xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 9008a676662a77ab98727d05bdffa0e3c38cba53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
24 #include "xfs_bmap.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_log.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
37 #include "xfs_ag.h"
38 #include "xfs_log_priv.h"
39 
40 struct kmem_cache *xfs_inode_cache;
41 
42 /*
43  * Used in xfs_itruncate_extents().  This is the maximum number of extents
44  * freed from a file in a single transaction.
45  */
46 #define	XFS_ITRUNC_MAX_EXTENTS	2
47 
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
50 	struct xfs_inode *);
51 
52 /*
53  * helper function to extract extent size hint from inode
54  */
55 xfs_extlen_t
56 xfs_get_extsz_hint(
57 	struct xfs_inode	*ip)
58 {
59 	/*
60 	 * No point in aligning allocations if we need to COW to actually
61 	 * write to them.
62 	 */
63 	if (xfs_is_always_cow_inode(ip))
64 		return 0;
65 	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
66 		return ip->i_extsize;
67 	if (XFS_IS_REALTIME_INODE(ip))
68 		return ip->i_mount->m_sb.sb_rextsize;
69 	return 0;
70 }
71 
72 /*
73  * Helper function to extract CoW extent size hint from inode.
74  * Between the extent size hint and the CoW extent size hint, we
75  * return the greater of the two.  If the value is zero (automatic),
76  * use the default size.
77  */
78 xfs_extlen_t
79 xfs_get_cowextsz_hint(
80 	struct xfs_inode	*ip)
81 {
82 	xfs_extlen_t		a, b;
83 
84 	a = 0;
85 	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
86 		a = ip->i_cowextsize;
87 	b = xfs_get_extsz_hint(ip);
88 
89 	a = max(a, b);
90 	if (a == 0)
91 		return XFS_DEFAULT_COWEXTSZ_HINT;
92 	return a;
93 }
94 
95 /*
96  * These two are wrapper routines around the xfs_ilock() routine used to
97  * centralize some grungy code.  They are used in places that wish to lock the
98  * inode solely for reading the extents.  The reason these places can't just
99  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
100  * bringing in of the extents from disk for a file in b-tree format.  If the
101  * inode is in b-tree format, then we need to lock the inode exclusively until
102  * the extents are read in.  Locking it exclusively all the time would limit
103  * our parallelism unnecessarily, though.  What we do instead is check to see
104  * if the extents have been read in yet, and only lock the inode exclusively
105  * if they have not.
106  *
107  * The functions return a value which should be given to the corresponding
108  * xfs_iunlock() call.
109  */
110 uint
111 xfs_ilock_data_map_shared(
112 	struct xfs_inode	*ip)
113 {
114 	uint			lock_mode = XFS_ILOCK_SHARED;
115 
116 	if (xfs_need_iread_extents(&ip->i_df))
117 		lock_mode = XFS_ILOCK_EXCL;
118 	xfs_ilock(ip, lock_mode);
119 	return lock_mode;
120 }
121 
122 uint
123 xfs_ilock_attr_map_shared(
124 	struct xfs_inode	*ip)
125 {
126 	uint			lock_mode = XFS_ILOCK_SHARED;
127 
128 	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
129 		lock_mode = XFS_ILOCK_EXCL;
130 	xfs_ilock(ip, lock_mode);
131 	return lock_mode;
132 }
133 
134 /*
135  * You can't set both SHARED and EXCL for the same lock,
136  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
137  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
138  * to set in lock_flags.
139  */
140 static inline void
141 xfs_lock_flags_assert(
142 	uint		lock_flags)
143 {
144 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
145 		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
146 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
147 		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
148 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
149 		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
150 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
151 	ASSERT(lock_flags != 0);
152 }
153 
154 /*
155  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
156  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
157  * various combinations of the locks to be obtained.
158  *
159  * The 3 locks should always be ordered so that the IO lock is obtained first,
160  * the mmap lock second and the ilock last in order to prevent deadlock.
161  *
162  * Basic locking order:
163  *
164  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
165  *
166  * mmap_lock locking order:
167  *
168  * i_rwsem -> page lock -> mmap_lock
169  * mmap_lock -> invalidate_lock -> page_lock
170  *
171  * The difference in mmap_lock locking order mean that we cannot hold the
172  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
173  * can fault in pages during copy in/out (for buffered IO) or require the
174  * mmap_lock in get_user_pages() to map the user pages into the kernel address
175  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
176  * fault because page faults already hold the mmap_lock.
177  *
178  * Hence to serialise fully against both syscall and mmap based IO, we need to
179  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
180  * both taken in places where we need to invalidate the page cache in a race
181  * free manner (e.g. truncate, hole punch and other extent manipulation
182  * functions).
183  */
184 void
185 xfs_ilock(
186 	xfs_inode_t		*ip,
187 	uint			lock_flags)
188 {
189 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
190 
191 	xfs_lock_flags_assert(lock_flags);
192 
193 	if (lock_flags & XFS_IOLOCK_EXCL) {
194 		down_write_nested(&VFS_I(ip)->i_rwsem,
195 				  XFS_IOLOCK_DEP(lock_flags));
196 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
197 		down_read_nested(&VFS_I(ip)->i_rwsem,
198 				 XFS_IOLOCK_DEP(lock_flags));
199 	}
200 
201 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
202 		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
203 				  XFS_MMAPLOCK_DEP(lock_flags));
204 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
205 		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
206 				 XFS_MMAPLOCK_DEP(lock_flags));
207 	}
208 
209 	if (lock_flags & XFS_ILOCK_EXCL)
210 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211 	else if (lock_flags & XFS_ILOCK_SHARED)
212 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
213 }
214 
215 /*
216  * This is just like xfs_ilock(), except that the caller
217  * is guaranteed not to sleep.  It returns 1 if it gets
218  * the requested locks and 0 otherwise.  If the IO lock is
219  * obtained but the inode lock cannot be, then the IO lock
220  * is dropped before returning.
221  *
222  * ip -- the inode being locked
223  * lock_flags -- this parameter indicates the inode's locks to be
224  *       to be locked.  See the comment for xfs_ilock() for a list
225  *	 of valid values.
226  */
227 int
228 xfs_ilock_nowait(
229 	xfs_inode_t		*ip,
230 	uint			lock_flags)
231 {
232 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
233 
234 	xfs_lock_flags_assert(lock_flags);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	xfs_lock_flags_assert(lock_flags);
293 
294 	if (lock_flags & XFS_IOLOCK_EXCL)
295 		up_write(&VFS_I(ip)->i_rwsem);
296 	else if (lock_flags & XFS_IOLOCK_SHARED)
297 		up_read(&VFS_I(ip)->i_rwsem);
298 
299 	if (lock_flags & XFS_MMAPLOCK_EXCL)
300 		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
301 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
302 		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
303 
304 	if (lock_flags & XFS_ILOCK_EXCL)
305 		mrunlock_excl(&ip->i_lock);
306 	else if (lock_flags & XFS_ILOCK_SHARED)
307 		mrunlock_shared(&ip->i_lock);
308 
309 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
310 }
311 
312 /*
313  * give up write locks.  the i/o lock cannot be held nested
314  * if it is being demoted.
315  */
316 void
317 xfs_ilock_demote(
318 	xfs_inode_t		*ip,
319 	uint			lock_flags)
320 {
321 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
322 	ASSERT((lock_flags &
323 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
324 
325 	if (lock_flags & XFS_ILOCK_EXCL)
326 		mrdemote(&ip->i_lock);
327 	if (lock_flags & XFS_MMAPLOCK_EXCL)
328 		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
329 	if (lock_flags & XFS_IOLOCK_EXCL)
330 		downgrade_write(&VFS_I(ip)->i_rwsem);
331 
332 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
333 }
334 
335 #if defined(DEBUG) || defined(XFS_WARN)
336 static inline bool
337 __xfs_rwsem_islocked(
338 	struct rw_semaphore	*rwsem,
339 	bool			shared)
340 {
341 	if (!debug_locks)
342 		return rwsem_is_locked(rwsem);
343 
344 	if (!shared)
345 		return lockdep_is_held_type(rwsem, 0);
346 
347 	/*
348 	 * We are checking that the lock is held at least in shared
349 	 * mode but don't care that it might be held exclusively
350 	 * (i.e. shared | excl). Hence we check if the lock is held
351 	 * in any mode rather than an explicit shared mode.
352 	 */
353 	return lockdep_is_held_type(rwsem, -1);
354 }
355 
356 bool
357 xfs_isilocked(
358 	struct xfs_inode	*ip,
359 	uint			lock_flags)
360 {
361 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
362 		if (!(lock_flags & XFS_ILOCK_SHARED))
363 			return !!ip->i_lock.mr_writer;
364 		return rwsem_is_locked(&ip->i_lock.mr_lock);
365 	}
366 
367 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
368 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
369 				(lock_flags & XFS_MMAPLOCK_SHARED));
370 	}
371 
372 	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
373 		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
374 				(lock_flags & XFS_IOLOCK_SHARED));
375 	}
376 
377 	ASSERT(0);
378 	return false;
379 }
380 #endif
381 
382 /*
383  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
384  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
385  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
386  * errors and warnings.
387  */
388 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
389 static bool
390 xfs_lockdep_subclass_ok(
391 	int subclass)
392 {
393 	return subclass < MAX_LOCKDEP_SUBCLASSES;
394 }
395 #else
396 #define xfs_lockdep_subclass_ok(subclass)	(true)
397 #endif
398 
399 /*
400  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
401  * value. This can be called for any type of inode lock combination, including
402  * parent locking. Care must be taken to ensure we don't overrun the subclass
403  * storage fields in the class mask we build.
404  */
405 static inline uint
406 xfs_lock_inumorder(
407 	uint	lock_mode,
408 	uint	subclass)
409 {
410 	uint	class = 0;
411 
412 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
413 			      XFS_ILOCK_RTSUM)));
414 	ASSERT(xfs_lockdep_subclass_ok(subclass));
415 
416 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
417 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
418 		class += subclass << XFS_IOLOCK_SHIFT;
419 	}
420 
421 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
422 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
423 		class += subclass << XFS_MMAPLOCK_SHIFT;
424 	}
425 
426 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
427 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
428 		class += subclass << XFS_ILOCK_SHIFT;
429 	}
430 
431 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
432 }
433 
434 /*
435  * The following routine will lock n inodes in exclusive mode.  We assume the
436  * caller calls us with the inodes in i_ino order.
437  *
438  * We need to detect deadlock where an inode that we lock is in the AIL and we
439  * start waiting for another inode that is locked by a thread in a long running
440  * transaction (such as truncate). This can result in deadlock since the long
441  * running trans might need to wait for the inode we just locked in order to
442  * push the tail and free space in the log.
443  *
444  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
445  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
446  * lock more than one at a time, lockdep will report false positives saying we
447  * have violated locking orders.
448  */
449 static void
450 xfs_lock_inodes(
451 	struct xfs_inode	**ips,
452 	int			inodes,
453 	uint			lock_mode)
454 {
455 	int			attempts = 0;
456 	uint			i;
457 	int			j;
458 	bool			try_lock;
459 	struct xfs_log_item	*lp;
460 
461 	/*
462 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
463 	 * support an arbitrary depth of locking here, but absolute limits on
464 	 * inodes depend on the type of locking and the limits placed by
465 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
466 	 * the asserts.
467 	 */
468 	ASSERT(ips && inodes >= 2 && inodes <= 5);
469 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
470 			    XFS_ILOCK_EXCL));
471 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
472 			      XFS_ILOCK_SHARED)));
473 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
474 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
475 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
476 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
477 
478 	if (lock_mode & XFS_IOLOCK_EXCL) {
479 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
480 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
481 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
482 
483 again:
484 	try_lock = false;
485 	i = 0;
486 	for (; i < inodes; i++) {
487 		ASSERT(ips[i]);
488 
489 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
490 			continue;
491 
492 		/*
493 		 * If try_lock is not set yet, make sure all locked inodes are
494 		 * not in the AIL.  If any are, set try_lock to be used later.
495 		 */
496 		if (!try_lock) {
497 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
498 				lp = &ips[j]->i_itemp->ili_item;
499 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
500 					try_lock = true;
501 			}
502 		}
503 
504 		/*
505 		 * If any of the previous locks we have locked is in the AIL,
506 		 * we must TRY to get the second and subsequent locks. If
507 		 * we can't get any, we must release all we have
508 		 * and try again.
509 		 */
510 		if (!try_lock) {
511 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
512 			continue;
513 		}
514 
515 		/* try_lock means we have an inode locked that is in the AIL. */
516 		ASSERT(i != 0);
517 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
518 			continue;
519 
520 		/*
521 		 * Unlock all previous guys and try again.  xfs_iunlock will try
522 		 * to push the tail if the inode is in the AIL.
523 		 */
524 		attempts++;
525 		for (j = i - 1; j >= 0; j--) {
526 			/*
527 			 * Check to see if we've already unlocked this one.  Not
528 			 * the first one going back, and the inode ptr is the
529 			 * same.
530 			 */
531 			if (j != (i - 1) && ips[j] == ips[j + 1])
532 				continue;
533 
534 			xfs_iunlock(ips[j], lock_mode);
535 		}
536 
537 		if ((attempts % 5) == 0) {
538 			delay(1); /* Don't just spin the CPU */
539 		}
540 		goto again;
541 	}
542 }
543 
544 /*
545  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
546  * mmaplock must be double-locked separately since we use i_rwsem and
547  * invalidate_lock for that. We now support taking one lock EXCL and the
548  * other SHARED.
549  */
550 void
551 xfs_lock_two_inodes(
552 	struct xfs_inode	*ip0,
553 	uint			ip0_mode,
554 	struct xfs_inode	*ip1,
555 	uint			ip1_mode)
556 {
557 	int			attempts = 0;
558 	struct xfs_log_item	*lp;
559 
560 	ASSERT(hweight32(ip0_mode) == 1);
561 	ASSERT(hweight32(ip1_mode) == 1);
562 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
563 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
565 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 	ASSERT(ip0->i_ino != ip1->i_ino);
567 
568 	if (ip0->i_ino > ip1->i_ino) {
569 		swap(ip0, ip1);
570 		swap(ip0_mode, ip1_mode);
571 	}
572 
573  again:
574 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
575 
576 	/*
577 	 * If the first lock we have locked is in the AIL, we must TRY to get
578 	 * the second lock. If we can't get it, we must release the first one
579 	 * and try again.
