1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_inum.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_error.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_cksum.h" 47 #include "xfs_trace.h" 48 #include "xfs_icache.h" 49 #include "xfs_symlink.h" 50 #include "xfs_trans_priv.h" 51 #include "xfs_log.h" 52 #include "xfs_bmap_btree.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 63 64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * These two are wrapper routines around the xfs_ilock() routine used to 82 * centralize some grungy code. They are used in places that wish to lock the 83 * inode solely for reading the extents. The reason these places can't just 84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 85 * bringing in of the extents from disk for a file in b-tree format. If the 86 * inode is in b-tree format, then we need to lock the inode exclusively until 87 * the extents are read in. Locking it exclusively all the time would limit 88 * our parallelism unnecessarily, though. What we do instead is check to see 89 * if the extents have been read in yet, and only lock the inode exclusively 90 * if they have not. 91 * 92 * The functions return a value which should be given to the corresponding 93 * xfs_iunlock() call. 94 */ 95 uint 96 xfs_ilock_data_map_shared( 97 struct xfs_inode *ip) 98 { 99 uint lock_mode = XFS_ILOCK_SHARED; 100 101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 103 lock_mode = XFS_ILOCK_EXCL; 104 xfs_ilock(ip, lock_mode); 105 return lock_mode; 106 } 107 108 uint 109 xfs_ilock_attr_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 /* 122 * The xfs inode contains 2 locks: a multi-reader lock called the 123 * i_iolock and a multi-reader lock called the i_lock. This routine 124 * allows either or both of the locks to be obtained. 125 * 126 * The 2 locks should always be ordered so that the IO lock is 127 * obtained first in order to prevent deadlock. 128 * 129 * ip -- the inode being locked 130 * lock_flags -- this parameter indicates the inode's locks 131 * to be locked. It can be: 132 * XFS_IOLOCK_SHARED, 133 * XFS_IOLOCK_EXCL, 134 * XFS_ILOCK_SHARED, 135 * XFS_ILOCK_EXCL, 136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 140 */ 141 void 142 xfs_ilock( 143 xfs_inode_t *ip, 144 uint lock_flags) 145 { 146 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 147 148 /* 149 * You can't set both SHARED and EXCL for the same lock, 150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 152 */ 153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 158 159 if (lock_flags & XFS_IOLOCK_EXCL) 160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 161 else if (lock_flags & XFS_IOLOCK_SHARED) 162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 /* 190 * You can't set both SHARED and EXCL for the same lock, 191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 193 */ 194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 199 200 if (lock_flags & XFS_IOLOCK_EXCL) { 201 if (!mrtryupdate(&ip->i_iolock)) 202 goto out; 203 } else if (lock_flags & XFS_IOLOCK_SHARED) { 204 if (!mrtryaccess(&ip->i_iolock)) 205 goto out; 206 } 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!mrtryupdate(&ip->i_lock)) 209 goto out_undo_iolock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!mrtryaccess(&ip->i_lock)) 212 goto out_undo_iolock; 213 } 214 return 1; 215 216 out_undo_iolock: 217 if (lock_flags & XFS_IOLOCK_EXCL) 218 mrunlock_excl(&ip->i_iolock); 219 else if (lock_flags & XFS_IOLOCK_SHARED) 220 mrunlock_shared(&ip->i_iolock); 221 out: 222 return 0; 223 } 224 225 /* 226 * xfs_iunlock() is used to drop the inode locks acquired with 227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 229 * that we know which locks to drop. 230 * 231 * ip -- the inode being unlocked 232 * lock_flags -- this parameter indicates the inode's locks to be 233 * to be unlocked. See the comment for xfs_ilock() for a list 234 * of valid values for this parameter. 235 * 236 */ 237 void 238 xfs_iunlock( 239 xfs_inode_t *ip, 240 uint lock_flags) 241 { 242 /* 243 * You can't set both SHARED and EXCL for the same lock, 244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 246 */ 247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 252 ASSERT(lock_flags != 0); 253 254 if (lock_flags & XFS_IOLOCK_EXCL) 255 mrunlock_excl(&ip->i_iolock); 256 else if (lock_flags & XFS_IOLOCK_SHARED) 257 mrunlock_shared(&ip->i_iolock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 mrunlock_excl(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 mrunlock_shared(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 mrdemote(&ip->i_lock); 281 if (lock_flags & XFS_IOLOCK_EXCL) 282 mrdemote(&ip->i_iolock); 283 284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 285 } 286 287 #if defined(DEBUG) || defined(XFS_WARN) 288 int 289 xfs_isilocked( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 294 if (!(lock_flags & XFS_ILOCK_SHARED)) 295 return !!ip->i_lock.mr_writer; 296 return rwsem_is_locked(&ip->i_lock.mr_lock); 297 } 298 299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 300 if (!(lock_flags & XFS_IOLOCK_SHARED)) 301 return !!ip->i_iolock.mr_writer; 302 return rwsem_is_locked(&ip->i_iolock.mr_lock); 303 } 304 305 ASSERT(0); 306 return 0; 307 } 308 #endif 309 310 #ifdef DEBUG 311 int xfs_locked_n; 312 int xfs_small_retries; 313 int xfs_middle_retries; 314 int xfs_lots_retries; 315 int xfs_lock_delays; 316 #endif 317 318 /* 319 * Bump the subclass so xfs_lock_inodes() acquires each lock with 320 * a different value 321 */ 322 static inline int 323 xfs_lock_inumorder(int lock_mode, int subclass) 324 { 325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 329 330 return lock_mode; 331 } 332 333 /* 334 * The following routine will lock n inodes in exclusive mode. 335 * We assume the caller calls us with the inodes in i_ino order. 336 * 337 * We need to detect deadlock where an inode that we lock 338 * is in the AIL and we start waiting for another inode that is locked 339 * by a thread in a long running transaction (such as truncate). This can 340 * result in deadlock since the long running trans might need to wait 341 * for the inode we just locked in order to push the tail and free space 342 * in the log. 343 */ 344 void 345 xfs_lock_inodes( 346 xfs_inode_t **ips, 347 int inodes, 348 uint lock_mode) 349 { 350 int attempts = 0, i, j, try_lock; 351 xfs_log_item_t *lp; 352 353 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 354 355 try_lock = 0; 356 i = 0; 357 358 again: 359 for (; i < inodes; i++) { 360 ASSERT(ips[i]); 361 362 if (i && (ips[i] == ips[i-1])) /* Already locked */ 363 continue; 364 365 /* 366 * If try_lock is not set yet, make sure all locked inodes 367 * are not in the AIL. 368 * If any are, set try_lock to be used later. 369 */ 370 371 if (!try_lock) { 372 for (j = (i - 1); j >= 0 && !try_lock; j--) { 373 lp = (xfs_log_item_t *)ips[j]->i_itemp; 374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 375 try_lock++; 376 } 377 } 378 } 379 380 /* 381 * If any of the previous locks we have locked is in the AIL, 382 * we must TRY to get the second and subsequent locks. If 383 * we can't get any, we must release all we have 384 * and try again. 385 */ 386 387 if (try_lock) { 388 /* try_lock must be 0 if i is 0. */ 389 /* 390 * try_lock means we have an inode locked 391 * that is in the AIL. 392 */ 393 ASSERT(i != 0); 394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 395 attempts++; 396 397 /* 398 * Unlock all previous guys and try again. 399 * xfs_iunlock will try to push the tail 400 * if the inode is in the AIL. 401 */ 402 403 for(j = i - 1; j >= 0; j--) { 404 405 /* 406 * Check to see if we've already 407 * unlocked this one. 408 * Not the first one going back, 409 * and the inode ptr is the same. 410 */ 411 if ((j != (i - 1)) && ips[j] == 412 ips[j+1]) 413 continue; 414 415 xfs_iunlock(ips[j], lock_mode); 416 } 417 418 if ((attempts % 5) == 0) { 419 delay(1); /* Don't just spin the CPU */ 420 #ifdef DEBUG 421 xfs_lock_delays++; 422 #endif 423 } 424 i = 0; 425 try_lock = 0; 426 goto again; 427 } 428 } else { 429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 430 } 431 } 432 433 #ifdef DEBUG 434 if (attempts) { 435 if (attempts < 5) xfs_small_retries++; 436 else if (attempts < 100) xfs_middle_retries++; 437 else xfs_lots_retries++; 438 } else { 439 xfs_locked_n++; 440 } 441 #endif 442 } 443 444 /* 445 * xfs_lock_two_inodes() can only be used to lock one type of lock 446 * at a time - the iolock or the ilock, but not both at once. If 447 * we lock both at once, lockdep will report false positives saying 448 * we have violated locking orders. 449 */ 450 void 451 xfs_lock_two_inodes( 452 xfs_inode_t *ip0, 453 xfs_inode_t *ip1, 454 uint lock_mode) 455 { 456 xfs_inode_t *temp; 457 int attempts = 0; 458 xfs_log_item_t *lp; 459 460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 462 ASSERT(ip0->i_ino != ip1->i_ino); 463 464 if (ip0->i_ino > ip1->i_ino) { 465 temp = ip0; 466 ip0 = ip1; 467 ip1 = temp; 468 } 469 470 again: 471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 472 473 /* 474 * If the first lock we have locked is in the AIL, we must TRY to get 475 * the second lock. If we can't get it, we must release the first one 476 * and try again. 477 */ 478 lp = (xfs_log_item_t *)ip0->i_itemp; 479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 481 xfs_iunlock(ip0, lock_mode); 482 if ((++attempts % 5) == 0) 483 delay(1); /* Don't just spin the CPU */ 484 goto again; 485 } 486 } else { 487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 488 } 489 } 490 491 492 void 493 __xfs_iflock( 494 struct xfs_inode *ip) 495 { 496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 498 499 do { 500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 501 if (xfs_isiflocked(ip)) 502 io_schedule(); 503 } while (!xfs_iflock_nowait(ip)); 504 505 finish_wait(wq, &wait.wait); 506 } 507 508 STATIC uint 509 _xfs_dic2xflags( 510 __uint16_t di_flags) 511 { 512 uint flags = 0; 513 514 if (di_flags & XFS_DIFLAG_ANY) { 515 if (di_flags & XFS_DIFLAG_REALTIME) 516 flags |= XFS_XFLAG_REALTIME; 517 if (di_flags & XFS_DIFLAG_PREALLOC) 518 flags |= XFS_XFLAG_PREALLOC; 519 if (di_flags & XFS_DIFLAG_IMMUTABLE) 520 flags |= XFS_XFLAG_IMMUTABLE; 521 if (di_flags & XFS_DIFLAG_APPEND) 522 flags |= XFS_XFLAG_APPEND; 523 if (di_flags & XFS_DIFLAG_SYNC) 524 flags |= XFS_XFLAG_SYNC; 525 if (di_flags & XFS_DIFLAG_NOATIME) 526 flags |= XFS_XFLAG_NOATIME; 527 if (di_flags & XFS_DIFLAG_NODUMP) 528 flags |= XFS_XFLAG_NODUMP; 529 if (di_flags & XFS_DIFLAG_RTINHERIT) 530 flags |= XFS_XFLAG_RTINHERIT; 531 if (di_flags & XFS_DIFLAG_PROJINHERIT) 532 flags |= XFS_XFLAG_PROJINHERIT; 533 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 534 flags |= XFS_XFLAG_NOSYMLINKS; 535 if (di_flags & XFS_DIFLAG_EXTSIZE) 536 flags |= XFS_XFLAG_EXTSIZE; 537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 538 flags |= XFS_XFLAG_EXTSZINHERIT; 539 if (di_flags & XFS_DIFLAG_NODEFRAG) 540 flags |= XFS_XFLAG_NODEFRAG; 541 if (di_flags & XFS_DIFLAG_FILESTREAM) 542 flags |= XFS_XFLAG_FILESTREAM; 543 } 544 545 return flags; 546 } 547 548 uint 549 xfs_ip2xflags( 550 xfs_inode_t *ip) 551 { 552 xfs_icdinode_t *dic = &ip->i_d; 553 554 return _xfs_dic2xflags(dic->di_flags) | 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 556 } 557 558 uint 559 xfs_dic2xflags( 560 xfs_dinode_t *dip) 561 { 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 564 } 565 566 /* 567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 568 * is allowed, otherwise it has to be an exact match. If a CI match is found, 569 * ci_name->name will point to a the actual name (caller must free) or 570 * will be set to NULL if an exact match is found. 571 */ 572 int 573 xfs_lookup( 574 xfs_inode_t *dp, 575 struct xfs_name *name, 576 xfs_inode_t **ipp, 577 struct xfs_name *ci_name) 578 { 579 xfs_ino_t inum; 580 int error; 581 uint lock_mode; 582 583 trace_xfs_lookup(dp, name); 584 585 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 586 return XFS_ERROR(EIO); 587 588 lock_mode = xfs_ilock_data_map_shared(dp); 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 590 xfs_iunlock(dp, lock_mode); 591 592 if (error) 593 goto out; 594 595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 596 if (error) 597 goto out_free_name; 598 599 return 0; 600 601 out_free_name: 602 if (ci_name) 603 kmem_free(ci_name->name); 604 out: 605 *ipp = NULL; 606 return error; 607 } 608 609 /* 610 * Allocate an inode on disk and return a copy of its in-core version. 