xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision a531b0c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 
39 struct kmem_cache *xfs_inode_cache;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 	struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	/*
59 	 * No point in aligning allocations if we need to COW to actually
60 	 * write to them.
61 	 */
62 	if (xfs_is_always_cow_inode(ip))
63 		return 0;
64 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 		return ip->i_extsize;
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return ip->i_mount->m_sb.sb_rextsize;
68 	return 0;
69 }
70 
71 /*
72  * Helper function to extract CoW extent size hint from inode.
73  * Between the extent size hint and the CoW extent size hint, we
74  * return the greater of the two.  If the value is zero (automatic),
75  * use the default size.
76  */
77 xfs_extlen_t
78 xfs_get_cowextsz_hint(
79 	struct xfs_inode	*ip)
80 {
81 	xfs_extlen_t		a, b;
82 
83 	a = 0;
84 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 		a = ip->i_cowextsize;
86 	b = xfs_get_extsz_hint(ip);
87 
88 	a = max(a, b);
89 	if (a == 0)
90 		return XFS_DEFAULT_COWEXTSZ_HINT;
91 	return a;
92 }
93 
94 /*
95  * These two are wrapper routines around the xfs_ilock() routine used to
96  * centralize some grungy code.  They are used in places that wish to lock the
97  * inode solely for reading the extents.  The reason these places can't just
98  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99  * bringing in of the extents from disk for a file in b-tree format.  If the
100  * inode is in b-tree format, then we need to lock the inode exclusively until
101  * the extents are read in.  Locking it exclusively all the time would limit
102  * our parallelism unnecessarily, though.  What we do instead is check to see
103  * if the extents have been read in yet, and only lock the inode exclusively
104  * if they have not.
105  *
106  * The functions return a value which should be given to the corresponding
107  * xfs_iunlock() call.
108  */
109 uint
110 xfs_ilock_data_map_shared(
111 	struct xfs_inode	*ip)
112 {
113 	uint			lock_mode = XFS_ILOCK_SHARED;
114 
115 	if (xfs_need_iread_extents(&ip->i_df))
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 		lock_mode = XFS_ILOCK_EXCL;
129 	xfs_ilock(ip, lock_mode);
130 	return lock_mode;
131 }
132 
133 /*
134  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
136  * various combinations of the locks to be obtained.
137  *
138  * The 3 locks should always be ordered so that the IO lock is obtained first,
139  * the mmap lock second and the ilock last in order to prevent deadlock.
140  *
141  * Basic locking order:
142  *
143  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
144  *
145  * mmap_lock locking order:
146  *
147  * i_rwsem -> page lock -> mmap_lock
148  * mmap_lock -> invalidate_lock -> page_lock
149  *
150  * The difference in mmap_lock locking order mean that we cannot hold the
151  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
152  * can fault in pages during copy in/out (for buffered IO) or require the
153  * mmap_lock in get_user_pages() to map the user pages into the kernel address
154  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
155  * fault because page faults already hold the mmap_lock.
156  *
157  * Hence to serialise fully against both syscall and mmap based IO, we need to
158  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
159  * both taken in places where we need to invalidate the page cache in a race
160  * free manner (e.g. truncate, hole punch and other extent manipulation
161  * functions).
162  */
163 void
164 xfs_ilock(
165 	xfs_inode_t		*ip,
166 	uint			lock_flags)
167 {
168 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169 
170 	/*
171 	 * You can't set both SHARED and EXCL for the same lock,
172 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 	 */
175 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182 
183 	if (lock_flags & XFS_IOLOCK_EXCL) {
184 		down_write_nested(&VFS_I(ip)->i_rwsem,
185 				  XFS_IOLOCK_DEP(lock_flags));
186 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
187 		down_read_nested(&VFS_I(ip)->i_rwsem,
188 				 XFS_IOLOCK_DEP(lock_flags));
189 	}
190 
191 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
192 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
193 				  XFS_MMAPLOCK_DEP(lock_flags));
194 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
195 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
196 				 XFS_MMAPLOCK_DEP(lock_flags));
197 	}
198 
199 	if (lock_flags & XFS_ILOCK_EXCL)
200 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 	else if (lock_flags & XFS_ILOCK_SHARED)
202 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203 }
204 
205 /*
206  * This is just like xfs_ilock(), except that the caller
207  * is guaranteed not to sleep.  It returns 1 if it gets
208  * the requested locks and 0 otherwise.  If the IO lock is
209  * obtained but the inode lock cannot be, then the IO lock
210  * is dropped before returning.
211  *
212  * ip -- the inode being locked
213  * lock_flags -- this parameter indicates the inode's locks to be
214  *       to be locked.  See the comment for xfs_ilock() for a list
215  *	 of valid values.
216  */
217 int
218 xfs_ilock_nowait(
219 	xfs_inode_t		*ip,
220 	uint			lock_flags)
221 {
222 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223 
224 	/*
225 	 * You can't set both SHARED and EXCL for the same lock,
226 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 	 */
229 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
231 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
233 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
235 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 
237 	if (lock_flags & XFS_IOLOCK_EXCL) {
238 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 			goto out;
240 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 			goto out;
243 	}
244 
245 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 			goto out_undo_iolock;
248 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 			goto out_undo_iolock;
251 	}
252 
253 	if (lock_flags & XFS_ILOCK_EXCL) {
254 		if (!mrtryupdate(&ip->i_lock))
255 			goto out_undo_mmaplock;
256 	} else if (lock_flags & XFS_ILOCK_SHARED) {
257 		if (!mrtryaccess(&ip->i_lock))
258 			goto out_undo_mmaplock;
259 	}
260 	return 1;
261 
262 out_undo_mmaplock:
263 	if (lock_flags & XFS_MMAPLOCK_EXCL)
264 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 	if (lock_flags & XFS_IOLOCK_EXCL)
269 		up_write(&VFS_I(ip)->i_rwsem);
270 	else if (lock_flags & XFS_IOLOCK_SHARED)
271 		up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 	return 0;
274 }
275 
276 /*
277  * xfs_iunlock() is used to drop the inode locks acquired with
278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280  * that we know which locks to drop.
281  *
282  * ip -- the inode being unlocked
283  * lock_flags -- this parameter indicates the inode's locks to be
284  *       to be unlocked.  See the comment for xfs_ilock() for a list
285  *	 of valid values for this parameter.
286  *
287  */
288 void
289 xfs_iunlock(
290 	xfs_inode_t		*ip,
291 	uint			lock_flags)
292 {
293 	/*
294 	 * You can't set both SHARED and EXCL for the same lock,
295 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 	 */
298 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
300 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
302 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
304 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
305 	ASSERT(lock_flags != 0);
306 
307 	if (lock_flags & XFS_IOLOCK_EXCL)
308 		up_write(&VFS_I(ip)->i_rwsem);
309 	else if (lock_flags & XFS_IOLOCK_SHARED)
310 		up_read(&VFS_I(ip)->i_rwsem);
311 
312 	if (lock_flags & XFS_MMAPLOCK_EXCL)
313 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
314 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
316 
317 	if (lock_flags & XFS_ILOCK_EXCL)
318 		mrunlock_excl(&ip->i_lock);
319 	else if (lock_flags & XFS_ILOCK_SHARED)
320 		mrunlock_shared(&ip->i_lock);
321 
322 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323 }
324 
325 /*
326  * give up write locks.  the i/o lock cannot be held nested
327  * if it is being demoted.
328  */
329 void
330 xfs_ilock_demote(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 	ASSERT((lock_flags &
336 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 
338 	if (lock_flags & XFS_ILOCK_EXCL)
339 		mrdemote(&ip->i_lock);
340 	if (lock_flags & XFS_MMAPLOCK_EXCL)
341 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
342 	if (lock_flags & XFS_IOLOCK_EXCL)
343 		downgrade_write(&VFS_I(ip)->i_rwsem);
344 
345 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346 }
347 
348 #if defined(DEBUG) || defined(XFS_WARN)
349 static inline bool
350 __xfs_rwsem_islocked(
351 	struct rw_semaphore	*rwsem,
352 	bool			shared)
353 {
354 	if (!debug_locks)
355 		return rwsem_is_locked(rwsem);
356 
357 	if (!shared)
358 		return lockdep_is_held_type(rwsem, 0);
359 
360 	/*
361 	 * We are checking that the lock is held at least in shared
362 	 * mode but don't care that it might be held exclusively
363 	 * (i.e. shared | excl). Hence we check if the lock is held
364 	 * in any mode rather than an explicit shared mode.
365 	 */
366 	return lockdep_is_held_type(rwsem, -1);
367 }
368 
369 bool
370 xfs_isilocked(
371 	struct xfs_inode	*ip,
372 	uint			lock_flags)
373 {
374 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
375 		if (!(lock_flags & XFS_ILOCK_SHARED))
376 			return !!ip->i_lock.mr_writer;
377 		return rwsem_is_locked(&ip->i_lock.mr_lock);
378 	}
379 
380 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
381 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
382 				(lock_flags & XFS_IOLOCK_SHARED));
383 	}
384 
385 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
386 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
387 				(lock_flags & XFS_IOLOCK_SHARED));
388 	}
389 
390 	ASSERT(0);
391 	return false;
392 }
393 #endif
394 
395 /*
396  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399  * errors and warnings.
400  */
401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
402 static bool
403 xfs_lockdep_subclass_ok(
404 	int subclass)
405 {
406 	return subclass < MAX_LOCKDEP_SUBCLASSES;
407 }
408 #else
409 #define xfs_lockdep_subclass_ok(subclass)	(true)
410 #endif
411 
412 /*
413  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
414  * value. This can be called for any type of inode lock combination, including
415  * parent locking. Care must be taken to ensure we don't overrun the subclass
416  * storage fields in the class mask we build.
417  */
418 static inline int
419 xfs_lock_inumorder(int lock_mode, int subclass)
420 {
421 	int	class = 0;
422 
423 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 			      XFS_ILOCK_RTSUM)));
425 	ASSERT(xfs_lockdep_subclass_ok(subclass));
426 
427 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
428 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
429 		class += subclass << XFS_IOLOCK_SHIFT;
430 	}
431 
432 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 		class += subclass << XFS_MMAPLOCK_SHIFT;
435 	}
436 
437 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 		class += subclass << XFS_ILOCK_SHIFT;
440 	}
441 
442 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444 
445 /*
446  * The following routine will lock n inodes in exclusive mode.  We assume the
447  * caller calls us with the inodes in i_ino order.
448  *
449  * We need to detect deadlock where an inode that we lock is in the AIL and we
450  * start waiting for another inode that is locked by a thread in a long running
451  * transaction (such as truncate). This can result in deadlock since the long
452  * running trans might need to wait for the inode we just locked in order to
453  * push the tail and free space in the log.
454  *
455  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457  * lock more than one at a time, lockdep will report false positives saying we
458  * have violated locking orders.
459  */
460 static void
461 xfs_lock_inodes(
462 	struct xfs_inode	**ips,
463 	int			inodes,
464 	uint			lock_mode)
465 {
466 	int			attempts = 0, i, j, try_lock;
467 	struct xfs_log_item	*lp;
468 
469 	/*
470 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
471 	 * support an arbitrary depth of locking here, but absolute limits on
472 	 * inodes depend on the type of locking and the limits placed by
473 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
474 	 * the asserts.
475 	 */
476 	ASSERT(ips && inodes >= 2 && inodes <= 5);
477 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 			    XFS_ILOCK_EXCL));
479 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 			      XFS_ILOCK_SHARED)));
481 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485 
486 	if (lock_mode & XFS_IOLOCK_EXCL) {
487 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
490 
491 	try_lock = 0;
492 	i = 0;
493 again:
494 	for (; i < inodes; i++) {
495 		ASSERT(ips[i]);
496 
497 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
498 			continue;
499 
500 		/*
501 		 * If try_lock is not set yet, make sure all locked inodes are
502 		 * not in the AIL.  If any are, set try_lock to be used later.
503 		 */
504 		if (!try_lock) {
505 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 				lp = &ips[j]->i_itemp->ili_item;
507 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
508 					try_lock++;
509 			}
510 		}
511 
512 		/*
513 		 * If any of the previous locks we have locked is in the AIL,
514 		 * we must TRY to get the second and subsequent locks. If
515 		 * we can't get any, we must release all we have
516 		 * and try again.
517 		 */
518 		if (!try_lock) {
519 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 			continue;
521 		}
522 
523 		/* try_lock means we have an inode locked that is in the AIL. */
524 		ASSERT(i != 0);
525 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 			continue;
527 
528 		/*
529 		 * Unlock all previous guys and try again.  xfs_iunlock will try
530 		 * to push the tail if the inode is in the AIL.
531 		 */
532 		attempts++;
533 		for (j = i - 1; j >= 0; j--) {
534 			/*
535 			 * Check to see if we've already unlocked this one.  Not
536 			 * the first one going back, and the inode ptr is the
537 			 * same.
538 			 */
539 			if (j != (i - 1) && ips[j] == ips[j + 1])
540 				continue;
541 
542 			xfs_iunlock(ips[j], lock_mode);
543 		}
544 
545 		if ((attempts % 5) == 0) {
546 			delay(1); /* Don't just spin the CPU */
547 		}
548 		i = 0;
549 		try_lock = 0;
550 		goto again;
551 	}
552 }
553 
554 /*
555  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
556  * mmaplock must be double-locked separately since we use i_rwsem and
557  * invalidate_lock for that. We now support taking one lock EXCL and the
558  * other SHARED.
559  */
560 void
561 xfs_lock_two_inodes(
562 	struct xfs_inode	*ip0,
563 	uint			ip0_mode,
564 	struct xfs_inode	*ip1,
565 	uint			ip1_mode)
566 {
567 	int			attempts = 0;
568 	struct xfs_log_item	*lp;
569 
570 	ASSERT(hweight32(ip0_mode) == 1);
571 	ASSERT(hweight32(ip1_mode) == 1);
572 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
573 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
574 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
575 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
576 	ASSERT(ip0->i_ino != ip1->i_ino);
577 
578 	if (ip0->i_ino > ip1->i_ino) {
579 		swap(ip0, ip1);
580 		swap(ip0_mode, ip1_mode);
581 	}
582 
583  again:
584 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
585 
586 	/*
587 	 * If the first lock we have locked is in the AIL, we must TRY to get
588 	 * the second lock. If we can't get it, we must release the first one
589 	 * and try again.