580 	 */
581 	lp = &ip0->i_itemp->ili_item;
582 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
583 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
584 			xfs_iunlock(ip0, ip0_mode);
585 			if ((++attempts % 5) == 0)
586 				delay(1); /* Don't just spin the CPU */
587 			goto again;
588 		}
589 	} else {
590 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
591 	}
592 }
593 
594 uint
595 xfs_ip2xflags(
596 	struct xfs_inode	*ip)
597 {
598 	uint			flags = 0;
599 
600 	if (ip->i_diflags & XFS_DIFLAG_ANY) {
601 		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
602 			flags |= FS_XFLAG_REALTIME;
603 		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
604 			flags |= FS_XFLAG_PREALLOC;
605 		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
606 			flags |= FS_XFLAG_IMMUTABLE;
607 		if (ip->i_diflags & XFS_DIFLAG_APPEND)
608 			flags |= FS_XFLAG_APPEND;
609 		if (ip->i_diflags & XFS_DIFLAG_SYNC)
610 			flags |= FS_XFLAG_SYNC;
611 		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
612 			flags |= FS_XFLAG_NOATIME;
613 		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
614 			flags |= FS_XFLAG_NODUMP;
615 		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
616 			flags |= FS_XFLAG_RTINHERIT;
617 		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
618 			flags |= FS_XFLAG_PROJINHERIT;
619 		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
620 			flags |= FS_XFLAG_NOSYMLINKS;
621 		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
622 			flags |= FS_XFLAG_EXTSIZE;
623 		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
624 			flags |= FS_XFLAG_EXTSZINHERIT;
625 		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
626 			flags |= FS_XFLAG_NODEFRAG;
627 		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
628 			flags |= FS_XFLAG_FILESTREAM;
629 	}
630 
631 	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
632 		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
633 			flags |= FS_XFLAG_DAX;
634 		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
635 			flags |= FS_XFLAG_COWEXTSIZE;
636 	}
637 
638 	if (XFS_IFORK_Q(ip))
639 		flags |= FS_XFLAG_HASATTR;
640 	return flags;
641 }
642 
643 /*
644  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
645  * is allowed, otherwise it has to be an exact match. If a CI match is found,
646  * ci_name->name will point to a the actual name (caller must free) or
647  * will be set to NULL if an exact match is found.
648  */
649 int
650 xfs_lookup(
651 	struct xfs_inode	*dp,
652 	const struct xfs_name	*name,
653 	struct xfs_inode	**ipp,
654 	struct xfs_name		*ci_name)
655 {
656 	xfs_ino_t		inum;
657 	int			error;
658 
659 	trace_xfs_lookup(dp, name);
660 
661 	if (xfs_is_shutdown(dp->i_mount))
662 		return -EIO;
663 
664 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
665 	if (error)
666 		goto out_unlock;
667 
668 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
669 	if (error)
670 		goto out_free_name;
671 
672 	return 0;
673 
674 out_free_name:
675 	if (ci_name)
676 		kmem_free(ci_name->name);
677 out_unlock:
678 	*ipp = NULL;
679 	return error;
680 }
681 
682 /* Propagate di_flags from a parent inode to a child inode. */
683 static void
684 xfs_inode_inherit_flags(
685 	struct xfs_inode	*ip,
686 	const struct xfs_inode	*pip)
687 {
688 	unsigned int		di_flags = 0;
689 	xfs_failaddr_t		failaddr;
690 	umode_t			mode = VFS_I(ip)->i_mode;
691 
692 	if (S_ISDIR(mode)) {
693 		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
694 			di_flags |= XFS_DIFLAG_RTINHERIT;
695 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
696 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
697 			ip->i_extsize = pip->i_extsize;
698 		}
699 		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
700 			di_flags |= XFS_DIFLAG_PROJINHERIT;
701 	} else if (S_ISREG(mode)) {
702 		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
703 		    xfs_has_realtime(ip->i_mount))
704 			di_flags |= XFS_DIFLAG_REALTIME;
705 		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
706 			di_flags |= XFS_DIFLAG_EXTSIZE;
707 			ip->i_extsize = pip->i_extsize;
708 		}
709 	}
710 	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
711 	    xfs_inherit_noatime)
712 		di_flags |= XFS_DIFLAG_NOATIME;
713 	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
714 	    xfs_inherit_nodump)
715 		di_flags |= XFS_DIFLAG_NODUMP;
716 	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
717 	    xfs_inherit_sync)
718 		di_flags |= XFS_DIFLAG_SYNC;
719 	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
720 	    xfs_inherit_nosymlinks)
721 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
722 	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
723 	    xfs_inherit_nodefrag)
724 		di_flags |= XFS_DIFLAG_NODEFRAG;
725 	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
726 		di_flags |= XFS_DIFLAG_FILESTREAM;
727 
728 	ip->i_diflags |= di_flags;
729 
730 	/*
731 	 * Inode verifiers on older kernels only check that the extent size
732 	 * hint is an integer multiple of the rt extent size on realtime files.
733 	 * They did not check the hint alignment on a directory with both
734 	 * rtinherit and extszinherit flags set.  If the misaligned hint is
735 	 * propagated from a directory into a new realtime file, new file
736 	 * allocations will fail due to math errors in the rt allocator and/or
737 	 * trip the verifiers.  Validate the hint settings in the new file so
738 	 * that we don't let broken hints propagate.
739 	 */
740 	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
741 			VFS_I(ip)->i_mode, ip->i_diflags);
742 	if (failaddr) {
743 		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
744 				   XFS_DIFLAG_EXTSZINHERIT);
745 		ip->i_extsize = 0;
746 	}
747 }
748 
749 /* Propagate di_flags2 from a parent inode to a child inode. */
750 static void
751 xfs_inode_inherit_flags2(
752 	struct xfs_inode	*ip,
753 	const struct xfs_inode	*pip)
754 {
755 	xfs_failaddr_t		failaddr;
756 
757 	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
758 		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
759 		ip->i_cowextsize = pip->i_cowextsize;
760 	}
761 	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
762 		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
763 
764 	/* Don't let invalid cowextsize hints propagate. */
765 	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
766 			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
767 	if (failaddr) {
768 		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
769 		ip->i_cowextsize = 0;
770 	}
771 }
772 
773 /*
774  * Initialise a newly allocated inode and return the in-core inode to the
775  * caller locked exclusively.
776  */
777 int
778 xfs_init_new_inode(
779 	struct user_namespace	*mnt_userns,
780 	struct xfs_trans	*tp,
781 	struct xfs_inode	*pip,
782 	xfs_ino_t		ino,
783 	umode_t			mode,
784 	xfs_nlink_t		nlink,
785 	dev_t			rdev,
786 	prid_t			prid,
787 	bool			init_xattrs,
788 	struct xfs_inode	**ipp)
789 {
790 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
791 	struct xfs_mount	*mp = tp->t_mountp;
792 	struct xfs_inode	*ip;
793 	unsigned int		flags;
794 	int			error;
795 	struct timespec64	tv;
796 	struct inode		*inode;
797 
798 	/*
799 	 * Protect against obviously corrupt allocation btree records. Later
800 	 * xfs_iget checks will catch re-allocation of other active in-memory
801 	 * and on-disk inodes. If we don't catch reallocating the parent inode
802 	 * here we will deadlock in xfs_iget() so we have to do these checks
803 	 * first.
804 	 */
805 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
806 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
807 		return -EFSCORRUPTED;
808 	}
809 
810 	/*
811 	 * Get the in-core inode with the lock held exclusively to prevent
812 	 * others from looking at until we're done.
813 	 */
814 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
815 	if (error)
816 		return error;
817 
818 	ASSERT(ip != NULL);
819 	inode = VFS_I(ip);
820 	set_nlink(inode, nlink);
821 	inode->i_rdev = rdev;
822 	ip->i_projid = prid;
823 
824 	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
825 		inode_fsuid_set(inode, mnt_userns);
826 		inode->i_gid = dir->i_gid;
827 		inode->i_mode = mode;
828 	} else {
829 		inode_init_owner(mnt_userns, inode, dir, mode);
830 	}
831 
832 	/*
833 	 * If the group ID of the new file does not match the effective group
834 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
835 	 * (and only if the irix_sgid_inherit compatibility variable is set).
836 	 */
837 	if (irix_sgid_inherit &&
838 	    (inode->i_mode & S_ISGID) &&
839 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
840 		inode->i_mode &= ~S_ISGID;
841 
842 	ip->i_disk_size = 0;
843 	ip->i_df.if_nextents = 0;
844 	ASSERT(ip->i_nblocks == 0);
845 
846 	tv = current_time(inode);
847 	inode->i_mtime = tv;
848 	inode->i_atime = tv;
849 	inode->i_ctime = tv;
850 
851 	ip->i_extsize = 0;
852 	ip->i_diflags = 0;
853 
854 	if (xfs_has_v3inodes(mp)) {
855 		inode_set_iversion(inode, 1);
856 		ip->i_cowextsize = 0;
857 		ip->i_crtime = tv;
858 	}
859 
860 	flags = XFS_ILOG_CORE;
861 	switch (mode & S_IFMT) {
862 	case S_IFIFO:
863 	case S_IFCHR:
864 	case S_IFBLK:
865 	case S_IFSOCK:
866 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
867 		flags |= XFS_ILOG_DEV;
868 		break;
869 	case S_IFREG:
870 	case S_IFDIR:
871 		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
872 			xfs_inode_inherit_flags(ip, pip);
873 		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
874 			xfs_inode_inherit_flags2(ip, pip);
875 		fallthrough;
876 	case S_IFLNK:
877 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
878 		ip->i_df.if_bytes = 0;
879 		ip->i_df.if_u1.if_root = NULL;
880 		break;
881 	default:
882 		ASSERT(0);
883 	}
884 
885 	/*
886 	 * If we need to create attributes immediately after allocating the
887 	 * inode, initialise an empty attribute fork right now. We use the
888 	 * default fork offset for attributes here as we don't know exactly what
889 	 * size or how many attributes we might be adding. We can do this
890 	 * safely here because we know the data fork is completely empty and
891 	 * this saves us from needing to run a separate transaction to set the
892 	 * fork offset in the immediate future.
893 	 */
894 	if (init_xattrs && xfs_has_attr(mp)) {
895 		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
896 		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
897 	}
898 
899 	/*
900 	 * Log the new values stuffed into the inode.
901 	 */
902 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
903 	xfs_trans_log_inode(tp, ip, flags);
904 
905 	/* now that we have an i_mode we can setup the inode structure */
906 	xfs_setup_inode(ip);
907 
908 	*ipp = ip;
909 	return 0;
910 }
911 
912 /*
913  * Decrement the link count on an inode & log the change.  If this causes the
914  * link count to go to zero, move the inode to AGI unlinked list so that it can
915  * be freed when the last active reference goes away via xfs_inactive().
916  */
917 static int			/* error */
918 xfs_droplink(
919 	xfs_trans_t *tp,
920 	xfs_inode_t *ip)
921 {
922 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
923 
924 	drop_nlink(VFS_I(ip));
925 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926 
927 	if (VFS_I(ip)->i_nlink)
928 		return 0;
929 
930 	return xfs_iunlink(tp, ip);
931 }
932 
933 /*
934  * Increment the link count on an inode & log the change.
935  */
936 static void
937 xfs_bumplink(
938 	xfs_trans_t *tp,
939 	xfs_inode_t *ip)
940 {
941 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
942 
943 	inc_nlink(VFS_I(ip));
944 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
945 }
946 
947 int
948 xfs_create(
949 	struct user_namespace	*mnt_userns,
950 	xfs_inode_t		*dp,
951 	struct xfs_name		*name,
952 	umode_t			mode,
953 	dev_t			rdev,
954 	bool			init_xattrs,
955 	xfs_inode_t		**ipp)
956 {
957 	int			is_dir = S_ISDIR(mode);
958 	struct xfs_mount	*mp = dp->i_mount;
959 	struct xfs_inode	*ip = NULL;
960 	struct xfs_trans	*tp = NULL;
961 	int			error;
962 	bool                    unlock_dp_on_error = false;
963 	prid_t			prid;
964 	struct xfs_dquot	*udqp = NULL;
965 	struct xfs_dquot	*gdqp = NULL;
966 	struct xfs_dquot	*pdqp = NULL;
967 	struct xfs_trans_res	*tres;
968 	uint			resblks;
969 	xfs_ino_t		ino;
970 
971 	trace_xfs_create(dp, name);
972 
973 	if (xfs_is_shutdown(mp))
974 		return -EIO;
975 
976 	prid = xfs_get_initial_prid(dp);
977 
978 	/*
979 	 * Make sure that we have allocated dquot(s) on disk.
980 	 */
981 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
982 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
983 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
984 			&udqp, &gdqp, &pdqp);
985 	if (error)
986 		return error;
987 
988 	if (is_dir) {
989 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
990 		tres = &M_RES(mp)->tr_mkdir;
991 	} else {
992 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
993 		tres = &M_RES(mp)->tr_create;
994 	}
995 
996 	/*
997 	 * Initially assume that the file does not exist and
998 	 * reserve the resources for that case.  If that is not
999 	 * the case we'll drop the one we have and get a more
1000 	 * appropriate transaction later.
1001 	 */
1002 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003 			&tp);
1004 	if (error == -ENOSPC) {
1005 		/* flush outstanding delalloc blocks and retry */
1006 		xfs_flush_inodes(mp);
1007 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008 				resblks, &tp);
1009 	}
1010 	if (error)
1011 		goto out_release_dquots;
1012 
1013 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014 	unlock_dp_on_error = true;
1015 
1016 	/*
1017 	 * A newly created regular or special file just has one directory
1018 	 * entry pointing to them, but a directory also the "." entry
1019 	 * pointing to itself.
1020 	 */
1021 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022 	if (!error)
1023 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1024 				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1025 	if (error)
1026 		goto out_trans_cancel;
1027 
1028 	/*
1029 	 * Now we join the directory inode to the transaction.  We do not do it
1030 	 * earlier because xfs_dialloc might commit the previous transaction
1031 	 * (and release all the locks).  An error from here on will result in
1032 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1033 	 * error path.
