3025 			error = xfs_bumplink(tp, target_dp);
3026 			if (error)
3027 				goto out_bmap_cancel;
3028 		}
3029 	} else { /* target_ip != NULL */
3030 		/*
3031 		 * If target exists and it's a directory, check that both
3032 		 * target and source are directories and that target can be
3033 		 * destroyed, or that neither is a directory.
3034 		 */
3035 		if (S_ISDIR(target_ip->i_d.di_mode)) {
3036 			/*
3037 			 * Make sure target dir is empty.
3038 			 */
3039 			if (!(xfs_dir_isempty(target_ip)) ||
3040 			    (target_ip->i_d.di_nlink > 2)) {
3041 				error = -EEXIST;
3042 				goto out_trans_cancel;
3043 			}
3044 		}
3045 
3046 		/*
3047 		 * Link the source inode under the target name.
3048 		 * If the source inode is a directory and we are moving
3049 		 * it across directories, its ".." entry will be
3050 		 * inconsistent until we replace that down below.
3051 		 *
3052 		 * In case there is already an entry with the same
3053 		 * name at the destination directory, remove it first.
3054 		 */
3055 		error = xfs_dir_replace(tp, target_dp, target_name,
3056 					src_ip->i_ino,
3057 					&first_block, &free_list, spaceres);
3058 		if (error)
3059 			goto out_bmap_cancel;
3060 
3061 		xfs_trans_ichgtime(tp, target_dp,
3062 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3063 
3064 		/*
3065 		 * Decrement the link count on the target since the target
3066 		 * dir no longer points to it.
3067 		 */
3068 		error = xfs_droplink(tp, target_ip);
3069 		if (error)
3070 			goto out_bmap_cancel;
3071 
3072 		if (src_is_directory) {
3073 			/*
3074 			 * Drop the link from the old "." entry.
3075 			 */
3076 			error = xfs_droplink(tp, target_ip);
3077 			if (error)
3078 				goto out_bmap_cancel;
3079 		}
3080 	} /* target_ip != NULL */
3081 
3082 	/*
3083 	 * Remove the source.
3084 	 */
3085 	if (new_parent && src_is_directory) {
3086 		/*
3087 		 * Rewrite the ".." entry to point to the new
3088 		 * directory.
3089 		 */
3090 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3091 					target_dp->i_ino,
3092 					&first_block, &free_list, spaceres);
3093 		ASSERT(error != -EEXIST);
3094 		if (error)
3095 			goto out_bmap_cancel;
3096 	}
3097 
3098 	/*
3099 	 * We always want to hit the ctime on the source inode.
3100 	 *
3101 	 * This isn't strictly required by the standards since the source
3102 	 * inode isn't really being changed, but old unix file systems did
3103 	 * it and some incremental backup programs won't work without it.
3104 	 */
3105 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3106 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3107 
3108 	/*
3109 	 * Adjust the link count on src_dp.  This is necessary when
3110 	 * renaming a directory, either within one parent when
3111 	 * the target existed, or across two parent directories.
3112 	 */
3113 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3114 
3115 		/*
3116 		 * Decrement link count on src_directory since the
3117 		 * entry that's moved no longer points to it.
3118 		 */
3119 		error = xfs_droplink(tp, src_dp);
3120 		if (error)
3121 			goto out_bmap_cancel;
3122 	}
3123 
3124 	/*
3125 	 * For whiteouts, we only need to update the source dirent with the
3126 	 * inode number of the whiteout inode rather than removing it
3127 	 * altogether.
3128 	 */
3129 	if (wip) {
3130 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3131 					&first_block, &free_list, spaceres);
3132 	} else
3133 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3134 					   &first_block, &free_list, spaceres);
3135 	if (error)
3136 		goto out_bmap_cancel;
3137 
3138 	/*
3139 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3140 	 * This means that failures all the way up to this point leave the inode
3141 	 * on the unlinked list and so cleanup is a simple matter of dropping
3142 	 * the remaining reference to it. If we fail here after bumping the link
3143 	 * count, we're shutting down the filesystem so we'll never see the
3144 	 * intermediate state on disk.
3145 	 */
3146 	if (wip) {
3147 		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3148 		error = xfs_bumplink(tp, wip);
3149 		if (error)
3150 			goto out_bmap_cancel;
3151 		error = xfs_iunlink_remove(tp, wip);
3152 		if (error)
3153 			goto out_bmap_cancel;
3154 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3155 
3156 		/*
3157 		 * Now we have a real link, clear the "I'm a tmpfile" state
3158 		 * flag from the inode so it doesn't accidentally get misused in
3159 		 * future.