611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 612 * appropriately within the inode. The uid and gid for the inode are 613 * set according to the contents of the given cred structure. 614 * 615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 616 * has a free inode available, call xfs_iget() to obtain the in-core 617 * version of the allocated inode. Finally, fill in the inode and 618 * log its initial contents. In this case, ialloc_context would be 619 * set to NULL. 620 * 621 * If xfs_dialloc() does not have an available inode, it will replenish 622 * its supply by doing an allocation. Since we can only do one 623 * allocation within a transaction without deadlocks, we must commit 624 * the current transaction before returning the inode itself. 625 * In this case, therefore, we will set ialloc_context and return. 626 * The caller should then commit the current transaction, start a new 627 * transaction, and call xfs_ialloc() again to actually get the inode. 628 * 629 * To ensure that some other process does not grab the inode that 630 * was allocated during the first call to xfs_ialloc(), this routine 631 * also returns the [locked] bp pointing to the head of the freelist 632 * as ialloc_context. The caller should hold this buffer across 633 * the commit and pass it back into this routine on the second call. 634 * 635 * If we are allocating quota inodes, we do not have a parent inode 636 * to attach to or associate with (i.e. pip == NULL) because they 637 * are not linked into the directory structure - they are attached 638 * directly to the superblock - and so have no parent. 639 */ 640 int 641 xfs_ialloc( 642 xfs_trans_t *tp, 643 xfs_inode_t *pip, 644 umode_t mode, 645 xfs_nlink_t nlink, 646 xfs_dev_t rdev, 647 prid_t prid, 648 int okalloc, 649 xfs_buf_t **ialloc_context, 650 xfs_inode_t **ipp) 651 { 652 struct xfs_mount *mp = tp->t_mountp; 653 xfs_ino_t ino; 654 xfs_inode_t *ip; 655 uint flags; 656 int error; 657 timespec_t tv; 658 int filestreams = 0; 659 660 /* 661 * Call the space management code to pick 662 * the on-disk inode to be allocated. 663 */ 664 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 665 ialloc_context, &ino); 666 if (error) 667 return error; 668 if (*ialloc_context || ino == NULLFSINO) { 669 *ipp = NULL; 670 return 0; 671 } 672 ASSERT(*ialloc_context == NULL); 673 674 /* 675 * Get the in-core inode with the lock held exclusively. 676 * This is because we're setting fields here we need 677 * to prevent others from looking at until we're done. 678 */ 679 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 680 XFS_ILOCK_EXCL, &ip); 681 if (error) 682 return error; 683 ASSERT(ip != NULL); 684 685 ip->i_d.di_mode = mode; 686 ip->i_d.di_onlink = 0; 687 ip->i_d.di_nlink = nlink; 688 ASSERT(ip->i_d.di_nlink == nlink); 689 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 690 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 691 xfs_set_projid(ip, prid); 692 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 693 694 /* 695 * If the superblock version is up to where we support new format 696 * inodes and this is currently an old format inode, then change 697 * the inode version number now. This way we only do the conversion 698 * here rather than here and in the flush/logging code. 699 */ 700 if (xfs_sb_version_hasnlink(&mp->m_sb) && 701 ip->i_d.di_version == 1) { 702 ip->i_d.di_version = 2; 703 /* 704 * We've already zeroed the old link count, the projid field, 705 * and the pad field. 706 */ 707 } 708 709 /* 710 * Project ids won't be stored on disk if we are using a version 1 inode. 711 */ 712 if ((prid != 0) && (ip->i_d.di_version == 1)) 713 xfs_bump_ino_vers2(tp, ip); 714 715 if (pip && XFS_INHERIT_GID(pip)) { 716 ip->i_d.di_gid = pip->i_d.di_gid; 717 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 718 ip->i_d.di_mode |= S_ISGID; 719 } 720 } 721 722 /* 723 * If the group ID of the new file does not match the effective group 724 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 725 * (and only if the irix_sgid_inherit compatibility variable is set). 726 */ 727 if ((irix_sgid_inherit) && 728 (ip->i_d.di_mode & S_ISGID) && 729 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 730 ip->i_d.di_mode &= ~S_ISGID; 731 } 732 733 ip->i_d.di_size = 0; 734 ip->i_d.di_nextents = 0; 735 ASSERT(ip->i_d.di_nblocks == 0); 736 737 nanotime(&tv); 738 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 739 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 740 ip->i_d.di_atime = ip->i_d.di_mtime; 741 ip->i_d.di_ctime = ip->i_d.di_mtime; 742 743 /* 744 * di_gen will have been taken care of in xfs_iread. 745 */ 746 ip->i_d.di_extsize = 0; 747 ip->i_d.di_dmevmask = 0; 748 ip->i_d.di_dmstate = 0; 749 ip->i_d.di_flags = 0; 750 751 if (ip->i_d.di_version == 3) { 752 ASSERT(ip->i_d.di_ino == ino); 753 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 754 ip->i_d.di_crc = 0; 755 ip->i_d.di_changecount = 1; 756 ip->i_d.di_lsn = 0; 757 ip->i_d.di_flags2 = 0; 758 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 759 ip->i_d.di_crtime = ip->i_d.di_mtime; 760 } 761 762 763 flags = XFS_ILOG_CORE; 764 switch (mode & S_IFMT) { 765 case S_IFIFO: 766 case S_IFCHR: 767 case S_IFBLK: 768 case S_IFSOCK: 769 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 770 ip->i_df.if_u2.if_rdev = rdev; 771 ip->i_df.if_flags = 0; 772 flags |= XFS_ILOG_DEV; 773 break; 774 case S_IFREG: 775 /* 776 * we can't set up filestreams until after the VFS inode 777 * is set up properly. 778 */ 779 if (pip && xfs_inode_is_filestream(pip)) 780 filestreams = 1; 781 /* fall through */ 782 case S_IFDIR: 783 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 784 uint di_flags = 0; 785 786 if (S_ISDIR(mode)) { 787 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 788 di_flags |= XFS_DIFLAG_RTINHERIT; 789 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 790 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 791 ip->i_d.di_extsize = pip->i_d.di_extsize; 792 } 793 } else if (S_ISREG(mode)) { 794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 795 di_flags |= XFS_DIFLAG_REALTIME; 796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 797 di_flags |= XFS_DIFLAG_EXTSIZE; 798 ip->i_d.di_extsize = pip->i_d.di_extsize; 799 } 800 } 801 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 802 xfs_inherit_noatime) 803 di_flags |= XFS_DIFLAG_NOATIME; 804 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 805 xfs_inherit_nodump) 806 di_flags |= XFS_DIFLAG_NODUMP; 807 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 808 xfs_inherit_sync) 809 di_flags |= XFS_DIFLAG_SYNC; 810 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 811 xfs_inherit_nosymlinks) 812 di_flags |= XFS_DIFLAG_NOSYMLINKS; 813 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 814 di_flags |= XFS_DIFLAG_PROJINHERIT; 815 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 816 xfs_inherit_nodefrag) 817 di_flags |= XFS_DIFLAG_NODEFRAG; 818 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 819 di_flags |= XFS_DIFLAG_FILESTREAM; 820 ip->i_d.di_flags |= di_flags; 821 } 822 /* FALLTHROUGH */ 823 case S_IFLNK: 824 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 825 ip->i_df.if_flags = XFS_IFEXTENTS; 826 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 827 ip->i_df.if_u1.if_extents = NULL; 828 break; 829 default: 830 ASSERT(0); 831 } 832 /* 833 * Attribute fork settings for new inode. 834 */ 835 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 836 ip->i_d.di_anextents = 0; 837 838 /* 839 * Log the new values stuffed into the inode. 840 */ 841 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 842 xfs_trans_log_inode(tp, ip, flags); 843 844 /* now that we have an i_mode we can setup inode ops and unlock */ 845 xfs_setup_inode(ip); 846 847 /* now we have set up the vfs inode we can associate the filestream */ 848 if (filestreams) { 849 error = xfs_filestream_associate(pip, ip); 850 if (error < 0) 851 return -error; 852 if (!error) 853 xfs_iflags_set(ip, XFS_IFILESTREAM); 854 } 855 856 *ipp = ip; 857 return 0; 858 } 859 860 /* 861 * Allocates a new inode from disk and return a pointer to the 862 * incore copy. This routine will internally commit the current 863 * transaction and allocate a new one if the Space Manager needed 864 * to do an allocation to replenish the inode free-list. 865 * 866 * This routine is designed to be called from xfs_create and 867 * xfs_create_dir. 868 * 869 */ 870 int 871 xfs_dir_ialloc( 872 xfs_trans_t **tpp, /* input: current transaction; 873 output: may be a new transaction. */ 874 xfs_inode_t *dp, /* directory within whose allocate 875 the inode. */ 876 umode_t mode, 877 xfs_nlink_t nlink, 878 xfs_dev_t rdev, 879 prid_t prid, /* project id */ 880 int okalloc, /* ok to allocate new space */ 881 xfs_inode_t **ipp, /* pointer to inode; it will be 882 locked. */ 883 int *committed) 884 885 { 886 xfs_trans_t *tp; 887 xfs_trans_t *ntp; 888 xfs_inode_t *ip; 889 xfs_buf_t *ialloc_context = NULL; 890 int code; 891 void *dqinfo; 892 uint tflags; 893 894 tp = *tpp; 895 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 896 897 /* 898 * xfs_ialloc will return a pointer to an incore inode if 899 * the Space Manager has an available inode on the free 900 * list. Otherwise, it will do an allocation and replenish 901 * the freelist. Since we can only do one allocation per 902 * transaction without deadlocks, we will need to commit the 903 * current transaction and start a new one. We will then 904 * need to call xfs_ialloc again to get the inode. 905 * 906 * If xfs_ialloc did an allocation to replenish the freelist, 907 * it returns the bp containing the head of the freelist as 908 * ialloc_context. We will hold a lock on it across the 909 * transaction commit so that no other process can steal 910 * the inode(s) that we've just allocated. 911 */ 912 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 913 &ialloc_context, &ip); 914 915 /* 916 * Return an error if we were unable to allocate a new inode. 917 * This should only happen if we run out of space on disk or 918 * encounter a disk error. 919 */ 920 if (code) { 921 *ipp = NULL; 922 return code; 923 } 924 if (!ialloc_context && !ip) { 925 *ipp = NULL; 926 return XFS_ERROR(ENOSPC); 927 } 928 929 /* 930 * If the AGI buffer is non-NULL, then we were unable to get an 931 * inode in one operation. We need to commit the current 932 * transaction and call xfs_ialloc() again. It is guaranteed 933 * to succeed the second time. 934 */ 935 if (ialloc_context) { 936 struct xfs_trans_res tres; 937 938 /* 939 * Normally, xfs_trans_commit releases all the locks. 940 * We call bhold to hang on to the ialloc_context across 941 * the commit. Holding this buffer prevents any other 942 * processes from doing any allocations in this 943 * allocation group. 944 */ 945 xfs_trans_bhold(tp, ialloc_context); 946 /* 947 * Save the log reservation so we can use 948 * them in the next transaction. 949 */ 950 tres.tr_logres = xfs_trans_get_log_res(tp); 951 tres.tr_logcount = xfs_trans_get_log_count(tp); 952 953 /* 954 * We want the quota changes to be associated with the next 955 * transaction, NOT this one. So, detach the dqinfo from this 956 * and attach it to the next transaction. 957 */ 958 dqinfo = NULL; 959 tflags = 0; 960 if (tp->t_dqinfo) { 961 dqinfo = (void *)tp->t_dqinfo; 962 tp->t_dqinfo = NULL; 963 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 964 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 965 } 966 967 ntp = xfs_trans_dup(tp); 968 code = xfs_trans_commit(tp, 0); 969 tp = ntp; 970 if (committed != NULL) { 971 *committed = 1; 972 } 973 /* 974 * If we get an error during the commit processing, 975 * release the buffer that is still held and return 976 * to the caller. 