xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision a86854d0)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 #include <linux/iversion.h>
20 
21 #include "xfs.h"
22 #include "xfs_fs.h"
23 #include "xfs_shared.h"
24 #include "xfs_format.h"
25 #include "xfs_log_format.h"
26 #include "xfs_trans_resv.h"
27 #include "xfs_sb.h"
28 #include "xfs_mount.h"
29 #include "xfs_defer.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_errortag.h"
44 #include "xfs_error.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_log.h"
53 #include "xfs_bmap_btree.h"
54 #include "xfs_reflink.h"
55 #include "xfs_dir2_priv.h"
56 
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate_extents().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
68 
69 /*
70  * helper function to extract extent size hint from inode
71  */
72 xfs_extlen_t
73 xfs_get_extsz_hint(
74 	struct xfs_inode	*ip)
75 {
76 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 		return ip->i_d.di_extsize;
78 	if (XFS_IS_REALTIME_INODE(ip))
79 		return ip->i_mount->m_sb.sb_rextsize;
80 	return 0;
81 }
82 
83 /*
84  * Helper function to extract CoW extent size hint from inode.
85  * Between the extent size hint and the CoW extent size hint, we
86  * return the greater of the two.  If the value is zero (automatic),
87  * use the default size.
88  */
89 xfs_extlen_t
90 xfs_get_cowextsz_hint(
91 	struct xfs_inode	*ip)
92 {
93 	xfs_extlen_t		a, b;
94 
95 	a = 0;
96 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 		a = ip->i_d.di_cowextsize;
98 	b = xfs_get_extsz_hint(ip);
99 
100 	a = max(a, b);
101 	if (a == 0)
102 		return XFS_DEFAULT_COWEXTSZ_HINT;
103 	return a;
104 }
105 
106 /*
107  * These two are wrapper routines around the xfs_ilock() routine used to
108  * centralize some grungy code.  They are used in places that wish to lock the
109  * inode solely for reading the extents.  The reason these places can't just
110  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111  * bringing in of the extents from disk for a file in b-tree format.  If the
112  * inode is in b-tree format, then we need to lock the inode exclusively until
113  * the extents are read in.  Locking it exclusively all the time would limit
114  * our parallelism unnecessarily, though.  What we do instead is check to see
115  * if the extents have been read in yet, and only lock the inode exclusively
116  * if they have not.
117  *
118  * The functions return a value which should be given to the corresponding
119  * xfs_iunlock() call.
120  */
121 uint
122 xfs_ilock_data_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
129 		lock_mode = XFS_ILOCK_EXCL;
130 	xfs_ilock(ip, lock_mode);
131 	return lock_mode;
132 }
133 
134 uint
135 xfs_ilock_attr_map_shared(
136 	struct xfs_inode	*ip)
137 {
138 	uint			lock_mode = XFS_ILOCK_SHARED;
139 
140 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 		lock_mode = XFS_ILOCK_EXCL;
143 	xfs_ilock(ip, lock_mode);
144 	return lock_mode;
145 }
146 
147 /*
148  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
150  * various combinations of the locks to be obtained.
151  *
152  * The 3 locks should always be ordered so that the IO lock is obtained first,
153  * the mmap lock second and the ilock last in order to prevent deadlock.
154  *
155  * Basic locking order:
156  *
157  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
158  *
159  * mmap_sem locking order:
160  *
161  * i_rwsem -> page lock -> mmap_sem
162  * mmap_sem -> i_mmap_lock -> page_lock
163  *
164  * The difference in mmap_sem locking order mean that we cannot hold the
165  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167  * in get_user_pages() to map the user pages into the kernel address space for
168  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
169  * page faults already hold the mmap_sem.
170  *
171  * Hence to serialise fully against both syscall and mmap based IO, we need to
172  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
173  * taken in places where we need to invalidate the page cache in a race
174  * free manner (e.g. truncate, hole punch and other extent manipulation
175  * functions).
176  */
177 void
178 xfs_ilock(
179 	xfs_inode_t		*ip,
180 	uint			lock_flags)
181 {
182 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183 
184 	/*
185 	 * You can't set both SHARED and EXCL for the same lock,
186 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
188 	 */
189 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
191 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
193 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
195 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
196 
197 	if (lock_flags & XFS_IOLOCK_EXCL) {
198 		down_write_nested(&VFS_I(ip)->i_rwsem,
199 				  XFS_IOLOCK_DEP(lock_flags));
200 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
201 		down_read_nested(&VFS_I(ip)->i_rwsem,
202 				 XFS_IOLOCK_DEP(lock_flags));
203 	}
204 
205 	if (lock_flags & XFS_MMAPLOCK_EXCL)
206 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
209 
210 	if (lock_flags & XFS_ILOCK_EXCL)
211 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 	else if (lock_flags & XFS_ILOCK_SHARED)
213 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214 }
215 
216 /*
217  * This is just like xfs_ilock(), except that the caller
218  * is guaranteed not to sleep.  It returns 1 if it gets
219  * the requested locks and 0 otherwise.  If the IO lock is
220  * obtained but the inode lock cannot be, then the IO lock
221  * is dropped before returning.
222  *
223  * ip -- the inode being locked
224  * lock_flags -- this parameter indicates the inode's locks to be
225  *       to be locked.  See the comment for xfs_ilock() for a list
226  *	 of valid values.
227  */
228 int
229 xfs_ilock_nowait(
230 	xfs_inode_t		*ip,
231 	uint			lock_flags)
232 {
233 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234 
235 	/*
236 	 * You can't set both SHARED and EXCL for the same lock,
237 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
239 	 */
240 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
242 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
244 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
246 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
247 
248 	if (lock_flags & XFS_IOLOCK_EXCL) {
249 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
250 			goto out;
251 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
252 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
253 			goto out;
254 	}
255 
256 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 		if (!mrtryupdate(&ip->i_mmaplock))
258 			goto out_undo_iolock;
259 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 		if (!mrtryaccess(&ip->i_mmaplock))
261 			goto out_undo_iolock;
262 	}
263 
264 	if (lock_flags & XFS_ILOCK_EXCL) {
265 		if (!mrtryupdate(&ip->i_lock))
266 			goto out_undo_mmaplock;
267 	} else if (lock_flags & XFS_ILOCK_SHARED) {
268 		if (!mrtryaccess(&ip->i_lock))
269 			goto out_undo_mmaplock;
270 	}
271 	return 1;
272 
273 out_undo_mmaplock:
274 	if (lock_flags & XFS_MMAPLOCK_EXCL)
275 		mrunlock_excl(&ip->i_mmaplock);
276 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 		mrunlock_shared(&ip->i_mmaplock);
278 out_undo_iolock:
279 	if (lock_flags & XFS_IOLOCK_EXCL)
280 		up_write(&VFS_I(ip)->i_rwsem);
281 	else if (lock_flags & XFS_IOLOCK_SHARED)
282 		up_read(&VFS_I(ip)->i_rwsem);
283 out:
284 	return 0;
285 }
286 
287 /*
288  * xfs_iunlock() is used to drop the inode locks acquired with
289  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
290  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291  * that we know which locks to drop.
292  *
293  * ip -- the inode being unlocked
294  * lock_flags -- this parameter indicates the inode's locks to be
295  *       to be unlocked.  See the comment for xfs_ilock() for a list
296  *	 of valid values for this parameter.
297  *
298  */
299 void
300 xfs_iunlock(
301 	xfs_inode_t		*ip,
302 	uint			lock_flags)
303 {
304 	/*
305 	 * You can't set both SHARED and EXCL for the same lock,
306 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
308 	 */
309 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
311 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
313 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
316 	ASSERT(lock_flags != 0);
317 
318 	if (lock_flags & XFS_IOLOCK_EXCL)
319 		up_write(&VFS_I(ip)->i_rwsem);
320 	else if (lock_flags & XFS_IOLOCK_SHARED)
321 		up_read(&VFS_I(ip)->i_rwsem);
322 
323 	if (lock_flags & XFS_MMAPLOCK_EXCL)
324 		mrunlock_excl(&ip->i_mmaplock);
325 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 		mrunlock_shared(&ip->i_mmaplock);
327 
328 	if (lock_flags & XFS_ILOCK_EXCL)
329 		mrunlock_excl(&ip->i_lock);
330 	else if (lock_flags & XFS_ILOCK_SHARED)
331 		mrunlock_shared(&ip->i_lock);
332 
333 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
334 }
335 
336 /*
337  * give up write locks.  the i/o lock cannot be held nested
338  * if it is being demoted.
339  */
340 void
341 xfs_ilock_demote(
342 	xfs_inode_t		*ip,
343 	uint			lock_flags)
344 {
345 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
346 	ASSERT((lock_flags &
347 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
348 
349 	if (lock_flags & XFS_ILOCK_EXCL)
350 		mrdemote(&ip->i_lock);
351 	if (lock_flags & XFS_MMAPLOCK_EXCL)
352 		mrdemote(&ip->i_mmaplock);
353 	if (lock_flags & XFS_IOLOCK_EXCL)
354 		downgrade_write(&VFS_I(ip)->i_rwsem);
355 
356 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
357 }
358 
359 #if defined(DEBUG) || defined(XFS_WARN)
360 int
361 xfs_isilocked(
362 	xfs_inode_t		*ip,
363 	uint			lock_flags)
364 {
365 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 		if (!(lock_flags & XFS_ILOCK_SHARED))
367 			return !!ip->i_lock.mr_writer;
368 		return rwsem_is_locked(&ip->i_lock.mr_lock);
369 	}
370 
371 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 			return !!ip->i_mmaplock.mr_writer;
374 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
375 	}
376 
377 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 		if (!(lock_flags & XFS_IOLOCK_SHARED))
379 			return !debug_locks ||
380 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
382 	}
383 
384 	ASSERT(0);
385 	return 0;
386 }
387 #endif
388 
389 /*
390  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393  * errors and warnings.
394  */
395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
396 static bool
397 xfs_lockdep_subclass_ok(
398 	int subclass)
399 {
400 	return subclass < MAX_LOCKDEP_SUBCLASSES;
401 }
402 #else
403 #define xfs_lockdep_subclass_ok(subclass)	(true)
404 #endif
405 
406 /*
407  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
408  * value. This can be called for any type of inode lock combination, including
409  * parent locking. Care must be taken to ensure we don't overrun the subclass
410  * storage fields in the class mask we build.
411  */
412 static inline int
413 xfs_lock_inumorder(int lock_mode, int subclass)
414 {
415 	int	class = 0;
416 
417 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
418 			      XFS_ILOCK_RTSUM)));
419 	ASSERT(xfs_lockdep_subclass_ok(subclass));
420 
421 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
422 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
423 		class += subclass << XFS_IOLOCK_SHIFT;
424 	}
425 
426 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
427 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 		class += subclass << XFS_MMAPLOCK_SHIFT;
429 	}
430 
431 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 		class += subclass << XFS_ILOCK_SHIFT;
434 	}
435 
436 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
437 }
438 
439 /*
440  * The following routine will lock n inodes in exclusive mode.  We assume the
441  * caller calls us with the inodes in i_ino order.
442  *
443  * We need to detect deadlock where an inode that we lock is in the AIL and we
444  * start waiting for another inode that is locked by a thread in a long running
445  * transaction (such as truncate). This can result in deadlock since the long
446  * running trans might need to wait for the inode we just locked in order to
447  * push the tail and free space in the log.
448  *
449  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451  * lock more than one at a time, lockdep will report false positives saying we
452  * have violated locking orders.
453  */
454 static void
455 xfs_lock_inodes(
456 	xfs_inode_t	**ips,
457 	int		inodes,
458 	uint		lock_mode)
459 {
460 	int		attempts = 0, i, j, try_lock;
461 	xfs_log_item_t	*lp;
462 
463 	/*
464 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
465 	 * support an arbitrary depth of locking here, but absolute limits on
466 	 * inodes depend on the the type of locking and the limits placed by
467 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
468 	 * the asserts.
469 	 */
470 	ASSERT(ips && inodes >= 2 && inodes <= 5);
471 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
472 			    XFS_ILOCK_EXCL));
473 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
474 			      XFS_ILOCK_SHARED)));
475 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
479 
480 	if (lock_mode & XFS_IOLOCK_EXCL) {
481 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
484 
485 	try_lock = 0;
486 	i = 0;
487 again:
488 	for (; i < inodes; i++) {
489 		ASSERT(ips[i]);
490 
491 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
492 			continue;
493 
494 		/*
495 		 * If try_lock is not set yet, make sure all locked inodes are
496 		 * not in the AIL.  If any are, set try_lock to be used later.
497 		 */
498 		if (!try_lock) {
499 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
501 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
502 					try_lock++;
503 			}
504 		}
505 
506 		/*
507 		 * If any of the previous locks we have locked is in the AIL,
508 		 * we must TRY to get the second and subsequent locks. If
509 		 * we can't get any, we must release all we have
510 		 * and try again.
511 		 */
512 		if (!try_lock) {
513 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
514 			continue;
515 		}
516 
517 		/* try_lock means we have an inode locked that is in the AIL. */
518 		ASSERT(i != 0);
519 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
520 			continue;
521 
522 		/*
523 		 * Unlock all previous guys and try again.  xfs_iunlock will try
524 		 * to push the tail if the inode is in the AIL.
525 		 */
526 		attempts++;
527 		for (j = i - 1; j >= 0; j--) {
528 			/*
529 			 * Check to see if we've already unlocked this one.  Not
530 			 * the first one going back, and the inode ptr is the
531 			 * same.
532 			 */
533 			if (j != (i - 1) && ips[j] == ips[j + 1])
534 				continue;
535 
536 			xfs_iunlock(ips[j], lock_mode);
537 		}
538 
539 		if ((attempts % 5) == 0) {
540 			delay(1); /* Don't just spin the CPU */
541 		}
542 		i = 0;
543 		try_lock = 0;
544 		goto again;
545 	}
546 }
547 
548 /*
549  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
550  * the mmaplock or the ilock, but not more than one type at a time. If we lock
551  * more than one at a time, lockdep will report false positives saying we have
552  * violated locking orders.  The iolock must be double-locked separately since
553  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
554  * SHARED.
