xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision a8b0ca17)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 #ifdef DEBUG
66 /*
67  * Make sure that the extents in the given memory buffer
68  * are valid.
69  */
70 STATIC void
71 xfs_validate_extents(
72 	xfs_ifork_t		*ifp,
73 	int			nrecs,
74 	xfs_exntfmt_t		fmt)
75 {
76 	xfs_bmbt_irec_t		irec;
77 	xfs_bmbt_rec_host_t	rec;
78 	int			i;
79 
80 	for (i = 0; i < nrecs; i++) {
81 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 		rec.l0 = get_unaligned(&ep->l0);
83 		rec.l1 = get_unaligned(&ep->l1);
84 		xfs_bmbt_get_all(&rec, &irec);
85 		if (fmt == XFS_EXTFMT_NOSTATE)
86 			ASSERT(irec.br_state == XFS_EXT_NORM);
87 	}
88 }
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
92 
93 /*
94  * Check that none of the inode's in the buffer have a next
95  * unlinked field of 0.
96  */
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 	xfs_mount_t	*mp,
101 	xfs_buf_t	*bp)
102 {
103 	int		i;
104 	int		j;
105 	xfs_dinode_t	*dip;
106 
107 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 
109 	for (i = 0; i < j; i++) {
110 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 					i * mp->m_sb.sb_inodesize);
112 		if (!dip->di_next_unlinked)  {
113 			xfs_alert(mp,
114 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 				bp);
116 			ASSERT(dip->di_next_unlinked);
117 		}
118 	}
119 }
120 #endif
121 
122 /*
123  * Find the buffer associated with the given inode map
124  * We do basic validation checks on the buffer once it has been
125  * retrieved from disk.
126  */
127 STATIC int
128 xfs_imap_to_bp(
129 	xfs_mount_t	*mp,
130 	xfs_trans_t	*tp,
131 	struct xfs_imap	*imap,
132 	xfs_buf_t	**bpp,
133 	uint		buf_flags,
134 	uint		iget_flags)
135 {
136 	int		error;
137 	int		i;
138 	int		ni;
139 	xfs_buf_t	*bp;
140 
141 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 				   (int)imap->im_len, buf_flags, &bp);
143 	if (error) {
144 		if (error != EAGAIN) {
145 			xfs_warn(mp,
146 				"%s: xfs_trans_read_buf() returned error %d.",
147 				__func__, error);
148 		} else {
149 			ASSERT(buf_flags & XBF_TRYLOCK);
150 		}
151 		return error;
152 	}
153 
154 	/*
155 	 * Validate the magic number and version of every inode in the buffer
156 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
157 	 */
158 #ifdef DEBUG
159 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
160 #else	/* usual case */
161 	ni = 1;
162 #endif
163 
164 	for (i = 0; i < ni; i++) {
165 		int		di_ok;
166 		xfs_dinode_t	*dip;
167 
168 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
169 					(i << mp->m_sb.sb_inodelog));
170 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
171 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
172 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
173 						XFS_ERRTAG_ITOBP_INOTOBP,
174 						XFS_RANDOM_ITOBP_INOTOBP))) {
175 			if (iget_flags & XFS_IGET_UNTRUSTED) {
176 				xfs_trans_brelse(tp, bp);
177 				return XFS_ERROR(EINVAL);
178 			}
179 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
180 						XFS_ERRLEVEL_HIGH, mp, dip);
181 #ifdef DEBUG
182 			xfs_emerg(mp,
183 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
184 				(unsigned long long)imap->im_blkno, i,
185 				be16_to_cpu(dip->di_magic));
186 			ASSERT(0);
187 #endif
188 			xfs_trans_brelse(tp, bp);
189 			return XFS_ERROR(EFSCORRUPTED);
190 		}
191 	}
192 
193 	xfs_inobp_check(mp, bp);
194 
195 	/*
196 	 * Mark the buffer as an inode buffer now that it looks good
197 	 */
198 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
199 
200 	*bpp = bp;
201 	return 0;
202 }
203 
204 /*
205  * This routine is called to map an inode number within a file
206  * system to the buffer containing the on-disk version of the
207  * inode.  It returns a pointer to the buffer containing the
208  * on-disk inode in the bpp parameter, and in the dip parameter
209  * it returns a pointer to the on-disk inode within that buffer.
210  *
211  * If a non-zero error is returned, then the contents of bpp and
212  * dipp are undefined.
213  *
214  * Use xfs_imap() to determine the size and location of the
215  * buffer to read from disk.
216  */
217 int
218 xfs_inotobp(
219 	xfs_mount_t	*mp,
220 	xfs_trans_t	*tp,
221 	xfs_ino_t	ino,
222 	xfs_dinode_t	**dipp,
223 	xfs_buf_t	**bpp,
224 	int		*offset,
225 	uint		imap_flags)
226 {
227 	struct xfs_imap	imap;
228 	xfs_buf_t	*bp;
229 	int		error;
230 
231 	imap.im_blkno = 0;
232 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
233 	if (error)
234 		return error;
235 
236 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
237 	if (error)
238 		return error;
239 
240 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
241 	*bpp = bp;
242 	*offset = imap.im_boffset;
243 	return 0;
244 }
245 
246 
247 /*
248  * This routine is called to map an inode to the buffer containing
249  * the on-disk version of the inode.  It returns a pointer to the
250  * buffer containing the on-disk inode in the bpp parameter, and in
251  * the dip parameter it returns a pointer to the on-disk inode within
252  * that buffer.
253  *
254  * If a non-zero error is returned, then the contents of bpp and
255  * dipp are undefined.
256  *
257  * The inode is expected to already been mapped to its buffer and read
258  * in once, thus we can use the mapping information stored in the inode
259  * rather than calling xfs_imap().  This allows us to avoid the overhead
260  * of looking at the inode btree for small block file systems
261  * (see xfs_imap()).
262  */
263 int
264 xfs_itobp(
265 	xfs_mount_t	*mp,
266 	xfs_trans_t	*tp,
267 	xfs_inode_t	*ip,
268 	xfs_dinode_t	**dipp,
269 	xfs_buf_t	**bpp,
270 	uint		buf_flags)
271 {
272 	xfs_buf_t	*bp;
273 	int		error;
274 
275 	ASSERT(ip->i_imap.im_blkno != 0);
276 
277 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
278 	if (error)
279 		return error;
280 
281 	if (!bp) {
282 		ASSERT(buf_flags & XBF_TRYLOCK);
283 		ASSERT(tp == NULL);
284 		*bpp = NULL;
285 		return EAGAIN;
286 	}
287 
288 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
289 	*bpp = bp;
290 	return 0;
291 }
292 
293 /*
294  * Move inode type and inode format specific information from the
295  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
296  * this means set if_rdev to the proper value.  For files, directories,
297  * and symlinks this means to bring in the in-line data or extent
298  * pointers.  For a file in B-tree format, only the root is immediately
299  * brought in-core.  The rest will be in-lined in if_extents when it
300  * is first referenced (see xfs_iread_extents()).
301  */
302 STATIC int
303 xfs_iformat(
304 	xfs_inode_t		*ip,
305 	xfs_dinode_t		*dip)
306 {
307 	xfs_attr_shortform_t	*atp;
308 	int			size;
309 	int			error;
310 	xfs_fsize_t             di_size;
311 	ip->i_df.if_ext_max =
312 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
313 	error = 0;
314 
315 	if (unlikely(be32_to_cpu(dip->di_nextents) +
316 		     be16_to_cpu(dip->di_anextents) >
317 		     be64_to_cpu(dip->di_nblocks))) {
318 		xfs_warn(ip->i_mount,
319 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
320 			(unsigned long long)ip->i_ino,
321 			(int)(be32_to_cpu(dip->di_nextents) +
322 			      be16_to_cpu(dip->di_anextents)),
323 			(unsigned long long)
324 				be64_to_cpu(dip->di_nblocks));
325 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
326 				     ip->i_mount, dip);
327 		return XFS_ERROR(EFSCORRUPTED);
328 	}
329 
330 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
331 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
332 			(unsigned long long)ip->i_ino,
333 			dip->di_forkoff);
334 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
335 				     ip->i_mount, dip);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	}
338 
339 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
340 		     !ip->i_mount->m_rtdev_targp)) {
341 		xfs_warn(ip->i_mount,
342 			"corrupt dinode %Lu, has realtime flag set.",
343 			ip->i_ino);
344 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
345 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
346 		return XFS_ERROR(EFSCORRUPTED);
347 	}
348 
349 	switch (ip->i_d.di_mode & S_IFMT) {
350 	case S_IFIFO:
351 	case S_IFCHR:
352 	case S_IFBLK:
353 	case S_IFSOCK:
354 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
355 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
356 					      ip->i_mount, dip);
357 			return XFS_ERROR(EFSCORRUPTED);
358 		}
359 		ip->i_d.di_size = 0;
360 		ip->i_size = 0;
361 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
362 		break;
363 
364 	case S_IFREG:
365 	case S_IFLNK:
366 	case S_IFDIR:
367 		switch (dip->di_format) {
368 		case XFS_DINODE_FMT_LOCAL:
369 			/*
370 			 * no local regular files yet
371 			 */
372 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
373 				xfs_warn(ip->i_mount,
374 			"corrupt inode %Lu (local format for regular file).",
375 					(unsigned long long) ip->i_ino);
376 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
377 						     XFS_ERRLEVEL_LOW,
378 						     ip->i_mount, dip);
379 				return XFS_ERROR(EFSCORRUPTED);
380 			}
381 
382 			di_size = be64_to_cpu(dip->di_size);
383 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
384 				xfs_warn(ip->i_mount,
385 			"corrupt inode %Lu (bad size %Ld for local inode).",
386 					(unsigned long long) ip->i_ino,
387 					(long long) di_size);
388 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 						     XFS_ERRLEVEL_LOW,
390 						     ip->i_mount, dip);
391 				return XFS_ERROR(EFSCORRUPTED);
392 			}
393 
394 			size = (int)di_size;
395 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 			break;
397 		case XFS_DINODE_FMT_EXTENTS:
398 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 			break;
400 		case XFS_DINODE_FMT_BTREE:
401 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 			break;
403 		default:
404 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 					 ip->i_mount);
406 			return XFS_ERROR(EFSCORRUPTED);
407 		}
408 		break;
409 
410 	default:
411 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	if (error) {
415 		return error;
416 	}
417 	if (!XFS_DFORK_Q(dip))
418 		return 0;
419 	ASSERT(ip->i_afp == NULL);
420 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
421 	ip->i_afp->if_ext_max =
422 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 	switch (dip->di_aformat) {
424 	case XFS_DINODE_FMT_LOCAL:
425 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 		size = be16_to_cpu(atp->hdr.totsize);
427 
428 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 			xfs_warn(ip->i_mount,
430 				"corrupt inode %Lu (bad attr fork size %Ld).",
431 				(unsigned long long) ip->i_ino,
432 				(long long) size);
433 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
434 					     XFS_ERRLEVEL_LOW,
435 					     ip->i_mount, dip);
436 			return XFS_ERROR(EFSCORRUPTED);
437 		}
438 
439 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
440 		break;
441 	case XFS_DINODE_FMT_EXTENTS:
442 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
443 		break;
444 	case XFS_DINODE_FMT_BTREE:
445 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
446 		break;
447 	default:
448 		error = XFS_ERROR(EFSCORRUPTED);
449 		break;
450 	}
451 	if (error) {
452 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
453 		ip->i_afp = NULL;
454 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
455 	}
456 	return error;
457 }
458 
459 /*
460  * The file is in-lined in the on-disk inode.
461  * If it fits into if_inline_data, then copy
462  * it there, otherwise allocate a buffer for it
463  * and copy the data there.  Either way, set
464  * if_data to point at the data.
465  * If we allocate a buffer for the data, make
466  * sure that its size is a multiple of 4 and
467  * record the real size in i_real_bytes.
468  */
469 STATIC int
470 xfs_iformat_local(
471 	xfs_inode_t	*ip,
472 	xfs_dinode_t	*dip,
473 	int		whichfork,
474 	int		size)
475 {
476 	xfs_ifork_t	*ifp;
477 	int		real_size;
478 
479 	/*
480 	 * If the size is unreasonable, then something
481 	 * is wrong and we just bail out rather than crash in
482 	 * kmem_alloc() or memcpy() below.
483 	 */
484 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
485 		xfs_warn(ip->i_mount,
486 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
487 			(unsigned long long) ip->i_ino, size,
488 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
489 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
490 				     ip->i_mount, dip);
491 		return XFS_ERROR(EFSCORRUPTED);
492 	}
493 	ifp = XFS_IFORK_PTR(ip, whichfork);
494 	real_size = 0;
495 	if (size == 0)
496 		ifp->if_u1.if_data = NULL;
497 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
498 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
499 	else {
500 		real_size = roundup(size, 4);
501 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
502 	}
503 	ifp->if_bytes = size;
504 	ifp->if_real_bytes = real_size;
505 	if (size)
506 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
507 	ifp->if_flags &= ~XFS_IFEXTENTS;
508 	ifp->if_flags |= XFS_IFINLINE;
509 	return 0;
510 }
511 
512 /*
513  * The file consists of a set of extents all
514  * of which fit into the on-disk inode.
515  * If there are few enough extents to fit into
516  * the if_inline_ext, then copy them there.
517  * Otherwise allocate a buffer for them and copy
518  * them into it.  Either way, set if_extents
519  * to point at the extents.
520  */
521 STATIC int
522 xfs_iformat_extents(
523 	xfs_inode_t	*ip,
524 	xfs_dinode_t	*dip,
525 	int		whichfork)
526 {
527 	xfs_bmbt_rec_t	*dp;
528 	xfs_ifork_t	*ifp;
529 	int		nex;
530 	int		size;
531 	int		i;
532 
533 	ifp = XFS_IFORK_PTR(ip, whichfork);
534 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
535 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
536 
537 	/*
538 	 * If the number of extents is unreasonable, then something
539 	 * is wrong and we just bail out rather than crash in
540 	 * kmem_alloc() or memcpy() below.
541 	 */
542 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
543 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
544 			(unsigned long long) ip->i_ino, nex);
545 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
546 				     ip->i_mount, dip);
547 		return XFS_ERROR(EFSCORRUPTED);
548 	}
549 
550 	ifp->if_real_bytes = 0;
551 	if (nex == 0)
552 		ifp->if_u1.if_extents = NULL;
553 	else if (nex <= XFS_INLINE_EXTS)
554 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
555 	else
556 		xfs_iext_add(ifp, 0, nex);
557 
558 	ifp->if_bytes = size;
559 	if (size) {
560 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
561 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
562 		for (i = 0; i < nex; i++, dp++) {
563 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
564 			ep->l0 = get_unaligned_be64(&dp->l0);
565 			ep->l1 = get_unaligned_be64(&dp->l1);
566 		}
567 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
568 		if (whichfork != XFS_DATA_FORK ||
569 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
570 				if (unlikely(xfs_check_nostate_extents(
571 				    ifp, 0, nex))) {
572 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
573 							 XFS_ERRLEVEL_LOW,
574 							 ip->i_mount);
575 					return XFS_ERROR(EFSCORRUPTED);
576 				}
577 	}
578 	ifp->if_flags |= XFS_IFEXTENTS;
579 	return 0;
580 }
581 
582 /*
583  * The file has too many extents to fit into
584  * the inode, so they are in B-tree format.
585  * Allocate a buffer for the root of the B-tree
586  * and copy the root into it.  The i_extents
587  * field will remain NULL until all of the
588  * extents are read in (when they are needed).
589  */
590 STATIC int
591 xfs_iformat_btree(
592 	xfs_inode_t		*ip,
593 	xfs_dinode_t		*dip,
594 	int			whichfork)
595 {
596 	xfs_bmdr_block_t	*dfp;
597 	xfs_ifork_t		*ifp;
598 	/* REFERENCED */
599 	int			nrecs;
600 	int			size;
601 
602 	ifp = XFS_IFORK_PTR(ip, whichfork);
603 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
604 	size = XFS_BMAP_BROOT_SPACE(dfp);
605 	nrecs = be16_to_cpu(dfp->bb_numrecs);
606 
607 	/*
608 	 * blow out if -- fork has less extents than can fit in
609 	 * fork (fork shouldn't be a btree format), root btree
610 	 * block has more records than can fit into the fork,
611 	 * or the number of extents is greater than the number of
612 	 * blocks.
613 	 */
614 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
615 	    || XFS_BMDR_SPACE_CALC(nrecs) >
616 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
617 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
618 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
619 			(unsigned long long) ip->i_ino);
620 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
621 				 ip->i_mount, dip);
622 		return XFS_ERROR(EFSCORRUPTED);
623 	}
624 
625 	ifp->if_broot_bytes = size;
626 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
627 	ASSERT(ifp->if_broot != NULL);
628 	/*
629 	 * Copy and convert from the on-disk structure
630 	 * to the in-memory structure.