977 */ 978 if (code) { 979 xfs_buf_relse(ialloc_context); 980 if (dqinfo) { 981 tp->t_dqinfo = dqinfo; 982 xfs_trans_free_dqinfo(tp); 983 } 984 *tpp = ntp; 985 *ipp = NULL; 986 return code; 987 } 988 989 /* 990 * transaction commit worked ok so we can drop the extra ticket 991 * reference that we gained in xfs_trans_dup() 992 */ 993 xfs_log_ticket_put(tp->t_ticket); 994 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 995 code = xfs_trans_reserve(tp, &tres, 0, 0); 996 997 /* 998 * Re-attach the quota info that we detached from prev trx. 999 */ 1000 if (dqinfo) { 1001 tp->t_dqinfo = dqinfo; 1002 tp->t_flags |= tflags; 1003 } 1004 1005 if (code) { 1006 xfs_buf_relse(ialloc_context); 1007 *tpp = ntp; 1008 *ipp = NULL; 1009 return code; 1010 } 1011 xfs_trans_bjoin(tp, ialloc_context); 1012 1013 /* 1014 * Call ialloc again. Since we've locked out all 1015 * other allocations in this allocation group, 1016 * this call should always succeed. 1017 */ 1018 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1019 okalloc, &ialloc_context, &ip); 1020 1021 /* 1022 * If we get an error at this point, return to the caller 1023 * so that the current transaction can be aborted. 1024 */ 1025 if (code) { 1026 *tpp = tp; 1027 *ipp = NULL; 1028 return code; 1029 } 1030 ASSERT(!ialloc_context && ip); 1031 1032 } else { 1033 if (committed != NULL) 1034 *committed = 0; 1035 } 1036 1037 *ipp = ip; 1038 *tpp = tp; 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * Decrement the link count on an inode & log the change. 1045 * If this causes the link count to go to zero, initiate the 1046 * logging activity required to truncate a file. 1047 */ 1048 int /* error */ 1049 xfs_droplink( 1050 xfs_trans_t *tp, 1051 xfs_inode_t *ip) 1052 { 1053 int error; 1054 1055 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1056 1057 ASSERT (ip->i_d.di_nlink > 0); 1058 ip->i_d.di_nlink--; 1059 drop_nlink(VFS_I(ip)); 1060 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1061 1062 error = 0; 1063 if (ip->i_d.di_nlink == 0) { 1064 /* 1065 * We're dropping the last link to this file. 1066 * Move the on-disk inode to the AGI unlinked list. 1067 * From xfs_inactive() we will pull the inode from 1068 * the list and free it. 1069 */ 1070 error = xfs_iunlink(tp, ip); 1071 } 1072 return error; 1073 } 1074 1075 /* 1076 * This gets called when the inode's version needs to be changed from 1 to 2. 1077 * Currently this happens when the nlink field overflows the old 16-bit value 1078 * or when chproj is called to change the project for the first time. 1079 * As a side effect the superblock version will also get rev'd 1080 * to contain the NLINK bit. 1081 */ 1082 void 1083 xfs_bump_ino_vers2( 1084 xfs_trans_t *tp, 1085 xfs_inode_t *ip) 1086 { 1087 xfs_mount_t *mp; 1088 1089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1090 ASSERT(ip->i_d.di_version == 1); 1091 1092 ip->i_d.di_version = 2; 1093 ip->i_d.di_onlink = 0; 1094 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1095 mp = tp->t_mountp; 1096 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1097 spin_lock(&mp->m_sb_lock); 1098 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1099 xfs_sb_version_addnlink(&mp->m_sb); 1100 spin_unlock(&mp->m_sb_lock); 1101 xfs_mod_sb(tp, XFS_SB_VERSIONNUM); 1102 } else { 1103 spin_unlock(&mp->m_sb_lock); 1104 } 1105 } 1106 /* Caller must log the inode */ 1107 } 1108 1109 /* 1110 * Increment the link count on an inode & log the change. 1111 */ 1112 int 1113 xfs_bumplink( 1114 xfs_trans_t *tp, 1115 xfs_inode_t *ip) 1116 { 1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1118 1119 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1120 ip->i_d.di_nlink++; 1121 inc_nlink(VFS_I(ip)); 1122 if ((ip->i_d.di_version == 1) && 1123 (ip->i_d.di_nlink > XFS_MAXLINK_1)) { 1124 /* 1125 * The inode has increased its number of links beyond 1126 * what can fit in an old format inode. It now needs 1127 * to be converted to a version 2 inode with a 32 bit 1128 * link count. If this is the first inode in the file 1129 * system to do this, then we need to bump the superblock 1130 * version number as well. 1131 */ 1132 xfs_bump_ino_vers2(tp, ip); 1133 } 1134 1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1136 return 0; 1137 } 1138 1139 int 1140 xfs_create( 1141 xfs_inode_t *dp, 1142 struct xfs_name *name, 1143 umode_t mode, 1144 xfs_dev_t rdev, 1145 xfs_inode_t **ipp) 1146 { 1147 int is_dir = S_ISDIR(mode); 1148 struct xfs_mount *mp = dp->i_mount; 1149 struct xfs_inode *ip = NULL; 1150 struct xfs_trans *tp = NULL; 1151 int error; 1152 xfs_bmap_free_t free_list; 1153 xfs_fsblock_t first_block; 1154 bool unlock_dp_on_error = false; 1155 uint cancel_flags; 1156 int committed; 1157 prid_t prid; 1158 struct xfs_dquot *udqp = NULL; 1159 struct xfs_dquot *gdqp = NULL; 1160 struct xfs_dquot *pdqp = NULL; 1161 struct xfs_trans_res tres; 1162 uint resblks; 1163 1164 trace_xfs_create(dp, name); 1165 1166 if (XFS_FORCED_SHUTDOWN(mp)) 1167 return XFS_ERROR(EIO); 1168 1169 prid = xfs_get_initial_prid(dp); 1170 1171 /* 1172 * Make sure that we have allocated dquot(s) on disk. 1173 */ 1174 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1175 xfs_kgid_to_gid(current_fsgid()), prid, 1176 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1177 &udqp, &gdqp, &pdqp); 1178 if (error) 1179 return error; 1180 1181 if (is_dir) { 1182 rdev = 0; 1183 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1184 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres; 1185 tres.tr_logcount = XFS_MKDIR_LOG_COUNT; 1186 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1187 } else { 1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1189 tres.tr_logres = M_RES(mp)->tr_create.tr_logres; 1190 tres.tr_logcount = XFS_CREATE_LOG_COUNT; 1191 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1192 } 1193 1194 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1195 1196 /* 1197 * Initially assume that the file does not exist and 1198 * reserve the resources for that case. If that is not 1199 * the case we'll drop the one we have and get a more 1200 * appropriate transaction later. 1201 */ 1202 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1203 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1204 if (error == ENOSPC) { 1205 /* flush outstanding delalloc blocks and retry */ 1206 xfs_flush_inodes(mp); 1207 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1208 } 1209 if (error == ENOSPC) { 1210 /* No space at all so try a "no-allocation" reservation */ 1211 resblks = 0; 1212 error = xfs_trans_reserve(tp, &tres, 0, 0); 1213 } 1214 if (error) { 1215 cancel_flags = 0; 1216 goto out_trans_cancel; 1217 } 1218 1219 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1220 unlock_dp_on_error = true; 1221 1222 xfs_bmap_init(&free_list, &first_block); 1223 1224 /* 1225 * Reserve disk quota and the inode. 1226 */ 1227 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1228 pdqp, resblks, 1, 0); 1229 if (error) 1230 goto out_trans_cancel; 1231 1232 error = xfs_dir_canenter(tp, dp, name, resblks); 1233 if (error) 1234 goto out_trans_cancel; 1235 1236 /* 1237 * A newly created regular or special file just has one directory 1238 * entry pointing to them, but a directory also the "." entry 1239 * pointing to itself. 1240 */ 1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1242 prid, resblks > 0, &ip, &committed); 1243 if (error) { 1244 if (error == ENOSPC) 1245 goto out_trans_cancel; 1246 goto out_trans_abort; 1247 } 1248 1249 /* 1250 * Now we join the directory inode to the transaction. We do not do it 1251 * earlier because xfs_dir_ialloc might commit the previous transaction 1252 * (and release all the locks). An error from here on will result in 1253 * the transaction cancel unlocking dp so don't do it explicitly in the 1254 * error path. 1255 */ 1256 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1257 unlock_dp_on_error = false; 1258 1259 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1260 &first_block, &free_list, resblks ? 1261 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1262 if (error) { 1263 ASSERT(error != ENOSPC); 1264 goto out_trans_abort; 1265 } 1266 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1267 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1268 1269 if (is_dir) { 1270 error = xfs_dir_init(tp, ip, dp); 1271 if (error) 1272 goto out_bmap_cancel; 1273 1274 error = xfs_bumplink(tp, dp); 1275 if (error) 1276 goto out_bmap_cancel; 1277 } 1278 1279 /* 1280 * If this is a synchronous mount, make sure that the 1281 * create transaction goes to disk before returning to 1282 * the user. 1283 */ 1284 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1285 xfs_trans_set_sync(tp); 1286 1287 /* 1288 * Attach the dquot(s) to the inodes and modify them incore. 1289 * These ids of the inode couldn't have changed since the new 1290 * inode has been locked ever since it was created. 1291 */ 1292 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1293 1294 error = xfs_bmap_finish(&tp, &free_list, &committed); 1295 if (error) 1296 goto out_bmap_cancel; 1297 1298 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1299 if (error) 1300 goto out_release_inode; 1301 1302 xfs_qm_dqrele(udqp); 1303 xfs_qm_dqrele(gdqp); 1304 xfs_qm_dqrele(pdqp); 1305 1306 *ipp = ip; 1307 return 0; 1308 1309 out_bmap_cancel: 1310 xfs_bmap_cancel(&free_list); 1311 out_trans_abort: 1312 cancel_flags |= XFS_TRANS_ABORT; 1313 out_trans_cancel: 1314 xfs_trans_cancel(tp, cancel_flags); 1315 out_release_inode: 1316 /* 1317 * Wait until after the current transaction is aborted to 1318 * release the inode. This prevents recursive transactions 1319 * and deadlocks from xfs_inactive. 1320 */ 1321 if (ip) 1322 IRELE(ip); 1323 1324 xfs_qm_dqrele(udqp); 1325 xfs_qm_dqrele(gdqp); 1326 xfs_qm_dqrele(pdqp); 1327 1328 if (unlock_dp_on_error) 1329 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1330 return error; 1331 } 1332 1333 int 1334 xfs_create_tmpfile( 1335 struct xfs_inode *dp, 1336 struct dentry *dentry, 1337 umode_t mode, 1338 struct xfs_inode **ipp) 1339 { 1340 struct xfs_mount *mp = dp->i_mount; 1341 struct xfs_inode *ip = NULL; 1342 struct xfs_trans *tp = NULL; 1343 int error; 1344 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1345 prid_t prid; 1346 struct xfs_dquot *udqp = NULL; 1347 struct xfs_dquot *gdqp = NULL; 1348 struct xfs_dquot *pdqp = NULL; 1349 struct xfs_trans_res *tres; 1350 uint resblks; 1351 1352 if (XFS_FORCED_SHUTDOWN(mp)) 1353 return XFS_ERROR(EIO); 1354 1355 prid = xfs_get_initial_prid(dp); 1356 1357 /* 1358 * Make sure that we have allocated dquot(s) on disk. 1359 */ 1360 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1361 xfs_kgid_to_gid(current_fsgid()), prid, 1362 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1363 &udqp, &gdqp, &pdqp); 1364 if (error) 1365 return error; 1366 1367 resblks = XFS_IALLOC_SPACE_RES(mp); 1368 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1369 1370 tres = &M_RES(mp)->tr_create_tmpfile; 1371 error = xfs_trans_reserve(tp, tres, resblks, 0); 1372 if (error == ENOSPC) { 1373 /* No space at all so try a "no-allocation" reservation */ 1374 resblks = 0; 1375 error = xfs_trans_reserve(tp, tres, 0, 0); 1376 } 1377 if (error) { 1378 cancel_flags = 0; 1379 goto out_trans_cancel; 1380 } 1381 1382 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1383 pdqp, resblks, 1, 0); 1384 if (error) 1385 goto out_trans_cancel; 1386 1387 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1388 prid, resblks > 0, &ip, NULL); 1389 if (error) { 1390 if (error == ENOSPC) 1391 goto out_trans_cancel; 1392 goto out_trans_abort; 1393 } 1394 1395 if (mp->m_flags & XFS_MOUNT_WSYNC) 1396 xfs_trans_set_sync(tp); 1397 1398 /* 1399 * Attach the dquot(s) to the inodes and modify them incore. 1400 * These ids of the inode couldn't have changed since the new 1401 * inode has been locked ever since it was created. 1402 */ 1403 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1404 1405 ip->i_d.di_nlink--; 1406 error = xfs_iunlink(tp, ip); 1407 if (error) 1408 goto out_trans_abort; 1409 1410 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1411 if (error) 1412 goto out_release_inode; 1413 1414 xfs_qm_dqrele(udqp); 1415 xfs_qm_dqrele(gdqp); 1416 xfs_qm_dqrele(pdqp); 1417 1418 *ipp = ip; 1419 return 0; 1420 1421 out_trans_abort: 1422 cancel_flags |= XFS_TRANS_ABORT; 1423 out_trans_cancel: 1424 xfs_trans_cancel(tp, cancel_flags); 1425 out_release_inode: 1426 /* 1427 * Wait until after the current transaction is aborted to 1428 * release the inode. This prevents recursive transactions 1429 * and deadlocks from xfs_inactive. 