555  */
556 void
557 xfs_lock_two_inodes(
558 	struct xfs_inode	*ip0,
559 	uint			ip0_mode,
560 	struct xfs_inode	*ip1,
561 	uint			ip1_mode)
562 {
563 	struct xfs_inode	*temp;
564 	uint			mode_temp;
565 	int			attempts = 0;
566 	xfs_log_item_t		*lp;
567 
568 	ASSERT(hweight32(ip0_mode) == 1);
569 	ASSERT(hweight32(ip1_mode) == 1);
570 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
580 
581 	ASSERT(ip0->i_ino != ip1->i_ino);
582 
583 	if (ip0->i_ino > ip1->i_ino) {
584 		temp = ip0;
585 		ip0 = ip1;
586 		ip1 = temp;
587 		mode_temp = ip0_mode;
588 		ip0_mode = ip1_mode;
589 		ip1_mode = mode_temp;
590 	}
591 
592  again:
593 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
594 
595 	/*
596 	 * If the first lock we have locked is in the AIL, we must TRY to get
597 	 * the second lock. If we can't get it, we must release the first one
598 	 * and try again.
599 	 */
600 	lp = (xfs_log_item_t *)ip0->i_itemp;
601 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
602 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 			xfs_iunlock(ip0, ip0_mode);
604 			if ((++attempts % 5) == 0)
605 				delay(1); /* Don't just spin the CPU */
606 			goto again;
607 		}
608 	} else {
609 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
610 	}
611 }
612 
613 void
614 __xfs_iflock(
615 	struct xfs_inode	*ip)
616 {
617 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
619 
620 	do {
621 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
622 		if (xfs_isiflocked(ip))
623 			io_schedule();
624 	} while (!xfs_iflock_nowait(ip));
625 
626 	finish_wait(wq, &wait.wq_entry);
627 }
628 
629 STATIC uint
630 _xfs_dic2xflags(
631 	uint16_t		di_flags,
632 	uint64_t		di_flags2,
633 	bool			has_attr)
634 {
635 	uint			flags = 0;
636 
637 	if (di_flags & XFS_DIFLAG_ANY) {
638 		if (di_flags & XFS_DIFLAG_REALTIME)
639 			flags |= FS_XFLAG_REALTIME;
640 		if (di_flags & XFS_DIFLAG_PREALLOC)
641 			flags |= FS_XFLAG_PREALLOC;
642 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
643 			flags |= FS_XFLAG_IMMUTABLE;
644 		if (di_flags & XFS_DIFLAG_APPEND)
645 			flags |= FS_XFLAG_APPEND;
646 		if (di_flags & XFS_DIFLAG_SYNC)
647 			flags |= FS_XFLAG_SYNC;
648 		if (di_flags & XFS_DIFLAG_NOATIME)
649 			flags |= FS_XFLAG_NOATIME;
650 		if (di_flags & XFS_DIFLAG_NODUMP)
651 			flags |= FS_XFLAG_NODUMP;
652 		if (di_flags & XFS_DIFLAG_RTINHERIT)
653 			flags |= FS_XFLAG_RTINHERIT;
654 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
655 			flags |= FS_XFLAG_PROJINHERIT;
656 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
657 			flags |= FS_XFLAG_NOSYMLINKS;
658 		if (di_flags & XFS_DIFLAG_EXTSIZE)
659 			flags |= FS_XFLAG_EXTSIZE;
660 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
661 			flags |= FS_XFLAG_EXTSZINHERIT;
662 		if (di_flags & XFS_DIFLAG_NODEFRAG)
663 			flags |= FS_XFLAG_NODEFRAG;
664 		if (di_flags & XFS_DIFLAG_FILESTREAM)
665 			flags |= FS_XFLAG_FILESTREAM;
666 	}
667 
668 	if (di_flags2 & XFS_DIFLAG2_ANY) {
669 		if (di_flags2 & XFS_DIFLAG2_DAX)
670 			flags |= FS_XFLAG_DAX;
671 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 			flags |= FS_XFLAG_COWEXTSIZE;
673 	}
674 
675 	if (has_attr)
676 		flags |= FS_XFLAG_HASATTR;
677 
678 	return flags;
679 }
680 
681 uint
682 xfs_ip2xflags(
683 	struct xfs_inode	*ip)
684 {
685 	struct xfs_icdinode	*dic = &ip->i_d;
686 
687 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
688 }
689 
690 /*
691  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692  * is allowed, otherwise it has to be an exact match. If a CI match is found,
693  * ci_name->name will point to a the actual name (caller must free) or
694  * will be set to NULL if an exact match is found.
695  */
696 int
697 xfs_lookup(
698 	xfs_inode_t		*dp,
699 	struct xfs_name		*name,
700 	xfs_inode_t		**ipp,
701 	struct xfs_name		*ci_name)
702 {
703 	xfs_ino_t		inum;
704 	int			error;
705 
706 	trace_xfs_lookup(dp, name);
707 
708 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
709 		return -EIO;
710 
711 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
712 	if (error)
713 		goto out_unlock;
714 
715 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
716 	if (error)
717 		goto out_free_name;
718 
719 	return 0;
720 
721 out_free_name:
722 	if (ci_name)
723 		kmem_free(ci_name->name);
724 out_unlock:
725 	*ipp = NULL;
726 	return error;
727 }
728 
729 /*
730  * Allocate an inode on disk and return a copy of its in-core version.
731  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
732  * appropriately within the inode.  The uid and gid for the inode are
733  * set according to the contents of the given cred structure.
734  *
735  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
736  * has a free inode available, call xfs_iget() to obtain the in-core
737  * version of the allocated inode.  Finally, fill in the inode and
738  * log its initial contents.  In this case, ialloc_context would be
739  * set to NULL.
740  *
741  * If xfs_dialloc() does not have an available inode, it will replenish
742  * its supply by doing an allocation. Since we can only do one
743  * allocation within a transaction without deadlocks, we must commit
744  * the current transaction before returning the inode itself.
745  * In this case, therefore, we will set ialloc_context and return.
746  * The caller should then commit the current transaction, start a new
747  * transaction, and call xfs_ialloc() again to actually get the inode.
748  *
749  * To ensure that some other process does not grab the inode that
750  * was allocated during the first call to xfs_ialloc(), this routine
751  * also returns the [locked] bp pointing to the head of the freelist
752  * as ialloc_context.  The caller should hold this buffer across
753  * the commit and pass it back into this routine on the second call.
754  *
755  * If we are allocating quota inodes, we do not have a parent inode
756  * to attach to or associate with (i.e. pip == NULL) because they
757  * are not linked into the directory structure - they are attached
758  * directly to the superblock - and so have no parent.
759  */
760 static int
761 xfs_ialloc(
762 	xfs_trans_t	*tp,
763 	xfs_inode_t	*pip,
764 	umode_t		mode,
765 	xfs_nlink_t	nlink,
766 	dev_t		rdev,
767 	prid_t		prid,
768 	xfs_buf_t	**ialloc_context,
769 	xfs_inode_t	**ipp)
770 {
771 	struct xfs_mount *mp = tp->t_mountp;
772 	xfs_ino_t	ino;
773 	xfs_inode_t	*ip;
774 	uint		flags;
775 	int		error;
776 	struct timespec	tv;
777 	struct inode	*inode;
778 
779 	/*
780 	 * Call the space management code to pick
781 	 * the on-disk inode to be allocated.
782 	 */
783 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
784 			    ialloc_context, &ino);
785 	if (error)
786 		return error;
787 	if (*ialloc_context || ino == NULLFSINO) {
788 		*ipp = NULL;
789 		return 0;
790 	}
791 	ASSERT(*ialloc_context == NULL);
792 
793 	/*
794 	 * Protect against obviously corrupt allocation btree records. Later
795 	 * xfs_iget checks will catch re-allocation of other active in-memory
796 	 * and on-disk inodes. If we don't catch reallocating the parent inode
797 	 * here we will deadlock in xfs_iget() so we have to do these checks
798 	 * first.
799 	 */
800 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
801 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
802 		return -EFSCORRUPTED;
803 	}
804 
805 	/*
806 	 * Get the in-core inode with the lock held exclusively.
807 	 * This is because we're setting fields here we need
808 	 * to prevent others from looking at until we're done.
809 	 */
810 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
811 			 XFS_ILOCK_EXCL, &ip);
812 	if (error)
813 		return error;
814 	ASSERT(ip != NULL);
815 	inode = VFS_I(ip);
816 
817 	/*
818 	 * We always convert v1 inodes to v2 now - we only support filesystems
819 	 * with >= v2 inode capability, so there is no reason for ever leaving
820 	 * an inode in v1 format.
821 	 */
822 	if (ip->i_d.di_version == 1)
823 		ip->i_d.di_version = 2;
824 
825 	inode->i_mode = mode;
826 	set_nlink(inode, nlink);
827 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
828 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
829 	inode->i_rdev = rdev;
830 	xfs_set_projid(ip, prid);
831 
832 	if (pip && XFS_INHERIT_GID(pip)) {
833 		ip->i_d.di_gid = pip->i_d.di_gid;
834 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
835 			inode->i_mode |= S_ISGID;
836 	}
837 
838 	/*
839 	 * If the group ID of the new file does not match the effective group
840 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
841 	 * (and only if the irix_sgid_inherit compatibility variable is set).
842 	 */
843 	if ((irix_sgid_inherit) &&
844 	    (inode->i_mode & S_ISGID) &&
845 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
846 		inode->i_mode &= ~S_ISGID;
847 
848 	ip->i_d.di_size = 0;
849 	ip->i_d.di_nextents = 0;
850 	ASSERT(ip->i_d.di_nblocks == 0);
851 
852 	tv = current_time(inode);
853 	inode->i_mtime = tv;
854 	inode->i_atime = tv;
855 	inode->i_ctime = tv;
856 
857 	ip->i_d.di_extsize = 0;
858 	ip->i_d.di_dmevmask = 0;
859 	ip->i_d.di_dmstate = 0;
860 	ip->i_d.di_flags = 0;
861 
862 	if (ip->i_d.di_version == 3) {
863 		inode_set_iversion(inode, 1);
864 		ip->i_d.di_flags2 = 0;
865 		ip->i_d.di_cowextsize = 0;
866 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
867 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
868 	}
869 
870 
871 	flags = XFS_ILOG_CORE;
872 	switch (mode & S_IFMT) {
873 	case S_IFIFO:
874 	case S_IFCHR:
875 	case S_IFBLK:
876 	case S_IFSOCK:
877 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
878 		ip->i_df.if_flags = 0;
879 		flags |= XFS_ILOG_DEV;
880 		break;
881 	case S_IFREG:
882 	case S_IFDIR:
883 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
884 			uint		di_flags = 0;
885 
886 			if (S_ISDIR(mode)) {
887 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 					di_flags |= XFS_DIFLAG_RTINHERIT;
889 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
891 					ip->i_d.di_extsize = pip->i_d.di_extsize;
892 				}
893 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
894 					di_flags |= XFS_DIFLAG_PROJINHERIT;
895 			} else if (S_ISREG(mode)) {
896 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
897 					di_flags |= XFS_DIFLAG_REALTIME;
898 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
899 					di_flags |= XFS_DIFLAG_EXTSIZE;
900 					ip->i_d.di_extsize = pip->i_d.di_extsize;
901 				}
902 			}
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
904 			    xfs_inherit_noatime)
905 				di_flags |= XFS_DIFLAG_NOATIME;
906 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
907 			    xfs_inherit_nodump)
908 				di_flags |= XFS_DIFLAG_NODUMP;
909 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
910 			    xfs_inherit_sync)
911 				di_flags |= XFS_DIFLAG_SYNC;
912 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
913 			    xfs_inherit_nosymlinks)
914 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
915 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
916 			    xfs_inherit_nodefrag)
917 				di_flags |= XFS_DIFLAG_NODEFRAG;
918 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
919 				di_flags |= XFS_DIFLAG_FILESTREAM;
920 
921 			ip->i_d.di_flags |= di_flags;
922 		}
923 		if (pip &&
924 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
925 		    pip->i_d.di_version == 3 &&
926 		    ip->i_d.di_version == 3) {
927 			uint64_t	di_flags2 = 0;
928 
929 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
930 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
931 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
932 			}
933 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
934 				di_flags2 |= XFS_DIFLAG2_DAX;
935 
936 			ip->i_d.di_flags2 |= di_flags2;
937 		}
938 		/* FALLTHROUGH */
939 	case S_IFLNK:
940 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
941 		ip->i_df.if_flags = XFS_IFEXTENTS;
942 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
943 		ip->i_df.if_u1.if_root = NULL;
944 		break;
945 	default:
946 		ASSERT(0);
947 	}
948 	/*
949 	 * Attribute fork settings for new inode.
950 	 */
951 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
952 	ip->i_d.di_anextents = 0;
953 
954 	/*
955 	 * Log the new values stuffed into the inode.
956 	 */
957 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
958 	xfs_trans_log_inode(tp, ip, flags);
959 
960 	/* now that we have an i_mode we can setup the inode structure */
961 	xfs_setup_inode(ip);
962 
963 	*ipp = ip;
964 	return 0;
965 }
966 
967 /*
968  * Allocates a new inode from disk and return a pointer to the
969  * incore copy. This routine will internally commit the current
970  * transaction and allocate a new one if the Space Manager needed
971  * to do an allocation to replenish the inode free-list.
972  *
973  * This routine is designed to be called from xfs_create and
974  * xfs_create_dir.
975  *
976  */
977 int
978 xfs_dir_ialloc(
979 	xfs_trans_t	**tpp,		/* input: current transaction;
980 					   output: may be a new transaction. */
981 	xfs_inode_t	*dp,		/* directory within whose allocate
982 					   the inode. */
983 	umode_t		mode,
984 	xfs_nlink_t	nlink,
985 	dev_t		rdev,
986 	prid_t		prid,		/* project id */
987 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
988 					   locked. */
989 {
990 	xfs_trans_t	*tp;
991 	xfs_inode_t	*ip;
992 	xfs_buf_t	*ialloc_context = NULL;
993 	int		code;
994 	void		*dqinfo;
995 	uint		tflags;
996 
997 	tp = *tpp;
998 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
999 
1000 	/*
1001 	 * xfs_ialloc will return a pointer to an incore inode if
1002 	 * the Space Manager has an available inode on the free
1003 	 * list. Otherwise, it will do an allocation and replenish
1004 	 * the freelist.  Since we can only do one allocation per
1005 	 * transaction without deadlocks, we will need to commit the
1006 	 * current transaction and start a new one.  We will then
1007 	 * need to call xfs_ialloc again to get the inode.