1034 	 */
1035 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036 	unlock_dp_on_error = false;
1037 
1038 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039 					resblks - XFS_IALLOC_SPACE_RES(mp));
1040 	if (error) {
1041 		ASSERT(error != -ENOSPC);
1042 		goto out_trans_cancel;
1043 	}
1044 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046 
1047 	if (is_dir) {
1048 		error = xfs_dir_init(tp, ip, dp);
1049 		if (error)
1050 			goto out_trans_cancel;
1051 
1052 		xfs_bumplink(tp, dp);
1053 	}
1054 
1055 	/*
1056 	 * If this is a synchronous mount, make sure that the
1057 	 * create transaction goes to disk before returning to
1058 	 * the user.
1059 	 */
1060 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061 		xfs_trans_set_sync(tp);
1062 
1063 	/*
1064 	 * Attach the dquot(s) to the inodes and modify them incore.
1065 	 * These ids of the inode couldn't have changed since the new
1066 	 * inode has been locked ever since it was created.
1067 	 */
1068 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069 
1070 	error = xfs_trans_commit(tp);
1071 	if (error)
1072 		goto out_release_inode;
1073 
1074 	xfs_qm_dqrele(udqp);
1075 	xfs_qm_dqrele(gdqp);
1076 	xfs_qm_dqrele(pdqp);
1077 
1078 	*ipp = ip;
1079 	return 0;
1080 
1081  out_trans_cancel:
1082 	xfs_trans_cancel(tp);
1083  out_release_inode:
1084 	/*
1085 	 * Wait until after the current transaction is aborted to finish the
1086 	 * setup of the inode and release the inode.  This prevents recursive
1087 	 * transactions and deadlocks from xfs_inactive.
1088 	 */
1089 	if (ip) {
1090 		xfs_finish_inode_setup(ip);
1091 		xfs_irele(ip);
1092 	}
1093  out_release_dquots:
1094 	xfs_qm_dqrele(udqp);
1095 	xfs_qm_dqrele(gdqp);
1096 	xfs_qm_dqrele(pdqp);
1097 
1098 	if (unlock_dp_on_error)
1099 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1100 	return error;
1101 }
1102 
1103 int
1104 xfs_create_tmpfile(
1105 	struct user_namespace	*mnt_userns,
1106 	struct xfs_inode	*dp,
1107 	umode_t			mode,
1108 	struct xfs_inode	**ipp)
1109 {
1110 	struct xfs_mount	*mp = dp->i_mount;
1111 	struct xfs_inode	*ip = NULL;
1112 	struct xfs_trans	*tp = NULL;
1113 	int			error;
1114 	prid_t                  prid;
1115 	struct xfs_dquot	*udqp = NULL;
1116 	struct xfs_dquot	*gdqp = NULL;
1117 	struct xfs_dquot	*pdqp = NULL;
1118 	struct xfs_trans_res	*tres;
1119 	uint			resblks;
1120 	xfs_ino_t		ino;
1121 
1122 	if (xfs_is_shutdown(mp))
1123 		return -EIO;
1124 
1125 	prid = xfs_get_initial_prid(dp);
1126 
1127 	/*
1128 	 * Make sure that we have allocated dquot(s) on disk.
1129 	 */
1130 	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1131 			mapped_fsgid(mnt_userns, &init_user_ns), prid,
1132 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133 			&udqp, &gdqp, &pdqp);
1134 	if (error)
1135 		return error;
1136 
1137 	resblks = XFS_IALLOC_SPACE_RES(mp);
1138 	tres = &M_RES(mp)->tr_create_tmpfile;
1139 
1140 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141 			&tp);
1142 	if (error)
1143 		goto out_release_dquots;
1144 
1145 	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146 	if (!error)
1147 		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1148 				0, 0, prid, false, &ip);
1149 	if (error)
1150 		goto out_trans_cancel;
1151 
1152 	if (xfs_has_wsync(mp))
1153 		xfs_trans_set_sync(tp);
1154 
1155 	/*
1156 	 * Attach the dquot(s) to the inodes and modify them incore.
1157 	 * These ids of the inode couldn't have changed since the new
1158 	 * inode has been locked ever since it was created.
1159 	 */
1160 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161 
1162 	error = xfs_iunlink(tp, ip);
1163 	if (error)
1164 		goto out_trans_cancel;
1165 
1166 	error = xfs_trans_commit(tp);
1167 	if (error)
1168 		goto out_release_inode;
1169 
1170 	xfs_qm_dqrele(udqp);
1171 	xfs_qm_dqrele(gdqp);
1172 	xfs_qm_dqrele(pdqp);
1173 
1174 	*ipp = ip;
1175 	return 0;
1176 
1177  out_trans_cancel:
1178 	xfs_trans_cancel(tp);
1179  out_release_inode:
1180 	/*
1181 	 * Wait until after the current transaction is aborted to finish the
1182 	 * setup of the inode and release the inode.  This prevents recursive
1183 	 * transactions and deadlocks from xfs_inactive.
1184 	 */
1185 	if (ip) {
1186 		xfs_finish_inode_setup(ip);
1187 		xfs_irele(ip);
1188 	}
1189  out_release_dquots:
1190 	xfs_qm_dqrele(udqp);
1191 	xfs_qm_dqrele(gdqp);
1192 	xfs_qm_dqrele(pdqp);
1193 
1194 	return error;
1195 }
1196 
1197 int
1198 xfs_link(
1199 	xfs_inode_t		*tdp,
1200 	xfs_inode_t		*sip,
1201 	struct xfs_name		*target_name)
1202 {
1203 	xfs_mount_t		*mp = tdp->i_mount;
1204 	xfs_trans_t		*tp;
1205 	int			error, nospace_error = 0;
1206 	int			resblks;
1207 
1208 	trace_xfs_link(tdp, target_name);
1209 
1210 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1211 
1212 	if (xfs_is_shutdown(mp))
1213 		return -EIO;
1214 
1215 	error = xfs_qm_dqattach(sip);
1216 	if (error)
1217 		goto std_return;
1218 
1219 	error = xfs_qm_dqattach(tdp);
1220 	if (error)
1221 		goto std_return;
1222 
1223 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224 	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225 			&tp, &nospace_error);
1226 	if (error)
1227 		goto std_return;
1228 
1229 	/*
1230 	 * If we are using project inheritance, we only allow hard link
1231 	 * creation in our tree when the project IDs are the same; else
1232 	 * the tree quota mechanism could be circumvented.
1233 	 */
1234 	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235 		     tdp->i_projid != sip->i_projid)) {
1236 		error = -EXDEV;
1237 		goto error_return;
1238 	}
1239 
1240 	if (!resblks) {
1241 		error = xfs_dir_canenter(tp, tdp, target_name);
1242 		if (error)
1243 			goto error_return;
1244 	}
1245 
1246 	/*
1247 	 * Handle initial link state of O_TMPFILE inode
1248 	 */
1249 	if (VFS_I(sip)->i_nlink == 0) {
1250 		struct xfs_perag	*pag;
1251 
1252 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253 		error = xfs_iunlink_remove(tp, pag, sip);
1254 		xfs_perag_put(pag);
1255 		if (error)
1256 			goto error_return;
1257 	}
1258 
1259 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1260 				   resblks);
1261 	if (error)
1262 		goto error_return;
1263 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265 
1266 	xfs_bumplink(tp, sip);
1267 
1268 	/*
1269 	 * If this is a synchronous mount, make sure that the
1270 	 * link transaction goes to disk before returning to
1271 	 * the user.
1272 	 */
1273 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274 		xfs_trans_set_sync(tp);
1275 
1276 	return xfs_trans_commit(tp);
1277 
1278  error_return:
1279 	xfs_trans_cancel(tp);
1280  std_return:
1281 	if (error == -ENOSPC && nospace_error)
1282 		error = nospace_error;
1283 	return error;
1284 }
1285 
1286 /* Clear the reflink flag and the cowblocks tag if possible. */
1287 static void
1288 xfs_itruncate_clear_reflink_flags(
1289 	struct xfs_inode	*ip)
1290 {
1291 	struct xfs_ifork	*dfork;
1292 	struct xfs_ifork	*cfork;
1293 
1294 	if (!xfs_is_reflink_inode(ip))
1295 		return;
1296 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1297 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1298 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299 		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300 	if (cfork->if_bytes == 0)
1301 		xfs_inode_clear_cowblocks_tag(ip);
1302 }
1303 
1304 /*
1305  * Free up the underlying blocks past new_size.  The new size must be smaller
1306  * than the current size.  This routine can be used both for the attribute and
1307  * data fork, and does not modify the inode size, which is left to the caller.
1308  *
1309  * The transaction passed to this routine must have made a permanent log
1310  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1311  * given transaction and start new ones, so make sure everything involved in
1312  * the transaction is tidy before calling here.  Some transaction will be
1313  * returned to the caller to be committed.  The incoming transaction must
1314  * already include the inode, and both inode locks must be held exclusively.
1315  * The inode must also be "held" within the transaction.  On return the inode
1316  * will be "held" within the returned transaction.  This routine does NOT
1317  * require any disk space to be reserved for it within the transaction.
1318  *
1319  * If we get an error, we must return with the inode locked and linked into the
1320  * current transaction. This keeps things simple for the higher level code,
1321  * because it always knows that the inode is locked and held in the transaction
1322  * that returns to it whether errors occur or not.  We don't mark the inode
1323  * dirty on error so that transactions can be easily aborted if possible.
1324  */
1325 int
1326 xfs_itruncate_extents_flags(
1327 	struct xfs_trans	**tpp,
1328 	struct xfs_inode	*ip,
1329 	int			whichfork,
1330 	xfs_fsize_t		new_size,
1331 	int			flags)
1332 {
1333 	struct xfs_mount	*mp = ip->i_mount;
1334 	struct xfs_trans	*tp = *tpp;
1335 	xfs_fileoff_t		first_unmap_block;
1336 	xfs_filblks_t		unmap_len;
1337 	int			error = 0;
1338 
1339 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342 	ASSERT(new_size <= XFS_ISIZE(ip));
1343 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344 	ASSERT(ip->i_itemp != NULL);
1345 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1347 
1348 	trace_xfs_itruncate_extents_start(ip, new_size);
1349 
1350 	flags |= xfs_bmapi_aflag(whichfork);
1351 
1352 	/*
1353 	 * Since it is possible for space to become allocated beyond
1354 	 * the end of the file (in a crash where the space is allocated
1355 	 * but the inode size is not yet updated), simply remove any
1356 	 * blocks which show up between the new EOF and the maximum
1357 	 * possible file size.
1358 	 *
1359 	 * We have to free all the blocks to the bmbt maximum offset, even if
1360 	 * the page cache can't scale that far.
1361 	 */
1362 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1365 		return 0;
1366 	}
1367 
1368 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369 	while (unmap_len > 0) {
1370 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1371 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372 				flags, XFS_ITRUNC_MAX_EXTENTS);
1373 		if (error)
1374 			goto out;
1375 
1376 		/* free the just unmapped extents */
1377 		error = xfs_defer_finish(&tp);
1378 		if (error)
1379 			goto out;
1380 	}
1381 
1382 	if (whichfork == XFS_DATA_FORK) {
1383 		/* Remove all pending CoW reservations. */
1384 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385 				first_unmap_block, XFS_MAX_FILEOFF, true);
1386 		if (error)
1387 			goto out;
1388 
1389 		xfs_itruncate_clear_reflink_flags(ip);
1390 	}
1391 
1392 	/*
1393 	 * Always re-log the inode so that our permanent transaction can keep
1394 	 * on rolling it forward in the log.
1395 	 */
1396 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397 
1398 	trace_xfs_itruncate_extents_end(ip, new_size);
1399 
1400 out:
1401 	*tpp = tp;
1402 	return error;
1403 }
1404 
1405 int
1406 xfs_release(
1407 	xfs_inode_t	*ip)
1408 {
1409 	xfs_mount_t	*mp = ip->i_mount;
1410 	int		error = 0;
1411 
1412 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1413 		return 0;
1414 
1415 	/* If this is a read-only mount, don't do this (would generate I/O) */
1416 	if (xfs_is_readonly(mp))
1417 		return 0;
1418 
1419 	if (!xfs_is_shutdown(mp)) {
1420 		int truncated;
1421 
1422 		/*
1423 		 * If we previously truncated this file and removed old data
1424 		 * in the process, we want to initiate "early" writeout on
1425 		 * the last close.  This is an attempt to combat the notorious
1426 		 * NULL files problem which is particularly noticeable from a
1427 		 * truncate down, buffered (re-)write (delalloc), followed by
1428 		 * a crash.  What we are effectively doing here is
1429 		 * significantly reducing the time window where we'd otherwise
1430 		 * be exposed to that problem.
1431 		 */
1432 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433 		if (truncated) {
1434 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435 			if (ip->i_delayed_blks > 0) {
1436 				error = filemap_flush(VFS_I(ip)->i_mapping);
1437 				if (error)
1438 					return error;
1439 			}
1440 		}
1441 	}
1442 
1443 	if (VFS_I(ip)->i_nlink == 0)
1444 		return 0;
1445 
1446 	/*
1447 	 * If we can't get the iolock just skip truncating the blocks past EOF
1448 	 * because we could deadlock with the mmap_lock otherwise. We'll get
1449 	 * another chance to drop them once the last reference to the inode is
1450 	 * dropped, so we'll never leak blocks permanently.
1451 	 */
1452 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453 		return 0;
1454 
1455 	if (xfs_can_free_eofblocks(ip, false)) {
1456 		/*
1457 		 * Check if the inode is being opened, written and closed
1458 		 * frequently and we have delayed allocation blocks outstanding
1459 		 * (e.g. streaming writes from the NFS server), truncating the
1460 		 * blocks past EOF will cause fragmentation to occur.
1461 		 *
1462 		 * In this case don't do the truncation, but we have to be
1463 		 * careful how we detect this case. Blocks beyond EOF show up as
1464 		 * i_delayed_blks even when the inode is clean, so we need to
1465 		 * truncate them away first before checking for a dirty release.
1466 		 * Hence on the first dirty close we will still remove the
1467 		 * speculative allocation, but after that we will leave it in
1468 		 * place.
1469 		 */
1470 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1471 			goto out_unlock;
1472 
1473 		error = xfs_free_eofblocks(ip);
1474 		if (error)
1475 			goto out_unlock;
1476 
1477 		/* delalloc blocks after truncation means it really is dirty */
1478 		if (ip->i_delayed_blks)
1479 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480 	}
1481 
1482 out_unlock:
1483 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484 	return error;
1485 }
1486 
1487 /*
1488  * xfs_inactive_truncate
1489  *
1490  * Called to perform a truncate when an inode becomes unlinked.
