1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_types.h" 23 #include "xfs_bit.h" 24 #include "xfs_log.h" 25 #include "xfs_inum.h" 26 #include "xfs_trans.h" 27 #include "xfs_trans_priv.h" 28 #include "xfs_sb.h" 29 #include "xfs_ag.h" 30 #include "xfs_mount.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_btree.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_bmap.h" 43 #include "xfs_error.h" 44 #include "xfs_utils.h" 45 #include "xfs_quota.h" 46 #include "xfs_filestream.h" 47 #include "xfs_vnodeops.h" 48 #include "xfs_trace.h" 49 50 kmem_zone_t *xfs_ifork_zone; 51 kmem_zone_t *xfs_inode_zone; 52 53 /* 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents 55 * freed from a file in a single transaction. 56 */ 57 #define XFS_ITRUNC_MAX_EXTENTS 2 58 59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); 61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); 62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); 63 64 #ifdef DEBUG 65 /* 66 * Make sure that the extents in the given memory buffer 67 * are valid. 68 */ 69 STATIC void 70 xfs_validate_extents( 71 xfs_ifork_t *ifp, 72 int nrecs, 73 xfs_exntfmt_t fmt) 74 { 75 xfs_bmbt_irec_t irec; 76 xfs_bmbt_rec_host_t rec; 77 int i; 78 79 for (i = 0; i < nrecs; i++) { 80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 81 rec.l0 = get_unaligned(&ep->l0); 82 rec.l1 = get_unaligned(&ep->l1); 83 xfs_bmbt_get_all(&rec, &irec); 84 if (fmt == XFS_EXTFMT_NOSTATE) 85 ASSERT(irec.br_state == XFS_EXT_NORM); 86 } 87 } 88 #else /* DEBUG */ 89 #define xfs_validate_extents(ifp, nrecs, fmt) 90 #endif /* DEBUG */ 91 92 /* 93 * Check that none of the inode's in the buffer have a next 94 * unlinked field of 0. 95 */ 96 #if defined(DEBUG) 97 void 98 xfs_inobp_check( 99 xfs_mount_t *mp, 100 xfs_buf_t *bp) 101 { 102 int i; 103 int j; 104 xfs_dinode_t *dip; 105 106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 107 108 for (i = 0; i < j; i++) { 109 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 110 i * mp->m_sb.sb_inodesize); 111 if (!dip->di_next_unlinked) { 112 xfs_alert(mp, 113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.", 114 bp); 115 ASSERT(dip->di_next_unlinked); 116 } 117 } 118 } 119 #endif 120 121 /* 122 * Find the buffer associated with the given inode map 123 * We do basic validation checks on the buffer once it has been 124 * retrieved from disk. 125 */ 126 STATIC int 127 xfs_imap_to_bp( 128 xfs_mount_t *mp, 129 xfs_trans_t *tp, 130 struct xfs_imap *imap, 131 xfs_buf_t **bpp, 132 uint buf_flags, 133 uint iget_flags) 134 { 135 int error; 136 int i; 137 int ni; 138 xfs_buf_t *bp; 139 140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno, 141 (int)imap->im_len, buf_flags, &bp); 142 if (error) { 143 if (error != EAGAIN) { 144 xfs_warn(mp, 145 "%s: xfs_trans_read_buf() returned error %d.", 146 __func__, error); 147 } else { 148 ASSERT(buf_flags & XBF_TRYLOCK); 149 } 150 return error; 151 } 152 153 /* 154 * Validate the magic number and version of every inode in the buffer 155 * (if DEBUG kernel) or the first inode in the buffer, otherwise. 156 */ 157 #ifdef DEBUG 158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog; 159 #else /* usual case */ 160 ni = 1; 161 #endif 162 163 for (i = 0; i < ni; i++) { 164 int di_ok; 165 xfs_dinode_t *dip; 166 167 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 168 (i << mp->m_sb.sb_inodelog)); 169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) && 170 XFS_DINODE_GOOD_VERSION(dip->di_version); 171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, 172 XFS_ERRTAG_ITOBP_INOTOBP, 173 XFS_RANDOM_ITOBP_INOTOBP))) { 174 if (iget_flags & XFS_IGET_UNTRUSTED) { 175 xfs_trans_brelse(tp, bp); 176 return XFS_ERROR(EINVAL); 177 } 178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp", 179 XFS_ERRLEVEL_HIGH, mp, dip); 180 #ifdef DEBUG 181 xfs_emerg(mp, 182 "bad inode magic/vsn daddr %lld #%d (magic=%x)", 183 (unsigned long long)imap->im_blkno, i, 184 be16_to_cpu(dip->di_magic)); 185 ASSERT(0); 186 #endif 187 xfs_trans_brelse(tp, bp); 188 return XFS_ERROR(EFSCORRUPTED); 189 } 190 } 191 192 xfs_inobp_check(mp, bp); 193 *bpp = bp; 194 return 0; 195 } 196 197 /* 198 * This routine is called to map an inode number within a file 199 * system to the buffer containing the on-disk version of the 200 * inode. It returns a pointer to the buffer containing the 201 * on-disk inode in the bpp parameter, and in the dip parameter 202 * it returns a pointer to the on-disk inode within that buffer. 203 * 204 * If a non-zero error is returned, then the contents of bpp and 205 * dipp are undefined. 206 * 207 * Use xfs_imap() to determine the size and location of the 208 * buffer to read from disk. 209 */ 210 int 211 xfs_inotobp( 212 xfs_mount_t *mp, 213 xfs_trans_t *tp, 214 xfs_ino_t ino, 215 xfs_dinode_t **dipp, 216 xfs_buf_t **bpp, 217 int *offset, 218 uint imap_flags) 219 { 220 struct xfs_imap imap; 221 xfs_buf_t *bp; 222 int error; 223 224 imap.im_blkno = 0; 225 error = xfs_imap(mp, tp, ino, &imap, imap_flags); 226 if (error) 227 return error; 228 229 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags); 230 if (error) 231 return error; 232 233 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 234 *bpp = bp; 235 *offset = imap.im_boffset; 236 return 0; 237 } 238 239 240 /* 241 * This routine is called to map an inode to the buffer containing 242 * the on-disk version of the inode. It returns a pointer to the 243 * buffer containing the on-disk inode in the bpp parameter, and in 244 * the dip parameter it returns a pointer to the on-disk inode within 245 * that buffer. 246 * 247 * If a non-zero error is returned, then the contents of bpp and 248 * dipp are undefined. 249 * 250 * The inode is expected to already been mapped to its buffer and read 251 * in once, thus we can use the mapping information stored in the inode 252 * rather than calling xfs_imap(). This allows us to avoid the overhead 253 * of looking at the inode btree for small block file systems 254 * (see xfs_imap()). 255 */ 256 int 257 xfs_itobp( 258 xfs_mount_t *mp, 259 xfs_trans_t *tp, 260 xfs_inode_t *ip, 261 xfs_dinode_t **dipp, 262 xfs_buf_t **bpp, 263 uint buf_flags) 264 { 265 xfs_buf_t *bp; 266 int error; 267 268 ASSERT(ip->i_imap.im_blkno != 0); 269 270 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0); 271 if (error) 272 return error; 273 274 if (!bp) { 275 ASSERT(buf_flags & XBF_TRYLOCK); 276 ASSERT(tp == NULL); 277 *bpp = NULL; 278 return EAGAIN; 279 } 280 281 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 282 *bpp = bp; 283 return 0; 284 } 285 286 /* 287 * Move inode type and inode format specific information from the 288 * on-disk inode to the in-core inode. For fifos, devs, and sockets 289 * this means set if_rdev to the proper value. For files, directories, 290 * and symlinks this means to bring in the in-line data or extent 291 * pointers. For a file in B-tree format, only the root is immediately 292 * brought in-core. The rest will be in-lined in if_extents when it 293 * is first referenced (see xfs_iread_extents()). 294 */ 295 STATIC int 296 xfs_iformat( 297 xfs_inode_t *ip, 298 xfs_dinode_t *dip) 299 { 300 xfs_attr_shortform_t *atp; 301 int size; 302 int error = 0; 303 xfs_fsize_t di_size; 304 305 if (unlikely(be32_to_cpu(dip->di_nextents) + 306 be16_to_cpu(dip->di_anextents) > 307 be64_to_cpu(dip->di_nblocks))) { 308 xfs_warn(ip->i_mount, 309 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", 310 (unsigned long long)ip->i_ino, 311 (int)(be32_to_cpu(dip->di_nextents) + 312 be16_to_cpu(dip->di_anextents)), 313 (unsigned long long) 314 be64_to_cpu(dip->di_nblocks)); 315 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, 316 ip->i_mount, dip); 317 return XFS_ERROR(EFSCORRUPTED); 318 } 319 320 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) { 321 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", 322 (unsigned long long)ip->i_ino, 323 dip->di_forkoff); 324 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, 325 ip->i_mount, dip); 326 return XFS_ERROR(EFSCORRUPTED); 327 } 328 329 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) && 330 !ip->i_mount->m_rtdev_targp)) { 331 xfs_warn(ip->i_mount, 332 "corrupt dinode %Lu, has realtime flag set.", 333 ip->i_ino); 334 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)", 335 XFS_ERRLEVEL_LOW, ip->i_mount, dip); 336 return XFS_ERROR(EFSCORRUPTED); 337 } 338 339 switch (ip->i_d.di_mode & S_IFMT) { 340 case S_IFIFO: 341 case S_IFCHR: 342 case S_IFBLK: 343 case S_IFSOCK: 344 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) { 345 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, 346 ip->i_mount, dip); 347 return XFS_ERROR(EFSCORRUPTED); 348 } 349 ip->i_d.di_size = 0; 350 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip); 351 break; 352 353 case S_IFREG: 354 case S_IFLNK: 355 case S_IFDIR: 356 switch (dip->di_format) { 357 case XFS_DINODE_FMT_LOCAL: 358 /* 359 * no local regular files yet 360 */ 361 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) { 362 xfs_warn(ip->i_mount, 363 "corrupt inode %Lu (local format for regular file).", 364 (unsigned long long) ip->i_ino); 365 XFS_CORRUPTION_ERROR("xfs_iformat(4)", 366 XFS_ERRLEVEL_LOW, 367 ip->i_mount, dip); 368 return XFS_ERROR(EFSCORRUPTED); 369 } 370 371 di_size = be64_to_cpu(dip->di_size); 372 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { 373 xfs_warn(ip->i_mount, 374 "corrupt inode %Lu (bad size %Ld for local inode).", 375 (unsigned long long) ip->i_ino, 376 (long long) di_size); 377 XFS_CORRUPTION_ERROR("xfs_iformat(5)", 378 XFS_ERRLEVEL_LOW, 379 ip->i_mount, dip); 380 return XFS_ERROR(EFSCORRUPTED); 381 } 382 383 size = (int)di_size; 384 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); 385 break; 386 case XFS_DINODE_FMT_EXTENTS: 387 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 388 break; 389 case XFS_DINODE_FMT_BTREE: 390 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 391 break; 392 default: 393 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, 394 ip->i_mount); 395 return XFS_ERROR(EFSCORRUPTED); 396 } 397 break; 398 399 default: 400 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); 401 return XFS_ERROR(EFSCORRUPTED); 402 } 403 if (error) { 404 return error; 405 } 406 if (!XFS_DFORK_Q(dip)) 407 return 0; 408 409 ASSERT(ip->i_afp == NULL); 410 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS); 411 412 switch (dip->di_aformat) { 413 case XFS_DINODE_FMT_LOCAL: 414 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); 415 size = be16_to_cpu(atp->hdr.totsize); 416 417 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) { 418 xfs_warn(ip->i_mount, 419 "corrupt inode %Lu (bad attr fork size %Ld).", 420 (unsigned long long) ip->i_ino, 421 (long long) size); 422 XFS_CORRUPTION_ERROR("xfs_iformat(8)", 423 XFS_ERRLEVEL_LOW, 424 ip->i_mount, dip); 425 return XFS_ERROR(EFSCORRUPTED); 426 } 427 428 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); 429 break; 430 case XFS_DINODE_FMT_EXTENTS: 431 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 432 break; 433 case XFS_DINODE_FMT_BTREE: 434 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 435 break; 436 default: 437 error = XFS_ERROR(EFSCORRUPTED); 438 break; 439 } 440 if (error) { 441 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 442 ip->i_afp = NULL; 443 xfs_idestroy_fork(ip, XFS_DATA_FORK); 444 } 445 return error; 446 } 447 448 /* 449 * The file is in-lined in the on-disk inode. 450 * If it fits into if_inline_data, then copy 451 * it there, otherwise allocate a buffer for it 452 * and copy the data there. Either way, set 453 * if_data to point at the data. 454 * If we allocate a buffer for the data, make 455 * sure that its size is a multiple of 4 and 456 * record the real size in i_real_bytes. 457 */ 458 STATIC int 459 xfs_iformat_local( 460 xfs_inode_t *ip, 461 xfs_dinode_t *dip, 462 int whichfork, 463 int size) 464 { 465 xfs_ifork_t *ifp; 466 int real_size; 467 468 /* 469 * If the size is unreasonable, then something 470 * is wrong and we just bail out rather than crash in 471 * kmem_alloc() or memcpy() below. 472 */ 473 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 474 xfs_warn(ip->i_mount, 475 "corrupt inode %Lu (bad size %d for local fork, size = %d).", 476 (unsigned long long) ip->i_ino, size, 477 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, 479 ip->i_mount, dip); 480 return XFS_ERROR(EFSCORRUPTED); 481 } 482 ifp = XFS_IFORK_PTR(ip, whichfork); 483 real_size = 0; 484 if (size == 0) 485 ifp->if_u1.if_data = NULL; 486 else if (size <= sizeof(ifp->if_u2.if_inline_data)) 487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 488 else { 489 real_size = roundup(size, 4); 490 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS); 491 } 492 ifp->if_bytes = size; 493 ifp->if_real_bytes = real_size; 494 if (size) 495 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); 496 ifp->if_flags &= ~XFS_IFEXTENTS; 497 ifp->if_flags |= XFS_IFINLINE; 498 return 0; 499 } 500 501 /* 502 * The file consists of a set of extents all 503 * of which fit into the on-disk inode. 504 * If there are few enough extents to fit into 505 * the if_inline_ext, then copy them there. 506 * Otherwise allocate a buffer for them and copy 507 * them into it. Either way, set if_extents 508 * to point at the extents. 509 */ 510 STATIC int 511 xfs_iformat_extents( 512 xfs_inode_t *ip, 513 xfs_dinode_t *dip, 514 int whichfork) 515 { 516 xfs_bmbt_rec_t *dp; 517 xfs_ifork_t *ifp; 518 int nex; 519 int size; 520 int i; 521 522 ifp = XFS_IFORK_PTR(ip, whichfork); 523 nex = XFS_DFORK_NEXTENTS(dip, whichfork); 524 size = nex * (uint)sizeof(xfs_bmbt_rec_t); 525 526 /* 527 * If the number of extents is unreasonable, then something 528 * is wrong and we just bail out rather than crash in 529 * kmem_alloc() or memcpy() below. 530 */ 531 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 532 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", 533 (unsigned long long) ip->i_ino, nex); 534 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, 535 ip->i_mount, dip); 536 return XFS_ERROR(EFSCORRUPTED); 537 } 538 539 ifp->if_real_bytes = 0; 540 if (nex == 0) 541 ifp->if_u1.if_extents = NULL; 542 else if (nex <= XFS_INLINE_EXTS) 543 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 544 else 545 xfs_iext_add(ifp, 0, nex); 546 547 ifp->if_bytes = size; 548 if (size) { 549 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 550 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip)); 551 for (i = 0; i < nex; i++, dp++) { 552 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 553 ep->l0 = get_unaligned_be64(&dp->l0); 554 ep->l1 = get_unaligned_be64(&dp->l1); 555 } 556 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork); 557 if (whichfork != XFS_DATA_FORK || 558 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) 559 if (unlikely(xfs_check_nostate_extents( 560 ifp, 0, nex))) { 561 XFS_ERROR_REPORT("xfs_iformat_extents(2)", 562 XFS_ERRLEVEL_LOW, 563 ip->i_mount); 564 return XFS_ERROR(EFSCORRUPTED); 565 } 566 } 567 ifp->if_flags |= XFS_IFEXTENTS; 568 return 0; 569 } 570 571 /* 572 * The file has too many extents to fit into 573 * the inode, so they are in B-tree format. 