1008 	 *
1009 	 * If xfs_ialloc did an allocation to replenish the freelist,
1010 	 * it returns the bp containing the head of the freelist as
1011 	 * ialloc_context. We will hold a lock on it across the
1012 	 * transaction commit so that no other process can steal
1013 	 * the inode(s) that we've just allocated.
1014 	 */
1015 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1016 			&ip);
1017 
1018 	/*
1019 	 * Return an error if we were unable to allocate a new inode.
1020 	 * This should only happen if we run out of space on disk or
1021 	 * encounter a disk error.
1022 	 */
1023 	if (code) {
1024 		*ipp = NULL;
1025 		return code;
1026 	}
1027 	if (!ialloc_context && !ip) {
1028 		*ipp = NULL;
1029 		return -ENOSPC;
1030 	}
1031 
1032 	/*
1033 	 * If the AGI buffer is non-NULL, then we were unable to get an
1034 	 * inode in one operation.  We need to commit the current
1035 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1036 	 * to succeed the second time.
1037 	 */
1038 	if (ialloc_context) {
1039 		/*
1040 		 * Normally, xfs_trans_commit releases all the locks.
1041 		 * We call bhold to hang on to the ialloc_context across
1042 		 * the commit.  Holding this buffer prevents any other
1043 		 * processes from doing any allocations in this
1044 		 * allocation group.
1045 		 */
1046 		xfs_trans_bhold(tp, ialloc_context);
1047 
1048 		/*
1049 		 * We want the quota changes to be associated with the next
1050 		 * transaction, NOT this one. So, detach the dqinfo from this
1051 		 * and attach it to the next transaction.
1052 		 */
1053 		dqinfo = NULL;
1054 		tflags = 0;
1055 		if (tp->t_dqinfo) {
1056 			dqinfo = (void *)tp->t_dqinfo;
1057 			tp->t_dqinfo = NULL;
1058 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1059 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1060 		}
1061 
1062 		code = xfs_trans_roll(&tp);
1063 
1064 		/*
1065 		 * Re-attach the quota info that we detached from prev trx.
1066 		 */
1067 		if (dqinfo) {
1068 			tp->t_dqinfo = dqinfo;
1069 			tp->t_flags |= tflags;
1070 		}
1071 
1072 		if (code) {
1073 			xfs_buf_relse(ialloc_context);
1074 			*tpp = tp;
1075 			*ipp = NULL;
1076 			return code;
1077 		}
1078 		xfs_trans_bjoin(tp, ialloc_context);
1079 
1080 		/*
1081 		 * Call ialloc again. Since we've locked out all
1082 		 * other allocations in this allocation group,
1083 		 * this call should always succeed.
1084 		 */
1085 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1086 				  &ialloc_context, &ip);
1087 
1088 		/*
1089 		 * If we get an error at this point, return to the caller
1090 		 * so that the current transaction can be aborted.
1091 		 */
1092 		if (code) {
1093 			*tpp = tp;
1094 			*ipp = NULL;
1095 			return code;
1096 		}
1097 		ASSERT(!ialloc_context && ip);
1098 
1099 	}
1100 
1101 	*ipp = ip;
1102 	*tpp = tp;
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * Decrement the link count on an inode & log the change.  If this causes the
1109  * link count to go to zero, move the inode to AGI unlinked list so that it can
1110  * be freed when the last active reference goes away via xfs_inactive().
1111  */
1112 static int			/* error */
1113 xfs_droplink(
1114 	xfs_trans_t *tp,
1115 	xfs_inode_t *ip)
1116 {
1117 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1118 
1119 	drop_nlink(VFS_I(ip));
1120 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1121 
1122 	if (VFS_I(ip)->i_nlink)
1123 		return 0;
1124 
1125 	return xfs_iunlink(tp, ip);
1126 }
1127 
1128 /*
1129  * Increment the link count on an inode & log the change.
1130  */
1131 static int
1132 xfs_bumplink(
1133 	xfs_trans_t *tp,
1134 	xfs_inode_t *ip)
1135 {
1136 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1137 
1138 	ASSERT(ip->i_d.di_version > 1);
1139 	inc_nlink(VFS_I(ip));
1140 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1141 	return 0;
1142 }
1143 
1144 int
1145 xfs_create(
1146 	xfs_inode_t		*dp,
1147 	struct xfs_name		*name,
1148 	umode_t			mode,
1149 	dev_t			rdev,
1150 	xfs_inode_t		**ipp)
1151 {
1152 	int			is_dir = S_ISDIR(mode);
1153 	struct xfs_mount	*mp = dp->i_mount;
1154 	struct xfs_inode	*ip = NULL;
1155 	struct xfs_trans	*tp = NULL;
1156 	int			error;
1157 	struct xfs_defer_ops	dfops;
1158 	xfs_fsblock_t		first_block;
1159 	bool                    unlock_dp_on_error = false;
1160 	prid_t			prid;
1161 	struct xfs_dquot	*udqp = NULL;
1162 	struct xfs_dquot	*gdqp = NULL;
1163 	struct xfs_dquot	*pdqp = NULL;
1164 	struct xfs_trans_res	*tres;
1165 	uint			resblks;
1166 
1167 	trace_xfs_create(dp, name);
1168 
1169 	if (XFS_FORCED_SHUTDOWN(mp))
1170 		return -EIO;
1171 
1172 	prid = xfs_get_initial_prid(dp);
1173 
1174 	/*
1175 	 * Make sure that we have allocated dquot(s) on disk.
1176 	 */
1177 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1178 					xfs_kgid_to_gid(current_fsgid()), prid,
1179 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1180 					&udqp, &gdqp, &pdqp);
1181 	if (error)
1182 		return error;
1183 
1184 	if (is_dir) {
1185 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1186 		tres = &M_RES(mp)->tr_mkdir;
1187 	} else {
1188 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1189 		tres = &M_RES(mp)->tr_create;
1190 	}
1191 
1192 	/*
1193 	 * Initially assume that the file does not exist and
1194 	 * reserve the resources for that case.  If that is not
1195 	 * the case we'll drop the one we have and get a more
1196 	 * appropriate transaction later.
1197 	 */
1198 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1199 	if (error == -ENOSPC) {
1200 		/* flush outstanding delalloc blocks and retry */
1201 		xfs_flush_inodes(mp);
1202 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1203 	}
1204 	if (error)
1205 		goto out_release_inode;
1206 
1207 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1208 	unlock_dp_on_error = true;
1209 
1210 	xfs_defer_init(&dfops, &first_block);
1211 	tp->t_agfl_dfops = &dfops;
1212 
1213 	/*
1214 	 * Reserve disk quota and the inode.
1215 	 */
1216 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1217 						pdqp, resblks, 1, 0);
1218 	if (error)
1219 		goto out_trans_cancel;
1220 
1221 	/*
1222 	 * A newly created regular or special file just has one directory
1223 	 * entry pointing to them, but a directory also the "." entry
1224 	 * pointing to itself.
1225 	 */
1226 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1227 	if (error)
1228 		goto out_trans_cancel;
1229 
1230 	/*
1231 	 * Now we join the directory inode to the transaction.  We do not do it
1232 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1233 	 * (and release all the locks).  An error from here on will result in
1234 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1235 	 * error path.
1236 	 */
1237 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1238 	unlock_dp_on_error = false;
1239 
1240 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1241 					&first_block, &dfops, resblks ?
1242 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1243 	if (error) {
1244 		ASSERT(error != -ENOSPC);
1245 		goto out_trans_cancel;
1246 	}
1247 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1248 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1249 
1250 	if (is_dir) {
1251 		error = xfs_dir_init(tp, ip, dp);
1252 		if (error)
1253 			goto out_bmap_cancel;
1254 
1255 		error = xfs_bumplink(tp, dp);
1256 		if (error)
1257 			goto out_bmap_cancel;
1258 	}
1259 
1260 	/*
1261 	 * If this is a synchronous mount, make sure that the
1262 	 * create transaction goes to disk before returning to
1263 	 * the user.
1264 	 */
1265 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1266 		xfs_trans_set_sync(tp);
1267 
1268 	/*
1269 	 * Attach the dquot(s) to the inodes and modify them incore.
1270 	 * These ids of the inode couldn't have changed since the new
1271 	 * inode has been locked ever since it was created.
1272 	 */
1273 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1274 
1275 	error = xfs_defer_finish(&tp, &dfops);
1276 	if (error)
1277 		goto out_bmap_cancel;
1278 
1279 	error = xfs_trans_commit(tp);
1280 	if (error)
1281 		goto out_release_inode;
1282 
1283 	xfs_qm_dqrele(udqp);
1284 	xfs_qm_dqrele(gdqp);
1285 	xfs_qm_dqrele(pdqp);
1286 
1287 	*ipp = ip;
1288 	return 0;
1289 
1290  out_bmap_cancel:
1291 	xfs_defer_cancel(&dfops);
1292  out_trans_cancel:
1293 	xfs_trans_cancel(tp);
1294  out_release_inode:
1295 	/*
1296 	 * Wait until after the current transaction is aborted to finish the
1297 	 * setup of the inode and release the inode.  This prevents recursive
1298 	 * transactions and deadlocks from xfs_inactive.
1299 	 */
1300 	if (ip) {
1301 		xfs_finish_inode_setup(ip);
1302 		IRELE(ip);
1303 	}
1304 
1305 	xfs_qm_dqrele(udqp);
1306 	xfs_qm_dqrele(gdqp);
1307 	xfs_qm_dqrele(pdqp);
1308 
1309 	if (unlock_dp_on_error)
1310 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1311 	return error;
1312 }
1313 
1314 int
1315 xfs_create_tmpfile(
1316 	struct xfs_inode	*dp,
1317 	umode_t			mode,
1318 	struct xfs_inode	**ipp)
1319 {
1320 	struct xfs_mount	*mp = dp->i_mount;
1321 	struct xfs_inode	*ip = NULL;
1322 	struct xfs_trans	*tp = NULL;
1323 	int			error;
1324 	prid_t                  prid;
1325 	struct xfs_dquot	*udqp = NULL;
1326 	struct xfs_dquot	*gdqp = NULL;
1327 	struct xfs_dquot	*pdqp = NULL;
1328 	struct xfs_trans_res	*tres;
1329 	uint			resblks;
1330 
1331 	if (XFS_FORCED_SHUTDOWN(mp))
1332 		return -EIO;
1333 
1334 	prid = xfs_get_initial_prid(dp);
1335 
1336 	/*
1337 	 * Make sure that we have allocated dquot(s) on disk.
1338 	 */
1339 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1340 				xfs_kgid_to_gid(current_fsgid()), prid,
1341 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1342 				&udqp, &gdqp, &pdqp);
1343 	if (error)
1344 		return error;
1345 
1346 	resblks = XFS_IALLOC_SPACE_RES(mp);
1347 	tres = &M_RES(mp)->tr_create_tmpfile;
1348 
1349 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1350 	if (error)
1351 		goto out_release_inode;
1352 
1353 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1354 						pdqp, resblks, 1, 0);
1355 	if (error)
1356 		goto out_trans_cancel;
1357 
1358 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1359 	if (error)
1360 		goto out_trans_cancel;
1361 
1362 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363 		xfs_trans_set_sync(tp);
1364 
1365 	/*
1366 	 * Attach the dquot(s) to the inodes and modify them incore.
1367 	 * These ids of the inode couldn't have changed since the new
1368 	 * inode has been locked ever since it was created.
1369 	 */
1370 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371 
1372 	error = xfs_iunlink(tp, ip);
1373 	if (error)
1374 		goto out_trans_cancel;
1375 
1376 	error = xfs_trans_commit(tp);
1377 	if (error)
1378 		goto out_release_inode;
1379 
1380 	xfs_qm_dqrele(udqp);
1381 	xfs_qm_dqrele(gdqp);
1382 	xfs_qm_dqrele(pdqp);
1383 
1384 	*ipp = ip;
1385 	return 0;
1386 
1387  out_trans_cancel:
1388 	xfs_trans_cancel(tp);
1389  out_release_inode:
1390 	/*
1391 	 * Wait until after the current transaction is aborted to finish the
1392 	 * setup of the inode and release the inode.  This prevents recursive
1393 	 * transactions and deadlocks from xfs_inactive.
1394 	 */
1395 	if (ip) {
1396 		xfs_finish_inode_setup(ip);
1397 		IRELE(ip);
1398 	}
1399 
1400 	xfs_qm_dqrele(udqp);
1401 	xfs_qm_dqrele(gdqp);
1402 	xfs_qm_dqrele(pdqp);
1403 
1404 	return error;
1405 }
1406 
1407 int
1408 xfs_link(
1409 	xfs_inode_t		*tdp,
1410 	xfs_inode_t		*sip,
1411 	struct xfs_name		*target_name)
1412 {
1413 	xfs_mount_t		*mp = tdp->i_mount;
1414 	xfs_trans_t		*tp;
1415 	int			error;
1416 	struct xfs_defer_ops	dfops;
1417 	xfs_fsblock_t           first_block;
1418 	int			resblks;
1419 
1420 	trace_xfs_link(tdp, target_name);
1421 
1422 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423 
1424 	if (XFS_FORCED_SHUTDOWN(mp))
1425 		return -EIO;
1426 
1427 	error = xfs_qm_dqattach(sip);
1428 	if (error)
1429 		goto std_return;
1430 
1431 	error = xfs_qm_dqattach(tdp);
1432 	if (error)
1433 		goto std_return;
1434 
1435 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1436 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1437 	if (error == -ENOSPC) {
1438 		resblks = 0;
1439 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1440 	}
1441 	if (error)
1442 		goto std_return;
1443 
1444 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1445 
1446 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1447 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1448 
1449 	/*
1450 	 * If we are using project inheritance, we only allow hard link
1451 	 * creation in our tree when the project IDs are the same; else
1452 	 * the tree quota mechanism could be circumvented.