590 	 */
591 	lp = &ip0->i_itemp->ili_item;
592 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
593 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
594 			xfs_iunlock(ip0, ip0_mode);
595 			if ((++attempts % 5) == 0)
596 				delay(1); /* Don't just spin the CPU */
597 			goto again;
598 		}
599 	} else {
600 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
601 	}
602 }
603 
604 uint
605 xfs_ip2xflags(
606 	struct xfs_inode	*ip)
607 {
608 	uint			flags = 0;
609 
610 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
611 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
612 			flags |= FS_XFLAG_REALTIME;
613 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
614 			flags |= FS_XFLAG_PREALLOC;
615 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
616 			flags |= FS_XFLAG_IMMUTABLE;
617 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
618 			flags |= FS_XFLAG_APPEND;
619 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
620 			flags |= FS_XFLAG_SYNC;
621 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
622 			flags |= FS_XFLAG_NOATIME;
623 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
624 			flags |= FS_XFLAG_NODUMP;
625 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
626 			flags |= FS_XFLAG_RTINHERIT;
627 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
628 			flags |= FS_XFLAG_PROJINHERIT;
629 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
630 			flags |= FS_XFLAG_NOSYMLINKS;
631 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
632 			flags |= FS_XFLAG_EXTSIZE;
633 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
634 			flags |= FS_XFLAG_EXTSZINHERIT;
635 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
636 			flags |= FS_XFLAG_NODEFRAG;
637 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
638 			flags |= FS_XFLAG_FILESTREAM;
639 	}
640 
641 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
642 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
643 			flags |= FS_XFLAG_DAX;
644 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
645 			flags |= FS_XFLAG_COWEXTSIZE;
646 	}
647 
648 	if (XFS_IFORK_Q(ip))
649 		flags |= FS_XFLAG_HASATTR;
650 	return flags;
651 }
652 
653 /*
654  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
655  * is allowed, otherwise it has to be an exact match. If a CI match is found,
656  * ci_name->name will point to a the actual name (caller must free) or
657  * will be set to NULL if an exact match is found.
658  */
659 int
660 xfs_lookup(
661 	xfs_inode_t		*dp,
662 	struct xfs_name		*name,
663 	xfs_inode_t		**ipp,
664 	struct xfs_name		*ci_name)
665 {
666 	xfs_ino_t		inum;
667 	int			error;
668 
669 	trace_xfs_lookup(dp, name);
670 
671 	if (xfs_is_shutdown(dp->i_mount))
672 		return -EIO;
673 
674 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
675 	if (error)
676 		goto out_unlock;
677 
678 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
679 	if (error)
680 		goto out_free_name;
681 
682 	return 0;
683 
684 out_free_name:
685 	if (ci_name)
686 		kmem_free(ci_name->name);
687 out_unlock:
688 	*ipp = NULL;
689 	return error;
690 }
691 
692 /* Propagate di_flags from a parent inode to a child inode. */
693 static void
694 xfs_inode_inherit_flags(
695 	struct xfs_inode	*ip,
696 	const struct xfs_inode	*pip)
697 {
698 	unsigned int		di_flags = 0;
699 	xfs_failaddr_t		failaddr;
700 	umode_t			mode = VFS_I(ip)->i_mode;
701 
702 	if (S_ISDIR(mode)) {
703 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
704 			di_flags |= XFS_DIFLAG_RTINHERIT;
705 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
706 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
707 			ip->i_extsize = pip->i_extsize;
708 		}
709 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
710 			di_flags |= XFS_DIFLAG_PROJINHERIT;
711 	} else if (S_ISREG(mode)) {
712 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
713 		    xfs_has_realtime(ip->i_mount))
714 			di_flags |= XFS_DIFLAG_REALTIME;
715 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
716 			di_flags |= XFS_DIFLAG_EXTSIZE;
717 			ip->i_extsize = pip->i_extsize;
718 		}
719 	}
720 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
721 	    xfs_inherit_noatime)
722 		di_flags |= XFS_DIFLAG_NOATIME;
723 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
724 	    xfs_inherit_nodump)
725 		di_flags |= XFS_DIFLAG_NODUMP;
726 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
727 	    xfs_inherit_sync)
728 		di_flags |= XFS_DIFLAG_SYNC;
729 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
730 	    xfs_inherit_nosymlinks)
731 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
732 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
733 	    xfs_inherit_nodefrag)
734 		di_flags |= XFS_DIFLAG_NODEFRAG;
735 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
736 		di_flags |= XFS_DIFLAG_FILESTREAM;
737 
738 	ip->i_diflags |= di_flags;
739 
740 	/*
741 	 * Inode verifiers on older kernels only check that the extent size
742 	 * hint is an integer multiple of the rt extent size on realtime files.
743 	 * They did not check the hint alignment on a directory with both
744 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
745 	 * propagated from a directory into a new realtime file, new file
746 	 * allocations will fail due to math errors in the rt allocator and/or
747 	 * trip the verifiers.  Validate the hint settings in the new file so
748 	 * that we don't let broken hints propagate.
749 	 */
750 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
751 			VFS_I(ip)->i_mode, ip->i_diflags);
752 	if (failaddr) {
753 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
754 				   XFS_DIFLAG_EXTSZINHERIT);
755 		ip->i_extsize = 0;
756 	}
757 }
758 
759 /* Propagate di_flags2 from a parent inode to a child inode. */
760 static void
761 xfs_inode_inherit_flags2(
762 	struct xfs_inode	*ip,
763 	const struct xfs_inode	*pip)
764 {
765 	xfs_failaddr_t		failaddr;
766 
767 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
768 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
769 		ip->i_cowextsize = pip->i_cowextsize;
770 	}
771 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
772 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
773 
774 	/* Don't let invalid cowextsize hints propagate. */
775 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
776 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
777 	if (failaddr) {
778 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
779 		ip->i_cowextsize = 0;
780 	}
781 }
782 
783 /*
784  * Initialise a newly allocated inode and return the in-core inode to the
785  * caller locked exclusively.
786  */
787 int
788 xfs_init_new_inode(
789 	struct user_namespace	*mnt_userns,
790 	struct xfs_trans	*tp,
791 	struct xfs_inode	*pip,
792 	xfs_ino_t		ino,
793 	umode_t			mode,
794 	xfs_nlink_t		nlink,
795 	dev_t			rdev,
796 	prid_t			prid,
797 	bool			init_xattrs,
798 	struct xfs_inode	**ipp)
799 {
800 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
801 	struct xfs_mount	*mp = tp->t_mountp;
802 	struct xfs_inode	*ip;
803 	unsigned int		flags;
804 	int			error;
805 	struct timespec64	tv;
806 	struct inode		*inode;
807 
808 	/*
809 	 * Protect against obviously corrupt allocation btree records. Later
810 	 * xfs_iget checks will catch re-allocation of other active in-memory
811 	 * and on-disk inodes. If we don't catch reallocating the parent inode
812 	 * here we will deadlock in xfs_iget() so we have to do these checks
813 	 * first.
814 	 */
815 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
816 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
817 		return -EFSCORRUPTED;
818 	}
819 
820 	/*
821 	 * Get the in-core inode with the lock held exclusively to prevent
822 	 * others from looking at until we're done.
823 	 */
824 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
825 	if (error)
826 		return error;
827 
828 	ASSERT(ip != NULL);
829 	inode = VFS_I(ip);
830 	set_nlink(inode, nlink);
831 	inode->i_rdev = rdev;
832 	ip->i_projid = prid;
833 
834 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
835 		inode_fsuid_set(inode, mnt_userns);
836 		inode->i_gid = dir->i_gid;
837 		inode->i_mode = mode;
838 	} else {
839 		inode_init_owner(mnt_userns, inode, dir, mode);
840 	}
841 
842 	/*
843 	 * If the group ID of the new file does not match the effective group
844 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
845 	 * (and only if the irix_sgid_inherit compatibility variable is set).
846 	 */
847 	if (irix_sgid_inherit &&
848 	    (inode->i_mode & S_ISGID) &&
849 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
850 		inode->i_mode &= ~S_ISGID;
851 
852 	ip->i_disk_size = 0;
853 	ip->i_df.if_nextents = 0;
854 	ASSERT(ip->i_nblocks == 0);
855 
856 	tv = current_time(inode);
857 	inode->i_mtime = tv;
858 	inode->i_atime = tv;
859 	inode->i_ctime = tv;
860 
861 	ip->i_extsize = 0;
862 	ip->i_diflags = 0;
863 
864 	if (xfs_has_v3inodes(mp)) {
865 		inode_set_iversion(inode, 1);
866 		ip->i_cowextsize = 0;
867 		ip->i_crtime = tv;
868 	}
869 
870 	flags = XFS_ILOG_CORE;
871 	switch (mode & S_IFMT) {
872 	case S_IFIFO:
873 	case S_IFCHR:
874 	case S_IFBLK:
875 	case S_IFSOCK:
876 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
877 		flags |= XFS_ILOG_DEV;
878 		break;
879 	case S_IFREG:
880 	case S_IFDIR:
881 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
882 			xfs_inode_inherit_flags(ip, pip);
883 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
884 			xfs_inode_inherit_flags2(ip, pip);
885 		fallthrough;
886 	case S_IFLNK:
887 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
888 		ip->i_df.if_bytes = 0;
889 		ip->i_df.if_u1.if_root = NULL;
890 		break;
891 	default:
892 		ASSERT(0);
893 	}
894 
895 	/*
896 	 * If we need to create attributes immediately after allocating the
897 	 * inode, initialise an empty attribute fork right now. We use the
898 	 * default fork offset for attributes here as we don't know exactly what
899 	 * size or how many attributes we might be adding. We can do this
900 	 * safely here because we know the data fork is completely empty and
901 	 * this saves us from needing to run a separate transaction to set the
902 	 * fork offset in the immediate future.
903 	 */
904 	if (init_xattrs && xfs_has_attr(mp)) {
905 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
906 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
907 	}
908 
909 	/*
910 	 * Log the new values stuffed into the inode.
911 	 */
912 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
913 	xfs_trans_log_inode(tp, ip, flags);
914 
915 	/* now that we have an i_mode we can setup the inode structure */
916 	xfs_setup_inode(ip);
917 
918 	*ipp = ip;
919 	return 0;
920 }
921 
922 /*
923  * Decrement the link count on an inode & log the change.  If this causes the
924  * link count to go to zero, move the inode to AGI unlinked list so that it can
925  * be freed when the last active reference goes away via xfs_inactive().
926  */
927 static int			/* error */
928 xfs_droplink(
929 	xfs_trans_t *tp,
930 	xfs_inode_t *ip)
931 {
932 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
933 
934 	drop_nlink(VFS_I(ip));
935 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
936 
937 	if (VFS_I(ip)->i_nlink)
938 		return 0;
939 
940 	return xfs_iunlink(tp, ip);
941 }
942 
943 /*
944  * Increment the link count on an inode & log the change.
945  */
946 static void
947 xfs_bumplink(
948 	xfs_trans_t *tp,
949 	xfs_inode_t *ip)
950 {
951 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
952 
953 	inc_nlink(VFS_I(ip));
954 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
955 }
956 
957 int
958 xfs_create(
959 	struct user_namespace	*mnt_userns,
960 	xfs_inode_t		*dp,
961 	struct xfs_name		*name,
962 	umode_t			mode,
963 	dev_t			rdev,
964 	bool			init_xattrs,
965 	xfs_inode_t		**ipp)
966 {
967 	int			is_dir = S_ISDIR(mode);
968 	struct xfs_mount	*mp = dp->i_mount;
969 	struct xfs_inode	*ip = NULL;
970 	struct xfs_trans	*tp = NULL;
971 	int			error;
972 	bool                    unlock_dp_on_error = false;
973 	prid_t			prid;
974 	struct xfs_dquot	*udqp = NULL;
975 	struct xfs_dquot	*gdqp = NULL;
976 	struct xfs_dquot	*pdqp = NULL;
977 	struct xfs_trans_res	*tres;
978 	uint			resblks;
979 	xfs_ino_t		ino;
980 
981 	trace_xfs_create(dp, name);
982 
983 	if (xfs_is_shutdown(mp))
984 		return -EIO;
985 
986 	prid = xfs_get_initial_prid(dp);
987 
988 	/*
989 	 * Make sure that we have allocated dquot(s) on disk.
990 	 */
991 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
992 			mapped_fsgid(mnt_userns), prid,
993 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
994 			&udqp, &gdqp, &pdqp);
995 	if (error)
996 		return error;
997 
998 	if (is_dir) {
999 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1000 		tres = &M_RES(mp)->tr_mkdir;
1001 	} else {
1002 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1003 		tres = &M_RES(mp)->tr_create;
1004 	}
1005 
1006 	/*
1007 	 * Initially assume that the file does not exist and
1008 	 * reserve the resources for that case.  If that is not
1009 	 * the case we'll drop the one we have and get a more
1010 	 * appropriate transaction later.
1011 	 */
1012 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1013 			&tp);
1014 	if (error == -ENOSPC) {
1015 		/* flush outstanding delalloc blocks and retry */
1016 		xfs_flush_inodes(mp);
1017 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1018 				resblks, &tp);
1019 	}
1020 	if (error)
1021 		goto out_release_dquots;
1022 
1023 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1024 	unlock_dp_on_error = true;
1025 
1026 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1027 			XFS_IEXT_DIR_MANIP_CNT(mp));
1028 	if (error)
1029 		goto out_trans_cancel;
1030 
1031 	/*
1032 	 * A newly created regular or special file just has one directory
1033 	 * entry pointing to them, but a directory also the "." entry
1034 	 * pointing to itself.
1035 	 */
1036 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1037 	if (!error)
1038 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1039 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1040 	if (error)
1041 		goto out_trans_cancel;
1042 
1043 	/*
1044 	 * Now we join the directory inode to the transaction.  We do not do it
1045 	 * earlier because xfs_dialloc might commit the previous transaction
1046 	 * (and release all the locks).  An error from here on will result in
1047 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1048 	 * error path.
1049 	 */
1050 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1051 	unlock_dp_on_error = false;
1052 
1053 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1054 					resblks - XFS_IALLOC_SPACE_RES(mp));
1055 	if (error) {
1056 		ASSERT(error != -ENOSPC);
1057 		goto out_trans_cancel;
1058 	}
1059 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1060 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1061 
1062 	if (is_dir) {
1063 		error = xfs_dir_init(tp, ip, dp);
1064 		if (error)
1065 			goto out_trans_cancel;
1066 
1067 		xfs_bumplink(tp, dp);
1068 	}
1069 
1070 	/*
1071 	 * If this is a synchronous mount, make sure that the
1072 	 * create transaction goes to disk before returning to
1073 	 * the user.