1491  */
1492 STATIC int
1493 xfs_inactive_truncate(
1494 	struct xfs_inode *ip)
1495 {
1496 	struct xfs_mount	*mp = ip->i_mount;
1497 	struct xfs_trans	*tp;
1498 	int			error;
1499 
1500 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1501 	if (error) {
1502 		ASSERT(xfs_is_shutdown(mp));
1503 		return error;
1504 	}
1505 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 	xfs_trans_ijoin(tp, ip, 0);
1507 
1508 	/*
1509 	 * Log the inode size first to prevent stale data exposure in the event
1510 	 * of a system crash before the truncate completes. See the related
1511 	 * comment in xfs_vn_setattr_size() for details.
1512 	 */
1513 	ip->i_disk_size = 0;
1514 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515 
1516 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517 	if (error)
1518 		goto error_trans_cancel;
1519 
1520 	ASSERT(ip->i_df.if_nextents == 0);
1521 
1522 	error = xfs_trans_commit(tp);
1523 	if (error)
1524 		goto error_unlock;
1525 
1526 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527 	return 0;
1528 
1529 error_trans_cancel:
1530 	xfs_trans_cancel(tp);
1531 error_unlock:
1532 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533 	return error;
1534 }
1535 
1536 /*
1537  * xfs_inactive_ifree()
1538  *
1539  * Perform the inode free when an inode is unlinked.
1540  */
1541 STATIC int
1542 xfs_inactive_ifree(
1543 	struct xfs_inode *ip)
1544 {
1545 	struct xfs_mount	*mp = ip->i_mount;
1546 	struct xfs_trans	*tp;
1547 	int			error;
1548 
1549 	/*
1550 	 * We try to use a per-AG reservation for any block needed by the finobt
1551 	 * tree, but as the finobt feature predates the per-AG reservation
1552 	 * support a degraded file system might not have enough space for the
1553 	 * reservation at mount time.  In that case try to dip into the reserved
1554 	 * pool and pray.
1555 	 *
1556 	 * Send a warning if the reservation does happen to fail, as the inode
1557 	 * now remains allocated and sits on the unlinked list until the fs is
1558 	 * repaired.
1559 	 */
1560 	if (unlikely(mp->m_finobt_nores)) {
1561 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563 				&tp);
1564 	} else {
1565 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566 	}
1567 	if (error) {
1568 		if (error == -ENOSPC) {
1569 			xfs_warn_ratelimited(mp,
1570 			"Failed to remove inode(s) from unlinked list. "
1571 			"Please free space, unmount and run xfs_repair.");
1572 		} else {
1573 			ASSERT(xfs_is_shutdown(mp));
1574 		}
1575 		return error;
1576 	}
1577 
1578 	/*
1579 	 * We do not hold the inode locked across the entire rolling transaction
1580 	 * here. We only need to hold it for the first transaction that
1581 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583 	 * here breaks the relationship between cluster buffer invalidation and
1584 	 * stale inode invalidation on cluster buffer item journal commit
1585 	 * completion, and can result in leaving dirty stale inodes hanging
1586 	 * around in memory.
1587 	 *
1588 	 * We have no need for serialising this inode operation against other
1589 	 * operations - we freed the inode and hence reallocation is required
1590 	 * and that will serialise on reallocating the space the deferops need
1591 	 * to free. Hence we can unlock the inode on the first commit of
1592 	 * the transaction rather than roll it right through the deferops. This
1593 	 * avoids relogging the XFS_ISTALE inode.
1594 	 *
1595 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596 	 * by asserting that the inode is still locked when it returns.
1597 	 */
1598 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1599 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1600 
1601 	error = xfs_ifree(tp, ip);
1602 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1603 	if (error) {
1604 		/*
1605 		 * If we fail to free the inode, shut down.  The cancel
1606 		 * might do that, we need to make sure.  Otherwise the
1607 		 * inode might be lost for a long time or forever.
1608 		 */
1609 		if (!xfs_is_shutdown(mp)) {
1610 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611 				__func__, error);
1612 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613 		}
1614 		xfs_trans_cancel(tp);
1615 		return error;
1616 	}
1617 
1618 	/*
1619 	 * Credit the quota account(s). The inode is gone.
1620 	 */
1621 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622 
1623 	/*
1624 	 * Just ignore errors at this point.  There is nothing we can do except
1625 	 * to try to keep going. Make sure it's not a silent error.
1626 	 */
1627 	error = xfs_trans_commit(tp);
1628 	if (error)
1629 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630 			__func__, error);
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Returns true if we need to update the on-disk metadata before we can free
1637  * the memory used by this inode.  Updates include freeing post-eof
1638  * preallocations; freeing COW staging extents; and marking the inode free in
1639  * the inobt if it is on the unlinked list.
1640  */
1641 bool
1642 xfs_inode_needs_inactive(
1643 	struct xfs_inode	*ip)
1644 {
1645 	struct xfs_mount	*mp = ip->i_mount;
1646 	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1647 
1648 	/*
1649 	 * If the inode is already free, then there can be nothing
1650 	 * to clean up here.
1651 	 */
1652 	if (VFS_I(ip)->i_mode == 0)
1653 		return false;
1654 
1655 	/* If this is a read-only mount, don't do this (would generate I/O) */
1656 	if (xfs_is_readonly(mp))
1657 		return false;
1658 
1659 	/* If the log isn't running, push inodes straight to reclaim. */
1660 	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661 		return false;
1662 
1663 	/* Metadata inodes require explicit resource cleanup. */
1664 	if (xfs_is_metadata_inode(ip))
1665 		return false;
1666 
1667 	/* Want to clean out the cow blocks if there are any. */
1668 	if (cow_ifp && cow_ifp->if_bytes > 0)
1669 		return true;
1670 
1671 	/* Unlinked files must be freed. */
1672 	if (VFS_I(ip)->i_nlink == 0)
1673 		return true;
1674 
1675 	/*
1676 	 * This file isn't being freed, so check if there are post-eof blocks
1677 	 * to free.  @force is true because we are evicting an inode from the
1678 	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1679 	 * free space accounting.
1680 	 *
1681 	 * Note: don't bother with iolock here since lockdep complains about
1682 	 * acquiring it in reclaim context. We have the only reference to the
1683 	 * inode at this point anyways.
1684 	 */
1685 	return xfs_can_free_eofblocks(ip, true);
1686 }
1687 
1688 /*
1689  * xfs_inactive
1690  *
1691  * This is called when the vnode reference count for the vnode
1692  * goes to zero.  If the file has been unlinked, then it must
1693  * now be truncated.  Also, we clear all of the read-ahead state
1694  * kept for the inode here since the file is now closed.
1695  */
1696 void
1697 xfs_inactive(
1698 	xfs_inode_t	*ip)
1699 {
1700 	struct xfs_mount	*mp;
1701 	int			error;
1702 	int			truncate = 0;
1703 
1704 	/*
1705 	 * If the inode is already free, then there can be nothing
1706 	 * to clean up here.
1707 	 */
1708 	if (VFS_I(ip)->i_mode == 0) {
1709 		ASSERT(ip->i_df.if_broot_bytes == 0);
1710 		goto out;
1711 	}
1712 
1713 	mp = ip->i_mount;
1714 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715 
1716 	/* If this is a read-only mount, don't do this (would generate I/O) */
1717 	if (xfs_is_readonly(mp))
1718 		goto out;
1719 
1720 	/* Metadata inodes require explicit resource cleanup. */
1721 	if (xfs_is_metadata_inode(ip))
1722 		goto out;
1723 
1724 	/* Try to clean out the cow blocks if there are any. */
1725 	if (xfs_inode_has_cow_data(ip))
1726 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727 
1728 	if (VFS_I(ip)->i_nlink != 0) {
1729 		/*
1730 		 * force is true because we are evicting an inode from the
1731 		 * cache. Post-eof blocks must be freed, lest we end up with
1732 		 * broken free space accounting.
1733 		 *
1734 		 * Note: don't bother with iolock here since lockdep complains
1735 		 * about acquiring it in reclaim context. We have the only
1736 		 * reference to the inode at this point anyways.
1737 		 */
1738 		if (xfs_can_free_eofblocks(ip, true))
1739 			xfs_free_eofblocks(ip);
1740 
1741 		goto out;
1742 	}
1743 
1744 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1745 	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1747 		truncate = 1;
1748 
1749 	error = xfs_qm_dqattach(ip);
1750 	if (error)
1751 		goto out;
1752 
1753 	if (S_ISLNK(VFS_I(ip)->i_mode))
1754 		error = xfs_inactive_symlink(ip);
1755 	else if (truncate)
1756 		error = xfs_inactive_truncate(ip);
1757 	if (error)
1758 		goto out;
1759 
1760 	/*
1761 	 * If there are attributes associated with the file then blow them away
1762 	 * now.  The code calls a routine that recursively deconstructs the
1763 	 * attribute fork. If also blows away the in-core attribute fork.
1764 	 */
1765 	if (XFS_IFORK_Q(ip)) {
1766 		error = xfs_attr_inactive(ip);
1767 		if (error)
1768 			goto out;
1769 	}
1770 
1771 	ASSERT(!ip->i_afp);
1772 	ASSERT(ip->i_forkoff == 0);
1773 
1774 	/*
1775 	 * Free the inode.
1776 	 */
1777 	xfs_inactive_ifree(ip);
1778 
1779 out:
1780 	/*
1781 	 * We're done making metadata updates for this inode, so we can release
1782 	 * the attached dquots.
1783 	 */
1784 	xfs_qm_dqdetach(ip);
1785 }
1786 
1787 /*
1788  * In-Core Unlinked List Lookups
1789  * =============================
1790  *
1791  * Every inode is supposed to be reachable from some other piece of metadata
1792  * with the exception of the root directory.  Inodes with a connection to a
1793  * file descriptor but not linked from anywhere in the on-disk directory tree
1794  * are collectively known as unlinked inodes, though the filesystem itself
1795  * maintains links to these inodes so that on-disk metadata are consistent.
1796  *
1797  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1798  * header contains a number of buckets that point to an inode, and each inode
1799  * record has a pointer to the next inode in the hash chain.  This
1800  * singly-linked list causes scaling problems in the iunlink remove function
1801  * because we must walk that list to find the inode that points to the inode
1802  * being removed from the unlinked hash bucket list.
1803  *
1804  * What if we modelled the unlinked list as a collection of records capturing
1805  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1806  * have a fast way to look up unlinked list predecessors, which avoids the
1807  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1808  * rhashtable.
1809  *
1810  * Because this is a backref cache, we ignore operational failures since the
1811  * iunlink code can fall back to the slow bucket walk.  The only errors that
1812  * should bubble out are for obviously incorrect situations.
1813  *
1814  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1815  * access or have otherwise provided for concurrency control.
1816  */
1817 
1818 /* Capture a "X.next_unlinked = Y" relationship. */
1819 struct xfs_iunlink {
1820 	struct rhash_head	iu_rhash_head;
1821 	xfs_agino_t		iu_agino;		/* X */
1822 	xfs_agino_t		iu_next_unlinked;	/* Y */
1823 };
1824 
1825 /* Unlinked list predecessor lookup hashtable construction */
1826 static int
1827 xfs_iunlink_obj_cmpfn(
1828 	struct rhashtable_compare_arg	*arg,
1829 	const void			*obj)
1830 {
1831 	const xfs_agino_t		*key = arg->key;
1832 	const struct xfs_iunlink	*iu = obj;
1833 
1834 	if (iu->iu_next_unlinked != *key)
1835 		return 1;
1836 	return 0;
1837 }
1838 
1839 static const struct rhashtable_params xfs_iunlink_hash_params = {
1840 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1841 	.key_len		= sizeof(xfs_agino_t),
1842 	.key_offset		= offsetof(struct xfs_iunlink,
1843 					   iu_next_unlinked),
1844 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1845 	.automatic_shrinking	= true,
1846 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1847 };
1848 
1849 /*
1850  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1851  * relation is found.
1852  */
1853 static xfs_agino_t
1854 xfs_iunlink_lookup_backref(
1855 	struct xfs_perag	*pag,
1856 	xfs_agino_t		agino)
1857 {
1858 	struct xfs_iunlink	*iu;
1859 
1860 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1861 			xfs_iunlink_hash_params);
1862 	return iu ? iu->iu_agino : NULLAGINO;
1863 }
1864 
1865 /*
1866  * Take ownership of an iunlink cache entry and insert it into the hash table.
1867  * If successful, the entry will be owned by the cache; if not, it is freed.
1868  * Either way, the caller does not own @iu after this call.
1869  */
1870 static int
1871 xfs_iunlink_insert_backref(
1872 	struct xfs_perag	*pag,
1873 	struct xfs_iunlink	*iu)
1874 {
1875 	int			error;
1876 
1877 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1878 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1879 	/*
1880 	 * Fail loudly if there already was an entry because that's a sign of
1881 	 * corruption of in-memory data.  Also fail loudly if we see an error
1882 	 * code we didn't anticipate from the rhashtable code.  Currently we
1883 	 * only anticipate ENOMEM.
1884 	 */
1885 	if (error) {
1886 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1887 		kmem_free(iu);
1888 	}
1889 	/*
1890 	 * Absorb any runtime errors that aren't a result of corruption because
1891 	 * this is a cache and we can always fall back to bucket list scanning.
1892 	 */
1893 	if (error != 0 && error != -EEXIST)
1894 		error = 0;
1895 	return error;
1896 }
1897 
1898 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1899 static int
1900 xfs_iunlink_add_backref(
1901 	struct xfs_perag	*pag,
1902 	xfs_agino_t		prev_agino,
1903 	xfs_agino_t		this_agino)
1904 {
1905 	struct xfs_iunlink	*iu;
1906 
1907 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1908 		return 0;
1909 
1910 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1911 	iu->iu_agino = prev_agino;
1912 	iu->iu_next_unlinked = this_agino;
1913 
1914 	return xfs_iunlink_insert_backref(pag, iu);
1915 }
1916 
1917 /*
1918  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1919  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1920  * wasn't any such entry then we don't bother.