1430 */ 1431 if (ip) 1432 IRELE(ip); 1433 1434 xfs_qm_dqrele(udqp); 1435 xfs_qm_dqrele(gdqp); 1436 xfs_qm_dqrele(pdqp); 1437 1438 return error; 1439 } 1440 1441 int 1442 xfs_link( 1443 xfs_inode_t *tdp, 1444 xfs_inode_t *sip, 1445 struct xfs_name *target_name) 1446 { 1447 xfs_mount_t *mp = tdp->i_mount; 1448 xfs_trans_t *tp; 1449 int error; 1450 xfs_bmap_free_t free_list; 1451 xfs_fsblock_t first_block; 1452 int cancel_flags; 1453 int committed; 1454 int resblks; 1455 1456 trace_xfs_link(tdp, target_name); 1457 1458 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1459 1460 if (XFS_FORCED_SHUTDOWN(mp)) 1461 return XFS_ERROR(EIO); 1462 1463 error = xfs_qm_dqattach(sip, 0); 1464 if (error) 1465 goto std_return; 1466 1467 error = xfs_qm_dqattach(tdp, 0); 1468 if (error) 1469 goto std_return; 1470 1471 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1472 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1473 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1474 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1475 if (error == ENOSPC) { 1476 resblks = 0; 1477 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1478 } 1479 if (error) { 1480 cancel_flags = 0; 1481 goto error_return; 1482 } 1483 1484 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1485 1486 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1487 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1488 1489 /* 1490 * If we are using project inheritance, we only allow hard link 1491 * creation in our tree when the project IDs are the same; else 1492 * the tree quota mechanism could be circumvented. 1493 */ 1494 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1495 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1496 error = XFS_ERROR(EXDEV); 1497 goto error_return; 1498 } 1499 1500 error = xfs_dir_canenter(tp, tdp, target_name, resblks); 1501 if (error) 1502 goto error_return; 1503 1504 xfs_bmap_init(&free_list, &first_block); 1505 1506 if (sip->i_d.di_nlink == 0) { 1507 error = xfs_iunlink_remove(tp, sip); 1508 if (error) 1509 goto abort_return; 1510 } 1511 1512 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1513 &first_block, &free_list, resblks); 1514 if (error) 1515 goto abort_return; 1516 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1517 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1518 1519 error = xfs_bumplink(tp, sip); 1520 if (error) 1521 goto abort_return; 1522 1523 /* 1524 * If this is a synchronous mount, make sure that the 1525 * link transaction goes to disk before returning to 1526 * the user. 1527 */ 1528 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1529 xfs_trans_set_sync(tp); 1530 } 1531 1532 error = xfs_bmap_finish (&tp, &free_list, &committed); 1533 if (error) { 1534 xfs_bmap_cancel(&free_list); 1535 goto abort_return; 1536 } 1537 1538 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1539 1540 abort_return: 1541 cancel_flags |= XFS_TRANS_ABORT; 1542 error_return: 1543 xfs_trans_cancel(tp, cancel_flags); 1544 std_return: 1545 return error; 1546 } 1547 1548 /* 1549 * Free up the underlying blocks past new_size. The new size must be smaller 1550 * than the current size. This routine can be used both for the attribute and 1551 * data fork, and does not modify the inode size, which is left to the caller. 1552 * 1553 * The transaction passed to this routine must have made a permanent log 1554 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1555 * given transaction and start new ones, so make sure everything involved in 1556 * the transaction is tidy before calling here. Some transaction will be 1557 * returned to the caller to be committed. The incoming transaction must 1558 * already include the inode, and both inode locks must be held exclusively. 1559 * The inode must also be "held" within the transaction. On return the inode 1560 * will be "held" within the returned transaction. This routine does NOT 1561 * require any disk space to be reserved for it within the transaction. 1562 * 1563 * If we get an error, we must return with the inode locked and linked into the 1564 * current transaction. This keeps things simple for the higher level code, 1565 * because it always knows that the inode is locked and held in the transaction 1566 * that returns to it whether errors occur or not. We don't mark the inode 1567 * dirty on error so that transactions can be easily aborted if possible. 1568 */ 1569 int 1570 xfs_itruncate_extents( 1571 struct xfs_trans **tpp, 1572 struct xfs_inode *ip, 1573 int whichfork, 1574 xfs_fsize_t new_size) 1575 { 1576 struct xfs_mount *mp = ip->i_mount; 1577 struct xfs_trans *tp = *tpp; 1578 struct xfs_trans *ntp; 1579 xfs_bmap_free_t free_list; 1580 xfs_fsblock_t first_block; 1581 xfs_fileoff_t first_unmap_block; 1582 xfs_fileoff_t last_block; 1583 xfs_filblks_t unmap_len; 1584 int committed; 1585 int error = 0; 1586 int done = 0; 1587 1588 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1589 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1590 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1591 ASSERT(new_size <= XFS_ISIZE(ip)); 1592 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1593 ASSERT(ip->i_itemp != NULL); 1594 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1595 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1596 1597 trace_xfs_itruncate_extents_start(ip, new_size); 1598 1599 /* 1600 * Since it is possible for space to become allocated beyond 1601 * the end of the file (in a crash where the space is allocated 1602 * but the inode size is not yet updated), simply remove any 1603 * blocks which show up between the new EOF and the maximum 1604 * possible file size. If the first block to be removed is 1605 * beyond the maximum file size (ie it is the same as last_block), 1606 * then there is nothing to do. 1607 */ 1608 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1609 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1610 if (first_unmap_block == last_block) 1611 return 0; 1612 1613 ASSERT(first_unmap_block < last_block); 1614 unmap_len = last_block - first_unmap_block + 1; 1615 while (!done) { 1616 xfs_bmap_init(&free_list, &first_block); 1617 error = xfs_bunmapi(tp, ip, 1618 first_unmap_block, unmap_len, 1619 xfs_bmapi_aflag(whichfork), 1620 XFS_ITRUNC_MAX_EXTENTS, 1621 &first_block, &free_list, 1622 &done); 1623 if (error) 1624 goto out_bmap_cancel; 1625 1626 /* 1627 * Duplicate the transaction that has the permanent 1628 * reservation and commit the old transaction. 1629 */ 1630 error = xfs_bmap_finish(&tp, &free_list, &committed); 1631 if (committed) 1632 xfs_trans_ijoin(tp, ip, 0); 1633 if (error) 1634 goto out_bmap_cancel; 1635 1636 if (committed) { 1637 /* 1638 * Mark the inode dirty so it will be logged and 1639 * moved forward in the log as part of every commit. 1640 */ 1641 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1642 } 1643 1644 ntp = xfs_trans_dup(tp); 1645 error = xfs_trans_commit(tp, 0); 1646 tp = ntp; 1647 1648 xfs_trans_ijoin(tp, ip, 0); 1649 1650 if (error) 1651 goto out; 1652 1653 /* 1654 * Transaction commit worked ok so we can drop the extra ticket 1655 * reference that we gained in xfs_trans_dup() 1656 */ 1657 xfs_log_ticket_put(tp->t_ticket); 1658 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1659 if (error) 1660 goto out; 1661 } 1662 1663 /* 1664 * Always re-log the inode so that our permanent transaction can keep 1665 * on rolling it forward in the log. 1666 */ 1667 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1668 1669 trace_xfs_itruncate_extents_end(ip, new_size); 1670 1671 out: 1672 *tpp = tp; 1673 return error; 1674 out_bmap_cancel: 1675 /* 1676 * If the bunmapi call encounters an error, return to the caller where 1677 * the transaction can be properly aborted. We just need to make sure 1678 * we're not holding any resources that we were not when we came in. 1679 */ 1680 xfs_bmap_cancel(&free_list); 1681 goto out; 1682 } 1683 1684 int 1685 xfs_release( 1686 xfs_inode_t *ip) 1687 { 1688 xfs_mount_t *mp = ip->i_mount; 1689 int error; 1690 1691 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1692 return 0; 1693 1694 /* If this is a read-only mount, don't do this (would generate I/O) */ 1695 if (mp->m_flags & XFS_MOUNT_RDONLY) 1696 return 0; 1697 1698 if (!XFS_FORCED_SHUTDOWN(mp)) { 1699 int truncated; 1700 1701 /* 1702 * If we are using filestreams, and we have an unlinked 1703 * file that we are processing the last close on, then nothing 1704 * will be able to reopen and write to this file. Purge this 1705 * inode from the filestreams cache so that it doesn't delay 1706 * teardown of the inode. 1707 */ 1708 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip)) 1709 xfs_filestream_deassociate(ip); 1710 1711 /* 1712 * If we previously truncated this file and removed old data 1713 * in the process, we want to initiate "early" writeout on 1714 * the last close. This is an attempt to combat the notorious 1715 * NULL files problem which is particularly noticeable from a 1716 * truncate down, buffered (re-)write (delalloc), followed by 1717 * a crash. What we are effectively doing here is 1718 * significantly reducing the time window where we'd otherwise 1719 * be exposed to that problem. 1720 */ 1721 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1722 if (truncated) { 1723 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1724 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) { 1725 error = -filemap_flush(VFS_I(ip)->i_mapping); 1726 if (error) 1727 return error; 1728 } 1729 } 1730 } 1731 1732 if (ip->i_d.di_nlink == 0) 1733 return 0; 1734 1735 if (xfs_can_free_eofblocks(ip, false)) { 1736 1737 /* 1738 * If we can't get the iolock just skip truncating the blocks 1739 * past EOF because we could deadlock with the mmap_sem 1740 * otherwise. We'll get another chance to drop them once the 1741 * last reference to the inode is dropped, so we'll never leak 1742 * blocks permanently. 1743 * 1744 * Further, check if the inode is being opened, written and 1745 * closed frequently and we have delayed allocation blocks 1746 * outstanding (e.g. streaming writes from the NFS server), 1747 * truncating the blocks past EOF will cause fragmentation to 1748 * occur. 1749 * 1750 * In this case don't do the truncation, either, but we have to 1751 * be careful how we detect this case. Blocks beyond EOF show 1752 * up as i_delayed_blks even when the inode is clean, so we 1753 * need to truncate them away first before checking for a dirty 1754 * release. Hence on the first dirty close we will still remove 1755 * the speculative allocation, but after that we will leave it 1756 * in place. 1757 */ 1758 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1759 return 0; 1760 1761 error = xfs_free_eofblocks(mp, ip, true); 1762 if (error && error != EAGAIN) 1763 return error; 1764 1765 /* delalloc blocks after truncation means it really is dirty */ 1766 if (ip->i_delayed_blks) 1767 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1768 } 1769 return 0; 1770 } 1771 1772 /* 1773 * xfs_inactive_truncate 1774 * 1775 * Called to perform a truncate when an inode becomes unlinked. 1776 */ 1777 STATIC int 1778 xfs_inactive_truncate( 1779 struct xfs_inode *ip) 1780 { 1781 struct xfs_mount *mp = ip->i_mount; 1782 struct xfs_trans *tp; 1783 int error; 1784 1785 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1786 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1787 if (error) { 1788 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1789 xfs_trans_cancel(tp, 0); 1790 return error; 1791 } 1792 1793 xfs_ilock(ip, XFS_ILOCK_EXCL); 1794 xfs_trans_ijoin(tp, ip, 0); 1795 1796 /* 1797 * Log the inode size first to prevent stale data exposure in the event 1798 * of a system crash before the truncate completes. See the related 1799 * comment in xfs_setattr_size() for details. 1800 */ 1801 ip->i_d.di_size = 0; 1802 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1803 1804 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1805 if (error) 1806 goto error_trans_cancel; 1807 1808 ASSERT(ip->i_d.di_nextents == 0); 1809 1810 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1811 if (error) 1812 goto error_unlock; 1813 1814 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1815 return 0; 1816 1817 error_trans_cancel: 1818 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1819 error_unlock: 1820 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1821 return error; 1822 } 1823 1824 /* 1825 * xfs_inactive_ifree() 1826 * 1827 * Perform the inode free when an inode is unlinked. 