574 * Allocate a buffer for the root of the B-tree 575 * and copy the root into it. The i_extents 576 * field will remain NULL until all of the 577 * extents are read in (when they are needed). 578 */ 579 STATIC int 580 xfs_iformat_btree( 581 xfs_inode_t *ip, 582 xfs_dinode_t *dip, 583 int whichfork) 584 { 585 xfs_bmdr_block_t *dfp; 586 xfs_ifork_t *ifp; 587 /* REFERENCED */ 588 int nrecs; 589 int size; 590 591 ifp = XFS_IFORK_PTR(ip, whichfork); 592 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 593 size = XFS_BMAP_BROOT_SPACE(dfp); 594 nrecs = be16_to_cpu(dfp->bb_numrecs); 595 596 /* 597 * blow out if -- fork has less extents than can fit in 598 * fork (fork shouldn't be a btree format), root btree 599 * block has more records than can fit into the fork, 600 * or the number of extents is greater than the number of 601 * blocks. 602 */ 603 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= 604 XFS_IFORK_MAXEXT(ip, whichfork) || 605 XFS_BMDR_SPACE_CALC(nrecs) > 606 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) || 607 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { 608 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).", 609 (unsigned long long) ip->i_ino); 610 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW, 611 ip->i_mount, dip); 612 return XFS_ERROR(EFSCORRUPTED); 613 } 614 615 ifp->if_broot_bytes = size; 616 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS); 617 ASSERT(ifp->if_broot != NULL); 618 /* 619 * Copy and convert from the on-disk structure 620 * to the in-memory structure. 621 */ 622 xfs_bmdr_to_bmbt(ip->i_mount, dfp, 623 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 624 ifp->if_broot, size); 625 ifp->if_flags &= ~XFS_IFEXTENTS; 626 ifp->if_flags |= XFS_IFBROOT; 627 628 return 0; 629 } 630 631 STATIC void 632 xfs_dinode_from_disk( 633 xfs_icdinode_t *to, 634 xfs_dinode_t *from) 635 { 636 to->di_magic = be16_to_cpu(from->di_magic); 637 to->di_mode = be16_to_cpu(from->di_mode); 638 to->di_version = from ->di_version; 639 to->di_format = from->di_format; 640 to->di_onlink = be16_to_cpu(from->di_onlink); 641 to->di_uid = be32_to_cpu(from->di_uid); 642 to->di_gid = be32_to_cpu(from->di_gid); 643 to->di_nlink = be32_to_cpu(from->di_nlink); 644 to->di_projid_lo = be16_to_cpu(from->di_projid_lo); 645 to->di_projid_hi = be16_to_cpu(from->di_projid_hi); 646 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 647 to->di_flushiter = be16_to_cpu(from->di_flushiter); 648 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec); 649 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec); 650 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec); 651 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec); 652 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec); 653 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec); 654 to->di_size = be64_to_cpu(from->di_size); 655 to->di_nblocks = be64_to_cpu(from->di_nblocks); 656 to->di_extsize = be32_to_cpu(from->di_extsize); 657 to->di_nextents = be32_to_cpu(from->di_nextents); 658 to->di_anextents = be16_to_cpu(from->di_anextents); 659 to->di_forkoff = from->di_forkoff; 660 to->di_aformat = from->di_aformat; 661 to->di_dmevmask = be32_to_cpu(from->di_dmevmask); 662 to->di_dmstate = be16_to_cpu(from->di_dmstate); 663 to->di_flags = be16_to_cpu(from->di_flags); 664 to->di_gen = be32_to_cpu(from->di_gen); 665 } 666 667 void 668 xfs_dinode_to_disk( 669 xfs_dinode_t *to, 670 xfs_icdinode_t *from) 671 { 672 to->di_magic = cpu_to_be16(from->di_magic); 673 to->di_mode = cpu_to_be16(from->di_mode); 674 to->di_version = from ->di_version; 675 to->di_format = from->di_format; 676 to->di_onlink = cpu_to_be16(from->di_onlink); 677 to->di_uid = cpu_to_be32(from->di_uid); 678 to->di_gid = cpu_to_be32(from->di_gid); 679 to->di_nlink = cpu_to_be32(from->di_nlink); 680 to->di_projid_lo = cpu_to_be16(from->di_projid_lo); 681 to->di_projid_hi = cpu_to_be16(from->di_projid_hi); 682 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad)); 683 to->di_flushiter = cpu_to_be16(from->di_flushiter); 684 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec); 685 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec); 686 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec); 687 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec); 688 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec); 689 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec); 690 to->di_size = cpu_to_be64(from->di_size); 691 to->di_nblocks = cpu_to_be64(from->di_nblocks); 692 to->di_extsize = cpu_to_be32(from->di_extsize); 693 to->di_nextents = cpu_to_be32(from->di_nextents); 694 to->di_anextents = cpu_to_be16(from->di_anextents); 695 to->di_forkoff = from->di_forkoff; 696 to->di_aformat = from->di_aformat; 697 to->di_dmevmask = cpu_to_be32(from->di_dmevmask); 698 to->di_dmstate = cpu_to_be16(from->di_dmstate); 699 to->di_flags = cpu_to_be16(from->di_flags); 700 to->di_gen = cpu_to_be32(from->di_gen); 701 } 702 703 STATIC uint 704 _xfs_dic2xflags( 705 __uint16_t di_flags) 706 { 707 uint flags = 0; 708 709 if (di_flags & XFS_DIFLAG_ANY) { 710 if (di_flags & XFS_DIFLAG_REALTIME) 711 flags |= XFS_XFLAG_REALTIME; 712 if (di_flags & XFS_DIFLAG_PREALLOC) 713 flags |= XFS_XFLAG_PREALLOC; 714 if (di_flags & XFS_DIFLAG_IMMUTABLE) 715 flags |= XFS_XFLAG_IMMUTABLE; 716 if (di_flags & XFS_DIFLAG_APPEND) 717 flags |= XFS_XFLAG_APPEND; 718 if (di_flags & XFS_DIFLAG_SYNC) 719 flags |= XFS_XFLAG_SYNC; 720 if (di_flags & XFS_DIFLAG_NOATIME) 721 flags |= XFS_XFLAG_NOATIME; 722 if (di_flags & XFS_DIFLAG_NODUMP) 723 flags |= XFS_XFLAG_NODUMP; 724 if (di_flags & XFS_DIFLAG_RTINHERIT) 725 flags |= XFS_XFLAG_RTINHERIT; 726 if (di_flags & XFS_DIFLAG_PROJINHERIT) 727 flags |= XFS_XFLAG_PROJINHERIT; 728 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 729 flags |= XFS_XFLAG_NOSYMLINKS; 730 if (di_flags & XFS_DIFLAG_EXTSIZE) 731 flags |= XFS_XFLAG_EXTSIZE; 732 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 733 flags |= XFS_XFLAG_EXTSZINHERIT; 734 if (di_flags & XFS_DIFLAG_NODEFRAG) 735 flags |= XFS_XFLAG_NODEFRAG; 736 if (di_flags & XFS_DIFLAG_FILESTREAM) 737 flags |= XFS_XFLAG_FILESTREAM; 738 } 739 740 return flags; 741 } 742 743 uint 744 xfs_ip2xflags( 745 xfs_inode_t *ip) 746 { 747 xfs_icdinode_t *dic = &ip->i_d; 748 749 return _xfs_dic2xflags(dic->di_flags) | 750 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 751 } 752 753 uint 754 xfs_dic2xflags( 755 xfs_dinode_t *dip) 756 { 757 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 758 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 759 } 760 761 /* 762 * Read the disk inode attributes into the in-core inode structure. 763 */ 764 int 765 xfs_iread( 766 xfs_mount_t *mp, 767 xfs_trans_t *tp, 768 xfs_inode_t *ip, 769 uint iget_flags) 770 { 771 xfs_buf_t *bp; 772 xfs_dinode_t *dip; 773 int error; 774 775 /* 776 * Fill in the location information in the in-core inode. 777 */ 778 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags); 779 if (error) 780 return error; 781 782 /* 783 * Get pointers to the on-disk inode and the buffer containing it. 784 */ 785 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 786 XBF_LOCK, iget_flags); 787 if (error) 788 return error; 789 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 790 791 /* 792 * If we got something that isn't an inode it means someone 793 * (nfs or dmi) has a stale handle. 794 */ 795 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) { 796 #ifdef DEBUG 797 xfs_alert(mp, 798 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)", 799 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC); 800 #endif /* DEBUG */ 801 error = XFS_ERROR(EINVAL); 802 goto out_brelse; 803 } 804 805 /* 806 * If the on-disk inode is already linked to a directory 807 * entry, copy all of the inode into the in-core inode. 808 * xfs_iformat() handles copying in the inode format 809 * specific information. 810 * Otherwise, just get the truly permanent information. 811 */ 812 if (dip->di_mode) { 813 xfs_dinode_from_disk(&ip->i_d, dip); 814 error = xfs_iformat(ip, dip); 815 if (error) { 816 #ifdef DEBUG 817 xfs_alert(mp, "%s: xfs_iformat() returned error %d", 818 __func__, error); 819 #endif /* DEBUG */ 820 goto out_brelse; 821 } 822 } else { 823 ip->i_d.di_magic = be16_to_cpu(dip->di_magic); 824 ip->i_d.di_version = dip->di_version; 825 ip->i_d.di_gen = be32_to_cpu(dip->di_gen); 826 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter); 827 /* 828 * Make sure to pull in the mode here as well in 829 * case the inode is released without being used. 830 * This ensures that xfs_inactive() will see that 831 * the inode is already free and not try to mess 832 * with the uninitialized part of it. 833 */ 834 ip->i_d.di_mode = 0; 835 } 836 837 /* 838 * The inode format changed when we moved the link count and 839 * made it 32 bits long. If this is an old format inode, 840 * convert it in memory to look like a new one. If it gets 841 * flushed to disk we will convert back before flushing or 842 * logging it. We zero out the new projid field and the old link 843 * count field. We'll handle clearing the pad field (the remains 844 * of the old uuid field) when we actually convert the inode to 845 * the new format. We don't change the version number so that we 846 * can distinguish this from a real new format inode. 847 */ 848 if (ip->i_d.di_version == 1) { 849 ip->i_d.di_nlink = ip->i_d.di_onlink; 850 ip->i_d.di_onlink = 0; 851 xfs_set_projid(ip, 0); 852 } 853 854 ip->i_delayed_blks = 0; 855 856 /* 857 * Mark the buffer containing the inode as something to keep 858 * around for a while. This helps to keep recently accessed 859 * meta-data in-core longer. 860 */ 861 xfs_buf_set_ref(bp, XFS_INO_REF); 862 863 /* 864 * Use xfs_trans_brelse() to release the buffer containing the 865 * on-disk inode, because it was acquired with xfs_trans_read_buf() 866 * in xfs_itobp() above. If tp is NULL, this is just a normal 867 * brelse(). If we're within a transaction, then xfs_trans_brelse() 868 * will only release the buffer if it is not dirty within the 869 * transaction. It will be OK to release the buffer in this case, 870 * because inodes on disk are never destroyed and we will be 871 * locking the new in-core inode before putting it in the hash 872 * table where other processes can find it. Thus we don't have 873 * to worry about the inode being changed just because we released 874 * the buffer. 875 */ 876 out_brelse: 877 xfs_trans_brelse(tp, bp); 878 return error; 879 } 880 881 /* 882 * Read in extents from a btree-format inode. 883 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. 884 */ 885 int 886 xfs_iread_extents( 887 xfs_trans_t *tp, 888 xfs_inode_t *ip, 889 int whichfork) 890 { 891 int error; 892 xfs_ifork_t *ifp; 893 xfs_extnum_t nextents; 894 895 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { 896 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, 897 ip->i_mount); 898 return XFS_ERROR(EFSCORRUPTED); 899 } 900 nextents = XFS_IFORK_NEXTENTS(ip, whichfork); 901 ifp = XFS_IFORK_PTR(ip, whichfork); 902 903 /* 904 * We know that the size is valid (it's checked in iformat_btree) 905 */ 906 ifp->if_bytes = ifp->if_real_bytes = 0; 907 ifp->if_flags |= XFS_IFEXTENTS; 908 xfs_iext_add(ifp, 0, nextents); 909 error = xfs_bmap_read_extents(tp, ip, whichfork); 910 if (error) { 911 xfs_iext_destroy(ifp); 912 ifp->if_flags &= ~XFS_IFEXTENTS; 913 return error; 914 } 915 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip)); 916 return 0; 917 } 918 919 /* 920 * Allocate an inode on disk and return a copy of its in-core version. 921 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 922 * appropriately within the inode. The uid and gid for the inode are 923 * set according to the contents of the given cred structure. 924 * 925 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 926 * has a free inode available, call xfs_iget() 927 * to obtain the in-core version of the allocated inode. Finally, 928 * fill in the inode and log its initial contents. In this case, 929 * ialloc_context would be set to NULL and call_again set to false. 930 * 931 * If xfs_dialloc() does not have an available inode, 932 * it will replenish its supply by doing an allocation. Since we can 933 * only do one allocation within a transaction without deadlocks, we 934 * must commit the current transaction before returning the inode itself. 935 * In this case, therefore, we will set call_again to true and return. 936 * The caller should then commit the current transaction, start a new 937 * transaction, and call xfs_ialloc() again to actually get the inode. 938 * 939 * To ensure that some other process does not grab the inode that 940 * was allocated during the first call to xfs_ialloc(), this routine 941 * also returns the [locked] bp pointing to the head of the freelist 942 * as ialloc_context. The caller should hold this buffer across 943 * the commit and pass it back into this routine on the second call. 944 * 945 * If we are allocating quota inodes, we do not have a parent inode 946 * to attach to or associate with (i.e. pip == NULL) because they 947 * are not linked into the directory structure - they are attached 948 * directly to the superblock - and so have no parent. 949 */ 950 int 951 xfs_ialloc( 952 xfs_trans_t *tp, 953 xfs_inode_t *pip, 954 umode_t mode, 955 xfs_nlink_t nlink, 956 xfs_dev_t rdev, 957 prid_t prid, 958 int okalloc, 959 xfs_buf_t **ialloc_context, 960 boolean_t *call_again, 961 xfs_inode_t **ipp) 962 { 963 xfs_ino_t ino; 964 xfs_inode_t *ip; 965 uint flags; 966 int error; 967 timespec_t tv; 968 int filestreams = 0; 969 970 /* 971 * Call the space management code to pick 972 * the on-disk inode to be allocated. 973 */ 974 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 975 ialloc_context, call_again, &ino); 976 if (error) 977 return error; 978 if (*call_again || ino == NULLFSINO) { 979 *ipp = NULL; 980 return 0; 981 } 982 ASSERT(*ialloc_context == NULL); 983 984 /* 985 * Get the in-core inode with the lock held exclusively. 986 * This is because we're setting fields here we need 987 * to prevent others from looking at until we're done. 988 */ 989 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE, 990 XFS_ILOCK_EXCL, &ip); 991 if (error) 992 return error; 993 ASSERT(ip != NULL); 994 995 ip->i_d.di_mode = mode; 996 ip->i_d.di_onlink = 0; 997 ip->i_d.di_nlink = nlink; 998 ASSERT(ip->i_d.di_nlink == nlink); 999 ip->i_d.di_uid = current_fsuid(); 1000 ip->i_d.di_gid = current_fsgid(); 1001 xfs_set_projid(ip, prid); 1002 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1003 1004 /* 1005 * If the superblock version is up to where we support new format 1006 * inodes and this is currently an old format inode, then change 1007 * the inode version number now. This way we only do the conversion 1008 * here rather than here and in the flush/logging code. 1009 */ 1010 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) && 1011 ip->i_d.di_version == 1) { 1012 ip->i_d.di_version = 2; 1013 /* 1014 * We've already zeroed the old link count, the projid field, 1015 * and the pad field. 