1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 #include <linux/iversion.h> 20 21 #include "xfs.h" 22 #include "xfs_fs.h" 23 #include "xfs_shared.h" 24 #include "xfs_format.h" 25 #include "xfs_log_format.h" 26 #include "xfs_trans_resv.h" 27 #include "xfs_sb.h" 28 #include "xfs_mount.h" 29 #include "xfs_defer.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_errortag.h" 44 #include "xfs_error.h" 45 #include "xfs_quota.h" 46 #include "xfs_filestream.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 #include "xfs_symlink.h" 51 #include "xfs_trans_priv.h" 52 #include "xfs_log.h" 53 #include "xfs_bmap_btree.h" 54 #include "xfs_reflink.h" 55 #include "xfs_dir2_priv.h" 56 57 kmem_zone_t *xfs_inode_zone; 58 59 /* 60 * Used in xfs_itruncate_extents(). This is the maximum number of extents 61 * freed from a file in a single transaction. 62 */ 63 #define XFS_ITRUNC_MAX_EXTENTS 2 64 65 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 66 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 67 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 68 69 /* 70 * helper function to extract extent size hint from inode 71 */ 72 xfs_extlen_t 73 xfs_get_extsz_hint( 74 struct xfs_inode *ip) 75 { 76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 77 return ip->i_d.di_extsize; 78 if (XFS_IS_REALTIME_INODE(ip)) 79 return ip->i_mount->m_sb.sb_rextsize; 80 return 0; 81 } 82 83 /* 84 * Helper function to extract CoW extent size hint from inode. 85 * Between the extent size hint and the CoW extent size hint, we 86 * return the greater of the two. If the value is zero (automatic), 87 * use the default size. 88 */ 89 xfs_extlen_t 90 xfs_get_cowextsz_hint( 91 struct xfs_inode *ip) 92 { 93 xfs_extlen_t a, b; 94 95 a = 0; 96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 97 a = ip->i_d.di_cowextsize; 98 b = xfs_get_extsz_hint(ip); 99 100 a = max(a, b); 101 if (a == 0) 102 return XFS_DEFAULT_COWEXTSZ_HINT; 103 return a; 104 } 105 106 /* 107 * These two are wrapper routines around the xfs_ilock() routine used to 108 * centralize some grungy code. They are used in places that wish to lock the 109 * inode solely for reading the extents. The reason these places can't just 110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 111 * bringing in of the extents from disk for a file in b-tree format. If the 112 * inode is in b-tree format, then we need to lock the inode exclusively until 113 * the extents are read in. Locking it exclusively all the time would limit 114 * our parallelism unnecessarily, though. What we do instead is check to see 115 * if the extents have been read in yet, and only lock the inode exclusively 116 * if they have not. 117 * 118 * The functions return a value which should be given to the corresponding 119 * xfs_iunlock() call. 120 */ 121 uint 122 xfs_ilock_data_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 129 lock_mode = XFS_ILOCK_EXCL; 130 xfs_ilock(ip, lock_mode); 131 return lock_mode; 132 } 133 134 uint 135 xfs_ilock_attr_map_shared( 136 struct xfs_inode *ip) 137 { 138 uint lock_mode = XFS_ILOCK_SHARED; 139 140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 142 lock_mode = XFS_ILOCK_EXCL; 143 xfs_ilock(ip, lock_mode); 144 return lock_mode; 145 } 146 147 /* 148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 150 * various combinations of the locks to be obtained. 151 * 152 * The 3 locks should always be ordered so that the IO lock is obtained first, 153 * the mmap lock second and the ilock last in order to prevent deadlock. 154 * 155 * Basic locking order: 156 * 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 158 * 159 * mmap_sem locking order: 160 * 161 * i_rwsem -> page lock -> mmap_sem 162 * mmap_sem -> i_mmap_lock -> page_lock 163 * 164 * The difference in mmap_sem locking order mean that we cannot hold the 165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 167 * in get_user_pages() to map the user pages into the kernel address space for 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 169 * page faults already hold the mmap_sem. 170 * 171 * Hence to serialise fully against both syscall and mmap based IO, we need to 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 173 * taken in places where we need to invalidate the page cache in a race 174 * free manner (e.g. truncate, hole punch and other extent manipulation 175 * functions). 176 */ 177 void 178 xfs_ilock( 179 xfs_inode_t *ip, 180 uint lock_flags) 181 { 182 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 183 184 /* 185 * You can't set both SHARED and EXCL for the same lock, 186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 188 */ 189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 196 197 if (lock_flags & XFS_IOLOCK_EXCL) { 198 down_write_nested(&VFS_I(ip)->i_rwsem, 199 XFS_IOLOCK_DEP(lock_flags)); 200 } else if (lock_flags & XFS_IOLOCK_SHARED) { 201 down_read_nested(&VFS_I(ip)->i_rwsem, 202 XFS_IOLOCK_DEP(lock_flags)); 203 } 204 205 if (lock_flags & XFS_MMAPLOCK_EXCL) 206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 207 else if (lock_flags & XFS_MMAPLOCK_SHARED) 208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 209 210 if (lock_flags & XFS_ILOCK_EXCL) 211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 else if (lock_flags & XFS_ILOCK_SHARED) 213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 214 } 215 216 /* 217 * This is just like xfs_ilock(), except that the caller 218 * is guaranteed not to sleep. It returns 1 if it gets 219 * the requested locks and 0 otherwise. If the IO lock is 220 * obtained but the inode lock cannot be, then the IO lock 221 * is dropped before returning. 222 * 223 * ip -- the inode being locked 224 * lock_flags -- this parameter indicates the inode's locks to be 225 * to be locked. See the comment for xfs_ilock() for a list 226 * of valid values. 227 */ 228 int 229 xfs_ilock_nowait( 230 xfs_inode_t *ip, 231 uint lock_flags) 232 { 233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 234 235 /* 236 * You can't set both SHARED and EXCL for the same lock, 237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 239 */ 240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 247 248 if (lock_flags & XFS_IOLOCK_EXCL) { 249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 250 goto out; 251 } else if (lock_flags & XFS_IOLOCK_SHARED) { 252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 253 goto out; 254 } 255 256 if (lock_flags & XFS_MMAPLOCK_EXCL) { 257 if (!mrtryupdate(&ip->i_mmaplock)) 258 goto out_undo_iolock; 259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 260 if (!mrtryaccess(&ip->i_mmaplock)) 261 goto out_undo_iolock; 262 } 263 264 if (lock_flags & XFS_ILOCK_EXCL) { 265 if (!mrtryupdate(&ip->i_lock)) 266 goto out_undo_mmaplock; 267 } else if (lock_flags & XFS_ILOCK_SHARED) { 268 if (!mrtryaccess(&ip->i_lock)) 269 goto out_undo_mmaplock; 270 } 271 return 1; 272 273 out_undo_mmaplock: 274 if (lock_flags & XFS_MMAPLOCK_EXCL) 275 mrunlock_excl(&ip->i_mmaplock); 276 else if (lock_flags & XFS_MMAPLOCK_SHARED) 277 mrunlock_shared(&ip->i_mmaplock); 278 out_undo_iolock: 279 if (lock_flags & XFS_IOLOCK_EXCL) 280 up_write(&VFS_I(ip)->i_rwsem); 281 else if (lock_flags & XFS_IOLOCK_SHARED) 282 up_read(&VFS_I(ip)->i_rwsem); 283 out: 284 return 0; 285 } 286 287 /* 288 * xfs_iunlock() is used to drop the inode locks acquired with 289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 291 * that we know which locks to drop. 292 * 293 * ip -- the inode being unlocked 294 * lock_flags -- this parameter indicates the inode's locks to be 295 * to be unlocked. See the comment for xfs_ilock() for a list 296 * of valid values for this parameter. 297 * 298 */ 299 void 300 xfs_iunlock( 301 xfs_inode_t *ip, 302 uint lock_flags) 303 { 304 /* 305 * You can't set both SHARED and EXCL for the same lock, 306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 308 */ 309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 316 ASSERT(lock_flags != 0); 317 318 if (lock_flags & XFS_IOLOCK_EXCL) 319 up_write(&VFS_I(ip)->i_rwsem); 320 else if (lock_flags & XFS_IOLOCK_SHARED) 321 up_read(&VFS_I(ip)->i_rwsem); 322 323 if (lock_flags & XFS_MMAPLOCK_EXCL) 324 mrunlock_excl(&ip->i_mmaplock); 325 else if (lock_flags & XFS_MMAPLOCK_SHARED) 326 mrunlock_shared(&ip->i_mmaplock); 327 328 if (lock_flags & XFS_ILOCK_EXCL) 329 mrunlock_excl(&ip->i_lock); 330 else if (lock_flags & XFS_ILOCK_SHARED) 331 mrunlock_shared(&ip->i_lock); 332 333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 334 } 335 336 /* 337 * give up write locks. the i/o lock cannot be held nested 338 * if it is being demoted. 339 */ 340 void 341 xfs_ilock_demote( 342 xfs_inode_t *ip, 343 uint lock_flags) 344 { 345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 346 ASSERT((lock_flags & 347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 348 349 if (lock_flags & XFS_ILOCK_EXCL) 350 mrdemote(&ip->i_lock); 351 if (lock_flags & XFS_MMAPLOCK_EXCL) 352 mrdemote(&ip->i_mmaplock); 353 if (lock_flags & XFS_IOLOCK_EXCL) 354 downgrade_write(&VFS_I(ip)->i_rwsem); 355 356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 357 } 358 359 #if defined(DEBUG) || defined(XFS_WARN) 360 int 361 xfs_isilocked( 362 xfs_inode_t *ip, 363 uint lock_flags) 364 { 365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 366 if (!(lock_flags & XFS_ILOCK_SHARED)) 367 return !!ip->i_lock.mr_writer; 368 return rwsem_is_locked(&ip->i_lock.mr_lock); 369 } 370 371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 372 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 373 return !!ip->i_mmaplock.mr_writer; 374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 375 } 376 377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 378 if (!(lock_flags & XFS_IOLOCK_SHARED)) 379 return !debug_locks || 380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 382 } 383 384 ASSERT(0); 385 return 0; 386 } 387 #endif 388 389 /* 390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 393 * errors and warnings. 394 */ 395 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 396 static bool 397 xfs_lockdep_subclass_ok( 398 int subclass) 399 { 400 return subclass < MAX_LOCKDEP_SUBCLASSES; 401 } 402 #else 403 #define xfs_lockdep_subclass_ok(subclass) (true) 404 #endif 405 406 /* 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 408 * value. This can be called for any type of inode lock combination, including 409 * parent locking. Care must be taken to ensure we don't overrun the subclass 410 * storage fields in the class mask we build. 