1828 */ 1829 STATIC int 1830 xfs_inactive_ifree( 1831 struct xfs_inode *ip) 1832 { 1833 xfs_bmap_free_t free_list; 1834 xfs_fsblock_t first_block; 1835 int committed; 1836 struct xfs_mount *mp = ip->i_mount; 1837 struct xfs_trans *tp; 1838 int error; 1839 1840 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1841 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0); 1842 if (error) { 1843 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1844 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1845 return error; 1846 } 1847 1848 xfs_ilock(ip, XFS_ILOCK_EXCL); 1849 xfs_trans_ijoin(tp, ip, 0); 1850 1851 xfs_bmap_init(&free_list, &first_block); 1852 error = xfs_ifree(tp, ip, &free_list); 1853 if (error) { 1854 /* 1855 * If we fail to free the inode, shut down. The cancel 1856 * might do that, we need to make sure. Otherwise the 1857 * inode might be lost for a long time or forever. 1858 */ 1859 if (!XFS_FORCED_SHUTDOWN(mp)) { 1860 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1861 __func__, error); 1862 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1863 } 1864 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1865 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1866 return error; 1867 } 1868 1869 /* 1870 * Credit the quota account(s). The inode is gone. 1871 */ 1872 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1873 1874 /* 1875 * Just ignore errors at this point. There is nothing we can 1876 * do except to try to keep going. Make sure it's not a silent 1877 * error. 1878 */ 1879 error = xfs_bmap_finish(&tp, &free_list, &committed); 1880 if (error) 1881 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1882 __func__, error); 1883 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1884 if (error) 1885 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1886 __func__, error); 1887 1888 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1889 return 0; 1890 } 1891 1892 /* 1893 * xfs_inactive 1894 * 1895 * This is called when the vnode reference count for the vnode 1896 * goes to zero. If the file has been unlinked, then it must 1897 * now be truncated. Also, we clear all of the read-ahead state 1898 * kept for the inode here since the file is now closed. 1899 */ 1900 void 1901 xfs_inactive( 1902 xfs_inode_t *ip) 1903 { 1904 struct xfs_mount *mp; 1905 int error; 1906 int truncate = 0; 1907 1908 /* 1909 * If the inode is already free, then there can be nothing 1910 * to clean up here. 1911 */ 1912 if (ip->i_d.di_mode == 0) { 1913 ASSERT(ip->i_df.if_real_bytes == 0); 1914 ASSERT(ip->i_df.if_broot_bytes == 0); 1915 return; 1916 } 1917 1918 mp = ip->i_mount; 1919 1920 /* If this is a read-only mount, don't do this (would generate I/O) */ 1921 if (mp->m_flags & XFS_MOUNT_RDONLY) 1922 return; 1923 1924 if (ip->i_d.di_nlink != 0) { 1925 /* 1926 * force is true because we are evicting an inode from the 1927 * cache. Post-eof blocks must be freed, lest we end up with 1928 * broken free space accounting. 1929 */ 1930 if (xfs_can_free_eofblocks(ip, true)) 1931 xfs_free_eofblocks(mp, ip, false); 1932 1933 return; 1934 } 1935 1936 if (S_ISREG(ip->i_d.di_mode) && 1937 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1938 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1939 truncate = 1; 1940 1941 error = xfs_qm_dqattach(ip, 0); 1942 if (error) 1943 return; 1944 1945 if (S_ISLNK(ip->i_d.di_mode)) 1946 error = xfs_inactive_symlink(ip); 1947 else if (truncate) 1948 error = xfs_inactive_truncate(ip); 1949 if (error) 1950 return; 1951 1952 /* 1953 * If there are attributes associated with the file then blow them away 1954 * now. The code calls a routine that recursively deconstructs the 1955 * attribute fork. We need to just commit the current transaction 1956 * because we can't use it for xfs_attr_inactive(). 1957 */ 1958 if (ip->i_d.di_anextents > 0) { 1959 ASSERT(ip->i_d.di_forkoff != 0); 1960 1961 error = xfs_attr_inactive(ip); 1962 if (error) 1963 return; 1964 } 1965 1966 if (ip->i_afp) 1967 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1968 1969 ASSERT(ip->i_d.di_anextents == 0); 1970 1971 /* 1972 * Free the inode. 1973 */ 1974 error = xfs_inactive_ifree(ip); 1975 if (error) 1976 return; 1977 1978 /* 1979 * Release the dquots held by inode, if any. 1980 */ 1981 xfs_qm_dqdetach(ip); 1982 } 1983 1984 /* 1985 * This is called when the inode's link count goes to 0. 1986 * We place the on-disk inode on a list in the AGI. It 1987 * will be pulled from this list when the inode is freed. 1988 */ 1989 int 1990 xfs_iunlink( 1991 xfs_trans_t *tp, 1992 xfs_inode_t *ip) 1993 { 1994 xfs_mount_t *mp; 1995 xfs_agi_t *agi; 1996 xfs_dinode_t *dip; 1997 xfs_buf_t *agibp; 1998 xfs_buf_t *ibp; 1999 xfs_agino_t agino; 2000 short bucket_index; 2001 int offset; 2002 int error; 2003 2004 ASSERT(ip->i_d.di_nlink == 0); 2005 ASSERT(ip->i_d.di_mode != 0); 2006 2007 mp = tp->t_mountp; 2008 2009 /* 2010 * Get the agi buffer first. It ensures lock ordering 2011 * on the list. 2012 */ 2013 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 2014 if (error) 2015 return error; 2016 agi = XFS_BUF_TO_AGI(agibp); 2017 2018 /* 2019 * Get the index into the agi hash table for the 2020 * list this inode will go on. 2021 */ 2022 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2023 ASSERT(agino != 0); 2024 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2025 ASSERT(agi->agi_unlinked[bucket_index]); 2026 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2027 2028 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2029 /* 2030 * There is already another inode in the bucket we need 2031 * to add ourselves to. Add us at the front of the list. 2032 * Here we put the head pointer into our next pointer, 2033 * and then we fall through to point the head at us. 2034 */ 2035 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2036 0, 0); 2037 if (error) 2038 return error; 2039 2040 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2041 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2042 offset = ip->i_imap.im_boffset + 2043 offsetof(xfs_dinode_t, di_next_unlinked); 2044 2045 /* need to recalc the inode CRC if appropriate */ 2046 xfs_dinode_calc_crc(mp, dip); 2047 2048 xfs_trans_inode_buf(tp, ibp); 2049 xfs_trans_log_buf(tp, ibp, offset, 2050 (offset + sizeof(xfs_agino_t) - 1)); 2051 xfs_inobp_check(mp, ibp); 2052 } 2053 2054 /* 2055 * Point the bucket head pointer at the inode being inserted. 2056 */ 2057 ASSERT(agino != 0); 2058 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2059 offset = offsetof(xfs_agi_t, agi_unlinked) + 2060 (sizeof(xfs_agino_t) * bucket_index); 2061 xfs_trans_log_buf(tp, agibp, offset, 2062 (offset + sizeof(xfs_agino_t) - 1)); 2063 return 0; 2064 } 2065 2066 /* 2067 * Pull the on-disk inode from the AGI unlinked list. 2068 */ 2069 STATIC int 2070 xfs_iunlink_remove( 2071 xfs_trans_t *tp, 2072 xfs_inode_t *ip) 2073 { 2074 xfs_ino_t next_ino; 2075 xfs_mount_t *mp; 2076 xfs_agi_t *agi; 2077 xfs_dinode_t *dip; 2078 xfs_buf_t *agibp; 2079 xfs_buf_t *ibp; 2080 xfs_agnumber_t agno; 2081 xfs_agino_t agino; 2082 xfs_agino_t next_agino; 2083 xfs_buf_t *last_ibp; 2084 xfs_dinode_t *last_dip = NULL; 2085 short bucket_index; 2086 int offset, last_offset = 0; 2087 int error; 2088 2089 mp = tp->t_mountp; 2090 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2091 2092 /* 2093 * Get the agi buffer first. It ensures lock ordering 2094 * on the list. 2095 */ 2096 error = xfs_read_agi(mp, tp, agno, &agibp); 2097 if (error) 2098 return error; 2099 2100 agi = XFS_BUF_TO_AGI(agibp); 2101 2102 /* 2103 * Get the index into the agi hash table for the 2104 * list this inode will go on. 2105 */ 2106 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2107 ASSERT(agino != 0); 2108 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2109 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2110 ASSERT(agi->agi_unlinked[bucket_index]); 2111 2112 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2113 /* 2114 * We're at the head of the list. Get the inode's on-disk 2115 * buffer to see if there is anyone after us on the list. 2116 * Only modify our next pointer if it is not already NULLAGINO. 2117 * This saves us the overhead of dealing with the buffer when 2118 * there is no need to change it. 2119 */ 2120 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2121 0, 0); 2122 if (error) { 2123 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2124 __func__, error); 2125 return error; 2126 } 2127 next_agino = be32_to_cpu(dip->di_next_unlinked); 2128 ASSERT(next_agino != 0); 2129 if (next_agino != NULLAGINO) { 2130 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2131 offset = ip->i_imap.im_boffset + 2132 offsetof(xfs_dinode_t, di_next_unlinked); 2133 2134 /* need to recalc the inode CRC if appropriate */ 2135 xfs_dinode_calc_crc(mp, dip); 2136 2137 xfs_trans_inode_buf(tp, ibp); 2138 xfs_trans_log_buf(tp, ibp, offset, 2139 (offset + sizeof(xfs_agino_t) - 1)); 2140 xfs_inobp_check(mp, ibp); 2141 } else { 2142 xfs_trans_brelse(tp, ibp); 2143 } 2144 /* 2145 * Point the bucket head pointer at the next inode. 2146 */ 2147 ASSERT(next_agino != 0); 2148 ASSERT(next_agino != agino); 2149 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2150 offset = offsetof(xfs_agi_t, agi_unlinked) + 2151 (sizeof(xfs_agino_t) * bucket_index); 2152 xfs_trans_log_buf(tp, agibp, offset, 2153 (offset + sizeof(xfs_agino_t) - 1)); 2154 } else { 2155 /* 2156 * We need to search the list for the inode being freed. 2157 */ 2158 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2159 last_ibp = NULL; 2160 while (next_agino != agino) { 2161 struct xfs_imap imap; 2162 2163 if (last_ibp) 2164 xfs_trans_brelse(tp, last_ibp); 2165 2166 imap.im_blkno = 0; 2167 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2168 2169 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2170 if (error) { 2171 xfs_warn(mp, 2172 "%s: xfs_imap returned error %d.", 2173 __func__, error); 2174 return error; 2175 } 2176 2177 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2178 &last_ibp, 0, 0); 2179 if (error) { 2180 xfs_warn(mp, 2181 "%s: xfs_imap_to_bp returned error %d.", 2182 __func__, error); 2183 return error; 2184 } 2185 2186 last_offset = imap.im_boffset; 2187 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2188 ASSERT(next_agino != NULLAGINO); 2189 ASSERT(next_agino != 0); 2190 } 2191 2192 /* 2193 * Now last_ibp points to the buffer previous to us on the 2194 * unlinked list. Pull us from the list. 2195 */ 2196 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2197 0, 0); 2198 if (error) { 2199 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2200 __func__, error); 2201 return error; 2202 } 2203 next_agino = be32_to_cpu(dip->di_next_unlinked); 2204 ASSERT(next_agino != 0); 2205 ASSERT(next_agino != agino); 2206 if (next_agino != NULLAGINO) { 2207 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2208 offset = ip->i_imap.im_boffset + 2209 offsetof(xfs_dinode_t, di_next_unlinked); 2210 2211 /* need to recalc the inode CRC if appropriate */ 2212 xfs_dinode_calc_crc(mp, dip); 2213 2214 xfs_trans_inode_buf(tp, ibp); 2215 xfs_trans_log_buf(tp, ibp, offset, 2216 (offset + sizeof(xfs_agino_t) - 1)); 2217 xfs_inobp_check(mp, ibp); 2218 } else { 2219 xfs_trans_brelse(tp, ibp); 2220 } 2221 /* 2222 * Point the previous inode on the list to the next inode. 2223 */ 2224 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2225 ASSERT(next_agino != 0); 2226 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2227 2228 /* need to recalc the inode CRC if appropriate */ 2229 xfs_dinode_calc_crc(mp, last_dip); 2230 2231 xfs_trans_inode_buf(tp, last_ibp); 2232 xfs_trans_log_buf(tp, last_ibp, offset, 2233 (offset + sizeof(xfs_agino_t) - 1)); 2234 xfs_inobp_check(mp, last_ibp); 2235 } 2236 return 0; 2237 } 2238 2239 /* 2240 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2241 * inodes that are in memory - they all must be marked stale and attached to 2242 * the cluster buffer. 