1921  */
1922 static int
1923 xfs_iunlink_change_backref(
1924 	struct xfs_perag	*pag,
1925 	xfs_agino_t		agino,
1926 	xfs_agino_t		next_unlinked)
1927 {
1928 	struct xfs_iunlink	*iu;
1929 	int			error;
1930 
1931 	/* Look up the old entry; if there wasn't one then exit. */
1932 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1933 			xfs_iunlink_hash_params);
1934 	if (!iu)
1935 		return 0;
1936 
1937 	/*
1938 	 * Remove the entry.  This shouldn't ever return an error, but if we
1939 	 * couldn't remove the old entry we don't want to add it again to the
1940 	 * hash table, and if the entry disappeared on us then someone's
1941 	 * violated the locking rules and we need to fail loudly.  Either way
1942 	 * we cannot remove the inode because internal state is or would have
1943 	 * been corrupt.
1944 	 */
1945 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1946 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1947 	if (error)
1948 		return error;
1949 
1950 	/* If there is no new next entry just free our item and return. */
1951 	if (next_unlinked == NULLAGINO) {
1952 		kmem_free(iu);
1953 		return 0;
1954 	}
1955 
1956 	/* Update the entry and re-add it to the hash table. */
1957 	iu->iu_next_unlinked = next_unlinked;
1958 	return xfs_iunlink_insert_backref(pag, iu);
1959 }
1960 
1961 /* Set up the in-core predecessor structures. */
1962 int
1963 xfs_iunlink_init(
1964 	struct xfs_perag	*pag)
1965 {
1966 	return rhashtable_init(&pag->pagi_unlinked_hash,
1967 			&xfs_iunlink_hash_params);
1968 }
1969 
1970 /* Free the in-core predecessor structures. */
1971 static void
1972 xfs_iunlink_free_item(
1973 	void			*ptr,
1974 	void			*arg)
1975 {
1976 	struct xfs_iunlink	*iu = ptr;
1977 	bool			*freed_anything = arg;
1978 
1979 	*freed_anything = true;
1980 	kmem_free(iu);
1981 }
1982 
1983 void
1984 xfs_iunlink_destroy(
1985 	struct xfs_perag	*pag)
1986 {
1987 	bool			freed_anything = false;
1988 
1989 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1990 			xfs_iunlink_free_item, &freed_anything);
1991 
1992 	ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
1993 }
1994 
1995 /*
1996  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1997  * is responsible for validating the old value.
1998  */
1999 STATIC int
2000 xfs_iunlink_update_bucket(
2001 	struct xfs_trans	*tp,
2002 	struct xfs_perag	*pag,
2003 	struct xfs_buf		*agibp,
2004 	unsigned int		bucket_index,
2005 	xfs_agino_t		new_agino)
2006 {
2007 	struct xfs_agi		*agi = agibp->b_addr;
2008 	xfs_agino_t		old_value;
2009 	int			offset;
2010 
2011 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2012 
2013 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2014 	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2015 			old_value, new_agino);
2016 
2017 	/*
2018 	 * We should never find the head of the list already set to the value
2019 	 * passed in because either we're adding or removing ourselves from the
2020 	 * head of the list.
2021 	 */
2022 	if (old_value == new_agino) {
2023 		xfs_buf_mark_corrupt(agibp);
2024 		return -EFSCORRUPTED;
2025 	}
2026 
2027 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2028 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2029 			(sizeof(xfs_agino_t) * bucket_index);
2030 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2031 	return 0;
2032 }
2033 
2034 /* Set an on-disk inode's next_unlinked pointer. */
2035 STATIC void
2036 xfs_iunlink_update_dinode(
2037 	struct xfs_trans	*tp,
2038 	struct xfs_perag	*pag,
2039 	xfs_agino_t		agino,
2040 	struct xfs_buf		*ibp,
2041 	struct xfs_dinode	*dip,
2042 	struct xfs_imap		*imap,
2043 	xfs_agino_t		next_agino)
2044 {
2045 	struct xfs_mount	*mp = tp->t_mountp;
2046 	int			offset;
2047 
2048 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2049 
2050 	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2051 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2052 
2053 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2054 	offset = imap->im_boffset +
2055 			offsetof(struct xfs_dinode, di_next_unlinked);
2056 
2057 	/* need to recalc the inode CRC if appropriate */
2058 	xfs_dinode_calc_crc(mp, dip);
2059 	xfs_trans_inode_buf(tp, ibp);
2060 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2061 }
2062 
2063 /* Set an in-core inode's unlinked pointer and return the old value. */
2064 STATIC int
2065 xfs_iunlink_update_inode(
2066 	struct xfs_trans	*tp,
2067 	struct xfs_inode	*ip,
2068 	struct xfs_perag	*pag,
2069 	xfs_agino_t		next_agino,
2070 	xfs_agino_t		*old_next_agino)
2071 {
2072 	struct xfs_mount	*mp = tp->t_mountp;
2073 	struct xfs_dinode	*dip;
2074 	struct xfs_buf		*ibp;
2075 	xfs_agino_t		old_value;
2076 	int			error;
2077 
2078 	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2079 
2080 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2081 	if (error)
2082 		return error;
2083 	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2084 
2085 	/* Make sure the old pointer isn't garbage. */
2086 	old_value = be32_to_cpu(dip->di_next_unlinked);
2087 	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2088 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2089 				sizeof(*dip), __this_address);
2090 		error = -EFSCORRUPTED;
2091 		goto out;
2092 	}
2093 
2094 	/*
2095 	 * Since we're updating a linked list, we should never find that the
2096 	 * current pointer is the same as the new value, unless we're
2097 	 * terminating the list.
2098 	 */
2099 	*old_next_agino = old_value;
2100 	if (old_value == next_agino) {
2101 		if (next_agino != NULLAGINO) {
2102 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2103 					dip, sizeof(*dip), __this_address);
2104 			error = -EFSCORRUPTED;
2105 		}
2106 		goto out;
2107 	}
2108 
2109 	/* Ok, update the new pointer. */
2110 	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2111 			ibp, dip, &ip->i_imap, next_agino);
2112 	return 0;
2113 out:
2114 	xfs_trans_brelse(tp, ibp);
2115 	return error;
2116 }
2117 
2118 /*
2119  * This is called when the inode's link count has gone to 0 or we are creating
2120  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2121  *
2122  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2123  * list when the inode is freed.
2124  */
2125 STATIC int
2126 xfs_iunlink(
2127 	struct xfs_trans	*tp,
2128 	struct xfs_inode	*ip)
2129 {
2130 	struct xfs_mount	*mp = tp->t_mountp;
2131 	struct xfs_perag	*pag;
2132 	struct xfs_agi		*agi;
2133 	struct xfs_buf		*agibp;
2134 	xfs_agino_t		next_agino;
2135 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2136 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2137 	int			error;
2138 
2139 	ASSERT(VFS_I(ip)->i_nlink == 0);
2140 	ASSERT(VFS_I(ip)->i_mode != 0);
2141 	trace_xfs_iunlink(ip);
2142 
2143 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2144 
2145 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2146 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2147 	if (error)
2148 		goto out;
2149 	agi = agibp->b_addr;
2150 
2151 	/*
2152 	 * Get the index into the agi hash table for the list this inode will
2153 	 * go on.  Make sure the pointer isn't garbage and that this inode
2154 	 * isn't already on the list.
2155 	 */
2156 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2157 	if (next_agino == agino ||
2158 	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2159 		xfs_buf_mark_corrupt(agibp);
2160 		error = -EFSCORRUPTED;
2161 		goto out;
2162 	}
2163 
2164 	if (next_agino != NULLAGINO) {
2165 		xfs_agino_t		old_agino;
2166 
2167 		/*
2168 		 * There is already another inode in the bucket, so point this
2169 		 * inode to the current head of the list.
2170 		 */
2171 		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2172 				&old_agino);
2173 		if (error)
2174 			goto out;
2175 		ASSERT(old_agino == NULLAGINO);
2176 
2177 		/*
2178 		 * agino has been unlinked, add a backref from the next inode
2179 		 * back to agino.
2180 		 */
2181 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2182 		if (error)
2183 			goto out;
2184 	}
2185 
2186 	/* Point the head of the list to point to this inode. */
2187 	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2188 out:
2189 	xfs_perag_put(pag);
2190 	return error;
2191 }
2192 
2193 /* Return the imap, dinode pointer, and buffer for an inode. */
2194 STATIC int
2195 xfs_iunlink_map_ino(
2196 	struct xfs_trans	*tp,
2197 	xfs_agnumber_t		agno,
2198 	xfs_agino_t		agino,
2199 	struct xfs_imap		*imap,
2200 	struct xfs_dinode	**dipp,
2201 	struct xfs_buf		**bpp)
2202 {
2203 	struct xfs_mount	*mp = tp->t_mountp;
2204 	int			error;
2205 
2206 	imap->im_blkno = 0;
2207 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2208 	if (error) {
2209 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2210 				__func__, error);
2211 		return error;
2212 	}
2213 
2214 	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2215 	if (error) {
2216 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2217 				__func__, error);
2218 		return error;
2219 	}
2220 
2221 	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2222 	return 0;
2223 }
2224 
2225 /*
2226  * Walk the unlinked chain from @head_agino until we find the inode that
2227  * points to @target_agino.  Return the inode number, map, dinode pointer,
2228  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2229  *
2230  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2231  * @agino, @imap, @dipp, and @bpp are all output parameters.
2232  *
2233  * Do not call this function if @target_agino is the head of the list.
2234  */
2235 STATIC int
2236 xfs_iunlink_map_prev(
2237 	struct xfs_trans	*tp,
2238 	struct xfs_perag	*pag,
2239 	xfs_agino_t		head_agino,
2240 	xfs_agino_t		target_agino,
2241 	xfs_agino_t		*agino,
2242 	struct xfs_imap		*imap,
2243 	struct xfs_dinode	**dipp,
2244 	struct xfs_buf		**bpp)
2245 {
2246 	struct xfs_mount	*mp = tp->t_mountp;
2247 	xfs_agino_t		next_agino;
2248 	int			error;
2249 
2250 	ASSERT(head_agino != target_agino);
2251 	*bpp = NULL;
2252 
2253 	/* See if our backref cache can find it faster. */
2254 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2255 	if (*agino != NULLAGINO) {
2256 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2257 				dipp, bpp);
2258 		if (error)
2259 			return error;
2260 
2261 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2262 			return 0;
2263 
2264 		/*
2265 		 * If we get here the cache contents were corrupt, so drop the
2266 		 * buffer and fall back to walking the bucket list.
2267 		 */
2268 		xfs_trans_brelse(tp, *bpp);
2269 		*bpp = NULL;
2270 		WARN_ON_ONCE(1);
2271 	}
2272 
2273 	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2274 
2275 	/* Otherwise, walk the entire bucket until we find it. */
2276 	next_agino = head_agino;
2277 	while (next_agino != target_agino) {
2278 		xfs_agino_t	unlinked_agino;
2279 
2280 		if (*bpp)
2281 			xfs_trans_brelse(tp, *bpp);
2282 
2283 		*agino = next_agino;
2284 		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2285 				dipp, bpp);
2286 		if (error)
2287 			return error;
2288 
2289 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2290 		/*
2291 		 * Make sure this pointer is valid and isn't an obvious
2292 		 * infinite loop.
2293 		 */
2294 		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2295 		    next_agino == unlinked_agino) {
2296 			XFS_CORRUPTION_ERROR(__func__,
2297 					XFS_ERRLEVEL_LOW, mp,
2298 					*dipp, sizeof(**dipp));
2299 			error = -EFSCORRUPTED;
2300 			return error;
2301 		}
2302 		next_agino = unlinked_agino;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * Pull the on-disk inode from the AGI unlinked list.
2310  */
2311 STATIC int
2312 xfs_iunlink_remove(
2313 	struct xfs_trans	*tp,
2314 	struct xfs_perag	*pag,
2315 	struct xfs_inode	*ip)
2316 {
2317 	struct xfs_mount	*mp = tp->t_mountp;
2318 	struct xfs_agi		*agi;
2319 	struct xfs_buf		*agibp;
2320 	struct xfs_buf		*last_ibp;
2321 	struct xfs_dinode	*last_dip = NULL;
2322 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2323 	xfs_agino_t		next_agino;
2324 	xfs_agino_t		head_agino;
2325 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2326 	int			error;
2327 
2328 	trace_xfs_iunlink_remove(ip);
2329 
2330 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2331 	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2332 	if (error)
2333 		return error;
2334 	agi = agibp->b_addr;
2335 
2336 	/*
2337 	 * Get the index into the agi hash table for the list this inode will
2338 	 * go on.  Make sure the head pointer isn't garbage.
2339 	 */
2340 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2341 	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2342 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2343 				agi, sizeof(*agi));
2344 		return -EFSCORRUPTED;
2345 	}
2346 
2347 	/*
2348 	 * Set our inode's next_unlinked pointer to NULL and then return
2349 	 * the old pointer value so that we can update whatever was previous
2350 	 * to us in the list to point to whatever was next in the list.
2351 	 */
2352 	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2353 	if (error)
2354 		return error;
2355 
2356 	/*
2357 	 * If there was a backref pointing from the next inode back to this
2358 	 * one, remove it because we've removed this inode from the list.
2359 	 *
2360 	 * Later, if this inode was in the middle of the list we'll update
2361 	 * this inode's backref to point from the next inode.
2362 	 */
2363 	if (next_agino != NULLAGINO) {
2364 		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2365 		if (error)
2366 			return error;
2367 	}
2368 
2369 	if (head_agino != agino) {
2370 		struct xfs_imap	imap;
2371 		xfs_agino_t	prev_agino;
2372 
2373 		/* We need to search the list for the inode being freed. */
2374 		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2375 				&prev_agino, &imap, &last_dip, &last_ibp);
2376 		if (error)
2377 			return error;
2378 
2379 		/* Point the previous inode on the list to the next inode. */
2380 		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2381 				last_dip, &imap, next_agino);
2382 
2383 		/*
2384 		 * Now we deal with the backref for this inode.  If this inode
2385 		 * pointed at a real inode, change the backref that pointed to
2386 		 * us to point to our old next.  If this inode was the end of
2387 		 * the list, delete the backref that pointed to us.  Note that
2388 		 * change_backref takes care of deleting the backref if
2389 		 * next_agino is NULLAGINO.
2390 		 */
2391 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2392 				next_agino);
2393 	}
2394 
2395 	/* Point the head of the list to the next unlinked inode. */
2396 	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2397 			next_agino);
2398 }
2399 
2400 /*
2401  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2402  * mark it stale. We should only find clean inodes in this lookup that aren't
2403  * already stale.