631 	 */
632 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
633 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
634 			 ifp->if_broot, size);
635 	ifp->if_flags &= ~XFS_IFEXTENTS;
636 	ifp->if_flags |= XFS_IFBROOT;
637 
638 	return 0;
639 }
640 
641 STATIC void
642 xfs_dinode_from_disk(
643 	xfs_icdinode_t		*to,
644 	xfs_dinode_t		*from)
645 {
646 	to->di_magic = be16_to_cpu(from->di_magic);
647 	to->di_mode = be16_to_cpu(from->di_mode);
648 	to->di_version = from ->di_version;
649 	to->di_format = from->di_format;
650 	to->di_onlink = be16_to_cpu(from->di_onlink);
651 	to->di_uid = be32_to_cpu(from->di_uid);
652 	to->di_gid = be32_to_cpu(from->di_gid);
653 	to->di_nlink = be32_to_cpu(from->di_nlink);
654 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
655 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
656 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
657 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
658 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
659 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
660 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
661 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
662 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
663 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
664 	to->di_size = be64_to_cpu(from->di_size);
665 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
666 	to->di_extsize = be32_to_cpu(from->di_extsize);
667 	to->di_nextents = be32_to_cpu(from->di_nextents);
668 	to->di_anextents = be16_to_cpu(from->di_anextents);
669 	to->di_forkoff = from->di_forkoff;
670 	to->di_aformat	= from->di_aformat;
671 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
672 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
673 	to->di_flags	= be16_to_cpu(from->di_flags);
674 	to->di_gen	= be32_to_cpu(from->di_gen);
675 }
676 
677 void
678 xfs_dinode_to_disk(
679 	xfs_dinode_t		*to,
680 	xfs_icdinode_t		*from)
681 {
682 	to->di_magic = cpu_to_be16(from->di_magic);
683 	to->di_mode = cpu_to_be16(from->di_mode);
684 	to->di_version = from ->di_version;
685 	to->di_format = from->di_format;
686 	to->di_onlink = cpu_to_be16(from->di_onlink);
687 	to->di_uid = cpu_to_be32(from->di_uid);
688 	to->di_gid = cpu_to_be32(from->di_gid);
689 	to->di_nlink = cpu_to_be32(from->di_nlink);
690 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
691 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
692 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
693 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
694 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
695 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
696 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
697 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
698 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
699 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
700 	to->di_size = cpu_to_be64(from->di_size);
701 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
702 	to->di_extsize = cpu_to_be32(from->di_extsize);
703 	to->di_nextents = cpu_to_be32(from->di_nextents);
704 	to->di_anextents = cpu_to_be16(from->di_anextents);
705 	to->di_forkoff = from->di_forkoff;
706 	to->di_aformat = from->di_aformat;
707 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
708 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
709 	to->di_flags = cpu_to_be16(from->di_flags);
710 	to->di_gen = cpu_to_be32(from->di_gen);
711 }
712 
713 STATIC uint
714 _xfs_dic2xflags(
715 	__uint16_t		di_flags)
716 {
717 	uint			flags = 0;
718 
719 	if (di_flags & XFS_DIFLAG_ANY) {
720 		if (di_flags & XFS_DIFLAG_REALTIME)
721 			flags |= XFS_XFLAG_REALTIME;
722 		if (di_flags & XFS_DIFLAG_PREALLOC)
723 			flags |= XFS_XFLAG_PREALLOC;
724 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
725 			flags |= XFS_XFLAG_IMMUTABLE;
726 		if (di_flags & XFS_DIFLAG_APPEND)
727 			flags |= XFS_XFLAG_APPEND;
728 		if (di_flags & XFS_DIFLAG_SYNC)
729 			flags |= XFS_XFLAG_SYNC;
730 		if (di_flags & XFS_DIFLAG_NOATIME)
731 			flags |= XFS_XFLAG_NOATIME;
732 		if (di_flags & XFS_DIFLAG_NODUMP)
733 			flags |= XFS_XFLAG_NODUMP;
734 		if (di_flags & XFS_DIFLAG_RTINHERIT)
735 			flags |= XFS_XFLAG_RTINHERIT;
736 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
737 			flags |= XFS_XFLAG_PROJINHERIT;
738 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
739 			flags |= XFS_XFLAG_NOSYMLINKS;
740 		if (di_flags & XFS_DIFLAG_EXTSIZE)
741 			flags |= XFS_XFLAG_EXTSIZE;
742 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
743 			flags |= XFS_XFLAG_EXTSZINHERIT;
744 		if (di_flags & XFS_DIFLAG_NODEFRAG)
745 			flags |= XFS_XFLAG_NODEFRAG;
746 		if (di_flags & XFS_DIFLAG_FILESTREAM)
747 			flags |= XFS_XFLAG_FILESTREAM;
748 	}
749 
750 	return flags;
751 }
752 
753 uint
754 xfs_ip2xflags(
755 	xfs_inode_t		*ip)
756 {
757 	xfs_icdinode_t		*dic = &ip->i_d;
758 
759 	return _xfs_dic2xflags(dic->di_flags) |
760 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
761 }
762 
763 uint
764 xfs_dic2xflags(
765 	xfs_dinode_t		*dip)
766 {
767 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
768 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
769 }
770 
771 /*
772  * Read the disk inode attributes into the in-core inode structure.
773  */
774 int
775 xfs_iread(
776 	xfs_mount_t	*mp,
777 	xfs_trans_t	*tp,
778 	xfs_inode_t	*ip,
779 	uint		iget_flags)
780 {
781 	xfs_buf_t	*bp;
782 	xfs_dinode_t	*dip;
783 	int		error;
784 
785 	/*
786 	 * Fill in the location information in the in-core inode.
787 	 */
788 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
789 	if (error)
790 		return error;
791 
792 	/*
793 	 * Get pointers to the on-disk inode and the buffer containing it.
794 	 */
795 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
796 			       XBF_LOCK, iget_flags);
797 	if (error)
798 		return error;
799 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
800 
801 	/*
802 	 * If we got something that isn't an inode it means someone
803 	 * (nfs or dmi) has a stale handle.
804 	 */
805 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
806 #ifdef DEBUG
807 		xfs_alert(mp,
808 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
809 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
810 #endif /* DEBUG */
811 		error = XFS_ERROR(EINVAL);
812 		goto out_brelse;
813 	}
814 
815 	/*
816 	 * If the on-disk inode is already linked to a directory
817 	 * entry, copy all of the inode into the in-core inode.
818 	 * xfs_iformat() handles copying in the inode format
819 	 * specific information.
820 	 * Otherwise, just get the truly permanent information.
821 	 */
822 	if (dip->di_mode) {
823 		xfs_dinode_from_disk(&ip->i_d, dip);
824 		error = xfs_iformat(ip, dip);
825 		if (error)  {
826 #ifdef DEBUG
827 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
828 				__func__, error);
829 #endif /* DEBUG */
830 			goto out_brelse;
831 		}
832 	} else {
833 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
834 		ip->i_d.di_version = dip->di_version;
835 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
836 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
837 		/*
838 		 * Make sure to pull in the mode here as well in
839 		 * case the inode is released without being used.
840 		 * This ensures that xfs_inactive() will see that
841 		 * the inode is already free and not try to mess
842 		 * with the uninitialized part of it.
843 		 */
844 		ip->i_d.di_mode = 0;
845 		/*
846 		 * Initialize the per-fork minima and maxima for a new
847 		 * inode here.  xfs_iformat will do it for old inodes.
848 		 */
849 		ip->i_df.if_ext_max =
850 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
851 	}
852 
853 	/*
854 	 * The inode format changed when we moved the link count and
855 	 * made it 32 bits long.  If this is an old format inode,
856 	 * convert it in memory to look like a new one.  If it gets
857 	 * flushed to disk we will convert back before flushing or
858 	 * logging it.  We zero out the new projid field and the old link
859 	 * count field.  We'll handle clearing the pad field (the remains
860 	 * of the old uuid field) when we actually convert the inode to
861 	 * the new format. We don't change the version number so that we
862 	 * can distinguish this from a real new format inode.
863 	 */
864 	if (ip->i_d.di_version == 1) {
865 		ip->i_d.di_nlink = ip->i_d.di_onlink;
866 		ip->i_d.di_onlink = 0;
867 		xfs_set_projid(ip, 0);
868 	}
869 
870 	ip->i_delayed_blks = 0;
871 	ip->i_size = ip->i_d.di_size;
872 
873 	/*
874 	 * Mark the buffer containing the inode as something to keep
875 	 * around for a while.  This helps to keep recently accessed
876 	 * meta-data in-core longer.
877 	 */
878 	xfs_buf_set_ref(bp, XFS_INO_REF);
879 
880 	/*
881 	 * Use xfs_trans_brelse() to release the buffer containing the
882 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
883 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
884 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
885 	 * will only release the buffer if it is not dirty within the
886 	 * transaction.  It will be OK to release the buffer in this case,
887 	 * because inodes on disk are never destroyed and we will be
888 	 * locking the new in-core inode before putting it in the hash
889 	 * table where other processes can find it.  Thus we don't have
890 	 * to worry about the inode being changed just because we released
891 	 * the buffer.
892 	 */
893  out_brelse:
894 	xfs_trans_brelse(tp, bp);
895 	return error;
896 }
897 
898 /*
899  * Read in extents from a btree-format inode.
900  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
901  */
902 int
903 xfs_iread_extents(
904 	xfs_trans_t	*tp,
905 	xfs_inode_t	*ip,
906 	int		whichfork)
907 {
908 	int		error;
909 	xfs_ifork_t	*ifp;
910 	xfs_extnum_t	nextents;
911 
912 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
913 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
914 				 ip->i_mount);
915 		return XFS_ERROR(EFSCORRUPTED);
916 	}
917 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
918 	ifp = XFS_IFORK_PTR(ip, whichfork);
919 
920 	/*
921 	 * We know that the size is valid (it's checked in iformat_btree)
922 	 */
923 	ifp->if_bytes = ifp->if_real_bytes = 0;
924 	ifp->if_flags |= XFS_IFEXTENTS;
925 	xfs_iext_add(ifp, 0, nextents);
926 	error = xfs_bmap_read_extents(tp, ip, whichfork);
927 	if (error) {
928 		xfs_iext_destroy(ifp);
929 		ifp->if_flags &= ~XFS_IFEXTENTS;
930 		return error;
931 	}
932 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
933 	return 0;
934 }
935 
936 /*
937  * Allocate an inode on disk and return a copy of its in-core version.
938  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
939  * appropriately within the inode.  The uid and gid for the inode are
940  * set according to the contents of the given cred structure.
941  *
942  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
943  * has a free inode available, call xfs_iget()
944  * to obtain the in-core version of the allocated inode.  Finally,
945  * fill in the inode and log its initial contents.  In this case,
946  * ialloc_context would be set to NULL and call_again set to false.
947  *
948  * If xfs_dialloc() does not have an available inode,
949  * it will replenish its supply by doing an allocation. Since we can
950  * only do one allocation within a transaction without deadlocks, we
951  * must commit the current transaction before returning the inode itself.
952  * In this case, therefore, we will set call_again to true and return.
953  * The caller should then commit the current transaction, start a new
954  * transaction, and call xfs_ialloc() again to actually get the inode.
955  *
956  * To ensure that some other process does not grab the inode that
957  * was allocated during the first call to xfs_ialloc(), this routine
958  * also returns the [locked] bp pointing to the head of the freelist
959  * as ialloc_context.  The caller should hold this buffer across
960  * the commit and pass it back into this routine on the second call.
961  *
962  * If we are allocating quota inodes, we do not have a parent inode
963  * to attach to or associate with (i.e. pip == NULL) because they
964  * are not linked into the directory structure - they are attached
965  * directly to the superblock - and so have no parent.
966  */
967 int
968 xfs_ialloc(
969 	xfs_trans_t	*tp,
970 	xfs_inode_t	*pip,
971 	mode_t		mode,
972 	xfs_nlink_t	nlink,
973 	xfs_dev_t	rdev,
974 	prid_t		prid,
975 	int		okalloc,
976 	xfs_buf_t	**ialloc_context,
977 	boolean_t	*call_again,
978 	xfs_inode_t	**ipp)
979 {
980 	xfs_ino_t	ino;
981 	xfs_inode_t	*ip;
982 	uint		flags;
983 	int		error;
984 	timespec_t	tv;
985 	int		filestreams = 0;
986 
987 	/*
988 	 * Call the space management code to pick
989 	 * the on-disk inode to be allocated.
990 	 */
991 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
992 			    ialloc_context, call_again, &ino);
993 	if (error)
994 		return error;
995 	if (*call_again || ino == NULLFSINO) {
996 		*ipp = NULL;
997 		return 0;
998 	}
999 	ASSERT(*ialloc_context == NULL);
1000 
1001 	/*
1002 	 * Get the in-core inode with the lock held exclusively.
1003 	 * This is because we're setting fields here we need
1004 	 * to prevent others from looking at until we're done.
1005 	 */
1006 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1007 			 XFS_ILOCK_EXCL, &ip);
1008 	if (error)
1009 		return error;
1010 	ASSERT(ip != NULL);
1011 
1012 	ip->i_d.di_mode = (__uint16_t)mode;
1013 	ip->i_d.di_onlink = 0;
1014 	ip->i_d.di_nlink = nlink;
1015 	ASSERT(ip->i_d.di_nlink == nlink);
1016 	ip->i_d.di_uid = current_fsuid();
1017 	ip->i_d.di_gid = current_fsgid();
1018 	xfs_set_projid(ip, prid);
1019 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1020 
1021 	/*
1022 	 * If the superblock version is up to where we support new format
1023 	 * inodes and this is currently an old format inode, then change
1024 	 * the inode version number now.  This way we only do the conversion
1025 	 * here rather than here and in the flush/logging code.
1026 	 */
1027 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1028 	    ip->i_d.di_version == 1) {
1029 		ip->i_d.di_version = 2;
1030 		/*
1031 		 * We've already zeroed the old link count, the projid field,
1032 		 * and the pad field.
1033 		 */
1034 	}
1035 
1036 	/*
1037 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1038 	 */
1039 	if ((prid != 0) && (ip->i_d.di_version == 1))
1040 		xfs_bump_ino_vers2(tp, ip);
1041 
1042 	if (pip && XFS_INHERIT_GID(pip)) {
1043 		ip->i_d.di_gid = pip->i_d.di_gid;
1044 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1045 			ip->i_d.di_mode |= S_ISGID;
1046 		}
1047 	}
1048 
1049 	/*
1050 	 * If the group ID of the new file does not match the effective group
1051 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1052 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1053 	 */
1054 	if ((irix_sgid_inherit) &&
1055 	    (ip->i_d.di_mode & S_ISGID) &&
1056 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1057 		ip->i_d.di_mode &= ~S_ISGID;
1058 	}
1059 
1060 	ip->i_d.di_size = 0;
1061 	ip->i_size = 0;
1062 	ip->i_d.di_nextents = 0;
1063 	ASSERT(ip->i_d.di_nblocks == 0);
1064 
1065 	nanotime(&tv);
1066 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1067 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1068 	ip->i_d.di_atime = ip->i_d.di_mtime;
1069 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1070 
1071 	/*
1072 	 * di_gen will have been taken care of in xfs_iread.
1073 	 */
1074 	ip->i_d.di_extsize = 0;
1075 	ip->i_d.di_dmevmask = 0;
1076 	ip->i_d.di_dmstate = 0;
1077 	ip->i_d.di_flags = 0;
1078 	flags = XFS_ILOG_CORE;
1079 	switch (mode & S_IFMT) {
1080 	case S_IFIFO:
1081 	case S_IFCHR:
1082 	case S_IFBLK:
1083 	case S_IFSOCK:
1084 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1085 		ip->i_df.if_u2.if_rdev = rdev;
1086 		ip->i_df.if_flags = 0;
1087 		flags |= XFS_ILOG_DEV;
1088 		break;
1089 	case S_IFREG:
1090 		/*
1091 		 * we can't set up filestreams until after the VFS inode
1092 		 * is set up properly.