411 */ 412 static inline int 413 xfs_lock_inumorder(int lock_mode, int subclass) 414 { 415 int class = 0; 416 417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 418 XFS_ILOCK_RTSUM))); 419 ASSERT(xfs_lockdep_subclass_ok(subclass)); 420 421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 423 class += subclass << XFS_IOLOCK_SHIFT; 424 } 425 426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 428 class += subclass << XFS_MMAPLOCK_SHIFT; 429 } 430 431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 433 class += subclass << XFS_ILOCK_SHIFT; 434 } 435 436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 437 } 438 439 /* 440 * The following routine will lock n inodes in exclusive mode. We assume the 441 * caller calls us with the inodes in i_ino order. 442 * 443 * We need to detect deadlock where an inode that we lock is in the AIL and we 444 * start waiting for another inode that is locked by a thread in a long running 445 * transaction (such as truncate). This can result in deadlock since the long 446 * running trans might need to wait for the inode we just locked in order to 447 * push the tail and free space in the log. 448 * 449 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 451 * lock more than one at a time, lockdep will report false positives saying we 452 * have violated locking orders. 453 */ 454 static void 455 xfs_lock_inodes( 456 xfs_inode_t **ips, 457 int inodes, 458 uint lock_mode) 459 { 460 int attempts = 0, i, j, try_lock; 461 xfs_log_item_t *lp; 462 463 /* 464 * Currently supports between 2 and 5 inodes with exclusive locking. We 465 * support an arbitrary depth of locking here, but absolute limits on 466 * inodes depend on the the type of locking and the limits placed by 467 * lockdep annotations in xfs_lock_inumorder. These are all checked by 468 * the asserts. 469 */ 470 ASSERT(ips && inodes >= 2 && inodes <= 5); 471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 472 XFS_ILOCK_EXCL)); 473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 474 XFS_ILOCK_SHARED))); 475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 479 480 if (lock_mode & XFS_IOLOCK_EXCL) { 481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 482 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 484 485 try_lock = 0; 486 i = 0; 487 again: 488 for (; i < inodes; i++) { 489 ASSERT(ips[i]); 490 491 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 492 continue; 493 494 /* 495 * If try_lock is not set yet, make sure all locked inodes are 496 * not in the AIL. If any are, set try_lock to be used later. 497 */ 498 if (!try_lock) { 499 for (j = (i - 1); j >= 0 && !try_lock; j--) { 500 lp = (xfs_log_item_t *)ips[j]->i_itemp; 501 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 502 try_lock++; 503 } 504 } 505 506 /* 507 * If any of the previous locks we have locked is in the AIL, 508 * we must TRY to get the second and subsequent locks. If 509 * we can't get any, we must release all we have 510 * and try again. 511 */ 512 if (!try_lock) { 513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 514 continue; 515 } 516 517 /* try_lock means we have an inode locked that is in the AIL. */ 518 ASSERT(i != 0); 519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 520 continue; 521 522 /* 523 * Unlock all previous guys and try again. xfs_iunlock will try 524 * to push the tail if the inode is in the AIL. 525 */ 526 attempts++; 527 for (j = i - 1; j >= 0; j--) { 528 /* 529 * Check to see if we've already unlocked this one. Not 530 * the first one going back, and the inode ptr is the 531 * same. 532 */ 533 if (j != (i - 1) && ips[j] == ips[j + 1]) 534 continue; 535 536 xfs_iunlock(ips[j], lock_mode); 537 } 538 539 if ((attempts % 5) == 0) { 540 delay(1); /* Don't just spin the CPU */ 541 } 542 i = 0; 543 try_lock = 0; 544 goto again; 545 } 546 } 547 548 /* 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 550 * the mmaplock or the ilock, but not more than one type at a time. If we lock 551 * more than one at a time, lockdep will report false positives saying we have 552 * violated locking orders. The iolock must be double-locked separately since 553 * we use i_rwsem for that. We now support taking one lock EXCL and the other 554 * SHARED. 555 */ 556 void 557 xfs_lock_two_inodes( 558 struct xfs_inode *ip0, 559 uint ip0_mode, 560 struct xfs_inode *ip1, 561 uint ip1_mode) 562 { 563 struct xfs_inode *temp; 564 uint mode_temp; 565 int attempts = 0; 566 xfs_log_item_t *lp; 567 568 ASSERT(hweight32(ip0_mode) == 1); 569 ASSERT(hweight32(ip1_mode) == 1); 570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 580 581 ASSERT(ip0->i_ino != ip1->i_ino); 582 583 if (ip0->i_ino > ip1->i_ino) { 584 temp = ip0; 585 ip0 = ip1; 586 ip1 = temp; 587 mode_temp = ip0_mode; 588 ip0_mode = ip1_mode; 589 ip1_mode = mode_temp; 590 } 591 592 again: 593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 594 595 /* 596 * If the first lock we have locked is in the AIL, we must TRY to get 597 * the second lock. If we can't get it, we must release the first one 598 * and try again. 599 */ 600 lp = (xfs_log_item_t *)ip0->i_itemp; 601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 603 xfs_iunlock(ip0, ip0_mode); 604 if ((++attempts % 5) == 0) 605 delay(1); /* Don't just spin the CPU */ 606 goto again; 607 } 608 } else { 609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 610 } 611 } 612 613 void 614 __xfs_iflock( 615 struct xfs_inode *ip) 616 { 617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 619 620 do { 621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 622 if (xfs_isiflocked(ip)) 623 io_schedule(); 624 } while (!xfs_iflock_nowait(ip)); 625 626 finish_wait(wq, &wait.wq_entry); 627 } 628 629 STATIC uint 630 _xfs_dic2xflags( 631 uint16_t di_flags, 632 uint64_t di_flags2, 633 bool has_attr) 634 { 635 uint flags = 0; 636 637 if (di_flags & XFS_DIFLAG_ANY) { 638 if (di_flags & XFS_DIFLAG_REALTIME) 639 flags |= FS_XFLAG_REALTIME; 640 if (di_flags & XFS_DIFLAG_PREALLOC) 641 flags |= FS_XFLAG_PREALLOC; 642 if (di_flags & XFS_DIFLAG_IMMUTABLE) 643 flags |= FS_XFLAG_IMMUTABLE; 644 if (di_flags & XFS_DIFLAG_APPEND) 645 flags |= FS_XFLAG_APPEND; 646 if (di_flags & XFS_DIFLAG_SYNC) 647 flags |= FS_XFLAG_SYNC; 648 if (di_flags & XFS_DIFLAG_NOATIME) 649 flags |= FS_XFLAG_NOATIME; 650 if (di_flags & XFS_DIFLAG_NODUMP) 651 flags |= FS_XFLAG_NODUMP; 652 if (di_flags & XFS_DIFLAG_RTINHERIT) 653 flags |= FS_XFLAG_RTINHERIT; 654 if (di_flags & XFS_DIFLAG_PROJINHERIT) 655 flags |= FS_XFLAG_PROJINHERIT; 656 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 657 flags |= FS_XFLAG_NOSYMLINKS; 658 if (di_flags & XFS_DIFLAG_EXTSIZE) 659 flags |= FS_XFLAG_EXTSIZE; 660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 661 flags |= FS_XFLAG_EXTSZINHERIT; 662 if (di_flags & XFS_DIFLAG_NODEFRAG) 663 flags |= FS_XFLAG_NODEFRAG; 664 if (di_flags & XFS_DIFLAG_FILESTREAM) 665 flags |= FS_XFLAG_FILESTREAM; 666 } 667 668 if (di_flags2 & XFS_DIFLAG2_ANY) { 669 if (di_flags2 & XFS_DIFLAG2_DAX) 670 flags |= FS_XFLAG_DAX; 671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 672 flags |= FS_XFLAG_COWEXTSIZE; 673 } 674 675 if (has_attr) 676 flags |= FS_XFLAG_HASATTR; 677 678 return flags; 679 } 680 681 uint 682 xfs_ip2xflags( 683 struct xfs_inode *ip) 684 { 685 struct xfs_icdinode *dic = &ip->i_d; 686 687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 688 } 689 690 /* 691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 692 * is allowed, otherwise it has to be an exact match. If a CI match is found, 693 * ci_name->name will point to a the actual name (caller must free) or 694 * will be set to NULL if an exact match is found. 695 */ 696 int 697 xfs_lookup( 698 xfs_inode_t *dp, 699 struct xfs_name *name, 700 xfs_inode_t **ipp, 701 struct xfs_name *ci_name) 702 { 703 xfs_ino_t inum; 704 int error; 705 706 trace_xfs_lookup(dp, name); 707 708 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 709 return -EIO; 710 711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 712 if (error) 713 goto out_unlock; 714 715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 716 if (error) 717 goto out_free_name; 718 719 return 0; 720 721 out_free_name: 722 if (ci_name) 723 kmem_free(ci_name->name); 724 out_unlock: 725 *ipp = NULL; 726 return error; 727 } 728 729 /* 730 * Allocate an inode on disk and return a copy of its in-core version. 731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 732 * appropriately within the inode. The uid and gid for the inode are 733 * set according to the contents of the given cred structure. 734 * 735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 736 * has a free inode available, call xfs_iget() to obtain the in-core 737 * version of the allocated inode. Finally, fill in the inode and 738 * log its initial contents. In this case, ialloc_context would be 739 * set to NULL. 740 * 741 * If xfs_dialloc() does not have an available inode, it will replenish 742 * its supply by doing an allocation. Since we can only do one 743 * allocation within a transaction without deadlocks, we must commit 744 * the current transaction before returning the inode itself. 745 * In this case, therefore, we will set ialloc_context and return. 746 * The caller should then commit the current transaction, start a new 747 * transaction, and call xfs_ialloc() again to actually get the inode. 748 * 749 * To ensure that some other process does not grab the inode that 750 * was allocated during the first call to xfs_ialloc(), this routine 751 * also returns the [locked] bp pointing to the head of the freelist 752 * as ialloc_context. The caller should hold this buffer across 753 * the commit and pass it back into this routine on the second call. 754 * 755 * If we are allocating quota inodes, we do not have a parent inode 756 * to attach to or associate with (i.e. pip == NULL) because they 757 * are not linked into the directory structure - they are attached 758 * directly to the superblock - and so have no parent. 759 */ 760 static int 761 xfs_ialloc( 762 xfs_trans_t *tp, 763 xfs_inode_t *pip, 764 umode_t mode, 765 xfs_nlink_t nlink, 766 dev_t rdev, 767 prid_t prid, 768 xfs_buf_t **ialloc_context, 769 xfs_inode_t **ipp) 770 { 771 struct xfs_mount *mp = tp->t_mountp; 772 xfs_ino_t ino; 773 xfs_inode_t *ip; 774 uint flags; 775 int error; 776 struct timespec tv; 777 struct inode *inode; 778 779 /* 780 * Call the space management code to pick 781 * the on-disk inode to be allocated. 