1074 	 */
1075 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1076 		xfs_trans_set_sync(tp);
1077 
1078 	/*
1079 	 * Attach the dquot(s) to the inodes and modify them incore.
1080 	 * These ids of the inode couldn't have changed since the new
1081 	 * inode has been locked ever since it was created.
1082 	 */
1083 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1084 
1085 	error = xfs_trans_commit(tp);
1086 	if (error)
1087 		goto out_release_inode;
1088 
1089 	xfs_qm_dqrele(udqp);
1090 	xfs_qm_dqrele(gdqp);
1091 	xfs_qm_dqrele(pdqp);
1092 
1093 	*ipp = ip;
1094 	return 0;
1095 
1096  out_trans_cancel:
1097 	xfs_trans_cancel(tp);
1098  out_release_inode:
1099 	/*
1100 	 * Wait until after the current transaction is aborted to finish the
1101 	 * setup of the inode and release the inode.  This prevents recursive
1102 	 * transactions and deadlocks from xfs_inactive.
1103 	 */
1104 	if (ip) {
1105 		xfs_finish_inode_setup(ip);
1106 		xfs_irele(ip);
1107 	}
1108  out_release_dquots:
1109 	xfs_qm_dqrele(udqp);
1110 	xfs_qm_dqrele(gdqp);
1111 	xfs_qm_dqrele(pdqp);
1112 
1113 	if (unlock_dp_on_error)
1114 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1115 	return error;
1116 }
1117 
1118 int
1119 xfs_create_tmpfile(
1120 	struct user_namespace	*mnt_userns,
1121 	struct xfs_inode	*dp,
1122 	umode_t			mode,
1123 	struct xfs_inode	**ipp)
1124 {
1125 	struct xfs_mount	*mp = dp->i_mount;
1126 	struct xfs_inode	*ip = NULL;
1127 	struct xfs_trans	*tp = NULL;
1128 	int			error;
1129 	prid_t                  prid;
1130 	struct xfs_dquot	*udqp = NULL;
1131 	struct xfs_dquot	*gdqp = NULL;
1132 	struct xfs_dquot	*pdqp = NULL;
1133 	struct xfs_trans_res	*tres;
1134 	uint			resblks;
1135 	xfs_ino_t		ino;
1136 
1137 	if (xfs_is_shutdown(mp))
1138 		return -EIO;
1139 
1140 	prid = xfs_get_initial_prid(dp);
1141 
1142 	/*
1143 	 * Make sure that we have allocated dquot(s) on disk.
1144 	 */
1145 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1146 			mapped_fsgid(mnt_userns), prid,
1147 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1148 			&udqp, &gdqp, &pdqp);
1149 	if (error)
1150 		return error;
1151 
1152 	resblks = XFS_IALLOC_SPACE_RES(mp);
1153 	tres = &M_RES(mp)->tr_create_tmpfile;
1154 
1155 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1156 			&tp);
1157 	if (error)
1158 		goto out_release_dquots;
1159 
1160 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1161 	if (!error)
1162 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1163 				0, 0, prid, false, &ip);
1164 	if (error)
1165 		goto out_trans_cancel;
1166 
1167 	if (xfs_has_wsync(mp))
1168 		xfs_trans_set_sync(tp);
1169 
1170 	/*
1171 	 * Attach the dquot(s) to the inodes and modify them incore.
1172 	 * These ids of the inode couldn't have changed since the new
1173 	 * inode has been locked ever since it was created.
1174 	 */
1175 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1176 
1177 	error = xfs_iunlink(tp, ip);
1178 	if (error)
1179 		goto out_trans_cancel;
1180 
1181 	error = xfs_trans_commit(tp);
1182 	if (error)
1183 		goto out_release_inode;
1184 
1185 	xfs_qm_dqrele(udqp);
1186 	xfs_qm_dqrele(gdqp);
1187 	xfs_qm_dqrele(pdqp);
1188 
1189 	*ipp = ip;
1190 	return 0;
1191 
1192  out_trans_cancel:
1193 	xfs_trans_cancel(tp);
1194  out_release_inode:
1195 	/*
1196 	 * Wait until after the current transaction is aborted to finish the
1197 	 * setup of the inode and release the inode.  This prevents recursive
1198 	 * transactions and deadlocks from xfs_inactive.
1199 	 */
1200 	if (ip) {
1201 		xfs_finish_inode_setup(ip);
1202 		xfs_irele(ip);
1203 	}
1204  out_release_dquots:
1205 	xfs_qm_dqrele(udqp);
1206 	xfs_qm_dqrele(gdqp);
1207 	xfs_qm_dqrele(pdqp);
1208 
1209 	return error;
1210 }
1211 
1212 int
1213 xfs_link(
1214 	xfs_inode_t		*tdp,
1215 	xfs_inode_t		*sip,
1216 	struct xfs_name		*target_name)
1217 {
1218 	xfs_mount_t		*mp = tdp->i_mount;
1219 	xfs_trans_t		*tp;
1220 	int			error;
1221 	int			resblks;
1222 
1223 	trace_xfs_link(tdp, target_name);
1224 
1225 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1226 
1227 	if (xfs_is_shutdown(mp))
1228 		return -EIO;
1229 
1230 	error = xfs_qm_dqattach(sip);
1231 	if (error)
1232 		goto std_return;
1233 
1234 	error = xfs_qm_dqattach(tdp);
1235 	if (error)
1236 		goto std_return;
1237 
1238 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1239 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1240 	if (error == -ENOSPC) {
1241 		resblks = 0;
1242 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1243 	}
1244 	if (error)
1245 		goto std_return;
1246 
1247 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1248 
1249 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1250 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1251 
1252 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1253 			XFS_IEXT_DIR_MANIP_CNT(mp));
1254 	if (error)
1255 		goto error_return;
1256 
1257 	/*
1258 	 * If we are using project inheritance, we only allow hard link
1259 	 * creation in our tree when the project IDs are the same; else
1260 	 * the tree quota mechanism could be circumvented.
1261 	 */
1262 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1263 		     tdp->i_projid != sip->i_projid)) {
1264 		error = -EXDEV;
1265 		goto error_return;
1266 	}
1267 
1268 	if (!resblks) {
1269 		error = xfs_dir_canenter(tp, tdp, target_name);
1270 		if (error)
1271 			goto error_return;
1272 	}
1273 
1274 	/*
1275 	 * Handle initial link state of O_TMPFILE inode
1276 	 */
1277 	if (VFS_I(sip)->i_nlink == 0) {
1278 		struct xfs_perag	*pag;
1279 
1280 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1281 		error = xfs_iunlink_remove(tp, pag, sip);
1282 		xfs_perag_put(pag);
1283 		if (error)
1284 			goto error_return;
1285 	}
1286 
1287 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1288 				   resblks);
1289 	if (error)
1290 		goto error_return;
1291 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1292 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1293 
1294 	xfs_bumplink(tp, sip);
1295 
1296 	/*
1297 	 * If this is a synchronous mount, make sure that the
1298 	 * link transaction goes to disk before returning to
1299 	 * the user.
1300 	 */
1301 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1302 		xfs_trans_set_sync(tp);
1303 
1304 	return xfs_trans_commit(tp);
1305 
1306  error_return:
1307 	xfs_trans_cancel(tp);
1308  std_return:
1309 	return error;
1310 }
1311 
1312 /* Clear the reflink flag and the cowblocks tag if possible. */
1313 static void
1314 xfs_itruncate_clear_reflink_flags(
1315 	struct xfs_inode	*ip)
1316 {
1317 	struct xfs_ifork	*dfork;
1318 	struct xfs_ifork	*cfork;
1319 
1320 	if (!xfs_is_reflink_inode(ip))
1321 		return;
1322 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1323 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1324 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1325 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1326 	if (cfork->if_bytes == 0)
1327 		xfs_inode_clear_cowblocks_tag(ip);
1328 }
1329 
1330 /*
1331  * Free up the underlying blocks past new_size.  The new size must be smaller
1332  * than the current size.  This routine can be used both for the attribute and
1333  * data fork, and does not modify the inode size, which is left to the caller.
1334  *
1335  * The transaction passed to this routine must have made a permanent log
1336  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1337  * given transaction and start new ones, so make sure everything involved in
1338  * the transaction is tidy before calling here.  Some transaction will be
1339  * returned to the caller to be committed.  The incoming transaction must
1340  * already include the inode, and both inode locks must be held exclusively.
1341  * The inode must also be "held" within the transaction.  On return the inode
1342  * will be "held" within the returned transaction.  This routine does NOT
1343  * require any disk space to be reserved for it within the transaction.
1344  *
1345  * If we get an error, we must return with the inode locked and linked into the
1346  * current transaction. This keeps things simple for the higher level code,
1347  * because it always knows that the inode is locked and held in the transaction
1348  * that returns to it whether errors occur or not.  We don't mark the inode
1349  * dirty on error so that transactions can be easily aborted if possible.
1350  */
1351 int
1352 xfs_itruncate_extents_flags(
1353 	struct xfs_trans	**tpp,
1354 	struct xfs_inode	*ip,
1355 	int			whichfork,
1356 	xfs_fsize_t		new_size,
1357 	int			flags)
1358 {
1359 	struct xfs_mount	*mp = ip->i_mount;
1360 	struct xfs_trans	*tp = *tpp;
1361 	xfs_fileoff_t		first_unmap_block;
1362 	xfs_filblks_t		unmap_len;
1363 	int			error = 0;
1364 
1365 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1366 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1367 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1368 	ASSERT(new_size <= XFS_ISIZE(ip));
1369 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1370 	ASSERT(ip->i_itemp != NULL);
1371 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1372 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1373 
1374 	trace_xfs_itruncate_extents_start(ip, new_size);
1375 
1376 	flags |= xfs_bmapi_aflag(whichfork);
1377 
1378 	/*
1379 	 * Since it is possible for space to become allocated beyond
1380 	 * the end of the file (in a crash where the space is allocated
1381 	 * but the inode size is not yet updated), simply remove any
1382 	 * blocks which show up between the new EOF and the maximum
1383 	 * possible file size.
1384 	 *
1385 	 * We have to free all the blocks to the bmbt maximum offset, even if
1386 	 * the page cache can't scale that far.
1387 	 */
1388 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1389 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1390 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1391 		return 0;
1392 	}
1393 
1394 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1395 	while (unmap_len > 0) {
1396 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1397 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1398 				flags, XFS_ITRUNC_MAX_EXTENTS);
1399 		if (error)
1400 			goto out;
1401 
1402 		/* free the just unmapped extents */
1403 		error = xfs_defer_finish(&tp);
1404 		if (error)
1405 			goto out;
1406 	}
1407 
1408 	if (whichfork == XFS_DATA_FORK) {
1409 		/* Remove all pending CoW reservations. */
1410 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1411 				first_unmap_block, XFS_MAX_FILEOFF, true);
1412 		if (error)
1413 			goto out;
1414 
1415 		xfs_itruncate_clear_reflink_flags(ip);
1416 	}
1417 
1418 	/*
1419 	 * Always re-log the inode so that our permanent transaction can keep
1420 	 * on rolling it forward in the log.
1421 	 */
1422 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1423 
1424 	trace_xfs_itruncate_extents_end(ip, new_size);
1425 
1426 out:
1427 	*tpp = tp;
1428 	return error;
1429 }
1430 
1431 int
1432 xfs_release(
1433 	xfs_inode_t	*ip)
1434 {
1435 	xfs_mount_t	*mp = ip->i_mount;
1436 	int		error = 0;
1437 
1438 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1439 		return 0;
1440 
1441 	/* If this is a read-only mount, don't do this (would generate I/O) */
1442 	if (xfs_is_readonly(mp))
1443 		return 0;
1444 
1445 	if (!xfs_is_shutdown(mp)) {
1446 		int truncated;
1447 
1448 		/*
1449 		 * If we previously truncated this file and removed old data
1450 		 * in the process, we want to initiate "early" writeout on
1451 		 * the last close.  This is an attempt to combat the notorious
1452 		 * NULL files problem which is particularly noticeable from a
1453 		 * truncate down, buffered (re-)write (delalloc), followed by
1454 		 * a crash.  What we are effectively doing here is
1455 		 * significantly reducing the time window where we'd otherwise
1456 		 * be exposed to that problem.
1457 		 */
1458 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1459 		if (truncated) {
1460 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1461 			if (ip->i_delayed_blks > 0) {
1462 				error = filemap_flush(VFS_I(ip)->i_mapping);
1463 				if (error)
1464 					return error;
1465 			}
1466 		}
1467 	}
1468 
1469 	if (VFS_I(ip)->i_nlink == 0)
1470 		return 0;
1471 
1472 	/*
1473 	 * If we can't get the iolock just skip truncating the blocks past EOF
1474 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1475 	 * another chance to drop them once the last reference to the inode is
1476 	 * dropped, so we'll never leak blocks permanently.
1477 	 */
1478 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1479 		return 0;
1480 
1481 	if (xfs_can_free_eofblocks(ip, false)) {
1482 		/*
1483 		 * Check if the inode is being opened, written and closed
1484 		 * frequently and we have delayed allocation blocks outstanding
1485 		 * (e.g. streaming writes from the NFS server), truncating the
1486 		 * blocks past EOF will cause fragmentation to occur.
1487 		 *
1488 		 * In this case don't do the truncation, but we have to be
1489 		 * careful how we detect this case. Blocks beyond EOF show up as
1490 		 * i_delayed_blks even when the inode is clean, so we need to
1491 		 * truncate them away first before checking for a dirty release.
1492 		 * Hence on the first dirty close we will still remove the
1493 		 * speculative allocation, but after that we will leave it in
1494 		 * place.
1495 		 */
1496 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1497 			goto out_unlock;
1498 
1499 		error = xfs_free_eofblocks(ip);
1500 		if (error)
1501 			goto out_unlock;
1502 
1503 		/* delalloc blocks after truncation means it really is dirty */
1504 		if (ip->i_delayed_blks)
1505 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1506 	}
1507 
1508 out_unlock:
1509 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1510 	return error;
1511 }
1512 
1513 /*
1514  * xfs_inactive_truncate
1515  *
1516  * Called to perform a truncate when an inode becomes unlinked.