1093 		 */
1094 		if (pip && xfs_inode_is_filestream(pip))
1095 			filestreams = 1;
1096 		/* fall through */
1097 	case S_IFDIR:
1098 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1099 			uint	di_flags = 0;
1100 
1101 			if ((mode & S_IFMT) == S_IFDIR) {
1102 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1103 					di_flags |= XFS_DIFLAG_RTINHERIT;
1104 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1105 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1106 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1107 				}
1108 			} else if ((mode & S_IFMT) == S_IFREG) {
1109 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1110 					di_flags |= XFS_DIFLAG_REALTIME;
1111 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1112 					di_flags |= XFS_DIFLAG_EXTSIZE;
1113 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1114 				}
1115 			}
1116 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1117 			    xfs_inherit_noatime)
1118 				di_flags |= XFS_DIFLAG_NOATIME;
1119 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1120 			    xfs_inherit_nodump)
1121 				di_flags |= XFS_DIFLAG_NODUMP;
1122 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1123 			    xfs_inherit_sync)
1124 				di_flags |= XFS_DIFLAG_SYNC;
1125 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1126 			    xfs_inherit_nosymlinks)
1127 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1128 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1129 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1130 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1131 			    xfs_inherit_nodefrag)
1132 				di_flags |= XFS_DIFLAG_NODEFRAG;
1133 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1134 				di_flags |= XFS_DIFLAG_FILESTREAM;
1135 			ip->i_d.di_flags |= di_flags;
1136 		}
1137 		/* FALLTHROUGH */
1138 	case S_IFLNK:
1139 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1140 		ip->i_df.if_flags = XFS_IFEXTENTS;
1141 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1142 		ip->i_df.if_u1.if_extents = NULL;
1143 		break;
1144 	default:
1145 		ASSERT(0);
1146 	}
1147 	/*
1148 	 * Attribute fork settings for new inode.
1149 	 */
1150 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1151 	ip->i_d.di_anextents = 0;
1152 
1153 	/*
1154 	 * Log the new values stuffed into the inode.
1155 	 */
1156 	xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1157 	xfs_trans_log_inode(tp, ip, flags);
1158 
1159 	/* now that we have an i_mode we can setup inode ops and unlock */
1160 	xfs_setup_inode(ip);
1161 
1162 	/* now we have set up the vfs inode we can associate the filestream */
1163 	if (filestreams) {
1164 		error = xfs_filestream_associate(pip, ip);
1165 		if (error < 0)
1166 			return -error;
1167 		if (!error)
1168 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1169 	}
1170 
1171 	*ipp = ip;
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Check to make sure that there are no blocks allocated to the
1177  * file beyond the size of the file.  We don't check this for
1178  * files with fixed size extents or real time extents, but we
1179  * at least do it for regular files.
1180  */
1181 #ifdef DEBUG
1182 void
1183 xfs_isize_check(
1184 	xfs_mount_t	*mp,
1185 	xfs_inode_t	*ip,
1186 	xfs_fsize_t	isize)
1187 {
1188 	xfs_fileoff_t	map_first;
1189 	int		nimaps;
1190 	xfs_bmbt_irec_t	imaps[2];
1191 
1192 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1193 		return;
1194 
1195 	if (XFS_IS_REALTIME_INODE(ip))
1196 		return;
1197 
1198 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1199 		return;
1200 
1201 	nimaps = 2;
1202 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1203 	/*
1204 	 * The filesystem could be shutting down, so bmapi may return
1205 	 * an error.
1206 	 */
1207 	if (xfs_bmapi(NULL, ip, map_first,
1208 			 (XFS_B_TO_FSB(mp,
1209 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1210 			  map_first),
1211 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1212 			 NULL))
1213 	    return;
1214 	ASSERT(nimaps == 1);
1215 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1216 }
1217 #endif	/* DEBUG */
1218 
1219 /*
1220  * Calculate the last possible buffered byte in a file.  This must
1221  * include data that was buffered beyond the EOF by the write code.
1222  * This also needs to deal with overflowing the xfs_fsize_t type
1223  * which can happen for sizes near the limit.
1224  *
1225  * We also need to take into account any blocks beyond the EOF.  It
1226  * may be the case that they were buffered by a write which failed.
1227  * In that case the pages will still be in memory, but the inode size
1228  * will never have been updated.
1229  */
1230 STATIC xfs_fsize_t
1231 xfs_file_last_byte(
1232 	xfs_inode_t	*ip)
1233 {
1234 	xfs_mount_t	*mp;
1235 	xfs_fsize_t	last_byte;
1236 	xfs_fileoff_t	last_block;
1237 	xfs_fileoff_t	size_last_block;
1238 	int		error;
1239 
1240 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1241 
1242 	mp = ip->i_mount;
1243 	/*
1244 	 * Only check for blocks beyond the EOF if the extents have
1245 	 * been read in.  This eliminates the need for the inode lock,
1246 	 * and it also saves us from looking when it really isn't
1247 	 * necessary.
1248 	 */
1249 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1250 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1251 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1252 			XFS_DATA_FORK);
1253 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1254 		if (error) {
1255 			last_block = 0;
1256 		}
1257 	} else {
1258 		last_block = 0;
1259 	}
1260 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1261 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1262 
1263 	last_byte = XFS_FSB_TO_B(mp, last_block);
1264 	if (last_byte < 0) {
1265 		return XFS_MAXIOFFSET(mp);
1266 	}
1267 	last_byte += (1 << mp->m_writeio_log);
1268 	if (last_byte < 0) {
1269 		return XFS_MAXIOFFSET(mp);
1270 	}
1271 	return last_byte;
1272 }
1273 
1274 /*
1275  * Start the truncation of the file to new_size.  The new size
1276  * must be smaller than the current size.  This routine will
1277  * clear the buffer and page caches of file data in the removed
1278  * range, and xfs_itruncate_finish() will remove the underlying
1279  * disk blocks.
1280  *
1281  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1282  * must NOT have the inode lock held at all.  This is because we're
1283  * calling into the buffer/page cache code and we can't hold the
1284  * inode lock when we do so.
1285  *
1286  * We need to wait for any direct I/Os in flight to complete before we
1287  * proceed with the truncate. This is needed to prevent the extents
1288  * being read or written by the direct I/Os from being removed while the
1289  * I/O is in flight as there is no other method of synchronising
1290  * direct I/O with the truncate operation.  Also, because we hold
1291  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1292  * started until the truncate completes and drops the lock. Essentially,
1293  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1294  * ordering between direct I/Os and the truncate operation.
1295  *
1296  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1297  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1298  * in the case that the caller is locking things out of order and
1299  * may not be able to call xfs_itruncate_finish() with the inode lock
1300  * held without dropping the I/O lock.  If the caller must drop the
1301  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1302  * must be called again with all the same restrictions as the initial
1303  * call.
1304  */
1305 int
1306 xfs_itruncate_start(
1307 	xfs_inode_t	*ip,
1308 	uint		flags,
1309 	xfs_fsize_t	new_size)
1310 {
1311 	xfs_fsize_t	last_byte;
1312 	xfs_off_t	toss_start;
1313 	xfs_mount_t	*mp;
1314 	int		error = 0;
1315 
1316 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1317 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1318 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1319 	       (flags == XFS_ITRUNC_MAYBE));
1320 
1321 	mp = ip->i_mount;
1322 
1323 	/* wait for the completion of any pending DIOs */
1324 	if (new_size == 0 || new_size < ip->i_size)
1325 		xfs_ioend_wait(ip);
1326 
1327 	/*
1328 	 * Call toss_pages or flushinval_pages to get rid of pages
1329 	 * overlapping the region being removed.  We have to use
1330 	 * the less efficient flushinval_pages in the case that the
1331 	 * caller may not be able to finish the truncate without
1332 	 * dropping the inode's I/O lock.  Make sure
1333 	 * to catch any pages brought in by buffers overlapping
1334 	 * the EOF by searching out beyond the isize by our
1335 	 * block size. We round new_size up to a block boundary
1336 	 * so that we don't toss things on the same block as
1337 	 * new_size but before it.
1338 	 *
1339 	 * Before calling toss_page or flushinval_pages, make sure to
1340 	 * call remapf() over the same region if the file is mapped.
1341 	 * This frees up mapped file references to the pages in the
1342 	 * given range and for the flushinval_pages case it ensures
1343 	 * that we get the latest mapped changes flushed out.
1344 	 */
1345 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1346 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1347 	if (toss_start < 0) {
1348 		/*
1349 		 * The place to start tossing is beyond our maximum
1350 		 * file size, so there is no way that the data extended
1351 		 * out there.
1352 		 */
1353 		return 0;
1354 	}
1355 	last_byte = xfs_file_last_byte(ip);
1356 	trace_xfs_itruncate_start(ip, new_size, flags, toss_start, last_byte);
1357 	if (last_byte > toss_start) {
1358 		if (flags & XFS_ITRUNC_DEFINITE) {
1359 			xfs_tosspages(ip, toss_start,
1360 					-1, FI_REMAPF_LOCKED);
1361 		} else {
1362 			error = xfs_flushinval_pages(ip, toss_start,
1363 					-1, FI_REMAPF_LOCKED);
1364 		}
1365 	}
1366 
1367 #ifdef DEBUG
1368 	if (new_size == 0) {
1369 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1370 	}
1371 #endif
1372 	return error;
1373 }
1374 
1375 /*
1376  * Shrink the file to the given new_size.  The new size must be smaller than
1377  * the current size.  This will free up the underlying blocks in the removed
1378  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1379  *
1380  * The transaction passed to this routine must have made a permanent log
1381  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1382  * given transaction and start new ones, so make sure everything involved in
1383  * the transaction is tidy before calling here.  Some transaction will be
1384  * returned to the caller to be committed.  The incoming transaction must
1385  * already include the inode, and both inode locks must be held exclusively.
1386  * The inode must also be "held" within the transaction.  On return the inode
1387  * will be "held" within the returned transaction.  This routine does NOT
1388  * require any disk space to be reserved for it within the transaction.
1389  *
1390  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1391  * indicates the fork which is to be truncated.  For the attribute fork we only
1392  * support truncation to size 0.
1393  *
1394  * We use the sync parameter to indicate whether or not the first transaction
1395  * we perform might have to be synchronous.  For the attr fork, it needs to be
1396  * so if the unlink of the inode is not yet known to be permanent in the log.
1397  * This keeps us from freeing and reusing the blocks of the attribute fork
1398  * before the unlink of the inode becomes permanent.
1399  *
1400  * For the data fork, we normally have to run synchronously if we're being
1401  * called out of the inactive path or we're being called out of the create path
1402  * where we're truncating an existing file.  Either way, the truncate needs to
1403  * be sync so blocks don't reappear in the file with altered data in case of a
1404  * crash.  wsync filesystems can run the first case async because anything that
1405  * shrinks the inode has to run sync so by the time we're called here from
1406  * inactive, the inode size is permanently set to 0.
1407  *
1408  * Calls from the truncate path always need to be sync unless we're in a wsync
1409  * filesystem and the file has already been unlinked.
1410  *
1411  * The caller is responsible for correctly setting the sync parameter.  It gets
1412  * too hard for us to guess here which path we're being called out of just
1413  * based on inode state.
1414  *
1415  * If we get an error, we must return with the inode locked and linked into the
1416  * current transaction. This keeps things simple for the higher level code,
1417  * because it always knows that the inode is locked and held in the transaction
1418  * that returns to it whether errors occur or not.  We don't mark the inode
1419  * dirty on error so that transactions can be easily aborted if possible.
1420  */
1421 int
1422 xfs_itruncate_finish(
1423 	xfs_trans_t	**tp,
1424 	xfs_inode_t	*ip,
1425 	xfs_fsize_t	new_size,
1426 	int		fork,
1427 	int		sync)
1428 {
1429 	xfs_fsblock_t	first_block;
1430 	xfs_fileoff_t	first_unmap_block;
1431 	xfs_fileoff_t	last_block;
1432 	xfs_filblks_t	unmap_len=0;
1433 	xfs_mount_t	*mp;
1434 	xfs_trans_t	*ntp;
1435 	int		done;
1436 	int		committed;
1437 	xfs_bmap_free_t	free_list;
1438 	int		error;
1439 
1440 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1441 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1442 	ASSERT(*tp != NULL);
1443 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1444 	ASSERT(ip->i_transp == *tp);
1445 	ASSERT(ip->i_itemp != NULL);
1446 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1447 
1448 
1449 	ntp = *tp;
1450 	mp = (ntp)->t_mountp;
1451 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1452 
1453 	/*
1454 	 * We only support truncating the entire attribute fork.
1455 	 */
1456 	if (fork == XFS_ATTR_FORK) {
1457 		new_size = 0LL;
1458 	}
1459 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1460 	trace_xfs_itruncate_finish_start(ip, new_size);
1461 
1462 	/*
1463 	 * The first thing we do is set the size to new_size permanently
1464 	 * on disk.  This way we don't have to worry about anyone ever
1465 	 * being able to look at the data being freed even in the face
1466 	 * of a crash.  What we're getting around here is the case where
1467 	 * we free a block, it is allocated to another file, it is written
1468 	 * to, and then we crash.  If the new data gets written to the
1469 	 * file but the log buffers containing the free and reallocation
1470 	 * don't, then we'd end up with garbage in the blocks being freed.
1471 	 * As long as we make the new_size permanent before actually
1472 	 * freeing any blocks it doesn't matter if they get written to.
1473 	 *
1474 	 * The callers must signal into us whether or not the size
1475 	 * setting here must be synchronous.  There are a few cases
1476 	 * where it doesn't have to be synchronous.  Those cases
1477 	 * occur if the file is unlinked and we know the unlink is
1478 	 * permanent or if the blocks being truncated are guaranteed
1479 	 * to be beyond the inode eof (regardless of the link count)
1480 	 * and the eof value is permanent.  Both of these cases occur
1481 	 * only on wsync-mounted filesystems.  In those cases, we're
1482 	 * guaranteed that no user will ever see the data in the blocks
1483 	 * that are being truncated so the truncate can run async.
1484 	 * In the free beyond eof case, the file may wind up with
1485 	 * more blocks allocated to it than it needs if we crash
1486 	 * and that won't get fixed until the next time the file
1487 	 * is re-opened and closed but that's ok as that shouldn't
1488 	 * be too many blocks.
1489 	 *
1490 	 * However, we can't just make all wsync xactions run async
1491 	 * because there's one call out of the create path that needs
1492 	 * to run sync where it's truncating an existing file to size
1493 	 * 0 whose size is > 0.
1494 	 *
1495 	 * It's probably possible to come up with a test in this
1496 	 * routine that would correctly distinguish all the above
1497 	 * cases from the values of the function parameters and the
1498 	 * inode state but for sanity's sake, I've decided to let the
1499 	 * layers above just tell us.  It's simpler to correctly figure
1500 	 * out in the layer above exactly under what conditions we
1501 	 * can run async and I think it's easier for others read and
1502 	 * follow the logic in case something has to be changed.
1503 	 * cscope is your friend -- rcc.
1504 	 *
1505 	 * The attribute fork is much simpler.
1506 	 *
1507 	 * For the attribute fork we allow the caller to tell us whether
1508 	 * the unlink of the inode that led to this call is yet permanent
1509 	 * in the on disk log.  If it is not and we will be freeing extents
1510 	 * in this inode then we make the first transaction synchronous
1511 	 * to make sure that the unlink is permanent by the time we free
1512 	 * the blocks.
1513 	 */
1514 	if (fork == XFS_DATA_FORK) {
1515 		if (ip->i_d.di_nextents > 0) {
1516 			/*
1517 			 * If we are not changing the file size then do
1518 			 * not update the on-disk file size - we may be
1519 			 * called from xfs_inactive_free_eofblocks().  If we
1520 			 * update the on-disk file size and then the system
1521 			 * crashes before the contents of the file are
1522 			 * flushed to disk then the files may be full of
1523 			 * holes (ie NULL files bug).
1524 			 */
1525 			if (ip->i_size != new_size) {
1526 				ip->i_d.di_size = new_size;
1527 				ip->i_size = new_size;
1528 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1529 			}
1530 		}
1531 	} else if (sync) {
1532 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1533 		if (ip->i_d.di_anextents > 0)
1534 			xfs_trans_set_sync(ntp);
1535 	}
1536 	ASSERT(fork == XFS_DATA_FORK ||
1537 		(fork == XFS_ATTR_FORK &&
1538 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1539 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1540 
1541 	/*
1542 	 * Since it is possible for space to become allocated beyond
1543 	 * the end of the file (in a crash where the space is allocated
1544 	 * but the inode size is not yet updated), simply remove any
1545 	 * blocks which show up between the new EOF and the maximum
1546 	 * possible file size.  If the first block to be removed is
1547 	 * beyond the maximum file size (ie it is the same as last_block),
1548 	 * then there is nothing to do.
1549 	 */
1550 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1551 	ASSERT(first_unmap_block <= last_block);
1552 	done = 0;
1553 	if (last_block == first_unmap_block) {
1554 		done = 1;
1555 	} else {
1556 		unmap_len = last_block - first_unmap_block + 1;
1557 	}
1558 	while (!done) {
1559 		/*
1560 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1561 		 * will tell us whether it freed the entire range or
1562 		 * not.  If this is a synchronous mount (wsync),
1563 		 * then we can tell bunmapi to keep all the
1564 		 * transactions asynchronous since the unlink
1565 		 * transaction that made this inode inactive has
1566 		 * already hit the disk.  There's no danger of
1567 		 * the freed blocks being reused, there being a
1568 		 * crash, and the reused blocks suddenly reappearing
1569 		 * in this file with garbage in them once recovery
1570 		 * runs.