782 */ 783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 784 ialloc_context, &ino); 785 if (error) 786 return error; 787 if (*ialloc_context || ino == NULLFSINO) { 788 *ipp = NULL; 789 return 0; 790 } 791 ASSERT(*ialloc_context == NULL); 792 793 /* 794 * Get the in-core inode with the lock held exclusively. 795 * This is because we're setting fields here we need 796 * to prevent others from looking at until we're done. 797 */ 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 799 XFS_ILOCK_EXCL, &ip); 800 if (error) 801 return error; 802 ASSERT(ip != NULL); 803 inode = VFS_I(ip); 804 805 /* 806 * We always convert v1 inodes to v2 now - we only support filesystems 807 * with >= v2 inode capability, so there is no reason for ever leaving 808 * an inode in v1 format. 809 */ 810 if (ip->i_d.di_version == 1) 811 ip->i_d.di_version = 2; 812 813 inode->i_mode = mode; 814 set_nlink(inode, nlink); 815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 817 inode->i_rdev = rdev; 818 xfs_set_projid(ip, prid); 819 820 if (pip && XFS_INHERIT_GID(pip)) { 821 ip->i_d.di_gid = pip->i_d.di_gid; 822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 823 inode->i_mode |= S_ISGID; 824 } 825 826 /* 827 * If the group ID of the new file does not match the effective group 828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 829 * (and only if the irix_sgid_inherit compatibility variable is set). 830 */ 831 if ((irix_sgid_inherit) && 832 (inode->i_mode & S_ISGID) && 833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 834 inode->i_mode &= ~S_ISGID; 835 836 ip->i_d.di_size = 0; 837 ip->i_d.di_nextents = 0; 838 ASSERT(ip->i_d.di_nblocks == 0); 839 840 tv = current_time(inode); 841 inode->i_mtime = tv; 842 inode->i_atime = tv; 843 inode->i_ctime = tv; 844 845 ip->i_d.di_extsize = 0; 846 ip->i_d.di_dmevmask = 0; 847 ip->i_d.di_dmstate = 0; 848 ip->i_d.di_flags = 0; 849 850 if (ip->i_d.di_version == 3) { 851 inode_set_iversion(inode, 1); 852 ip->i_d.di_flags2 = 0; 853 ip->i_d.di_cowextsize = 0; 854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 856 } 857 858 859 flags = XFS_ILOG_CORE; 860 switch (mode & S_IFMT) { 861 case S_IFIFO: 862 case S_IFCHR: 863 case S_IFBLK: 864 case S_IFSOCK: 865 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 866 ip->i_df.if_flags = 0; 867 flags |= XFS_ILOG_DEV; 868 break; 869 case S_IFREG: 870 case S_IFDIR: 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 872 uint di_flags = 0; 873 874 if (S_ISDIR(mode)) { 875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 876 di_flags |= XFS_DIFLAG_RTINHERIT; 877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 878 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 879 ip->i_d.di_extsize = pip->i_d.di_extsize; 880 } 881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 882 di_flags |= XFS_DIFLAG_PROJINHERIT; 883 } else if (S_ISREG(mode)) { 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 885 di_flags |= XFS_DIFLAG_REALTIME; 886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 887 di_flags |= XFS_DIFLAG_EXTSIZE; 888 ip->i_d.di_extsize = pip->i_d.di_extsize; 889 } 890 } 891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 892 xfs_inherit_noatime) 893 di_flags |= XFS_DIFLAG_NOATIME; 894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 895 xfs_inherit_nodump) 896 di_flags |= XFS_DIFLAG_NODUMP; 897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 898 xfs_inherit_sync) 899 di_flags |= XFS_DIFLAG_SYNC; 900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 901 xfs_inherit_nosymlinks) 902 di_flags |= XFS_DIFLAG_NOSYMLINKS; 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 904 xfs_inherit_nodefrag) 905 di_flags |= XFS_DIFLAG_NODEFRAG; 906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 907 di_flags |= XFS_DIFLAG_FILESTREAM; 908 909 ip->i_d.di_flags |= di_flags; 910 } 911 if (pip && 912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 913 pip->i_d.di_version == 3 && 914 ip->i_d.di_version == 3) { 915 uint64_t di_flags2 = 0; 916 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 920 } 921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 922 di_flags2 |= XFS_DIFLAG2_DAX; 923 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 /* FALLTHROUGH */ 927 case S_IFLNK: 928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 929 ip->i_df.if_flags = XFS_IFEXTENTS; 930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 931 ip->i_df.if_u1.if_root = NULL; 932 break; 933 default: 934 ASSERT(0); 935 } 936 /* 937 * Attribute fork settings for new inode. 938 */ 939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 940 ip->i_d.di_anextents = 0; 941 942 /* 943 * Log the new values stuffed into the inode. 944 */ 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 946 xfs_trans_log_inode(tp, ip, flags); 947 948 /* now that we have an i_mode we can setup the inode structure */ 949 xfs_setup_inode(ip); 950 951 *ipp = ip; 952 return 0; 953 } 954 955 /* 956 * Allocates a new inode from disk and return a pointer to the 957 * incore copy. This routine will internally commit the current 958 * transaction and allocate a new one if the Space Manager needed 959 * to do an allocation to replenish the inode free-list. 960 * 961 * This routine is designed to be called from xfs_create and 962 * xfs_create_dir. 963 * 964 */ 965 int 966 xfs_dir_ialloc( 967 xfs_trans_t **tpp, /* input: current transaction; 968 output: may be a new transaction. */ 969 xfs_inode_t *dp, /* directory within whose allocate 970 the inode. */ 971 umode_t mode, 972 xfs_nlink_t nlink, 973 dev_t rdev, 974 prid_t prid, /* project id */ 975 xfs_inode_t **ipp, /* pointer to inode; it will be 976 locked. */ 977 int *committed) 978 979 { 980 xfs_trans_t *tp; 981 xfs_inode_t *ip; 982 xfs_buf_t *ialloc_context = NULL; 983 int code; 984 void *dqinfo; 985 uint tflags; 986 987 tp = *tpp; 988 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 989 990 /* 991 * xfs_ialloc will return a pointer to an incore inode if 992 * the Space Manager has an available inode on the free 993 * list. Otherwise, it will do an allocation and replenish 994 * the freelist. Since we can only do one allocation per 995 * transaction without deadlocks, we will need to commit the 996 * current transaction and start a new one. We will then 997 * need to call xfs_ialloc again to get the inode. 998 * 999 * If xfs_ialloc did an allocation to replenish the freelist, 1000 * it returns the bp containing the head of the freelist as 1001 * ialloc_context. We will hold a lock on it across the 1002 * transaction commit so that no other process can steal 1003 * the inode(s) that we've just allocated. 1004 */ 1005 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 1006 &ip); 1007 1008 /* 1009 * Return an error if we were unable to allocate a new inode. 1010 * This should only happen if we run out of space on disk or 1011 * encounter a disk error. 1012 */ 1013 if (code) { 1014 *ipp = NULL; 1015 return code; 1016 } 1017 if (!ialloc_context && !ip) { 1018 *ipp = NULL; 1019 return -ENOSPC; 1020 } 1021 1022 /* 1023 * If the AGI buffer is non-NULL, then we were unable to get an 1024 * inode in one operation. We need to commit the current 1025 * transaction and call xfs_ialloc() again. It is guaranteed 1026 * to succeed the second time. 1027 */ 1028 if (ialloc_context) { 1029 /* 1030 * Normally, xfs_trans_commit releases all the locks. 1031 * We call bhold to hang on to the ialloc_context across 1032 * the commit. Holding this buffer prevents any other 1033 * processes from doing any allocations in this 1034 * allocation group. 1035 */ 1036 xfs_trans_bhold(tp, ialloc_context); 1037 1038 /* 1039 * We want the quota changes to be associated with the next 1040 * transaction, NOT this one. So, detach the dqinfo from this 1041 * and attach it to the next transaction. 1042 */ 1043 dqinfo = NULL; 1044 tflags = 0; 1045 if (tp->t_dqinfo) { 1046 dqinfo = (void *)tp->t_dqinfo; 1047 tp->t_dqinfo = NULL; 1048 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1049 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1050 } 1051 1052 code = xfs_trans_roll(&tp); 1053 if (committed != NULL) 1054 *committed = 1; 1055 1056 /* 1057 * Re-attach the quota info that we detached from prev trx. 1058 */ 1059 if (dqinfo) { 1060 tp->t_dqinfo = dqinfo; 1061 tp->t_flags |= tflags; 1062 } 1063 1064 if (code) { 1065 xfs_buf_relse(ialloc_context); 1066 *tpp = tp; 1067 *ipp = NULL; 1068 return code; 1069 } 1070 xfs_trans_bjoin(tp, ialloc_context); 1071 1072 /* 1073 * Call ialloc again. Since we've locked out all 1074 * other allocations in this allocation group, 1075 * this call should always succeed. 1076 */ 1077 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1078 &ialloc_context, &ip); 1079 1080 /* 1081 * If we get an error at this point, return to the caller 1082 * so that the current transaction can be aborted. 1083 */ 1084 if (code) { 1085 *tpp = tp; 1086 *ipp = NULL; 1087 return code; 1088 } 1089 ASSERT(!ialloc_context && ip); 1090 1091 } else { 1092 if (committed != NULL) 1093 *committed = 0; 1094 } 1095 1096 *ipp = ip; 1097 *tpp = tp; 1098 1099 return 0; 1100 } 1101 1102 /* 1103 * Decrement the link count on an inode & log the change. If this causes the 1104 * link count to go to zero, move the inode to AGI unlinked list so that it can 1105 * be freed when the last active reference goes away via xfs_inactive(). 1106 */ 1107 static int /* error */ 1108 xfs_droplink( 1109 xfs_trans_t *tp, 1110 xfs_inode_t *ip) 1111 { 1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1113 1114 drop_nlink(VFS_I(ip)); 1115 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1116 1117 if (VFS_I(ip)->i_nlink) 1118 return 0; 1119 1120 return xfs_iunlink(tp, ip); 1121 } 1122 1123 /* 1124 * Increment the link count on an inode & log the change. 