2243 */ 2244 STATIC int 2245 xfs_ifree_cluster( 2246 xfs_inode_t *free_ip, 2247 xfs_trans_t *tp, 2248 xfs_ino_t inum) 2249 { 2250 xfs_mount_t *mp = free_ip->i_mount; 2251 int blks_per_cluster; 2252 int inodes_per_cluster; 2253 int nbufs; 2254 int i, j; 2255 xfs_daddr_t blkno; 2256 xfs_buf_t *bp; 2257 xfs_inode_t *ip; 2258 xfs_inode_log_item_t *iip; 2259 xfs_log_item_t *lip; 2260 struct xfs_perag *pag; 2261 2262 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2263 blks_per_cluster = xfs_icluster_size_fsb(mp); 2264 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2265 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2266 2267 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2268 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2269 XFS_INO_TO_AGBNO(mp, inum)); 2270 2271 /* 2272 * We obtain and lock the backing buffer first in the process 2273 * here, as we have to ensure that any dirty inode that we 2274 * can't get the flush lock on is attached to the buffer. 2275 * If we scan the in-memory inodes first, then buffer IO can 2276 * complete before we get a lock on it, and hence we may fail 2277 * to mark all the active inodes on the buffer stale. 2278 */ 2279 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2280 mp->m_bsize * blks_per_cluster, 2281 XBF_UNMAPPED); 2282 2283 if (!bp) 2284 return ENOMEM; 2285 2286 /* 2287 * This buffer may not have been correctly initialised as we 2288 * didn't read it from disk. That's not important because we are 2289 * only using to mark the buffer as stale in the log, and to 2290 * attach stale cached inodes on it. That means it will never be 2291 * dispatched for IO. If it is, we want to know about it, and we 2292 * want it to fail. We can acheive this by adding a write 2293 * verifier to the buffer. 2294 */ 2295 bp->b_ops = &xfs_inode_buf_ops; 2296 2297 /* 2298 * Walk the inodes already attached to the buffer and mark them 2299 * stale. These will all have the flush locks held, so an 2300 * in-memory inode walk can't lock them. By marking them all 2301 * stale first, we will not attempt to lock them in the loop 2302 * below as the XFS_ISTALE flag will be set. 2303 */ 2304 lip = bp->b_fspriv; 2305 while (lip) { 2306 if (lip->li_type == XFS_LI_INODE) { 2307 iip = (xfs_inode_log_item_t *)lip; 2308 ASSERT(iip->ili_logged == 1); 2309 lip->li_cb = xfs_istale_done; 2310 xfs_trans_ail_copy_lsn(mp->m_ail, 2311 &iip->ili_flush_lsn, 2312 &iip->ili_item.li_lsn); 2313 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2314 } 2315 lip = lip->li_bio_list; 2316 } 2317 2318 2319 /* 2320 * For each inode in memory attempt to add it to the inode 2321 * buffer and set it up for being staled on buffer IO 2322 * completion. This is safe as we've locked out tail pushing 2323 * and flushing by locking the buffer. 2324 * 2325 * We have already marked every inode that was part of a 2326 * transaction stale above, which means there is no point in 2327 * even trying to lock them. 2328 */ 2329 for (i = 0; i < inodes_per_cluster; i++) { 2330 retry: 2331 rcu_read_lock(); 2332 ip = radix_tree_lookup(&pag->pag_ici_root, 2333 XFS_INO_TO_AGINO(mp, (inum + i))); 2334 2335 /* Inode not in memory, nothing to do */ 2336 if (!ip) { 2337 rcu_read_unlock(); 2338 continue; 2339 } 2340 2341 /* 2342 * because this is an RCU protected lookup, we could 2343 * find a recently freed or even reallocated inode 2344 * during the lookup. We need to check under the 2345 * i_flags_lock for a valid inode here. Skip it if it 2346 * is not valid, the wrong inode or stale. 2347 */ 2348 spin_lock(&ip->i_flags_lock); 2349 if (ip->i_ino != inum + i || 2350 __xfs_iflags_test(ip, XFS_ISTALE)) { 2351 spin_unlock(&ip->i_flags_lock); 2352 rcu_read_unlock(); 2353 continue; 2354 } 2355 spin_unlock(&ip->i_flags_lock); 2356 2357 /* 2358 * Don't try to lock/unlock the current inode, but we 2359 * _cannot_ skip the other inodes that we did not find 2360 * in the list attached to the buffer and are not 2361 * already marked stale. If we can't lock it, back off 2362 * and retry. 2363 */ 2364 if (ip != free_ip && 2365 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2366 rcu_read_unlock(); 2367 delay(1); 2368 goto retry; 2369 } 2370 rcu_read_unlock(); 2371 2372 xfs_iflock(ip); 2373 xfs_iflags_set(ip, XFS_ISTALE); 2374 2375 /* 2376 * we don't need to attach clean inodes or those only 2377 * with unlogged changes (which we throw away, anyway). 2378 */ 2379 iip = ip->i_itemp; 2380 if (!iip || xfs_inode_clean(ip)) { 2381 ASSERT(ip != free_ip); 2382 xfs_ifunlock(ip); 2383 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2384 continue; 2385 } 2386 2387 iip->ili_last_fields = iip->ili_fields; 2388 iip->ili_fields = 0; 2389 iip->ili_logged = 1; 2390 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2391 &iip->ili_item.li_lsn); 2392 2393 xfs_buf_attach_iodone(bp, xfs_istale_done, 2394 &iip->ili_item); 2395 2396 if (ip != free_ip) 2397 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2398 } 2399 2400 xfs_trans_stale_inode_buf(tp, bp); 2401 xfs_trans_binval(tp, bp); 2402 } 2403 2404 xfs_perag_put(pag); 2405 return 0; 2406 } 2407 2408 /* 2409 * This is called to return an inode to the inode free list. 2410 * The inode should already be truncated to 0 length and have 2411 * no pages associated with it. This routine also assumes that 2412 * the inode is already a part of the transaction. 2413 * 2414 * The on-disk copy of the inode will have been added to the list 2415 * of unlinked inodes in the AGI. We need to remove the inode from 2416 * that list atomically with respect to freeing it here. 2417 */ 2418 int 2419 xfs_ifree( 2420 xfs_trans_t *tp, 2421 xfs_inode_t *ip, 2422 xfs_bmap_free_t *flist) 2423 { 2424 int error; 2425 int delete; 2426 xfs_ino_t first_ino; 2427 2428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2429 ASSERT(ip->i_d.di_nlink == 0); 2430 ASSERT(ip->i_d.di_nextents == 0); 2431 ASSERT(ip->i_d.di_anextents == 0); 2432 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2433 ASSERT(ip->i_d.di_nblocks == 0); 2434 2435 /* 2436 * Pull the on-disk inode from the AGI unlinked list. 2437 */ 2438 error = xfs_iunlink_remove(tp, ip); 2439 if (error) 2440 return error; 2441 2442 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2443 if (error) 2444 return error; 2445 2446 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2447 ip->i_d.di_flags = 0; 2448 ip->i_d.di_dmevmask = 0; 2449 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2450 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2451 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2452 /* 2453 * Bump the generation count so no one will be confused 2454 * by reincarnations of this inode. 2455 */ 2456 ip->i_d.di_gen++; 2457 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2458 2459 if (delete) 2460 error = xfs_ifree_cluster(ip, tp, first_ino); 2461 2462 return error; 2463 } 2464 2465 /* 2466 * This is called to unpin an inode. The caller must have the inode locked 2467 * in at least shared mode so that the buffer cannot be subsequently pinned 2468 * once someone is waiting for it to be unpinned. 2469 */ 2470 static void 2471 xfs_iunpin( 2472 struct xfs_inode *ip) 2473 { 2474 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2475 2476 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2477 2478 /* Give the log a push to start the unpinning I/O */ 2479 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2480 2481 } 2482 2483 static void 2484 __xfs_iunpin_wait( 2485 struct xfs_inode *ip) 2486 { 2487 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2488 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2489 2490 xfs_iunpin(ip); 2491 2492 do { 2493 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2494 if (xfs_ipincount(ip)) 2495 io_schedule(); 2496 } while (xfs_ipincount(ip)); 2497 finish_wait(wq, &wait.wait); 2498 } 2499 2500 void 2501 xfs_iunpin_wait( 2502 struct xfs_inode *ip) 2503 { 2504 if (xfs_ipincount(ip)) 2505 __xfs_iunpin_wait(ip); 2506 } 2507 2508 /* 2509 * Removing an inode from the namespace involves removing the directory entry 2510 * and dropping the link count on the inode. Removing the directory entry can 2511 * result in locking an AGF (directory blocks were freed) and removing a link 2512 * count can result in placing the inode on an unlinked list which results in 2513 * locking an AGI. 2514 * 2515 * The big problem here is that we have an ordering constraint on AGF and AGI 2516 * locking - inode allocation locks the AGI, then can allocate a new extent for 2517 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2518 * removes the inode from the unlinked list, requiring that we lock the AGI 2519 * first, and then freeing the inode can result in an inode chunk being freed 2520 * and hence freeing disk space requiring that we lock an AGF. 2521 * 2522 * Hence the ordering that is imposed by other parts of the code is AGI before 2523 * AGF. This means we cannot remove the directory entry before we drop the inode 2524 * reference count and put it on the unlinked list as this results in a lock 2525 * order of AGF then AGI, and this can deadlock against inode allocation and 2526 * freeing. Therefore we must drop the link counts before we remove the 2527 * directory entry. 2528 * 2529 * This is still safe from a transactional point of view - it is not until we 2530 * get to xfs_bmap_finish() that we have the possibility of multiple 2531 * transactions in this operation. Hence as long as we remove the directory 2532 * entry and drop the link count in the first transaction of the remove 2533 * operation, there are no transactional constraints on the ordering here. 2534 */ 2535 int 2536 xfs_remove( 2537 xfs_inode_t *dp, 2538 struct xfs_name *name, 2539 xfs_inode_t *ip) 2540 { 2541 xfs_mount_t *mp = dp->i_mount; 2542 xfs_trans_t *tp = NULL; 2543 int is_dir = S_ISDIR(ip->i_d.di_mode); 2544 int error = 0; 2545 xfs_bmap_free_t free_list; 2546 xfs_fsblock_t first_block; 2547 int cancel_flags; 2548 int committed; 2549 int link_zero; 2550 uint resblks; 2551 uint log_count; 2552 2553 trace_xfs_remove(dp, name); 2554 2555 if (XFS_FORCED_SHUTDOWN(mp)) 2556 return XFS_ERROR(EIO); 2557 2558 error = xfs_qm_dqattach(dp, 0); 2559 if (error) 2560 goto std_return; 2561 2562 error = xfs_qm_dqattach(ip, 0); 2563 if (error) 2564 goto std_return; 2565 2566 if (is_dir) { 2567 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2568 log_count = XFS_DEFAULT_LOG_COUNT; 2569 } else { 2570 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2571 log_count = XFS_REMOVE_LOG_COUNT; 2572 } 2573 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2574 2575 /* 2576 * We try to get the real space reservation first, 2577 * allowing for directory btree deletion(s) implying 2578 * possible bmap insert(s). If we can't get the space 2579 * reservation then we use 0 instead, and avoid the bmap 2580 * btree insert(s) in the directory code by, if the bmap 2581 * insert tries to happen, instead trimming the LAST 2582 * block from the directory. 2583 */ 2584 resblks = XFS_REMOVE_SPACE_RES(mp); 2585 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2586 if (error == ENOSPC) { 2587 resblks = 0; 2588 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2589 } 2590 if (error) { 2591 ASSERT(error != ENOSPC); 2592 cancel_flags = 0; 2593 goto out_trans_cancel; 2594 } 2595 2596 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2597 2598 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2600 2601 /* 2602 * If we're removing a directory perform some additional validation. 2603 */ 2604 cancel_flags |= XFS_TRANS_ABORT; 2605 if (is_dir) { 2606 ASSERT(ip->i_d.di_nlink >= 2); 2607 if (ip->i_d.di_nlink != 2) { 2608 error = XFS_ERROR(ENOTEMPTY); 2609 goto out_trans_cancel; 2610 } 2611 if (!xfs_dir_isempty(ip)) { 2612 error = XFS_ERROR(ENOTEMPTY); 2613 goto out_trans_cancel; 2614 } 2615 2616 /* Drop the link from ip's "..". */ 2617 error = xfs_droplink(tp, dp); 2618 if (error) 2619 goto out_trans_cancel; 2620 2621 /* Drop the "." link from ip to self. */ 2622 error = xfs_droplink(tp, ip); 2623 if (error) 2624 goto out_trans_cancel; 2625 } else { 2626 /* 2627 * When removing a non-directory we need to log the parent 2628 * inode here. For a directory this is done implicitly 2629 * by the xfs_droplink call for the ".." entry. 