1517  */
1518 STATIC int
1519 xfs_inactive_truncate(
1520 	struct xfs_inode *ip)
1521 {
1522 	struct xfs_mount	*mp = ip->i_mount;
1523 	struct xfs_trans	*tp;
1524 	int			error;
1525 
1526 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1527 	if (error) {
1528 		ASSERT(xfs_is_shutdown(mp));
1529 		return error;
1530 	}
1531 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1532 	xfs_trans_ijoin(tp, ip, 0);
1533 
1534 	/*
1535 	 * Log the inode size first to prevent stale data exposure in the event
1536 	 * of a system crash before the truncate completes. See the related
1537 	 * comment in xfs_vn_setattr_size() for details.
1538 	 */
1539 	ip->i_disk_size = 0;
1540 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1541 
1542 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1543 	if (error)
1544 		goto error_trans_cancel;
1545 
1546 	ASSERT(ip->i_df.if_nextents == 0);
1547 
1548 	error = xfs_trans_commit(tp);
1549 	if (error)
1550 		goto error_unlock;
1551 
1552 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1553 	return 0;
1554 
1555 error_trans_cancel:
1556 	xfs_trans_cancel(tp);
1557 error_unlock:
1558 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1559 	return error;
1560 }
1561 
1562 /*
1563  * xfs_inactive_ifree()
1564  *
1565  * Perform the inode free when an inode is unlinked.
1566  */
1567 STATIC int
1568 xfs_inactive_ifree(
1569 	struct xfs_inode *ip)
1570 {
1571 	struct xfs_mount	*mp = ip->i_mount;
1572 	struct xfs_trans	*tp;
1573 	int			error;
1574 
1575 	/*
1576 	 * We try to use a per-AG reservation for any block needed by the finobt
1577 	 * tree, but as the finobt feature predates the per-AG reservation
1578 	 * support a degraded file system might not have enough space for the
1579 	 * reservation at mount time.  In that case try to dip into the reserved
1580 	 * pool and pray.
1581 	 *
1582 	 * Send a warning if the reservation does happen to fail, as the inode
1583 	 * now remains allocated and sits on the unlinked list until the fs is
1584 	 * repaired.
1585 	 */
1586 	if (unlikely(mp->m_finobt_nores)) {
1587 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1588 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1589 				&tp);
1590 	} else {
1591 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1592 	}
1593 	if (error) {
1594 		if (error == -ENOSPC) {
1595 			xfs_warn_ratelimited(mp,
1596 			"Failed to remove inode(s) from unlinked list. "
1597 			"Please free space, unmount and run xfs_repair.");
1598 		} else {
1599 			ASSERT(xfs_is_shutdown(mp));
1600 		}
1601 		return error;
1602 	}
1603 
1604 	/*
1605 	 * We do not hold the inode locked across the entire rolling transaction
1606 	 * here. We only need to hold it for the first transaction that
1607 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1608 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1609 	 * here breaks the relationship between cluster buffer invalidation and
1610 	 * stale inode invalidation on cluster buffer item journal commit
1611 	 * completion, and can result in leaving dirty stale inodes hanging
1612 	 * around in memory.
1613 	 *
1614 	 * We have no need for serialising this inode operation against other
1615 	 * operations - we freed the inode and hence reallocation is required
1616 	 * and that will serialise on reallocating the space the deferops need
1617 	 * to free. Hence we can unlock the inode on the first commit of
1618 	 * the transaction rather than roll it right through the deferops. This
1619 	 * avoids relogging the XFS_ISTALE inode.
1620 	 *
1621 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1622 	 * by asserting that the inode is still locked when it returns.
1623 	 */
1624 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1625 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1626 
1627 	error = xfs_ifree(tp, ip);
1628 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1629 	if (error) {
1630 		/*
1631 		 * If we fail to free the inode, shut down.  The cancel
1632 		 * might do that, we need to make sure.  Otherwise the
1633 		 * inode might be lost for a long time or forever.
1634 		 */
1635 		if (!xfs_is_shutdown(mp)) {
1636 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1637 				__func__, error);
1638 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1639 		}
1640 		xfs_trans_cancel(tp);
1641 		return error;
1642 	}
1643 
1644 	/*
1645 	 * Credit the quota account(s). The inode is gone.
1646 	 */
1647 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1648 
1649 	/*
1650 	 * Just ignore errors at this point.  There is nothing we can do except
1651 	 * to try to keep going. Make sure it's not a silent error.
1652 	 */
1653 	error = xfs_trans_commit(tp);
1654 	if (error)
1655 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1656 			__func__, error);
1657 
1658 	return 0;
1659 }
1660 
1661 /*
1662  * Returns true if we need to update the on-disk metadata before we can free
1663  * the memory used by this inode.  Updates include freeing post-eof
1664  * preallocations; freeing COW staging extents; and marking the inode free in
1665  * the inobt if it is on the unlinked list.
1666  */
1667 bool
1668 xfs_inode_needs_inactive(
1669 	struct xfs_inode	*ip)
1670 {
1671 	struct xfs_mount	*mp = ip->i_mount;
1672 	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1673 
1674 	/*
1675 	 * If the inode is already free, then there can be nothing
1676 	 * to clean up here.
1677 	 */
1678 	if (VFS_I(ip)->i_mode == 0)
1679 		return false;
1680 
1681 	/* If this is a read-only mount, don't do this (would generate I/O) */
1682 	if (xfs_is_readonly(mp))
1683 		return false;
1684 
1685 	/* If the log isn't running, push inodes straight to reclaim. */
1686 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1687 		return false;
1688 
1689 	/* Metadata inodes require explicit resource cleanup. */
1690 	if (xfs_is_metadata_inode(ip))
1691 		return false;
1692 
1693 	/* Want to clean out the cow blocks if there are any. */
1694 	if (cow_ifp && cow_ifp->if_bytes > 0)
1695 		return true;
1696 
1697 	/* Unlinked files must be freed. */
1698 	if (VFS_I(ip)->i_nlink == 0)
1699 		return true;
1700 
1701 	/*
1702 	 * This file isn't being freed, so check if there are post-eof blocks
1703 	 * to free.  @force is true because we are evicting an inode from the
1704 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1705 	 * free space accounting.
1706 	 *
1707 	 * Note: don't bother with iolock here since lockdep complains about
1708 	 * acquiring it in reclaim context. We have the only reference to the
1709 	 * inode at this point anyways.
1710 	 */
1711 	return xfs_can_free_eofblocks(ip, true);
1712 }
1713 
1714 /*
1715  * xfs_inactive
1716  *
1717  * This is called when the vnode reference count for the vnode
1718  * goes to zero.  If the file has been unlinked, then it must
1719  * now be truncated.  Also, we clear all of the read-ahead state
1720  * kept for the inode here since the file is now closed.
1721  */
1722 void
1723 xfs_inactive(
1724 	xfs_inode_t	*ip)
1725 {
1726 	struct xfs_mount	*mp;
1727 	int			error;
1728 	int			truncate = 0;
1729 
1730 	/*
1731 	 * If the inode is already free, then there can be nothing
1732 	 * to clean up here.
1733 	 */
1734 	if (VFS_I(ip)->i_mode == 0) {
1735 		ASSERT(ip->i_df.if_broot_bytes == 0);
1736 		goto out;
1737 	}
1738 
1739 	mp = ip->i_mount;
1740 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1741 
1742 	/* If this is a read-only mount, don't do this (would generate I/O) */
1743 	if (xfs_is_readonly(mp))
1744 		goto out;
1745 
1746 	/* Metadata inodes require explicit resource cleanup. */
1747 	if (xfs_is_metadata_inode(ip))
1748 		goto out;
1749 
1750 	/* Try to clean out the cow blocks if there are any. */
1751 	if (xfs_inode_has_cow_data(ip))
1752 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1753 
1754 	if (VFS_I(ip)->i_nlink != 0) {
1755 		/*
1756 		 * force is true because we are evicting an inode from the
1757 		 * cache. Post-eof blocks must be freed, lest we end up with
1758 		 * broken free space accounting.
1759 		 *
1760 		 * Note: don't bother with iolock here since lockdep complains
1761 		 * about acquiring it in reclaim context. We have the only
1762 		 * reference to the inode at this point anyways.
1763 		 */
1764 		if (xfs_can_free_eofblocks(ip, true))
1765 			xfs_free_eofblocks(ip);
1766 
1767 		goto out;
1768 	}
1769 
1770 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1771 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1772 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1773 		truncate = 1;
1774 
1775 	error = xfs_qm_dqattach(ip);
1776 	if (error)
1777 		goto out;
1778 
1779 	if (S_ISLNK(VFS_I(ip)->i_mode))
1780 		error = xfs_inactive_symlink(ip);
1781 	else if (truncate)
1782 		error = xfs_inactive_truncate(ip);
1783 	if (error)
1784 		goto out;
1785 
1786 	/*
1787 	 * If there are attributes associated with the file then blow them away
1788 	 * now.  The code calls a routine that recursively deconstructs the
1789 	 * attribute fork. If also blows away the in-core attribute fork.
1790 	 */
1791 	if (XFS_IFORK_Q(ip)) {
1792 		error = xfs_attr_inactive(ip);
1793 		if (error)
1794 			goto out;
1795 	}
1796 
1797 	ASSERT(!ip->i_afp);
1798 	ASSERT(ip->i_forkoff == 0);
1799 
1800 	/*
1801 	 * Free the inode.
1802 	 */
1803 	xfs_inactive_ifree(ip);
1804 
1805 out:
1806 	/*
1807 	 * We're done making metadata updates for this inode, so we can release
1808 	 * the attached dquots.
1809 	 */
1810 	xfs_qm_dqdetach(ip);
1811 }
1812 
1813 /*
1814  * In-Core Unlinked List Lookups
1815  * =============================
1816  *
1817  * Every inode is supposed to be reachable from some other piece of metadata
1818  * with the exception of the root directory.  Inodes with a connection to a
1819  * file descriptor but not linked from anywhere in the on-disk directory tree
1820  * are collectively known as unlinked inodes, though the filesystem itself
1821  * maintains links to these inodes so that on-disk metadata are consistent.
1822  *
1823  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1824  * header contains a number of buckets that point to an inode, and each inode
1825  * record has a pointer to the next inode in the hash chain.  This
1826  * singly-linked list causes scaling problems in the iunlink remove function
1827  * because we must walk that list to find the inode that points to the inode
1828  * being removed from the unlinked hash bucket list.
1829  *
1830  * What if we modelled the unlinked list as a collection of records capturing
1831  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1832  * have a fast way to look up unlinked list predecessors, which avoids the
1833  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1834  * rhashtable.
1835  *
1836  * Because this is a backref cache, we ignore operational failures since the
1837  * iunlink code can fall back to the slow bucket walk.  The only errors that
1838  * should bubble out are for obviously incorrect situations.
1839  *
1840  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1841  * access or have otherwise provided for concurrency control.
1842  */
1843 
1844 /* Capture a "X.next_unlinked = Y" relationship. */
1845 struct xfs_iunlink {
1846 	struct rhash_head	iu_rhash_head;
1847 	xfs_agino_t		iu_agino;		/* X */
1848 	xfs_agino_t		iu_next_unlinked;	/* Y */
1849 };
1850 
1851 /* Unlinked list predecessor lookup hashtable construction */
1852 static int
1853 xfs_iunlink_obj_cmpfn(
1854 	struct rhashtable_compare_arg	*arg,
1855 	const void			*obj)
1856 {
1857 	const xfs_agino_t		*key = arg->key;
1858 	const struct xfs_iunlink	*iu = obj;
1859 
1860 	if (iu->iu_next_unlinked != *key)
1861 		return 1;
1862 	return 0;
1863 }
1864 
1865 static const struct rhashtable_params xfs_iunlink_hash_params = {
1866 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1867 	.key_len		= sizeof(xfs_agino_t),
1868 	.key_offset		= offsetof(struct xfs_iunlink,
1869 					   iu_next_unlinked),
1870 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1871 	.automatic_shrinking	= true,
1872 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1873 };
1874 
1875 /*
1876  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1877  * relation is found.
1878  */
1879 static xfs_agino_t
1880 xfs_iunlink_lookup_backref(
1881 	struct xfs_perag	*pag,
1882 	xfs_agino_t		agino)
1883 {
1884 	struct xfs_iunlink	*iu;
1885 
1886 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1887 			xfs_iunlink_hash_params);
1888 	return iu ? iu->iu_agino : NULLAGINO;
1889 }
1890 
1891 /*
1892  * Take ownership of an iunlink cache entry and insert it into the hash table.
1893  * If successful, the entry will be owned by the cache; if not, it is freed.
1894  * Either way, the caller does not own @iu after this call.
1895  */
1896 static int
1897 xfs_iunlink_insert_backref(
1898 	struct xfs_perag	*pag,
1899 	struct xfs_iunlink	*iu)
1900 {
1901 	int			error;
1902 
1903 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1904 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1905 	/*
1906 	 * Fail loudly if there already was an entry because that's a sign of
1907 	 * corruption of in-memory data.  Also fail loudly if we see an error
1908 	 * code we didn't anticipate from the rhashtable code.  Currently we
1909 	 * only anticipate ENOMEM.
1910 	 */
1911 	if (error) {
1912 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1913 		kmem_free(iu);
1914 	}
1915 	/*
1916 	 * Absorb any runtime errors that aren't a result of corruption because
1917 	 * this is a cache and we can always fall back to bucket list scanning.
1918 	 */
1919 	if (error != 0 && error != -EEXIST)
1920 		error = 0;
1921 	return error;
1922 }
1923 
1924 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1925 static int
1926 xfs_iunlink_add_backref(
1927 	struct xfs_perag	*pag,
1928 	xfs_agino_t		prev_agino,
1929 	xfs_agino_t		this_agino)
1930 {
1931 	struct xfs_iunlink	*iu;
1932 
1933 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1934 		return 0;
1935 
1936 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1937 	iu->iu_agino = prev_agino;
1938 	iu->iu_next_unlinked = this_agino;
1939 
1940 	return xfs_iunlink_insert_backref(pag, iu);
1941 }
1942 
1943 /*
1944  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1945  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1946  * wasn't any such entry then we don't bother.