1571 		 */
1572 		xfs_bmap_init(&free_list, &first_block);
1573 		error = xfs_bunmapi(ntp, ip,
1574 				    first_unmap_block, unmap_len,
1575 				    xfs_bmapi_aflag(fork),
1576 				    XFS_ITRUNC_MAX_EXTENTS,
1577 				    &first_block, &free_list,
1578 				    &done);
1579 		if (error) {
1580 			/*
1581 			 * If the bunmapi call encounters an error,
1582 			 * return to the caller where the transaction
1583 			 * can be properly aborted.  We just need to
1584 			 * make sure we're not holding any resources
1585 			 * that we were not when we came in.
1586 			 */
1587 			xfs_bmap_cancel(&free_list);
1588 			return error;
1589 		}
1590 
1591 		/*
1592 		 * Duplicate the transaction that has the permanent
1593 		 * reservation and commit the old transaction.
1594 		 */
1595 		error = xfs_bmap_finish(tp, &free_list, &committed);
1596 		ntp = *tp;
1597 		if (committed)
1598 			xfs_trans_ijoin(ntp, ip);
1599 
1600 		if (error) {
1601 			/*
1602 			 * If the bmap finish call encounters an error, return
1603 			 * to the caller where the transaction can be properly
1604 			 * aborted.  We just need to make sure we're not
1605 			 * holding any resources that we were not when we came
1606 			 * in.
1607 			 *
1608 			 * Aborting from this point might lose some blocks in
1609 			 * the file system, but oh well.
1610 			 */
1611 			xfs_bmap_cancel(&free_list);
1612 			return error;
1613 		}
1614 
1615 		if (committed) {
1616 			/*
1617 			 * Mark the inode dirty so it will be logged and
1618 			 * moved forward in the log as part of every commit.
1619 			 */
1620 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1621 		}
1622 
1623 		ntp = xfs_trans_dup(ntp);
1624 		error = xfs_trans_commit(*tp, 0);
1625 		*tp = ntp;
1626 
1627 		xfs_trans_ijoin(ntp, ip);
1628 
1629 		if (error)
1630 			return error;
1631 		/*
1632 		 * transaction commit worked ok so we can drop the extra ticket
1633 		 * reference that we gained in xfs_trans_dup()
1634 		 */
1635 		xfs_log_ticket_put(ntp->t_ticket);
1636 		error = xfs_trans_reserve(ntp, 0,
1637 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1638 					XFS_TRANS_PERM_LOG_RES,
1639 					XFS_ITRUNCATE_LOG_COUNT);
1640 		if (error)
1641 			return error;
1642 	}
1643 	/*
1644 	 * Only update the size in the case of the data fork, but
1645 	 * always re-log the inode so that our permanent transaction
1646 	 * can keep on rolling it forward in the log.
1647 	 */
1648 	if (fork == XFS_DATA_FORK) {
1649 		xfs_isize_check(mp, ip, new_size);
1650 		/*
1651 		 * If we are not changing the file size then do
1652 		 * not update the on-disk file size - we may be
1653 		 * called from xfs_inactive_free_eofblocks().  If we
1654 		 * update the on-disk file size and then the system
1655 		 * crashes before the contents of the file are
1656 		 * flushed to disk then the files may be full of
1657 		 * holes (ie NULL files bug).
1658 		 */
1659 		if (ip->i_size != new_size) {
1660 			ip->i_d.di_size = new_size;
1661 			ip->i_size = new_size;
1662 		}
1663 	}
1664 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1665 	ASSERT((new_size != 0) ||
1666 	       (fork == XFS_ATTR_FORK) ||
1667 	       (ip->i_delayed_blks == 0));
1668 	ASSERT((new_size != 0) ||
1669 	       (fork == XFS_ATTR_FORK) ||
1670 	       (ip->i_d.di_nextents == 0));
1671 	trace_xfs_itruncate_finish_end(ip, new_size);
1672 	return 0;
1673 }
1674 
1675 /*
1676  * This is called when the inode's link count goes to 0.
1677  * We place the on-disk inode on a list in the AGI.  It
1678  * will be pulled from this list when the inode is freed.
1679  */
1680 int
1681 xfs_iunlink(
1682 	xfs_trans_t	*tp,
1683 	xfs_inode_t	*ip)
1684 {
1685 	xfs_mount_t	*mp;
1686 	xfs_agi_t	*agi;
1687 	xfs_dinode_t	*dip;
1688 	xfs_buf_t	*agibp;
1689 	xfs_buf_t	*ibp;
1690 	xfs_agino_t	agino;
1691 	short		bucket_index;
1692 	int		offset;
1693 	int		error;
1694 
1695 	ASSERT(ip->i_d.di_nlink == 0);
1696 	ASSERT(ip->i_d.di_mode != 0);
1697 	ASSERT(ip->i_transp == tp);
1698 
1699 	mp = tp->t_mountp;
1700 
1701 	/*
1702 	 * Get the agi buffer first.  It ensures lock ordering
1703 	 * on the list.
1704 	 */
1705 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1706 	if (error)
1707 		return error;
1708 	agi = XFS_BUF_TO_AGI(agibp);
1709 
1710 	/*
1711 	 * Get the index into the agi hash table for the
1712 	 * list this inode will go on.
1713 	 */
1714 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1715 	ASSERT(agino != 0);
1716 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1717 	ASSERT(agi->agi_unlinked[bucket_index]);
1718 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1719 
1720 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1721 		/*
1722 		 * There is already another inode in the bucket we need
1723 		 * to add ourselves to.  Add us at the front of the list.
1724 		 * Here we put the head pointer into our next pointer,
1725 		 * and then we fall through to point the head at us.
1726 		 */
1727 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1728 		if (error)
1729 			return error;
1730 
1731 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1732 		/* both on-disk, don't endian flip twice */
1733 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1734 		offset = ip->i_imap.im_boffset +
1735 			offsetof(xfs_dinode_t, di_next_unlinked);
1736 		xfs_trans_inode_buf(tp, ibp);
1737 		xfs_trans_log_buf(tp, ibp, offset,
1738 				  (offset + sizeof(xfs_agino_t) - 1));
1739 		xfs_inobp_check(mp, ibp);
1740 	}
1741 
1742 	/*
1743 	 * Point the bucket head pointer at the inode being inserted.
1744 	 */
1745 	ASSERT(agino != 0);
1746 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1747 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1748 		(sizeof(xfs_agino_t) * bucket_index);
1749 	xfs_trans_log_buf(tp, agibp, offset,
1750 			  (offset + sizeof(xfs_agino_t) - 1));
1751 	return 0;
1752 }
1753 
1754 /*
1755  * Pull the on-disk inode from the AGI unlinked list.
1756  */
1757 STATIC int
1758 xfs_iunlink_remove(
1759 	xfs_trans_t	*tp,
1760 	xfs_inode_t	*ip)
1761 {
1762 	xfs_ino_t	next_ino;
1763 	xfs_mount_t	*mp;
1764 	xfs_agi_t	*agi;
1765 	xfs_dinode_t	*dip;
1766 	xfs_buf_t	*agibp;
1767 	xfs_buf_t	*ibp;
1768 	xfs_agnumber_t	agno;
1769 	xfs_agino_t	agino;
1770 	xfs_agino_t	next_agino;
1771 	xfs_buf_t	*last_ibp;
1772 	xfs_dinode_t	*last_dip = NULL;
1773 	short		bucket_index;
1774 	int		offset, last_offset = 0;
1775 	int		error;
1776 
1777 	mp = tp->t_mountp;
1778 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1779 
1780 	/*
1781 	 * Get the agi buffer first.  It ensures lock ordering
1782 	 * on the list.
1783 	 */
1784 	error = xfs_read_agi(mp, tp, agno, &agibp);
1785 	if (error)
1786 		return error;
1787 
1788 	agi = XFS_BUF_TO_AGI(agibp);
1789 
1790 	/*
1791 	 * Get the index into the agi hash table for the
1792 	 * list this inode will go on.
1793 	 */
1794 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1795 	ASSERT(agino != 0);
1796 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1797 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1798 	ASSERT(agi->agi_unlinked[bucket_index]);
1799 
1800 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1801 		/*
1802 		 * We're at the head of the list.  Get the inode's
1803 		 * on-disk buffer to see if there is anyone after us
1804 		 * on the list.  Only modify our next pointer if it
1805 		 * is not already NULLAGINO.  This saves us the overhead
1806 		 * of dealing with the buffer when there is no need to
1807 		 * change it.
1808 		 */
1809 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1810 		if (error) {
1811 			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1812 				__func__, error);
1813 			return error;
1814 		}
1815 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1816 		ASSERT(next_agino != 0);
1817 		if (next_agino != NULLAGINO) {
1818 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1819 			offset = ip->i_imap.im_boffset +
1820 				offsetof(xfs_dinode_t, di_next_unlinked);
1821 			xfs_trans_inode_buf(tp, ibp);
1822 			xfs_trans_log_buf(tp, ibp, offset,
1823 					  (offset + sizeof(xfs_agino_t) - 1));
1824 			xfs_inobp_check(mp, ibp);
1825 		} else {
1826 			xfs_trans_brelse(tp, ibp);
1827 		}
1828 		/*
1829 		 * Point the bucket head pointer at the next inode.
1830 		 */
1831 		ASSERT(next_agino != 0);
1832 		ASSERT(next_agino != agino);
1833 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1834 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1835 			(sizeof(xfs_agino_t) * bucket_index);
1836 		xfs_trans_log_buf(tp, agibp, offset,
1837 				  (offset + sizeof(xfs_agino_t) - 1));
1838 	} else {
1839 		/*
1840 		 * We need to search the list for the inode being freed.
1841 		 */
1842 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1843 		last_ibp = NULL;
1844 		while (next_agino != agino) {
1845 			/*
1846 			 * If the last inode wasn't the one pointing to
1847 			 * us, then release its buffer since we're not
1848 			 * going to do anything with it.
1849 			 */
1850 			if (last_ibp != NULL) {
1851 				xfs_trans_brelse(tp, last_ibp);
1852 			}
1853 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1854 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1855 					    &last_ibp, &last_offset, 0);
1856 			if (error) {
1857 				xfs_warn(mp,
1858 					"%s: xfs_inotobp() returned error %d.",
1859 					__func__, error);
1860 				return error;
1861 			}
1862 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1863 			ASSERT(next_agino != NULLAGINO);
1864 			ASSERT(next_agino != 0);
1865 		}
1866 		/*
1867 		 * Now last_ibp points to the buffer previous to us on
1868 		 * the unlinked list.  Pull us from the list.
1869 		 */
1870 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1871 		if (error) {
1872 			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1873 				__func__, error);
1874 			return error;
1875 		}
1876 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1877 		ASSERT(next_agino != 0);
1878 		ASSERT(next_agino != agino);
1879 		if (next_agino != NULLAGINO) {
1880 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1881 			offset = ip->i_imap.im_boffset +
1882 				offsetof(xfs_dinode_t, di_next_unlinked);
1883 			xfs_trans_inode_buf(tp, ibp);
1884 			xfs_trans_log_buf(tp, ibp, offset,
1885 					  (offset + sizeof(xfs_agino_t) - 1));
1886 			xfs_inobp_check(mp, ibp);
1887 		} else {
1888 			xfs_trans_brelse(tp, ibp);
1889 		}
1890 		/*
1891 		 * Point the previous inode on the list to the next inode.
1892 		 */
1893 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1894 		ASSERT(next_agino != 0);
1895 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1896 		xfs_trans_inode_buf(tp, last_ibp);
1897 		xfs_trans_log_buf(tp, last_ibp, offset,
1898 				  (offset + sizeof(xfs_agino_t) - 1));
1899 		xfs_inobp_check(mp, last_ibp);
1900 	}
1901 	return 0;
1902 }
1903 
1904 /*
1905  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1906  * inodes that are in memory - they all must be marked stale and attached to
1907  * the cluster buffer.
1908  */
1909 STATIC void
1910 xfs_ifree_cluster(
1911 	xfs_inode_t	*free_ip,
1912 	xfs_trans_t	*tp,
1913 	xfs_ino_t	inum)
1914 {
1915 	xfs_mount_t		*mp = free_ip->i_mount;
1916 	int			blks_per_cluster;
1917 	int			nbufs;
1918 	int			ninodes;
1919 	int			i, j;
1920 	xfs_daddr_t		blkno;
1921 	xfs_buf_t		*bp;
1922 	xfs_inode_t		*ip;
1923 	xfs_inode_log_item_t	*iip;
1924 	xfs_log_item_t		*lip;
1925 	struct xfs_perag	*pag;
1926 
1927 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1928 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1929 		blks_per_cluster = 1;
1930 		ninodes = mp->m_sb.sb_inopblock;
1931 		nbufs = XFS_IALLOC_BLOCKS(mp);
1932 	} else {
1933 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1934 					mp->m_sb.sb_blocksize;
1935 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1936 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1937 	}
1938 
1939 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1940 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1941 					 XFS_INO_TO_AGBNO(mp, inum));
1942 
1943 		/*
1944 		 * We obtain and lock the backing buffer first in the process
1945 		 * here, as we have to ensure that any dirty inode that we
1946 		 * can't get the flush lock on is attached to the buffer.
1947 		 * If we scan the in-memory inodes first, then buffer IO can
1948 		 * complete before we get a lock on it, and hence we may fail
1949 		 * to mark all the active inodes on the buffer stale.
1950 		 */
1951 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1952 					mp->m_bsize * blks_per_cluster,
1953 					XBF_LOCK);
1954 
1955 		/*
1956 		 * Walk the inodes already attached to the buffer and mark them
1957 		 * stale. These will all have the flush locks held, so an
1958 		 * in-memory inode walk can't lock them. By marking them all
1959 		 * stale first, we will not attempt to lock them in the loop
1960 		 * below as the XFS_ISTALE flag will be set.
1961 		 */
1962 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1963 		while (lip) {
1964 			if (lip->li_type == XFS_LI_INODE) {
1965 				iip = (xfs_inode_log_item_t *)lip;
1966 				ASSERT(iip->ili_logged == 1);
1967 				lip->li_cb = xfs_istale_done;
1968 				xfs_trans_ail_copy_lsn(mp->m_ail,
1969 							&iip->ili_flush_lsn,
1970 							&iip->ili_item.li_lsn);
1971 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1972 			}
1973 			lip = lip->li_bio_list;
1974 		}
1975 
1976 
1977 		/*
1978 		 * For each inode in memory attempt to add it to the inode
1979 		 * buffer and set it up for being staled on buffer IO
1980 		 * completion.  This is safe as we've locked out tail pushing
1981 		 * and flushing by locking the buffer.
1982 		 *
1983 		 * We have already marked every inode that was part of a
1984 		 * transaction stale above, which means there is no point in
1985 		 * even trying to lock them.
1986 		 */
1987 		for (i = 0; i < ninodes; i++) {
1988 retry:
1989 			rcu_read_lock();
1990 			ip = radix_tree_lookup(&pag->pag_ici_root,
1991 					XFS_INO_TO_AGINO(mp, (inum + i)));
1992 
1993 			/* Inode not in memory, nothing to do */
1994 			if (!ip) {
1995 				rcu_read_unlock();
1996 				continue;
1997 			}
1998 
1999 			/*
2000 			 * because this is an RCU protected lookup, we could
2001 			 * find a recently freed or even reallocated inode
2002 			 * during the lookup. We need to check under the
2003 			 * i_flags_lock for a valid inode here. Skip it if it
2004 			 * is not valid, the wrong inode or stale.
2005 			 */
2006 			spin_lock(&ip->i_flags_lock);
2007 			if (ip->i_ino != inum + i ||
2008 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2009 				spin_unlock(&ip->i_flags_lock);
2010 				rcu_read_unlock();
2011 				continue;
2012 			}
2013 			spin_unlock(&ip->i_flags_lock);
2014 
2015 			/*
2016 			 * Don't try to lock/unlock the current inode, but we
2017 			 * _cannot_ skip the other inodes that we did not find
2018 			 * in the list attached to the buffer and are not
2019 			 * already marked stale. If we can't lock it, back off
2020 			 * and retry.
2021 			 */
2022 			if (ip != free_ip &&
2023 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2024 				rcu_read_unlock();
2025 				delay(1);
2026 				goto retry;
2027 			}
2028 			rcu_read_unlock();
2029 
2030 			xfs_iflock(ip);
2031 			xfs_iflags_set(ip, XFS_ISTALE);
2032 
2033 			/*
2034 			 * we don't need to attach clean inodes or those only
2035 			 * with unlogged changes (which we throw away, anyway).