2404  */
2405 static void
2406 xfs_ifree_mark_inode_stale(
2407 	struct xfs_perag	*pag,
2408 	struct xfs_inode	*free_ip,
2409 	xfs_ino_t		inum)
2410 {
2411 	struct xfs_mount	*mp = pag->pag_mount;
2412 	struct xfs_inode_log_item *iip;
2413 	struct xfs_inode	*ip;
2414 
2415 retry:
2416 	rcu_read_lock();
2417 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2418 
2419 	/* Inode not in memory, nothing to do */
2420 	if (!ip) {
2421 		rcu_read_unlock();
2422 		return;
2423 	}
2424 
2425 	/*
2426 	 * because this is an RCU protected lookup, we could find a recently
2427 	 * freed or even reallocated inode during the lookup. We need to check
2428 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2429 	 * valid, the wrong inode or stale.
2430 	 */
2431 	spin_lock(&ip->i_flags_lock);
2432 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2433 		goto out_iflags_unlock;
2434 
2435 	/*
2436 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2437 	 * other inodes that we did not find in the list attached to the buffer
2438 	 * and are not already marked stale. If we can't lock it, back off and
2439 	 * retry.
2440 	 */
2441 	if (ip != free_ip) {
2442 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2443 			spin_unlock(&ip->i_flags_lock);
2444 			rcu_read_unlock();
2445 			delay(1);
2446 			goto retry;
2447 		}
2448 	}
2449 	ip->i_flags |= XFS_ISTALE;
2450 
2451 	/*
2452 	 * If the inode is flushing, it is already attached to the buffer.  All
2453 	 * we needed to do here is mark the inode stale so buffer IO completion
2454 	 * will remove it from the AIL.
2455 	 */
2456 	iip = ip->i_itemp;
2457 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2458 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2459 		ASSERT(iip->ili_last_fields);
2460 		goto out_iunlock;
2461 	}
2462 
2463 	/*
2464 	 * Inodes not attached to the buffer can be released immediately.
2465 	 * Everything else has to go through xfs_iflush_abort() on journal
2466 	 * commit as the flock synchronises removal of the inode from the
2467 	 * cluster buffer against inode reclaim.
2468 	 */
2469 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2470 		goto out_iunlock;
2471 
2472 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2473 	spin_unlock(&ip->i_flags_lock);
2474 	rcu_read_unlock();
2475 
2476 	/* we have a dirty inode in memory that has not yet been flushed. */
2477 	spin_lock(&iip->ili_lock);
2478 	iip->ili_last_fields = iip->ili_fields;
2479 	iip->ili_fields = 0;
2480 	iip->ili_fsync_fields = 0;
2481 	spin_unlock(&iip->ili_lock);
2482 	ASSERT(iip->ili_last_fields);
2483 
2484 	if (ip != free_ip)
2485 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2486 	return;
2487 
2488 out_iunlock:
2489 	if (ip != free_ip)
2490 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2491 out_iflags_unlock:
2492 	spin_unlock(&ip->i_flags_lock);
2493 	rcu_read_unlock();
2494 }
2495 
2496 /*
2497  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2498  * inodes that are in memory - they all must be marked stale and attached to
2499  * the cluster buffer.
2500  */
2501 static int
2502 xfs_ifree_cluster(
2503 	struct xfs_trans	*tp,
2504 	struct xfs_perag	*pag,
2505 	struct xfs_inode	*free_ip,
2506 	struct xfs_icluster	*xic)
2507 {
2508 	struct xfs_mount	*mp = free_ip->i_mount;
2509 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2510 	struct xfs_buf		*bp;
2511 	xfs_daddr_t		blkno;
2512 	xfs_ino_t		inum = xic->first_ino;
2513 	int			nbufs;
2514 	int			i, j;
2515 	int			ioffset;
2516 	int			error;
2517 
2518 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2519 
2520 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2521 		/*
2522 		 * The allocation bitmap tells us which inodes of the chunk were
2523 		 * physically allocated. Skip the cluster if an inode falls into
2524 		 * a sparse region.
2525 		 */
2526 		ioffset = inum - xic->first_ino;
2527 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2528 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2529 			continue;
2530 		}
2531 
2532 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2533 					 XFS_INO_TO_AGBNO(mp, inum));
2534 
2535 		/*
2536 		 * We obtain and lock the backing buffer first in the process
2537 		 * here to ensure dirty inodes attached to the buffer remain in
2538 		 * the flushing state while we mark them stale.
2539 		 *
2540 		 * If we scan the in-memory inodes first, then buffer IO can
2541 		 * complete before we get a lock on it, and hence we may fail
2542 		 * to mark all the active inodes on the buffer stale.
2543 		 */
2544 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2545 				mp->m_bsize * igeo->blocks_per_cluster,
2546 				XBF_UNMAPPED, &bp);
2547 		if (error)
2548 			return error;
2549 
2550 		/*
2551 		 * This buffer may not have been correctly initialised as we
2552 		 * didn't read it from disk. That's not important because we are
2553 		 * only using to mark the buffer as stale in the log, and to
2554 		 * attach stale cached inodes on it. That means it will never be
2555 		 * dispatched for IO. If it is, we want to know about it, and we
2556 		 * want it to fail. We can acheive this by adding a write
2557 		 * verifier to the buffer.
2558 		 */
2559 		bp->b_ops = &xfs_inode_buf_ops;
2560 
2561 		/*
2562 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2563 		 * too. This requires lookups, and will skip inodes that we've
2564 		 * already marked XFS_ISTALE.
2565 		 */
2566 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2567 			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2568 
2569 		xfs_trans_stale_inode_buf(tp, bp);
2570 		xfs_trans_binval(tp, bp);
2571 	}
2572 	return 0;
2573 }
2574 
2575 /*
2576  * This is called to return an inode to the inode free list.  The inode should
2577  * already be truncated to 0 length and have no pages associated with it.  This
2578  * routine also assumes that the inode is already a part of the transaction.
2579  *
2580  * The on-disk copy of the inode will have been added to the list of unlinked
2581  * inodes in the AGI. We need to remove the inode from that list atomically with
2582  * respect to freeing it here.
2583  */
2584 int
2585 xfs_ifree(
2586 	struct xfs_trans	*tp,
2587 	struct xfs_inode	*ip)
2588 {
2589 	struct xfs_mount	*mp = ip->i_mount;
2590 	struct xfs_perag	*pag;
2591 	struct xfs_icluster	xic = { 0 };
2592 	struct xfs_inode_log_item *iip = ip->i_itemp;
2593 	int			error;
2594 
2595 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2596 	ASSERT(VFS_I(ip)->i_nlink == 0);
2597 	ASSERT(ip->i_df.if_nextents == 0);
2598 	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2599 	ASSERT(ip->i_nblocks == 0);
2600 
2601 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2602 
2603 	/*
2604 	 * Free the inode first so that we guarantee that the AGI lock is going
2605 	 * to be taken before we remove the inode from the unlinked list. This
2606 	 * makes the AGI lock -> unlinked list modification order the same as
2607 	 * used in O_TMPFILE creation.
2608 	 */
2609 	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2610 	if (error)
2611 		goto out;
2612 
2613 	error = xfs_iunlink_remove(tp, pag, ip);
2614 	if (error)
2615 		goto out;
2616 
2617 	/*
2618 	 * Free any local-format data sitting around before we reset the
2619 	 * data fork to extents format.  Note that the attr fork data has
2620 	 * already been freed by xfs_attr_inactive.
2621 	 */
2622 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2623 		kmem_free(ip->i_df.if_u1.if_data);
2624 		ip->i_df.if_u1.if_data = NULL;
2625 		ip->i_df.if_bytes = 0;
2626 	}
2627 
2628 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2629 	ip->i_diflags = 0;
2630 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2631 	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2632 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2633 	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2634 		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2635 
2636 	/* Don't attempt to replay owner changes for a deleted inode */
2637 	spin_lock(&iip->ili_lock);
2638 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2639 	spin_unlock(&iip->ili_lock);
2640 
2641 	/*
2642 	 * Bump the generation count so no one will be confused
2643 	 * by reincarnations of this inode.
2644 	 */
2645 	VFS_I(ip)->i_generation++;
2646 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2647 
2648 	if (xic.deleted)
2649 		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2650 out:
2651 	xfs_perag_put(pag);
2652 	return error;
2653 }
2654 
2655 /*
2656  * This is called to unpin an inode.  The caller must have the inode locked
2657  * in at least shared mode so that the buffer cannot be subsequently pinned
2658  * once someone is waiting for it to be unpinned.
2659  */
2660 static void
2661 xfs_iunpin(
2662 	struct xfs_inode	*ip)
2663 {
2664 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2665 
2666 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2667 
2668 	/* Give the log a push to start the unpinning I/O */
2669 	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2670 
2671 }
2672 
2673 static void
2674 __xfs_iunpin_wait(
2675 	struct xfs_inode	*ip)
2676 {
2677 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2678 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2679 
2680 	xfs_iunpin(ip);
2681 
2682 	do {
2683 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2684 		if (xfs_ipincount(ip))
2685 			io_schedule();
2686 	} while (xfs_ipincount(ip));
2687 	finish_wait(wq, &wait.wq_entry);
2688 }
2689 
2690 void
2691 xfs_iunpin_wait(
2692 	struct xfs_inode	*ip)
2693 {
2694 	if (xfs_ipincount(ip))
2695 		__xfs_iunpin_wait(ip);
2696 }
2697 
2698 /*
2699  * Removing an inode from the namespace involves removing the directory entry
2700  * and dropping the link count on the inode. Removing the directory entry can
2701  * result in locking an AGF (directory blocks were freed) and removing a link
2702  * count can result in placing the inode on an unlinked list which results in
2703  * locking an AGI.
2704  *
2705  * The big problem here is that we have an ordering constraint on AGF and AGI
2706  * locking - inode allocation locks the AGI, then can allocate a new extent for
2707  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2708  * removes the inode from the unlinked list, requiring that we lock the AGI
2709  * first, and then freeing the inode can result in an inode chunk being freed
2710  * and hence freeing disk space requiring that we lock an AGF.
2711  *
2712  * Hence the ordering that is imposed by other parts of the code is AGI before
2713  * AGF. This means we cannot remove the directory entry before we drop the inode
2714  * reference count and put it on the unlinked list as this results in a lock
2715  * order of AGF then AGI, and this can deadlock against inode allocation and
2716  * freeing. Therefore we must drop the link counts before we remove the
2717  * directory entry.
2718  *
2719  * This is still safe from a transactional point of view - it is not until we
2720  * get to xfs_defer_finish() that we have the possibility of multiple
2721  * transactions in this operation. Hence as long as we remove the directory
2722  * entry and drop the link count in the first transaction of the remove
2723  * operation, there are no transactional constraints on the ordering here.
2724  */
2725 int
2726 xfs_remove(
2727 	xfs_inode_t             *dp,
2728 	struct xfs_name		*name,
2729 	xfs_inode_t		*ip)
2730 {
2731 	xfs_mount_t		*mp = dp->i_mount;
2732 	xfs_trans_t             *tp = NULL;
2733 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2734 	int			dontcare;
2735 	int                     error = 0;
2736 	uint			resblks;
2737 
2738 	trace_xfs_remove(dp, name);
2739 
2740 	if (xfs_is_shutdown(mp))
2741 		return -EIO;
2742 
2743 	error = xfs_qm_dqattach(dp);
2744 	if (error)
2745 		goto std_return;
2746 
2747 	error = xfs_qm_dqattach(ip);
2748 	if (error)
2749 		goto std_return;
2750 
2751 	/*
2752 	 * We try to get the real space reservation first, allowing for
2753 	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2754 	 * can't get the space reservation then we use 0 instead, and avoid the
2755 	 * bmap btree insert(s) in the directory code by, if the bmap insert
2756 	 * tries to happen, instead trimming the LAST block from the directory.
2757 	 *
2758 	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2759 	 * the directory code can handle a reservationless update and we don't
2760 	 * want to prevent a user from trying to free space by deleting things.
2761 	 */
2762 	resblks = XFS_REMOVE_SPACE_RES(mp);
2763 	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2764 			&tp, &dontcare);
2765 	if (error) {
2766 		ASSERT(error != -ENOSPC);
2767 		goto std_return;
2768 	}
2769 
2770 	/*
2771 	 * If we're removing a directory perform some additional validation.
2772 	 */
2773 	if (is_dir) {
2774 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2775 		if (VFS_I(ip)->i_nlink != 2) {
2776 			error = -ENOTEMPTY;
2777 			goto out_trans_cancel;
2778 		}
2779 		if (!xfs_dir_isempty(ip)) {
2780 			error = -ENOTEMPTY;
2781 			goto out_trans_cancel;
2782 		}
2783 
2784 		/* Drop the link from ip's "..".  */
2785 		error = xfs_droplink(tp, dp);
2786 		if (error)
2787 			goto out_trans_cancel;
2788 
2789 		/* Drop the "." link from ip to self.  */
2790 		error = xfs_droplink(tp, ip);
2791 		if (error)
2792 			goto out_trans_cancel;
2793 
2794 		/*
2795 		 * Point the unlinked child directory's ".." entry to the root
2796 		 * directory to eliminate back-references to inodes that may
2797 		 * get freed before the child directory is closed.  If the fs
2798 		 * gets shrunk, this can lead to dirent inode validation errors.
2799 		 */
2800 		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2801 			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2802 					tp->t_mountp->m_sb.sb_rootino, 0);
2803 			if (error)
2804 				return error;
2805 		}
2806 	} else {
2807 		/*
2808 		 * When removing a non-directory we need to log the parent
2809 		 * inode here.  For a directory this is done implicitly
2810 		 * by the xfs_droplink call for the ".." entry.
2811 		 */
2812 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2813 	}
2814 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2815 
2816 	/* Drop the link from dp to ip. */
2817 	error = xfs_droplink(tp, ip);
2818 	if (error)
2819 		goto out_trans_cancel;
2820 
2821 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2822 	if (error) {
2823 		ASSERT(error != -ENOENT);
2824 		goto out_trans_cancel;
2825 	}
2826 
2827 	/*
2828 	 * If this is a synchronous mount, make sure that the
2829 	 * remove transaction goes to disk before returning to
2830 	 * the user.
2831 	 */
2832 	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2833 		xfs_trans_set_sync(tp);
2834 
2835 	error = xfs_trans_commit(tp);
2836 	if (error)
2837 		goto std_return;
2838 
2839 	if (is_dir && xfs_inode_is_filestream(ip))
2840 		xfs_filestream_deassociate(ip);
2841 
2842 	return 0;
2843 
2844  out_trans_cancel:
2845 	xfs_trans_cancel(tp);
2846  std_return:
2847 	return error;
2848 }
2849 
2850 /*
2851  * Enter all inodes for a rename transaction into a sorted array.