3160 		 */
3161 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3162 	}
3163 
3164 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3165 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3166 	if (new_parent)
3167 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3168 
3169 	error = xfs_finish_rename(tp, &free_list);
3170 	if (wip)
3171 		IRELE(wip);
3172 	return error;
3173 
3174 out_bmap_cancel:
3175 	xfs_bmap_cancel(&free_list);
3176 out_trans_cancel:
3177 	xfs_trans_cancel(tp);
3178 	if (wip)
3179 		IRELE(wip);
3180 	return error;
3181 }
3182 
3183 STATIC int
3184 xfs_iflush_cluster(
3185 	xfs_inode_t	*ip,
3186 	xfs_buf_t	*bp)
3187 {
3188 	xfs_mount_t		*mp = ip->i_mount;
3189 	struct xfs_perag	*pag;
3190 	unsigned long		first_index, mask;
3191 	unsigned long		inodes_per_cluster;
3192 	int			ilist_size;
3193 	xfs_inode_t		**ilist;
3194 	xfs_inode_t		*iq;
3195 	int			nr_found;
3196 	int			clcount = 0;
3197 	int			bufwasdelwri;
3198 	int			i;
3199 
3200 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3201 
3202 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3203 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3204 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3205 	if (!ilist)
3206 		goto out_put;
3207 
3208 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3209 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3210 	rcu_read_lock();
3211 	/* really need a gang lookup range call here */
3212 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3213 					first_index, inodes_per_cluster);
3214 	if (nr_found == 0)
3215 		goto out_free;
3216 
3217 	for (i = 0; i < nr_found; i++) {
3218 		iq = ilist[i];
3219 		if (iq == ip)
3220 			continue;
3221 
3222 		/*
3223 		 * because this is an RCU protected lookup, we could find a
3224 		 * recently freed or even reallocated inode during the lookup.
3225 		 * We need to check under the i_flags_lock for a valid inode
3226 		 * here. Skip it if it is not valid or the wrong inode.
3227 		 */
3228 		spin_lock(&ip->i_flags_lock);
3229 		if (!ip->i_ino ||
3230 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3231 			spin_unlock(&ip->i_flags_lock);
3232 			continue;
3233 		}
3234 		spin_unlock(&ip->i_flags_lock);
3235 
3236 		/*
3237 		 * Do an un-protected check to see if the inode is dirty and
3238 		 * is a candidate for flushing.  These checks will be repeated
3239 		 * later after the appropriate locks are acquired.
3240 		 */
3241 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3242 			continue;
3243 
3244 		/*
3245 		 * Try to get locks.  If any are unavailable or it is pinned,
3246 		 * then this inode cannot be flushed and is skipped.
3247 		 */
3248 
3249 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3250 			continue;
3251 		if (!xfs_iflock_nowait(iq)) {
3252 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3253 			continue;
3254 		}
3255 		if (xfs_ipincount(iq)) {
3256 			xfs_ifunlock(iq);
3257 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3258 			continue;
3259 		}
3260 
3261 		/*
3262 		 * arriving here means that this inode can be flushed.  First
3263 		 * re-check that it's dirty before flushing.
3264 		 */
3265 		if (!xfs_inode_clean(iq)) {
3266 			int	error;
3267 			error = xfs_iflush_int(iq, bp);
3268 			if (error) {
3269 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3270 				goto cluster_corrupt_out;
3271 			}
3272 			clcount++;
3273 		} else {
3274 			xfs_ifunlock(iq);
3275 		}
3276 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3277 	}
3278 
3279 	if (clcount) {
3280 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3281 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3282 	}
3283 
3284 out_free:
3285 	rcu_read_unlock();
3286 	kmem_free(ilist);
3287 out_put:
3288 	xfs_perag_put(pag);
3289 	return 0;
3290 
3291 
3292 cluster_corrupt_out:
3293 	/*
3294 	 * Corruption detected in the clustering loop.  Invalidate the
3295 	 * inode buffer and shut down the filesystem.
3296 	 */
3297 	rcu_read_unlock();
3298 	/*
3299 	 * Clean up the buffer.  If it was delwri, just release it --
3300 	 * brelse can handle it with no problems.  If not, shut down the
3301 	 * filesystem before releasing the buffer.
3302 	 */
3303 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3304 	if (bufwasdelwri)
3305 		xfs_buf_relse(bp);
3306 
3307 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3308 
3309 	if (!bufwasdelwri) {
3310 		/*
3311 		 * Just like incore_relse: if we have b_iodone functions,
3312 		 * mark the buffer as an error and call them.  Otherwise
3313 		 * mark it as stale and brelse.