1947  */
1948 static int
1949 xfs_iunlink_change_backref(
1950 	struct xfs_perag	*pag,
1951 	xfs_agino_t		agino,
1952 	xfs_agino_t		next_unlinked)
1953 {
1954 	struct xfs_iunlink	*iu;
1955 	int			error;
1956 
1957 	/* Look up the old entry; if there wasn't one then exit. */
1958 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1959 			xfs_iunlink_hash_params);
1960 	if (!iu)
1961 		return 0;
1962 
1963 	/*
1964 	 * Remove the entry.  This shouldn't ever return an error, but if we
1965 	 * couldn't remove the old entry we don't want to add it again to the
1966 	 * hash table, and if the entry disappeared on us then someone's
1967 	 * violated the locking rules and we need to fail loudly.  Either way
1968 	 * we cannot remove the inode because internal state is or would have
1969 	 * been corrupt.
1970 	 */
1971 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1972 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1973 	if (error)
1974 		return error;
1975 
1976 	/* If there is no new next entry just free our item and return. */
1977 	if (next_unlinked == NULLAGINO) {
1978 		kmem_free(iu);
1979 		return 0;
1980 	}
1981 
1982 	/* Update the entry and re-add it to the hash table. */
1983 	iu->iu_next_unlinked = next_unlinked;
1984 	return xfs_iunlink_insert_backref(pag, iu);
1985 }
1986 
1987 /* Set up the in-core predecessor structures. */
1988 int
1989 xfs_iunlink_init(
1990 	struct xfs_perag	*pag)
1991 {
1992 	return rhashtable_init(&pag->pagi_unlinked_hash,
1993 			&xfs_iunlink_hash_params);
1994 }
1995 
1996 /* Free the in-core predecessor structures. */
1997 static void
1998 xfs_iunlink_free_item(
1999 	void			*ptr,
2000 	void			*arg)
2001 {
2002 	struct xfs_iunlink	*iu = ptr;
2003 	bool			*freed_anything = arg;
2004 
2005 	*freed_anything = true;
2006 	kmem_free(iu);
2007 }
2008 
2009 void
2010 xfs_iunlink_destroy(
2011 	struct xfs_perag	*pag)
2012 {
2013 	bool			freed_anything = false;
2014 
2015 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2016 			xfs_iunlink_free_item, &freed_anything);
2017 
2018 	ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
2019 }
2020 
2021 /*
2022  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2023  * is responsible for validating the old value.
2024  */
2025 STATIC int
2026 xfs_iunlink_update_bucket(
2027 	struct xfs_trans	*tp,
2028 	struct xfs_perag	*pag,
2029 	struct xfs_buf		*agibp,
2030 	unsigned int		bucket_index,
2031 	xfs_agino_t		new_agino)
2032 {
2033 	struct xfs_agi		*agi = agibp->b_addr;
2034 	xfs_agino_t		old_value;
2035 	int			offset;
2036 
2037 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2038 
2039 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2040 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2041 			old_value, new_agino);
2042 
2043 	/*
2044 	 * We should never find the head of the list already set to the value
2045 	 * passed in because either we're adding or removing ourselves from the
2046 	 * head of the list.
2047 	 */
2048 	if (old_value == new_agino) {
2049 		xfs_buf_mark_corrupt(agibp);
2050 		return -EFSCORRUPTED;
2051 	}
2052 
2053 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2054 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2055 			(sizeof(xfs_agino_t) * bucket_index);
2056 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2057 	return 0;
2058 }
2059 
2060 /* Set an on-disk inode's next_unlinked pointer. */
2061 STATIC void
2062 xfs_iunlink_update_dinode(
2063 	struct xfs_trans	*tp,
2064 	struct xfs_perag	*pag,
2065 	xfs_agino_t		agino,
2066 	struct xfs_buf		*ibp,
2067 	struct xfs_dinode	*dip,
2068 	struct xfs_imap		*imap,
2069 	xfs_agino_t		next_agino)
2070 {
2071 	struct xfs_mount	*mp = tp->t_mountp;
2072 	int			offset;
2073 
2074 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2075 
2076 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2077 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2078 
2079 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2080 	offset = imap->im_boffset +
2081 			offsetof(struct xfs_dinode, di_next_unlinked);
2082 
2083 	/* need to recalc the inode CRC if appropriate */
2084 	xfs_dinode_calc_crc(mp, dip);
2085 	xfs_trans_inode_buf(tp, ibp);
2086 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2087 }
2088 
2089 /* Set an in-core inode's unlinked pointer and return the old value. */
2090 STATIC int
2091 xfs_iunlink_update_inode(
2092 	struct xfs_trans	*tp,
2093 	struct xfs_inode	*ip,
2094 	struct xfs_perag	*pag,
2095 	xfs_agino_t		next_agino,
2096 	xfs_agino_t		*old_next_agino)
2097 {
2098 	struct xfs_mount	*mp = tp->t_mountp;
2099 	struct xfs_dinode	*dip;
2100 	struct xfs_buf		*ibp;
2101 	xfs_agino_t		old_value;
2102 	int			error;
2103 
2104 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2105 
2106 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2107 	if (error)
2108 		return error;
2109 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2110 
2111 	/* Make sure the old pointer isn't garbage. */
2112 	old_value = be32_to_cpu(dip->di_next_unlinked);
2113 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2114 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2115 				sizeof(*dip), __this_address);
2116 		error = -EFSCORRUPTED;
2117 		goto out;
2118 	}
2119 
2120 	/*
2121 	 * Since we're updating a linked list, we should never find that the
2122 	 * current pointer is the same as the new value, unless we're
2123 	 * terminating the list.
2124 	 */
2125 	*old_next_agino = old_value;
2126 	if (old_value == next_agino) {
2127 		if (next_agino != NULLAGINO) {
2128 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2129 					dip, sizeof(*dip), __this_address);
2130 			error = -EFSCORRUPTED;
2131 		}
2132 		goto out;
2133 	}
2134 
2135 	/* Ok, update the new pointer. */
2136 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2137 			ibp, dip, &ip->i_imap, next_agino);
2138 	return 0;
2139 out:
2140 	xfs_trans_brelse(tp, ibp);
2141 	return error;
2142 }
2143 
2144 /*
2145  * This is called when the inode's link count has gone to 0 or we are creating
2146  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2147  *
2148  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2149  * list when the inode is freed.
2150  */
2151 STATIC int
2152 xfs_iunlink(
2153 	struct xfs_trans	*tp,
2154 	struct xfs_inode	*ip)
2155 {
2156 	struct xfs_mount	*mp = tp->t_mountp;
2157 	struct xfs_perag	*pag;
2158 	struct xfs_agi		*agi;
2159 	struct xfs_buf		*agibp;
2160 	xfs_agino_t		next_agino;
2161 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2162 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2163 	int			error;
2164 
2165 	ASSERT(VFS_I(ip)->i_nlink == 0);
2166 	ASSERT(VFS_I(ip)->i_mode != 0);
2167 	trace_xfs_iunlink(ip);
2168 
2169 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2170 
2171 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2172 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2173 	if (error)
2174 		goto out;
2175 	agi = agibp->b_addr;
2176 
2177 	/*
2178 	 * Get the index into the agi hash table for the list this inode will
2179 	 * go on.  Make sure the pointer isn't garbage and that this inode
2180 	 * isn't already on the list.
2181 	 */
2182 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2183 	if (next_agino == agino ||
2184 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2185 		xfs_buf_mark_corrupt(agibp);
2186 		error = -EFSCORRUPTED;
2187 		goto out;
2188 	}
2189 
2190 	if (next_agino != NULLAGINO) {
2191 		xfs_agino_t		old_agino;
2192 
2193 		/*
2194 		 * There is already another inode in the bucket, so point this
2195 		 * inode to the current head of the list.
2196 		 */
2197 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2198 				&old_agino);
2199 		if (error)
2200 			goto out;
2201 		ASSERT(old_agino == NULLAGINO);
2202 
2203 		/*
2204 		 * agino has been unlinked, add a backref from the next inode
2205 		 * back to agino.
2206 		 */
2207 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2208 		if (error)
2209 			goto out;
2210 	}
2211 
2212 	/* Point the head of the list to point to this inode. */
2213 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2214 out:
2215 	xfs_perag_put(pag);
2216 	return error;
2217 }
2218 
2219 /* Return the imap, dinode pointer, and buffer for an inode. */
2220 STATIC int
2221 xfs_iunlink_map_ino(
2222 	struct xfs_trans	*tp,
2223 	xfs_agnumber_t		agno,
2224 	xfs_agino_t		agino,
2225 	struct xfs_imap		*imap,
2226 	struct xfs_dinode	**dipp,
2227 	struct xfs_buf		**bpp)
2228 {
2229 	struct xfs_mount	*mp = tp->t_mountp;
2230 	int			error;
2231 
2232 	imap->im_blkno = 0;
2233 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2234 	if (error) {
2235 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2236 				__func__, error);
2237 		return error;
2238 	}
2239 
2240 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2241 	if (error) {
2242 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2243 				__func__, error);
2244 		return error;
2245 	}
2246 
2247 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2248 	return 0;
2249 }
2250 
2251 /*
2252  * Walk the unlinked chain from @head_agino until we find the inode that
2253  * points to @target_agino.  Return the inode number, map, dinode pointer,
2254  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2255  *
2256  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2257  * @agino, @imap, @dipp, and @bpp are all output parameters.
2258  *
2259  * Do not call this function if @target_agino is the head of the list.
2260  */
2261 STATIC int
2262 xfs_iunlink_map_prev(
2263 	struct xfs_trans	*tp,
2264 	struct xfs_perag	*pag,
2265 	xfs_agino_t		head_agino,
2266 	xfs_agino_t		target_agino,
2267 	xfs_agino_t		*agino,
2268 	struct xfs_imap		*imap,
2269 	struct xfs_dinode	**dipp,
2270 	struct xfs_buf		**bpp)
2271 {
2272 	struct xfs_mount	*mp = tp->t_mountp;
2273 	xfs_agino_t		next_agino;
2274 	int			error;
2275 
2276 	ASSERT(head_agino != target_agino);
2277 	*bpp = NULL;
2278 
2279 	/* See if our backref cache can find it faster. */
2280 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2281 	if (*agino != NULLAGINO) {
2282 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2283 				dipp, bpp);
2284 		if (error)
2285 			return error;
2286 
2287 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2288 			return 0;
2289 
2290 		/*
2291 		 * If we get here the cache contents were corrupt, so drop the
2292 		 * buffer and fall back to walking the bucket list.
2293 		 */
2294 		xfs_trans_brelse(tp, *bpp);
2295 		*bpp = NULL;
2296 		WARN_ON_ONCE(1);
2297 	}
2298 
2299 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2300 
2301 	/* Otherwise, walk the entire bucket until we find it. */
2302 	next_agino = head_agino;
2303 	while (next_agino != target_agino) {
2304 		xfs_agino_t	unlinked_agino;
2305 
2306 		if (*bpp)
2307 			xfs_trans_brelse(tp, *bpp);
2308 
2309 		*agino = next_agino;
2310 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2311 				dipp, bpp);
2312 		if (error)
2313 			return error;
2314 
2315 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2316 		/*
2317 		 * Make sure this pointer is valid and isn't an obvious
2318 		 * infinite loop.
2319 		 */
2320 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2321 		    next_agino == unlinked_agino) {
2322 			XFS_CORRUPTION_ERROR(__func__,
2323 					XFS_ERRLEVEL_LOW, mp,
2324 					*dipp, sizeof(**dipp));
2325 			error = -EFSCORRUPTED;
2326 			return error;
2327 		}
2328 		next_agino = unlinked_agino;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Pull the on-disk inode from the AGI unlinked list.
2336  */
2337 STATIC int
2338 xfs_iunlink_remove(
2339 	struct xfs_trans	*tp,
2340 	struct xfs_perag	*pag,
2341 	struct xfs_inode	*ip)
2342 {
2343 	struct xfs_mount	*mp = tp->t_mountp;
2344 	struct xfs_agi		*agi;
2345 	struct xfs_buf		*agibp;
2346 	struct xfs_buf		*last_ibp;
2347 	struct xfs_dinode	*last_dip = NULL;
2348 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2349 	xfs_agino_t		next_agino;
2350 	xfs_agino_t		head_agino;
2351 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2352 	int			error;
2353 
2354 	trace_xfs_iunlink_remove(ip);
2355 
2356 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2357 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2358 	if (error)
2359 		return error;
2360 	agi = agibp->b_addr;
2361 
2362 	/*
2363 	 * Get the index into the agi hash table for the list this inode will
2364 	 * go on.  Make sure the head pointer isn't garbage.
2365 	 */
2366 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2367 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2368 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2369 				agi, sizeof(*agi));
2370 		return -EFSCORRUPTED;
2371 	}
2372 
2373 	/*
2374 	 * Set our inode's next_unlinked pointer to NULL and then return
2375 	 * the old pointer value so that we can update whatever was previous
2376 	 * to us in the list to point to whatever was next in the list.
2377 	 */
2378 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2379 	if (error)
2380 		return error;
2381 
2382 	/*
2383 	 * If there was a backref pointing from the next inode back to this
2384 	 * one, remove it because we've removed this inode from the list.
2385 	 *
2386 	 * Later, if this inode was in the middle of the list we'll update
2387 	 * this inode's backref to point from the next inode.
2388 	 */
2389 	if (next_agino != NULLAGINO) {
2390 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2391 		if (error)
2392 			return error;
2393 	}
2394 
2395 	if (head_agino != agino) {
2396 		struct xfs_imap	imap;
2397 		xfs_agino_t	prev_agino;
2398 
2399 		/* We need to search the list for the inode being freed. */
2400 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2401 				&prev_agino, &imap, &last_dip, &last_ibp);
2402 		if (error)
2403 			return error;
2404 
2405 		/* Point the previous inode on the list to the next inode. */
2406 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2407 				last_dip, &imap, next_agino);
2408 
2409 		/*
2410 		 * Now we deal with the backref for this inode.  If this inode
2411 		 * pointed at a real inode, change the backref that pointed to
2412 		 * us to point to our old next.  If this inode was the end of
2413 		 * the list, delete the backref that pointed to us.  Note that
2414 		 * change_backref takes care of deleting the backref if
2415 		 * next_agino is NULLAGINO.
2416 		 */
2417 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2418 				next_agino);
2419 	}
2420 
2421 	/* Point the head of the list to the next unlinked inode. */
2422 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2423 			next_agino);
2424 }
2425 
2426 /*
2427  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2428  * mark it stale. We should only find clean inodes in this lookup that aren't
2429  * already stale.