1125 */ 1126 static int 1127 xfs_bumplink( 1128 xfs_trans_t *tp, 1129 xfs_inode_t *ip) 1130 { 1131 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1132 1133 ASSERT(ip->i_d.di_version > 1); 1134 inc_nlink(VFS_I(ip)); 1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1136 return 0; 1137 } 1138 1139 int 1140 xfs_create( 1141 xfs_inode_t *dp, 1142 struct xfs_name *name, 1143 umode_t mode, 1144 dev_t rdev, 1145 xfs_inode_t **ipp) 1146 { 1147 int is_dir = S_ISDIR(mode); 1148 struct xfs_mount *mp = dp->i_mount; 1149 struct xfs_inode *ip = NULL; 1150 struct xfs_trans *tp = NULL; 1151 int error; 1152 struct xfs_defer_ops dfops; 1153 xfs_fsblock_t first_block; 1154 bool unlock_dp_on_error = false; 1155 prid_t prid; 1156 struct xfs_dquot *udqp = NULL; 1157 struct xfs_dquot *gdqp = NULL; 1158 struct xfs_dquot *pdqp = NULL; 1159 struct xfs_trans_res *tres; 1160 uint resblks; 1161 1162 trace_xfs_create(dp, name); 1163 1164 if (XFS_FORCED_SHUTDOWN(mp)) 1165 return -EIO; 1166 1167 prid = xfs_get_initial_prid(dp); 1168 1169 /* 1170 * Make sure that we have allocated dquot(s) on disk. 1171 */ 1172 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1173 xfs_kgid_to_gid(current_fsgid()), prid, 1174 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1175 &udqp, &gdqp, &pdqp); 1176 if (error) 1177 return error; 1178 1179 if (is_dir) { 1180 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1181 tres = &M_RES(mp)->tr_mkdir; 1182 } else { 1183 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1184 tres = &M_RES(mp)->tr_create; 1185 } 1186 1187 /* 1188 * Initially assume that the file does not exist and 1189 * reserve the resources for that case. If that is not 1190 * the case we'll drop the one we have and get a more 1191 * appropriate transaction later. 1192 */ 1193 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1194 if (error == -ENOSPC) { 1195 /* flush outstanding delalloc blocks and retry */ 1196 xfs_flush_inodes(mp); 1197 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1198 } 1199 if (error) 1200 goto out_release_inode; 1201 1202 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1203 unlock_dp_on_error = true; 1204 1205 xfs_defer_init(&dfops, &first_block); 1206 1207 /* 1208 * Reserve disk quota and the inode. 1209 */ 1210 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1211 pdqp, resblks, 1, 0); 1212 if (error) 1213 goto out_trans_cancel; 1214 1215 /* 1216 * A newly created regular or special file just has one directory 1217 * entry pointing to them, but a directory also the "." entry 1218 * pointing to itself. 1219 */ 1220 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip, 1221 NULL); 1222 if (error) 1223 goto out_trans_cancel; 1224 1225 /* 1226 * Now we join the directory inode to the transaction. We do not do it 1227 * earlier because xfs_dir_ialloc might commit the previous transaction 1228 * (and release all the locks). An error from here on will result in 1229 * the transaction cancel unlocking dp so don't do it explicitly in the 1230 * error path. 1231 */ 1232 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1233 unlock_dp_on_error = false; 1234 1235 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1236 &first_block, &dfops, resblks ? 1237 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1238 if (error) { 1239 ASSERT(error != -ENOSPC); 1240 goto out_trans_cancel; 1241 } 1242 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1243 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1244 1245 if (is_dir) { 1246 error = xfs_dir_init(tp, ip, dp); 1247 if (error) 1248 goto out_bmap_cancel; 1249 1250 error = xfs_bumplink(tp, dp); 1251 if (error) 1252 goto out_bmap_cancel; 1253 } 1254 1255 /* 1256 * If this is a synchronous mount, make sure that the 1257 * create transaction goes to disk before returning to 1258 * the user. 1259 */ 1260 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1261 xfs_trans_set_sync(tp); 1262 1263 /* 1264 * Attach the dquot(s) to the inodes and modify them incore. 1265 * These ids of the inode couldn't have changed since the new 1266 * inode has been locked ever since it was created. 1267 */ 1268 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1269 1270 error = xfs_defer_finish(&tp, &dfops); 1271 if (error) 1272 goto out_bmap_cancel; 1273 1274 error = xfs_trans_commit(tp); 1275 if (error) 1276 goto out_release_inode; 1277 1278 xfs_qm_dqrele(udqp); 1279 xfs_qm_dqrele(gdqp); 1280 xfs_qm_dqrele(pdqp); 1281 1282 *ipp = ip; 1283 return 0; 1284 1285 out_bmap_cancel: 1286 xfs_defer_cancel(&dfops); 1287 out_trans_cancel: 1288 xfs_trans_cancel(tp); 1289 out_release_inode: 1290 /* 1291 * Wait until after the current transaction is aborted to finish the 1292 * setup of the inode and release the inode. This prevents recursive 1293 * transactions and deadlocks from xfs_inactive. 1294 */ 1295 if (ip) { 1296 xfs_finish_inode_setup(ip); 1297 IRELE(ip); 1298 } 1299 1300 xfs_qm_dqrele(udqp); 1301 xfs_qm_dqrele(gdqp); 1302 xfs_qm_dqrele(pdqp); 1303 1304 if (unlock_dp_on_error) 1305 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1306 return error; 1307 } 1308 1309 int 1310 xfs_create_tmpfile( 1311 struct xfs_inode *dp, 1312 struct dentry *dentry, 1313 umode_t mode, 1314 struct xfs_inode **ipp) 1315 { 1316 struct xfs_mount *mp = dp->i_mount; 1317 struct xfs_inode *ip = NULL; 1318 struct xfs_trans *tp = NULL; 1319 int error; 1320 prid_t prid; 1321 struct xfs_dquot *udqp = NULL; 1322 struct xfs_dquot *gdqp = NULL; 1323 struct xfs_dquot *pdqp = NULL; 1324 struct xfs_trans_res *tres; 1325 uint resblks; 1326 1327 if (XFS_FORCED_SHUTDOWN(mp)) 1328 return -EIO; 1329 1330 prid = xfs_get_initial_prid(dp); 1331 1332 /* 1333 * Make sure that we have allocated dquot(s) on disk. 1334 */ 1335 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1336 xfs_kgid_to_gid(current_fsgid()), prid, 1337 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1338 &udqp, &gdqp, &pdqp); 1339 if (error) 1340 return error; 1341 1342 resblks = XFS_IALLOC_SPACE_RES(mp); 1343 tres = &M_RES(mp)->tr_create_tmpfile; 1344 1345 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1346 if (error) 1347 goto out_release_inode; 1348 1349 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1350 pdqp, resblks, 1, 0); 1351 if (error) 1352 goto out_trans_cancel; 1353 1354 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip, NULL); 1355 if (error) 1356 goto out_trans_cancel; 1357 1358 if (mp->m_flags & XFS_MOUNT_WSYNC) 1359 xfs_trans_set_sync(tp); 1360 1361 /* 1362 * Attach the dquot(s) to the inodes and modify them incore. 1363 * These ids of the inode couldn't have changed since the new 1364 * inode has been locked ever since it was created. 1365 */ 1366 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1367 1368 error = xfs_iunlink(tp, ip); 1369 if (error) 1370 goto out_trans_cancel; 1371 1372 error = xfs_trans_commit(tp); 1373 if (error) 1374 goto out_release_inode; 1375 1376 xfs_qm_dqrele(udqp); 1377 xfs_qm_dqrele(gdqp); 1378 xfs_qm_dqrele(pdqp); 1379 1380 *ipp = ip; 1381 return 0; 1382 1383 out_trans_cancel: 1384 xfs_trans_cancel(tp); 1385 out_release_inode: 1386 /* 1387 * Wait until after the current transaction is aborted to finish the 1388 * setup of the inode and release the inode. This prevents recursive 1389 * transactions and deadlocks from xfs_inactive. 1390 */ 1391 if (ip) { 1392 xfs_finish_inode_setup(ip); 1393 IRELE(ip); 1394 } 1395 1396 xfs_qm_dqrele(udqp); 1397 xfs_qm_dqrele(gdqp); 1398 xfs_qm_dqrele(pdqp); 1399 1400 return error; 1401 } 1402 1403 int 1404 xfs_link( 1405 xfs_inode_t *tdp, 1406 xfs_inode_t *sip, 1407 struct xfs_name *target_name) 1408 { 1409 xfs_mount_t *mp = tdp->i_mount; 1410 xfs_trans_t *tp; 1411 int error; 1412 struct xfs_defer_ops dfops; 1413 xfs_fsblock_t first_block; 1414 int resblks; 1415 1416 trace_xfs_link(tdp, target_name); 1417 1418 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1419 1420 if (XFS_FORCED_SHUTDOWN(mp)) 1421 return -EIO; 1422 1423 error = xfs_qm_dqattach(sip, 0); 1424 if (error) 1425 goto std_return; 1426 1427 error = xfs_qm_dqattach(tdp, 0); 1428 if (error) 1429 goto std_return; 1430 1431 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1432 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1433 if (error == -ENOSPC) { 1434 resblks = 0; 1435 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1436 } 1437 if (error) 1438 goto std_return; 1439 1440 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1441 1442 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1443 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1444 1445 /* 1446 * If we are using project inheritance, we only allow hard link 1447 * creation in our tree when the project IDs are the same; else 1448 * the tree quota mechanism could be circumvented. 1449 */ 1450 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1451 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1452 error = -EXDEV; 1453 goto error_return; 1454 } 1455 1456 if (!resblks) { 1457 error = xfs_dir_canenter(tp, tdp, target_name); 1458 if (error) 1459 goto error_return; 1460 } 1461 1462 xfs_defer_init(&dfops, &first_block); 1463 1464 /* 1465 * Handle initial link state of O_TMPFILE inode 1466 */ 1467 if (VFS_I(sip)->i_nlink == 0) { 1468 error = xfs_iunlink_remove(tp, sip); 1469 if (error) 1470 goto error_return; 1471 } 1472 1473 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1474 &first_block, &dfops, resblks); 1475 if (error) 1476 goto error_return; 1477 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1478 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1479 1480 error = xfs_bumplink(tp, sip); 1481 if (error) 1482 goto error_return; 1483 1484 /* 1485 * If this is a synchronous mount, make sure that the 1486 * link transaction goes to disk before returning to 1487 * the user. 1488 */ 1489 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1490 xfs_trans_set_sync(tp); 1491 1492 error = xfs_defer_finish(&tp, &dfops); 1493 if (error) { 1494 xfs_defer_cancel(&dfops); 1495 goto error_return; 1496 } 1497 1498 return xfs_trans_commit(tp); 1499 1500 error_return: 1501 xfs_trans_cancel(tp); 1502 std_return: 1503 return error; 1504 } 1505 1506 /* Clear the reflink flag and the cowblocks tag if possible. */ 1507 static void 1508 xfs_itruncate_clear_reflink_flags( 1509 struct xfs_inode *ip) 1510 { 1511 struct xfs_ifork *dfork; 1512 struct xfs_ifork *cfork; 1513 1514 if (!xfs_is_reflink_inode(ip)) 1515 return; 1516 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1517 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1518 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1519 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1520 if (cfork->if_bytes == 0) 1521 xfs_inode_clear_cowblocks_tag(ip); 1522 } 1523 1524 /* 1525 * Free up the underlying blocks past new_size. The new size must be smaller 1526 * than the current size. This routine can be used both for the attribute and 1527 * data fork, and does not modify the inode size, which is left to the caller. 