2852  */
2853 #define __XFS_SORT_INODES	5
2854 STATIC void
2855 xfs_sort_for_rename(
2856 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2857 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2858 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2859 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2860 	struct xfs_inode	*wip,	/* in: whiteout inode */
2861 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2862 	int			*num_inodes)  /* in/out: inodes in array */
2863 {
2864 	int			i, j;
2865 
2866 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2867 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2868 
2869 	/*
2870 	 * i_tab contains a list of pointers to inodes.  We initialize
2871 	 * the table here & we'll sort it.  We will then use it to
2872 	 * order the acquisition of the inode locks.
2873 	 *
2874 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2875 	 */
2876 	i = 0;
2877 	i_tab[i++] = dp1;
2878 	i_tab[i++] = dp2;
2879 	i_tab[i++] = ip1;
2880 	if (ip2)
2881 		i_tab[i++] = ip2;
2882 	if (wip)
2883 		i_tab[i++] = wip;
2884 	*num_inodes = i;
2885 
2886 	/*
2887 	 * Sort the elements via bubble sort.  (Remember, there are at
2888 	 * most 5 elements to sort, so this is adequate.)
2889 	 */
2890 	for (i = 0; i < *num_inodes; i++) {
2891 		for (j = 1; j < *num_inodes; j++) {
2892 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2893 				struct xfs_inode *temp = i_tab[j];
2894 				i_tab[j] = i_tab[j-1];
2895 				i_tab[j-1] = temp;
2896 			}
2897 		}
2898 	}
2899 }
2900 
2901 static int
2902 xfs_finish_rename(
2903 	struct xfs_trans	*tp)
2904 {
2905 	/*
2906 	 * If this is a synchronous mount, make sure that the rename transaction
2907 	 * goes to disk before returning to the user.
2908 	 */
2909 	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2910 		xfs_trans_set_sync(tp);
2911 
2912 	return xfs_trans_commit(tp);
2913 }
2914 
2915 /*
2916  * xfs_cross_rename()
2917  *
2918  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2919  */
2920 STATIC int
2921 xfs_cross_rename(
2922 	struct xfs_trans	*tp,
2923 	struct xfs_inode	*dp1,
2924 	struct xfs_name		*name1,
2925 	struct xfs_inode	*ip1,
2926 	struct xfs_inode	*dp2,
2927 	struct xfs_name		*name2,
2928 	struct xfs_inode	*ip2,
2929 	int			spaceres)
2930 {
2931 	int		error = 0;
2932 	int		ip1_flags = 0;
2933 	int		ip2_flags = 0;
2934 	int		dp2_flags = 0;
2935 
2936 	/* Swap inode number for dirent in first parent */
2937 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2938 	if (error)
2939 		goto out_trans_abort;
2940 
2941 	/* Swap inode number for dirent in second parent */
2942 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2943 	if (error)
2944 		goto out_trans_abort;
2945 
2946 	/*
2947 	 * If we're renaming one or more directories across different parents,
2948 	 * update the respective ".." entries (and link counts) to match the new
2949 	 * parents.
2950 	 */
2951 	if (dp1 != dp2) {
2952 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2953 
2954 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2955 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2956 						dp1->i_ino, spaceres);
2957 			if (error)
2958 				goto out_trans_abort;
2959 
2960 			/* transfer ip2 ".." reference to dp1 */
2961 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2962 				error = xfs_droplink(tp, dp2);
2963 				if (error)
2964 					goto out_trans_abort;
2965 				xfs_bumplink(tp, dp1);
2966 			}
2967 
2968 			/*
2969 			 * Although ip1 isn't changed here, userspace needs
2970 			 * to be warned about the change, so that applications
2971 			 * relying on it (like backup ones), will properly
2972 			 * notify the change
2973 			 */
2974 			ip1_flags |= XFS_ICHGTIME_CHG;
2975 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2976 		}
2977 
2978 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2979 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2980 						dp2->i_ino, spaceres);
2981 			if (error)
2982 				goto out_trans_abort;
2983 
2984 			/* transfer ip1 ".." reference to dp2 */
2985 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2986 				error = xfs_droplink(tp, dp1);
2987 				if (error)
2988 					goto out_trans_abort;
2989 				xfs_bumplink(tp, dp2);
2990 			}
2991 
2992 			/*
2993 			 * Although ip2 isn't changed here, userspace needs
2994 			 * to be warned about the change, so that applications
2995 			 * relying on it (like backup ones), will properly
2996 			 * notify the change
2997 			 */
2998 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2999 			ip2_flags |= XFS_ICHGTIME_CHG;
3000 		}
3001 	}
3002 
3003 	if (ip1_flags) {
3004 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3005 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3006 	}
3007 	if (ip2_flags) {
3008 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3009 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3010 	}
3011 	if (dp2_flags) {
3012 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3013 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3014 	}
3015 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3016 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3017 	return xfs_finish_rename(tp);
3018 
3019 out_trans_abort:
3020 	xfs_trans_cancel(tp);
3021 	return error;
3022 }
3023 
3024 /*
3025  * xfs_rename_alloc_whiteout()
3026  *
3027  * Return a referenced, unlinked, unlocked inode that can be used as a
3028  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3029  * crash between allocating the inode and linking it into the rename transaction
3030  * recovery will free the inode and we won't leak it.
3031  */
3032 static int
3033 xfs_rename_alloc_whiteout(
3034 	struct user_namespace	*mnt_userns,
3035 	struct xfs_inode	*dp,
3036 	struct xfs_inode	**wip)
3037 {
3038 	struct xfs_inode	*tmpfile;
3039 	int			error;
3040 
3041 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3042 				   &tmpfile);
3043 	if (error)
3044 		return error;
3045 
3046 	/*
3047 	 * Prepare the tmpfile inode as if it were created through the VFS.
3048 	 * Complete the inode setup and flag it as linkable.  nlink is already
3049 	 * zero, so we can skip the drop_nlink.
3050 	 */
3051 	xfs_setup_iops(tmpfile);
3052 	xfs_finish_inode_setup(tmpfile);
3053 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3054 
3055 	*wip = tmpfile;
3056 	return 0;
3057 }
3058 
3059 /*
3060  * xfs_rename
3061  */
3062 int
3063 xfs_rename(
3064 	struct user_namespace	*mnt_userns,
3065 	struct xfs_inode	*src_dp,
3066 	struct xfs_name		*src_name,
3067 	struct xfs_inode	*src_ip,
3068 	struct xfs_inode	*target_dp,
3069 	struct xfs_name		*target_name,
3070 	struct xfs_inode	*target_ip,
3071 	unsigned int		flags)
3072 {
3073 	struct xfs_mount	*mp = src_dp->i_mount;
3074 	struct xfs_trans	*tp;
3075 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3076 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3077 	int			i;
3078 	int			num_inodes = __XFS_SORT_INODES;
3079 	bool			new_parent = (src_dp != target_dp);
3080 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3081 	int			spaceres;
3082 	bool			retried = false;
3083 	int			error, nospace_error = 0;
3084 
3085 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3086 
3087 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3088 		return -EINVAL;
3089 
3090 	/*
3091 	 * If we are doing a whiteout operation, allocate the whiteout inode
3092 	 * we will be placing at the target and ensure the type is set
3093 	 * appropriately.
3094 	 */
3095 	if (flags & RENAME_WHITEOUT) {
3096 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3097 		if (error)
3098 			return error;
3099 
3100 		/* setup target dirent info as whiteout */
3101 		src_name->type = XFS_DIR3_FT_CHRDEV;
3102 	}
3103 
3104 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3105 				inodes, &num_inodes);
3106 
3107 retry:
3108 	nospace_error = 0;
3109 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3110 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3111 	if (error == -ENOSPC) {
3112 		nospace_error = error;
3113 		spaceres = 0;
3114 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3115 				&tp);
3116 	}
3117 	if (error)
3118 		goto out_release_wip;
3119 
3120 	/*
3121 	 * Attach the dquots to the inodes
3122 	 */
3123 	error = xfs_qm_vop_rename_dqattach(inodes);
3124 	if (error)
3125 		goto out_trans_cancel;
3126 
3127 	/*
3128 	 * Lock all the participating inodes. Depending upon whether
3129 	 * the target_name exists in the target directory, and
3130 	 * whether the target directory is the same as the source
3131 	 * directory, we can lock from 2 to 4 inodes.
3132 	 */
3133 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3134 
3135 	/*
3136 	 * Join all the inodes to the transaction. From this point on,
3137 	 * we can rely on either trans_commit or trans_cancel to unlock
3138 	 * them.
3139 	 */
3140 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3141 	if (new_parent)
3142 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3143 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3144 	if (target_ip)
3145 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3146 	if (wip)
3147 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3148 
3149 	/*
3150 	 * If we are using project inheritance, we only allow renames
3151 	 * into our tree when the project IDs are the same; else the
3152 	 * tree quota mechanism would be circumvented.
3153 	 */
3154 	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3155 		     target_dp->i_projid != src_ip->i_projid)) {
3156 		error = -EXDEV;
3157 		goto out_trans_cancel;
3158 	}
3159 
3160 	/* RENAME_EXCHANGE is unique from here on. */
3161 	if (flags & RENAME_EXCHANGE)
3162 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3163 					target_dp, target_name, target_ip,
3164 					spaceres);
3165 
3166 	/*
3167 	 * Try to reserve quota to handle an expansion of the target directory.
3168 	 * We'll allow the rename to continue in reservationless mode if we hit
3169 	 * a space usage constraint.  If we trigger reservationless mode, save
3170 	 * the errno if there isn't any free space in the target directory.
3171 	 */
3172 	if (spaceres != 0) {
3173 		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3174 				0, false);
3175 		if (error == -EDQUOT || error == -ENOSPC) {
3176 			if (!retried) {
3177 				xfs_trans_cancel(tp);
3178 				xfs_blockgc_free_quota(target_dp, 0);
3179 				retried = true;
3180 				goto retry;
3181 			}
3182 
3183 			nospace_error = error;
3184 			spaceres = 0;
3185 			error = 0;
3186 		}
3187 		if (error)
3188 			goto out_trans_cancel;
3189 	}
3190 
3191 	/*
3192 	 * Check for expected errors before we dirty the transaction
3193 	 * so we can return an error without a transaction abort.
3194 	 */
3195 	if (target_ip == NULL) {
3196 		/*
3197 		 * If there's no space reservation, check the entry will
3198 		 * fit before actually inserting it.
3199 		 */
3200 		if (!spaceres) {
3201 			error = xfs_dir_canenter(tp, target_dp, target_name);
3202 			if (error)
3203 				goto out_trans_cancel;
3204 		}
3205 	} else {
3206 		/*
3207 		 * If target exists and it's a directory, check that whether
3208 		 * it can be destroyed.
3209 		 */
3210 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3211 		    (!xfs_dir_isempty(target_ip) ||
3212 		     (VFS_I(target_ip)->i_nlink > 2))) {
3213 			error = -EEXIST;
3214 			goto out_trans_cancel;
3215 		}
3216 	}
3217 
3218 	/*
3219 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3220 	 * whiteout inode off the unlinked list and to handle dropping the
3221 	 * nlink of the target inode.  Per locking order rules, do this in
3222 	 * increasing AG order and before directory block allocation tries to
3223 	 * grab AGFs because we grab AGIs before AGFs.
3224 	 *
3225 	 * The (vfs) caller must ensure that if src is a directory then
3226 	 * target_ip is either null or an empty directory.
3227 	 */
3228 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3229 		if (inodes[i] == wip ||
3230 		    (inodes[i] == target_ip &&
3231 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3232 			struct xfs_buf	*bp;
3233 			xfs_agnumber_t	agno;
3234 
3235 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3236 			error = xfs_read_agi(mp, tp, agno, &bp);
3237 			if (error)
3238 				goto out_trans_cancel;
3239 		}
3240 	}
3241 
3242 	/*
3243 	 * Directory entry creation below may acquire the AGF. Remove
3244 	 * the whiteout from the unlinked list first to preserve correct
3245 	 * AGI/AGF locking order. This dirties the transaction so failures
3246 	 * after this point will abort and log recovery will clean up the
3247 	 * mess.
3248 	 *
3249 	 * For whiteouts, we need to bump the link count on the whiteout
3250 	 * inode. After this point, we have a real link, clear the tmpfile
3251 	 * state flag from the inode so it doesn't accidentally get misused
3252 	 * in future.
3253 	 */
3254 	if (wip) {
3255 		struct xfs_perag	*pag;
3256 
3257 		ASSERT(VFS_I(wip)->i_nlink == 0);
3258 
3259 		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3260 		error = xfs_iunlink_remove(tp, pag, wip);
3261 		xfs_perag_put(pag);
3262 		if (error)
3263 			goto out_trans_cancel;
3264 
3265 		xfs_bumplink(tp, wip);
3266 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3267 	}
3268 
3269 	/*
3270 	 * Set up the target.
3271 	 */
3272 	if (target_ip == NULL) {
3273 		/*
3274 		 * If target does not exist and the rename crosses
3275 		 * directories, adjust the target directory link count
3276 		 * to account for the ".." reference from the new entry.
3277 		 */
3278 		error = xfs_dir_createname(tp, target_dp, target_name,
3279 					   src_ip->i_ino, spaceres);
3280 		if (error)
3281 			goto out_trans_cancel;
3282 
3283 		xfs_trans_ichgtime(tp, target_dp,
3284 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3285 
3286 		if (new_parent && src_is_directory) {
3287 			xfs_bumplink(tp, target_dp);
3288 		}
3289 	} else { /* target_ip != NULL */
3290 		/*
3291 		 * Link the source inode under the target name.
3292 		 * If the source inode is a directory and we are moving
3293 		 * it across directories, its ".." entry will be
3294 		 * inconsistent until we replace that down below.
3295 		 *
3296 		 * In case there is already an entry with the same
3297 		 * name at the destination directory, remove it first.
3298 		 */
3299 		error = xfs_dir_replace(tp, target_dp, target_name,
3300 					src_ip->i_ino, spaceres);
3301 		if (error)
3302 			goto out_trans_cancel;
3303 
3304 		xfs_trans_ichgtime(tp, target_dp,
3305 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3306 
3307 		/*
3308 		 * Decrement the link count on the target since the target
3309 		 * dir no longer points to it.