2430  */
2431 static void
2432 xfs_ifree_mark_inode_stale(
2433 	struct xfs_perag	*pag,
2434 	struct xfs_inode	*free_ip,
2435 	xfs_ino_t		inum)
2436 {
2437 	struct xfs_mount	*mp = pag->pag_mount;
2438 	struct xfs_inode_log_item *iip;
2439 	struct xfs_inode	*ip;
2440 
2441 retry:
2442 	rcu_read_lock();
2443 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2444 
2445 	/* Inode not in memory, nothing to do */
2446 	if (!ip) {
2447 		rcu_read_unlock();
2448 		return;
2449 	}
2450 
2451 	/*
2452 	 * because this is an RCU protected lookup, we could find a recently
2453 	 * freed or even reallocated inode during the lookup. We need to check
2454 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2455 	 * valid, the wrong inode or stale.
2456 	 */
2457 	spin_lock(&ip->i_flags_lock);
2458 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2459 		goto out_iflags_unlock;
2460 
2461 	/*
2462 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2463 	 * other inodes that we did not find in the list attached to the buffer
2464 	 * and are not already marked stale. If we can't lock it, back off and
2465 	 * retry.
2466 	 */
2467 	if (ip != free_ip) {
2468 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2469 			spin_unlock(&ip->i_flags_lock);
2470 			rcu_read_unlock();
2471 			delay(1);
2472 			goto retry;
2473 		}
2474 	}
2475 	ip->i_flags |= XFS_ISTALE;
2476 
2477 	/*
2478 	 * If the inode is flushing, it is already attached to the buffer.  All
2479 	 * we needed to do here is mark the inode stale so buffer IO completion
2480 	 * will remove it from the AIL.
2481 	 */
2482 	iip = ip->i_itemp;
2483 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2484 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2485 		ASSERT(iip->ili_last_fields);
2486 		goto out_iunlock;
2487 	}
2488 
2489 	/*
2490 	 * Inodes not attached to the buffer can be released immediately.
2491 	 * Everything else has to go through xfs_iflush_abort() on journal
2492 	 * commit as the flock synchronises removal of the inode from the
2493 	 * cluster buffer against inode reclaim.
2494 	 */
2495 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2496 		goto out_iunlock;
2497 
2498 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2499 	spin_unlock(&ip->i_flags_lock);
2500 	rcu_read_unlock();
2501 
2502 	/* we have a dirty inode in memory that has not yet been flushed. */
2503 	spin_lock(&iip->ili_lock);
2504 	iip->ili_last_fields = iip->ili_fields;
2505 	iip->ili_fields = 0;
2506 	iip->ili_fsync_fields = 0;
2507 	spin_unlock(&iip->ili_lock);
2508 	ASSERT(iip->ili_last_fields);
2509 
2510 	if (ip != free_ip)
2511 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2512 	return;
2513 
2514 out_iunlock:
2515 	if (ip != free_ip)
2516 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2517 out_iflags_unlock:
2518 	spin_unlock(&ip->i_flags_lock);
2519 	rcu_read_unlock();
2520 }
2521 
2522 /*
2523  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2524  * inodes that are in memory - they all must be marked stale and attached to
2525  * the cluster buffer.
2526  */
2527 static int
2528 xfs_ifree_cluster(
2529 	struct xfs_trans	*tp,
2530 	struct xfs_perag	*pag,
2531 	struct xfs_inode	*free_ip,
2532 	struct xfs_icluster	*xic)
2533 {
2534 	struct xfs_mount	*mp = free_ip->i_mount;
2535 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2536 	struct xfs_buf		*bp;
2537 	xfs_daddr_t		blkno;
2538 	xfs_ino_t		inum = xic->first_ino;
2539 	int			nbufs;
2540 	int			i, j;
2541 	int			ioffset;
2542 	int			error;
2543 
2544 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2545 
2546 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2547 		/*
2548 		 * The allocation bitmap tells us which inodes of the chunk were
2549 		 * physically allocated. Skip the cluster if an inode falls into
2550 		 * a sparse region.
2551 		 */
2552 		ioffset = inum - xic->first_ino;
2553 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2554 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2555 			continue;
2556 		}
2557 
2558 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2559 					 XFS_INO_TO_AGBNO(mp, inum));
2560 
2561 		/*
2562 		 * We obtain and lock the backing buffer first in the process
2563 		 * here to ensure dirty inodes attached to the buffer remain in
2564 		 * the flushing state while we mark them stale.
2565 		 *
2566 		 * If we scan the in-memory inodes first, then buffer IO can
2567 		 * complete before we get a lock on it, and hence we may fail
2568 		 * to mark all the active inodes on the buffer stale.
2569 		 */
2570 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2571 				mp->m_bsize * igeo->blocks_per_cluster,
2572 				XBF_UNMAPPED, &bp);
2573 		if (error)
2574 			return error;
2575 
2576 		/*
2577 		 * This buffer may not have been correctly initialised as we
2578 		 * didn't read it from disk. That's not important because we are
2579 		 * only using to mark the buffer as stale in the log, and to
2580 		 * attach stale cached inodes on it. That means it will never be
2581 		 * dispatched for IO. If it is, we want to know about it, and we
2582 		 * want it to fail. We can acheive this by adding a write
2583 		 * verifier to the buffer.
2584 		 */
2585 		bp->b_ops = &xfs_inode_buf_ops;
2586 
2587 		/*
2588 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2589 		 * too. This requires lookups, and will skip inodes that we've
2590 		 * already marked XFS_ISTALE.
2591 		 */
2592 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2593 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2594 
2595 		xfs_trans_stale_inode_buf(tp, bp);
2596 		xfs_trans_binval(tp, bp);
2597 	}
2598 	return 0;
2599 }
2600 
2601 /*
2602  * This is called to return an inode to the inode free list.
2603  * The inode should already be truncated to 0 length and have
2604  * no pages associated with it.  This routine also assumes that
2605  * the inode is already a part of the transaction.
2606  *
2607  * The on-disk copy of the inode will have been added to the list
2608  * of unlinked inodes in the AGI. We need to remove the inode from
2609  * that list atomically with respect to freeing it here.
2610  */
2611 int
2612 xfs_ifree(
2613 	struct xfs_trans	*tp,
2614 	struct xfs_inode	*ip)
2615 {
2616 	struct xfs_mount	*mp = ip->i_mount;
2617 	struct xfs_perag	*pag;
2618 	struct xfs_icluster	xic = { 0 };
2619 	struct xfs_inode_log_item *iip = ip->i_itemp;
2620 	int			error;
2621 
2622 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2623 	ASSERT(VFS_I(ip)->i_nlink == 0);
2624 	ASSERT(ip->i_df.if_nextents == 0);
2625 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2626 	ASSERT(ip->i_nblocks == 0);
2627 
2628 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2629 
2630 	/*
2631 	 * Pull the on-disk inode from the AGI unlinked list.
2632 	 */
2633 	error = xfs_iunlink_remove(tp, pag, ip);
2634 	if (error)
2635 		goto out;
2636 
2637 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2638 	if (error)
2639 		goto out;
2640 
2641 	/*
2642 	 * Free any local-format data sitting around before we reset the
2643 	 * data fork to extents format.  Note that the attr fork data has
2644 	 * already been freed by xfs_attr_inactive.
2645 	 */
2646 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2647 		kmem_free(ip->i_df.if_u1.if_data);
2648 		ip->i_df.if_u1.if_data = NULL;
2649 		ip->i_df.if_bytes = 0;
2650 	}
2651 
2652 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2653 	ip->i_diflags = 0;
2654 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2655 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2656 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2657 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2658 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2659 
2660 	/* Don't attempt to replay owner changes for a deleted inode */
2661 	spin_lock(&iip->ili_lock);
2662 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2663 	spin_unlock(&iip->ili_lock);
2664 
2665 	/*
2666 	 * Bump the generation count so no one will be confused
2667 	 * by reincarnations of this inode.
2668 	 */
2669 	VFS_I(ip)->i_generation++;
2670 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2671 
2672 	if (xic.deleted)
2673 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2674 out:
2675 	xfs_perag_put(pag);
2676 	return error;
2677 }
2678 
2679 /*
2680  * This is called to unpin an inode.  The caller must have the inode locked
2681  * in at least shared mode so that the buffer cannot be subsequently pinned
2682  * once someone is waiting for it to be unpinned.
2683  */
2684 static void
2685 xfs_iunpin(
2686 	struct xfs_inode	*ip)
2687 {
2688 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2689 
2690 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2691 
2692 	/* Give the log a push to start the unpinning I/O */
2693 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2694 
2695 }
2696 
2697 static void
2698 __xfs_iunpin_wait(
2699 	struct xfs_inode	*ip)
2700 {
2701 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2702 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2703 
2704 	xfs_iunpin(ip);
2705 
2706 	do {
2707 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2708 		if (xfs_ipincount(ip))
2709 			io_schedule();
2710 	} while (xfs_ipincount(ip));
2711 	finish_wait(wq, &wait.wq_entry);
2712 }
2713 
2714 void
2715 xfs_iunpin_wait(
2716 	struct xfs_inode	*ip)
2717 {
2718 	if (xfs_ipincount(ip))
2719 		__xfs_iunpin_wait(ip);
2720 }
2721 
2722 /*
2723  * Removing an inode from the namespace involves removing the directory entry
2724  * and dropping the link count on the inode. Removing the directory entry can
2725  * result in locking an AGF (directory blocks were freed) and removing a link
2726  * count can result in placing the inode on an unlinked list which results in
2727  * locking an AGI.
2728  *
2729  * The big problem here is that we have an ordering constraint on AGF and AGI
2730  * locking - inode allocation locks the AGI, then can allocate a new extent for
2731  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2732  * removes the inode from the unlinked list, requiring that we lock the AGI
2733  * first, and then freeing the inode can result in an inode chunk being freed
2734  * and hence freeing disk space requiring that we lock an AGF.
2735  *
2736  * Hence the ordering that is imposed by other parts of the code is AGI before
2737  * AGF. This means we cannot remove the directory entry before we drop the inode
2738  * reference count and put it on the unlinked list as this results in a lock
2739  * order of AGF then AGI, and this can deadlock against inode allocation and
2740  * freeing. Therefore we must drop the link counts before we remove the
2741  * directory entry.
2742  *
2743  * This is still safe from a transactional point of view - it is not until we
2744  * get to xfs_defer_finish() that we have the possibility of multiple
2745  * transactions in this operation. Hence as long as we remove the directory
2746  * entry and drop the link count in the first transaction of the remove
2747  * operation, there are no transactional constraints on the ordering here.
2748  */
2749 int
2750 xfs_remove(
2751 	xfs_inode_t             *dp,
2752 	struct xfs_name		*name,
2753 	xfs_inode_t		*ip)
2754 {
2755 	xfs_mount_t		*mp = dp->i_mount;
2756 	xfs_trans_t             *tp = NULL;
2757 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2758 	int                     error = 0;
2759 	uint			resblks;
2760 
2761 	trace_xfs_remove(dp, name);
2762 
2763 	if (xfs_is_shutdown(mp))
2764 		return -EIO;
2765 
2766 	error = xfs_qm_dqattach(dp);
2767 	if (error)
2768 		goto std_return;
2769 
2770 	error = xfs_qm_dqattach(ip);
2771 	if (error)
2772 		goto std_return;
2773 
2774 	/*
2775 	 * We try to get the real space reservation first,
2776 	 * allowing for directory btree deletion(s) implying
2777 	 * possible bmap insert(s).  If we can't get the space
2778 	 * reservation then we use 0 instead, and avoid the bmap
2779 	 * btree insert(s) in the directory code by, if the bmap
2780 	 * insert tries to happen, instead trimming the LAST
2781 	 * block from the directory.
2782 	 */
2783 	resblks = XFS_REMOVE_SPACE_RES(mp);
2784 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2785 	if (error == -ENOSPC) {
2786 		resblks = 0;
2787 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2788 				&tp);
2789 	}
2790 	if (error) {
2791 		ASSERT(error != -ENOSPC);
2792 		goto std_return;
2793 	}
2794 
2795 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2796 
2797 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2798 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2799 
2800 	/*
2801 	 * If we're removing a directory perform some additional validation.
2802 	 */
2803 	if (is_dir) {
2804 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2805 		if (VFS_I(ip)->i_nlink != 2) {
2806 			error = -ENOTEMPTY;
2807 			goto out_trans_cancel;
2808 		}
2809 		if (!xfs_dir_isempty(ip)) {
2810 			error = -ENOTEMPTY;
2811 			goto out_trans_cancel;
2812 		}
2813 
2814 		/* Drop the link from ip's "..".  */
2815 		error = xfs_droplink(tp, dp);
2816 		if (error)
2817 			goto out_trans_cancel;
2818 
2819 		/* Drop the "." link from ip to self.  */
2820 		error = xfs_droplink(tp, ip);
2821 		if (error)
2822 			goto out_trans_cancel;
2823 
2824 		/*
2825 		 * Point the unlinked child directory's ".." entry to the root
2826 		 * directory to eliminate back-references to inodes that may
2827 		 * get freed before the child directory is closed.  If the fs
2828 		 * gets shrunk, this can lead to dirent inode validation errors.
2829 		 */
2830 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2831 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2832 					tp->t_mountp->m_sb.sb_rootino, 0);
2833 			if (error)
2834 				return error;
2835 		}
2836 	} else {
2837 		/*
2838 		 * When removing a non-directory we need to log the parent
2839 		 * inode here.  For a directory this is done implicitly
2840 		 * by the xfs_droplink call for the ".." entry.
2841 		 */
2842 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2843 	}
2844 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2845 
2846 	/* Drop the link from dp to ip. */
2847 	error = xfs_droplink(tp, ip);
2848 	if (error)
2849 		goto out_trans_cancel;
2850 
2851 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2852 	if (error) {
2853 		ASSERT(error != -ENOENT);
2854 		goto out_trans_cancel;
2855 	}
2856 
2857 	/*
2858 	 * If this is a synchronous mount, make sure that the
2859 	 * remove transaction goes to disk before returning to
2860 	 * the user.
2861 	 */
2862 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2863 		xfs_trans_set_sync(tp);
2864 
2865 	error = xfs_trans_commit(tp);
2866 	if (error)
2867 		goto std_return;
2868 
2869 	if (is_dir && xfs_inode_is_filestream(ip))
2870 		xfs_filestream_deassociate(ip);
2871 
2872 	return 0;
2873 
2874  out_trans_cancel:
2875 	xfs_trans_cancel(tp);
2876  std_return:
2877 	return error;
2878 }
2879 
2880 /*
2881  * Enter all inodes for a rename transaction into a sorted array.