1016 */ 1017 } 1018 1019 /* 1020 * Project ids won't be stored on disk if we are using a version 1 inode. 1021 */ 1022 if ((prid != 0) && (ip->i_d.di_version == 1)) 1023 xfs_bump_ino_vers2(tp, ip); 1024 1025 if (pip && XFS_INHERIT_GID(pip)) { 1026 ip->i_d.di_gid = pip->i_d.di_gid; 1027 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 1028 ip->i_d.di_mode |= S_ISGID; 1029 } 1030 } 1031 1032 /* 1033 * If the group ID of the new file does not match the effective group 1034 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 1035 * (and only if the irix_sgid_inherit compatibility variable is set). 1036 */ 1037 if ((irix_sgid_inherit) && 1038 (ip->i_d.di_mode & S_ISGID) && 1039 (!in_group_p((gid_t)ip->i_d.di_gid))) { 1040 ip->i_d.di_mode &= ~S_ISGID; 1041 } 1042 1043 ip->i_d.di_size = 0; 1044 ip->i_d.di_nextents = 0; 1045 ASSERT(ip->i_d.di_nblocks == 0); 1046 1047 nanotime(&tv); 1048 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 1049 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 1050 ip->i_d.di_atime = ip->i_d.di_mtime; 1051 ip->i_d.di_ctime = ip->i_d.di_mtime; 1052 1053 /* 1054 * di_gen will have been taken care of in xfs_iread. 1055 */ 1056 ip->i_d.di_extsize = 0; 1057 ip->i_d.di_dmevmask = 0; 1058 ip->i_d.di_dmstate = 0; 1059 ip->i_d.di_flags = 0; 1060 flags = XFS_ILOG_CORE; 1061 switch (mode & S_IFMT) { 1062 case S_IFIFO: 1063 case S_IFCHR: 1064 case S_IFBLK: 1065 case S_IFSOCK: 1066 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 1067 ip->i_df.if_u2.if_rdev = rdev; 1068 ip->i_df.if_flags = 0; 1069 flags |= XFS_ILOG_DEV; 1070 break; 1071 case S_IFREG: 1072 /* 1073 * we can't set up filestreams until after the VFS inode 1074 * is set up properly. 1075 */ 1076 if (pip && xfs_inode_is_filestream(pip)) 1077 filestreams = 1; 1078 /* fall through */ 1079 case S_IFDIR: 1080 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 1081 uint di_flags = 0; 1082 1083 if (S_ISDIR(mode)) { 1084 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1085 di_flags |= XFS_DIFLAG_RTINHERIT; 1086 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1087 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 1088 ip->i_d.di_extsize = pip->i_d.di_extsize; 1089 } 1090 } else if (S_ISREG(mode)) { 1091 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 1092 di_flags |= XFS_DIFLAG_REALTIME; 1093 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 1094 di_flags |= XFS_DIFLAG_EXTSIZE; 1095 ip->i_d.di_extsize = pip->i_d.di_extsize; 1096 } 1097 } 1098 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 1099 xfs_inherit_noatime) 1100 di_flags |= XFS_DIFLAG_NOATIME; 1101 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 1102 xfs_inherit_nodump) 1103 di_flags |= XFS_DIFLAG_NODUMP; 1104 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 1105 xfs_inherit_sync) 1106 di_flags |= XFS_DIFLAG_SYNC; 1107 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 1108 xfs_inherit_nosymlinks) 1109 di_flags |= XFS_DIFLAG_NOSYMLINKS; 1110 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1111 di_flags |= XFS_DIFLAG_PROJINHERIT; 1112 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 1113 xfs_inherit_nodefrag) 1114 di_flags |= XFS_DIFLAG_NODEFRAG; 1115 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 1116 di_flags |= XFS_DIFLAG_FILESTREAM; 1117 ip->i_d.di_flags |= di_flags; 1118 } 1119 /* FALLTHROUGH */ 1120 case S_IFLNK: 1121 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1122 ip->i_df.if_flags = XFS_IFEXTENTS; 1123 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 1124 ip->i_df.if_u1.if_extents = NULL; 1125 break; 1126 default: 1127 ASSERT(0); 1128 } 1129 /* 1130 * Attribute fork settings for new inode. 1131 */ 1132 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1133 ip->i_d.di_anextents = 0; 1134 1135 /* 1136 * Log the new values stuffed into the inode. 1137 */ 1138 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1139 xfs_trans_log_inode(tp, ip, flags); 1140 1141 /* now that we have an i_mode we can setup inode ops and unlock */ 1142 xfs_setup_inode(ip); 1143 1144 /* now we have set up the vfs inode we can associate the filestream */ 1145 if (filestreams) { 1146 error = xfs_filestream_associate(pip, ip); 1147 if (error < 0) 1148 return -error; 1149 if (!error) 1150 xfs_iflags_set(ip, XFS_IFILESTREAM); 1151 } 1152 1153 *ipp = ip; 1154 return 0; 1155 } 1156 1157 /* 1158 * Free up the underlying blocks past new_size. The new size must be smaller 1159 * than the current size. This routine can be used both for the attribute and 1160 * data fork, and does not modify the inode size, which is left to the caller. 1161 * 1162 * The transaction passed to this routine must have made a permanent log 1163 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1164 * given transaction and start new ones, so make sure everything involved in 1165 * the transaction is tidy before calling here. Some transaction will be 1166 * returned to the caller to be committed. The incoming transaction must 1167 * already include the inode, and both inode locks must be held exclusively. 1168 * The inode must also be "held" within the transaction. On return the inode 1169 * will be "held" within the returned transaction. This routine does NOT 1170 * require any disk space to be reserved for it within the transaction. 1171 * 1172 * If we get an error, we must return with the inode locked and linked into the 1173 * current transaction. This keeps things simple for the higher level code, 1174 * because it always knows that the inode is locked and held in the transaction 1175 * that returns to it whether errors occur or not. We don't mark the inode 1176 * dirty on error so that transactions can be easily aborted if possible. 1177 */ 1178 int 1179 xfs_itruncate_extents( 1180 struct xfs_trans **tpp, 1181 struct xfs_inode *ip, 1182 int whichfork, 1183 xfs_fsize_t new_size) 1184 { 1185 struct xfs_mount *mp = ip->i_mount; 1186 struct xfs_trans *tp = *tpp; 1187 struct xfs_trans *ntp; 1188 xfs_bmap_free_t free_list; 1189 xfs_fsblock_t first_block; 1190 xfs_fileoff_t first_unmap_block; 1191 xfs_fileoff_t last_block; 1192 xfs_filblks_t unmap_len; 1193 int committed; 1194 int error = 0; 1195 int done = 0; 1196 1197 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); 1198 ASSERT(new_size <= XFS_ISIZE(ip)); 1199 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1200 ASSERT(ip->i_itemp != NULL); 1201 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1202 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1203 1204 trace_xfs_itruncate_extents_start(ip, new_size); 1205 1206 /* 1207 * Since it is possible for space to become allocated beyond 1208 * the end of the file (in a crash where the space is allocated 1209 * but the inode size is not yet updated), simply remove any 1210 * blocks which show up between the new EOF and the maximum 1211 * possible file size. If the first block to be removed is 1212 * beyond the maximum file size (ie it is the same as last_block), 1213 * then there is nothing to do. 1214 */ 1215 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1216 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); 1217 if (first_unmap_block == last_block) 1218 return 0; 1219 1220 ASSERT(first_unmap_block < last_block); 1221 unmap_len = last_block - first_unmap_block + 1; 1222 while (!done) { 1223 xfs_bmap_init(&free_list, &first_block); 1224 error = xfs_bunmapi(tp, ip, 1225 first_unmap_block, unmap_len, 1226 xfs_bmapi_aflag(whichfork), 1227 XFS_ITRUNC_MAX_EXTENTS, 1228 &first_block, &free_list, 1229 &done); 1230 if (error) 1231 goto out_bmap_cancel; 1232 1233 /* 1234 * Duplicate the transaction that has the permanent 1235 * reservation and commit the old transaction. 1236 */ 1237 error = xfs_bmap_finish(&tp, &free_list, &committed); 1238 if (committed) 1239 xfs_trans_ijoin(tp, ip, 0); 1240 if (error) 1241 goto out_bmap_cancel; 1242 1243 if (committed) { 1244 /* 1245 * Mark the inode dirty so it will be logged and 1246 * moved forward in the log as part of every commit. 1247 */ 1248 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1249 } 1250 1251 ntp = xfs_trans_dup(tp); 1252 error = xfs_trans_commit(tp, 0); 1253 tp = ntp; 1254 1255 xfs_trans_ijoin(tp, ip, 0); 1256 1257 if (error) 1258 goto out; 1259 1260 /* 1261 * Transaction commit worked ok so we can drop the extra ticket 1262 * reference that we gained in xfs_trans_dup() 1263 */ 1264 xfs_log_ticket_put(tp->t_ticket); 1265 error = xfs_trans_reserve(tp, 0, 1266 XFS_ITRUNCATE_LOG_RES(mp), 0, 1267 XFS_TRANS_PERM_LOG_RES, 1268 XFS_ITRUNCATE_LOG_COUNT); 1269 if (error) 1270 goto out; 1271 } 1272 1273 /* 1274 * Always re-log the inode so that our permanent transaction can keep 1275 * on rolling it forward in the log. 1276 */ 1277 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1278 1279 trace_xfs_itruncate_extents_end(ip, new_size); 1280 1281 out: 1282 *tpp = tp; 1283 return error; 1284 out_bmap_cancel: 1285 /* 1286 * If the bunmapi call encounters an error, return to the caller where 1287 * the transaction can be properly aborted. We just need to make sure 1288 * we're not holding any resources that we were not when we came in. 1289 */ 1290 xfs_bmap_cancel(&free_list); 1291 goto out; 1292 } 1293 1294 /* 1295 * This is called when the inode's link count goes to 0. 1296 * We place the on-disk inode on a list in the AGI. It 1297 * will be pulled from this list when the inode is freed. 1298 */ 1299 int 1300 xfs_iunlink( 1301 xfs_trans_t *tp, 1302 xfs_inode_t *ip) 1303 { 1304 xfs_mount_t *mp; 1305 xfs_agi_t *agi; 1306 xfs_dinode_t *dip; 1307 xfs_buf_t *agibp; 1308 xfs_buf_t *ibp; 1309 xfs_agino_t agino; 1310 short bucket_index; 1311 int offset; 1312 int error; 1313 1314 ASSERT(ip->i_d.di_nlink == 0); 1315 ASSERT(ip->i_d.di_mode != 0); 1316 1317 mp = tp->t_mountp; 1318 1319 /* 1320 * Get the agi buffer first. It ensures lock ordering 1321 * on the list. 1322 */ 1323 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1324 if (error) 1325 return error; 1326 agi = XFS_BUF_TO_AGI(agibp); 1327 1328 /* 1329 * Get the index into the agi hash table for the 1330 * list this inode will go on. 1331 */ 1332 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1333 ASSERT(agino != 0); 1334 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1335 ASSERT(agi->agi_unlinked[bucket_index]); 1336 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1337 1338 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1339 /* 1340 * There is already another inode in the bucket we need 1341 * to add ourselves to. Add us at the front of the list. 1342 * Here we put the head pointer into our next pointer, 1343 * and then we fall through to point the head at us. 1344 */ 1345 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1346 if (error) 1347 return error; 1348 1349 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1350 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1351 offset = ip->i_imap.im_boffset + 1352 offsetof(xfs_dinode_t, di_next_unlinked); 1353 xfs_trans_inode_buf(tp, ibp); 1354 xfs_trans_log_buf(tp, ibp, offset, 1355 (offset + sizeof(xfs_agino_t) - 1)); 1356 xfs_inobp_check(mp, ibp); 1357 } 1358 1359 /* 1360 * Point the bucket head pointer at the inode being inserted. 1361 */ 1362 ASSERT(agino != 0); 1363 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1364 offset = offsetof(xfs_agi_t, agi_unlinked) + 1365 (sizeof(xfs_agino_t) * bucket_index); 1366 xfs_trans_log_buf(tp, agibp, offset, 1367 (offset + sizeof(xfs_agino_t) - 1)); 1368 return 0; 1369 } 1370 1371 /* 1372 * Pull the on-disk inode from the AGI unlinked list. 1373 */ 1374 STATIC int 1375 xfs_iunlink_remove( 1376 xfs_trans_t *tp, 1377 xfs_inode_t *ip) 1378 { 1379 xfs_ino_t next_ino; 1380 xfs_mount_t *mp; 1381 xfs_agi_t *agi; 1382 xfs_dinode_t *dip; 1383 xfs_buf_t *agibp; 1384 xfs_buf_t *ibp; 1385 xfs_agnumber_t agno; 1386 xfs_agino_t agino; 1387 xfs_agino_t next_agino; 1388 xfs_buf_t *last_ibp; 1389 xfs_dinode_t *last_dip = NULL; 1390 short bucket_index; 1391 int offset, last_offset = 0; 1392 int error; 1393 1394 mp = tp->t_mountp; 1395 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1396 1397 /* 1398 * Get the agi buffer first. It ensures lock ordering 1399 * on the list. 1400 */ 1401 error = xfs_read_agi(mp, tp, agno, &agibp); 1402 if (error) 1403 return error; 1404 1405 agi = XFS_BUF_TO_AGI(agibp); 1406 1407 /* 1408 * Get the index into the agi hash table for the 1409 * list this inode will go on. 1410 */ 1411 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1412 ASSERT(agino != 0); 1413 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1414 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 1415 ASSERT(agi->agi_unlinked[bucket_index]); 1416 1417 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 1418 /* 1419 * We're at the head of the list. Get the inode's 1420 * on-disk buffer to see if there is anyone after us 1421 * on the list. Only modify our next pointer if it 1422 * is not already NULLAGINO. This saves us the overhead 1423 * of dealing with the buffer when there is no need to 1424 * change it. 1425 */ 1426 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1427 if (error) { 1428 xfs_warn(mp, "%s: xfs_itobp() returned error %d.", 1429 __func__, error); 1430 return error; 1431 } 1432 next_agino = be32_to_cpu(dip->di_next_unlinked); 1433 ASSERT(next_agino != 0); 1434 if (next_agino != NULLAGINO) { 1435 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1436 offset = ip->i_imap.im_boffset + 1437 offsetof(xfs_dinode_t, di_next_unlinked); 1438 xfs_trans_inode_buf(tp, ibp); 1439 xfs_trans_log_buf(tp, ibp, offset, 1440 (offset + sizeof(xfs_agino_t) - 1)); 1441 xfs_inobp_check(mp, ibp); 1442 } else { 1443 xfs_trans_brelse(tp, ibp); 1444 } 1445 /* 1446 * Point the bucket head pointer at the next inode. 1447 */ 1448 ASSERT(next_agino != 0); 1449 ASSERT(next_agino != agino); 1450 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 1451 offset = offsetof(xfs_agi_t, agi_unlinked) + 1452 (sizeof(xfs_agino_t) * bucket_index); 1453 xfs_trans_log_buf(tp, agibp, offset, 1454 (offset + sizeof(xfs_agino_t) - 1)); 1455 } else { 1456 /* 1457 * We need to search the list for the inode being freed. 