3314 		 */
3315 		if (bp->b_iodone) {
3316 			XFS_BUF_UNDONE(bp);
3317 			xfs_buf_stale(bp);
3318 			xfs_buf_ioerror(bp, -EIO);
3319 			xfs_buf_ioend(bp);
3320 		} else {
3321 			xfs_buf_stale(bp);
3322 			xfs_buf_relse(bp);
3323 		}
3324 	}
3325 
3326 	/*
3327 	 * Unlocks the flush lock
3328 	 */
3329 	xfs_iflush_abort(iq, false);
3330 	kmem_free(ilist);
3331 	xfs_perag_put(pag);
3332 	return -EFSCORRUPTED;
3333 }
3334 
3335 /*
3336  * Flush dirty inode metadata into the backing buffer.
3337  *
3338  * The caller must have the inode lock and the inode flush lock held.  The
3339  * inode lock will still be held upon return to the caller, and the inode
3340  * flush lock will be released after the inode has reached the disk.
3341  *
3342  * The caller must write out the buffer returned in *bpp and release it.
3343  */
3344 int
3345 xfs_iflush(
3346 	struct xfs_inode	*ip,
3347 	struct xfs_buf		**bpp)
3348 {
3349 	struct xfs_mount	*mp = ip->i_mount;
3350 	struct xfs_buf		*bp;
3351 	struct xfs_dinode	*dip;
3352 	int			error;
3353 
3354 	XFS_STATS_INC(mp, xs_iflush_count);
3355 
3356 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3357 	ASSERT(xfs_isiflocked(ip));
3358 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3359 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3360 
3361 	*bpp = NULL;
3362 
3363 	xfs_iunpin_wait(ip);
3364 
3365 	/*
3366 	 * For stale inodes we cannot rely on the backing buffer remaining
3367 	 * stale in cache for the remaining life of the stale inode and so
3368 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3369 	 * inodes below. We have to check this after ensuring the inode is
3370 	 * unpinned so that it is safe to reclaim the stale inode after the
3371 	 * flush call.
3372 	 */
3373 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3374 		xfs_ifunlock(ip);
3375 		return 0;
3376 	}
3377 
3378 	/*
3379 	 * This may have been unpinned because the filesystem is shutting
3380 	 * down forcibly. If that's the case we must not write this inode
3381 	 * to disk, because the log record didn't make it to disk.
3382 	 *
3383 	 * We also have to remove the log item from the AIL in this case,
3384 	 * as we wait for an empty AIL as part of the unmount process.
3385 	 */
3386 	if (XFS_FORCED_SHUTDOWN(mp)) {
3387 		error = -EIO;
3388 		goto abort_out;
3389 	}
3390 
3391 	/*
3392 	 * Get the buffer containing the on-disk inode.
3393 	 */
3394 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3395 			       0);
3396 	if (error || !bp) {
3397 		xfs_ifunlock(ip);
3398 		return error;
3399 	}
3400 
3401 	/*
3402 	 * First flush out the inode that xfs_iflush was called with.
3403 	 */
3404 	error = xfs_iflush_int(ip, bp);
3405 	if (error)
3406 		goto corrupt_out;
3407 
3408 	/*
3409 	 * If the buffer is pinned then push on the log now so we won't
3410 	 * get stuck waiting in the write for too long.
3411 	 */
3412 	if (xfs_buf_ispinned(bp))
3413 		xfs_log_force(mp, 0);
3414 
3415 	/*
3416 	 * inode clustering:
3417 	 * see if other inodes can be gathered into this write
3418 	 */
3419 	error = xfs_iflush_cluster(ip, bp);
3420 	if (error)
3421 		goto cluster_corrupt_out;
3422 
3423 	*bpp = bp;
3424 	return 0;
3425 
3426 corrupt_out:
3427 	xfs_buf_relse(bp);
3428 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3429 cluster_corrupt_out:
3430 	error = -EFSCORRUPTED;
3431 abort_out:
3432 	/*
3433 	 * Unlocks the flush lock
3434 	 */
3435 	xfs_iflush_abort(ip, false);
3436 	return error;
3437 }
3438 
3439 STATIC int
3440 xfs_iflush_int(
3441 	struct xfs_inode	*ip,
3442 	struct xfs_buf		*bp)
3443 {
3444 	struct xfs_inode_log_item *iip = ip->i_itemp;
3445 	struct xfs_dinode	*dip;
3446 	struct xfs_mount	*mp = ip->i_mount;
3447 
3448 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3449 	ASSERT(xfs_isiflocked(ip));
3450 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3451 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3452 	ASSERT(iip != NULL && iip->ili_fields != 0);
3453 	ASSERT(ip->i_d.di_version > 1);
3454 
3455 	/* set *dip = inode's place in the buffer */
3456 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3457 
3458 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3459 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3460 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3461 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3462 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3463 		goto corrupt_out;
3464 	}
3465 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3466 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3467 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3468 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3469 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3470 		goto corrupt_out;
3471 	}
3472 	if (S_ISREG(ip->i_d.di_mode)) {
3473 		if (XFS_TEST_ERROR(
3474 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3475 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3476 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3477 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3478 				"%s: Bad regular inode %Lu, ptr 0x%p",