1528 * 1529 * The transaction passed to this routine must have made a permanent log 1530 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1531 * given transaction and start new ones, so make sure everything involved in 1532 * the transaction is tidy before calling here. Some transaction will be 1533 * returned to the caller to be committed. The incoming transaction must 1534 * already include the inode, and both inode locks must be held exclusively. 1535 * The inode must also be "held" within the transaction. On return the inode 1536 * will be "held" within the returned transaction. This routine does NOT 1537 * require any disk space to be reserved for it within the transaction. 1538 * 1539 * If we get an error, we must return with the inode locked and linked into the 1540 * current transaction. This keeps things simple for the higher level code, 1541 * because it always knows that the inode is locked and held in the transaction 1542 * that returns to it whether errors occur or not. We don't mark the inode 1543 * dirty on error so that transactions can be easily aborted if possible. 1544 */ 1545 int 1546 xfs_itruncate_extents( 1547 struct xfs_trans **tpp, 1548 struct xfs_inode *ip, 1549 int whichfork, 1550 xfs_fsize_t new_size) 1551 { 1552 struct xfs_mount *mp = ip->i_mount; 1553 struct xfs_trans *tp = *tpp; 1554 struct xfs_defer_ops dfops; 1555 xfs_fsblock_t first_block; 1556 xfs_fileoff_t first_unmap_block; 1557 xfs_fileoff_t last_block; 1558 xfs_filblks_t unmap_len; 1559 int error = 0; 1560 int done = 0; 1561 1562 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1563 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1564 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1565 ASSERT(new_size <= XFS_ISIZE(ip)); 1566 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1567 ASSERT(ip->i_itemp != NULL); 1568 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1569 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1570 1571 trace_xfs_itruncate_extents_start(ip, new_size); 1572 1573 /* 1574 * Since it is possible for space to become allocated beyond 1575 * the end of the file (in a crash where the space is allocated 1576 * but the inode size is not yet updated), simply remove any 1577 * blocks which show up between the new EOF and the maximum 1578 * possible file size. If the first block to be removed is 1579 * beyond the maximum file size (ie it is the same as last_block), 1580 * then there is nothing to do. 1581 */ 1582 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1583 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1584 if (first_unmap_block == last_block) 1585 return 0; 1586 1587 ASSERT(first_unmap_block < last_block); 1588 unmap_len = last_block - first_unmap_block + 1; 1589 while (!done) { 1590 xfs_defer_init(&dfops, &first_block); 1591 error = xfs_bunmapi(tp, ip, 1592 first_unmap_block, unmap_len, 1593 xfs_bmapi_aflag(whichfork), 1594 XFS_ITRUNC_MAX_EXTENTS, 1595 &first_block, &dfops, 1596 &done); 1597 if (error) 1598 goto out_bmap_cancel; 1599 1600 /* 1601 * Duplicate the transaction that has the permanent 1602 * reservation and commit the old transaction. 1603 */ 1604 xfs_defer_ijoin(&dfops, ip); 1605 error = xfs_defer_finish(&tp, &dfops); 1606 if (error) 1607 goto out_bmap_cancel; 1608 1609 error = xfs_trans_roll_inode(&tp, ip); 1610 if (error) 1611 goto out; 1612 } 1613 1614 /* Remove all pending CoW reservations. */ 1615 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, 1616 last_block, true); 1617 if (error) 1618 goto out; 1619 1620 xfs_itruncate_clear_reflink_flags(ip); 1621 1622 /* 1623 * Always re-log the inode so that our permanent transaction can keep 1624 * on rolling it forward in the log. 1625 */ 1626 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1627 1628 trace_xfs_itruncate_extents_end(ip, new_size); 1629 1630 out: 1631 *tpp = tp; 1632 return error; 1633 out_bmap_cancel: 1634 /* 1635 * If the bunmapi call encounters an error, return to the caller where 1636 * the transaction can be properly aborted. We just need to make sure 1637 * we're not holding any resources that we were not when we came in. 1638 */ 1639 xfs_defer_cancel(&dfops); 1640 goto out; 1641 } 1642 1643 int 1644 xfs_release( 1645 xfs_inode_t *ip) 1646 { 1647 xfs_mount_t *mp = ip->i_mount; 1648 int error; 1649 1650 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1651 return 0; 1652 1653 /* If this is a read-only mount, don't do this (would generate I/O) */ 1654 if (mp->m_flags & XFS_MOUNT_RDONLY) 1655 return 0; 1656 1657 if (!XFS_FORCED_SHUTDOWN(mp)) { 1658 int truncated; 1659 1660 /* 1661 * If we previously truncated this file and removed old data 1662 * in the process, we want to initiate "early" writeout on 1663 * the last close. This is an attempt to combat the notorious 1664 * NULL files problem which is particularly noticeable from a 1665 * truncate down, buffered (re-)write (delalloc), followed by 1666 * a crash. What we are effectively doing here is 1667 * significantly reducing the time window where we'd otherwise 1668 * be exposed to that problem. 1669 */ 1670 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1671 if (truncated) { 1672 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1673 if (ip->i_delayed_blks > 0) { 1674 error = filemap_flush(VFS_I(ip)->i_mapping); 1675 if (error) 1676 return error; 1677 } 1678 } 1679 } 1680 1681 if (VFS_I(ip)->i_nlink == 0) 1682 return 0; 1683 1684 if (xfs_can_free_eofblocks(ip, false)) { 1685 1686 /* 1687 * Check if the inode is being opened, written and closed 1688 * frequently and we have delayed allocation blocks outstanding 1689 * (e.g. streaming writes from the NFS server), truncating the 1690 * blocks past EOF will cause fragmentation to occur. 1691 * 1692 * In this case don't do the truncation, but we have to be 1693 * careful how we detect this case. Blocks beyond EOF show up as 1694 * i_delayed_blks even when the inode is clean, so we need to 1695 * truncate them away first before checking for a dirty release. 1696 * Hence on the first dirty close we will still remove the 1697 * speculative allocation, but after that we will leave it in 1698 * place. 1699 */ 1700 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1701 return 0; 1702 /* 1703 * If we can't get the iolock just skip truncating the blocks 1704 * past EOF because we could deadlock with the mmap_sem 1705 * otherwise. We'll get another chance to drop them once the 1706 * last reference to the inode is dropped, so we'll never leak 1707 * blocks permanently. 1708 */ 1709 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1710 error = xfs_free_eofblocks(ip); 1711 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1712 if (error) 1713 return error; 1714 } 1715 1716 /* delalloc blocks after truncation means it really is dirty */ 1717 if (ip->i_delayed_blks) 1718 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1719 } 1720 return 0; 1721 } 1722 1723 /* 1724 * xfs_inactive_truncate 1725 * 1726 * Called to perform a truncate when an inode becomes unlinked. 1727 */ 1728 STATIC int 1729 xfs_inactive_truncate( 1730 struct xfs_inode *ip) 1731 { 1732 struct xfs_mount *mp = ip->i_mount; 1733 struct xfs_trans *tp; 1734 int error; 1735 1736 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1737 if (error) { 1738 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1739 return error; 1740 } 1741 1742 xfs_ilock(ip, XFS_ILOCK_EXCL); 1743 xfs_trans_ijoin(tp, ip, 0); 1744 1745 /* 1746 * Log the inode size first to prevent stale data exposure in the event 1747 * of a system crash before the truncate completes. See the related 1748 * comment in xfs_vn_setattr_size() for details. 1749 */ 1750 ip->i_d.di_size = 0; 1751 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1752 1753 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1754 if (error) 1755 goto error_trans_cancel; 1756 1757 ASSERT(ip->i_d.di_nextents == 0); 1758 1759 error = xfs_trans_commit(tp); 1760 if (error) 1761 goto error_unlock; 1762 1763 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1764 return 0; 1765 1766 error_trans_cancel: 1767 xfs_trans_cancel(tp); 1768 error_unlock: 1769 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1770 return error; 1771 } 1772 1773 /* 1774 * xfs_inactive_ifree() 1775 * 1776 * Perform the inode free when an inode is unlinked. 1777 */ 1778 STATIC int 1779 xfs_inactive_ifree( 1780 struct xfs_inode *ip) 1781 { 1782 struct xfs_defer_ops dfops; 1783 xfs_fsblock_t first_block; 1784 struct xfs_mount *mp = ip->i_mount; 1785 struct xfs_trans *tp; 1786 int error; 1787 1788 /* 1789 * We try to use a per-AG reservation for any block needed by the finobt 1790 * tree, but as the finobt feature predates the per-AG reservation 1791 * support a degraded file system might not have enough space for the 1792 * reservation at mount time. In that case try to dip into the reserved 1793 * pool and pray. 1794 * 1795 * Send a warning if the reservation does happen to fail, as the inode 1796 * now remains allocated and sits on the unlinked list until the fs is 1797 * repaired. 1798 */ 1799 if (unlikely(mp->m_inotbt_nores)) { 1800 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1801 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1802 &tp); 1803 } else { 1804 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1805 } 1806 if (error) { 1807 if (error == -ENOSPC) { 1808 xfs_warn_ratelimited(mp, 1809 "Failed to remove inode(s) from unlinked list. " 1810 "Please free space, unmount and run xfs_repair."); 1811 } else { 1812 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1813 } 1814 return error; 1815 } 1816 1817 xfs_ilock(ip, XFS_ILOCK_EXCL); 1818 xfs_trans_ijoin(tp, ip, 0); 1819 1820 xfs_defer_init(&dfops, &first_block); 1821 error = xfs_ifree(tp, ip, &dfops); 1822 if (error) { 1823 /* 1824 * If we fail to free the inode, shut down. The cancel 1825 * might do that, we need to make sure. Otherwise the 1826 * inode might be lost for a long time or forever. 1827 */ 1828 if (!XFS_FORCED_SHUTDOWN(mp)) { 1829 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1830 __func__, error); 1831 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1832 } 1833 xfs_trans_cancel(tp); 1834 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1835 return error; 1836 } 1837 1838 /* 1839 * Credit the quota account(s). The inode is gone. 1840 */ 1841 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1842 1843 /* 1844 * Just ignore errors at this point. There is nothing we can do except 1845 * to try to keep going. Make sure it's not a silent error. 