2882  */
2883 #define __XFS_SORT_INODES	5
2884 STATIC void
2885 xfs_sort_for_rename(
2886 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2887 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2888 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2889 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2890 	struct xfs_inode	*wip,	/* in: whiteout inode */
2891 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2892 	int			*num_inodes)  /* in/out: inodes in array */
2893 {
2894 	int			i, j;
2895 
2896 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2897 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2898 
2899 	/*
2900 	 * i_tab contains a list of pointers to inodes.  We initialize
2901 	 * the table here & we'll sort it.  We will then use it to
2902 	 * order the acquisition of the inode locks.
2903 	 *
2904 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2905 	 */
2906 	i = 0;
2907 	i_tab[i++] = dp1;
2908 	i_tab[i++] = dp2;
2909 	i_tab[i++] = ip1;
2910 	if (ip2)
2911 		i_tab[i++] = ip2;
2912 	if (wip)
2913 		i_tab[i++] = wip;
2914 	*num_inodes = i;
2915 
2916 	/*
2917 	 * Sort the elements via bubble sort.  (Remember, there are at
2918 	 * most 5 elements to sort, so this is adequate.)
2919 	 */
2920 	for (i = 0; i < *num_inodes; i++) {
2921 		for (j = 1; j < *num_inodes; j++) {
2922 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2923 				struct xfs_inode *temp = i_tab[j];
2924 				i_tab[j] = i_tab[j-1];
2925 				i_tab[j-1] = temp;
2926 			}
2927 		}
2928 	}
2929 }
2930 
2931 static int
2932 xfs_finish_rename(
2933 	struct xfs_trans	*tp)
2934 {
2935 	/*
2936 	 * If this is a synchronous mount, make sure that the rename transaction
2937 	 * goes to disk before returning to the user.
2938 	 */
2939 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2940 		xfs_trans_set_sync(tp);
2941 
2942 	return xfs_trans_commit(tp);
2943 }
2944 
2945 /*
2946  * xfs_cross_rename()
2947  *
2948  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2949  */
2950 STATIC int
2951 xfs_cross_rename(
2952 	struct xfs_trans	*tp,
2953 	struct xfs_inode	*dp1,
2954 	struct xfs_name		*name1,
2955 	struct xfs_inode	*ip1,
2956 	struct xfs_inode	*dp2,
2957 	struct xfs_name		*name2,
2958 	struct xfs_inode	*ip2,
2959 	int			spaceres)
2960 {
2961 	int		error = 0;
2962 	int		ip1_flags = 0;
2963 	int		ip2_flags = 0;
2964 	int		dp2_flags = 0;
2965 
2966 	/* Swap inode number for dirent in first parent */
2967 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2968 	if (error)
2969 		goto out_trans_abort;
2970 
2971 	/* Swap inode number for dirent in second parent */
2972 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2973 	if (error)
2974 		goto out_trans_abort;
2975 
2976 	/*
2977 	 * If we're renaming one or more directories across different parents,
2978 	 * update the respective ".." entries (and link counts) to match the new
2979 	 * parents.
2980 	 */
2981 	if (dp1 != dp2) {
2982 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2983 
2984 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2985 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2986 						dp1->i_ino, spaceres);
2987 			if (error)
2988 				goto out_trans_abort;
2989 
2990 			/* transfer ip2 ".." reference to dp1 */
2991 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2992 				error = xfs_droplink(tp, dp2);
2993 				if (error)
2994 					goto out_trans_abort;
2995 				xfs_bumplink(tp, dp1);
2996 			}
2997 
2998 			/*
2999 			 * Although ip1 isn't changed here, userspace needs
3000 			 * to be warned about the change, so that applications
3001 			 * relying on it (like backup ones), will properly
3002 			 * notify the change
3003 			 */
3004 			ip1_flags |= XFS_ICHGTIME_CHG;
3005 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3006 		}
3007 
3008 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3009 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3010 						dp2->i_ino, spaceres);
3011 			if (error)
3012 				goto out_trans_abort;
3013 
3014 			/* transfer ip1 ".." reference to dp2 */
3015 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3016 				error = xfs_droplink(tp, dp1);
3017 				if (error)
3018 					goto out_trans_abort;
3019 				xfs_bumplink(tp, dp2);
3020 			}
3021 
3022 			/*
3023 			 * Although ip2 isn't changed here, userspace needs
3024 			 * to be warned about the change, so that applications
3025 			 * relying on it (like backup ones), will properly
3026 			 * notify the change
3027 			 */
3028 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3029 			ip2_flags |= XFS_ICHGTIME_CHG;
3030 		}
3031 	}
3032 
3033 	if (ip1_flags) {
3034 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3035 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3036 	}
3037 	if (ip2_flags) {
3038 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3039 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3040 	}
3041 	if (dp2_flags) {
3042 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3043 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3044 	}
3045 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3046 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3047 	return xfs_finish_rename(tp);
3048 
3049 out_trans_abort:
3050 	xfs_trans_cancel(tp);
3051 	return error;
3052 }
3053 
3054 /*
3055  * xfs_rename_alloc_whiteout()
3056  *
3057  * Return a referenced, unlinked, unlocked inode that can be used as a
3058  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3059  * crash between allocating the inode and linking it into the rename transaction
3060  * recovery will free the inode and we won't leak it.
3061  */
3062 static int
3063 xfs_rename_alloc_whiteout(
3064 	struct user_namespace	*mnt_userns,
3065 	struct xfs_inode	*dp,
3066 	struct xfs_inode	**wip)
3067 {
3068 	struct xfs_inode	*tmpfile;
3069 	int			error;
3070 
3071 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3072 				   &tmpfile);
3073 	if (error)
3074 		return error;
3075 
3076 	/*
3077 	 * Prepare the tmpfile inode as if it were created through the VFS.
3078 	 * Complete the inode setup and flag it as linkable.  nlink is already
3079 	 * zero, so we can skip the drop_nlink.
3080 	 */
3081 	xfs_setup_iops(tmpfile);
3082 	xfs_finish_inode_setup(tmpfile);
3083 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3084 
3085 	*wip = tmpfile;
3086 	return 0;
3087 }
3088 
3089 /*
3090  * xfs_rename
3091  */
3092 int
3093 xfs_rename(
3094 	struct user_namespace	*mnt_userns,
3095 	struct xfs_inode	*src_dp,
3096 	struct xfs_name		*src_name,
3097 	struct xfs_inode	*src_ip,
3098 	struct xfs_inode	*target_dp,
3099 	struct xfs_name		*target_name,
3100 	struct xfs_inode	*target_ip,
3101 	unsigned int		flags)
3102 {
3103 	struct xfs_mount	*mp = src_dp->i_mount;
3104 	struct xfs_trans	*tp;
3105 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3106 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3107 	int			i;
3108 	int			num_inodes = __XFS_SORT_INODES;
3109 	bool			new_parent = (src_dp != target_dp);
3110 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3111 	int			spaceres;
3112 	int			error;
3113 
3114 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3115 
3116 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3117 		return -EINVAL;
3118 
3119 	/*
3120 	 * If we are doing a whiteout operation, allocate the whiteout inode
3121 	 * we will be placing at the target and ensure the type is set
3122 	 * appropriately.
3123 	 */
3124 	if (flags & RENAME_WHITEOUT) {
3125 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3126 		if (error)
3127 			return error;
3128 
3129 		/* setup target dirent info as whiteout */
3130 		src_name->type = XFS_DIR3_FT_CHRDEV;
3131 	}
3132 
3133 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3134 				inodes, &num_inodes);
3135 
3136 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3137 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3138 	if (error == -ENOSPC) {
3139 		spaceres = 0;
3140 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3141 				&tp);
3142 	}
3143 	if (error)
3144 		goto out_release_wip;
3145 
3146 	/*
3147 	 * Attach the dquots to the inodes
3148 	 */
3149 	error = xfs_qm_vop_rename_dqattach(inodes);
3150 	if (error)
3151 		goto out_trans_cancel;
3152 
3153 	/*
3154 	 * Lock all the participating inodes. Depending upon whether
3155 	 * the target_name exists in the target directory, and
3156 	 * whether the target directory is the same as the source
3157 	 * directory, we can lock from 2 to 4 inodes.
3158 	 */
3159 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3160 
3161 	/*
3162 	 * Join all the inodes to the transaction. From this point on,
3163 	 * we can rely on either trans_commit or trans_cancel to unlock
3164 	 * them.
3165 	 */
3166 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3167 	if (new_parent)
3168 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3169 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3170 	if (target_ip)
3171 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3172 	if (wip)
3173 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3174 
3175 	/*
3176 	 * If we are using project inheritance, we only allow renames
3177 	 * into our tree when the project IDs are the same; else the
3178 	 * tree quota mechanism would be circumvented.
3179 	 */
3180 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3181 		     target_dp->i_projid != src_ip->i_projid)) {
3182 		error = -EXDEV;
3183 		goto out_trans_cancel;
3184 	}
3185 
3186 	/* RENAME_EXCHANGE is unique from here on. */
3187 	if (flags & RENAME_EXCHANGE)
3188 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3189 					target_dp, target_name, target_ip,
3190 					spaceres);
3191 
3192 	/*
3193 	 * Check for expected errors before we dirty the transaction
3194 	 * so we can return an error without a transaction abort.
3195 	 *
3196 	 * Extent count overflow check:
3197 	 *
3198 	 * From the perspective of src_dp, a rename operation is essentially a
3199 	 * directory entry remove operation. Hence the only place where we check
3200 	 * for extent count overflow for src_dp is in
3201 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3202 	 * -ENOSPC when it detects a possible extent count overflow and in
3203 	 * response, the higher layers of directory handling code do the
3204 	 * following:
3205 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3206 	 *    future remove operation removes them.
3207 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3208 	 *    Leaf space and unmaps the last block.
3209 	 *
3210 	 * For target_dp, there are two cases depending on whether the
3211 	 * destination directory entry exists or not.
3212 	 *
3213 	 * When destination directory entry does not exist (i.e. target_ip ==
3214 	 * NULL), extent count overflow check is performed only when transaction
3215 	 * has a non-zero sized space reservation associated with it.  With a
3216 	 * zero-sized space reservation, XFS allows a rename operation to
3217 	 * continue only when the directory has sufficient free space in its
3218 	 * data/leaf/free space blocks to hold the new entry.
3219 	 *
3220 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3221 	 * we need to do is change the inode number associated with the already
3222 	 * existing entry. Hence there is no need to perform an extent count
3223 	 * overflow check.
3224 	 */
3225 	if (target_ip == NULL) {
3226 		/*
3227 		 * If there's no space reservation, check the entry will
3228 		 * fit before actually inserting it.
3229 		 */
3230 		if (!spaceres) {
3231 			error = xfs_dir_canenter(tp, target_dp, target_name);
3232 			if (error)
3233 				goto out_trans_cancel;
3234 		} else {
3235 			error = xfs_iext_count_may_overflow(target_dp,
3236 					XFS_DATA_FORK,
3237 					XFS_IEXT_DIR_MANIP_CNT(mp));
3238 			if (error)
3239 				goto out_trans_cancel;
3240 		}
3241 	} else {
3242 		/*
3243 		 * If target exists and it's a directory, check that whether
3244 		 * it can be destroyed.
3245 		 */
3246 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3247 		    (!xfs_dir_isempty(target_ip) ||
3248 		     (VFS_I(target_ip)->i_nlink > 2))) {
3249 			error = -EEXIST;
3250 			goto out_trans_cancel;
3251 		}
3252 	}
3253 
3254 	/*
3255 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3256 	 * whiteout inode off the unlinked list and to handle dropping the
3257 	 * nlink of the target inode.  Per locking order rules, do this in
3258 	 * increasing AG order and before directory block allocation tries to
3259 	 * grab AGFs because we grab AGIs before AGFs.
3260 	 *
3261 	 * The (vfs) caller must ensure that if src is a directory then
3262 	 * target_ip is either null or an empty directory.
3263 	 */
3264 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3265 		if (inodes[i] == wip ||
3266 		    (inodes[i] == target_ip &&
3267 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3268 			struct xfs_buf	*bp;
3269 			xfs_agnumber_t	agno;
3270 
3271 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3272 			error = xfs_read_agi(mp, tp, agno, &bp);
3273 			if (error)
3274 				goto out_trans_cancel;
3275 		}
3276 	}
3277 
3278 	/*
3279 	 * Directory entry creation below may acquire the AGF. Remove
3280 	 * the whiteout from the unlinked list first to preserve correct
3281 	 * AGI/AGF locking order. This dirties the transaction so failures
3282 	 * after this point will abort and log recovery will clean up the
3283 	 * mess.
3284 	 *
3285 	 * For whiteouts, we need to bump the link count on the whiteout
3286 	 * inode. After this point, we have a real link, clear the tmpfile
3287 	 * state flag from the inode so it doesn't accidentally get misused
3288 	 * in future.
3289 	 */
3290 	if (wip) {
3291 		struct xfs_perag	*pag;
3292 
3293 		ASSERT(VFS_I(wip)->i_nlink == 0);
3294 
3295 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3296 		error = xfs_iunlink_remove(tp, pag, wip);
3297 		xfs_perag_put(pag);
3298 		if (error)
3299 			goto out_trans_cancel;
3300 
3301 		xfs_bumplink(tp, wip);
3302 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3303 	}
3304 
3305 	/*
3306 	 * Set up the target.
3307 	 */
3308 	if (target_ip == NULL) {
3309 		/*
3310 		 * If target does not exist and the rename crosses
3311 		 * directories, adjust the target directory link count
3312 		 * to account for the ".." reference from the new entry.
3313 		 */
3314 		error = xfs_dir_createname(tp, target_dp, target_name,
3315 					   src_ip->i_ino, spaceres);
3316 		if (error)
3317 			goto out_trans_cancel;
3318 
3319 		xfs_trans_ichgtime(tp, target_dp,
3320 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3321 
3322 		if (new_parent && src_is_directory) {
3323 			xfs_bumplink(tp, target_dp);
3324 		}
3325 	} else { /* target_ip != NULL */
3326 		/*
3327 		 * Link the source inode under the target name.
3328 		 * If the source inode is a directory and we are moving
3329 		 * it across directories, its ".." entry will be
3330 		 * inconsistent until we replace that down below.
3331 		 *
3332 		 * In case there is already an entry with the same
3333 		 * name at the destination directory, remove it first.