1458 */ 1459 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1460 last_ibp = NULL; 1461 while (next_agino != agino) { 1462 /* 1463 * If the last inode wasn't the one pointing to 1464 * us, then release its buffer since we're not 1465 * going to do anything with it. 1466 */ 1467 if (last_ibp != NULL) { 1468 xfs_trans_brelse(tp, last_ibp); 1469 } 1470 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 1471 error = xfs_inotobp(mp, tp, next_ino, &last_dip, 1472 &last_ibp, &last_offset, 0); 1473 if (error) { 1474 xfs_warn(mp, 1475 "%s: xfs_inotobp() returned error %d.", 1476 __func__, error); 1477 return error; 1478 } 1479 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 1480 ASSERT(next_agino != NULLAGINO); 1481 ASSERT(next_agino != 0); 1482 } 1483 /* 1484 * Now last_ibp points to the buffer previous to us on 1485 * the unlinked list. Pull us from the list. 1486 */ 1487 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK); 1488 if (error) { 1489 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.", 1490 __func__, error); 1491 return error; 1492 } 1493 next_agino = be32_to_cpu(dip->di_next_unlinked); 1494 ASSERT(next_agino != 0); 1495 ASSERT(next_agino != agino); 1496 if (next_agino != NULLAGINO) { 1497 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 1498 offset = ip->i_imap.im_boffset + 1499 offsetof(xfs_dinode_t, di_next_unlinked); 1500 xfs_trans_inode_buf(tp, ibp); 1501 xfs_trans_log_buf(tp, ibp, offset, 1502 (offset + sizeof(xfs_agino_t) - 1)); 1503 xfs_inobp_check(mp, ibp); 1504 } else { 1505 xfs_trans_brelse(tp, ibp); 1506 } 1507 /* 1508 * Point the previous inode on the list to the next inode. 1509 */ 1510 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 1511 ASSERT(next_agino != 0); 1512 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 1513 xfs_trans_inode_buf(tp, last_ibp); 1514 xfs_trans_log_buf(tp, last_ibp, offset, 1515 (offset + sizeof(xfs_agino_t) - 1)); 1516 xfs_inobp_check(mp, last_ibp); 1517 } 1518 return 0; 1519 } 1520 1521 /* 1522 * A big issue when freeing the inode cluster is is that we _cannot_ skip any 1523 * inodes that are in memory - they all must be marked stale and attached to 1524 * the cluster buffer. 1525 */ 1526 STATIC int 1527 xfs_ifree_cluster( 1528 xfs_inode_t *free_ip, 1529 xfs_trans_t *tp, 1530 xfs_ino_t inum) 1531 { 1532 xfs_mount_t *mp = free_ip->i_mount; 1533 int blks_per_cluster; 1534 int nbufs; 1535 int ninodes; 1536 int i, j; 1537 xfs_daddr_t blkno; 1538 xfs_buf_t *bp; 1539 xfs_inode_t *ip; 1540 xfs_inode_log_item_t *iip; 1541 xfs_log_item_t *lip; 1542 struct xfs_perag *pag; 1543 1544 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 1545 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 1546 blks_per_cluster = 1; 1547 ninodes = mp->m_sb.sb_inopblock; 1548 nbufs = XFS_IALLOC_BLOCKS(mp); 1549 } else { 1550 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 1551 mp->m_sb.sb_blocksize; 1552 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 1553 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 1554 } 1555 1556 for (j = 0; j < nbufs; j++, inum += ninodes) { 1557 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 1558 XFS_INO_TO_AGBNO(mp, inum)); 1559 1560 /* 1561 * We obtain and lock the backing buffer first in the process 1562 * here, as we have to ensure that any dirty inode that we 1563 * can't get the flush lock on is attached to the buffer. 1564 * If we scan the in-memory inodes first, then buffer IO can 1565 * complete before we get a lock on it, and hence we may fail 1566 * to mark all the active inodes on the buffer stale. 1567 */ 1568 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 1569 mp->m_bsize * blks_per_cluster, 1570 XBF_LOCK); 1571 1572 if (!bp) 1573 return ENOMEM; 1574 /* 1575 * Walk the inodes already attached to the buffer and mark them 1576 * stale. These will all have the flush locks held, so an 1577 * in-memory inode walk can't lock them. By marking them all 1578 * stale first, we will not attempt to lock them in the loop 1579 * below as the XFS_ISTALE flag will be set. 1580 */ 1581 lip = bp->b_fspriv; 1582 while (lip) { 1583 if (lip->li_type == XFS_LI_INODE) { 1584 iip = (xfs_inode_log_item_t *)lip; 1585 ASSERT(iip->ili_logged == 1); 1586 lip->li_cb = xfs_istale_done; 1587 xfs_trans_ail_copy_lsn(mp->m_ail, 1588 &iip->ili_flush_lsn, 1589 &iip->ili_item.li_lsn); 1590 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 1591 } 1592 lip = lip->li_bio_list; 1593 } 1594 1595 1596 /* 1597 * For each inode in memory attempt to add it to the inode 1598 * buffer and set it up for being staled on buffer IO 1599 * completion. This is safe as we've locked out tail pushing 1600 * and flushing by locking the buffer. 1601 * 1602 * We have already marked every inode that was part of a 1603 * transaction stale above, which means there is no point in 1604 * even trying to lock them. 1605 */ 1606 for (i = 0; i < ninodes; i++) { 1607 retry: 1608 rcu_read_lock(); 1609 ip = radix_tree_lookup(&pag->pag_ici_root, 1610 XFS_INO_TO_AGINO(mp, (inum + i))); 1611 1612 /* Inode not in memory, nothing to do */ 1613 if (!ip) { 1614 rcu_read_unlock(); 1615 continue; 1616 } 1617 1618 /* 1619 * because this is an RCU protected lookup, we could 1620 * find a recently freed or even reallocated inode 1621 * during the lookup. We need to check under the 1622 * i_flags_lock for a valid inode here. Skip it if it 1623 * is not valid, the wrong inode or stale. 1624 */ 1625 spin_lock(&ip->i_flags_lock); 1626 if (ip->i_ino != inum + i || 1627 __xfs_iflags_test(ip, XFS_ISTALE)) { 1628 spin_unlock(&ip->i_flags_lock); 1629 rcu_read_unlock(); 1630 continue; 1631 } 1632 spin_unlock(&ip->i_flags_lock); 1633 1634 /* 1635 * Don't try to lock/unlock the current inode, but we 1636 * _cannot_ skip the other inodes that we did not find 1637 * in the list attached to the buffer and are not 1638 * already marked stale. If we can't lock it, back off 1639 * and retry. 1640 */ 1641 if (ip != free_ip && 1642 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 1643 rcu_read_unlock(); 1644 delay(1); 1645 goto retry; 1646 } 1647 rcu_read_unlock(); 1648 1649 xfs_iflock(ip); 1650 xfs_iflags_set(ip, XFS_ISTALE); 1651 1652 /* 1653 * we don't need to attach clean inodes or those only 1654 * with unlogged changes (which we throw away, anyway). 1655 */ 1656 iip = ip->i_itemp; 1657 if (!iip || xfs_inode_clean(ip)) { 1658 ASSERT(ip != free_ip); 1659 xfs_ifunlock(ip); 1660 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1661 continue; 1662 } 1663 1664 iip->ili_last_fields = iip->ili_fields; 1665 iip->ili_fields = 0; 1666 iip->ili_logged = 1; 1667 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 1668 &iip->ili_item.li_lsn); 1669 1670 xfs_buf_attach_iodone(bp, xfs_istale_done, 1671 &iip->ili_item); 1672 1673 if (ip != free_ip) 1674 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1675 } 1676 1677 xfs_trans_stale_inode_buf(tp, bp); 1678 xfs_trans_binval(tp, bp); 1679 } 1680 1681 xfs_perag_put(pag); 1682 return 0; 1683 } 1684 1685 /* 1686 * This is called to return an inode to the inode free list. 1687 * The inode should already be truncated to 0 length and have 1688 * no pages associated with it. This routine also assumes that 1689 * the inode is already a part of the transaction. 1690 * 1691 * The on-disk copy of the inode will have been added to the list 1692 * of unlinked inodes in the AGI. We need to remove the inode from 1693 * that list atomically with respect to freeing it here. 1694 */ 1695 int 1696 xfs_ifree( 1697 xfs_trans_t *tp, 1698 xfs_inode_t *ip, 1699 xfs_bmap_free_t *flist) 1700 { 1701 int error; 1702 int delete; 1703 xfs_ino_t first_ino; 1704 xfs_dinode_t *dip; 1705 xfs_buf_t *ibp; 1706 1707 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1708 ASSERT(ip->i_d.di_nlink == 0); 1709 ASSERT(ip->i_d.di_nextents == 0); 1710 ASSERT(ip->i_d.di_anextents == 0); 1711 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 1712 ASSERT(ip->i_d.di_nblocks == 0); 1713 1714 /* 1715 * Pull the on-disk inode from the AGI unlinked list. 1716 */ 1717 error = xfs_iunlink_remove(tp, ip); 1718 if (error != 0) { 1719 return error; 1720 } 1721 1722 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 1723 if (error != 0) { 1724 return error; 1725 } 1726 ip->i_d.di_mode = 0; /* mark incore inode as free */ 1727 ip->i_d.di_flags = 0; 1728 ip->i_d.di_dmevmask = 0; 1729 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 1730 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 1731 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 1732 /* 1733 * Bump the generation count so no one will be confused 1734 * by reincarnations of this inode. 1735 */ 1736 ip->i_d.di_gen++; 1737 1738 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1739 1740 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK); 1741 if (error) 1742 return error; 1743 1744 /* 1745 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat 1746 * from picking up this inode when it is reclaimed (its incore state 1747 * initialzed but not flushed to disk yet). The in-core di_mode is 1748 * already cleared and a corresponding transaction logged. 1749 * The hack here just synchronizes the in-core to on-disk 1750 * di_mode value in advance before the actual inode sync to disk. 1751 * This is OK because the inode is already unlinked and would never 1752 * change its di_mode again for this inode generation. 1753 * This is a temporary hack that would require a proper fix 1754 * in the future. 1755 */ 1756 dip->di_mode = 0; 1757 1758 if (delete) { 1759 error = xfs_ifree_cluster(ip, tp, first_ino); 1760 } 1761 1762 return error; 1763 } 1764 1765 /* 1766 * Reallocate the space for if_broot based on the number of records 1767 * being added or deleted as indicated in rec_diff. Move the records 1768 * and pointers in if_broot to fit the new size. When shrinking this 1769 * will eliminate holes between the records and pointers created by 1770 * the caller. When growing this will create holes to be filled in 1771 * by the caller. 1772 * 1773 * The caller must not request to add more records than would fit in 1774 * the on-disk inode root. If the if_broot is currently NULL, then 1775 * if we adding records one will be allocated. The caller must also 1776 * not request that the number of records go below zero, although 1777 * it can go to zero. 1778 * 1779 * ip -- the inode whose if_broot area is changing 1780 * ext_diff -- the change in the number of records, positive or negative, 1781 * requested for the if_broot array. 1782 */ 1783 void 1784 xfs_iroot_realloc( 1785 xfs_inode_t *ip, 1786 int rec_diff, 1787 int whichfork) 1788 { 1789 struct xfs_mount *mp = ip->i_mount; 1790 int cur_max; 1791 xfs_ifork_t *ifp; 1792 struct xfs_btree_block *new_broot; 1793 int new_max; 1794 size_t new_size; 1795 char *np; 1796 char *op; 1797 1798 /* 1799 * Handle the degenerate case quietly. 1800 */ 1801 if (rec_diff == 0) { 1802 return; 1803 } 1804 1805 ifp = XFS_IFORK_PTR(ip, whichfork); 1806 if (rec_diff > 0) { 1807 /* 1808 * If there wasn't any memory allocated before, just 1809 * allocate it now and get out. 1810 */ 1811 if (ifp->if_broot_bytes == 0) { 1812 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); 1813 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 1814 ifp->if_broot_bytes = (int)new_size; 1815 return; 1816 } 1817 1818 /* 1819 * If there is already an existing if_broot, then we need 1820 * to realloc() it and shift the pointers to their new 1821 * location. The records don't change location because 1822 * they are kept butted up against the btree block header. 1823 */ 1824 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 1825 new_max = cur_max + rec_diff; 1826 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 1827 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, 1828 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ 1829 KM_SLEEP | KM_NOFS); 1830 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1831 ifp->if_broot_bytes); 1832 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1833 (int)new_size); 1834 ifp->if_broot_bytes = (int)new_size; 1835 ASSERT(ifp->if_broot_bytes <= 1836 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 1837 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); 1838 return; 1839 } 1840 1841 /* 1842 * rec_diff is less than 0. In this case, we are shrinking the 1843 * if_broot buffer. It must already exist. If we go to zero 1844 * records, just get rid of the root and clear the status bit. 1845 */ 1846 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 1847 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 1848 new_max = cur_max + rec_diff; 1849 ASSERT(new_max >= 0); 1850 if (new_max > 0) 1851 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); 1852 else 1853 new_size = 0; 1854 if (new_size > 0) { 1855 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS); 1856 /* 1857 * First copy over the btree block header. 1858 */ 1859 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN); 1860 } else { 1861 new_broot = NULL; 1862 ifp->if_flags &= ~XFS_IFBROOT; 1863 } 1864 1865 /* 1866 * Only copy the records and pointers if there are any. 1867 */ 1868 if (new_max > 0) { 1869 /* 1870 * First copy the records. 1871 */ 1872 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 1873 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 1874 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 1875 1876 /* 1877 * Then copy the pointers. 1878 */ 1879 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 1880 ifp->if_broot_bytes); 1881 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 1882 (int)new_size); 1883 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); 1884 } 1885 kmem_free(ifp->if_broot); 1886 ifp->if_broot = new_broot; 1887 ifp->if_broot_bytes = (int)new_size; 1888 ASSERT(ifp->if_broot_bytes <= 1889 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); 1890 return; 1891 } 1892 1893 1894 /* 1895 * This is called when the amount of space needed for if_data 1896 * is increased or decreased. The change in size is indicated by 1897 * the number of bytes that need to be added or deleted in the 1898 * byte_diff parameter. 1899 * 1900 * If the amount of space needed has decreased below the size of the 1901 * inline buffer, then switch to using the inline buffer. Otherwise, 1902 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer 1903 * to what is needed. 1904 * 1905 * ip -- the inode whose if_data area is changing 1906 * byte_diff -- the change in the number of bytes, positive or negative, 1907 * requested for the if_data array. 1908 */ 1909 void 1910 xfs_idata_realloc( 1911 xfs_inode_t *ip, 1912 int byte_diff, 1913 int whichfork) 1914 { 1915 xfs_ifork_t *ifp; 1916 int new_size; 1917 int real_size; 1918 1919 if (byte_diff == 0) { 1920 return; 1921 } 1922 1923 ifp = XFS_IFORK_PTR(ip, whichfork); 1924 new_size = (int)ifp->if_bytes + byte_diff; 1925 ASSERT(new_size >= 0); 1926 1927 if (new_size == 0) { 1928 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1929 kmem_free(ifp->if_u1.if_data); 1930 } 1931 ifp->if_u1.if_data = NULL; 1932 real_size = 0; 1933 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { 1934 /* 1935 * If the valid extents/data can fit in if_inline_ext/data, 1936 * copy them from the malloc'd vector and free it. 1937 */ 1938 if (ifp->if_u1.if_data == NULL) { 1939 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 1940 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1941 ASSERT(ifp->if_real_bytes != 0); 1942 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, 1943 new_size); 1944 kmem_free(ifp->if_u1.if_data); 1945 ifp->if_u1.if_data = ifp->if_u2.if_inline_data; 1946 } 1947 real_size = 0; 1948 } else { 1949 /* 1950 * Stuck with malloc/realloc. 