1453 	 */
1454 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1455 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1456 		error = -EXDEV;
1457 		goto error_return;
1458 	}
1459 
1460 	if (!resblks) {
1461 		error = xfs_dir_canenter(tp, tdp, target_name);
1462 		if (error)
1463 			goto error_return;
1464 	}
1465 
1466 	xfs_defer_init(&dfops, &first_block);
1467 	tp->t_agfl_dfops = &dfops;
1468 
1469 	/*
1470 	 * Handle initial link state of O_TMPFILE inode
1471 	 */
1472 	if (VFS_I(sip)->i_nlink == 0) {
1473 		error = xfs_iunlink_remove(tp, sip);
1474 		if (error)
1475 			goto error_return;
1476 	}
1477 
1478 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1479 					&first_block, &dfops, resblks);
1480 	if (error)
1481 		goto error_return;
1482 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1483 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1484 
1485 	error = xfs_bumplink(tp, sip);
1486 	if (error)
1487 		goto error_return;
1488 
1489 	/*
1490 	 * If this is a synchronous mount, make sure that the
1491 	 * link transaction goes to disk before returning to
1492 	 * the user.
1493 	 */
1494 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1495 		xfs_trans_set_sync(tp);
1496 
1497 	error = xfs_defer_finish(&tp, &dfops);
1498 	if (error) {
1499 		xfs_defer_cancel(&dfops);
1500 		goto error_return;
1501 	}
1502 
1503 	return xfs_trans_commit(tp);
1504 
1505  error_return:
1506 	xfs_trans_cancel(tp);
1507  std_return:
1508 	return error;
1509 }
1510 
1511 /* Clear the reflink flag and the cowblocks tag if possible. */
1512 static void
1513 xfs_itruncate_clear_reflink_flags(
1514 	struct xfs_inode	*ip)
1515 {
1516 	struct xfs_ifork	*dfork;
1517 	struct xfs_ifork	*cfork;
1518 
1519 	if (!xfs_is_reflink_inode(ip))
1520 		return;
1521 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1522 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1523 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1524 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1525 	if (cfork->if_bytes == 0)
1526 		xfs_inode_clear_cowblocks_tag(ip);
1527 }
1528 
1529 /*
1530  * Free up the underlying blocks past new_size.  The new size must be smaller
1531  * than the current size.  This routine can be used both for the attribute and
1532  * data fork, and does not modify the inode size, which is left to the caller.
1533  *
1534  * The transaction passed to this routine must have made a permanent log
1535  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1536  * given transaction and start new ones, so make sure everything involved in
1537  * the transaction is tidy before calling here.  Some transaction will be
1538  * returned to the caller to be committed.  The incoming transaction must
1539  * already include the inode, and both inode locks must be held exclusively.
1540  * The inode must also be "held" within the transaction.  On return the inode
1541  * will be "held" within the returned transaction.  This routine does NOT
1542  * require any disk space to be reserved for it within the transaction.
1543  *
1544  * If we get an error, we must return with the inode locked and linked into the
1545  * current transaction. This keeps things simple for the higher level code,
1546  * because it always knows that the inode is locked and held in the transaction
1547  * that returns to it whether errors occur or not.  We don't mark the inode
1548  * dirty on error so that transactions can be easily aborted if possible.
1549  */
1550 int
1551 xfs_itruncate_extents_flags(
1552 	struct xfs_trans	**tpp,
1553 	struct xfs_inode	*ip,
1554 	int			whichfork,
1555 	xfs_fsize_t		new_size,
1556 	int			flags)
1557 {
1558 	struct xfs_mount	*mp = ip->i_mount;
1559 	struct xfs_trans	*tp = *tpp;
1560 	struct xfs_defer_ops	dfops;
1561 	xfs_fsblock_t		first_block;
1562 	xfs_fileoff_t		first_unmap_block;
1563 	xfs_fileoff_t		last_block;
1564 	xfs_filblks_t		unmap_len;
1565 	int			error = 0;
1566 	int			done = 0;
1567 
1568 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1569 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1570 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1571 	ASSERT(new_size <= XFS_ISIZE(ip));
1572 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1573 	ASSERT(ip->i_itemp != NULL);
1574 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1575 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1576 
1577 	trace_xfs_itruncate_extents_start(ip, new_size);
1578 
1579 	flags |= xfs_bmapi_aflag(whichfork);
1580 
1581 	/*
1582 	 * Since it is possible for space to become allocated beyond
1583 	 * the end of the file (in a crash where the space is allocated
1584 	 * but the inode size is not yet updated), simply remove any
1585 	 * blocks which show up between the new EOF and the maximum
1586 	 * possible file size.  If the first block to be removed is
1587 	 * beyond the maximum file size (ie it is the same as last_block),
1588 	 * then there is nothing to do.
1589 	 */
1590 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1591 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1592 	if (first_unmap_block == last_block)
1593 		return 0;
1594 
1595 	ASSERT(first_unmap_block < last_block);
1596 	unmap_len = last_block - first_unmap_block + 1;
1597 	while (!done) {
1598 		xfs_defer_init(&dfops, &first_block);
1599 		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1600 				    XFS_ITRUNC_MAX_EXTENTS, &first_block,
1601 				    &dfops, &done);
1602 		if (error)
1603 			goto out_bmap_cancel;
1604 
1605 		/*
1606 		 * Duplicate the transaction that has the permanent
1607 		 * reservation and commit the old transaction.
1608 		 */
1609 		xfs_defer_ijoin(&dfops, ip);
1610 		error = xfs_defer_finish(&tp, &dfops);
1611 		if (error)
1612 			goto out_bmap_cancel;
1613 
1614 		error = xfs_trans_roll_inode(&tp, ip);
1615 		if (error)
1616 			goto out;
1617 	}
1618 
1619 	if (whichfork == XFS_DATA_FORK) {
1620 		/* Remove all pending CoW reservations. */
1621 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1622 				first_unmap_block, last_block, true);
1623 		if (error)
1624 			goto out;
1625 
1626 		xfs_itruncate_clear_reflink_flags(ip);
1627 	}
1628 
1629 	/*
1630 	 * Always re-log the inode so that our permanent transaction can keep
1631 	 * on rolling it forward in the log.
1632 	 */
1633 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1634 
1635 	trace_xfs_itruncate_extents_end(ip, new_size);
1636 
1637 out:
1638 	*tpp = tp;
1639 	return error;
1640 out_bmap_cancel:
1641 	/*
1642 	 * If the bunmapi call encounters an error, return to the caller where
1643 	 * the transaction can be properly aborted.  We just need to make sure
1644 	 * we're not holding any resources that we were not when we came in.
1645 	 */
1646 	xfs_defer_cancel(&dfops);
1647 	goto out;
1648 }
1649 
1650 int
1651 xfs_release(
1652 	xfs_inode_t	*ip)
1653 {
1654 	xfs_mount_t	*mp = ip->i_mount;
1655 	int		error;
1656 
1657 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1658 		return 0;
1659 
1660 	/* If this is a read-only mount, don't do this (would generate I/O) */
1661 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1662 		return 0;
1663 
1664 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1665 		int truncated;
1666 
1667 		/*
1668 		 * If we previously truncated this file and removed old data
1669 		 * in the process, we want to initiate "early" writeout on
1670 		 * the last close.  This is an attempt to combat the notorious
1671 		 * NULL files problem which is particularly noticeable from a
1672 		 * truncate down, buffered (re-)write (delalloc), followed by
1673 		 * a crash.  What we are effectively doing here is
1674 		 * significantly reducing the time window where we'd otherwise
1675 		 * be exposed to that problem.
1676 		 */
1677 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1678 		if (truncated) {
1679 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1680 			if (ip->i_delayed_blks > 0) {
1681 				error = filemap_flush(VFS_I(ip)->i_mapping);
1682 				if (error)
1683 					return error;
1684 			}
1685 		}
1686 	}
1687 
1688 	if (VFS_I(ip)->i_nlink == 0)
1689 		return 0;
1690 
1691 	if (xfs_can_free_eofblocks(ip, false)) {
1692 
1693 		/*
1694 		 * Check if the inode is being opened, written and closed
1695 		 * frequently and we have delayed allocation blocks outstanding
1696 		 * (e.g. streaming writes from the NFS server), truncating the
1697 		 * blocks past EOF will cause fragmentation to occur.
1698 		 *
1699 		 * In this case don't do the truncation, but we have to be
1700 		 * careful how we detect this case. Blocks beyond EOF show up as
1701 		 * i_delayed_blks even when the inode is clean, so we need to
1702 		 * truncate them away first before checking for a dirty release.
1703 		 * Hence on the first dirty close we will still remove the
1704 		 * speculative allocation, but after that we will leave it in
1705 		 * place.
1706 		 */
1707 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1708 			return 0;
1709 		/*
1710 		 * If we can't get the iolock just skip truncating the blocks
1711 		 * past EOF because we could deadlock with the mmap_sem
1712 		 * otherwise. We'll get another chance to drop them once the
1713 		 * last reference to the inode is dropped, so we'll never leak
1714 		 * blocks permanently.
1715 		 */
1716 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1717 			error = xfs_free_eofblocks(ip);
1718 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1719 			if (error)
1720 				return error;
1721 		}
1722 
1723 		/* delalloc blocks after truncation means it really is dirty */
1724 		if (ip->i_delayed_blks)
1725 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1726 	}
1727 	return 0;
1728 }
1729 
1730 /*
1731  * xfs_inactive_truncate
1732  *
1733  * Called to perform a truncate when an inode becomes unlinked.
1734  */
1735 STATIC int
1736 xfs_inactive_truncate(
1737 	struct xfs_inode *ip)
1738 {
1739 	struct xfs_mount	*mp = ip->i_mount;
1740 	struct xfs_trans	*tp;
1741 	int			error;
1742 
1743 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1744 	if (error) {
1745 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1746 		return error;
1747 	}
1748 
1749 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1750 	xfs_trans_ijoin(tp, ip, 0);
1751 
1752 	/*
1753 	 * Log the inode size first to prevent stale data exposure in the event
1754 	 * of a system crash before the truncate completes. See the related
1755 	 * comment in xfs_vn_setattr_size() for details.
1756 	 */
1757 	ip->i_d.di_size = 0;
1758 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1759 
1760 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1761 	if (error)
1762 		goto error_trans_cancel;
1763 
1764 	ASSERT(ip->i_d.di_nextents == 0);
1765 
1766 	error = xfs_trans_commit(tp);
1767 	if (error)
1768 		goto error_unlock;
1769 
1770 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1771 	return 0;
1772 
1773 error_trans_cancel:
1774 	xfs_trans_cancel(tp);
1775 error_unlock:
1776 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1777 	return error;
1778 }
1779 
1780 /*
1781  * xfs_inactive_ifree()
1782  *
1783  * Perform the inode free when an inode is unlinked.
1784  */
1785 STATIC int
1786 xfs_inactive_ifree(
1787 	struct xfs_inode *ip)
1788 {
1789 	struct xfs_defer_ops	dfops;
1790 	xfs_fsblock_t		first_block;
1791 	struct xfs_mount	*mp = ip->i_mount;
1792 	struct xfs_trans	*tp;
1793 	int			error;
1794 
1795 	/*
1796 	 * We try to use a per-AG reservation for any block needed by the finobt
1797 	 * tree, but as the finobt feature predates the per-AG reservation
1798 	 * support a degraded file system might not have enough space for the
1799 	 * reservation at mount time.  In that case try to dip into the reserved
1800 	 * pool and pray.
1801 	 *
1802 	 * Send a warning if the reservation does happen to fail, as the inode
1803 	 * now remains allocated and sits on the unlinked list until the fs is
1804 	 * repaired.
1805 	 */
1806 	if (unlikely(mp->m_inotbt_nores)) {
1807 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1808 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1809 				&tp);
1810 	} else {
1811 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1812 	}
1813 	if (error) {
1814 		if (error == -ENOSPC) {
1815 			xfs_warn_ratelimited(mp,
1816 			"Failed to remove inode(s) from unlinked list. "
1817 			"Please free space, unmount and run xfs_repair.");
1818 		} else {
1819 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1820 		}
1821 		return error;
1822 	}
1823 
1824 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1825 	xfs_trans_ijoin(tp, ip, 0);
1826 
1827 	xfs_defer_init(&dfops, &first_block);
1828 	tp->t_agfl_dfops = &dfops;
1829 	error = xfs_ifree(tp, ip, &dfops);
1830 	if (error) {
1831 		/*
1832 		 * If we fail to free the inode, shut down.  The cancel
1833 		 * might do that, we need to make sure.  Otherwise the
1834 		 * inode might be lost for a long time or forever.
1835 		 */
1836 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1837 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1838 				__func__, error);
1839 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1840 		}
1841 		xfs_trans_cancel(tp);
1842 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1843 		return error;
1844 	}
1845 
1846 	/*
1847 	 * Credit the quota account(s). The inode is gone.
1848 	 */
1849 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1850 
1851 	/*
1852 	 * Just ignore errors at this point.  There is nothing we can do except
1853 	 * to try to keep going. Make sure it's not a silent error.
1854 	 */
1855 	error = xfs_defer_finish(&tp, &dfops);
1856 	if (error) {
1857 		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1858 			__func__, error);
1859 		xfs_defer_cancel(&dfops);
1860 	}
1861 	error = xfs_trans_commit(tp);
1862 	if (error)
1863 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1864 			__func__, error);
1865 
1866 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1867 	return 0;
1868 }
1869 
1870 /*
1871  * xfs_inactive
1872  *
1873  * This is called when the vnode reference count for the vnode
1874  * goes to zero.  If the file has been unlinked, then it must
1875  * now be truncated.  Also, we clear all of the read-ahead state
1876  * kept for the inode here since the file is now closed.
1877  */
1878 void
1879 xfs_inactive(
1880 	xfs_inode_t	*ip)
1881 {
1882 	struct xfs_mount	*mp;
1883 	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1884 	int			error;
1885 	int			truncate = 0;
1886 
1887 	/*
1888 	 * If the inode is already free, then there can be nothing
1889 	 * to clean up here.
1890 	 */
1891 	if (VFS_I(ip)->i_mode == 0) {
1892 		ASSERT(ip->i_df.if_real_bytes == 0);
1893 		ASSERT(ip->i_df.if_broot_bytes == 0);
1894 		return;
1895 	}
1896 
1897 	mp = ip->i_mount;
1898 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1899 
1900 	/* If this is a read-only mount, don't do this (would generate I/O) */
1901 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1902 		return;
1903 
1904 	/* Try to clean out the cow blocks if there are any. */
1905 	if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1906 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1907 
1908 	if (VFS_I(ip)->i_nlink != 0) {
1909 		/*
1910 		 * force is true because we are evicting an inode from the
1911 		 * cache. Post-eof blocks must be freed, lest we end up with
1912 		 * broken free space accounting.