2036 			 */
2037 			iip = ip->i_itemp;
2038 			if (!iip || xfs_inode_clean(ip)) {
2039 				ASSERT(ip != free_ip);
2040 				ip->i_update_core = 0;
2041 				xfs_ifunlock(ip);
2042 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2043 				continue;
2044 			}
2045 
2046 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2047 			iip->ili_format.ilf_fields = 0;
2048 			iip->ili_logged = 1;
2049 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2050 						&iip->ili_item.li_lsn);
2051 
2052 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2053 						  &iip->ili_item);
2054 
2055 			if (ip != free_ip)
2056 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2057 		}
2058 
2059 		xfs_trans_stale_inode_buf(tp, bp);
2060 		xfs_trans_binval(tp, bp);
2061 	}
2062 
2063 	xfs_perag_put(pag);
2064 }
2065 
2066 /*
2067  * This is called to return an inode to the inode free list.
2068  * The inode should already be truncated to 0 length and have
2069  * no pages associated with it.  This routine also assumes that
2070  * the inode is already a part of the transaction.
2071  *
2072  * The on-disk copy of the inode will have been added to the list
2073  * of unlinked inodes in the AGI. We need to remove the inode from
2074  * that list atomically with respect to freeing it here.
2075  */
2076 int
2077 xfs_ifree(
2078 	xfs_trans_t	*tp,
2079 	xfs_inode_t	*ip,
2080 	xfs_bmap_free_t	*flist)
2081 {
2082 	int			error;
2083 	int			delete;
2084 	xfs_ino_t		first_ino;
2085 	xfs_dinode_t    	*dip;
2086 	xfs_buf_t       	*ibp;
2087 
2088 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2089 	ASSERT(ip->i_transp == tp);
2090 	ASSERT(ip->i_d.di_nlink == 0);
2091 	ASSERT(ip->i_d.di_nextents == 0);
2092 	ASSERT(ip->i_d.di_anextents == 0);
2093 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2094 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2095 	ASSERT(ip->i_d.di_nblocks == 0);
2096 
2097 	/*
2098 	 * Pull the on-disk inode from the AGI unlinked list.
2099 	 */
2100 	error = xfs_iunlink_remove(tp, ip);
2101 	if (error != 0) {
2102 		return error;
2103 	}
2104 
2105 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2106 	if (error != 0) {
2107 		return error;
2108 	}
2109 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2110 	ip->i_d.di_flags = 0;
2111 	ip->i_d.di_dmevmask = 0;
2112 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2113 	ip->i_df.if_ext_max =
2114 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2115 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2116 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2117 	/*
2118 	 * Bump the generation count so no one will be confused
2119 	 * by reincarnations of this inode.
2120 	 */
2121 	ip->i_d.di_gen++;
2122 
2123 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2124 
2125 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2126 	if (error)
2127 		return error;
2128 
2129         /*
2130 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2131 	* from picking up this inode when it is reclaimed (its incore state
2132 	* initialzed but not flushed to disk yet). The in-core di_mode is
2133 	* already cleared  and a corresponding transaction logged.
2134 	* The hack here just synchronizes the in-core to on-disk
2135 	* di_mode value in advance before the actual inode sync to disk.
2136 	* This is OK because the inode is already unlinked and would never
2137 	* change its di_mode again for this inode generation.
2138 	* This is a temporary hack that would require a proper fix
2139 	* in the future.
2140 	*/
2141 	dip->di_mode = 0;
2142 
2143 	if (delete) {
2144 		xfs_ifree_cluster(ip, tp, first_ino);
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 /*
2151  * Reallocate the space for if_broot based on the number of records
2152  * being added or deleted as indicated in rec_diff.  Move the records
2153  * and pointers in if_broot to fit the new size.  When shrinking this
2154  * will eliminate holes between the records and pointers created by
2155  * the caller.  When growing this will create holes to be filled in
2156  * by the caller.
2157  *
2158  * The caller must not request to add more records than would fit in
2159  * the on-disk inode root.  If the if_broot is currently NULL, then
2160  * if we adding records one will be allocated.  The caller must also
2161  * not request that the number of records go below zero, although
2162  * it can go to zero.
2163  *
2164  * ip -- the inode whose if_broot area is changing
2165  * ext_diff -- the change in the number of records, positive or negative,
2166  *	 requested for the if_broot array.
2167  */
2168 void
2169 xfs_iroot_realloc(
2170 	xfs_inode_t		*ip,
2171 	int			rec_diff,
2172 	int			whichfork)
2173 {
2174 	struct xfs_mount	*mp = ip->i_mount;
2175 	int			cur_max;
2176 	xfs_ifork_t		*ifp;
2177 	struct xfs_btree_block	*new_broot;
2178 	int			new_max;
2179 	size_t			new_size;
2180 	char			*np;
2181 	char			*op;
2182 
2183 	/*
2184 	 * Handle the degenerate case quietly.
2185 	 */
2186 	if (rec_diff == 0) {
2187 		return;
2188 	}
2189 
2190 	ifp = XFS_IFORK_PTR(ip, whichfork);
2191 	if (rec_diff > 0) {
2192 		/*
2193 		 * If there wasn't any memory allocated before, just
2194 		 * allocate it now and get out.
2195 		 */
2196 		if (ifp->if_broot_bytes == 0) {
2197 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2198 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2199 			ifp->if_broot_bytes = (int)new_size;
2200 			return;
2201 		}
2202 
2203 		/*
2204 		 * If there is already an existing if_broot, then we need
2205 		 * to realloc() it and shift the pointers to their new
2206 		 * location.  The records don't change location because
2207 		 * they are kept butted up against the btree block header.
2208 		 */
2209 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2210 		new_max = cur_max + rec_diff;
2211 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2212 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2213 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2214 				KM_SLEEP | KM_NOFS);
2215 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2216 						     ifp->if_broot_bytes);
2217 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2218 						     (int)new_size);
2219 		ifp->if_broot_bytes = (int)new_size;
2220 		ASSERT(ifp->if_broot_bytes <=
2221 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2222 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2223 		return;
2224 	}
2225 
2226 	/*
2227 	 * rec_diff is less than 0.  In this case, we are shrinking the
2228 	 * if_broot buffer.  It must already exist.  If we go to zero
2229 	 * records, just get rid of the root and clear the status bit.
2230 	 */
2231 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2232 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2233 	new_max = cur_max + rec_diff;
2234 	ASSERT(new_max >= 0);
2235 	if (new_max > 0)
2236 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2237 	else
2238 		new_size = 0;
2239 	if (new_size > 0) {
2240 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2241 		/*
2242 		 * First copy over the btree block header.
2243 		 */
2244 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2245 	} else {
2246 		new_broot = NULL;
2247 		ifp->if_flags &= ~XFS_IFBROOT;
2248 	}
2249 
2250 	/*
2251 	 * Only copy the records and pointers if there are any.
2252 	 */
2253 	if (new_max > 0) {
2254 		/*
2255 		 * First copy the records.
2256 		 */
2257 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2258 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2259 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2260 
2261 		/*
2262 		 * Then copy the pointers.
2263 		 */
2264 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2265 						     ifp->if_broot_bytes);
2266 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2267 						     (int)new_size);
2268 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2269 	}
2270 	kmem_free(ifp->if_broot);
2271 	ifp->if_broot = new_broot;
2272 	ifp->if_broot_bytes = (int)new_size;
2273 	ASSERT(ifp->if_broot_bytes <=
2274 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2275 	return;
2276 }
2277 
2278 
2279 /*
2280  * This is called when the amount of space needed for if_data
2281  * is increased or decreased.  The change in size is indicated by
2282  * the number of bytes that need to be added or deleted in the
2283  * byte_diff parameter.
2284  *
2285  * If the amount of space needed has decreased below the size of the
2286  * inline buffer, then switch to using the inline buffer.  Otherwise,
2287  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2288  * to what is needed.
2289  *
2290  * ip -- the inode whose if_data area is changing
2291  * byte_diff -- the change in the number of bytes, positive or negative,
2292  *	 requested for the if_data array.
2293  */
2294 void
2295 xfs_idata_realloc(
2296 	xfs_inode_t	*ip,
2297 	int		byte_diff,
2298 	int		whichfork)
2299 {
2300 	xfs_ifork_t	*ifp;
2301 	int		new_size;
2302 	int		real_size;
2303 
2304 	if (byte_diff == 0) {
2305 		return;
2306 	}
2307 
2308 	ifp = XFS_IFORK_PTR(ip, whichfork);
2309 	new_size = (int)ifp->if_bytes + byte_diff;
2310 	ASSERT(new_size >= 0);
2311 
2312 	if (new_size == 0) {
2313 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2314 			kmem_free(ifp->if_u1.if_data);
2315 		}
2316 		ifp->if_u1.if_data = NULL;
2317 		real_size = 0;
2318 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2319 		/*
2320 		 * If the valid extents/data can fit in if_inline_ext/data,
2321 		 * copy them from the malloc'd vector and free it.
2322 		 */
2323 		if (ifp->if_u1.if_data == NULL) {
2324 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2325 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2326 			ASSERT(ifp->if_real_bytes != 0);
2327 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2328 			      new_size);
2329 			kmem_free(ifp->if_u1.if_data);
2330 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2331 		}
2332 		real_size = 0;
2333 	} else {
2334 		/*
2335 		 * Stuck with malloc/realloc.
2336 		 * For inline data, the underlying buffer must be
2337 		 * a multiple of 4 bytes in size so that it can be
2338 		 * logged and stay on word boundaries.  We enforce
2339 		 * that here.
2340 		 */
2341 		real_size = roundup(new_size, 4);
2342 		if (ifp->if_u1.if_data == NULL) {
2343 			ASSERT(ifp->if_real_bytes == 0);
2344 			ifp->if_u1.if_data = kmem_alloc(real_size,
2345 							KM_SLEEP | KM_NOFS);
2346 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2347 			/*
2348 			 * Only do the realloc if the underlying size
2349 			 * is really changing.
2350 			 */
2351 			if (ifp->if_real_bytes != real_size) {
2352 				ifp->if_u1.if_data =
2353 					kmem_realloc(ifp->if_u1.if_data,
2354 							real_size,
2355 							ifp->if_real_bytes,
2356 							KM_SLEEP | KM_NOFS);
2357 			}
2358 		} else {
2359 			ASSERT(ifp->if_real_bytes == 0);
2360 			ifp->if_u1.if_data = kmem_alloc(real_size,
2361 							KM_SLEEP | KM_NOFS);
2362 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2363 				ifp->if_bytes);
2364 		}
2365 	}
2366 	ifp->if_real_bytes = real_size;
2367 	ifp->if_bytes = new_size;
2368 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2369 }
2370 
2371 void
2372 xfs_idestroy_fork(
2373 	xfs_inode_t	*ip,
2374 	int		whichfork)
2375 {
2376 	xfs_ifork_t	*ifp;
2377 
2378 	ifp = XFS_IFORK_PTR(ip, whichfork);
2379 	if (ifp->if_broot != NULL) {
2380 		kmem_free(ifp->if_broot);
2381 		ifp->if_broot = NULL;
2382 	}
2383 
2384 	/*
2385 	 * If the format is local, then we can't have an extents
2386 	 * array so just look for an inline data array.  If we're
2387 	 * not local then we may or may not have an extents list,
2388 	 * so check and free it up if we do.
2389 	 */
2390 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2391 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2392 		    (ifp->if_u1.if_data != NULL)) {
2393 			ASSERT(ifp->if_real_bytes != 0);
2394 			kmem_free(ifp->if_u1.if_data);
2395 			ifp->if_u1.if_data = NULL;
2396 			ifp->if_real_bytes = 0;
2397 		}
2398 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2399 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2400 		    ((ifp->if_u1.if_extents != NULL) &&
2401 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2402 		ASSERT(ifp->if_real_bytes != 0);
2403 		xfs_iext_destroy(ifp);
2404 	}
2405 	ASSERT(ifp->if_u1.if_extents == NULL ||
2406 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2407 	ASSERT(ifp->if_real_bytes == 0);
2408 	if (whichfork == XFS_ATTR_FORK) {
2409 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2410 		ip->i_afp = NULL;
2411 	}
2412 }
2413 
2414 /*
2415  * This is called to unpin an inode.  The caller must have the inode locked
2416  * in at least shared mode so that the buffer cannot be subsequently pinned
2417  * once someone is waiting for it to be unpinned.
2418  */
2419 static void
2420 xfs_iunpin_nowait(
2421 	struct xfs_inode	*ip)
2422 {
2423 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2424 
2425 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2426 
2427 	/* Give the log a push to start the unpinning I/O */
2428 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2429 
2430 }
2431 
2432 void
2433 xfs_iunpin_wait(
2434 	struct xfs_inode	*ip)
2435 {
2436 	if (xfs_ipincount(ip)) {
2437 		xfs_iunpin_nowait(ip);
2438 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2439 	}
2440 }
2441 
2442 /*
2443  * xfs_iextents_copy()
2444  *
2445  * This is called to copy the REAL extents (as opposed to the delayed
2446  * allocation extents) from the inode into the given buffer.  It
2447  * returns the number of bytes copied into the buffer.
2448  *
2449  * If there are no delayed allocation extents, then we can just
2450  * memcpy() the extents into the buffer.  Otherwise, we need to
2451  * examine each extent in turn and skip those which are delayed.
2452  */
2453 int
2454 xfs_iextents_copy(
2455 	xfs_inode_t		*ip,
2456 	xfs_bmbt_rec_t		*dp,
2457 	int			whichfork)
2458 {
2459 	int			copied;
2460 	int			i;
2461 	xfs_ifork_t		*ifp;
2462 	int			nrecs;
2463 	xfs_fsblock_t		start_block;
2464 
2465 	ifp = XFS_IFORK_PTR(ip, whichfork);
2466 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2467 	ASSERT(ifp->if_bytes > 0);
2468 
2469 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2470 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2471 	ASSERT(nrecs > 0);
2472 
2473 	/*
2474 	 * There are some delayed allocation extents in the
2475 	 * inode, so copy the extents one at a time and skip
2476 	 * the delayed ones.  There must be at least one
2477 	 * non-delayed extent.
2478 	 */
2479 	copied = 0;
2480 	for (i = 0; i < nrecs; i++) {
2481 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2482 		start_block = xfs_bmbt_get_startblock(ep);
2483 		if (isnullstartblock(start_block)) {
2484 			/*
2485 			 * It's a delayed allocation extent, so skip it.
2486 			 */
2487 			continue;
2488 		}
2489 
2490 		/* Translate to on disk format */
2491 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2492 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2493 		dp++;
2494 		copied++;
2495 	}
2496 	ASSERT(copied != 0);
2497 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2498 
2499 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2500 }
2501 
2502 /*
2503  * Each of the following cases stores data into the same region
2504  * of the on-disk inode, so only one of them can be valid at
2505  * any given time. While it is possible to have conflicting formats
2506  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2507  * in EXTENTS format, this can only happen when the fork has
2508  * changed formats after being modified but before being flushed.
2509  * In these cases, the format always takes precedence, because the
2510  * format indicates the current state of the fork.
2511  */
2512 /*ARGSUSED*/
2513 STATIC void
2514 xfs_iflush_fork(
2515 	xfs_inode_t		*ip,
2516 	xfs_dinode_t		*dip,
2517 	xfs_inode_log_item_t	*iip,
2518 	int			whichfork,
2519 	xfs_buf_t		*bp)
2520 {
2521 	char			*cp;
2522 	xfs_ifork_t		*ifp;
2523 	xfs_mount_t		*mp;
2524 #ifdef XFS_TRANS_DEBUG
2525 	int			first;
2526 #endif
2527 	static const short	brootflag[2] =
2528 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2529 	static const short	dataflag[2] =
2530 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2531 	static const short	extflag[2] =
2532 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2533 
2534 	if (!iip)
2535 		return;
2536 	ifp = XFS_IFORK_PTR(ip, whichfork);
2537 	/*
2538 	 * This can happen if we gave up in iformat in an error path,
2539 	 * for the attribute fork.