1846 */ 1847 error = xfs_defer_finish(&tp, &dfops); 1848 if (error) { 1849 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1850 __func__, error); 1851 xfs_defer_cancel(&dfops); 1852 } 1853 error = xfs_trans_commit(tp); 1854 if (error) 1855 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1856 __func__, error); 1857 1858 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1859 return 0; 1860 } 1861 1862 /* 1863 * xfs_inactive 1864 * 1865 * This is called when the vnode reference count for the vnode 1866 * goes to zero. If the file has been unlinked, then it must 1867 * now be truncated. Also, we clear all of the read-ahead state 1868 * kept for the inode here since the file is now closed. 1869 */ 1870 void 1871 xfs_inactive( 1872 xfs_inode_t *ip) 1873 { 1874 struct xfs_mount *mp; 1875 int error; 1876 int truncate = 0; 1877 1878 /* 1879 * If the inode is already free, then there can be nothing 1880 * to clean up here. 1881 */ 1882 if (VFS_I(ip)->i_mode == 0) { 1883 ASSERT(ip->i_df.if_real_bytes == 0); 1884 ASSERT(ip->i_df.if_broot_bytes == 0); 1885 return; 1886 } 1887 1888 mp = ip->i_mount; 1889 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1890 1891 /* If this is a read-only mount, don't do this (would generate I/O) */ 1892 if (mp->m_flags & XFS_MOUNT_RDONLY) 1893 return; 1894 1895 if (VFS_I(ip)->i_nlink != 0) { 1896 /* 1897 * force is true because we are evicting an inode from the 1898 * cache. Post-eof blocks must be freed, lest we end up with 1899 * broken free space accounting. 1900 * 1901 * Note: don't bother with iolock here since lockdep complains 1902 * about acquiring it in reclaim context. We have the only 1903 * reference to the inode at this point anyways. 1904 */ 1905 if (xfs_can_free_eofblocks(ip, true)) 1906 xfs_free_eofblocks(ip); 1907 1908 return; 1909 } 1910 1911 if (S_ISREG(VFS_I(ip)->i_mode) && 1912 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1913 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1914 truncate = 1; 1915 1916 error = xfs_qm_dqattach(ip, 0); 1917 if (error) 1918 return; 1919 1920 if (S_ISLNK(VFS_I(ip)->i_mode)) 1921 error = xfs_inactive_symlink(ip); 1922 else if (truncate) 1923 error = xfs_inactive_truncate(ip); 1924 if (error) 1925 return; 1926 1927 /* 1928 * If there are attributes associated with the file then blow them away 1929 * now. The code calls a routine that recursively deconstructs the 1930 * attribute fork. If also blows away the in-core attribute fork. 1931 */ 1932 if (XFS_IFORK_Q(ip)) { 1933 error = xfs_attr_inactive(ip); 1934 if (error) 1935 return; 1936 } 1937 1938 ASSERT(!ip->i_afp); 1939 ASSERT(ip->i_d.di_anextents == 0); 1940 ASSERT(ip->i_d.di_forkoff == 0); 1941 1942 /* 1943 * Free the inode. 1944 */ 1945 error = xfs_inactive_ifree(ip); 1946 if (error) 1947 return; 1948 1949 /* 1950 * Release the dquots held by inode, if any. 1951 */ 1952 xfs_qm_dqdetach(ip); 1953 } 1954 1955 /* 1956 * This is called when the inode's link count goes to 0 or we are creating a 1957 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1958 * set to true as the link count is dropped to zero by the VFS after we've 1959 * created the file successfully, so we have to add it to the unlinked list 1960 * while the link count is non-zero. 1961 * 1962 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1963 * list when the inode is freed. 1964 */ 1965 STATIC int 1966 xfs_iunlink( 1967 struct xfs_trans *tp, 1968 struct xfs_inode *ip) 1969 { 1970 xfs_mount_t *mp = tp->t_mountp; 1971 xfs_agi_t *agi; 1972 xfs_dinode_t *dip; 1973 xfs_buf_t *agibp; 1974 xfs_buf_t *ibp; 1975 xfs_agino_t agino; 1976 short bucket_index; 1977 int offset; 1978 int error; 1979 1980 ASSERT(VFS_I(ip)->i_mode != 0); 1981 1982 /* 1983 * Get the agi buffer first. It ensures lock ordering 1984 * on the list. 1985 */ 1986 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1987 if (error) 1988 return error; 1989 agi = XFS_BUF_TO_AGI(agibp); 1990 1991 /* 1992 * Get the index into the agi hash table for the 1993 * list this inode will go on. 1994 */ 1995 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1996 ASSERT(agino != 0); 1997 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1998 ASSERT(agi->agi_unlinked[bucket_index]); 1999 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2000 2001 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2002 /* 2003 * There is already another inode in the bucket we need 2004 * to add ourselves to. Add us at the front of the list. 2005 * Here we put the head pointer into our next pointer, 2006 * and then we fall through to point the head at us. 2007 */ 2008 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2009 0, 0); 2010 if (error) 2011 return error; 2012 2013 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2014 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2015 offset = ip->i_imap.im_boffset + 2016 offsetof(xfs_dinode_t, di_next_unlinked); 2017 2018 /* need to recalc the inode CRC if appropriate */ 2019 xfs_dinode_calc_crc(mp, dip); 2020 2021 xfs_trans_inode_buf(tp, ibp); 2022 xfs_trans_log_buf(tp, ibp, offset, 2023 (offset + sizeof(xfs_agino_t) - 1)); 2024 xfs_inobp_check(mp, ibp); 2025 } 2026 2027 /* 2028 * Point the bucket head pointer at the inode being inserted. 2029 */ 2030 ASSERT(agino != 0); 2031 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2032 offset = offsetof(xfs_agi_t, agi_unlinked) + 2033 (sizeof(xfs_agino_t) * bucket_index); 2034 xfs_trans_log_buf(tp, agibp, offset, 2035 (offset + sizeof(xfs_agino_t) - 1)); 2036 return 0; 2037 } 2038 2039 /* 2040 * Pull the on-disk inode from the AGI unlinked list. 2041 */ 2042 STATIC int 2043 xfs_iunlink_remove( 2044 xfs_trans_t *tp, 2045 xfs_inode_t *ip) 2046 { 2047 xfs_ino_t next_ino; 2048 xfs_mount_t *mp; 2049 xfs_agi_t *agi; 2050 xfs_dinode_t *dip; 2051 xfs_buf_t *agibp; 2052 xfs_buf_t *ibp; 2053 xfs_agnumber_t agno; 2054 xfs_agino_t agino; 2055 xfs_agino_t next_agino; 2056 xfs_buf_t *last_ibp; 2057 xfs_dinode_t *last_dip = NULL; 2058 short bucket_index; 2059 int offset, last_offset = 0; 2060 int error; 2061 2062 mp = tp->t_mountp; 2063 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2064 2065 /* 2066 * Get the agi buffer first. It ensures lock ordering 2067 * on the list. 2068 */ 2069 error = xfs_read_agi(mp, tp, agno, &agibp); 2070 if (error) 2071 return error; 2072 2073 agi = XFS_BUF_TO_AGI(agibp); 2074 2075 /* 2076 * Get the index into the agi hash table for the 2077 * list this inode will go on. 2078 */ 2079 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2080 ASSERT(agino != 0); 2081 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2082 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2083 ASSERT(agi->agi_unlinked[bucket_index]); 2084 2085 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2086 /* 2087 * We're at the head of the list. Get the inode's on-disk 2088 * buffer to see if there is anyone after us on the list. 2089 * Only modify our next pointer if it is not already NULLAGINO. 2090 * This saves us the overhead of dealing with the buffer when 2091 * there is no need to change it. 2092 */ 2093 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2094 0, 0); 2095 if (error) { 2096 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2097 __func__, error); 2098 return error; 2099 } 2100 next_agino = be32_to_cpu(dip->di_next_unlinked); 2101 ASSERT(next_agino != 0); 2102 if (next_agino != NULLAGINO) { 2103 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2104 offset = ip->i_imap.im_boffset + 2105 offsetof(xfs_dinode_t, di_next_unlinked); 2106 2107 /* need to recalc the inode CRC if appropriate */ 2108 xfs_dinode_calc_crc(mp, dip); 2109 2110 xfs_trans_inode_buf(tp, ibp); 2111 xfs_trans_log_buf(tp, ibp, offset, 2112 (offset + sizeof(xfs_agino_t) - 1)); 2113 xfs_inobp_check(mp, ibp); 2114 } else { 2115 xfs_trans_brelse(tp, ibp); 2116 } 2117 /* 2118 * Point the bucket head pointer at the next inode. 2119 */ 2120 ASSERT(next_agino != 0); 2121 ASSERT(next_agino != agino); 2122 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2123 offset = offsetof(xfs_agi_t, agi_unlinked) + 2124 (sizeof(xfs_agino_t) * bucket_index); 2125 xfs_trans_log_buf(tp, agibp, offset, 2126 (offset + sizeof(xfs_agino_t) - 1)); 2127 } else { 2128 /* 2129 * We need to search the list for the inode being freed. 2130 */ 2131 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2132 last_ibp = NULL; 2133 while (next_agino != agino) { 2134 struct xfs_imap imap; 2135 2136 if (last_ibp) 2137 xfs_trans_brelse(tp, last_ibp); 2138 2139 imap.im_blkno = 0; 2140 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2141 2142 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2143 if (error) { 2144 xfs_warn(mp, 2145 "%s: xfs_imap returned error %d.", 2146 __func__, error); 2147 return error; 2148 } 2149 2150 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2151 &last_ibp, 0, 0); 2152 if (error) { 2153 xfs_warn(mp, 2154 "%s: xfs_imap_to_bp returned error %d.", 2155 __func__, error); 2156 return error; 2157 } 2158 2159 last_offset = imap.im_boffset; 2160 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2161 ASSERT(next_agino != NULLAGINO); 2162 ASSERT(next_agino != 0); 2163 } 2164 2165 /* 2166 * Now last_ibp points to the buffer previous to us on the 2167 * unlinked list. Pull us from the list. 2168 */ 2169 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2170 0, 0); 2171 if (error) { 2172 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2173 __func__, error); 2174 return error; 2175 } 2176 next_agino = be32_to_cpu(dip->di_next_unlinked); 2177 ASSERT(next_agino != 0); 2178 ASSERT(next_agino != agino); 2179 if (next_agino != NULLAGINO) { 2180 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2181 offset = ip->i_imap.im_boffset + 2182 offsetof(xfs_dinode_t, di_next_unlinked); 2183 2184 /* need to recalc the inode CRC if appropriate */ 2185 xfs_dinode_calc_crc(mp, dip); 2186 2187 xfs_trans_inode_buf(tp, ibp); 2188 xfs_trans_log_buf(tp, ibp, offset, 2189 (offset + sizeof(xfs_agino_t) - 1)); 2190 xfs_inobp_check(mp, ibp); 2191 } else { 2192 xfs_trans_brelse(tp, ibp); 2193 } 2194 /* 2195 * Point the previous inode on the list to the next inode. 