2630 */ 2631 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2632 } 2633 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2634 2635 /* Drop the link from dp to ip. */ 2636 error = xfs_droplink(tp, ip); 2637 if (error) 2638 goto out_trans_cancel; 2639 2640 /* Determine if this is the last link while the inode is locked */ 2641 link_zero = (ip->i_d.di_nlink == 0); 2642 2643 xfs_bmap_init(&free_list, &first_block); 2644 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2645 &first_block, &free_list, resblks); 2646 if (error) { 2647 ASSERT(error != ENOENT); 2648 goto out_bmap_cancel; 2649 } 2650 2651 /* 2652 * If this is a synchronous mount, make sure that the 2653 * remove transaction goes to disk before returning to 2654 * the user. 2655 */ 2656 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2657 xfs_trans_set_sync(tp); 2658 2659 error = xfs_bmap_finish(&tp, &free_list, &committed); 2660 if (error) 2661 goto out_bmap_cancel; 2662 2663 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2664 if (error) 2665 goto std_return; 2666 2667 /* 2668 * If we are using filestreams, kill the stream association. 2669 * If the file is still open it may get a new one but that 2670 * will get killed on last close in xfs_close() so we don't 2671 * have to worry about that. 2672 */ 2673 if (!is_dir && link_zero && xfs_inode_is_filestream(ip)) 2674 xfs_filestream_deassociate(ip); 2675 2676 return 0; 2677 2678 out_bmap_cancel: 2679 xfs_bmap_cancel(&free_list); 2680 out_trans_cancel: 2681 xfs_trans_cancel(tp, cancel_flags); 2682 std_return: 2683 return error; 2684 } 2685 2686 /* 2687 * Enter all inodes for a rename transaction into a sorted array. 2688 */ 2689 STATIC void 2690 xfs_sort_for_rename( 2691 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2692 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2693 xfs_inode_t *ip1, /* in: inode of old entry */ 2694 xfs_inode_t *ip2, /* in: inode of new entry, if it 2695 already exists, NULL otherwise. */ 2696 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2697 int *num_inodes) /* out: number of inodes in array */ 2698 { 2699 xfs_inode_t *temp; 2700 int i, j; 2701 2702 /* 2703 * i_tab contains a list of pointers to inodes. We initialize 2704 * the table here & we'll sort it. We will then use it to 2705 * order the acquisition of the inode locks. 2706 * 2707 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2708 */ 2709 i_tab[0] = dp1; 2710 i_tab[1] = dp2; 2711 i_tab[2] = ip1; 2712 if (ip2) { 2713 *num_inodes = 4; 2714 i_tab[3] = ip2; 2715 } else { 2716 *num_inodes = 3; 2717 i_tab[3] = NULL; 2718 } 2719 2720 /* 2721 * Sort the elements via bubble sort. (Remember, there are at 2722 * most 4 elements to sort, so this is adequate.) 2723 */ 2724 for (i = 0; i < *num_inodes; i++) { 2725 for (j = 1; j < *num_inodes; j++) { 2726 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2727 temp = i_tab[j]; 2728 i_tab[j] = i_tab[j-1]; 2729 i_tab[j-1] = temp; 2730 } 2731 } 2732 } 2733 } 2734 2735 /* 2736 * xfs_rename 2737 */ 2738 int 2739 xfs_rename( 2740 xfs_inode_t *src_dp, 2741 struct xfs_name *src_name, 2742 xfs_inode_t *src_ip, 2743 xfs_inode_t *target_dp, 2744 struct xfs_name *target_name, 2745 xfs_inode_t *target_ip) 2746 { 2747 xfs_trans_t *tp = NULL; 2748 xfs_mount_t *mp = src_dp->i_mount; 2749 int new_parent; /* moving to a new dir */ 2750 int src_is_directory; /* src_name is a directory */ 2751 int error; 2752 xfs_bmap_free_t free_list; 2753 xfs_fsblock_t first_block; 2754 int cancel_flags; 2755 int committed; 2756 xfs_inode_t *inodes[4]; 2757 int spaceres; 2758 int num_inodes; 2759 2760 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2761 2762 new_parent = (src_dp != target_dp); 2763 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2764 2765 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2766 inodes, &num_inodes); 2767 2768 xfs_bmap_init(&free_list, &first_block); 2769 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2770 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2771 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2772 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2773 if (error == ENOSPC) { 2774 spaceres = 0; 2775 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2776 } 2777 if (error) { 2778 xfs_trans_cancel(tp, 0); 2779 goto std_return; 2780 } 2781 2782 /* 2783 * Attach the dquots to the inodes 2784 */ 2785 error = xfs_qm_vop_rename_dqattach(inodes); 2786 if (error) { 2787 xfs_trans_cancel(tp, cancel_flags); 2788 goto std_return; 2789 } 2790 2791 /* 2792 * Lock all the participating inodes. Depending upon whether 2793 * the target_name exists in the target directory, and 2794 * whether the target directory is the same as the source 2795 * directory, we can lock from 2 to 4 inodes. 2796 */ 2797 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2798 2799 /* 2800 * Join all the inodes to the transaction. From this point on, 2801 * we can rely on either trans_commit or trans_cancel to unlock 2802 * them. 2803 */ 2804 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2805 if (new_parent) 2806 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2807 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2808 if (target_ip) 2809 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2810 2811 /* 2812 * If we are using project inheritance, we only allow renames 2813 * into our tree when the project IDs are the same; else the 2814 * tree quota mechanism would be circumvented. 2815 */ 2816 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2817 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2818 error = XFS_ERROR(EXDEV); 2819 goto error_return; 2820 } 2821 2822 /* 2823 * Set up the target. 2824 */ 2825 if (target_ip == NULL) { 2826 /* 2827 * If there's no space reservation, check the entry will 2828 * fit before actually inserting it. 2829 */ 2830 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres); 2831 if (error) 2832 goto error_return; 2833 /* 2834 * If target does not exist and the rename crosses 2835 * directories, adjust the target directory link count 2836 * to account for the ".." reference from the new entry. 2837 */ 2838 error = xfs_dir_createname(tp, target_dp, target_name, 2839 src_ip->i_ino, &first_block, 2840 &free_list, spaceres); 2841 if (error == ENOSPC) 2842 goto error_return; 2843 if (error) 2844 goto abort_return; 2845 2846 xfs_trans_ichgtime(tp, target_dp, 2847 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2848 2849 if (new_parent && src_is_directory) { 2850 error = xfs_bumplink(tp, target_dp); 2851 if (error) 2852 goto abort_return; 2853 } 2854 } else { /* target_ip != NULL */ 2855 /* 2856 * If target exists and it's a directory, check that both 2857 * target and source are directories and that target can be 2858 * destroyed, or that neither is a directory. 2859 */ 2860 if (S_ISDIR(target_ip->i_d.di_mode)) { 2861 /* 2862 * Make sure target dir is empty. 2863 */ 2864 if (!(xfs_dir_isempty(target_ip)) || 2865 (target_ip->i_d.di_nlink > 2)) { 2866 error = XFS_ERROR(EEXIST); 2867 goto error_return; 2868 } 2869 } 2870 2871 /* 2872 * Link the source inode under the target name. 2873 * If the source inode is a directory and we are moving 2874 * it across directories, its ".." entry will be 2875 * inconsistent until we replace that down below. 2876 * 2877 * In case there is already an entry with the same 2878 * name at the destination directory, remove it first. 2879 */ 2880 error = xfs_dir_replace(tp, target_dp, target_name, 2881 src_ip->i_ino, 2882 &first_block, &free_list, spaceres); 2883 if (error) 2884 goto abort_return; 2885 2886 xfs_trans_ichgtime(tp, target_dp, 2887 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2888 2889 /* 2890 * Decrement the link count on the target since the target 2891 * dir no longer points to it. 2892 */ 2893 error = xfs_droplink(tp, target_ip); 2894 if (error) 2895 goto abort_return; 2896 2897 if (src_is_directory) { 2898 /* 2899 * Drop the link from the old "." entry. 2900 */ 2901 error = xfs_droplink(tp, target_ip); 2902 if (error) 2903 goto abort_return; 2904 } 2905 } /* target_ip != NULL */ 2906 2907 /* 2908 * Remove the source. 2909 */ 2910 if (new_parent && src_is_directory) { 2911 /* 2912 * Rewrite the ".." entry to point to the new 2913 * directory. 2914 */ 2915 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2916 target_dp->i_ino, 2917 &first_block, &free_list, spaceres); 2918 ASSERT(error != EEXIST); 2919 if (error) 2920 goto abort_return; 2921 } 2922 2923 /* 2924 * We always want to hit the ctime on the source inode. 2925 * 2926 * This isn't strictly required by the standards since the source 2927 * inode isn't really being changed, but old unix file systems did 2928 * it and some incremental backup programs won't work without it. 2929 */ 2930 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2931 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2932 2933 /* 2934 * Adjust the link count on src_dp. This is necessary when 2935 * renaming a directory, either within one parent when 2936 * the target existed, or across two parent directories. 2937 */ 2938 if (src_is_directory && (new_parent || target_ip != NULL)) { 2939 2940 /* 2941 * Decrement link count on src_directory since the 2942 * entry that's moved no longer points to it. 2943 */ 2944 error = xfs_droplink(tp, src_dp); 2945 if (error) 2946 goto abort_return; 2947 } 2948 2949 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2950 &first_block, &free_list, spaceres); 2951 if (error) 2952 goto abort_return; 2953 2954 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2955 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2956 if (new_parent) 2957 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2958 2959 /* 2960 * If this is a synchronous mount, make sure that the 2961 * rename transaction goes to disk before returning to 2962 * the user. 2963 */ 2964 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2965 xfs_trans_set_sync(tp); 2966 } 2967 2968 error = xfs_bmap_finish(&tp, &free_list, &committed); 2969 if (error) { 2970 xfs_bmap_cancel(&free_list); 2971 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2972 XFS_TRANS_ABORT)); 2973 goto std_return; 2974 } 2975 2976 /* 2977 * trans_commit will unlock src_ip, target_ip & decrement 2978 * the vnode references. 2979 */ 2980 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2981 2982 abort_return: 2983 cancel_flags |= XFS_TRANS_ABORT; 2984 error_return: 2985 xfs_bmap_cancel(&free_list); 2986 xfs_trans_cancel(tp, cancel_flags); 2987 std_return: 2988 return error; 2989 } 2990 2991 STATIC int 2992 xfs_iflush_cluster( 2993 xfs_inode_t *ip, 2994 xfs_buf_t *bp) 2995 { 2996 xfs_mount_t *mp = ip->i_mount; 2997 struct xfs_perag *pag; 2998 unsigned long first_index, mask; 2999 unsigned long inodes_per_cluster; 3000 int ilist_size; 3001 xfs_inode_t **ilist; 3002 xfs_inode_t *iq; 3003 int nr_found; 3004 int clcount = 0; 3005 int bufwasdelwri; 3006 int i; 3007 3008 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3009 3010 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3011 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3012 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3013 if (!ilist) 3014 goto out_put; 3015 3016 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3017 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3018 rcu_read_lock(); 3019 /* really need a gang lookup range call here */ 3020 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3021 first_index, inodes_per_cluster); 3022 if (nr_found == 0) 3023 goto out_free; 3024 3025 for (i = 0; i < nr_found; i++) { 3026 iq = ilist[i]; 3027 if (iq == ip) 3028 continue; 3029 3030 /* 3031 * because this is an RCU protected lookup, we could find a 3032 * recently freed or even reallocated inode during the lookup. 3033 * We need to check under the i_flags_lock for a valid inode 3034 * here. Skip it if it is not valid or the wrong inode. 3035 */ 3036 spin_lock(&ip->i_flags_lock); 3037 if (!ip->i_ino || 3038 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3039 spin_unlock(&ip->i_flags_lock); 3040 continue; 3041 } 3042 spin_unlock(&ip->i_flags_lock); 3043 3044 /* 3045 * Do an un-protected check to see if the inode is dirty and 3046 * is a candidate for flushing. These checks will be repeated 3047 * later after the appropriate locks are acquired. 3048 */ 3049 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3050 continue; 3051 3052 /* 3053 * Try to get locks. If any are unavailable or it is pinned, 3054 * then this inode cannot be flushed and is skipped. 