2540 	 */
2541 	if (!ifp) {
2542 		ASSERT(whichfork == XFS_ATTR_FORK);
2543 		return;
2544 	}
2545 	cp = XFS_DFORK_PTR(dip, whichfork);
2546 	mp = ip->i_mount;
2547 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2548 	case XFS_DINODE_FMT_LOCAL:
2549 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2550 		    (ifp->if_bytes > 0)) {
2551 			ASSERT(ifp->if_u1.if_data != NULL);
2552 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2553 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2554 		}
2555 		break;
2556 
2557 	case XFS_DINODE_FMT_EXTENTS:
2558 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2559 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2560 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2561 		    (ifp->if_bytes > 0)) {
2562 			ASSERT(xfs_iext_get_ext(ifp, 0));
2563 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2564 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2565 				whichfork);
2566 		}
2567 		break;
2568 
2569 	case XFS_DINODE_FMT_BTREE:
2570 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2571 		    (ifp->if_broot_bytes > 0)) {
2572 			ASSERT(ifp->if_broot != NULL);
2573 			ASSERT(ifp->if_broot_bytes <=
2574 			       (XFS_IFORK_SIZE(ip, whichfork) +
2575 				XFS_BROOT_SIZE_ADJ));
2576 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2577 				(xfs_bmdr_block_t *)cp,
2578 				XFS_DFORK_SIZE(dip, mp, whichfork));
2579 		}
2580 		break;
2581 
2582 	case XFS_DINODE_FMT_DEV:
2583 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2584 			ASSERT(whichfork == XFS_DATA_FORK);
2585 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2586 		}
2587 		break;
2588 
2589 	case XFS_DINODE_FMT_UUID:
2590 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2591 			ASSERT(whichfork == XFS_DATA_FORK);
2592 			memcpy(XFS_DFORK_DPTR(dip),
2593 			       &ip->i_df.if_u2.if_uuid,
2594 			       sizeof(uuid_t));
2595 		}
2596 		break;
2597 
2598 	default:
2599 		ASSERT(0);
2600 		break;
2601 	}
2602 }
2603 
2604 STATIC int
2605 xfs_iflush_cluster(
2606 	xfs_inode_t	*ip,
2607 	xfs_buf_t	*bp)
2608 {
2609 	xfs_mount_t		*mp = ip->i_mount;
2610 	struct xfs_perag	*pag;
2611 	unsigned long		first_index, mask;
2612 	unsigned long		inodes_per_cluster;
2613 	int			ilist_size;
2614 	xfs_inode_t		**ilist;
2615 	xfs_inode_t		*iq;
2616 	int			nr_found;
2617 	int			clcount = 0;
2618 	int			bufwasdelwri;
2619 	int			i;
2620 
2621 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2622 
2623 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2624 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2625 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2626 	if (!ilist)
2627 		goto out_put;
2628 
2629 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2630 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2631 	rcu_read_lock();
2632 	/* really need a gang lookup range call here */
2633 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2634 					first_index, inodes_per_cluster);
2635 	if (nr_found == 0)
2636 		goto out_free;
2637 
2638 	for (i = 0; i < nr_found; i++) {
2639 		iq = ilist[i];
2640 		if (iq == ip)
2641 			continue;
2642 
2643 		/*
2644 		 * because this is an RCU protected lookup, we could find a
2645 		 * recently freed or even reallocated inode during the lookup.
2646 		 * We need to check under the i_flags_lock for a valid inode
2647 		 * here. Skip it if it is not valid or the wrong inode.
2648 		 */
2649 		spin_lock(&ip->i_flags_lock);
2650 		if (!ip->i_ino ||
2651 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2652 			spin_unlock(&ip->i_flags_lock);
2653 			continue;
2654 		}
2655 		spin_unlock(&ip->i_flags_lock);
2656 
2657 		/*
2658 		 * Do an un-protected check to see if the inode is dirty and
2659 		 * is a candidate for flushing.  These checks will be repeated
2660 		 * later after the appropriate locks are acquired.
2661 		 */
2662 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2663 			continue;
2664 
2665 		/*
2666 		 * Try to get locks.  If any are unavailable or it is pinned,
2667 		 * then this inode cannot be flushed and is skipped.
2668 		 */
2669 
2670 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2671 			continue;
2672 		if (!xfs_iflock_nowait(iq)) {
2673 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2674 			continue;
2675 		}
2676 		if (xfs_ipincount(iq)) {
2677 			xfs_ifunlock(iq);
2678 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2679 			continue;
2680 		}
2681 
2682 		/*
2683 		 * arriving here means that this inode can be flushed.  First
2684 		 * re-check that it's dirty before flushing.
2685 		 */
2686 		if (!xfs_inode_clean(iq)) {
2687 			int	error;
2688 			error = xfs_iflush_int(iq, bp);
2689 			if (error) {
2690 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2691 				goto cluster_corrupt_out;
2692 			}
2693 			clcount++;
2694 		} else {
2695 			xfs_ifunlock(iq);
2696 		}
2697 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2698 	}
2699 
2700 	if (clcount) {
2701 		XFS_STATS_INC(xs_icluster_flushcnt);
2702 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2703 	}
2704 
2705 out_free:
2706 	rcu_read_unlock();
2707 	kmem_free(ilist);
2708 out_put:
2709 	xfs_perag_put(pag);
2710 	return 0;
2711 
2712 
2713 cluster_corrupt_out:
2714 	/*
2715 	 * Corruption detected in the clustering loop.  Invalidate the
2716 	 * inode buffer and shut down the filesystem.
2717 	 */
2718 	rcu_read_unlock();
2719 	/*
2720 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2721 	 * brelse can handle it with no problems.  If not, shut down the
2722 	 * filesystem before releasing the buffer.
2723 	 */
2724 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2725 	if (bufwasdelwri)
2726 		xfs_buf_relse(bp);
2727 
2728 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2729 
2730 	if (!bufwasdelwri) {
2731 		/*
2732 		 * Just like incore_relse: if we have b_iodone functions,
2733 		 * mark the buffer as an error and call them.  Otherwise
2734 		 * mark it as stale and brelse.
2735 		 */
2736 		if (XFS_BUF_IODONE_FUNC(bp)) {
2737 			XFS_BUF_UNDONE(bp);
2738 			XFS_BUF_STALE(bp);
2739 			XFS_BUF_ERROR(bp,EIO);
2740 			xfs_buf_ioend(bp, 0);
2741 		} else {
2742 			XFS_BUF_STALE(bp);
2743 			xfs_buf_relse(bp);
2744 		}
2745 	}
2746 
2747 	/*
2748 	 * Unlocks the flush lock
2749 	 */
2750 	xfs_iflush_abort(iq);
2751 	kmem_free(ilist);
2752 	xfs_perag_put(pag);
2753 	return XFS_ERROR(EFSCORRUPTED);
2754 }
2755 
2756 /*
2757  * xfs_iflush() will write a modified inode's changes out to the
2758  * inode's on disk home.  The caller must have the inode lock held
2759  * in at least shared mode and the inode flush completion must be
2760  * active as well.  The inode lock will still be held upon return from
2761  * the call and the caller is free to unlock it.
2762  * The inode flush will be completed when the inode reaches the disk.
2763  * The flags indicate how the inode's buffer should be written out.
2764  */
2765 int
2766 xfs_iflush(
2767 	xfs_inode_t		*ip,
2768 	uint			flags)
2769 {
2770 	xfs_inode_log_item_t	*iip;
2771 	xfs_buf_t		*bp;
2772 	xfs_dinode_t		*dip;
2773 	xfs_mount_t		*mp;
2774 	int			error;
2775 
2776 	XFS_STATS_INC(xs_iflush_count);
2777 
2778 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2779 	ASSERT(!completion_done(&ip->i_flush));
2780 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2781 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2782 
2783 	iip = ip->i_itemp;
2784 	mp = ip->i_mount;
2785 
2786 	/*
2787 	 * We can't flush the inode until it is unpinned, so wait for it if we
2788 	 * are allowed to block.  We know no one new can pin it, because we are
2789 	 * holding the inode lock shared and you need to hold it exclusively to
2790 	 * pin the inode.
2791 	 *
2792 	 * If we are not allowed to block, force the log out asynchronously so
2793 	 * that when we come back the inode will be unpinned. If other inodes
2794 	 * in the same cluster are dirty, they will probably write the inode
2795 	 * out for us if they occur after the log force completes.
2796 	 */
2797 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2798 		xfs_iunpin_nowait(ip);
2799 		xfs_ifunlock(ip);
2800 		return EAGAIN;
2801 	}
2802 	xfs_iunpin_wait(ip);
2803 
2804 	/*
2805 	 * For stale inodes we cannot rely on the backing buffer remaining
2806 	 * stale in cache for the remaining life of the stale inode and so
2807 	 * xfs_itobp() below may give us a buffer that no longer contains
2808 	 * inodes below. We have to check this after ensuring the inode is
2809 	 * unpinned so that it is safe to reclaim the stale inode after the
2810 	 * flush call.
2811 	 */
2812 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2813 		xfs_ifunlock(ip);
2814 		return 0;
2815 	}
2816 
2817 	/*
2818 	 * This may have been unpinned because the filesystem is shutting
2819 	 * down forcibly. If that's the case we must not write this inode
2820 	 * to disk, because the log record didn't make it to disk!
2821 	 */
2822 	if (XFS_FORCED_SHUTDOWN(mp)) {
2823 		ip->i_update_core = 0;
2824 		if (iip)
2825 			iip->ili_format.ilf_fields = 0;
2826 		xfs_ifunlock(ip);
2827 		return XFS_ERROR(EIO);
2828 	}
2829 
2830 	/*
2831 	 * Get the buffer containing the on-disk inode.
2832 	 */
2833 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2834 				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2835 	if (error || !bp) {
2836 		xfs_ifunlock(ip);
2837 		return error;
2838 	}
2839 
2840 	/*
2841 	 * First flush out the inode that xfs_iflush was called with.
2842 	 */
2843 	error = xfs_iflush_int(ip, bp);
2844 	if (error)
2845 		goto corrupt_out;
2846 
2847 	/*
2848 	 * If the buffer is pinned then push on the log now so we won't
2849 	 * get stuck waiting in the write for too long.
2850 	 */
2851 	if (XFS_BUF_ISPINNED(bp))
2852 		xfs_log_force(mp, 0);
2853 
2854 	/*
2855 	 * inode clustering:
2856 	 * see if other inodes can be gathered into this write
2857 	 */
2858 	error = xfs_iflush_cluster(ip, bp);
2859 	if (error)
2860 		goto cluster_corrupt_out;
2861 
2862 	if (flags & SYNC_WAIT)
2863 		error = xfs_bwrite(mp, bp);
2864 	else
2865 		xfs_bdwrite(mp, bp);
2866 	return error;
2867 
2868 corrupt_out:
2869 	xfs_buf_relse(bp);
2870 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2871 cluster_corrupt_out:
2872 	/*
2873 	 * Unlocks the flush lock
2874 	 */
2875 	xfs_iflush_abort(ip);
2876 	return XFS_ERROR(EFSCORRUPTED);
2877 }
2878 
2879 
2880 STATIC int
2881 xfs_iflush_int(
2882 	xfs_inode_t		*ip,
2883 	xfs_buf_t		*bp)
2884 {
2885 	xfs_inode_log_item_t	*iip;
2886 	xfs_dinode_t		*dip;
2887 	xfs_mount_t		*mp;
2888 #ifdef XFS_TRANS_DEBUG
2889 	int			first;
2890 #endif
2891 
2892 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2893 	ASSERT(!completion_done(&ip->i_flush));
2894 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2895 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2896 
2897 	iip = ip->i_itemp;
2898 	mp = ip->i_mount;
2899 
2900 	/* set *dip = inode's place in the buffer */
2901 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2902 
2903 	/*
2904 	 * Clear i_update_core before copying out the data.
2905 	 * This is for coordination with our timestamp updates
2906 	 * that don't hold the inode lock. They will always
2907 	 * update the timestamps BEFORE setting i_update_core,
2908 	 * so if we clear i_update_core after they set it we
2909 	 * are guaranteed to see their updates to the timestamps.
2910 	 * I believe that this depends on strongly ordered memory
2911 	 * semantics, but we have that.  We use the SYNCHRONIZE
2912 	 * macro to make sure that the compiler does not reorder
2913 	 * the i_update_core access below the data copy below.
2914 	 */
2915 	ip->i_update_core = 0;
2916 	SYNCHRONIZE();
2917 
2918 	/*
2919 	 * Make sure to get the latest timestamps from the Linux inode.
2920 	 */
2921 	xfs_synchronize_times(ip);
2922 
2923 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2924 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2925 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2926 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2927 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2928 		goto corrupt_out;
2929 	}
2930 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2931 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2932 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2933 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2934 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2935 		goto corrupt_out;
2936 	}
2937 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2938 		if (XFS_TEST_ERROR(
2939 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2940 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2941 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2942 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2943 				"%s: Bad regular inode %Lu, ptr 0x%p",
2944 				__func__, ip->i_ino, ip);
2945 			goto corrupt_out;
2946 		}
2947 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2948 		if (XFS_TEST_ERROR(
2949 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2950 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2951 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2952 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2953 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2954 				"%s: Bad directory inode %Lu, ptr 0x%p",
2955 				__func__, ip->i_ino, ip);
2956 			goto corrupt_out;
2957 		}
2958 	}
2959 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2960 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2961 				XFS_RANDOM_IFLUSH_5)) {
2962 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2963 			"%s: detected corrupt incore inode %Lu, "
2964 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2965 			__func__, ip->i_ino,
2966 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2967 			ip->i_d.di_nblocks, ip);
2968 		goto corrupt_out;
2969 	}
2970 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2971 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2972 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2973 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2974 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2975 		goto corrupt_out;
2976 	}
2977 	/*
2978 	 * bump the flush iteration count, used to detect flushes which
2979 	 * postdate a log record during recovery.
2980 	 */
2981 
2982 	ip->i_d.di_flushiter++;
2983 
2984 	/*
2985 	 * Copy the dirty parts of the inode into the on-disk
2986 	 * inode.  We always copy out the core of the inode,
2987 	 * because if the inode is dirty at all the core must
2988 	 * be.
2989 	 */
2990 	xfs_dinode_to_disk(dip, &ip->i_d);
2991 
2992 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2993 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2994 		ip->i_d.di_flushiter = 0;
2995 
2996 	/*
2997 	 * If this is really an old format inode and the superblock version
2998 	 * has not been updated to support only new format inodes, then
2999 	 * convert back to the old inode format.  If the superblock version
3000 	 * has been updated, then make the conversion permanent.
3001 	 */
3002 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3003 	if (ip->i_d.di_version == 1) {
3004 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3005 			/*
3006 			 * Convert it back.
3007 			 */
3008 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3009 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3010 		} else {
3011 			/*
3012 			 * The superblock version has already been bumped,
3013 			 * so just make the conversion to the new inode
3014 			 * format permanent.
3015 			 */
3016 			ip->i_d.di_version = 2;
3017 			dip->di_version = 2;
3018 			ip->i_d.di_onlink = 0;
3019 			dip->di_onlink = 0;
3020 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3021 			memset(&(dip->di_pad[0]), 0,
3022 			      sizeof(dip->di_pad));
3023 			ASSERT(xfs_get_projid(ip) == 0);
3024 		}
3025 	}
3026 
3027 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3028 	if (XFS_IFORK_Q(ip))
3029 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3030 	xfs_inobp_check(mp, bp);
3031 
3032 	/*
3033 	 * We've recorded everything logged in the inode, so we'd
3034 	 * like to clear the ilf_fields bits so we don't log and
3035 	 * flush things unnecessarily.  However, we can't stop
3036 	 * logging all this information until the data we've copied
3037 	 * into the disk buffer is written to disk.  If we did we might
3038 	 * overwrite the copy of the inode in the log with all the
3039 	 * data after re-logging only part of it, and in the face of
3040 	 * a crash we wouldn't have all the data we need to recover.
3041 	 *
3042 	 * What we do is move the bits to the ili_last_fields field.
3043 	 * When logging the inode, these bits are moved back to the
3044 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3045 	 * clear ili_last_fields, since we know that the information
3046 	 * those bits represent is permanently on disk.  As long as
3047 	 * the flush completes before the inode is logged again, then
3048 	 * both ilf_fields and ili_last_fields will be cleared.
3049 	 *
3050 	 * We can play with the ilf_fields bits here, because the inode
3051 	 * lock must be held exclusively in order to set bits there
3052 	 * and the flush lock protects the ili_last_fields bits.
3053 	 * Set ili_logged so the flush done
3054 	 * routine can tell whether or not to look in the AIL.
3055 	 * Also, store the current LSN of the inode so that we can tell
3056 	 * whether the item has moved in the AIL from xfs_iflush_done().
3057 	 * In order to read the lsn we need the AIL lock, because
3058 	 * it is a 64 bit value that cannot be read atomically.
3059 	 */
3060 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3061 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3062 		iip->ili_format.ilf_fields = 0;
3063 		iip->ili_logged = 1;
3064 
3065 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3066 					&iip->ili_item.li_lsn);
3067 
3068 		/*
3069 		 * Attach the function xfs_iflush_done to the inode's
3070 		 * buffer.  This will remove the inode from the AIL
3071 		 * and unlock the inode's flush lock when the inode is
3072 		 * completely written to disk.
3073 		 */
3074 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3075 
3076 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3077 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3078 	} else {
3079 		/*
3080 		 * We're flushing an inode which is not in the AIL and has
3081 		 * not been logged but has i_update_core set.  For this
3082 		 * case we can use a B_DELWRI flush and immediately drop
3083 		 * the inode flush lock because we can avoid the whole
3084 		 * AIL state thing.  It's OK to drop the flush lock now,
3085 		 * because we've already locked the buffer and to do anything
3086 		 * you really need both.