2196 */ 2197 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2198 ASSERT(next_agino != 0); 2199 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2200 2201 /* need to recalc the inode CRC if appropriate */ 2202 xfs_dinode_calc_crc(mp, last_dip); 2203 2204 xfs_trans_inode_buf(tp, last_ibp); 2205 xfs_trans_log_buf(tp, last_ibp, offset, 2206 (offset + sizeof(xfs_agino_t) - 1)); 2207 xfs_inobp_check(mp, last_ibp); 2208 } 2209 return 0; 2210 } 2211 2212 /* 2213 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2214 * inodes that are in memory - they all must be marked stale and attached to 2215 * the cluster buffer. 2216 */ 2217 STATIC int 2218 xfs_ifree_cluster( 2219 xfs_inode_t *free_ip, 2220 xfs_trans_t *tp, 2221 struct xfs_icluster *xic) 2222 { 2223 xfs_mount_t *mp = free_ip->i_mount; 2224 int blks_per_cluster; 2225 int inodes_per_cluster; 2226 int nbufs; 2227 int i, j; 2228 int ioffset; 2229 xfs_daddr_t blkno; 2230 xfs_buf_t *bp; 2231 xfs_inode_t *ip; 2232 xfs_inode_log_item_t *iip; 2233 struct xfs_log_item *lip; 2234 struct xfs_perag *pag; 2235 xfs_ino_t inum; 2236 2237 inum = xic->first_ino; 2238 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2239 blks_per_cluster = xfs_icluster_size_fsb(mp); 2240 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2241 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2242 2243 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2244 /* 2245 * The allocation bitmap tells us which inodes of the chunk were 2246 * physically allocated. Skip the cluster if an inode falls into 2247 * a sparse region. 2248 */ 2249 ioffset = inum - xic->first_ino; 2250 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2251 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2252 continue; 2253 } 2254 2255 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2256 XFS_INO_TO_AGBNO(mp, inum)); 2257 2258 /* 2259 * We obtain and lock the backing buffer first in the process 2260 * here, as we have to ensure that any dirty inode that we 2261 * can't get the flush lock on is attached to the buffer. 2262 * If we scan the in-memory inodes first, then buffer IO can 2263 * complete before we get a lock on it, and hence we may fail 2264 * to mark all the active inodes on the buffer stale. 2265 */ 2266 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2267 mp->m_bsize * blks_per_cluster, 2268 XBF_UNMAPPED); 2269 2270 if (!bp) 2271 return -ENOMEM; 2272 2273 /* 2274 * This buffer may not have been correctly initialised as we 2275 * didn't read it from disk. That's not important because we are 2276 * only using to mark the buffer as stale in the log, and to 2277 * attach stale cached inodes on it. That means it will never be 2278 * dispatched for IO. If it is, we want to know about it, and we 2279 * want it to fail. We can acheive this by adding a write 2280 * verifier to the buffer. 2281 */ 2282 bp->b_ops = &xfs_inode_buf_ops; 2283 2284 /* 2285 * Walk the inodes already attached to the buffer and mark them 2286 * stale. These will all have the flush locks held, so an 2287 * in-memory inode walk can't lock them. By marking them all 2288 * stale first, we will not attempt to lock them in the loop 2289 * below as the XFS_ISTALE flag will be set. 2290 */ 2291 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 2292 if (lip->li_type == XFS_LI_INODE) { 2293 iip = (xfs_inode_log_item_t *)lip; 2294 ASSERT(iip->ili_logged == 1); 2295 lip->li_cb = xfs_istale_done; 2296 xfs_trans_ail_copy_lsn(mp->m_ail, 2297 &iip->ili_flush_lsn, 2298 &iip->ili_item.li_lsn); 2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2300 } 2301 } 2302 2303 2304 /* 2305 * For each inode in memory attempt to add it to the inode 2306 * buffer and set it up for being staled on buffer IO 2307 * completion. This is safe as we've locked out tail pushing 2308 * and flushing by locking the buffer. 2309 * 2310 * We have already marked every inode that was part of a 2311 * transaction stale above, which means there is no point in 2312 * even trying to lock them. 2313 */ 2314 for (i = 0; i < inodes_per_cluster; i++) { 2315 retry: 2316 rcu_read_lock(); 2317 ip = radix_tree_lookup(&pag->pag_ici_root, 2318 XFS_INO_TO_AGINO(mp, (inum + i))); 2319 2320 /* Inode not in memory, nothing to do */ 2321 if (!ip) { 2322 rcu_read_unlock(); 2323 continue; 2324 } 2325 2326 /* 2327 * because this is an RCU protected lookup, we could 2328 * find a recently freed or even reallocated inode 2329 * during the lookup. We need to check under the 2330 * i_flags_lock for a valid inode here. Skip it if it 2331 * is not valid, the wrong inode or stale. 2332 */ 2333 spin_lock(&ip->i_flags_lock); 2334 if (ip->i_ino != inum + i || 2335 __xfs_iflags_test(ip, XFS_ISTALE)) { 2336 spin_unlock(&ip->i_flags_lock); 2337 rcu_read_unlock(); 2338 continue; 2339 } 2340 spin_unlock(&ip->i_flags_lock); 2341 2342 /* 2343 * Don't try to lock/unlock the current inode, but we 2344 * _cannot_ skip the other inodes that we did not find 2345 * in the list attached to the buffer and are not 2346 * already marked stale. If we can't lock it, back off 2347 * and retry. 2348 */ 2349 if (ip != free_ip) { 2350 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2351 rcu_read_unlock(); 2352 delay(1); 2353 goto retry; 2354 } 2355 2356 /* 2357 * Check the inode number again in case we're 2358 * racing with freeing in xfs_reclaim_inode(). 2359 * See the comments in that function for more 2360 * information as to why the initial check is 2361 * not sufficient. 2362 */ 2363 if (ip->i_ino != inum + i) { 2364 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2365 rcu_read_unlock(); 2366 continue; 2367 } 2368 } 2369 rcu_read_unlock(); 2370 2371 xfs_iflock(ip); 2372 xfs_iflags_set(ip, XFS_ISTALE); 2373 2374 /* 2375 * we don't need to attach clean inodes or those only 2376 * with unlogged changes (which we throw away, anyway). 2377 */ 2378 iip = ip->i_itemp; 2379 if (!iip || xfs_inode_clean(ip)) { 2380 ASSERT(ip != free_ip); 2381 xfs_ifunlock(ip); 2382 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2383 continue; 2384 } 2385 2386 iip->ili_last_fields = iip->ili_fields; 2387 iip->ili_fields = 0; 2388 iip->ili_fsync_fields = 0; 2389 iip->ili_logged = 1; 2390 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2391 &iip->ili_item.li_lsn); 2392 2393 xfs_buf_attach_iodone(bp, xfs_istale_done, 2394 &iip->ili_item); 2395 2396 if (ip != free_ip) 2397 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2398 } 2399 2400 xfs_trans_stale_inode_buf(tp, bp); 2401 xfs_trans_binval(tp, bp); 2402 } 2403 2404 xfs_perag_put(pag); 2405 return 0; 2406 } 2407 2408 /* 2409 * Free any local-format buffers sitting around before we reset to 2410 * extents format. 2411 */ 2412 static inline void 2413 xfs_ifree_local_data( 2414 struct xfs_inode *ip, 2415 int whichfork) 2416 { 2417 struct xfs_ifork *ifp; 2418 2419 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) 2420 return; 2421 2422 ifp = XFS_IFORK_PTR(ip, whichfork); 2423 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); 2424 } 2425 2426 /* 2427 * This is called to return an inode to the inode free list. 2428 * The inode should already be truncated to 0 length and have 2429 * no pages associated with it. This routine also assumes that 2430 * the inode is already a part of the transaction. 2431 * 2432 * The on-disk copy of the inode will have been added to the list 2433 * of unlinked inodes in the AGI. We need to remove the inode from 2434 * that list atomically with respect to freeing it here. 2435 */ 2436 int 2437 xfs_ifree( 2438 xfs_trans_t *tp, 2439 xfs_inode_t *ip, 2440 struct xfs_defer_ops *dfops) 2441 { 2442 int error; 2443 struct xfs_icluster xic = { 0 }; 2444 2445 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2446 ASSERT(VFS_I(ip)->i_nlink == 0); 2447 ASSERT(ip->i_d.di_nextents == 0); 2448 ASSERT(ip->i_d.di_anextents == 0); 2449 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2450 ASSERT(ip->i_d.di_nblocks == 0); 2451 2452 /* 2453 * Pull the on-disk inode from the AGI unlinked list. 2454 */ 2455 error = xfs_iunlink_remove(tp, ip); 2456 if (error) 2457 return error; 2458 2459 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2460 if (error) 2461 return error; 2462 2463 xfs_ifree_local_data(ip, XFS_DATA_FORK); 2464 xfs_ifree_local_data(ip, XFS_ATTR_FORK); 2465 2466 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2467 ip->i_d.di_flags = 0; 2468 ip->i_d.di_flags2 = 0; 2469 ip->i_d.di_dmevmask = 0; 2470 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2471 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2472 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2473 /* 2474 * Bump the generation count so no one will be confused 2475 * by reincarnations of this inode. 2476 */ 2477 VFS_I(ip)->i_generation++; 2478 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2479 2480 if (xic.deleted) 2481 error = xfs_ifree_cluster(ip, tp, &xic); 2482 2483 return error; 2484 } 2485 2486 /* 2487 * This is called to unpin an inode. The caller must have the inode locked 2488 * in at least shared mode so that the buffer cannot be subsequently pinned 2489 * once someone is waiting for it to be unpinned. 2490 */ 2491 static void 2492 xfs_iunpin( 2493 struct xfs_inode *ip) 2494 { 2495 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2496 2497 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2498 2499 /* Give the log a push to start the unpinning I/O */ 2500 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2501 2502 } 2503 2504 static void 2505 __xfs_iunpin_wait( 2506 struct xfs_inode *ip) 2507 { 2508 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2509 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2510 2511 xfs_iunpin(ip); 2512 2513 do { 2514 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2515 if (xfs_ipincount(ip)) 2516 io_schedule(); 2517 } while (xfs_ipincount(ip)); 2518 finish_wait(wq, &wait.wq_entry); 2519 } 2520 2521 void 2522 xfs_iunpin_wait( 2523 struct xfs_inode *ip) 2524 { 2525 if (xfs_ipincount(ip)) 2526 __xfs_iunpin_wait(ip); 2527 } 2528 2529 /* 2530 * Removing an inode from the namespace involves removing the directory entry 2531 * and dropping the link count on the inode. Removing the directory entry can 2532 * result in locking an AGF (directory blocks were freed) and removing a link 2533 * count can result in placing the inode on an unlinked list which results in 2534 * locking an AGI. 2535 * 2536 * The big problem here is that we have an ordering constraint on AGF and AGI 2537 * locking - inode allocation locks the AGI, then can allocate a new extent for 2538 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2539 * removes the inode from the unlinked list, requiring that we lock the AGI 2540 * first, and then freeing the inode can result in an inode chunk being freed 2541 * and hence freeing disk space requiring that we lock an AGF. 2542 * 2543 * Hence the ordering that is imposed by other parts of the code is AGI before 2544 * AGF. This means we cannot remove the directory entry before we drop the inode 2545 * reference count and put it on the unlinked list as this results in a lock 2546 * order of AGF then AGI, and this can deadlock against inode allocation and 2547 * freeing. Therefore we must drop the link counts before we remove the 2548 * directory entry. 