3479 				__func__, ip->i_ino, ip);
3480 			goto corrupt_out;
3481 		}
3482 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3483 		if (XFS_TEST_ERROR(
3484 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3485 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3486 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3487 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3488 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3489 				"%s: Bad directory inode %Lu, ptr 0x%p",
3490 				__func__, ip->i_ino, ip);
3491 			goto corrupt_out;
3492 		}
3493 	}
3494 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3495 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3496 				XFS_RANDOM_IFLUSH_5)) {
3497 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3498 			"%s: detected corrupt incore inode %Lu, "
3499 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3500 			__func__, ip->i_ino,
3501 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3502 			ip->i_d.di_nblocks, ip);
3503 		goto corrupt_out;
3504 	}
3505 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3506 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3507 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3508 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3509 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3510 		goto corrupt_out;
3511 	}
3512 
3513 	/*
3514 	 * Inode item log recovery for v2 inodes are dependent on the
3515 	 * di_flushiter count for correct sequencing. We bump the flush
3516 	 * iteration count so we can detect flushes which postdate a log record
3517 	 * during recovery. This is redundant as we now log every change and
3518 	 * hence this can't happen but we need to still do it to ensure
3519 	 * backwards compatibility with old kernels that predate logging all
3520 	 * inode changes.
3521 	 */
3522 	if (ip->i_d.di_version < 3)
3523 		ip->i_d.di_flushiter++;
3524 
3525 	/*
3526 	 * Copy the dirty parts of the inode into the on-disk
3527 	 * inode.  We always copy out the core of the inode,
3528 	 * because if the inode is dirty at all the core must
3529 	 * be.
3530 	 */
3531 	xfs_dinode_to_disk(dip, &ip->i_d);
3532 
3533 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3534 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3535 		ip->i_d.di_flushiter = 0;
3536 
3537 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3538 	if (XFS_IFORK_Q(ip))
3539 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3540 	xfs_inobp_check(mp, bp);
3541 
3542 	/*
3543 	 * We've recorded everything logged in the inode, so we'd like to clear
3544 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3545 	 * However, we can't stop logging all this information until the data
3546 	 * we've copied into the disk buffer is written to disk.  If we did we
3547 	 * might overwrite the copy of the inode in the log with all the data
3548 	 * after re-logging only part of it, and in the face of a crash we
3549 	 * wouldn't have all the data we need to recover.
3550 	 *
3551 	 * What we do is move the bits to the ili_last_fields field.  When
3552 	 * logging the inode, these bits are moved back to the ili_fields field.
3553 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3554 	 * know that the information those bits represent is permanently on
3555 	 * disk.  As long as the flush completes before the inode is logged
3556 	 * again, then both ili_fields and ili_last_fields will be cleared.
3557 	 *
3558 	 * We can play with the ili_fields bits here, because the inode lock
3559 	 * must be held exclusively in order to set bits there and the flush
3560 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3561 	 * done routine can tell whether or not to look in the AIL.  Also, store
3562 	 * the current LSN of the inode so that we can tell whether the item has
3563 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3564 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3565 	 * atomically.
3566 	 */
3567 	iip->ili_last_fields = iip->ili_fields;
3568 	iip->ili_fields = 0;
3569 	iip->ili_fsync_fields = 0;
3570 	iip->ili_logged = 1;
3571 
3572 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3573 				&iip->ili_item.li_lsn);
3574 
3575 	/*
3576 	 * Attach the function xfs_iflush_done to the inode's
3577 	 * buffer.  This will remove the inode from the AIL
3578 	 * and unlock the inode's flush lock when the inode is
3579 	 * completely written to disk.
3580 	 */
3581 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3582 
3583 	/* update the lsn in the on disk inode if required */
3584 	if (ip->i_d.di_version == 3)
3585 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3586 
3587 	/* generate the checksum. */
3588 	xfs_dinode_calc_crc(mp, dip);
3589 
3590 	ASSERT(bp->b_fspriv != NULL);
3591 	ASSERT(bp->b_iodone != NULL);
3592 	return 0;
3593 
3594 corrupt_out:
3595 	return -EFSCORRUPTED;
3596 }
3597