3087 		 */
3088 		if (iip != NULL) {
3089 			ASSERT(iip->ili_logged == 0);
3090 			ASSERT(iip->ili_last_fields == 0);
3091 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3092 		}
3093 		xfs_ifunlock(ip);
3094 	}
3095 
3096 	return 0;
3097 
3098 corrupt_out:
3099 	return XFS_ERROR(EFSCORRUPTED);
3100 }
3101 
3102 /*
3103  * Return a pointer to the extent record at file index idx.
3104  */
3105 xfs_bmbt_rec_host_t *
3106 xfs_iext_get_ext(
3107 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3108 	xfs_extnum_t	idx)		/* index of target extent */
3109 {
3110 	ASSERT(idx >= 0);
3111 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3112 
3113 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3114 		return ifp->if_u1.if_ext_irec->er_extbuf;
3115 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3116 		xfs_ext_irec_t	*erp;		/* irec pointer */
3117 		int		erp_idx = 0;	/* irec index */
3118 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3119 
3120 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3121 		return &erp->er_extbuf[page_idx];
3122 	} else if (ifp->if_bytes) {
3123 		return &ifp->if_u1.if_extents[idx];
3124 	} else {
3125 		return NULL;
3126 	}
3127 }
3128 
3129 /*
3130  * Insert new item(s) into the extent records for incore inode
3131  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3132  */
3133 void
3134 xfs_iext_insert(
3135 	xfs_inode_t	*ip,		/* incore inode pointer */
3136 	xfs_extnum_t	idx,		/* starting index of new items */
3137 	xfs_extnum_t	count,		/* number of inserted items */
3138 	xfs_bmbt_irec_t	*new,		/* items to insert */
3139 	int		state)		/* type of extent conversion */
3140 {
3141 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3142 	xfs_extnum_t	i;		/* extent record index */
3143 
3144 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3145 
3146 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3147 	xfs_iext_add(ifp, idx, count);
3148 	for (i = idx; i < idx + count; i++, new++)
3149 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3150 }
3151 
3152 /*
3153  * This is called when the amount of space required for incore file
3154  * extents needs to be increased. The ext_diff parameter stores the
3155  * number of new extents being added and the idx parameter contains
3156  * the extent index where the new extents will be added. If the new
3157  * extents are being appended, then we just need to (re)allocate and
3158  * initialize the space. Otherwise, if the new extents are being
3159  * inserted into the middle of the existing entries, a bit more work
3160  * is required to make room for the new extents to be inserted. The
3161  * caller is responsible for filling in the new extent entries upon
3162  * return.
3163  */
3164 void
3165 xfs_iext_add(
3166 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3167 	xfs_extnum_t	idx,		/* index to begin adding exts */
3168 	int		ext_diff)	/* number of extents to add */
3169 {
3170 	int		byte_diff;	/* new bytes being added */
3171 	int		new_size;	/* size of extents after adding */
3172 	xfs_extnum_t	nextents;	/* number of extents in file */
3173 
3174 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3175 	ASSERT((idx >= 0) && (idx <= nextents));
3176 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3177 	new_size = ifp->if_bytes + byte_diff;
3178 	/*
3179 	 * If the new number of extents (nextents + ext_diff)
3180 	 * fits inside the inode, then continue to use the inline
3181 	 * extent buffer.
3182 	 */
3183 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3184 		if (idx < nextents) {
3185 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3186 				&ifp->if_u2.if_inline_ext[idx],
3187 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3188 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3189 		}
3190 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3191 		ifp->if_real_bytes = 0;
3192 	}
3193 	/*
3194 	 * Otherwise use a linear (direct) extent list.
3195 	 * If the extents are currently inside the inode,
3196 	 * xfs_iext_realloc_direct will switch us from
3197 	 * inline to direct extent allocation mode.
3198 	 */
3199 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3200 		xfs_iext_realloc_direct(ifp, new_size);
3201 		if (idx < nextents) {
3202 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3203 				&ifp->if_u1.if_extents[idx],
3204 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3205 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3206 		}
3207 	}
3208 	/* Indirection array */
3209 	else {
3210 		xfs_ext_irec_t	*erp;
3211 		int		erp_idx = 0;
3212 		int		page_idx = idx;
3213 
3214 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3215 		if (ifp->if_flags & XFS_IFEXTIREC) {
3216 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3217 		} else {
3218 			xfs_iext_irec_init(ifp);
3219 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3220 			erp = ifp->if_u1.if_ext_irec;
3221 		}
3222 		/* Extents fit in target extent page */
3223 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3224 			if (page_idx < erp->er_extcount) {
3225 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3226 					&erp->er_extbuf[page_idx],
3227 					(erp->er_extcount - page_idx) *
3228 					sizeof(xfs_bmbt_rec_t));
3229 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3230 			}
3231 			erp->er_extcount += ext_diff;
3232 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3233 		}
3234 		/* Insert a new extent page */
3235 		else if (erp) {
3236 			xfs_iext_add_indirect_multi(ifp,
3237 				erp_idx, page_idx, ext_diff);
3238 		}
3239 		/*
3240 		 * If extent(s) are being appended to the last page in
3241 		 * the indirection array and the new extent(s) don't fit
3242 		 * in the page, then erp is NULL and erp_idx is set to
3243 		 * the next index needed in the indirection array.
3244 		 */
3245 		else {
3246 			int	count = ext_diff;
3247 
3248 			while (count) {
3249 				erp = xfs_iext_irec_new(ifp, erp_idx);
3250 				erp->er_extcount = count;
3251 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3252 				if (count) {
3253 					erp_idx++;
3254 				}
3255 			}
3256 		}
3257 	}
3258 	ifp->if_bytes = new_size;
3259 }
3260 
3261 /*
3262  * This is called when incore extents are being added to the indirection
3263  * array and the new extents do not fit in the target extent list. The
3264  * erp_idx parameter contains the irec index for the target extent list
3265  * in the indirection array, and the idx parameter contains the extent
3266  * index within the list. The number of extents being added is stored
3267  * in the count parameter.
3268  *
3269  *    |-------|   |-------|
3270  *    |       |   |       |    idx - number of extents before idx
3271  *    |  idx  |   | count |
3272  *    |       |   |       |    count - number of extents being inserted at idx
3273  *    |-------|   |-------|
3274  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3275  *    |-------|   |-------|
3276  */
3277 void
3278 xfs_iext_add_indirect_multi(
3279 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3280 	int		erp_idx,		/* target extent irec index */
3281 	xfs_extnum_t	idx,			/* index within target list */
3282 	int		count)			/* new extents being added */
3283 {
3284 	int		byte_diff;		/* new bytes being added */
3285 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3286 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3287 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3288 	xfs_extnum_t	nex2;			/* extents after idx + count */
3289 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3290 	int		nlists;			/* number of irec's (lists) */
3291 
3292 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3293 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3294 	nex2 = erp->er_extcount - idx;
3295 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3296 
3297 	/*
3298 	 * Save second part of target extent list
3299 	 * (all extents past */
3300 	if (nex2) {
3301 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3302 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3303 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3304 		erp->er_extcount -= nex2;
3305 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3306 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3307 	}
3308 
3309 	/*
3310 	 * Add the new extents to the end of the target
3311 	 * list, then allocate new irec record(s) and
3312 	 * extent buffer(s) as needed to store the rest
3313 	 * of the new extents.
3314 	 */
3315 	ext_cnt = count;
3316 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3317 	if (ext_diff) {
3318 		erp->er_extcount += ext_diff;
3319 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3320 		ext_cnt -= ext_diff;
3321 	}
3322 	while (ext_cnt) {
3323 		erp_idx++;
3324 		erp = xfs_iext_irec_new(ifp, erp_idx);
3325 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3326 		erp->er_extcount = ext_diff;
3327 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3328 		ext_cnt -= ext_diff;
3329 	}
3330 
3331 	/* Add nex2 extents back to indirection array */
3332 	if (nex2) {
3333 		xfs_extnum_t	ext_avail;
3334 		int		i;
3335 
3336 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3337 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3338 		i = 0;
3339 		/*
3340 		 * If nex2 extents fit in the current page, append
3341 		 * nex2_ep after the new extents.
3342 		 */
3343 		if (nex2 <= ext_avail) {
3344 			i = erp->er_extcount;
3345 		}
3346 		/*
3347 		 * Otherwise, check if space is available in the
3348 		 * next page.
3349 		 */
3350 		else if ((erp_idx < nlists - 1) &&
3351 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3352 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3353 			erp_idx++;
3354 			erp++;
3355 			/* Create a hole for nex2 extents */
3356 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3357 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3358 		}
3359 		/*
3360 		 * Final choice, create a new extent page for
3361 		 * nex2 extents.
3362 		 */
3363 		else {
3364 			erp_idx++;
3365 			erp = xfs_iext_irec_new(ifp, erp_idx);
3366 		}
3367 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3368 		kmem_free(nex2_ep);
3369 		erp->er_extcount += nex2;
3370 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3371 	}
3372 }
3373 
3374 /*
3375  * This is called when the amount of space required for incore file
3376  * extents needs to be decreased. The ext_diff parameter stores the
3377  * number of extents to be removed and the idx parameter contains
3378  * the extent index where the extents will be removed from.
3379  *
3380  * If the amount of space needed has decreased below the linear
3381  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3382  * extent array.  Otherwise, use kmem_realloc() to adjust the
3383  * size to what is needed.
3384  */
3385 void
3386 xfs_iext_remove(
3387 	xfs_inode_t	*ip,		/* incore inode pointer */
3388 	xfs_extnum_t	idx,		/* index to begin removing exts */
3389 	int		ext_diff,	/* number of extents to remove */
3390 	int		state)		/* type of extent conversion */
3391 {
3392 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3393 	xfs_extnum_t	nextents;	/* number of extents in file */
3394 	int		new_size;	/* size of extents after removal */
3395 
3396 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3397 
3398 	ASSERT(ext_diff > 0);
3399 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3400 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3401 
3402 	if (new_size == 0) {
3403 		xfs_iext_destroy(ifp);
3404 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3405 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3406 	} else if (ifp->if_real_bytes) {
3407 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3408 	} else {
3409 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3410 	}
3411 	ifp->if_bytes = new_size;
3412 }
3413 
3414 /*
3415  * This removes ext_diff extents from the inline buffer, beginning
3416  * at extent index idx.
3417  */
3418 void
3419 xfs_iext_remove_inline(
3420 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3421 	xfs_extnum_t	idx,		/* index to begin removing exts */
3422 	int		ext_diff)	/* number of extents to remove */
3423 {
3424 	int		nextents;	/* number of extents in file */
3425 
3426 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3427 	ASSERT(idx < XFS_INLINE_EXTS);
3428 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3429 	ASSERT(((nextents - ext_diff) > 0) &&
3430 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3431 
3432 	if (idx + ext_diff < nextents) {
3433 		memmove(&ifp->if_u2.if_inline_ext[idx],
3434 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3435 			(nextents - (idx + ext_diff)) *
3436 			 sizeof(xfs_bmbt_rec_t));
3437 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3438 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3439 	} else {
3440 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3441 			ext_diff * sizeof(xfs_bmbt_rec_t));
3442 	}
3443 }
3444 
3445 /*
3446  * This removes ext_diff extents from a linear (direct) extent list,
3447  * beginning at extent index idx. If the extents are being removed
3448  * from the end of the list (ie. truncate) then we just need to re-
3449  * allocate the list to remove the extra space. Otherwise, if the
3450  * extents are being removed from the middle of the existing extent
3451  * entries, then we first need to move the extent records beginning
3452  * at idx + ext_diff up in the list to overwrite the records being
3453  * removed, then remove the extra space via kmem_realloc.
3454  */
3455 void
3456 xfs_iext_remove_direct(
3457 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3458 	xfs_extnum_t	idx,		/* index to begin removing exts */
3459 	int		ext_diff)	/* number of extents to remove */
3460 {
3461 	xfs_extnum_t	nextents;	/* number of extents in file */
3462 	int		new_size;	/* size of extents after removal */
3463 
3464 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3465 	new_size = ifp->if_bytes -
3466 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3467 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3468 
3469 	if (new_size == 0) {
3470 		xfs_iext_destroy(ifp);
3471 		return;
3472 	}
3473 	/* Move extents up in the list (if needed) */
3474 	if (idx + ext_diff < nextents) {
3475 		memmove(&ifp->if_u1.if_extents[idx],
3476 			&ifp->if_u1.if_extents[idx + ext_diff],
3477 			(nextents - (idx + ext_diff)) *
3478 			 sizeof(xfs_bmbt_rec_t));
3479 	}
3480 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3481 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3482 	/*
3483 	 * Reallocate the direct extent list. If the extents
3484 	 * will fit inside the inode then xfs_iext_realloc_direct
3485 	 * will switch from direct to inline extent allocation
3486 	 * mode for us.
3487 	 */
3488 	xfs_iext_realloc_direct(ifp, new_size);
3489 	ifp->if_bytes = new_size;
3490 }
3491 
3492 /*
3493  * This is called when incore extents are being removed from the
3494  * indirection array and the extents being removed span multiple extent
3495  * buffers. The idx parameter contains the file extent index where we
3496  * want to begin removing extents, and the count parameter contains
3497  * how many extents need to be removed.
3498  *
3499  *    |-------|   |-------|
3500  *    | nex1  |   |       |    nex1 - number of extents before idx
3501  *    |-------|   | count |
3502  *    |       |   |       |    count - number of extents being removed at idx
3503  *    | count |   |-------|
3504  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3505  *    |-------|   |-------|
3506  */
3507 void
3508 xfs_iext_remove_indirect(
3509 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3510 	xfs_extnum_t	idx,		/* index to begin removing extents */
3511 	int		count)		/* number of extents to remove */
3512 {
3513 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3514 	int		erp_idx = 0;	/* indirection array index */
3515 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3516 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3517 	xfs_extnum_t	nex1;		/* number of extents before idx */
3518 	xfs_extnum_t	nex2;		/* extents after idx + count */
3519 	int		page_idx = idx;	/* index in target extent list */
3520 
3521 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3522 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3523 	ASSERT(erp != NULL);
3524 	nex1 = page_idx;
3525 	ext_cnt = count;
3526 	while (ext_cnt) {
3527 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3528 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3529 		/*
3530 		 * Check for deletion of entire list;
3531 		 * xfs_iext_irec_remove() updates extent offsets.
3532 		 */
3533 		if (ext_diff == erp->er_extcount) {
3534 			xfs_iext_irec_remove(ifp, erp_idx);
3535 			ext_cnt -= ext_diff;
3536 			nex1 = 0;
3537 			if (ext_cnt) {
3538 				ASSERT(erp_idx < ifp->if_real_bytes /
3539 					XFS_IEXT_BUFSZ);
3540 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3541 				nex1 = 0;
3542 				continue;
3543 			} else {
3544 				break;
3545 			}
3546 		}
3547 		/* Move extents up (if needed) */
3548 		if (nex2) {
3549 			memmove(&erp->er_extbuf[nex1],
3550 				&erp->er_extbuf[nex1 + ext_diff],
3551 				nex2 * sizeof(xfs_bmbt_rec_t));
3552 		}
3553 		/* Zero out rest of page */
3554 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3555 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3556 		/* Update remaining counters */
3557 		erp->er_extcount -= ext_diff;
3558 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3559 		ext_cnt -= ext_diff;
3560 		nex1 = 0;
3561 		erp_idx++;
3562 		erp++;
3563 	}
3564 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3565 	xfs_iext_irec_compact(ifp);
3566 }
3567 
3568 /*
3569  * Create, destroy, or resize a linear (direct) block of extents.
3570  */
3571 void
3572 xfs_iext_realloc_direct(
3573 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3574 	int		new_size)	/* new size of extents */
3575 {
3576 	int		rnew_size;	/* real new size of extents */
3577 
3578 	rnew_size = new_size;
3579 
3580 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3581 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3582 		 (new_size != ifp->if_real_bytes)));
3583 
3584 	/* Free extent records */
3585 	if (new_size == 0) {
3586 		xfs_iext_destroy(ifp);
3587 	}
3588 	/* Resize direct extent list and zero any new bytes */
3589 	else if (ifp->if_real_bytes) {
3590 		/* Check if extents will fit inside the inode */
3591 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3592 			xfs_iext_direct_to_inline(ifp, new_size /
3593 				(uint)sizeof(xfs_bmbt_rec_t));
3594 			ifp->if_bytes = new_size;
3595 			return;
3596 		}
3597 		if (!is_power_of_2(new_size)){
3598 			rnew_size = roundup_pow_of_two(new_size);
3599 		}
3600 		if (rnew_size != ifp->if_real_bytes) {
3601 			ifp->if_u1.if_extents =
3602 				kmem_realloc(ifp->if_u1.if_extents,
3603 						rnew_size,
3604 						ifp->if_real_bytes, KM_NOFS);
3605 		}
3606 		if (rnew_size > ifp->if_real_bytes) {
3607 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3608 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3609 				rnew_size - ifp->if_real_bytes);
3610 		}
3611 	}
3612 	/*
3613 	 * Switch from the inline extent buffer to a direct
3614 	 * extent list. Be sure to include the inline extent
3615 	 * bytes in new_size.