1951 * For inline data, the underlying buffer must be 1952 * a multiple of 4 bytes in size so that it can be 1953 * logged and stay on word boundaries. We enforce 1954 * that here. 1955 */ 1956 real_size = roundup(new_size, 4); 1957 if (ifp->if_u1.if_data == NULL) { 1958 ASSERT(ifp->if_real_bytes == 0); 1959 ifp->if_u1.if_data = kmem_alloc(real_size, 1960 KM_SLEEP | KM_NOFS); 1961 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { 1962 /* 1963 * Only do the realloc if the underlying size 1964 * is really changing. 1965 */ 1966 if (ifp->if_real_bytes != real_size) { 1967 ifp->if_u1.if_data = 1968 kmem_realloc(ifp->if_u1.if_data, 1969 real_size, 1970 ifp->if_real_bytes, 1971 KM_SLEEP | KM_NOFS); 1972 } 1973 } else { 1974 ASSERT(ifp->if_real_bytes == 0); 1975 ifp->if_u1.if_data = kmem_alloc(real_size, 1976 KM_SLEEP | KM_NOFS); 1977 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, 1978 ifp->if_bytes); 1979 } 1980 } 1981 ifp->if_real_bytes = real_size; 1982 ifp->if_bytes = new_size; 1983 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 1984 } 1985 1986 void 1987 xfs_idestroy_fork( 1988 xfs_inode_t *ip, 1989 int whichfork) 1990 { 1991 xfs_ifork_t *ifp; 1992 1993 ifp = XFS_IFORK_PTR(ip, whichfork); 1994 if (ifp->if_broot != NULL) { 1995 kmem_free(ifp->if_broot); 1996 ifp->if_broot = NULL; 1997 } 1998 1999 /* 2000 * If the format is local, then we can't have an extents 2001 * array so just look for an inline data array. If we're 2002 * not local then we may or may not have an extents list, 2003 * so check and free it up if we do. 2004 */ 2005 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { 2006 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && 2007 (ifp->if_u1.if_data != NULL)) { 2008 ASSERT(ifp->if_real_bytes != 0); 2009 kmem_free(ifp->if_u1.if_data); 2010 ifp->if_u1.if_data = NULL; 2011 ifp->if_real_bytes = 0; 2012 } 2013 } else if ((ifp->if_flags & XFS_IFEXTENTS) && 2014 ((ifp->if_flags & XFS_IFEXTIREC) || 2015 ((ifp->if_u1.if_extents != NULL) && 2016 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { 2017 ASSERT(ifp->if_real_bytes != 0); 2018 xfs_iext_destroy(ifp); 2019 } 2020 ASSERT(ifp->if_u1.if_extents == NULL || 2021 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); 2022 ASSERT(ifp->if_real_bytes == 0); 2023 if (whichfork == XFS_ATTR_FORK) { 2024 kmem_zone_free(xfs_ifork_zone, ip->i_afp); 2025 ip->i_afp = NULL; 2026 } 2027 } 2028 2029 /* 2030 * This is called to unpin an inode. The caller must have the inode locked 2031 * in at least shared mode so that the buffer cannot be subsequently pinned 2032 * once someone is waiting for it to be unpinned. 2033 */ 2034 static void 2035 xfs_iunpin( 2036 struct xfs_inode *ip) 2037 { 2038 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2039 2040 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2041 2042 /* Give the log a push to start the unpinning I/O */ 2043 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2044 2045 } 2046 2047 static void 2048 __xfs_iunpin_wait( 2049 struct xfs_inode *ip) 2050 { 2051 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2052 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2053 2054 xfs_iunpin(ip); 2055 2056 do { 2057 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2058 if (xfs_ipincount(ip)) 2059 io_schedule(); 2060 } while (xfs_ipincount(ip)); 2061 finish_wait(wq, &wait.wait); 2062 } 2063 2064 void 2065 xfs_iunpin_wait( 2066 struct xfs_inode *ip) 2067 { 2068 if (xfs_ipincount(ip)) 2069 __xfs_iunpin_wait(ip); 2070 } 2071 2072 /* 2073 * xfs_iextents_copy() 2074 * 2075 * This is called to copy the REAL extents (as opposed to the delayed 2076 * allocation extents) from the inode into the given buffer. It 2077 * returns the number of bytes copied into the buffer. 2078 * 2079 * If there are no delayed allocation extents, then we can just 2080 * memcpy() the extents into the buffer. Otherwise, we need to 2081 * examine each extent in turn and skip those which are delayed. 2082 */ 2083 int 2084 xfs_iextents_copy( 2085 xfs_inode_t *ip, 2086 xfs_bmbt_rec_t *dp, 2087 int whichfork) 2088 { 2089 int copied; 2090 int i; 2091 xfs_ifork_t *ifp; 2092 int nrecs; 2093 xfs_fsblock_t start_block; 2094 2095 ifp = XFS_IFORK_PTR(ip, whichfork); 2096 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2097 ASSERT(ifp->if_bytes > 0); 2098 2099 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2100 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork); 2101 ASSERT(nrecs > 0); 2102 2103 /* 2104 * There are some delayed allocation extents in the 2105 * inode, so copy the extents one at a time and skip 2106 * the delayed ones. There must be at least one 2107 * non-delayed extent. 2108 */ 2109 copied = 0; 2110 for (i = 0; i < nrecs; i++) { 2111 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i); 2112 start_block = xfs_bmbt_get_startblock(ep); 2113 if (isnullstartblock(start_block)) { 2114 /* 2115 * It's a delayed allocation extent, so skip it. 2116 */ 2117 continue; 2118 } 2119 2120 /* Translate to on disk format */ 2121 put_unaligned(cpu_to_be64(ep->l0), &dp->l0); 2122 put_unaligned(cpu_to_be64(ep->l1), &dp->l1); 2123 dp++; 2124 copied++; 2125 } 2126 ASSERT(copied != 0); 2127 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip)); 2128 2129 return (copied * (uint)sizeof(xfs_bmbt_rec_t)); 2130 } 2131 2132 /* 2133 * Each of the following cases stores data into the same region 2134 * of the on-disk inode, so only one of them can be valid at 2135 * any given time. While it is possible to have conflicting formats 2136 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 2137 * in EXTENTS format, this can only happen when the fork has 2138 * changed formats after being modified but before being flushed. 2139 * In these cases, the format always takes precedence, because the 2140 * format indicates the current state of the fork. 2141 */ 2142 /*ARGSUSED*/ 2143 STATIC void 2144 xfs_iflush_fork( 2145 xfs_inode_t *ip, 2146 xfs_dinode_t *dip, 2147 xfs_inode_log_item_t *iip, 2148 int whichfork, 2149 xfs_buf_t *bp) 2150 { 2151 char *cp; 2152 xfs_ifork_t *ifp; 2153 xfs_mount_t *mp; 2154 #ifdef XFS_TRANS_DEBUG 2155 int first; 2156 #endif 2157 static const short brootflag[2] = 2158 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 2159 static const short dataflag[2] = 2160 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 2161 static const short extflag[2] = 2162 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 2163 2164 if (!iip) 2165 return; 2166 ifp = XFS_IFORK_PTR(ip, whichfork); 2167 /* 2168 * This can happen if we gave up in iformat in an error path, 2169 * for the attribute fork. 2170 */ 2171 if (!ifp) { 2172 ASSERT(whichfork == XFS_ATTR_FORK); 2173 return; 2174 } 2175 cp = XFS_DFORK_PTR(dip, whichfork); 2176 mp = ip->i_mount; 2177 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 2178 case XFS_DINODE_FMT_LOCAL: 2179 if ((iip->ili_fields & dataflag[whichfork]) && 2180 (ifp->if_bytes > 0)) { 2181 ASSERT(ifp->if_u1.if_data != NULL); 2182 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); 2183 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); 2184 } 2185 break; 2186 2187 case XFS_DINODE_FMT_EXTENTS: 2188 ASSERT((ifp->if_flags & XFS_IFEXTENTS) || 2189 !(iip->ili_fields & extflag[whichfork])); 2190 if ((iip->ili_fields & extflag[whichfork]) && 2191 (ifp->if_bytes > 0)) { 2192 ASSERT(xfs_iext_get_ext(ifp, 0)); 2193 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); 2194 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 2195 whichfork); 2196 } 2197 break; 2198 2199 case XFS_DINODE_FMT_BTREE: 2200 if ((iip->ili_fields & brootflag[whichfork]) && 2201 (ifp->if_broot_bytes > 0)) { 2202 ASSERT(ifp->if_broot != NULL); 2203 ASSERT(ifp->if_broot_bytes <= 2204 (XFS_IFORK_SIZE(ip, whichfork) + 2205 XFS_BROOT_SIZE_ADJ)); 2206 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 2207 (xfs_bmdr_block_t *)cp, 2208 XFS_DFORK_SIZE(dip, mp, whichfork)); 2209 } 2210 break; 2211 2212 case XFS_DINODE_FMT_DEV: 2213 if (iip->ili_fields & XFS_ILOG_DEV) { 2214 ASSERT(whichfork == XFS_DATA_FORK); 2215 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev); 2216 } 2217 break; 2218 2219 case XFS_DINODE_FMT_UUID: 2220 if (iip->ili_fields & XFS_ILOG_UUID) { 2221 ASSERT(whichfork == XFS_DATA_FORK); 2222 memcpy(XFS_DFORK_DPTR(dip), 2223 &ip->i_df.if_u2.if_uuid, 2224 sizeof(uuid_t)); 2225 } 2226 break; 2227 2228 default: 2229 ASSERT(0); 2230 break; 2231 } 2232 } 2233 2234 STATIC int 2235 xfs_iflush_cluster( 2236 xfs_inode_t *ip, 2237 xfs_buf_t *bp) 2238 { 2239 xfs_mount_t *mp = ip->i_mount; 2240 struct xfs_perag *pag; 2241 unsigned long first_index, mask; 2242 unsigned long inodes_per_cluster; 2243 int ilist_size; 2244 xfs_inode_t **ilist; 2245 xfs_inode_t *iq; 2246 int nr_found; 2247 int clcount = 0; 2248 int bufwasdelwri; 2249 int i; 2250 2251 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2252 2253 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2254 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2255 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2256 if (!ilist) 2257 goto out_put; 2258 2259 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2260 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2261 rcu_read_lock(); 2262 /* really need a gang lookup range call here */ 2263 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2264 first_index, inodes_per_cluster); 2265 if (nr_found == 0) 2266 goto out_free; 2267 2268 for (i = 0; i < nr_found; i++) { 2269 iq = ilist[i]; 2270 if (iq == ip) 2271 continue; 2272 2273 /* 2274 * because this is an RCU protected lookup, we could find a 2275 * recently freed or even reallocated inode during the lookup. 2276 * We need to check under the i_flags_lock for a valid inode 2277 * here. Skip it if it is not valid or the wrong inode. 2278 */ 2279 spin_lock(&ip->i_flags_lock); 2280 if (!ip->i_ino || 2281 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2282 spin_unlock(&ip->i_flags_lock); 2283 continue; 2284 } 2285 spin_unlock(&ip->i_flags_lock); 2286 2287 /* 2288 * Do an un-protected check to see if the inode is dirty and 2289 * is a candidate for flushing. These checks will be repeated 2290 * later after the appropriate locks are acquired. 2291 */ 2292 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2293 continue; 2294 2295 /* 2296 * Try to get locks. If any are unavailable or it is pinned, 2297 * then this inode cannot be flushed and is skipped. 2298 */ 2299 2300 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2301 continue; 2302 if (!xfs_iflock_nowait(iq)) { 2303 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2304 continue; 2305 } 2306 if (xfs_ipincount(iq)) { 2307 xfs_ifunlock(iq); 2308 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2309 continue; 2310 } 2311 2312 /* 2313 * arriving here means that this inode can be flushed. First 2314 * re-check that it's dirty before flushing. 2315 */ 2316 if (!xfs_inode_clean(iq)) { 2317 int error; 2318 error = xfs_iflush_int(iq, bp); 2319 if (error) { 2320 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2321 goto cluster_corrupt_out; 2322 } 2323 clcount++; 2324 } else { 2325 xfs_ifunlock(iq); 2326 } 2327 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2328 } 2329 2330 if (clcount) { 2331 XFS_STATS_INC(xs_icluster_flushcnt); 2332 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2333 } 2334 2335 out_free: 2336 rcu_read_unlock(); 2337 kmem_free(ilist); 2338 out_put: 2339 xfs_perag_put(pag); 2340 return 0; 2341 2342 2343 cluster_corrupt_out: 2344 /* 2345 * Corruption detected in the clustering loop. Invalidate the 2346 * inode buffer and shut down the filesystem. 2347 */ 2348 rcu_read_unlock(); 2349 /* 2350 * Clean up the buffer. If it was B_DELWRI, just release it -- 2351 * brelse can handle it with no problems. If not, shut down the 2352 * filesystem before releasing the buffer. 2353 */ 2354 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp); 2355 if (bufwasdelwri) 2356 xfs_buf_relse(bp); 2357 2358 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2359 2360 if (!bufwasdelwri) { 2361 /* 2362 * Just like incore_relse: if we have b_iodone functions, 2363 * mark the buffer as an error and call them. Otherwise 2364 * mark it as stale and brelse. 2365 */ 2366 if (bp->b_iodone) { 2367 XFS_BUF_UNDONE(bp); 2368 xfs_buf_stale(bp); 2369 xfs_buf_ioerror(bp, EIO); 2370 xfs_buf_ioend(bp, 0); 2371 } else { 2372 xfs_buf_stale(bp); 2373 xfs_buf_relse(bp); 2374 } 2375 } 2376 2377 /* 2378 * Unlocks the flush lock 2379 */ 2380 xfs_iflush_abort(iq); 2381 kmem_free(ilist); 2382 xfs_perag_put(pag); 2383 return XFS_ERROR(EFSCORRUPTED); 2384 } 2385 2386 /* 2387 * xfs_iflush() will write a modified inode's changes out to the 2388 * inode's on disk home. The caller must have the inode lock held 2389 * in at least shared mode and the inode flush completion must be 2390 * active as well. The inode lock will still be held upon return from 2391 * the call and the caller is free to unlock it. 2392 * The inode flush will be completed when the inode reaches the disk. 2393 * The flags indicate how the inode's buffer should be written out. 2394 */ 2395 int 2396 xfs_iflush( 2397 xfs_inode_t *ip, 2398 uint flags) 2399 { 2400 xfs_inode_log_item_t *iip; 2401 xfs_buf_t *bp; 2402 xfs_dinode_t *dip; 2403 xfs_mount_t *mp; 2404 int error; 2405 2406 XFS_STATS_INC(xs_iflush_count); 2407 2408 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2409 ASSERT(xfs_isiflocked(ip)); 2410 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2411 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2412 2413 iip = ip->i_itemp; 2414 mp = ip->i_mount; 2415 2416 /* 2417 * We can't flush the inode until it is unpinned, so wait for it if we 2418 * are allowed to block. We know no one new can pin it, because we are 2419 * holding the inode lock shared and you need to hold it exclusively to 2420 * pin the inode. 2421 * 2422 * If we are not allowed to block, force the log out asynchronously so 2423 * that when we come back the inode will be unpinned. If other inodes 2424 * in the same cluster are dirty, they will probably write the inode 2425 * out for us if they occur after the log force completes. 2426 */ 2427 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) { 2428 xfs_iunpin(ip); 2429 xfs_ifunlock(ip); 2430 return EAGAIN; 2431 } 2432 xfs_iunpin_wait(ip); 2433 2434 /* 2435 * For stale inodes we cannot rely on the backing buffer remaining 2436 * stale in cache for the remaining life of the stale inode and so 2437 * xfs_itobp() below may give us a buffer that no longer contains 2438 * inodes below. We have to check this after ensuring the inode is 2439 * unpinned so that it is safe to reclaim the stale inode after the 2440 * flush call. 2441 */ 2442 if (xfs_iflags_test(ip, XFS_ISTALE)) { 2443 xfs_ifunlock(ip); 2444 return 0; 2445 } 2446 2447 /* 2448 * This may have been unpinned because the filesystem is shutting 2449 * down forcibly. If that's the case we must not write this inode 2450 * to disk, because the log record didn't make it to disk! 2451 */ 2452 if (XFS_FORCED_SHUTDOWN(mp)) { 2453 if (iip) 2454 iip->ili_fields = 0; 2455 xfs_ifunlock(ip); 2456 return XFS_ERROR(EIO); 2457 } 2458 2459 /* 2460 * Get the buffer containing the on-disk inode. 