3055 */ 3056 3057 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3058 continue; 3059 if (!xfs_iflock_nowait(iq)) { 3060 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3061 continue; 3062 } 3063 if (xfs_ipincount(iq)) { 3064 xfs_ifunlock(iq); 3065 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3066 continue; 3067 } 3068 3069 /* 3070 * arriving here means that this inode can be flushed. First 3071 * re-check that it's dirty before flushing. 3072 */ 3073 if (!xfs_inode_clean(iq)) { 3074 int error; 3075 error = xfs_iflush_int(iq, bp); 3076 if (error) { 3077 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3078 goto cluster_corrupt_out; 3079 } 3080 clcount++; 3081 } else { 3082 xfs_ifunlock(iq); 3083 } 3084 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3085 } 3086 3087 if (clcount) { 3088 XFS_STATS_INC(xs_icluster_flushcnt); 3089 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3090 } 3091 3092 out_free: 3093 rcu_read_unlock(); 3094 kmem_free(ilist); 3095 out_put: 3096 xfs_perag_put(pag); 3097 return 0; 3098 3099 3100 cluster_corrupt_out: 3101 /* 3102 * Corruption detected in the clustering loop. Invalidate the 3103 * inode buffer and shut down the filesystem. 3104 */ 3105 rcu_read_unlock(); 3106 /* 3107 * Clean up the buffer. If it was delwri, just release it -- 3108 * brelse can handle it with no problems. If not, shut down the 3109 * filesystem before releasing the buffer. 3110 */ 3111 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3112 if (bufwasdelwri) 3113 xfs_buf_relse(bp); 3114 3115 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3116 3117 if (!bufwasdelwri) { 3118 /* 3119 * Just like incore_relse: if we have b_iodone functions, 3120 * mark the buffer as an error and call them. Otherwise 3121 * mark it as stale and brelse. 3122 */ 3123 if (bp->b_iodone) { 3124 XFS_BUF_UNDONE(bp); 3125 xfs_buf_stale(bp); 3126 xfs_buf_ioerror(bp, EIO); 3127 xfs_buf_ioend(bp, 0); 3128 } else { 3129 xfs_buf_stale(bp); 3130 xfs_buf_relse(bp); 3131 } 3132 } 3133 3134 /* 3135 * Unlocks the flush lock 3136 */ 3137 xfs_iflush_abort(iq, false); 3138 kmem_free(ilist); 3139 xfs_perag_put(pag); 3140 return XFS_ERROR(EFSCORRUPTED); 3141 } 3142 3143 /* 3144 * Flush dirty inode metadata into the backing buffer. 3145 * 3146 * The caller must have the inode lock and the inode flush lock held. The 3147 * inode lock will still be held upon return to the caller, and the inode 3148 * flush lock will be released after the inode has reached the disk. 3149 * 3150 * The caller must write out the buffer returned in *bpp and release it. 3151 */ 3152 int 3153 xfs_iflush( 3154 struct xfs_inode *ip, 3155 struct xfs_buf **bpp) 3156 { 3157 struct xfs_mount *mp = ip->i_mount; 3158 struct xfs_buf *bp; 3159 struct xfs_dinode *dip; 3160 int error; 3161 3162 XFS_STATS_INC(xs_iflush_count); 3163 3164 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3165 ASSERT(xfs_isiflocked(ip)); 3166 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3167 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3168 3169 *bpp = NULL; 3170 3171 xfs_iunpin_wait(ip); 3172 3173 /* 3174 * For stale inodes we cannot rely on the backing buffer remaining 3175 * stale in cache for the remaining life of the stale inode and so 3176 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3177 * inodes below. We have to check this after ensuring the inode is 3178 * unpinned so that it is safe to reclaim the stale inode after the 3179 * flush call. 3180 */ 3181 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3182 xfs_ifunlock(ip); 3183 return 0; 3184 } 3185 3186 /* 3187 * This may have been unpinned because the filesystem is shutting 3188 * down forcibly. If that's the case we must not write this inode 3189 * to disk, because the log record didn't make it to disk. 3190 * 3191 * We also have to remove the log item from the AIL in this case, 3192 * as we wait for an empty AIL as part of the unmount process. 3193 */ 3194 if (XFS_FORCED_SHUTDOWN(mp)) { 3195 error = XFS_ERROR(EIO); 3196 goto abort_out; 3197 } 3198 3199 /* 3200 * Get the buffer containing the on-disk inode. 3201 */ 3202 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3203 0); 3204 if (error || !bp) { 3205 xfs_ifunlock(ip); 3206 return error; 3207 } 3208 3209 /* 3210 * First flush out the inode that xfs_iflush was called with. 3211 */ 3212 error = xfs_iflush_int(ip, bp); 3213 if (error) 3214 goto corrupt_out; 3215 3216 /* 3217 * If the buffer is pinned then push on the log now so we won't 3218 * get stuck waiting in the write for too long. 3219 */ 3220 if (xfs_buf_ispinned(bp)) 3221 xfs_log_force(mp, 0); 3222 3223 /* 3224 * inode clustering: 3225 * see if other inodes can be gathered into this write 3226 */ 3227 error = xfs_iflush_cluster(ip, bp); 3228 if (error) 3229 goto cluster_corrupt_out; 3230 3231 *bpp = bp; 3232 return 0; 3233 3234 corrupt_out: 3235 xfs_buf_relse(bp); 3236 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3237 cluster_corrupt_out: 3238 error = XFS_ERROR(EFSCORRUPTED); 3239 abort_out: 3240 /* 3241 * Unlocks the flush lock 3242 */ 3243 xfs_iflush_abort(ip, false); 3244 return error; 3245 } 3246 3247 STATIC int 3248 xfs_iflush_int( 3249 struct xfs_inode *ip, 3250 struct xfs_buf *bp) 3251 { 3252 struct xfs_inode_log_item *iip = ip->i_itemp; 3253 struct xfs_dinode *dip; 3254 struct xfs_mount *mp = ip->i_mount; 3255 3256 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3257 ASSERT(xfs_isiflocked(ip)); 3258 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3259 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3260 ASSERT(iip != NULL && iip->ili_fields != 0); 3261 3262 /* set *dip = inode's place in the buffer */ 3263 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3264 3265 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3266 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3267 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3268 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3269 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3270 goto corrupt_out; 3271 } 3272 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3273 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3274 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3275 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3276 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3277 goto corrupt_out; 3278 } 3279 if (S_ISREG(ip->i_d.di_mode)) { 3280 if (XFS_TEST_ERROR( 3281 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3282 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3283 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3284 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3285 "%s: Bad regular inode %Lu, ptr 0x%p", 3286 __func__, ip->i_ino, ip); 3287 goto corrupt_out; 3288 } 3289 } else if (S_ISDIR(ip->i_d.di_mode)) { 3290 if (XFS_TEST_ERROR( 3291 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3292 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3293 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3294 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3295 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3296 "%s: Bad directory inode %Lu, ptr 0x%p", 3297 __func__, ip->i_ino, ip); 3298 goto corrupt_out; 3299 } 3300 } 3301 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3302 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3303 XFS_RANDOM_IFLUSH_5)) { 3304 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3305 "%s: detected corrupt incore inode %Lu, " 3306 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3307 __func__, ip->i_ino, 3308 ip->i_d.di_nextents + ip->i_d.di_anextents, 3309 ip->i_d.di_nblocks, ip); 3310 goto corrupt_out; 3311 } 3312 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3313 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3314 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3315 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3316 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3317 goto corrupt_out; 3318 } 3319 3320 /* 3321 * Inode item log recovery for v1/v2 inodes are dependent on the 3322 * di_flushiter count for correct sequencing. We bump the flush 3323 * iteration count so we can detect flushes which postdate a log record 3324 * during recovery. This is redundant as we now log every change and 3325 * hence this can't happen but we need to still do it to ensure 3326 * backwards compatibility with old kernels that predate logging all 3327 * inode changes. 3328 */ 3329 if (ip->i_d.di_version < 3) 3330 ip->i_d.di_flushiter++; 3331 3332 /* 3333 * Copy the dirty parts of the inode into the on-disk 3334 * inode. We always copy out the core of the inode, 3335 * because if the inode is dirty at all the core must 3336 * be. 3337 */ 3338 xfs_dinode_to_disk(dip, &ip->i_d); 3339 3340 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3341 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3342 ip->i_d.di_flushiter = 0; 3343 3344 /* 3345 * If this is really an old format inode and the superblock version 3346 * has not been updated to support only new format inodes, then 3347 * convert back to the old inode format. If the superblock version 3348 * has been updated, then make the conversion permanent. 3349 */ 3350 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3351 if (ip->i_d.di_version == 1) { 3352 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3353 /* 3354 * Convert it back. 3355 */ 3356 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3357 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3358 } else { 3359 /* 3360 * The superblock version has already been bumped, 3361 * so just make the conversion to the new inode 3362 * format permanent. 3363 */ 3364 ip->i_d.di_version = 2; 3365 dip->di_version = 2; 3366 ip->i_d.di_onlink = 0; 3367 dip->di_onlink = 0; 3368 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3369 memset(&(dip->di_pad[0]), 0, 3370 sizeof(dip->di_pad)); 3371 ASSERT(xfs_get_projid(ip) == 0); 3372 } 3373 } 3374 3375 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3376 if (XFS_IFORK_Q(ip)) 3377 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3378 xfs_inobp_check(mp, bp); 3379 3380 /* 3381 * We've recorded everything logged in the inode, so we'd like to clear 3382 * the ili_fields bits so we don't log and flush things unnecessarily. 3383 * However, we can't stop logging all this information until the data 3384 * we've copied into the disk buffer is written to disk. If we did we 3385 * might overwrite the copy of the inode in the log with all the data 3386 * after re-logging only part of it, and in the face of a crash we 3387 * wouldn't have all the data we need to recover. 3388 * 3389 * What we do is move the bits to the ili_last_fields field. When 3390 * logging the inode, these bits are moved back to the ili_fields field. 3391 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3392 * know that the information those bits represent is permanently on 3393 * disk. As long as the flush completes before the inode is logged 3394 * again, then both ili_fields and ili_last_fields will be cleared. 3395 * 3396 * We can play with the ili_fields bits here, because the inode lock 3397 * must be held exclusively in order to set bits there and the flush 3398 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3399 * done routine can tell whether or not to look in the AIL. Also, store 3400 * the current LSN of the inode so that we can tell whether the item has 3401 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3402 * need the AIL lock, because it is a 64 bit value that cannot be read 3403 * atomically. 3404 */ 3405 iip->ili_last_fields = iip->ili_fields; 3406 iip->ili_fields = 0; 3407 iip->ili_logged = 1; 3408 3409 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3410 &iip->ili_item.li_lsn); 3411 3412 /* 3413 * Attach the function xfs_iflush_done to the inode's 3414 * buffer. This will remove the inode from the AIL 3415 * and unlock the inode's flush lock when the inode is 3416 * completely written to disk. 3417 */ 3418 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3419 3420 /* update the lsn in the on disk inode if required */ 3421 if (ip->i_d.di_version == 3) 3422 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3423 3424 /* generate the checksum. */ 3425 xfs_dinode_calc_crc(mp, dip); 3426 3427 ASSERT(bp->b_fspriv != NULL); 3428 ASSERT(bp->b_iodone != NULL); 3429 return 0; 3430 3431 corrupt_out: 3432 return XFS_ERROR(EFSCORRUPTED); 3433 } 3434