3616 	 */
3617 	else {
3618 		new_size += ifp->if_bytes;
3619 		if (!is_power_of_2(new_size)) {
3620 			rnew_size = roundup_pow_of_two(new_size);
3621 		}
3622 		xfs_iext_inline_to_direct(ifp, rnew_size);
3623 	}
3624 	ifp->if_real_bytes = rnew_size;
3625 	ifp->if_bytes = new_size;
3626 }
3627 
3628 /*
3629  * Switch from linear (direct) extent records to inline buffer.
3630  */
3631 void
3632 xfs_iext_direct_to_inline(
3633 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3634 	xfs_extnum_t	nextents)	/* number of extents in file */
3635 {
3636 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3637 	ASSERT(nextents <= XFS_INLINE_EXTS);
3638 	/*
3639 	 * The inline buffer was zeroed when we switched
3640 	 * from inline to direct extent allocation mode,
3641 	 * so we don't need to clear it here.
3642 	 */
3643 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3644 		nextents * sizeof(xfs_bmbt_rec_t));
3645 	kmem_free(ifp->if_u1.if_extents);
3646 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3647 	ifp->if_real_bytes = 0;
3648 }
3649 
3650 /*
3651  * Switch from inline buffer to linear (direct) extent records.
3652  * new_size should already be rounded up to the next power of 2
3653  * by the caller (when appropriate), so use new_size as it is.
3654  * However, since new_size may be rounded up, we can't update
3655  * if_bytes here. It is the caller's responsibility to update
3656  * if_bytes upon return.
3657  */
3658 void
3659 xfs_iext_inline_to_direct(
3660 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3661 	int		new_size)	/* number of extents in file */
3662 {
3663 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3664 	memset(ifp->if_u1.if_extents, 0, new_size);
3665 	if (ifp->if_bytes) {
3666 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3667 			ifp->if_bytes);
3668 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3669 			sizeof(xfs_bmbt_rec_t));
3670 	}
3671 	ifp->if_real_bytes = new_size;
3672 }
3673 
3674 /*
3675  * Resize an extent indirection array to new_size bytes.
3676  */
3677 STATIC void
3678 xfs_iext_realloc_indirect(
3679 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3680 	int		new_size)	/* new indirection array size */
3681 {
3682 	int		nlists;		/* number of irec's (ex lists) */
3683 	int		size;		/* current indirection array size */
3684 
3685 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3686 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3687 	size = nlists * sizeof(xfs_ext_irec_t);
3688 	ASSERT(ifp->if_real_bytes);
3689 	ASSERT((new_size >= 0) && (new_size != size));
3690 	if (new_size == 0) {
3691 		xfs_iext_destroy(ifp);
3692 	} else {
3693 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3694 			kmem_realloc(ifp->if_u1.if_ext_irec,
3695 				new_size, size, KM_NOFS);
3696 	}
3697 }
3698 
3699 /*
3700  * Switch from indirection array to linear (direct) extent allocations.
3701  */
3702 STATIC void
3703 xfs_iext_indirect_to_direct(
3704 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3705 {
3706 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3707 	xfs_extnum_t	nextents;	/* number of extents in file */
3708 	int		size;		/* size of file extents */
3709 
3710 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3711 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3712 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3713 	size = nextents * sizeof(xfs_bmbt_rec_t);
3714 
3715 	xfs_iext_irec_compact_pages(ifp);
3716 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3717 
3718 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3719 	kmem_free(ifp->if_u1.if_ext_irec);
3720 	ifp->if_flags &= ~XFS_IFEXTIREC;
3721 	ifp->if_u1.if_extents = ep;
3722 	ifp->if_bytes = size;
3723 	if (nextents < XFS_LINEAR_EXTS) {
3724 		xfs_iext_realloc_direct(ifp, size);
3725 	}
3726 }
3727 
3728 /*
3729  * Free incore file extents.
3730  */
3731 void
3732 xfs_iext_destroy(
3733 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3734 {
3735 	if (ifp->if_flags & XFS_IFEXTIREC) {
3736 		int	erp_idx;
3737 		int	nlists;
3738 
3739 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3740 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3741 			xfs_iext_irec_remove(ifp, erp_idx);
3742 		}
3743 		ifp->if_flags &= ~XFS_IFEXTIREC;
3744 	} else if (ifp->if_real_bytes) {
3745 		kmem_free(ifp->if_u1.if_extents);
3746 	} else if (ifp->if_bytes) {
3747 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3748 			sizeof(xfs_bmbt_rec_t));
3749 	}
3750 	ifp->if_u1.if_extents = NULL;
3751 	ifp->if_real_bytes = 0;
3752 	ifp->if_bytes = 0;
3753 }
3754 
3755 /*
3756  * Return a pointer to the extent record for file system block bno.
3757  */
3758 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3759 xfs_iext_bno_to_ext(
3760 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3761 	xfs_fileoff_t	bno,		/* block number to search for */
3762 	xfs_extnum_t	*idxp)		/* index of target extent */
3763 {
3764 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3765 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3766 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3767 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3768 	int		high;		/* upper boundary in search */
3769 	xfs_extnum_t	idx = 0;	/* index of target extent */
3770 	int		low;		/* lower boundary in search */
3771 	xfs_extnum_t	nextents;	/* number of file extents */
3772 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3773 
3774 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3775 	if (nextents == 0) {
3776 		*idxp = 0;
3777 		return NULL;
3778 	}
3779 	low = 0;
3780 	if (ifp->if_flags & XFS_IFEXTIREC) {
3781 		/* Find target extent list */
3782 		int	erp_idx = 0;
3783 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3784 		base = erp->er_extbuf;
3785 		high = erp->er_extcount - 1;
3786 	} else {
3787 		base = ifp->if_u1.if_extents;
3788 		high = nextents - 1;
3789 	}
3790 	/* Binary search extent records */
3791 	while (low <= high) {
3792 		idx = (low + high) >> 1;
3793 		ep = base + idx;
3794 		startoff = xfs_bmbt_get_startoff(ep);
3795 		blockcount = xfs_bmbt_get_blockcount(ep);
3796 		if (bno < startoff) {
3797 			high = idx - 1;
3798 		} else if (bno >= startoff + blockcount) {
3799 			low = idx + 1;
3800 		} else {
3801 			/* Convert back to file-based extent index */
3802 			if (ifp->if_flags & XFS_IFEXTIREC) {
3803 				idx += erp->er_extoff;
3804 			}
3805 			*idxp = idx;
3806 			return ep;
3807 		}
3808 	}
3809 	/* Convert back to file-based extent index */
3810 	if (ifp->if_flags & XFS_IFEXTIREC) {
3811 		idx += erp->er_extoff;
3812 	}
3813 	if (bno >= startoff + blockcount) {
3814 		if (++idx == nextents) {
3815 			ep = NULL;
3816 		} else {
3817 			ep = xfs_iext_get_ext(ifp, idx);
3818 		}
3819 	}
3820 	*idxp = idx;
3821 	return ep;
3822 }
3823 
3824 /*
3825  * Return a pointer to the indirection array entry containing the
3826  * extent record for filesystem block bno. Store the index of the
3827  * target irec in *erp_idxp.
3828  */
3829 xfs_ext_irec_t *			/* pointer to found extent record */
3830 xfs_iext_bno_to_irec(
3831 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3832 	xfs_fileoff_t	bno,		/* block number to search for */
3833 	int		*erp_idxp)	/* irec index of target ext list */
3834 {
3835 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3836 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3837 	int		erp_idx;	/* indirection array index */
3838 	int		nlists;		/* number of extent irec's (lists) */
3839 	int		high;		/* binary search upper limit */
3840 	int		low;		/* binary search lower limit */
3841 
3842 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3843 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3844 	erp_idx = 0;
3845 	low = 0;
3846 	high = nlists - 1;
3847 	while (low <= high) {
3848 		erp_idx = (low + high) >> 1;
3849 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3850 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3851 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3852 			high = erp_idx - 1;
3853 		} else if (erp_next && bno >=
3854 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3855 			low = erp_idx + 1;
3856 		} else {
3857 			break;
3858 		}
3859 	}
3860 	*erp_idxp = erp_idx;
3861 	return erp;
3862 }
3863 
3864 /*
3865  * Return a pointer to the indirection array entry containing the
3866  * extent record at file extent index *idxp. Store the index of the
3867  * target irec in *erp_idxp and store the page index of the target
3868  * extent record in *idxp.
3869  */
3870 xfs_ext_irec_t *
3871 xfs_iext_idx_to_irec(
3872 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3873 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3874 	int		*erp_idxp,	/* pointer to target irec */
3875 	int		realloc)	/* new bytes were just added */
3876 {
3877 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3878 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3879 	int		erp_idx;	/* indirection array index */
3880 	int		nlists;		/* number of irec's (ex lists) */
3881 	int		high;		/* binary search upper limit */
3882 	int		low;		/* binary search lower limit */
3883 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3884 
3885 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3886 	ASSERT(page_idx >= 0);
3887 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3888 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3889 
3890 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3891 	erp_idx = 0;
3892 	low = 0;
3893 	high = nlists - 1;
3894 
3895 	/* Binary search extent irec's */
3896 	while (low <= high) {
3897 		erp_idx = (low + high) >> 1;
3898 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3899 		prev = erp_idx > 0 ? erp - 1 : NULL;
3900 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3901 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3902 			high = erp_idx - 1;
3903 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3904 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3905 			    !realloc)) {
3906 			low = erp_idx + 1;
3907 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3908 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3909 			ASSERT(realloc);
3910 			page_idx = 0;
3911 			erp_idx++;
3912 			erp = erp_idx < nlists ? erp + 1 : NULL;
3913 			break;
3914 		} else {
3915 			page_idx -= erp->er_extoff;
3916 			break;
3917 		}
3918 	}
3919 	*idxp = page_idx;
3920 	*erp_idxp = erp_idx;
3921 	return(erp);
3922 }
3923 
3924 /*
3925  * Allocate and initialize an indirection array once the space needed
3926  * for incore extents increases above XFS_IEXT_BUFSZ.
3927  */
3928 void
3929 xfs_iext_irec_init(
3930 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3931 {
3932 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3933 	xfs_extnum_t	nextents;	/* number of extents in file */
3934 
3935 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3936 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3937 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3938 
3939 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3940 
3941 	if (nextents == 0) {
3942 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3943 	} else if (!ifp->if_real_bytes) {
3944 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3945 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3946 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3947 	}
3948 	erp->er_extbuf = ifp->if_u1.if_extents;
3949 	erp->er_extcount = nextents;
3950 	erp->er_extoff = 0;
3951 
3952 	ifp->if_flags |= XFS_IFEXTIREC;
3953 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3954 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3955 	ifp->if_u1.if_ext_irec = erp;
3956 
3957 	return;
3958 }
3959 
3960 /*
3961  * Allocate and initialize a new entry in the indirection array.
3962  */
3963 xfs_ext_irec_t *
3964 xfs_iext_irec_new(
3965 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3966 	int		erp_idx)	/* index for new irec */
3967 {
3968 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3969 	int		i;		/* loop counter */
3970 	int		nlists;		/* number of irec's (ex lists) */
3971 
3972 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3973 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3974 
3975 	/* Resize indirection array */
3976 	xfs_iext_realloc_indirect(ifp, ++nlists *
3977 				  sizeof(xfs_ext_irec_t));
3978 	/*
3979 	 * Move records down in the array so the
3980 	 * new page can use erp_idx.
3981 	 */
3982 	erp = ifp->if_u1.if_ext_irec;
3983 	for (i = nlists - 1; i > erp_idx; i--) {
3984 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3985 	}
3986 	ASSERT(i == erp_idx);
3987 
3988 	/* Initialize new extent record */
3989 	erp = ifp->if_u1.if_ext_irec;
3990 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3991 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3992 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3993 	erp[erp_idx].er_extcount = 0;
3994 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3995 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3996 	return (&erp[erp_idx]);
3997 }
3998 
3999 /*
4000  * Remove a record from the indirection array.
4001  */
4002 void
4003 xfs_iext_irec_remove(
4004 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4005 	int		erp_idx)	/* irec index to remove */
4006 {
4007 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4008 	int		i;		/* loop counter */
4009 	int		nlists;		/* number of irec's (ex lists) */
4010 
4011 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4012 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4013 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4014 	if (erp->er_extbuf) {
4015 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4016 			-erp->er_extcount);
4017 		kmem_free(erp->er_extbuf);
4018 	}
4019 	/* Compact extent records */
4020 	erp = ifp->if_u1.if_ext_irec;
4021 	for (i = erp_idx; i < nlists - 1; i++) {
4022 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4023 	}
4024 	/*
4025 	 * Manually free the last extent record from the indirection
4026 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4027 	 * of zero would result in a call to xfs_iext_destroy() which
4028 	 * would in turn call this function again, creating a nasty
4029 	 * infinite loop.
4030 	 */
4031 	if (--nlists) {
4032 		xfs_iext_realloc_indirect(ifp,
4033 			nlists * sizeof(xfs_ext_irec_t));
4034 	} else {
4035 		kmem_free(ifp->if_u1.if_ext_irec);
4036 	}
4037 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4038 }
4039 
4040 /*
4041  * This is called to clean up large amounts of unused memory allocated
4042  * by the indirection array.  Before compacting anything though, verify
4043  * that the indirection array is still needed and switch back to the
4044  * linear extent list (or even the inline buffer) if possible.  The
4045  * compaction policy is as follows:
4046  *
4047  *    Full Compaction: Extents fit into a single page (or inline buffer)
4048  * Partial Compaction: Extents occupy less than 50% of allocated space
4049  *      No Compaction: Extents occupy at least 50% of allocated space
4050  */
4051 void
4052 xfs_iext_irec_compact(
4053 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4054 {
4055 	xfs_extnum_t	nextents;	/* number of extents in file */
4056 	int		nlists;		/* number of irec's (ex lists) */
4057 
4058 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4059 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4060 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4061 
4062 	if (nextents == 0) {
4063 		xfs_iext_destroy(ifp);
4064 	} else if (nextents <= XFS_INLINE_EXTS) {
4065 		xfs_iext_indirect_to_direct(ifp);
4066 		xfs_iext_direct_to_inline(ifp, nextents);
4067 	} else if (nextents <= XFS_LINEAR_EXTS) {
4068 		xfs_iext_indirect_to_direct(ifp);
4069 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4070 		xfs_iext_irec_compact_pages(ifp);
4071 	}
4072 }
4073 
4074 /*
4075  * Combine extents from neighboring extent pages.
4076  */
4077 void
4078 xfs_iext_irec_compact_pages(
4079 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4080 {
4081 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4082 	int		erp_idx = 0;	/* indirection array index */
4083 	int		nlists;		/* number of irec's (ex lists) */
4084 
4085 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4086 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4087 	while (erp_idx < nlists - 1) {
4088 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4089 		erp_next = erp + 1;
4090 		if (erp_next->er_extcount <=
4091 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4092 			memcpy(&erp->er_extbuf[erp->er_extcount],
4093 				erp_next->er_extbuf, erp_next->er_extcount *
4094 				sizeof(xfs_bmbt_rec_t));
4095 			erp->er_extcount += erp_next->er_extcount;
4096 			/*
4097 			 * Free page before removing extent record
4098 			 * so er_extoffs don't get modified in
4099 			 * xfs_iext_irec_remove.
4100 			 */
4101 			kmem_free(erp_next->er_extbuf);
4102 			erp_next->er_extbuf = NULL;
4103 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4104 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4105 		} else {
4106 			erp_idx++;
4107 		}
4108 	}
4109 }
4110 
4111 /*
4112  * This is called to update the er_extoff field in the indirection
4113  * array when extents have been added or removed from one of the
4114  * extent lists. erp_idx contains the irec index to begin updating
4115  * at and ext_diff contains the number of extents that were added
4116  * or removed.
4117  */
4118 void
4119 xfs_iext_irec_update_extoffs(
4120 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4121 	int		erp_idx,	/* irec index to update */
4122 	int		ext_diff)	/* number of new extents */
4123 {
4124 	int		i;		/* loop counter */
4125 	int		nlists;		/* number of irec's (ex lists */
4126 
4127 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4128 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4129 	for (i = erp_idx; i < nlists; i++) {
4130 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4131 	}
4132 }
4133