1913 		 *
1914 		 * Note: don't bother with iolock here since lockdep complains
1915 		 * about acquiring it in reclaim context. We have the only
1916 		 * reference to the inode at this point anyways.
1917 		 */
1918 		if (xfs_can_free_eofblocks(ip, true))
1919 			xfs_free_eofblocks(ip);
1920 
1921 		return;
1922 	}
1923 
1924 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1925 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1926 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1927 		truncate = 1;
1928 
1929 	error = xfs_qm_dqattach(ip);
1930 	if (error)
1931 		return;
1932 
1933 	if (S_ISLNK(VFS_I(ip)->i_mode))
1934 		error = xfs_inactive_symlink(ip);
1935 	else if (truncate)
1936 		error = xfs_inactive_truncate(ip);
1937 	if (error)
1938 		return;
1939 
1940 	/*
1941 	 * If there are attributes associated with the file then blow them away
1942 	 * now.  The code calls a routine that recursively deconstructs the
1943 	 * attribute fork. If also blows away the in-core attribute fork.
1944 	 */
1945 	if (XFS_IFORK_Q(ip)) {
1946 		error = xfs_attr_inactive(ip);
1947 		if (error)
1948 			return;
1949 	}
1950 
1951 	ASSERT(!ip->i_afp);
1952 	ASSERT(ip->i_d.di_anextents == 0);
1953 	ASSERT(ip->i_d.di_forkoff == 0);
1954 
1955 	/*
1956 	 * Free the inode.
1957 	 */
1958 	error = xfs_inactive_ifree(ip);
1959 	if (error)
1960 		return;
1961 
1962 	/*
1963 	 * Release the dquots held by inode, if any.
1964 	 */
1965 	xfs_qm_dqdetach(ip);
1966 }
1967 
1968 /*
1969  * This is called when the inode's link count goes to 0 or we are creating a
1970  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1971  * set to true as the link count is dropped to zero by the VFS after we've
1972  * created the file successfully, so we have to add it to the unlinked list
1973  * while the link count is non-zero.
1974  *
1975  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1976  * list when the inode is freed.
1977  */
1978 STATIC int
1979 xfs_iunlink(
1980 	struct xfs_trans *tp,
1981 	struct xfs_inode *ip)
1982 {
1983 	xfs_mount_t	*mp = tp->t_mountp;
1984 	xfs_agi_t	*agi;
1985 	xfs_dinode_t	*dip;
1986 	xfs_buf_t	*agibp;
1987 	xfs_buf_t	*ibp;
1988 	xfs_agino_t	agino;
1989 	short		bucket_index;
1990 	int		offset;
1991 	int		error;
1992 
1993 	ASSERT(VFS_I(ip)->i_mode != 0);
1994 
1995 	/*
1996 	 * Get the agi buffer first.  It ensures lock ordering
1997 	 * on the list.
1998 	 */
1999 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2000 	if (error)
2001 		return error;
2002 	agi = XFS_BUF_TO_AGI(agibp);
2003 
2004 	/*
2005 	 * Get the index into the agi hash table for the
2006 	 * list this inode will go on.
2007 	 */
2008 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2009 	ASSERT(agino != 0);
2010 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2011 	ASSERT(agi->agi_unlinked[bucket_index]);
2012 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2013 
2014 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2015 		/*
2016 		 * There is already another inode in the bucket we need
2017 		 * to add ourselves to.  Add us at the front of the list.
2018 		 * Here we put the head pointer into our next pointer,
2019 		 * and then we fall through to point the head at us.
2020 		 */
2021 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2022 				       0, 0);
2023 		if (error)
2024 			return error;
2025 
2026 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2027 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2028 		offset = ip->i_imap.im_boffset +
2029 			offsetof(xfs_dinode_t, di_next_unlinked);
2030 
2031 		/* need to recalc the inode CRC if appropriate */
2032 		xfs_dinode_calc_crc(mp, dip);
2033 
2034 		xfs_trans_inode_buf(tp, ibp);
2035 		xfs_trans_log_buf(tp, ibp, offset,
2036 				  (offset + sizeof(xfs_agino_t) - 1));
2037 		xfs_inobp_check(mp, ibp);
2038 	}
2039 
2040 	/*
2041 	 * Point the bucket head pointer at the inode being inserted.
2042 	 */
2043 	ASSERT(agino != 0);
2044 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2045 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2046 		(sizeof(xfs_agino_t) * bucket_index);
2047 	xfs_trans_log_buf(tp, agibp, offset,
2048 			  (offset + sizeof(xfs_agino_t) - 1));
2049 	return 0;
2050 }
2051 
2052 /*
2053  * Pull the on-disk inode from the AGI unlinked list.
2054  */
2055 STATIC int
2056 xfs_iunlink_remove(
2057 	xfs_trans_t	*tp,
2058 	xfs_inode_t	*ip)
2059 {
2060 	xfs_ino_t	next_ino;
2061 	xfs_mount_t	*mp;
2062 	xfs_agi_t	*agi;
2063 	xfs_dinode_t	*dip;
2064 	xfs_buf_t	*agibp;
2065 	xfs_buf_t	*ibp;
2066 	xfs_agnumber_t	agno;
2067 	xfs_agino_t	agino;
2068 	xfs_agino_t	next_agino;
2069 	xfs_buf_t	*last_ibp;
2070 	xfs_dinode_t	*last_dip = NULL;
2071 	short		bucket_index;
2072 	int		offset, last_offset = 0;
2073 	int		error;
2074 
2075 	mp = tp->t_mountp;
2076 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2077 
2078 	/*
2079 	 * Get the agi buffer first.  It ensures lock ordering
2080 	 * on the list.
2081 	 */
2082 	error = xfs_read_agi(mp, tp, agno, &agibp);
2083 	if (error)
2084 		return error;
2085 
2086 	agi = XFS_BUF_TO_AGI(agibp);
2087 
2088 	/*
2089 	 * Get the index into the agi hash table for the
2090 	 * list this inode will go on.
2091 	 */
2092 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2093 	ASSERT(agino != 0);
2094 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2095 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2096 	ASSERT(agi->agi_unlinked[bucket_index]);
2097 
2098 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2099 		/*
2100 		 * We're at the head of the list.  Get the inode's on-disk
2101 		 * buffer to see if there is anyone after us on the list.
2102 		 * Only modify our next pointer if it is not already NULLAGINO.
2103 		 * This saves us the overhead of dealing with the buffer when
2104 		 * there is no need to change it.
2105 		 */
2106 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2107 				       0, 0);
2108 		if (error) {
2109 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2110 				__func__, error);
2111 			return error;
2112 		}
2113 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2114 		ASSERT(next_agino != 0);
2115 		if (next_agino != NULLAGINO) {
2116 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2117 			offset = ip->i_imap.im_boffset +
2118 				offsetof(xfs_dinode_t, di_next_unlinked);
2119 
2120 			/* need to recalc the inode CRC if appropriate */
2121 			xfs_dinode_calc_crc(mp, dip);
2122 
2123 			xfs_trans_inode_buf(tp, ibp);
2124 			xfs_trans_log_buf(tp, ibp, offset,
2125 					  (offset + sizeof(xfs_agino_t) - 1));
2126 			xfs_inobp_check(mp, ibp);
2127 		} else {
2128 			xfs_trans_brelse(tp, ibp);
2129 		}
2130 		/*
2131 		 * Point the bucket head pointer at the next inode.
2132 		 */
2133 		ASSERT(next_agino != 0);
2134 		ASSERT(next_agino != agino);
2135 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2136 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2137 			(sizeof(xfs_agino_t) * bucket_index);
2138 		xfs_trans_log_buf(tp, agibp, offset,
2139 				  (offset + sizeof(xfs_agino_t) - 1));
2140 	} else {
2141 		/*
2142 		 * We need to search the list for the inode being freed.
2143 		 */
2144 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2145 		last_ibp = NULL;
2146 		while (next_agino != agino) {
2147 			struct xfs_imap	imap;
2148 
2149 			if (last_ibp)
2150 				xfs_trans_brelse(tp, last_ibp);
2151 
2152 			imap.im_blkno = 0;
2153 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2154 
2155 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2156 			if (error) {
2157 				xfs_warn(mp,
2158 	"%s: xfs_imap returned error %d.",
2159 					 __func__, error);
2160 				return error;
2161 			}
2162 
2163 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2164 					       &last_ibp, 0, 0);
2165 			if (error) {
2166 				xfs_warn(mp,
2167 	"%s: xfs_imap_to_bp returned error %d.",
2168 					__func__, error);
2169 				return error;
2170 			}
2171 
2172 			last_offset = imap.im_boffset;
2173 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2174 			ASSERT(next_agino != NULLAGINO);
2175 			ASSERT(next_agino != 0);
2176 		}
2177 
2178 		/*
2179 		 * Now last_ibp points to the buffer previous to us on the
2180 		 * unlinked list.  Pull us from the list.
2181 		 */
2182 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2183 				       0, 0);
2184 		if (error) {
2185 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2186 				__func__, error);
2187 			return error;
2188 		}
2189 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2190 		ASSERT(next_agino != 0);
2191 		ASSERT(next_agino != agino);
2192 		if (next_agino != NULLAGINO) {
2193 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2194 			offset = ip->i_imap.im_boffset +
2195 				offsetof(xfs_dinode_t, di_next_unlinked);
2196 
2197 			/* need to recalc the inode CRC if appropriate */
2198 			xfs_dinode_calc_crc(mp, dip);
2199 
2200 			xfs_trans_inode_buf(tp, ibp);
2201 			xfs_trans_log_buf(tp, ibp, offset,
2202 					  (offset + sizeof(xfs_agino_t) - 1));
2203 			xfs_inobp_check(mp, ibp);
2204 		} else {
2205 			xfs_trans_brelse(tp, ibp);
2206 		}
2207 		/*
2208 		 * Point the previous inode on the list to the next inode.
2209 		 */
2210 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2211 		ASSERT(next_agino != 0);
2212 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2213 
2214 		/* need to recalc the inode CRC if appropriate */
2215 		xfs_dinode_calc_crc(mp, last_dip);
2216 
2217 		xfs_trans_inode_buf(tp, last_ibp);
2218 		xfs_trans_log_buf(tp, last_ibp, offset,
2219 				  (offset + sizeof(xfs_agino_t) - 1));
2220 		xfs_inobp_check(mp, last_ibp);
2221 	}
2222 	return 0;
2223 }
2224 
2225 /*
2226  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2227  * inodes that are in memory - they all must be marked stale and attached to
2228  * the cluster buffer.
2229  */
2230 STATIC int
2231 xfs_ifree_cluster(
2232 	xfs_inode_t		*free_ip,
2233 	xfs_trans_t		*tp,
2234 	struct xfs_icluster	*xic)
2235 {
2236 	xfs_mount_t		*mp = free_ip->i_mount;
2237 	int			blks_per_cluster;
2238 	int			inodes_per_cluster;
2239 	int			nbufs;
2240 	int			i, j;
2241 	int			ioffset;
2242 	xfs_daddr_t		blkno;
2243 	xfs_buf_t		*bp;
2244 	xfs_inode_t		*ip;
2245 	xfs_inode_log_item_t	*iip;
2246 	struct xfs_log_item	*lip;
2247 	struct xfs_perag	*pag;
2248 	xfs_ino_t		inum;
2249 
2250 	inum = xic->first_ino;
2251 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2252 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2253 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2254 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2255 
2256 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2257 		/*
2258 		 * The allocation bitmap tells us which inodes of the chunk were
2259 		 * physically allocated. Skip the cluster if an inode falls into
2260 		 * a sparse region.
2261 		 */
2262 		ioffset = inum - xic->first_ino;
2263 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2264 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2265 			continue;
2266 		}
2267 
2268 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2269 					 XFS_INO_TO_AGBNO(mp, inum));
2270 
2271 		/*
2272 		 * We obtain and lock the backing buffer first in the process
2273 		 * here, as we have to ensure that any dirty inode that we
2274 		 * can't get the flush lock on is attached to the buffer.
2275 		 * If we scan the in-memory inodes first, then buffer IO can
2276 		 * complete before we get a lock on it, and hence we may fail
2277 		 * to mark all the active inodes on the buffer stale.
2278 		 */
2279 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2280 					mp->m_bsize * blks_per_cluster,
2281 					XBF_UNMAPPED);
2282 
2283 		if (!bp)
2284 			return -ENOMEM;
2285 
2286 		/*
2287 		 * This buffer may not have been correctly initialised as we
2288 		 * didn't read it from disk. That's not important because we are
2289 		 * only using to mark the buffer as stale in the log, and to
2290 		 * attach stale cached inodes on it. That means it will never be
2291 		 * dispatched for IO. If it is, we want to know about it, and we
2292 		 * want it to fail. We can acheive this by adding a write
2293 		 * verifier to the buffer.
2294 		 */
2295 		 bp->b_ops = &xfs_inode_buf_ops;
2296 
2297 		/*
2298 		 * Walk the inodes already attached to the buffer and mark them
2299 		 * stale. These will all have the flush locks held, so an
2300 		 * in-memory inode walk can't lock them. By marking them all
2301 		 * stale first, we will not attempt to lock them in the loop
2302 		 * below as the XFS_ISTALE flag will be set.
2303 		 */
2304 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2305 			if (lip->li_type == XFS_LI_INODE) {
2306 				iip = (xfs_inode_log_item_t *)lip;
2307 				ASSERT(iip->ili_logged == 1);
2308 				lip->li_cb = xfs_istale_done;
2309 				xfs_trans_ail_copy_lsn(mp->m_ail,
2310 							&iip->ili_flush_lsn,
2311 							&iip->ili_item.li_lsn);
2312 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2313 			}
2314 		}
2315 
2316 
2317 		/*
2318 		 * For each inode in memory attempt to add it to the inode
2319 		 * buffer and set it up for being staled on buffer IO
2320 		 * completion.  This is safe as we've locked out tail pushing
2321 		 * and flushing by locking the buffer.