3310 		 */
3311 		error = xfs_droplink(tp, target_ip);
3312 		if (error)
3313 			goto out_trans_cancel;
3314 
3315 		if (src_is_directory) {
3316 			/*
3317 			 * Drop the link from the old "." entry.
3318 			 */
3319 			error = xfs_droplink(tp, target_ip);
3320 			if (error)
3321 				goto out_trans_cancel;
3322 		}
3323 	} /* target_ip != NULL */
3324 
3325 	/*
3326 	 * Remove the source.
3327 	 */
3328 	if (new_parent && src_is_directory) {
3329 		/*
3330 		 * Rewrite the ".." entry to point to the new
3331 		 * directory.
3332 		 */
3333 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3334 					target_dp->i_ino, spaceres);
3335 		ASSERT(error != -EEXIST);
3336 		if (error)
3337 			goto out_trans_cancel;
3338 	}
3339 
3340 	/*
3341 	 * We always want to hit the ctime on the source inode.
3342 	 *
3343 	 * This isn't strictly required by the standards since the source
3344 	 * inode isn't really being changed, but old unix file systems did
3345 	 * it and some incremental backup programs won't work without it.
3346 	 */
3347 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3348 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3349 
3350 	/*
3351 	 * Adjust the link count on src_dp.  This is necessary when
3352 	 * renaming a directory, either within one parent when
3353 	 * the target existed, or across two parent directories.
3354 	 */
3355 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3356 
3357 		/*
3358 		 * Decrement link count on src_directory since the
3359 		 * entry that's moved no longer points to it.
3360 		 */
3361 		error = xfs_droplink(tp, src_dp);
3362 		if (error)
3363 			goto out_trans_cancel;
3364 	}
3365 
3366 	/*
3367 	 * For whiteouts, we only need to update the source dirent with the
3368 	 * inode number of the whiteout inode rather than removing it
3369 	 * altogether.
3370 	 */
3371 	if (wip)
3372 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3373 					spaceres);
3374 	else
3375 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3376 					   spaceres);
3377 
3378 	if (error)
3379 		goto out_trans_cancel;
3380 
3381 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3382 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3383 	if (new_parent)
3384 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3385 
3386 	error = xfs_finish_rename(tp);
3387 	if (wip)
3388 		xfs_irele(wip);
3389 	return error;
3390 
3391 out_trans_cancel:
3392 	xfs_trans_cancel(tp);
3393 out_release_wip:
3394 	if (wip)
3395 		xfs_irele(wip);
3396 	if (error == -ENOSPC && nospace_error)
3397 		error = nospace_error;
3398 	return error;
3399 }
3400 
3401 static int
3402 xfs_iflush(
3403 	struct xfs_inode	*ip,
3404 	struct xfs_buf		*bp)
3405 {
3406 	struct xfs_inode_log_item *iip = ip->i_itemp;
3407 	struct xfs_dinode	*dip;
3408 	struct xfs_mount	*mp = ip->i_mount;
3409 	int			error;
3410 
3411 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3412 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3413 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3414 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3415 	ASSERT(iip->ili_item.li_buf == bp);
3416 
3417 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3418 
3419 	/*
3420 	 * We don't flush the inode if any of the following checks fail, but we
3421 	 * do still update the log item and attach to the backing buffer as if
3422 	 * the flush happened. This is a formality to facilitate predictable
3423 	 * error handling as the caller will shutdown and fail the buffer.
3424 	 */
3425 	error = -EFSCORRUPTED;
3426 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3427 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3428 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3429 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3430 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3431 		goto flush_out;
3432 	}
3433 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3434 		if (XFS_TEST_ERROR(
3435 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3436 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3437 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3438 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3439 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3440 				__func__, ip->i_ino, ip);
3441 			goto flush_out;
3442 		}
3443 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3444 		if (XFS_TEST_ERROR(
3445 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3446 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3447 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3448 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3449 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3450 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3451 				__func__, ip->i_ino, ip);
3452 			goto flush_out;
3453 		}
3454 	}
3455 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3456 				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3457 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3458 			"%s: detected corrupt incore inode %llu, "
3459 			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3460 			__func__, ip->i_ino,
3461 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3462 			ip->i_nblocks, ip);
3463 		goto flush_out;
3464 	}
3465 	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3466 				mp, XFS_ERRTAG_IFLUSH_6)) {
3467 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3468 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3469 			__func__, ip->i_ino, ip->i_forkoff, ip);
3470 		goto flush_out;
3471 	}
3472 
3473 	/*
3474 	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3475 	 * count for correct sequencing.  We bump the flush iteration count so
3476 	 * we can detect flushes which postdate a log record during recovery.
3477 	 * This is redundant as we now log every change and hence this can't
3478 	 * happen but we need to still do it to ensure backwards compatibility
3479 	 * with old kernels that predate logging all inode changes.
3480 	 */
3481 	if (!xfs_has_v3inodes(mp))
3482 		ip->i_flushiter++;
3483 
3484 	/*
3485 	 * If there are inline format data / attr forks attached to this inode,
3486 	 * make sure they are not corrupt.
3487 	 */
3488 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3489 	    xfs_ifork_verify_local_data(ip))
3490 		goto flush_out;
3491 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3492 	    xfs_ifork_verify_local_attr(ip))
3493 		goto flush_out;
3494 
3495 	/*
3496 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3497 	 * copy out the core of the inode, because if the inode is dirty at all
3498 	 * the core must be.
3499 	 */
3500 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3501 
3502 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3503 	if (!xfs_has_v3inodes(mp)) {
3504 		if (ip->i_flushiter == DI_MAX_FLUSH)
3505 			ip->i_flushiter = 0;
3506 	}
3507 
3508 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3509 	if (XFS_IFORK_Q(ip))
3510 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3511 
3512 	/*
3513 	 * We've recorded everything logged in the inode, so we'd like to clear
3514 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3515 	 * However, we can't stop logging all this information until the data
3516 	 * we've copied into the disk buffer is written to disk.  If we did we
3517 	 * might overwrite the copy of the inode in the log with all the data
3518 	 * after re-logging only part of it, and in the face of a crash we
3519 	 * wouldn't have all the data we need to recover.
3520 	 *
3521 	 * What we do is move the bits to the ili_last_fields field.  When
3522 	 * logging the inode, these bits are moved back to the ili_fields field.
3523 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3524 	 * we know that the information those bits represent is permanently on
3525 	 * disk.  As long as the flush completes before the inode is logged
3526 	 * again, then both ili_fields and ili_last_fields will be cleared.
3527 	 */
3528 	error = 0;
3529 flush_out:
3530 	spin_lock(&iip->ili_lock);
3531 	iip->ili_last_fields = iip->ili_fields;
3532 	iip->ili_fields = 0;
3533 	iip->ili_fsync_fields = 0;
3534 	spin_unlock(&iip->ili_lock);
3535 
3536 	/*
3537 	 * Store the current LSN of the inode so that we can tell whether the
3538 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3539 	 */
3540 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3541 				&iip->ili_item.li_lsn);
3542 
3543 	/* generate the checksum. */
3544 	xfs_dinode_calc_crc(mp, dip);
3545 	return error;
3546 }
3547 
3548 /*
3549  * Non-blocking flush of dirty inode metadata into the backing buffer.
3550  *
3551  * The caller must have a reference to the inode and hold the cluster buffer
3552  * locked. The function will walk across all the inodes on the cluster buffer it
3553  * can find and lock without blocking, and flush them to the cluster buffer.
3554  *
3555  * On successful flushing of at least one inode, the caller must write out the
3556  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3557  * the caller needs to release the buffer. On failure, the filesystem will be
3558  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3559  * will be returned.
3560  */
3561 int
3562 xfs_iflush_cluster(
3563 	struct xfs_buf		*bp)
3564 {
3565 	struct xfs_mount	*mp = bp->b_mount;
3566 	struct xfs_log_item	*lip, *n;
3567 	struct xfs_inode	*ip;
3568 	struct xfs_inode_log_item *iip;
3569 	int			clcount = 0;
3570 	int			error = 0;
3571 
3572 	/*
3573 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3574 	 * will remove itself from the list.
3575 	 */
3576 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3577 		iip = (struct xfs_inode_log_item *)lip;
3578 		ip = iip->ili_inode;
3579 
3580 		/*
3581 		 * Quick and dirty check to avoid locks if possible.
3582 		 */
3583 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3584 			continue;
3585 		if (xfs_ipincount(ip))
3586 			continue;
3587 
3588 		/*
3589 		 * The inode is still attached to the buffer, which means it is
3590 		 * dirty but reclaim might try to grab it. Check carefully for
3591 		 * that, and grab the ilock while still holding the i_flags_lock
3592 		 * to guarantee reclaim will not be able to reclaim this inode
3593 		 * once we drop the i_flags_lock.
3594 		 */
3595 		spin_lock(&ip->i_flags_lock);
3596 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3597 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3598 			spin_unlock(&ip->i_flags_lock);
3599 			continue;
3600 		}
3601 
3602 		/*
3603 		 * ILOCK will pin the inode against reclaim and prevent
3604 		 * concurrent transactions modifying the inode while we are
3605 		 * flushing the inode. If we get the lock, set the flushing
3606 		 * state before we drop the i_flags_lock.
3607 		 */
3608 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3609 			spin_unlock(&ip->i_flags_lock);
3610 			continue;
3611 		}
3612 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3613 		spin_unlock(&ip->i_flags_lock);
3614 
3615 		/*
3616 		 * Abort flushing this inode if we are shut down because the
3617 		 * inode may not currently be in the AIL. This can occur when
3618 		 * log I/O failure unpins the inode without inserting into the
3619 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3620 		 * that otherwise looks like it should be flushed.
3621 		 */
3622 		if (xlog_is_shutdown(mp->m_log)) {
3623 			xfs_iunpin_wait(ip);
3624 			xfs_iflush_abort(ip);
3625 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626 			error = -EIO;
3627 			continue;
3628 		}
3629 
3630 		/* don't block waiting on a log force to unpin dirty inodes */
3631 		if (xfs_ipincount(ip)) {
3632 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3633 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3634 			continue;
3635 		}
3636 
3637 		if (!xfs_inode_clean(ip))
3638 			error = xfs_iflush(ip, bp);
3639 		else
3640 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3641 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3642 		if (error)
3643 			break;
3644 		clcount++;
3645 	}
3646 
3647 	if (error) {
3648 		/*
3649 		 * Shutdown first so we kill the log before we release this
3650 		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3651 		 * of the log, failing it before the _log_ is shut down can
3652 		 * result in the log tail being moved forward in the journal
3653 		 * on disk because log writes can still be taking place. Hence
3654 		 * unpinning the tail will allow the ICREATE intent to be
3655 		 * removed from the log an recovery will fail with uninitialised
3656 		 * inode cluster buffers.
3657 		 */
3658 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3659 		bp->b_flags |= XBF_ASYNC;
3660 		xfs_buf_ioend_fail(bp);
3661 		return error;
3662 	}
3663 
3664 	if (!clcount)
3665 		return -EAGAIN;
3666 
3667 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3668 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3669 	return 0;
3670 
3671 }
3672 
3673 /* Release an inode. */
3674 void
3675 xfs_irele(
3676 	struct xfs_inode	*ip)
3677 {
3678 	trace_xfs_irele(ip, _RET_IP_);
3679 	iput(VFS_I(ip));
3680 }
3681 
3682 /*
3683  * Ensure all commited transactions touching the inode are written to the log.
3684  */
3685 int
3686 xfs_log_force_inode(
3687 	struct xfs_inode	*ip)
3688 {
3689 	xfs_csn_t		seq = 0;
3690 
3691 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3692 	if (xfs_ipincount(ip))
3693 		seq = ip->i_itemp->ili_commit_seq;
3694 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3695 
3696 	if (!seq)
3697 		return 0;
3698 	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3699 }
3700 
3701 /*
3702  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3703  * abide vfs locking order (lowest pointer value goes first) and breaking the
3704  * layout leases before proceeding.  The loop is needed because we cannot call
3705  * the blocking break_layout() with the iolocks held, and therefore have to
3706  * back out both locks.
3707  */
3708 static int
3709 xfs_iolock_two_inodes_and_break_layout(
3710 	struct inode		*src,
3711 	struct inode		*dest)
3712 {
3713 	int			error;
3714 
3715 	if (src > dest)
3716 		swap(src, dest);
3717 
3718 retry:
3719 	/* Wait to break both inodes' layouts before we start locking. */
3720 	error = break_layout(src, true);
3721 	if (error)
3722 		return error;
3723 	if (src != dest) {
3724 		error = break_layout(dest, true);
3725 		if (error)
3726 			return error;
3727 	}
3728 
3729 	/* Lock one inode and make sure nobody got in and leased it. */
3730 	inode_lock(src);
3731 	error = break_layout(src, false);
3732 	if (error) {
3733 		inode_unlock(src);
3734 		if (error == -EWOULDBLOCK)
3735 			goto retry;
3736 		return error;
3737 	}
3738 
3739 	if (src == dest)
3740 		return 0;
3741 
3742 	/* Lock the other inode and make sure nobody got in and leased it. */
3743 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3744 	error = break_layout(dest, false);
3745 	if (error) {
3746 		inode_unlock(src);
3747 		inode_unlock(dest);
3748 		if (error == -EWOULDBLOCK)
3749 			goto retry;
3750 		return error;
3751 	}
3752 
3753 	return 0;
3754 }
3755 
3756 /*
3757  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3758  * mmap activity.
3759  */
3760 int
3761 xfs_ilock2_io_mmap(
3762 	struct xfs_inode	*ip1,
3763 	struct xfs_inode	*ip2)
3764 {
3765 	int			ret;
3766 
3767 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3768 	if (ret)
3769 		return ret;
3770 	filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3771 				    VFS_I(ip2)->i_mapping);
3772 	return 0;
3773 }
3774 
3775 /* Unlock both inodes to allow IO and mmap activity. */
3776 void
3777 xfs_iunlock2_io_mmap(
3778 	struct xfs_inode	*ip1,
3779 	struct xfs_inode	*ip2)
3780 {
3781 	filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3782 				      VFS_I(ip2)->i_mapping);
3783 	inode_unlock(VFS_I(ip2));
3784 	if (ip1 != ip2)
3785 		inode_unlock(VFS_I(ip1));
3786 }
3787