2461 */ 2462 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 2463 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK); 2464 if (error || !bp) { 2465 xfs_ifunlock(ip); 2466 return error; 2467 } 2468 2469 /* 2470 * First flush out the inode that xfs_iflush was called with. 2471 */ 2472 error = xfs_iflush_int(ip, bp); 2473 if (error) 2474 goto corrupt_out; 2475 2476 /* 2477 * If the buffer is pinned then push on the log now so we won't 2478 * get stuck waiting in the write for too long. 2479 */ 2480 if (xfs_buf_ispinned(bp)) 2481 xfs_log_force(mp, 0); 2482 2483 /* 2484 * inode clustering: 2485 * see if other inodes can be gathered into this write 2486 */ 2487 error = xfs_iflush_cluster(ip, bp); 2488 if (error) 2489 goto cluster_corrupt_out; 2490 2491 if (flags & SYNC_WAIT) 2492 error = xfs_bwrite(bp); 2493 else 2494 xfs_buf_delwri_queue(bp); 2495 2496 xfs_buf_relse(bp); 2497 return error; 2498 2499 corrupt_out: 2500 xfs_buf_relse(bp); 2501 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 2502 cluster_corrupt_out: 2503 /* 2504 * Unlocks the flush lock 2505 */ 2506 xfs_iflush_abort(ip); 2507 return XFS_ERROR(EFSCORRUPTED); 2508 } 2509 2510 2511 STATIC int 2512 xfs_iflush_int( 2513 xfs_inode_t *ip, 2514 xfs_buf_t *bp) 2515 { 2516 xfs_inode_log_item_t *iip; 2517 xfs_dinode_t *dip; 2518 xfs_mount_t *mp; 2519 #ifdef XFS_TRANS_DEBUG 2520 int first; 2521 #endif 2522 2523 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2524 ASSERT(xfs_isiflocked(ip)); 2525 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 2526 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 2527 2528 iip = ip->i_itemp; 2529 mp = ip->i_mount; 2530 2531 /* set *dip = inode's place in the buffer */ 2532 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 2533 2534 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 2535 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 2536 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2537 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 2538 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 2539 goto corrupt_out; 2540 } 2541 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 2542 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 2543 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2544 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 2545 __func__, ip->i_ino, ip, ip->i_d.di_magic); 2546 goto corrupt_out; 2547 } 2548 if (S_ISREG(ip->i_d.di_mode)) { 2549 if (XFS_TEST_ERROR( 2550 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2551 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 2552 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 2553 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2554 "%s: Bad regular inode %Lu, ptr 0x%p", 2555 __func__, ip->i_ino, ip); 2556 goto corrupt_out; 2557 } 2558 } else if (S_ISDIR(ip->i_d.di_mode)) { 2559 if (XFS_TEST_ERROR( 2560 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 2561 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 2562 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 2563 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 2564 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2565 "%s: Bad directory inode %Lu, ptr 0x%p", 2566 __func__, ip->i_ino, ip); 2567 goto corrupt_out; 2568 } 2569 } 2570 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 2571 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 2572 XFS_RANDOM_IFLUSH_5)) { 2573 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2574 "%s: detected corrupt incore inode %Lu, " 2575 "total extents = %d, nblocks = %Ld, ptr 0x%p", 2576 __func__, ip->i_ino, 2577 ip->i_d.di_nextents + ip->i_d.di_anextents, 2578 ip->i_d.di_nblocks, ip); 2579 goto corrupt_out; 2580 } 2581 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 2582 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 2583 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 2584 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 2585 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 2586 goto corrupt_out; 2587 } 2588 /* 2589 * bump the flush iteration count, used to detect flushes which 2590 * postdate a log record during recovery. 2591 */ 2592 2593 ip->i_d.di_flushiter++; 2594 2595 /* 2596 * Copy the dirty parts of the inode into the on-disk 2597 * inode. We always copy out the core of the inode, 2598 * because if the inode is dirty at all the core must 2599 * be. 2600 */ 2601 xfs_dinode_to_disk(dip, &ip->i_d); 2602 2603 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 2604 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 2605 ip->i_d.di_flushiter = 0; 2606 2607 /* 2608 * If this is really an old format inode and the superblock version 2609 * has not been updated to support only new format inodes, then 2610 * convert back to the old inode format. If the superblock version 2611 * has been updated, then make the conversion permanent. 2612 */ 2613 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 2614 if (ip->i_d.di_version == 1) { 2615 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 2616 /* 2617 * Convert it back. 2618 */ 2619 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 2620 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 2621 } else { 2622 /* 2623 * The superblock version has already been bumped, 2624 * so just make the conversion to the new inode 2625 * format permanent. 2626 */ 2627 ip->i_d.di_version = 2; 2628 dip->di_version = 2; 2629 ip->i_d.di_onlink = 0; 2630 dip->di_onlink = 0; 2631 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 2632 memset(&(dip->di_pad[0]), 0, 2633 sizeof(dip->di_pad)); 2634 ASSERT(xfs_get_projid(ip) == 0); 2635 } 2636 } 2637 2638 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 2639 if (XFS_IFORK_Q(ip)) 2640 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 2641 xfs_inobp_check(mp, bp); 2642 2643 /* 2644 * We've recorded everything logged in the inode, so we'd like to clear 2645 * the ili_fields bits so we don't log and flush things unnecessarily. 2646 * However, we can't stop logging all this information until the data 2647 * we've copied into the disk buffer is written to disk. If we did we 2648 * might overwrite the copy of the inode in the log with all the data 2649 * after re-logging only part of it, and in the face of a crash we 2650 * wouldn't have all the data we need to recover. 2651 * 2652 * What we do is move the bits to the ili_last_fields field. When 2653 * logging the inode, these bits are moved back to the ili_fields field. 2654 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 2655 * know that the information those bits represent is permanently on 2656 * disk. As long as the flush completes before the inode is logged 2657 * again, then both ili_fields and ili_last_fields will be cleared. 2658 * 2659 * We can play with the ili_fields bits here, because the inode lock 2660 * must be held exclusively in order to set bits there and the flush 2661 * lock protects the ili_last_fields bits. Set ili_logged so the flush 2662 * done routine can tell whether or not to look in the AIL. Also, store 2663 * the current LSN of the inode so that we can tell whether the item has 2664 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 2665 * need the AIL lock, because it is a 64 bit value that cannot be read 2666 * atomically. 2667 */ 2668 if (iip != NULL && iip->ili_fields != 0) { 2669 iip->ili_last_fields = iip->ili_fields; 2670 iip->ili_fields = 0; 2671 iip->ili_logged = 1; 2672 2673 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2674 &iip->ili_item.li_lsn); 2675 2676 /* 2677 * Attach the function xfs_iflush_done to the inode's 2678 * buffer. This will remove the inode from the AIL 2679 * and unlock the inode's flush lock when the inode is 2680 * completely written to disk. 2681 */ 2682 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 2683 2684 ASSERT(bp->b_fspriv != NULL); 2685 ASSERT(bp->b_iodone != NULL); 2686 } else { 2687 /* 2688 * We're flushing an inode which is not in the AIL and has 2689 * not been logged. For this case we can immediately drop 2690 * the inode flush lock because we can avoid the whole 2691 * AIL state thing. It's OK to drop the flush lock now, 2692 * because we've already locked the buffer and to do anything 2693 * you really need both. 2694 */ 2695 if (iip != NULL) { 2696 ASSERT(iip->ili_logged == 0); 2697 ASSERT(iip->ili_last_fields == 0); 2698 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); 2699 } 2700 xfs_ifunlock(ip); 2701 } 2702 2703 return 0; 2704 2705 corrupt_out: 2706 return XFS_ERROR(EFSCORRUPTED); 2707 } 2708 2709 void 2710 xfs_promote_inode( 2711 struct xfs_inode *ip) 2712 { 2713 struct xfs_buf *bp; 2714 2715 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2716 2717 bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno, 2718 ip->i_imap.im_len, XBF_TRYLOCK); 2719 if (!bp) 2720 return; 2721 2722 if (XFS_BUF_ISDELAYWRITE(bp)) { 2723 xfs_buf_delwri_promote(bp); 2724 wake_up_process(ip->i_mount->m_ddev_targp->bt_task); 2725 } 2726 2727 xfs_buf_relse(bp); 2728 } 2729 2730 /* 2731 * Return a pointer to the extent record at file index idx. 2732 */ 2733 xfs_bmbt_rec_host_t * 2734 xfs_iext_get_ext( 2735 xfs_ifork_t *ifp, /* inode fork pointer */ 2736 xfs_extnum_t idx) /* index of target extent */ 2737 { 2738 ASSERT(idx >= 0); 2739 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 2740 2741 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { 2742 return ifp->if_u1.if_ext_irec->er_extbuf; 2743 } else if (ifp->if_flags & XFS_IFEXTIREC) { 2744 xfs_ext_irec_t *erp; /* irec pointer */ 2745 int erp_idx = 0; /* irec index */ 2746 xfs_extnum_t page_idx = idx; /* ext index in target list */ 2747 2748 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 2749 return &erp->er_extbuf[page_idx]; 2750 } else if (ifp->if_bytes) { 2751 return &ifp->if_u1.if_extents[idx]; 2752 } else { 2753 return NULL; 2754 } 2755 } 2756 2757 /* 2758 * Insert new item(s) into the extent records for incore inode 2759 * fork 'ifp'. 'count' new items are inserted at index 'idx'. 2760 */ 2761 void 2762 xfs_iext_insert( 2763 xfs_inode_t *ip, /* incore inode pointer */ 2764 xfs_extnum_t idx, /* starting index of new items */ 2765 xfs_extnum_t count, /* number of inserted items */ 2766 xfs_bmbt_irec_t *new, /* items to insert */ 2767 int state) /* type of extent conversion */ 2768 { 2769 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 2770 xfs_extnum_t i; /* extent record index */ 2771 2772 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_); 2773 2774 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 2775 xfs_iext_add(ifp, idx, count); 2776 for (i = idx; i < idx + count; i++, new++) 2777 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new); 2778 } 2779 2780 /* 2781 * This is called when the amount of space required for incore file 2782 * extents needs to be increased. The ext_diff parameter stores the 2783 * number of new extents being added and the idx parameter contains 2784 * the extent index where the new extents will be added. If the new 2785 * extents are being appended, then we just need to (re)allocate and 2786 * initialize the space. Otherwise, if the new extents are being 2787 * inserted into the middle of the existing entries, a bit more work 2788 * is required to make room for the new extents to be inserted. The 2789 * caller is responsible for filling in the new extent entries upon 2790 * return. 2791 */ 2792 void 2793 xfs_iext_add( 2794 xfs_ifork_t *ifp, /* inode fork pointer */ 2795 xfs_extnum_t idx, /* index to begin adding exts */ 2796 int ext_diff) /* number of extents to add */ 2797 { 2798 int byte_diff; /* new bytes being added */ 2799 int new_size; /* size of extents after adding */ 2800 xfs_extnum_t nextents; /* number of extents in file */ 2801 2802 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 2803 ASSERT((idx >= 0) && (idx <= nextents)); 2804 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); 2805 new_size = ifp->if_bytes + byte_diff; 2806 /* 2807 * If the new number of extents (nextents + ext_diff) 2808 * fits inside the inode, then continue to use the inline 2809 * extent buffer. 2810 */ 2811 if (nextents + ext_diff <= XFS_INLINE_EXTS) { 2812 if (idx < nextents) { 2813 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], 2814 &ifp->if_u2.if_inline_ext[idx], 2815 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 2816 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); 2817 } 2818 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 2819 ifp->if_real_bytes = 0; 2820 } 2821 /* 2822 * Otherwise use a linear (direct) extent list. 2823 * If the extents are currently inside the inode, 2824 * xfs_iext_realloc_direct will switch us from 2825 * inline to direct extent allocation mode. 2826 */ 2827 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { 2828 xfs_iext_realloc_direct(ifp, new_size); 2829 if (idx < nextents) { 2830 memmove(&ifp->if_u1.if_extents[idx + ext_diff], 2831 &ifp->if_u1.if_extents[idx], 2832 (nextents - idx) * sizeof(xfs_bmbt_rec_t)); 2833 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); 2834 } 2835 } 2836 /* Indirection array */ 2837 else { 2838 xfs_ext_irec_t *erp; 2839 int erp_idx = 0; 2840 int page_idx = idx; 2841 2842 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); 2843 if (ifp->if_flags & XFS_IFEXTIREC) { 2844 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); 2845 } else { 2846 xfs_iext_irec_init(ifp); 2847 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 2848 erp = ifp->if_u1.if_ext_irec; 2849 } 2850 /* Extents fit in target extent page */ 2851 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { 2852 if (page_idx < erp->er_extcount) { 2853 memmove(&erp->er_extbuf[page_idx + ext_diff], 2854 &erp->er_extbuf[page_idx], 2855 (erp->er_extcount - page_idx) * 2856 sizeof(xfs_bmbt_rec_t)); 2857 memset(&erp->er_extbuf[page_idx], 0, byte_diff); 2858 } 2859 erp->er_extcount += ext_diff; 2860 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2861 } 2862 /* Insert a new extent page */ 2863 else if (erp) { 2864 xfs_iext_add_indirect_multi(ifp, 2865 erp_idx, page_idx, ext_diff); 2866 } 2867 /* 2868 * If extent(s) are being appended to the last page in 2869 * the indirection array and the new extent(s) don't fit 2870 * in the page, then erp is NULL and erp_idx is set to 2871 * the next index needed in the indirection array. 