2322 		 *
2323 		 * We have already marked every inode that was part of a
2324 		 * transaction stale above, which means there is no point in
2325 		 * even trying to lock them.
2326 		 */
2327 		for (i = 0; i < inodes_per_cluster; i++) {
2328 retry:
2329 			rcu_read_lock();
2330 			ip = radix_tree_lookup(&pag->pag_ici_root,
2331 					XFS_INO_TO_AGINO(mp, (inum + i)));
2332 
2333 			/* Inode not in memory, nothing to do */
2334 			if (!ip) {
2335 				rcu_read_unlock();
2336 				continue;
2337 			}
2338 
2339 			/*
2340 			 * because this is an RCU protected lookup, we could
2341 			 * find a recently freed or even reallocated inode
2342 			 * during the lookup. We need to check under the
2343 			 * i_flags_lock for a valid inode here. Skip it if it
2344 			 * is not valid, the wrong inode or stale.
2345 			 */
2346 			spin_lock(&ip->i_flags_lock);
2347 			if (ip->i_ino != inum + i ||
2348 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2349 				spin_unlock(&ip->i_flags_lock);
2350 				rcu_read_unlock();
2351 				continue;
2352 			}
2353 			spin_unlock(&ip->i_flags_lock);
2354 
2355 			/*
2356 			 * Don't try to lock/unlock the current inode, but we
2357 			 * _cannot_ skip the other inodes that we did not find
2358 			 * in the list attached to the buffer and are not
2359 			 * already marked stale. If we can't lock it, back off
2360 			 * and retry.
2361 			 */
2362 			if (ip != free_ip) {
2363 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2364 					rcu_read_unlock();
2365 					delay(1);
2366 					goto retry;
2367 				}
2368 
2369 				/*
2370 				 * Check the inode number again in case we're
2371 				 * racing with freeing in xfs_reclaim_inode().
2372 				 * See the comments in that function for more
2373 				 * information as to why the initial check is
2374 				 * not sufficient.
2375 				 */
2376 				if (ip->i_ino != inum + i) {
2377 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2378 					rcu_read_unlock();
2379 					continue;
2380 				}
2381 			}
2382 			rcu_read_unlock();
2383 
2384 			xfs_iflock(ip);
2385 			xfs_iflags_set(ip, XFS_ISTALE);
2386 
2387 			/*
2388 			 * we don't need to attach clean inodes or those only
2389 			 * with unlogged changes (which we throw away, anyway).
2390 			 */
2391 			iip = ip->i_itemp;
2392 			if (!iip || xfs_inode_clean(ip)) {
2393 				ASSERT(ip != free_ip);
2394 				xfs_ifunlock(ip);
2395 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396 				continue;
2397 			}
2398 
2399 			iip->ili_last_fields = iip->ili_fields;
2400 			iip->ili_fields = 0;
2401 			iip->ili_fsync_fields = 0;
2402 			iip->ili_logged = 1;
2403 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2404 						&iip->ili_item.li_lsn);
2405 
2406 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2407 						  &iip->ili_item);
2408 
2409 			if (ip != free_ip)
2410 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2411 		}
2412 
2413 		xfs_trans_stale_inode_buf(tp, bp);
2414 		xfs_trans_binval(tp, bp);
2415 	}
2416 
2417 	xfs_perag_put(pag);
2418 	return 0;
2419 }
2420 
2421 /*
2422  * Free any local-format buffers sitting around before we reset to
2423  * extents format.
2424  */
2425 static inline void
2426 xfs_ifree_local_data(
2427 	struct xfs_inode	*ip,
2428 	int			whichfork)
2429 {
2430 	struct xfs_ifork	*ifp;
2431 
2432 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2433 		return;
2434 
2435 	ifp = XFS_IFORK_PTR(ip, whichfork);
2436 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2437 }
2438 
2439 /*
2440  * This is called to return an inode to the inode free list.
2441  * The inode should already be truncated to 0 length and have
2442  * no pages associated with it.  This routine also assumes that
2443  * the inode is already a part of the transaction.
2444  *
2445  * The on-disk copy of the inode will have been added to the list
2446  * of unlinked inodes in the AGI. We need to remove the inode from
2447  * that list atomically with respect to freeing it here.
2448  */
2449 int
2450 xfs_ifree(
2451 	xfs_trans_t	*tp,
2452 	xfs_inode_t	*ip,
2453 	struct xfs_defer_ops	*dfops)
2454 {
2455 	int			error;
2456 	struct xfs_icluster	xic = { 0 };
2457 
2458 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2459 	ASSERT(VFS_I(ip)->i_nlink == 0);
2460 	ASSERT(ip->i_d.di_nextents == 0);
2461 	ASSERT(ip->i_d.di_anextents == 0);
2462 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2463 	ASSERT(ip->i_d.di_nblocks == 0);
2464 
2465 	/*
2466 	 * Pull the on-disk inode from the AGI unlinked list.
2467 	 */
2468 	error = xfs_iunlink_remove(tp, ip);
2469 	if (error)
2470 		return error;
2471 
2472 	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2473 	if (error)
2474 		return error;
2475 
2476 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2477 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2478 
2479 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2480 	ip->i_d.di_flags = 0;
2481 	ip->i_d.di_flags2 = 0;
2482 	ip->i_d.di_dmevmask = 0;
2483 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2484 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2485 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2486 
2487 	/* Don't attempt to replay owner changes for a deleted inode */
2488 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2489 
2490 	/*
2491 	 * Bump the generation count so no one will be confused
2492 	 * by reincarnations of this inode.
2493 	 */
2494 	VFS_I(ip)->i_generation++;
2495 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2496 
2497 	if (xic.deleted)
2498 		error = xfs_ifree_cluster(ip, tp, &xic);
2499 
2500 	return error;
2501 }
2502 
2503 /*
2504  * This is called to unpin an inode.  The caller must have the inode locked
2505  * in at least shared mode so that the buffer cannot be subsequently pinned
2506  * once someone is waiting for it to be unpinned.
2507  */
2508 static void
2509 xfs_iunpin(
2510 	struct xfs_inode	*ip)
2511 {
2512 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2513 
2514 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2515 
2516 	/* Give the log a push to start the unpinning I/O */
2517 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2518 
2519 }
2520 
2521 static void
2522 __xfs_iunpin_wait(
2523 	struct xfs_inode	*ip)
2524 {
2525 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2526 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2527 
2528 	xfs_iunpin(ip);
2529 
2530 	do {
2531 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2532 		if (xfs_ipincount(ip))
2533 			io_schedule();
2534 	} while (xfs_ipincount(ip));
2535 	finish_wait(wq, &wait.wq_entry);
2536 }
2537 
2538 void
2539 xfs_iunpin_wait(
2540 	struct xfs_inode	*ip)
2541 {
2542 	if (xfs_ipincount(ip))
2543 		__xfs_iunpin_wait(ip);
2544 }
2545 
2546 /*
2547  * Removing an inode from the namespace involves removing the directory entry
2548  * and dropping the link count on the inode. Removing the directory entry can
2549  * result in locking an AGF (directory blocks were freed) and removing a link
2550  * count can result in placing the inode on an unlinked list which results in
2551  * locking an AGI.
2552  *
2553  * The big problem here is that we have an ordering constraint on AGF and AGI
2554  * locking - inode allocation locks the AGI, then can allocate a new extent for
2555  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2556  * removes the inode from the unlinked list, requiring that we lock the AGI
2557  * first, and then freeing the inode can result in an inode chunk being freed
2558  * and hence freeing disk space requiring that we lock an AGF.
2559  *
2560  * Hence the ordering that is imposed by other parts of the code is AGI before
2561  * AGF. This means we cannot remove the directory entry before we drop the inode
2562  * reference count and put it on the unlinked list as this results in a lock
2563  * order of AGF then AGI, and this can deadlock against inode allocation and
2564  * freeing. Therefore we must drop the link counts before we remove the
2565  * directory entry.
2566  *
2567  * This is still safe from a transactional point of view - it is not until we
2568  * get to xfs_defer_finish() that we have the possibility of multiple
2569  * transactions in this operation. Hence as long as we remove the directory
2570  * entry and drop the link count in the first transaction of the remove
2571  * operation, there are no transactional constraints on the ordering here.
2572  */
2573 int
2574 xfs_remove(
2575 	xfs_inode_t             *dp,
2576 	struct xfs_name		*name,
2577 	xfs_inode_t		*ip)
2578 {
2579 	xfs_mount_t		*mp = dp->i_mount;
2580 	xfs_trans_t             *tp = NULL;
2581 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2582 	int                     error = 0;
2583 	struct xfs_defer_ops	dfops;
2584 	xfs_fsblock_t           first_block;
2585 	uint			resblks;
2586 
2587 	trace_xfs_remove(dp, name);
2588 
2589 	if (XFS_FORCED_SHUTDOWN(mp))
2590 		return -EIO;
2591 
2592 	error = xfs_qm_dqattach(dp);
2593 	if (error)
2594 		goto std_return;
2595 
2596 	error = xfs_qm_dqattach(ip);
2597 	if (error)
2598 		goto std_return;
2599 
2600 	/*
2601 	 * We try to get the real space reservation first,
2602 	 * allowing for directory btree deletion(s) implying
2603 	 * possible bmap insert(s).  If we can't get the space
2604 	 * reservation then we use 0 instead, and avoid the bmap
2605 	 * btree insert(s) in the directory code by, if the bmap
2606 	 * insert tries to happen, instead trimming the LAST
2607 	 * block from the directory.
2608 	 */
2609 	resblks = XFS_REMOVE_SPACE_RES(mp);
2610 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2611 	if (error == -ENOSPC) {
2612 		resblks = 0;
2613 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2614 				&tp);
2615 	}
2616 	if (error) {
2617 		ASSERT(error != -ENOSPC);
2618 		goto std_return;
2619 	}
2620 
2621 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2622 
2623 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2624 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2625 
2626 	/*
2627 	 * If we're removing a directory perform some additional validation.
2628 	 */
2629 	if (is_dir) {
2630 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2631 		if (VFS_I(ip)->i_nlink != 2) {
2632 			error = -ENOTEMPTY;
2633 			goto out_trans_cancel;
2634 		}
2635 		if (!xfs_dir_isempty(ip)) {
2636 			error = -ENOTEMPTY;
2637 			goto out_trans_cancel;
2638 		}
2639 
2640 		/* Drop the link from ip's "..".  */
2641 		error = xfs_droplink(tp, dp);
2642 		if (error)
2643 			goto out_trans_cancel;
2644 
2645 		/* Drop the "." link from ip to self.  */
2646 		error = xfs_droplink(tp, ip);
2647 		if (error)
2648 			goto out_trans_cancel;
2649 	} else {
2650 		/*
2651 		 * When removing a non-directory we need to log the parent
2652 		 * inode here.  For a directory this is done implicitly
2653 		 * by the xfs_droplink call for the ".." entry.
2654 		 */
2655 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2656 	}
2657 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2658 
2659 	/* Drop the link from dp to ip. */
2660 	error = xfs_droplink(tp, ip);
2661 	if (error)
2662 		goto out_trans_cancel;
2663 
2664 	xfs_defer_init(&dfops, &first_block);
2665 	tp->t_agfl_dfops = &dfops;
2666 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2667 					&first_block, &dfops, resblks);
2668 	if (error) {
2669 		ASSERT(error != -ENOENT);
2670 		goto out_bmap_cancel;
2671 	}
2672 
2673 	/*
2674 	 * If this is a synchronous mount, make sure that the
2675 	 * remove transaction goes to disk before returning to
2676 	 * the user.
2677 	 */
2678 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2679 		xfs_trans_set_sync(tp);
2680 
2681 	error = xfs_defer_finish(&tp, &dfops);
2682 	if (error)
2683 		goto out_bmap_cancel;
2684 
2685 	error = xfs_trans_commit(tp);
2686 	if (error)
2687 		goto std_return;
2688 
2689 	if (is_dir && xfs_inode_is_filestream(ip))
2690 		xfs_filestream_deassociate(ip);
2691 
2692 	return 0;
2693 
2694  out_bmap_cancel:
2695 	xfs_defer_cancel(&dfops);
2696  out_trans_cancel:
2697 	xfs_trans_cancel(tp);
2698  std_return:
2699 	return error;
2700 }
2701 
2702 /*
2703  * Enter all inodes for a rename transaction into a sorted array.
2704  */
2705 #define __XFS_SORT_INODES	5
2706 STATIC void
2707 xfs_sort_for_rename(
2708 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2709 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2710 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2711 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2712 	struct xfs_inode	*wip,	/* in: whiteout inode */
2713 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2714 	int			*num_inodes)  /* in/out: inodes in array */
2715 {
2716 	int			i, j;
2717 
2718 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2719 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2720 
2721 	/*
2722 	 * i_tab contains a list of pointers to inodes.  We initialize
2723 	 * the table here & we'll sort it.  We will then use it to
2724 	 * order the acquisition of the inode locks.
2725 	 *
2726 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2727 	 */
2728 	i = 0;
2729 	i_tab[i++] = dp1;
2730 	i_tab[i++] = dp2;
2731 	i_tab[i++] = ip1;
2732 	if (ip2)
2733 		i_tab[i++] = ip2;
2734 	if (wip)
2735 		i_tab[i++] = wip;
2736 	*num_inodes = i;
2737 
2738 	/*
2739 	 * Sort the elements via bubble sort.  (Remember, there are at
2740 	 * most 5 elements to sort, so this is adequate.)
2741 	 */
2742 	for (i = 0; i < *num_inodes; i++) {
2743 		for (j = 1; j < *num_inodes; j++) {
2744 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2745 				struct xfs_inode *temp = i_tab[j];
2746 				i_tab[j] = i_tab[j-1];
2747 				i_tab[j-1] = temp;
2748 			}
2749 		}
2750 	}
2751 }
2752 
2753 static int
2754 xfs_finish_rename(
2755 	struct xfs_trans	*tp,
2756 	struct xfs_defer_ops	*dfops)
2757 {
2758 	int			error;
2759 
2760 	/*
2761 	 * If this is a synchronous mount, make sure that the rename transaction
2762 	 * goes to disk before returning to the user.