3334 		 */
3335 		error = xfs_dir_replace(tp, target_dp, target_name,
3336 					src_ip->i_ino, spaceres);
3337 		if (error)
3338 			goto out_trans_cancel;
3339 
3340 		xfs_trans_ichgtime(tp, target_dp,
3341 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3342 
3343 		/*
3344 		 * Decrement the link count on the target since the target
3345 		 * dir no longer points to it.
3346 		 */
3347 		error = xfs_droplink(tp, target_ip);
3348 		if (error)
3349 			goto out_trans_cancel;
3350 
3351 		if (src_is_directory) {
3352 			/*
3353 			 * Drop the link from the old "." entry.
3354 			 */
3355 			error = xfs_droplink(tp, target_ip);
3356 			if (error)
3357 				goto out_trans_cancel;
3358 		}
3359 	} /* target_ip != NULL */
3360 
3361 	/*
3362 	 * Remove the source.
3363 	 */
3364 	if (new_parent && src_is_directory) {
3365 		/*
3366 		 * Rewrite the ".." entry to point to the new
3367 		 * directory.
3368 		 */
3369 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3370 					target_dp->i_ino, spaceres);
3371 		ASSERT(error != -EEXIST);
3372 		if (error)
3373 			goto out_trans_cancel;
3374 	}
3375 
3376 	/*
3377 	 * We always want to hit the ctime on the source inode.
3378 	 *
3379 	 * This isn't strictly required by the standards since the source
3380 	 * inode isn't really being changed, but old unix file systems did
3381 	 * it and some incremental backup programs won't work without it.
3382 	 */
3383 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3384 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3385 
3386 	/*
3387 	 * Adjust the link count on src_dp.  This is necessary when
3388 	 * renaming a directory, either within one parent when
3389 	 * the target existed, or across two parent directories.
3390 	 */
3391 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3392 
3393 		/*
3394 		 * Decrement link count on src_directory since the
3395 		 * entry that's moved no longer points to it.
3396 		 */
3397 		error = xfs_droplink(tp, src_dp);
3398 		if (error)
3399 			goto out_trans_cancel;
3400 	}
3401 
3402 	/*
3403 	 * For whiteouts, we only need to update the source dirent with the
3404 	 * inode number of the whiteout inode rather than removing it
3405 	 * altogether.
3406 	 */
3407 	if (wip) {
3408 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3409 					spaceres);
3410 	} else {
3411 		/*
3412 		 * NOTE: We don't need to check for extent count overflow here
3413 		 * because the dir remove name code will leave the dir block in
3414 		 * place if the extent count would overflow.
3415 		 */
3416 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3417 					   spaceres);
3418 	}
3419 
3420 	if (error)
3421 		goto out_trans_cancel;
3422 
3423 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3424 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3425 	if (new_parent)
3426 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3427 
3428 	error = xfs_finish_rename(tp);
3429 	if (wip)
3430 		xfs_irele(wip);
3431 	return error;
3432 
3433 out_trans_cancel:
3434 	xfs_trans_cancel(tp);
3435 out_release_wip:
3436 	if (wip)
3437 		xfs_irele(wip);
3438 	return error;
3439 }
3440 
3441 static int
3442 xfs_iflush(
3443 	struct xfs_inode	*ip,
3444 	struct xfs_buf		*bp)
3445 {
3446 	struct xfs_inode_log_item *iip = ip->i_itemp;
3447 	struct xfs_dinode	*dip;
3448 	struct xfs_mount	*mp = ip->i_mount;
3449 	int			error;
3450 
3451 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3452 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3453 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3454 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3455 	ASSERT(iip->ili_item.li_buf == bp);
3456 
3457 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3458 
3459 	/*
3460 	 * We don't flush the inode if any of the following checks fail, but we
3461 	 * do still update the log item and attach to the backing buffer as if
3462 	 * the flush happened. This is a formality to facilitate predictable
3463 	 * error handling as the caller will shutdown and fail the buffer.
3464 	 */
3465 	error = -EFSCORRUPTED;
3466 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3467 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3468 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3469 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3470 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3471 		goto flush_out;
3472 	}
3473 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3474 		if (XFS_TEST_ERROR(
3475 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3476 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3477 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3478 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3479 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3480 				__func__, ip->i_ino, ip);
3481 			goto flush_out;
3482 		}
3483 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3484 		if (XFS_TEST_ERROR(
3485 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3486 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3487 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3488 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3489 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3490 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3491 				__func__, ip->i_ino, ip);
3492 			goto flush_out;
3493 		}
3494 	}
3495 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3496 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3497 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3498 			"%s: detected corrupt incore inode %Lu, "
3499 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3500 			__func__, ip->i_ino,
3501 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3502 			ip->i_nblocks, ip);
3503 		goto flush_out;
3504 	}
3505 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3506 				mp, XFS_ERRTAG_IFLUSH_6)) {
3507 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3508 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3509 			__func__, ip->i_ino, ip->i_forkoff, ip);
3510 		goto flush_out;
3511 	}
3512 
3513 	/*
3514 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3515 	 * count for correct sequencing.  We bump the flush iteration count so
3516 	 * we can detect flushes which postdate a log record during recovery.
3517 	 * This is redundant as we now log every change and hence this can't
3518 	 * happen but we need to still do it to ensure backwards compatibility
3519 	 * with old kernels that predate logging all inode changes.
3520 	 */
3521 	if (!xfs_has_v3inodes(mp))
3522 		ip->i_flushiter++;
3523 
3524 	/*
3525 	 * If there are inline format data / attr forks attached to this inode,
3526 	 * make sure they are not corrupt.
3527 	 */
3528 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3529 	    xfs_ifork_verify_local_data(ip))
3530 		goto flush_out;
3531 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3532 	    xfs_ifork_verify_local_attr(ip))
3533 		goto flush_out;
3534 
3535 	/*
3536 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3537 	 * copy out the core of the inode, because if the inode is dirty at all
3538 	 * the core must be.
3539 	 */
3540 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3541 
3542 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3543 	if (!xfs_has_v3inodes(mp)) {
3544 		if (ip->i_flushiter == DI_MAX_FLUSH)
3545 			ip->i_flushiter = 0;
3546 	}
3547 
3548 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3549 	if (XFS_IFORK_Q(ip))
3550 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3551 
3552 	/*
3553 	 * We've recorded everything logged in the inode, so we'd like to clear
3554 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3555 	 * However, we can't stop logging all this information until the data
3556 	 * we've copied into the disk buffer is written to disk.  If we did we
3557 	 * might overwrite the copy of the inode in the log with all the data
3558 	 * after re-logging only part of it, and in the face of a crash we
3559 	 * wouldn't have all the data we need to recover.
3560 	 *
3561 	 * What we do is move the bits to the ili_last_fields field.  When
3562 	 * logging the inode, these bits are moved back to the ili_fields field.
3563 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3564 	 * we know that the information those bits represent is permanently on
3565 	 * disk.  As long as the flush completes before the inode is logged
3566 	 * again, then both ili_fields and ili_last_fields will be cleared.
3567 	 */
3568 	error = 0;
3569 flush_out:
3570 	spin_lock(&iip->ili_lock);
3571 	iip->ili_last_fields = iip->ili_fields;
3572 	iip->ili_fields = 0;
3573 	iip->ili_fsync_fields = 0;
3574 	spin_unlock(&iip->ili_lock);
3575 
3576 	/*
3577 	 * Store the current LSN of the inode so that we can tell whether the
3578 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3579 	 */
3580 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3581 				&iip->ili_item.li_lsn);
3582 
3583 	/* generate the checksum. */
3584 	xfs_dinode_calc_crc(mp, dip);
3585 	return error;
3586 }
3587 
3588 /*
3589  * Non-blocking flush of dirty inode metadata into the backing buffer.
3590  *
3591  * The caller must have a reference to the inode and hold the cluster buffer
3592  * locked. The function will walk across all the inodes on the cluster buffer it
3593  * can find and lock without blocking, and flush them to the cluster buffer.
3594  *
3595  * On successful flushing of at least one inode, the caller must write out the
3596  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3597  * the caller needs to release the buffer. On failure, the filesystem will be
3598  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3599  * will be returned.
3600  */
3601 int
3602 xfs_iflush_cluster(
3603 	struct xfs_buf		*bp)
3604 {
3605 	struct xfs_mount	*mp = bp->b_mount;
3606 	struct xfs_log_item	*lip, *n;
3607 	struct xfs_inode	*ip;
3608 	struct xfs_inode_log_item *iip;
3609 	int			clcount = 0;
3610 	int			error = 0;
3611 
3612 	/*
3613 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3614 	 * can remove itself from the list.
3615 	 */
3616 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3617 		iip = (struct xfs_inode_log_item *)lip;
3618 		ip = iip->ili_inode;
3619 
3620 		/*
3621 		 * Quick and dirty check to avoid locks if possible.
3622 		 */
3623 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3624 			continue;
3625 		if (xfs_ipincount(ip))
3626 			continue;
3627 
3628 		/*
3629 		 * The inode is still attached to the buffer, which means it is
3630 		 * dirty but reclaim might try to grab it. Check carefully for
3631 		 * that, and grab the ilock while still holding the i_flags_lock
3632 		 * to guarantee reclaim will not be able to reclaim this inode
3633 		 * once we drop the i_flags_lock.
3634 		 */
3635 		spin_lock(&ip->i_flags_lock);
3636 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3637 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3638 			spin_unlock(&ip->i_flags_lock);
3639 			continue;
3640 		}
3641 
3642 		/*
3643 		 * ILOCK will pin the inode against reclaim and prevent
3644 		 * concurrent transactions modifying the inode while we are
3645 		 * flushing the inode. If we get the lock, set the flushing
3646 		 * state before we drop the i_flags_lock.
3647 		 */
3648 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3649 			spin_unlock(&ip->i_flags_lock);
3650 			continue;
3651 		}
3652 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3653 		spin_unlock(&ip->i_flags_lock);
3654 
3655 		/*
3656 		 * Abort flushing this inode if we are shut down because the
3657 		 * inode may not currently be in the AIL. This can occur when
3658 		 * log I/O failure unpins the inode without inserting into the
3659 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3660 		 * that otherwise looks like it should be flushed.
3661 		 */
3662 		if (xfs_is_shutdown(mp)) {
3663 			xfs_iunpin_wait(ip);
3664 			xfs_iflush_abort(ip);
3665 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3666 			error = -EIO;
3667 			continue;
3668 		}
3669 
3670 		/* don't block waiting on a log force to unpin dirty inodes */
3671 		if (xfs_ipincount(ip)) {
3672 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3673 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3674 			continue;
3675 		}
3676 
3677 		if (!xfs_inode_clean(ip))
3678 			error = xfs_iflush(ip, bp);
3679 		else
3680 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3681 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3682 		if (error)
3683 			break;
3684 		clcount++;
3685 	}
3686 
3687 	if (error) {
3688 		bp->b_flags |= XBF_ASYNC;
3689 		xfs_buf_ioend_fail(bp);
3690 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3691 		return error;
3692 	}
3693 
3694 	if (!clcount)
3695 		return -EAGAIN;
3696 
3697 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3698 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3699 	return 0;
3700 
3701 }
3702 
3703 /* Release an inode. */
3704 void
3705 xfs_irele(
3706 	struct xfs_inode	*ip)
3707 {
3708 	trace_xfs_irele(ip, _RET_IP_);
3709 	iput(VFS_I(ip));
3710 }
3711 
3712 /*
3713  * Ensure all commited transactions touching the inode are written to the log.
3714  */
3715 int
3716 xfs_log_force_inode(
3717 	struct xfs_inode	*ip)
3718 {
3719 	xfs_csn_t		seq = 0;
3720 
3721 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3722 	if (xfs_ipincount(ip))
3723 		seq = ip->i_itemp->ili_commit_seq;
3724 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3725 
3726 	if (!seq)
3727 		return 0;
3728 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3729 }
3730 
3731 /*
3732  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3733  * abide vfs locking order (lowest pointer value goes first) and breaking the
3734  * layout leases before proceeding.  The loop is needed because we cannot call
3735  * the blocking break_layout() with the iolocks held, and therefore have to
3736  * back out both locks.
3737  */
3738 static int
3739 xfs_iolock_two_inodes_and_break_layout(
3740 	struct inode		*src,
3741 	struct inode		*dest)
3742 {
3743 	int			error;
3744 
3745 	if (src > dest)
3746 		swap(src, dest);
3747 
3748 retry:
3749 	/* Wait to break both inodes' layouts before we start locking. */
3750 	error = break_layout(src, true);
3751 	if (error)
3752 		return error;
3753 	if (src != dest) {
3754 		error = break_layout(dest, true);
3755 		if (error)
3756 			return error;
3757 	}
3758 
3759 	/* Lock one inode and make sure nobody got in and leased it. */
3760 	inode_lock(src);
3761 	error = break_layout(src, false);
3762 	if (error) {
3763 		inode_unlock(src);
3764 		if (error == -EWOULDBLOCK)
3765 			goto retry;
3766 		return error;
3767 	}
3768 
3769 	if (src == dest)
3770 		return 0;
3771 
3772 	/* Lock the other inode and make sure nobody got in and leased it. */
3773 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3774 	error = break_layout(dest, false);
3775 	if (error) {
3776 		inode_unlock(src);
3777 		inode_unlock(dest);
3778 		if (error == -EWOULDBLOCK)
3779 			goto retry;
3780 		return error;
3781 	}
3782 
3783 	return 0;
3784 }
3785 
3786 /*
3787  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3788  * mmap activity.
3789  */
3790 int
3791 xfs_ilock2_io_mmap(
3792 	struct xfs_inode	*ip1,
3793 	struct xfs_inode	*ip2)
3794 {
3795 	int			ret;
3796 
3797 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3798 	if (ret)
3799 		return ret;
3800 	filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3801 				    VFS_I(ip2)->i_mapping);
3802 	return 0;
3803 }
3804 
3805 /* Unlock both inodes to allow IO and mmap activity. */
3806 void
3807 xfs_iunlock2_io_mmap(
3808 	struct xfs_inode	*ip1,
3809 	struct xfs_inode	*ip2)
3810 {
3811 	filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3812 				      VFS_I(ip2)->i_mapping);
3813 	inode_unlock(VFS_I(ip2));
3814 	if (ip1 != ip2)
3815 		inode_unlock(VFS_I(ip1));
3816 }
3817