2872 */ 2873 else { 2874 int count = ext_diff; 2875 2876 while (count) { 2877 erp = xfs_iext_irec_new(ifp, erp_idx); 2878 erp->er_extcount = count; 2879 count -= MIN(count, (int)XFS_LINEAR_EXTS); 2880 if (count) { 2881 erp_idx++; 2882 } 2883 } 2884 } 2885 } 2886 ifp->if_bytes = new_size; 2887 } 2888 2889 /* 2890 * This is called when incore extents are being added to the indirection 2891 * array and the new extents do not fit in the target extent list. The 2892 * erp_idx parameter contains the irec index for the target extent list 2893 * in the indirection array, and the idx parameter contains the extent 2894 * index within the list. The number of extents being added is stored 2895 * in the count parameter. 2896 * 2897 * |-------| |-------| 2898 * | | | | idx - number of extents before idx 2899 * | idx | | count | 2900 * | | | | count - number of extents being inserted at idx 2901 * |-------| |-------| 2902 * | count | | nex2 | nex2 - number of extents after idx + count 2903 * |-------| |-------| 2904 */ 2905 void 2906 xfs_iext_add_indirect_multi( 2907 xfs_ifork_t *ifp, /* inode fork pointer */ 2908 int erp_idx, /* target extent irec index */ 2909 xfs_extnum_t idx, /* index within target list */ 2910 int count) /* new extents being added */ 2911 { 2912 int byte_diff; /* new bytes being added */ 2913 xfs_ext_irec_t *erp; /* pointer to irec entry */ 2914 xfs_extnum_t ext_diff; /* number of extents to add */ 2915 xfs_extnum_t ext_cnt; /* new extents still needed */ 2916 xfs_extnum_t nex2; /* extents after idx + count */ 2917 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ 2918 int nlists; /* number of irec's (lists) */ 2919 2920 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 2921 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 2922 nex2 = erp->er_extcount - idx; 2923 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 2924 2925 /* 2926 * Save second part of target extent list 2927 * (all extents past */ 2928 if (nex2) { 2929 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 2930 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS); 2931 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); 2932 erp->er_extcount -= nex2; 2933 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); 2934 memset(&erp->er_extbuf[idx], 0, byte_diff); 2935 } 2936 2937 /* 2938 * Add the new extents to the end of the target 2939 * list, then allocate new irec record(s) and 2940 * extent buffer(s) as needed to store the rest 2941 * of the new extents. 2942 */ 2943 ext_cnt = count; 2944 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); 2945 if (ext_diff) { 2946 erp->er_extcount += ext_diff; 2947 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2948 ext_cnt -= ext_diff; 2949 } 2950 while (ext_cnt) { 2951 erp_idx++; 2952 erp = xfs_iext_irec_new(ifp, erp_idx); 2953 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); 2954 erp->er_extcount = ext_diff; 2955 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); 2956 ext_cnt -= ext_diff; 2957 } 2958 2959 /* Add nex2 extents back to indirection array */ 2960 if (nex2) { 2961 xfs_extnum_t ext_avail; 2962 int i; 2963 2964 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); 2965 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; 2966 i = 0; 2967 /* 2968 * If nex2 extents fit in the current page, append 2969 * nex2_ep after the new extents. 2970 */ 2971 if (nex2 <= ext_avail) { 2972 i = erp->er_extcount; 2973 } 2974 /* 2975 * Otherwise, check if space is available in the 2976 * next page. 2977 */ 2978 else if ((erp_idx < nlists - 1) && 2979 (nex2 <= (ext_avail = XFS_LINEAR_EXTS - 2980 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { 2981 erp_idx++; 2982 erp++; 2983 /* Create a hole for nex2 extents */ 2984 memmove(&erp->er_extbuf[nex2], erp->er_extbuf, 2985 erp->er_extcount * sizeof(xfs_bmbt_rec_t)); 2986 } 2987 /* 2988 * Final choice, create a new extent page for 2989 * nex2 extents. 2990 */ 2991 else { 2992 erp_idx++; 2993 erp = xfs_iext_irec_new(ifp, erp_idx); 2994 } 2995 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); 2996 kmem_free(nex2_ep); 2997 erp->er_extcount += nex2; 2998 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); 2999 } 3000 } 3001 3002 /* 3003 * This is called when the amount of space required for incore file 3004 * extents needs to be decreased. The ext_diff parameter stores the 3005 * number of extents to be removed and the idx parameter contains 3006 * the extent index where the extents will be removed from. 3007 * 3008 * If the amount of space needed has decreased below the linear 3009 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous 3010 * extent array. Otherwise, use kmem_realloc() to adjust the 3011 * size to what is needed. 3012 */ 3013 void 3014 xfs_iext_remove( 3015 xfs_inode_t *ip, /* incore inode pointer */ 3016 xfs_extnum_t idx, /* index to begin removing exts */ 3017 int ext_diff, /* number of extents to remove */ 3018 int state) /* type of extent conversion */ 3019 { 3020 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df; 3021 xfs_extnum_t nextents; /* number of extents in file */ 3022 int new_size; /* size of extents after removal */ 3023 3024 trace_xfs_iext_remove(ip, idx, state, _RET_IP_); 3025 3026 ASSERT(ext_diff > 0); 3027 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3028 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); 3029 3030 if (new_size == 0) { 3031 xfs_iext_destroy(ifp); 3032 } else if (ifp->if_flags & XFS_IFEXTIREC) { 3033 xfs_iext_remove_indirect(ifp, idx, ext_diff); 3034 } else if (ifp->if_real_bytes) { 3035 xfs_iext_remove_direct(ifp, idx, ext_diff); 3036 } else { 3037 xfs_iext_remove_inline(ifp, idx, ext_diff); 3038 } 3039 ifp->if_bytes = new_size; 3040 } 3041 3042 /* 3043 * This removes ext_diff extents from the inline buffer, beginning 3044 * at extent index idx. 3045 */ 3046 void 3047 xfs_iext_remove_inline( 3048 xfs_ifork_t *ifp, /* inode fork pointer */ 3049 xfs_extnum_t idx, /* index to begin removing exts */ 3050 int ext_diff) /* number of extents to remove */ 3051 { 3052 int nextents; /* number of extents in file */ 3053 3054 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3055 ASSERT(idx < XFS_INLINE_EXTS); 3056 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3057 ASSERT(((nextents - ext_diff) > 0) && 3058 (nextents - ext_diff) < XFS_INLINE_EXTS); 3059 3060 if (idx + ext_diff < nextents) { 3061 memmove(&ifp->if_u2.if_inline_ext[idx], 3062 &ifp->if_u2.if_inline_ext[idx + ext_diff], 3063 (nextents - (idx + ext_diff)) * 3064 sizeof(xfs_bmbt_rec_t)); 3065 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 3066 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3067 } else { 3068 memset(&ifp->if_u2.if_inline_ext[idx], 0, 3069 ext_diff * sizeof(xfs_bmbt_rec_t)); 3070 } 3071 } 3072 3073 /* 3074 * This removes ext_diff extents from a linear (direct) extent list, 3075 * beginning at extent index idx. If the extents are being removed 3076 * from the end of the list (ie. truncate) then we just need to re- 3077 * allocate the list to remove the extra space. Otherwise, if the 3078 * extents are being removed from the middle of the existing extent 3079 * entries, then we first need to move the extent records beginning 3080 * at idx + ext_diff up in the list to overwrite the records being 3081 * removed, then remove the extra space via kmem_realloc. 3082 */ 3083 void 3084 xfs_iext_remove_direct( 3085 xfs_ifork_t *ifp, /* inode fork pointer */ 3086 xfs_extnum_t idx, /* index to begin removing exts */ 3087 int ext_diff) /* number of extents to remove */ 3088 { 3089 xfs_extnum_t nextents; /* number of extents in file */ 3090 int new_size; /* size of extents after removal */ 3091 3092 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3093 new_size = ifp->if_bytes - 3094 (ext_diff * sizeof(xfs_bmbt_rec_t)); 3095 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3096 3097 if (new_size == 0) { 3098 xfs_iext_destroy(ifp); 3099 return; 3100 } 3101 /* Move extents up in the list (if needed) */ 3102 if (idx + ext_diff < nextents) { 3103 memmove(&ifp->if_u1.if_extents[idx], 3104 &ifp->if_u1.if_extents[idx + ext_diff], 3105 (nextents - (idx + ext_diff)) * 3106 sizeof(xfs_bmbt_rec_t)); 3107 } 3108 memset(&ifp->if_u1.if_extents[nextents - ext_diff], 3109 0, ext_diff * sizeof(xfs_bmbt_rec_t)); 3110 /* 3111 * Reallocate the direct extent list. If the extents 3112 * will fit inside the inode then xfs_iext_realloc_direct 3113 * will switch from direct to inline extent allocation 3114 * mode for us. 3115 */ 3116 xfs_iext_realloc_direct(ifp, new_size); 3117 ifp->if_bytes = new_size; 3118 } 3119 3120 /* 3121 * This is called when incore extents are being removed from the 3122 * indirection array and the extents being removed span multiple extent 3123 * buffers. The idx parameter contains the file extent index where we 3124 * want to begin removing extents, and the count parameter contains 3125 * how many extents need to be removed. 3126 * 3127 * |-------| |-------| 3128 * | nex1 | | | nex1 - number of extents before idx 3129 * |-------| | count | 3130 * | | | | count - number of extents being removed at idx 3131 * | count | |-------| 3132 * | | | nex2 | nex2 - number of extents after idx + count 3133 * |-------| |-------| 3134 */ 3135 void 3136 xfs_iext_remove_indirect( 3137 xfs_ifork_t *ifp, /* inode fork pointer */ 3138 xfs_extnum_t idx, /* index to begin removing extents */ 3139 int count) /* number of extents to remove */ 3140 { 3141 xfs_ext_irec_t *erp; /* indirection array pointer */ 3142 int erp_idx = 0; /* indirection array index */ 3143 xfs_extnum_t ext_cnt; /* extents left to remove */ 3144 xfs_extnum_t ext_diff; /* extents to remove in current list */ 3145 xfs_extnum_t nex1; /* number of extents before idx */ 3146 xfs_extnum_t nex2; /* extents after idx + count */ 3147 int page_idx = idx; /* index in target extent list */ 3148 3149 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3150 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); 3151 ASSERT(erp != NULL); 3152 nex1 = page_idx; 3153 ext_cnt = count; 3154 while (ext_cnt) { 3155 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); 3156 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); 3157 /* 3158 * Check for deletion of entire list; 3159 * xfs_iext_irec_remove() updates extent offsets. 3160 */ 3161 if (ext_diff == erp->er_extcount) { 3162 xfs_iext_irec_remove(ifp, erp_idx); 3163 ext_cnt -= ext_diff; 3164 nex1 = 0; 3165 if (ext_cnt) { 3166 ASSERT(erp_idx < ifp->if_real_bytes / 3167 XFS_IEXT_BUFSZ); 3168 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3169 nex1 = 0; 3170 continue; 3171 } else { 3172 break; 3173 } 3174 } 3175 /* Move extents up (if needed) */ 3176 if (nex2) { 3177 memmove(&erp->er_extbuf[nex1], 3178 &erp->er_extbuf[nex1 + ext_diff], 3179 nex2 * sizeof(xfs_bmbt_rec_t)); 3180 } 3181 /* Zero out rest of page */ 3182 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - 3183 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); 3184 /* Update remaining counters */ 3185 erp->er_extcount -= ext_diff; 3186 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); 3187 ext_cnt -= ext_diff; 3188 nex1 = 0; 3189 erp_idx++; 3190 erp++; 3191 } 3192 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); 3193 xfs_iext_irec_compact(ifp); 3194 } 3195 3196 /* 3197 * Create, destroy, or resize a linear (direct) block of extents. 3198 */ 3199 void 3200 xfs_iext_realloc_direct( 3201 xfs_ifork_t *ifp, /* inode fork pointer */ 3202 int new_size) /* new size of extents */ 3203 { 3204 int rnew_size; /* real new size of extents */ 3205 3206 rnew_size = new_size; 3207 3208 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || 3209 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && 3210 (new_size != ifp->if_real_bytes))); 3211 3212 /* Free extent records */ 3213 if (new_size == 0) { 3214 xfs_iext_destroy(ifp); 3215 } 3216 /* Resize direct extent list and zero any new bytes */ 3217 else if (ifp->if_real_bytes) { 3218 /* Check if extents will fit inside the inode */ 3219 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { 3220 xfs_iext_direct_to_inline(ifp, new_size / 3221 (uint)sizeof(xfs_bmbt_rec_t)); 3222 ifp->if_bytes = new_size; 3223 return; 3224 } 3225 if (!is_power_of_2(new_size)){ 3226 rnew_size = roundup_pow_of_two(new_size); 3227 } 3228 if (rnew_size != ifp->if_real_bytes) { 3229 ifp->if_u1.if_extents = 3230 kmem_realloc(ifp->if_u1.if_extents, 3231 rnew_size, 3232 ifp->if_real_bytes, KM_NOFS); 3233 } 3234 if (rnew_size > ifp->if_real_bytes) { 3235 memset(&ifp->if_u1.if_extents[ifp->if_bytes / 3236 (uint)sizeof(xfs_bmbt_rec_t)], 0, 3237 rnew_size - ifp->if_real_bytes); 3238 } 3239 } 3240 /* 3241 * Switch from the inline extent buffer to a direct 3242 * extent list. Be sure to include the inline extent 3243 * bytes in new_size. 3244 */ 3245 else { 3246 new_size += ifp->if_bytes; 3247 if (!is_power_of_2(new_size)) { 3248 rnew_size = roundup_pow_of_two(new_size); 3249 } 3250 xfs_iext_inline_to_direct(ifp, rnew_size); 3251 } 3252 ifp->if_real_bytes = rnew_size; 3253 ifp->if_bytes = new_size; 3254 } 3255 3256 /* 3257 * Switch from linear (direct) extent records to inline buffer. 3258 */ 3259 void 3260 xfs_iext_direct_to_inline( 3261 xfs_ifork_t *ifp, /* inode fork pointer */ 3262 xfs_extnum_t nextents) /* number of extents in file */ 3263 { 3264 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 3265 ASSERT(nextents <= XFS_INLINE_EXTS); 3266 /* 3267 * The inline buffer was zeroed when we switched 3268 * from inline to direct extent allocation mode, 3269 * so we don't need to clear it here. 3270 */ 3271 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, 3272 nextents * sizeof(xfs_bmbt_rec_t)); 3273 kmem_free(ifp->if_u1.if_extents); 3274 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 3275 ifp->if_real_bytes = 0; 3276 } 3277 3278 /* 3279 * Switch from inline buffer to linear (direct) extent records. 3280 * new_size should already be rounded up to the next power of 2 3281 * by the caller (when appropriate), so use new_size as it is. 3282 * However, since new_size may be rounded up, we can't update 3283 * if_bytes here. It is the caller's responsibility to update 3284 * if_bytes upon return. 3285 */ 3286 void 3287 xfs_iext_inline_to_direct( 3288 xfs_ifork_t *ifp, /* inode fork pointer */ 3289 int new_size) /* number of extents in file */ 3290 { 3291 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS); 3292 memset(ifp->if_u1.if_extents, 0, new_size); 3293 if (ifp->if_bytes) { 3294 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, 3295 ifp->if_bytes); 3296 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3297 sizeof(xfs_bmbt_rec_t)); 3298 } 3299 ifp->if_real_bytes = new_size; 3300 } 3301 3302 /* 3303 * Resize an extent indirection array to new_size bytes. 