2763 	 */
2764 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2765 		xfs_trans_set_sync(tp);
2766 
2767 	error = xfs_defer_finish(&tp, dfops);
2768 	if (error) {
2769 		xfs_defer_cancel(dfops);
2770 		xfs_trans_cancel(tp);
2771 		return error;
2772 	}
2773 
2774 	return xfs_trans_commit(tp);
2775 }
2776 
2777 /*
2778  * xfs_cross_rename()
2779  *
2780  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2781  */
2782 STATIC int
2783 xfs_cross_rename(
2784 	struct xfs_trans	*tp,
2785 	struct xfs_inode	*dp1,
2786 	struct xfs_name		*name1,
2787 	struct xfs_inode	*ip1,
2788 	struct xfs_inode	*dp2,
2789 	struct xfs_name		*name2,
2790 	struct xfs_inode	*ip2,
2791 	struct xfs_defer_ops	*dfops,
2792 	xfs_fsblock_t		*first_block,
2793 	int			spaceres)
2794 {
2795 	int		error = 0;
2796 	int		ip1_flags = 0;
2797 	int		ip2_flags = 0;
2798 	int		dp2_flags = 0;
2799 
2800 	/* Swap inode number for dirent in first parent */
2801 	error = xfs_dir_replace(tp, dp1, name1,
2802 				ip2->i_ino,
2803 				first_block, dfops, spaceres);
2804 	if (error)
2805 		goto out_trans_abort;
2806 
2807 	/* Swap inode number for dirent in second parent */
2808 	error = xfs_dir_replace(tp, dp2, name2,
2809 				ip1->i_ino,
2810 				first_block, dfops, spaceres);
2811 	if (error)
2812 		goto out_trans_abort;
2813 
2814 	/*
2815 	 * If we're renaming one or more directories across different parents,
2816 	 * update the respective ".." entries (and link counts) to match the new
2817 	 * parents.
2818 	 */
2819 	if (dp1 != dp2) {
2820 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2821 
2822 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2823 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2824 						dp1->i_ino, first_block,
2825 						dfops, spaceres);
2826 			if (error)
2827 				goto out_trans_abort;
2828 
2829 			/* transfer ip2 ".." reference to dp1 */
2830 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2831 				error = xfs_droplink(tp, dp2);
2832 				if (error)
2833 					goto out_trans_abort;
2834 				error = xfs_bumplink(tp, dp1);
2835 				if (error)
2836 					goto out_trans_abort;
2837 			}
2838 
2839 			/*
2840 			 * Although ip1 isn't changed here, userspace needs
2841 			 * to be warned about the change, so that applications
2842 			 * relying on it (like backup ones), will properly
2843 			 * notify the change
2844 			 */
2845 			ip1_flags |= XFS_ICHGTIME_CHG;
2846 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2847 		}
2848 
2849 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2850 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2851 						dp2->i_ino, first_block,
2852 						dfops, spaceres);
2853 			if (error)
2854 				goto out_trans_abort;
2855 
2856 			/* transfer ip1 ".." reference to dp2 */
2857 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2858 				error = xfs_droplink(tp, dp1);
2859 				if (error)
2860 					goto out_trans_abort;
2861 				error = xfs_bumplink(tp, dp2);
2862 				if (error)
2863 					goto out_trans_abort;
2864 			}
2865 
2866 			/*
2867 			 * Although ip2 isn't changed here, userspace needs
2868 			 * to be warned about the change, so that applications
2869 			 * relying on it (like backup ones), will properly
2870 			 * notify the change
2871 			 */
2872 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2873 			ip2_flags |= XFS_ICHGTIME_CHG;
2874 		}
2875 	}
2876 
2877 	if (ip1_flags) {
2878 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2879 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2880 	}
2881 	if (ip2_flags) {
2882 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2883 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2884 	}
2885 	if (dp2_flags) {
2886 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2887 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2888 	}
2889 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2890 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2891 	return xfs_finish_rename(tp, dfops);
2892 
2893 out_trans_abort:
2894 	xfs_defer_cancel(dfops);
2895 	xfs_trans_cancel(tp);
2896 	return error;
2897 }
2898 
2899 /*
2900  * xfs_rename_alloc_whiteout()
2901  *
2902  * Return a referenced, unlinked, unlocked inode that that can be used as a
2903  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2904  * crash between allocating the inode and linking it into the rename transaction
2905  * recovery will free the inode and we won't leak it.
2906  */
2907 static int
2908 xfs_rename_alloc_whiteout(
2909 	struct xfs_inode	*dp,
2910 	struct xfs_inode	**wip)
2911 {
2912 	struct xfs_inode	*tmpfile;
2913 	int			error;
2914 
2915 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2916 	if (error)
2917 		return error;
2918 
2919 	/*
2920 	 * Prepare the tmpfile inode as if it were created through the VFS.
2921 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2922 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2923 	 * and flag it as linkable.
2924 	 */
2925 	drop_nlink(VFS_I(tmpfile));
2926 	xfs_setup_iops(tmpfile);
2927 	xfs_finish_inode_setup(tmpfile);
2928 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2929 
2930 	*wip = tmpfile;
2931 	return 0;
2932 }
2933 
2934 /*
2935  * xfs_rename
2936  */
2937 int
2938 xfs_rename(
2939 	struct xfs_inode	*src_dp,
2940 	struct xfs_name		*src_name,
2941 	struct xfs_inode	*src_ip,
2942 	struct xfs_inode	*target_dp,
2943 	struct xfs_name		*target_name,
2944 	struct xfs_inode	*target_ip,
2945 	unsigned int		flags)
2946 {
2947 	struct xfs_mount	*mp = src_dp->i_mount;
2948 	struct xfs_trans	*tp;
2949 	struct xfs_defer_ops	dfops;
2950 	xfs_fsblock_t		first_block;
2951 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2952 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2953 	int			num_inodes = __XFS_SORT_INODES;
2954 	bool			new_parent = (src_dp != target_dp);
2955 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2956 	int			spaceres;
2957 	int			error;
2958 
2959 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2960 
2961 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2962 		return -EINVAL;
2963 
2964 	/*
2965 	 * If we are doing a whiteout operation, allocate the whiteout inode
2966 	 * we will be placing at the target and ensure the type is set
2967 	 * appropriately.
2968 	 */
2969 	if (flags & RENAME_WHITEOUT) {
2970 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2971 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2972 		if (error)
2973 			return error;
2974 
2975 		/* setup target dirent info as whiteout */
2976 		src_name->type = XFS_DIR3_FT_CHRDEV;
2977 	}
2978 
2979 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2980 				inodes, &num_inodes);
2981 
2982 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2983 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2984 	if (error == -ENOSPC) {
2985 		spaceres = 0;
2986 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2987 				&tp);
2988 	}
2989 	if (error)
2990 		goto out_release_wip;
2991 
2992 	/*
2993 	 * Attach the dquots to the inodes
2994 	 */
2995 	error = xfs_qm_vop_rename_dqattach(inodes);
2996 	if (error)
2997 		goto out_trans_cancel;
2998 
2999 	/*
3000 	 * Lock all the participating inodes. Depending upon whether
3001 	 * the target_name exists in the target directory, and
3002 	 * whether the target directory is the same as the source
3003 	 * directory, we can lock from 2 to 4 inodes.
3004 	 */
3005 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3006 
3007 	/*
3008 	 * Join all the inodes to the transaction. From this point on,
3009 	 * we can rely on either trans_commit or trans_cancel to unlock
3010 	 * them.
3011 	 */
3012 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3013 	if (new_parent)
3014 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3015 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3016 	if (target_ip)
3017 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3018 	if (wip)
3019 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3020 
3021 	/*
3022 	 * If we are using project inheritance, we only allow renames
3023 	 * into our tree when the project IDs are the same; else the
3024 	 * tree quota mechanism would be circumvented.
3025 	 */
3026 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3027 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3028 		error = -EXDEV;
3029 		goto out_trans_cancel;
3030 	}
3031 
3032 	xfs_defer_init(&dfops, &first_block);
3033 	tp->t_agfl_dfops = &dfops;
3034 
3035 	/* RENAME_EXCHANGE is unique from here on. */
3036 	if (flags & RENAME_EXCHANGE)
3037 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3038 					target_dp, target_name, target_ip,
3039 					&dfops, &first_block, spaceres);
3040 
3041 	/*
3042 	 * Set up the target.
3043 	 */
3044 	if (target_ip == NULL) {
3045 		/*
3046 		 * If there's no space reservation, check the entry will
3047 		 * fit before actually inserting it.
3048 		 */
3049 		if (!spaceres) {
3050 			error = xfs_dir_canenter(tp, target_dp, target_name);
3051 			if (error)
3052 				goto out_trans_cancel;
3053 		}
3054 		/*
3055 		 * If target does not exist and the rename crosses
3056 		 * directories, adjust the target directory link count
3057 		 * to account for the ".." reference from the new entry.
3058 		 */
3059 		error = xfs_dir_createname(tp, target_dp, target_name,
3060 						src_ip->i_ino, &first_block,
3061 						&dfops, spaceres);
3062 		if (error)
3063 			goto out_bmap_cancel;
3064 
3065 		xfs_trans_ichgtime(tp, target_dp,
3066 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3067 
3068 		if (new_parent && src_is_directory) {
3069 			error = xfs_bumplink(tp, target_dp);
3070 			if (error)
3071 				goto out_bmap_cancel;
3072 		}
3073 	} else { /* target_ip != NULL */
3074 		/*
3075 		 * If target exists and it's a directory, check that both
3076 		 * target and source are directories and that target can be
3077 		 * destroyed, or that neither is a directory.
3078 		 */
3079 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3080 			/*
3081 			 * Make sure target dir is empty.
3082 			 */
3083 			if (!(xfs_dir_isempty(target_ip)) ||
3084 			    (VFS_I(target_ip)->i_nlink > 2)) {
3085 				error = -EEXIST;
3086 				goto out_trans_cancel;
3087 			}
3088 		}
3089 
3090 		/*
3091 		 * Link the source inode under the target name.
3092 		 * If the source inode is a directory and we are moving
3093 		 * it across directories, its ".." entry will be
3094 		 * inconsistent until we replace that down below.
3095 		 *
3096 		 * In case there is already an entry with the same
3097 		 * name at the destination directory, remove it first.
3098 		 */
3099 		error = xfs_dir_replace(tp, target_dp, target_name,
3100 					src_ip->i_ino,
3101 					&first_block, &dfops, spaceres);
3102 		if (error)
3103 			goto out_bmap_cancel;
3104 
3105 		xfs_trans_ichgtime(tp, target_dp,
3106 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3107 
3108 		/*
3109 		 * Decrement the link count on the target since the target
3110 		 * dir no longer points to it.
3111 		 */
3112 		error = xfs_droplink(tp, target_ip);
3113 		if (error)
3114 			goto out_bmap_cancel;
3115 
3116 		if (src_is_directory) {
3117 			/*
3118 			 * Drop the link from the old "." entry.
3119 			 */
3120 			error = xfs_droplink(tp, target_ip);
3121 			if (error)
3122 				goto out_bmap_cancel;
3123 		}
3124 	} /* target_ip != NULL */
3125 
3126 	/*
3127 	 * Remove the source.
3128 	 */
3129 	if (new_parent && src_is_directory) {
3130 		/*
3131 		 * Rewrite the ".." entry to point to the new
3132 		 * directory.
3133 		 */
3134 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3135 					target_dp->i_ino,
3136 					&first_block, &dfops, spaceres);
3137 		ASSERT(error != -EEXIST);
3138 		if (error)
3139 			goto out_bmap_cancel;
3140 	}
3141 
3142 	/*
3143 	 * We always want to hit the ctime on the source inode.
3144 	 *
3145 	 * This isn't strictly required by the standards since the source
3146 	 * inode isn't really being changed, but old unix file systems did
3147 	 * it and some incremental backup programs won't work without it.
3148 	 */
3149 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3150 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3151 
3152 	/*
3153 	 * Adjust the link count on src_dp.  This is necessary when
3154 	 * renaming a directory, either within one parent when
3155 	 * the target existed, or across two parent directories.
3156 	 */
3157 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3158 
3159 		/*
3160 		 * Decrement link count on src_directory since the
3161 		 * entry that's moved no longer points to it.
3162 		 */
3163 		error = xfs_droplink(tp, src_dp);
3164 		if (error)
3165 			goto out_bmap_cancel;
3166 	}
3167 
3168 	/*
3169 	 * For whiteouts, we only need to update the source dirent with the
3170 	 * inode number of the whiteout inode rather than removing it
3171 	 * altogether.
3172 	 */
3173 	if (wip) {
3174 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3175 					&first_block, &dfops, spaceres);
3176 	} else
3177 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3178 					   &first_block, &dfops, spaceres);
3179 	if (error)
3180 		goto out_bmap_cancel;
3181 
3182 	/*
3183 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3184 	 * This means that failures all the way up to this point leave the inode
3185 	 * on the unlinked list and so cleanup is a simple matter of dropping
3186 	 * the remaining reference to it. If we fail here after bumping the link
3187 	 * count, we're shutting down the filesystem so we'll never see the
3188 	 * intermediate state on disk.
3189 	 */
3190 	if (wip) {
3191 		ASSERT(VFS_I(wip)->i_nlink == 0);
3192 		error = xfs_bumplink(tp, wip);
3193 		if (error)
3194 			goto out_bmap_cancel;
3195 		error = xfs_iunlink_remove(tp, wip);
3196 		if (error)
3197 			goto out_bmap_cancel;
3198 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3199 
3200 		/*
3201 		 * Now we have a real link, clear the "I'm a tmpfile" state
3202 		 * flag from the inode so it doesn't accidentally get misused in
3203 		 * future.