3304 */ 3305 STATIC void 3306 xfs_iext_realloc_indirect( 3307 xfs_ifork_t *ifp, /* inode fork pointer */ 3308 int new_size) /* new indirection array size */ 3309 { 3310 int nlists; /* number of irec's (ex lists) */ 3311 int size; /* current indirection array size */ 3312 3313 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3314 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3315 size = nlists * sizeof(xfs_ext_irec_t); 3316 ASSERT(ifp->if_real_bytes); 3317 ASSERT((new_size >= 0) && (new_size != size)); 3318 if (new_size == 0) { 3319 xfs_iext_destroy(ifp); 3320 } else { 3321 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) 3322 kmem_realloc(ifp->if_u1.if_ext_irec, 3323 new_size, size, KM_NOFS); 3324 } 3325 } 3326 3327 /* 3328 * Switch from indirection array to linear (direct) extent allocations. 3329 */ 3330 STATIC void 3331 xfs_iext_indirect_to_direct( 3332 xfs_ifork_t *ifp) /* inode fork pointer */ 3333 { 3334 xfs_bmbt_rec_host_t *ep; /* extent record pointer */ 3335 xfs_extnum_t nextents; /* number of extents in file */ 3336 int size; /* size of file extents */ 3337 3338 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3339 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3340 ASSERT(nextents <= XFS_LINEAR_EXTS); 3341 size = nextents * sizeof(xfs_bmbt_rec_t); 3342 3343 xfs_iext_irec_compact_pages(ifp); 3344 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); 3345 3346 ep = ifp->if_u1.if_ext_irec->er_extbuf; 3347 kmem_free(ifp->if_u1.if_ext_irec); 3348 ifp->if_flags &= ~XFS_IFEXTIREC; 3349 ifp->if_u1.if_extents = ep; 3350 ifp->if_bytes = size; 3351 if (nextents < XFS_LINEAR_EXTS) { 3352 xfs_iext_realloc_direct(ifp, size); 3353 } 3354 } 3355 3356 /* 3357 * Free incore file extents. 3358 */ 3359 void 3360 xfs_iext_destroy( 3361 xfs_ifork_t *ifp) /* inode fork pointer */ 3362 { 3363 if (ifp->if_flags & XFS_IFEXTIREC) { 3364 int erp_idx; 3365 int nlists; 3366 3367 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3368 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { 3369 xfs_iext_irec_remove(ifp, erp_idx); 3370 } 3371 ifp->if_flags &= ~XFS_IFEXTIREC; 3372 } else if (ifp->if_real_bytes) { 3373 kmem_free(ifp->if_u1.if_extents); 3374 } else if (ifp->if_bytes) { 3375 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * 3376 sizeof(xfs_bmbt_rec_t)); 3377 } 3378 ifp->if_u1.if_extents = NULL; 3379 ifp->if_real_bytes = 0; 3380 ifp->if_bytes = 0; 3381 } 3382 3383 /* 3384 * Return a pointer to the extent record for file system block bno. 3385 */ 3386 xfs_bmbt_rec_host_t * /* pointer to found extent record */ 3387 xfs_iext_bno_to_ext( 3388 xfs_ifork_t *ifp, /* inode fork pointer */ 3389 xfs_fileoff_t bno, /* block number to search for */ 3390 xfs_extnum_t *idxp) /* index of target extent */ 3391 { 3392 xfs_bmbt_rec_host_t *base; /* pointer to first extent */ 3393 xfs_filblks_t blockcount = 0; /* number of blocks in extent */ 3394 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */ 3395 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3396 int high; /* upper boundary in search */ 3397 xfs_extnum_t idx = 0; /* index of target extent */ 3398 int low; /* lower boundary in search */ 3399 xfs_extnum_t nextents; /* number of file extents */ 3400 xfs_fileoff_t startoff = 0; /* start offset of extent */ 3401 3402 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3403 if (nextents == 0) { 3404 *idxp = 0; 3405 return NULL; 3406 } 3407 low = 0; 3408 if (ifp->if_flags & XFS_IFEXTIREC) { 3409 /* Find target extent list */ 3410 int erp_idx = 0; 3411 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); 3412 base = erp->er_extbuf; 3413 high = erp->er_extcount - 1; 3414 } else { 3415 base = ifp->if_u1.if_extents; 3416 high = nextents - 1; 3417 } 3418 /* Binary search extent records */ 3419 while (low <= high) { 3420 idx = (low + high) >> 1; 3421 ep = base + idx; 3422 startoff = xfs_bmbt_get_startoff(ep); 3423 blockcount = xfs_bmbt_get_blockcount(ep); 3424 if (bno < startoff) { 3425 high = idx - 1; 3426 } else if (bno >= startoff + blockcount) { 3427 low = idx + 1; 3428 } else { 3429 /* Convert back to file-based extent index */ 3430 if (ifp->if_flags & XFS_IFEXTIREC) { 3431 idx += erp->er_extoff; 3432 } 3433 *idxp = idx; 3434 return ep; 3435 } 3436 } 3437 /* Convert back to file-based extent index */ 3438 if (ifp->if_flags & XFS_IFEXTIREC) { 3439 idx += erp->er_extoff; 3440 } 3441 if (bno >= startoff + blockcount) { 3442 if (++idx == nextents) { 3443 ep = NULL; 3444 } else { 3445 ep = xfs_iext_get_ext(ifp, idx); 3446 } 3447 } 3448 *idxp = idx; 3449 return ep; 3450 } 3451 3452 /* 3453 * Return a pointer to the indirection array entry containing the 3454 * extent record for filesystem block bno. Store the index of the 3455 * target irec in *erp_idxp. 3456 */ 3457 xfs_ext_irec_t * /* pointer to found extent record */ 3458 xfs_iext_bno_to_irec( 3459 xfs_ifork_t *ifp, /* inode fork pointer */ 3460 xfs_fileoff_t bno, /* block number to search for */ 3461 int *erp_idxp) /* irec index of target ext list */ 3462 { 3463 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ 3464 xfs_ext_irec_t *erp_next; /* next indirection array entry */ 3465 int erp_idx; /* indirection array index */ 3466 int nlists; /* number of extent irec's (lists) */ 3467 int high; /* binary search upper limit */ 3468 int low; /* binary search lower limit */ 3469 3470 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3471 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3472 erp_idx = 0; 3473 low = 0; 3474 high = nlists - 1; 3475 while (low <= high) { 3476 erp_idx = (low + high) >> 1; 3477 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3478 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; 3479 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { 3480 high = erp_idx - 1; 3481 } else if (erp_next && bno >= 3482 xfs_bmbt_get_startoff(erp_next->er_extbuf)) { 3483 low = erp_idx + 1; 3484 } else { 3485 break; 3486 } 3487 } 3488 *erp_idxp = erp_idx; 3489 return erp; 3490 } 3491 3492 /* 3493 * Return a pointer to the indirection array entry containing the 3494 * extent record at file extent index *idxp. Store the index of the 3495 * target irec in *erp_idxp and store the page index of the target 3496 * extent record in *idxp. 3497 */ 3498 xfs_ext_irec_t * 3499 xfs_iext_idx_to_irec( 3500 xfs_ifork_t *ifp, /* inode fork pointer */ 3501 xfs_extnum_t *idxp, /* extent index (file -> page) */ 3502 int *erp_idxp, /* pointer to target irec */ 3503 int realloc) /* new bytes were just added */ 3504 { 3505 xfs_ext_irec_t *prev; /* pointer to previous irec */ 3506 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ 3507 int erp_idx; /* indirection array index */ 3508 int nlists; /* number of irec's (ex lists) */ 3509 int high; /* binary search upper limit */ 3510 int low; /* binary search lower limit */ 3511 xfs_extnum_t page_idx = *idxp; /* extent index in target list */ 3512 3513 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3514 ASSERT(page_idx >= 0); 3515 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t)); 3516 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc); 3517 3518 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3519 erp_idx = 0; 3520 low = 0; 3521 high = nlists - 1; 3522 3523 /* Binary search extent irec's */ 3524 while (low <= high) { 3525 erp_idx = (low + high) >> 1; 3526 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3527 prev = erp_idx > 0 ? erp - 1 : NULL; 3528 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && 3529 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { 3530 high = erp_idx - 1; 3531 } else if (page_idx > erp->er_extoff + erp->er_extcount || 3532 (page_idx == erp->er_extoff + erp->er_extcount && 3533 !realloc)) { 3534 low = erp_idx + 1; 3535 } else if (page_idx == erp->er_extoff + erp->er_extcount && 3536 erp->er_extcount == XFS_LINEAR_EXTS) { 3537 ASSERT(realloc); 3538 page_idx = 0; 3539 erp_idx++; 3540 erp = erp_idx < nlists ? erp + 1 : NULL; 3541 break; 3542 } else { 3543 page_idx -= erp->er_extoff; 3544 break; 3545 } 3546 } 3547 *idxp = page_idx; 3548 *erp_idxp = erp_idx; 3549 return(erp); 3550 } 3551 3552 /* 3553 * Allocate and initialize an indirection array once the space needed 3554 * for incore extents increases above XFS_IEXT_BUFSZ. 3555 */ 3556 void 3557 xfs_iext_irec_init( 3558 xfs_ifork_t *ifp) /* inode fork pointer */ 3559 { 3560 xfs_ext_irec_t *erp; /* indirection array pointer */ 3561 xfs_extnum_t nextents; /* number of extents in file */ 3562 3563 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); 3564 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3565 ASSERT(nextents <= XFS_LINEAR_EXTS); 3566 3567 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS); 3568 3569 if (nextents == 0) { 3570 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3571 } else if (!ifp->if_real_bytes) { 3572 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); 3573 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { 3574 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); 3575 } 3576 erp->er_extbuf = ifp->if_u1.if_extents; 3577 erp->er_extcount = nextents; 3578 erp->er_extoff = 0; 3579 3580 ifp->if_flags |= XFS_IFEXTIREC; 3581 ifp->if_real_bytes = XFS_IEXT_BUFSZ; 3582 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); 3583 ifp->if_u1.if_ext_irec = erp; 3584 3585 return; 3586 } 3587 3588 /* 3589 * Allocate and initialize a new entry in the indirection array. 3590 */ 3591 xfs_ext_irec_t * 3592 xfs_iext_irec_new( 3593 xfs_ifork_t *ifp, /* inode fork pointer */ 3594 int erp_idx) /* index for new irec */ 3595 { 3596 xfs_ext_irec_t *erp; /* indirection array pointer */ 3597 int i; /* loop counter */ 3598 int nlists; /* number of irec's (ex lists) */ 3599 3600 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3601 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3602 3603 /* Resize indirection array */ 3604 xfs_iext_realloc_indirect(ifp, ++nlists * 3605 sizeof(xfs_ext_irec_t)); 3606 /* 3607 * Move records down in the array so the 3608 * new page can use erp_idx. 3609 */ 3610 erp = ifp->if_u1.if_ext_irec; 3611 for (i = nlists - 1; i > erp_idx; i--) { 3612 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); 3613 } 3614 ASSERT(i == erp_idx); 3615 3616 /* Initialize new extent record */ 3617 erp = ifp->if_u1.if_ext_irec; 3618 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS); 3619 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3620 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); 3621 erp[erp_idx].er_extcount = 0; 3622 erp[erp_idx].er_extoff = erp_idx > 0 ? 3623 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; 3624 return (&erp[erp_idx]); 3625 } 3626 3627 /* 3628 * Remove a record from the indirection array. 3629 */ 3630 void 3631 xfs_iext_irec_remove( 3632 xfs_ifork_t *ifp, /* inode fork pointer */ 3633 int erp_idx) /* irec index to remove */ 3634 { 3635 xfs_ext_irec_t *erp; /* indirection array pointer */ 3636 int i; /* loop counter */ 3637 int nlists; /* number of irec's (ex lists) */ 3638 3639 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3640 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3641 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3642 if (erp->er_extbuf) { 3643 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, 3644 -erp->er_extcount); 3645 kmem_free(erp->er_extbuf); 3646 } 3647 /* Compact extent records */ 3648 erp = ifp->if_u1.if_ext_irec; 3649 for (i = erp_idx; i < nlists - 1; i++) { 3650 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); 3651 } 3652 /* 3653 * Manually free the last extent record from the indirection 3654 * array. A call to xfs_iext_realloc_indirect() with a size 3655 * of zero would result in a call to xfs_iext_destroy() which 3656 * would in turn call this function again, creating a nasty 3657 * infinite loop. 3658 */ 3659 if (--nlists) { 3660 xfs_iext_realloc_indirect(ifp, 3661 nlists * sizeof(xfs_ext_irec_t)); 3662 } else { 3663 kmem_free(ifp->if_u1.if_ext_irec); 3664 } 3665 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; 3666 } 3667 3668 /* 3669 * This is called to clean up large amounts of unused memory allocated 3670 * by the indirection array. Before compacting anything though, verify 3671 * that the indirection array is still needed and switch back to the 3672 * linear extent list (or even the inline buffer) if possible. The 3673 * compaction policy is as follows: 3674 * 3675 * Full Compaction: Extents fit into a single page (or inline buffer) 3676 * Partial Compaction: Extents occupy less than 50% of allocated space 3677 * No Compaction: Extents occupy at least 50% of allocated space 3678 */ 3679 void 3680 xfs_iext_irec_compact( 3681 xfs_ifork_t *ifp) /* inode fork pointer */ 3682 { 3683 xfs_extnum_t nextents; /* number of extents in file */ 3684 int nlists; /* number of irec's (ex lists) */ 3685 3686 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3687 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3688 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); 3689 3690 if (nextents == 0) { 3691 xfs_iext_destroy(ifp); 3692 } else if (nextents <= XFS_INLINE_EXTS) { 3693 xfs_iext_indirect_to_direct(ifp); 3694 xfs_iext_direct_to_inline(ifp, nextents); 3695 } else if (nextents <= XFS_LINEAR_EXTS) { 3696 xfs_iext_indirect_to_direct(ifp); 3697 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { 3698 xfs_iext_irec_compact_pages(ifp); 3699 } 3700 } 3701 3702 /* 3703 * Combine extents from neighboring extent pages. 3704 */ 3705 void 3706 xfs_iext_irec_compact_pages( 3707 xfs_ifork_t *ifp) /* inode fork pointer */ 3708 { 3709 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ 3710 int erp_idx = 0; /* indirection array index */ 3711 int nlists; /* number of irec's (ex lists) */ 3712 3713 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3714 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3715 while (erp_idx < nlists - 1) { 3716 erp = &ifp->if_u1.if_ext_irec[erp_idx]; 3717 erp_next = erp + 1; 3718 if (erp_next->er_extcount <= 3719 (XFS_LINEAR_EXTS - erp->er_extcount)) { 3720 memcpy(&erp->er_extbuf[erp->er_extcount], 3721 erp_next->er_extbuf, erp_next->er_extcount * 3722 sizeof(xfs_bmbt_rec_t)); 3723 erp->er_extcount += erp_next->er_extcount; 3724 /* 3725 * Free page before removing extent record 3726 * so er_extoffs don't get modified in 3727 * xfs_iext_irec_remove. 3728 */ 3729 kmem_free(erp_next->er_extbuf); 3730 erp_next->er_extbuf = NULL; 3731 xfs_iext_irec_remove(ifp, erp_idx + 1); 3732 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3733 } else { 3734 erp_idx++; 3735 } 3736 } 3737 } 3738 3739 /* 3740 * This is called to update the er_extoff field in the indirection 3741 * array when extents have been added or removed from one of the 3742 * extent lists. erp_idx contains the irec index to begin updating 3743 * at and ext_diff contains the number of extents that were added 3744 * or removed. 3745 */ 3746 void 3747 xfs_iext_irec_update_extoffs( 3748 xfs_ifork_t *ifp, /* inode fork pointer */ 3749 int erp_idx, /* irec index to update */ 3750 int ext_diff) /* number of new extents */ 3751 { 3752 int i; /* loop counter */ 3753 int nlists; /* number of irec's (ex lists */ 3754 3755 ASSERT(ifp->if_flags & XFS_IFEXTIREC); 3756 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; 3757 for (i = erp_idx; i < nlists; i++) { 3758 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; 3759 } 3760 } 3761