3204 		 */
3205 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3206 	}
3207 
3208 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3209 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3210 	if (new_parent)
3211 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3212 
3213 	error = xfs_finish_rename(tp, &dfops);
3214 	if (wip)
3215 		IRELE(wip);
3216 	return error;
3217 
3218 out_bmap_cancel:
3219 	xfs_defer_cancel(&dfops);
3220 out_trans_cancel:
3221 	xfs_trans_cancel(tp);
3222 out_release_wip:
3223 	if (wip)
3224 		IRELE(wip);
3225 	return error;
3226 }
3227 
3228 STATIC int
3229 xfs_iflush_cluster(
3230 	struct xfs_inode	*ip,
3231 	struct xfs_buf		*bp)
3232 {
3233 	struct xfs_mount	*mp = ip->i_mount;
3234 	struct xfs_perag	*pag;
3235 	unsigned long		first_index, mask;
3236 	unsigned long		inodes_per_cluster;
3237 	int			cilist_size;
3238 	struct xfs_inode	**cilist;
3239 	struct xfs_inode	*cip;
3240 	int			nr_found;
3241 	int			clcount = 0;
3242 	int			bufwasdelwri;
3243 	int			i;
3244 
3245 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3246 
3247 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3248 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3249 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3250 	if (!cilist)
3251 		goto out_put;
3252 
3253 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3254 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3255 	rcu_read_lock();
3256 	/* really need a gang lookup range call here */
3257 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3258 					first_index, inodes_per_cluster);
3259 	if (nr_found == 0)
3260 		goto out_free;
3261 
3262 	for (i = 0; i < nr_found; i++) {
3263 		cip = cilist[i];
3264 		if (cip == ip)
3265 			continue;
3266 
3267 		/*
3268 		 * because this is an RCU protected lookup, we could find a
3269 		 * recently freed or even reallocated inode during the lookup.
3270 		 * We need to check under the i_flags_lock for a valid inode
3271 		 * here. Skip it if it is not valid or the wrong inode.
3272 		 */
3273 		spin_lock(&cip->i_flags_lock);
3274 		if (!cip->i_ino ||
3275 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3276 			spin_unlock(&cip->i_flags_lock);
3277 			continue;
3278 		}
3279 
3280 		/*
3281 		 * Once we fall off the end of the cluster, no point checking
3282 		 * any more inodes in the list because they will also all be
3283 		 * outside the cluster.
3284 		 */
3285 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3286 			spin_unlock(&cip->i_flags_lock);
3287 			break;
3288 		}
3289 		spin_unlock(&cip->i_flags_lock);
3290 
3291 		/*
3292 		 * Do an un-protected check to see if the inode is dirty and
3293 		 * is a candidate for flushing.  These checks will be repeated
3294 		 * later after the appropriate locks are acquired.
3295 		 */
3296 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3297 			continue;
3298 
3299 		/*
3300 		 * Try to get locks.  If any are unavailable or it is pinned,
3301 		 * then this inode cannot be flushed and is skipped.
3302 		 */
3303 
3304 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3305 			continue;
3306 		if (!xfs_iflock_nowait(cip)) {
3307 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3308 			continue;
3309 		}
3310 		if (xfs_ipincount(cip)) {
3311 			xfs_ifunlock(cip);
3312 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3313 			continue;
3314 		}
3315 
3316 
3317 		/*
3318 		 * Check the inode number again, just to be certain we are not
3319 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3320 		 * in that function for more information as to why the initial
3321 		 * check is not sufficient.
3322 		 */
3323 		if (!cip->i_ino) {
3324 			xfs_ifunlock(cip);
3325 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3326 			continue;
3327 		}
3328 
3329 		/*
3330 		 * arriving here means that this inode can be flushed.  First
3331 		 * re-check that it's dirty before flushing.
3332 		 */
3333 		if (!xfs_inode_clean(cip)) {
3334 			int	error;
3335 			error = xfs_iflush_int(cip, bp);
3336 			if (error) {
3337 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3338 				goto cluster_corrupt_out;
3339 			}
3340 			clcount++;
3341 		} else {
3342 			xfs_ifunlock(cip);
3343 		}
3344 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3345 	}
3346 
3347 	if (clcount) {
3348 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3349 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3350 	}
3351 
3352 out_free:
3353 	rcu_read_unlock();
3354 	kmem_free(cilist);
3355 out_put:
3356 	xfs_perag_put(pag);
3357 	return 0;
3358 
3359 
3360 cluster_corrupt_out:
3361 	/*
3362 	 * Corruption detected in the clustering loop.  Invalidate the
3363 	 * inode buffer and shut down the filesystem.
3364 	 */
3365 	rcu_read_unlock();
3366 	/*
3367 	 * Clean up the buffer.  If it was delwri, just release it --
3368 	 * brelse can handle it with no problems.  If not, shut down the
3369 	 * filesystem before releasing the buffer.
3370 	 */
3371 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3372 	if (bufwasdelwri)
3373 		xfs_buf_relse(bp);
3374 
3375 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3376 
3377 	if (!bufwasdelwri) {
3378 		/*
3379 		 * Just like incore_relse: if we have b_iodone functions,
3380 		 * mark the buffer as an error and call them.  Otherwise
3381 		 * mark it as stale and brelse.
3382 		 */
3383 		if (bp->b_iodone) {
3384 			bp->b_flags &= ~XBF_DONE;
3385 			xfs_buf_stale(bp);
3386 			xfs_buf_ioerror(bp, -EIO);
3387 			xfs_buf_ioend(bp);
3388 		} else {
3389 			xfs_buf_stale(bp);
3390 			xfs_buf_relse(bp);
3391 		}
3392 	}
3393 
3394 	/*
3395 	 * Unlocks the flush lock
3396 	 */
3397 	xfs_iflush_abort(cip, false);
3398 	kmem_free(cilist);
3399 	xfs_perag_put(pag);
3400 	return -EFSCORRUPTED;
3401 }
3402 
3403 /*
3404  * Flush dirty inode metadata into the backing buffer.
3405  *
3406  * The caller must have the inode lock and the inode flush lock held.  The
3407  * inode lock will still be held upon return to the caller, and the inode
3408  * flush lock will be released after the inode has reached the disk.
3409  *
3410  * The caller must write out the buffer returned in *bpp and release it.
3411  */
3412 int
3413 xfs_iflush(
3414 	struct xfs_inode	*ip,
3415 	struct xfs_buf		**bpp)
3416 {
3417 	struct xfs_mount	*mp = ip->i_mount;
3418 	struct xfs_buf		*bp = NULL;
3419 	struct xfs_dinode	*dip;
3420 	int			error;
3421 
3422 	XFS_STATS_INC(mp, xs_iflush_count);
3423 
3424 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3425 	ASSERT(xfs_isiflocked(ip));
3426 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3427 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3428 
3429 	*bpp = NULL;
3430 
3431 	xfs_iunpin_wait(ip);
3432 
3433 	/*
3434 	 * For stale inodes we cannot rely on the backing buffer remaining
3435 	 * stale in cache for the remaining life of the stale inode and so
3436 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3437 	 * inodes below. We have to check this after ensuring the inode is
3438 	 * unpinned so that it is safe to reclaim the stale inode after the
3439 	 * flush call.
3440 	 */
3441 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3442 		xfs_ifunlock(ip);
3443 		return 0;
3444 	}
3445 
3446 	/*
3447 	 * This may have been unpinned because the filesystem is shutting
3448 	 * down forcibly. If that's the case we must not write this inode
3449 	 * to disk, because the log record didn't make it to disk.
3450 	 *
3451 	 * We also have to remove the log item from the AIL in this case,
3452 	 * as we wait for an empty AIL as part of the unmount process.
3453 	 */
3454 	if (XFS_FORCED_SHUTDOWN(mp)) {
3455 		error = -EIO;
3456 		goto abort_out;
3457 	}
3458 
3459 	/*
3460 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3461 	 * operation here, so we may get  an EAGAIN error. In that case, we
3462 	 * simply want to return with the inode still dirty.
3463 	 *
3464 	 * If we get any other error, we effectively have a corruption situation
3465 	 * and we cannot flush the inode, so we treat it the same as failing
3466 	 * xfs_iflush_int().
3467 	 */
3468 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3469 			       0);
3470 	if (error == -EAGAIN) {
3471 		xfs_ifunlock(ip);
3472 		return error;
3473 	}
3474 	if (error)
3475 		goto corrupt_out;
3476 
3477 	/*
3478 	 * First flush out the inode that xfs_iflush was called with.
3479 	 */
3480 	error = xfs_iflush_int(ip, bp);
3481 	if (error)
3482 		goto corrupt_out;
3483 
3484 	/*
3485 	 * If the buffer is pinned then push on the log now so we won't
3486 	 * get stuck waiting in the write for too long.
3487 	 */
3488 	if (xfs_buf_ispinned(bp))
3489 		xfs_log_force(mp, 0);
3490 
3491 	/*
3492 	 * inode clustering:
3493 	 * see if other inodes can be gathered into this write
3494 	 */
3495 	error = xfs_iflush_cluster(ip, bp);
3496 	if (error)
3497 		goto cluster_corrupt_out;
3498 
3499 	*bpp = bp;
3500 	return 0;
3501 
3502 corrupt_out:
3503 	if (bp)
3504 		xfs_buf_relse(bp);
3505 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3506 cluster_corrupt_out:
3507 	error = -EFSCORRUPTED;
3508 abort_out:
3509 	/*
3510 	 * Unlocks the flush lock
3511 	 */
3512 	xfs_iflush_abort(ip, false);
3513 	return error;
3514 }
3515 
3516 /*
3517  * If there are inline format data / attr forks attached to this inode,
3518  * make sure they're not corrupt.
3519  */
3520 bool
3521 xfs_inode_verify_forks(
3522 	struct xfs_inode	*ip)
3523 {
3524 	struct xfs_ifork	*ifp;
3525 	xfs_failaddr_t		fa;
3526 
3527 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3528 	if (fa) {
3529 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3530 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3531 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3532 		return false;
3533 	}
3534 
3535 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3536 	if (fa) {
3537 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3538 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3539 				ifp ? ifp->if_u1.if_data : NULL,
3540 				ifp ? ifp->if_bytes : 0, fa);
3541 		return false;
3542 	}
3543 	return true;
3544 }
3545 
3546 STATIC int
3547 xfs_iflush_int(
3548 	struct xfs_inode	*ip,
3549 	struct xfs_buf		*bp)
3550 {
3551 	struct xfs_inode_log_item *iip = ip->i_itemp;
3552 	struct xfs_dinode	*dip;
3553 	struct xfs_mount	*mp = ip->i_mount;
3554 
3555 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3556 	ASSERT(xfs_isiflocked(ip));
3557 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3558 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3559 	ASSERT(iip != NULL && iip->ili_fields != 0);
3560 	ASSERT(ip->i_d.di_version > 1);
3561 
3562 	/* set *dip = inode's place in the buffer */
3563 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3564 
3565 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3566 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3567 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3568 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3569 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3570 		goto corrupt_out;
3571 	}
3572 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3573 		if (XFS_TEST_ERROR(
3574 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3575 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3576 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3577 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3578 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3579 				__func__, ip->i_ino, ip);
3580 			goto corrupt_out;
3581 		}
3582 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3583 		if (XFS_TEST_ERROR(
3584 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3585 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3586 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3587 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3588 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3589 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3590 				__func__, ip->i_ino, ip);
3591 			goto corrupt_out;
3592 		}
3593 	}
3594 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3595 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3596 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3597 			"%s: detected corrupt incore inode %Lu, "
3598 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3599 			__func__, ip->i_ino,
3600 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3601 			ip->i_d.di_nblocks, ip);
3602 		goto corrupt_out;
3603 	}
3604 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3605 				mp, XFS_ERRTAG_IFLUSH_6)) {
3606 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3607 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3608 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3609 		goto corrupt_out;
3610 	}
3611 
3612 	/*
3613 	 * Inode item log recovery for v2 inodes are dependent on the
3614 	 * di_flushiter count for correct sequencing. We bump the flush
3615 	 * iteration count so we can detect flushes which postdate a log record
3616 	 * during recovery. This is redundant as we now log every change and
3617 	 * hence this can't happen but we need to still do it to ensure
3618 	 * backwards compatibility with old kernels that predate logging all
3619 	 * inode changes.
3620 	 */
3621 	if (ip->i_d.di_version < 3)
3622 		ip->i_d.di_flushiter++;
3623 
3624 	/* Check the inline fork data before we write out. */
3625 	if (!xfs_inode_verify_forks(ip))
3626 		goto corrupt_out;
3627 
3628 	/*
3629 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3630 	 * copy out the core of the inode, because if the inode is dirty at all
3631 	 * the core must be.
3632 	 */
3633 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3634 
3635 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3636 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3637 		ip->i_d.di_flushiter = 0;
3638 
3639 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3640 	if (XFS_IFORK_Q(ip))
3641 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3642 	xfs_inobp_check(mp, bp);
3643 
3644 	/*
3645 	 * We've recorded everything logged in the inode, so we'd like to clear
3646 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3647 	 * However, we can't stop logging all this information until the data
3648 	 * we've copied into the disk buffer is written to disk.  If we did we
3649 	 * might overwrite the copy of the inode in the log with all the data
3650 	 * after re-logging only part of it, and in the face of a crash we
3651 	 * wouldn't have all the data we need to recover.
3652 	 *
3653 	 * What we do is move the bits to the ili_last_fields field.  When
3654 	 * logging the inode, these bits are moved back to the ili_fields field.
3655 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3656 	 * know that the information those bits represent is permanently on
3657 	 * disk.  As long as the flush completes before the inode is logged
3658 	 * again, then both ili_fields and ili_last_fields will be cleared.
3659 	 *
3660 	 * We can play with the ili_fields bits here, because the inode lock
3661 	 * must be held exclusively in order to set bits there and the flush
3662 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3663 	 * done routine can tell whether or not to look in the AIL.  Also, store
3664 	 * the current LSN of the inode so that we can tell whether the item has
3665 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3666 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3667 	 * atomically.
3668 	 */
3669 	iip->ili_last_fields = iip->ili_fields;
3670 	iip->ili_fields = 0;
3671 	iip->ili_fsync_fields = 0;
3672 	iip->ili_logged = 1;
3673 
3674 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3675 				&iip->ili_item.li_lsn);
3676 
3677 	/*
3678 	 * Attach the function xfs_iflush_done to the inode's
3679 	 * buffer.  This will remove the inode from the AIL
3680 	 * and unlock the inode's flush lock when the inode is
3681 	 * completely written to disk.
3682 	 */
3683 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3684 
3685 	/* generate the checksum. */
3686 	xfs_dinode_calc_crc(mp, dip);
3687 
3688 	ASSERT(!list_empty(&bp->b_li_list));
3689 	ASSERT(bp->b_iodone != NULL);
3690 	return 0;
3691 
3692 corrupt_out:
3693 	return -EFSCORRUPTED;
3694 }
3695