2549 * 2550 * This is still safe from a transactional point of view - it is not until we 2551 * get to xfs_defer_finish() that we have the possibility of multiple 2552 * transactions in this operation. Hence as long as we remove the directory 2553 * entry and drop the link count in the first transaction of the remove 2554 * operation, there are no transactional constraints on the ordering here. 2555 */ 2556 int 2557 xfs_remove( 2558 xfs_inode_t *dp, 2559 struct xfs_name *name, 2560 xfs_inode_t *ip) 2561 { 2562 xfs_mount_t *mp = dp->i_mount; 2563 xfs_trans_t *tp = NULL; 2564 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2565 int error = 0; 2566 struct xfs_defer_ops dfops; 2567 xfs_fsblock_t first_block; 2568 uint resblks; 2569 2570 trace_xfs_remove(dp, name); 2571 2572 if (XFS_FORCED_SHUTDOWN(mp)) 2573 return -EIO; 2574 2575 error = xfs_qm_dqattach(dp, 0); 2576 if (error) 2577 goto std_return; 2578 2579 error = xfs_qm_dqattach(ip, 0); 2580 if (error) 2581 goto std_return; 2582 2583 /* 2584 * We try to get the real space reservation first, 2585 * allowing for directory btree deletion(s) implying 2586 * possible bmap insert(s). If we can't get the space 2587 * reservation then we use 0 instead, and avoid the bmap 2588 * btree insert(s) in the directory code by, if the bmap 2589 * insert tries to happen, instead trimming the LAST 2590 * block from the directory. 2591 */ 2592 resblks = XFS_REMOVE_SPACE_RES(mp); 2593 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2594 if (error == -ENOSPC) { 2595 resblks = 0; 2596 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2597 &tp); 2598 } 2599 if (error) { 2600 ASSERT(error != -ENOSPC); 2601 goto std_return; 2602 } 2603 2604 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2605 2606 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2607 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2608 2609 /* 2610 * If we're removing a directory perform some additional validation. 2611 */ 2612 if (is_dir) { 2613 ASSERT(VFS_I(ip)->i_nlink >= 2); 2614 if (VFS_I(ip)->i_nlink != 2) { 2615 error = -ENOTEMPTY; 2616 goto out_trans_cancel; 2617 } 2618 if (!xfs_dir_isempty(ip)) { 2619 error = -ENOTEMPTY; 2620 goto out_trans_cancel; 2621 } 2622 2623 /* Drop the link from ip's "..". */ 2624 error = xfs_droplink(tp, dp); 2625 if (error) 2626 goto out_trans_cancel; 2627 2628 /* Drop the "." link from ip to self. */ 2629 error = xfs_droplink(tp, ip); 2630 if (error) 2631 goto out_trans_cancel; 2632 } else { 2633 /* 2634 * When removing a non-directory we need to log the parent 2635 * inode here. For a directory this is done implicitly 2636 * by the xfs_droplink call for the ".." entry. 2637 */ 2638 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2639 } 2640 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2641 2642 /* Drop the link from dp to ip. */ 2643 error = xfs_droplink(tp, ip); 2644 if (error) 2645 goto out_trans_cancel; 2646 2647 xfs_defer_init(&dfops, &first_block); 2648 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2649 &first_block, &dfops, resblks); 2650 if (error) { 2651 ASSERT(error != -ENOENT); 2652 goto out_bmap_cancel; 2653 } 2654 2655 /* 2656 * If this is a synchronous mount, make sure that the 2657 * remove transaction goes to disk before returning to 2658 * the user. 2659 */ 2660 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2661 xfs_trans_set_sync(tp); 2662 2663 error = xfs_defer_finish(&tp, &dfops); 2664 if (error) 2665 goto out_bmap_cancel; 2666 2667 error = xfs_trans_commit(tp); 2668 if (error) 2669 goto std_return; 2670 2671 if (is_dir && xfs_inode_is_filestream(ip)) 2672 xfs_filestream_deassociate(ip); 2673 2674 return 0; 2675 2676 out_bmap_cancel: 2677 xfs_defer_cancel(&dfops); 2678 out_trans_cancel: 2679 xfs_trans_cancel(tp); 2680 std_return: 2681 return error; 2682 } 2683 2684 /* 2685 * Enter all inodes for a rename transaction into a sorted array. 2686 */ 2687 #define __XFS_SORT_INODES 5 2688 STATIC void 2689 xfs_sort_for_rename( 2690 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2691 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2692 struct xfs_inode *ip1, /* in: inode of old entry */ 2693 struct xfs_inode *ip2, /* in: inode of new entry */ 2694 struct xfs_inode *wip, /* in: whiteout inode */ 2695 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2696 int *num_inodes) /* in/out: inodes in array */ 2697 { 2698 int i, j; 2699 2700 ASSERT(*num_inodes == __XFS_SORT_INODES); 2701 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2702 2703 /* 2704 * i_tab contains a list of pointers to inodes. We initialize 2705 * the table here & we'll sort it. We will then use it to 2706 * order the acquisition of the inode locks. 2707 * 2708 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2709 */ 2710 i = 0; 2711 i_tab[i++] = dp1; 2712 i_tab[i++] = dp2; 2713 i_tab[i++] = ip1; 2714 if (ip2) 2715 i_tab[i++] = ip2; 2716 if (wip) 2717 i_tab[i++] = wip; 2718 *num_inodes = i; 2719 2720 /* 2721 * Sort the elements via bubble sort. (Remember, there are at 2722 * most 5 elements to sort, so this is adequate.) 2723 */ 2724 for (i = 0; i < *num_inodes; i++) { 2725 for (j = 1; j < *num_inodes; j++) { 2726 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2727 struct xfs_inode *temp = i_tab[j]; 2728 i_tab[j] = i_tab[j-1]; 2729 i_tab[j-1] = temp; 2730 } 2731 } 2732 } 2733 } 2734 2735 static int 2736 xfs_finish_rename( 2737 struct xfs_trans *tp, 2738 struct xfs_defer_ops *dfops) 2739 { 2740 int error; 2741 2742 /* 2743 * If this is a synchronous mount, make sure that the rename transaction 2744 * goes to disk before returning to the user. 2745 */ 2746 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2747 xfs_trans_set_sync(tp); 2748 2749 error = xfs_defer_finish(&tp, dfops); 2750 if (error) { 2751 xfs_defer_cancel(dfops); 2752 xfs_trans_cancel(tp); 2753 return error; 2754 } 2755 2756 return xfs_trans_commit(tp); 2757 } 2758 2759 /* 2760 * xfs_cross_rename() 2761 * 2762 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2763 */ 2764 STATIC int 2765 xfs_cross_rename( 2766 struct xfs_trans *tp, 2767 struct xfs_inode *dp1, 2768 struct xfs_name *name1, 2769 struct xfs_inode *ip1, 2770 struct xfs_inode *dp2, 2771 struct xfs_name *name2, 2772 struct xfs_inode *ip2, 2773 struct xfs_defer_ops *dfops, 2774 xfs_fsblock_t *first_block, 2775 int spaceres) 2776 { 2777 int error = 0; 2778 int ip1_flags = 0; 2779 int ip2_flags = 0; 2780 int dp2_flags = 0; 2781 2782 /* Swap inode number for dirent in first parent */ 2783 error = xfs_dir_replace(tp, dp1, name1, 2784 ip2->i_ino, 2785 first_block, dfops, spaceres); 2786 if (error) 2787 goto out_trans_abort; 2788 2789 /* Swap inode number for dirent in second parent */ 2790 error = xfs_dir_replace(tp, dp2, name2, 2791 ip1->i_ino, 2792 first_block, dfops, spaceres); 2793 if (error) 2794 goto out_trans_abort; 2795 2796 /* 2797 * If we're renaming one or more directories across different parents, 2798 * update the respective ".." entries (and link counts) to match the new 2799 * parents. 2800 */ 2801 if (dp1 != dp2) { 2802 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2803 2804 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2805 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2806 dp1->i_ino, first_block, 2807 dfops, spaceres); 2808 if (error) 2809 goto out_trans_abort; 2810 2811 /* transfer ip2 ".." reference to dp1 */ 2812 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2813 error = xfs_droplink(tp, dp2); 2814 if (error) 2815 goto out_trans_abort; 2816 error = xfs_bumplink(tp, dp1); 2817 if (error) 2818 goto out_trans_abort; 2819 } 2820 2821 /* 2822 * Although ip1 isn't changed here, userspace needs 2823 * to be warned about the change, so that applications 2824 * relying on it (like backup ones), will properly 2825 * notify the change 2826 */ 2827 ip1_flags |= XFS_ICHGTIME_CHG; 2828 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2829 } 2830 2831 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2832 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2833 dp2->i_ino, first_block, 2834 dfops, spaceres); 2835 if (error) 2836 goto out_trans_abort; 2837 2838 /* transfer ip1 ".." reference to dp2 */ 2839 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2840 error = xfs_droplink(tp, dp1); 2841 if (error) 2842 goto out_trans_abort; 2843 error = xfs_bumplink(tp, dp2); 2844 if (error) 2845 goto out_trans_abort; 2846 } 2847 2848 /* 2849 * Although ip2 isn't changed here, userspace needs 2850 * to be warned about the change, so that applications 2851 * relying on it (like backup ones), will properly 2852 * notify the change 2853 */ 2854 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2855 ip2_flags |= XFS_ICHGTIME_CHG; 2856 } 2857 } 2858 2859 if (ip1_flags) { 2860 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2861 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2862 } 2863 if (ip2_flags) { 2864 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2865 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2866 } 2867 if (dp2_flags) { 2868 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2869 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2870 } 2871 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2872 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2873 return xfs_finish_rename(tp, dfops); 2874 2875 out_trans_abort: 2876 xfs_defer_cancel(dfops); 2877 xfs_trans_cancel(tp); 2878 return error; 2879 } 2880 2881 /* 2882 * xfs_rename_alloc_whiteout() 2883 * 2884 * Return a referenced, unlinked, unlocked inode that that can be used as a 2885 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2886 * crash between allocating the inode and linking it into the rename transaction 2887 * recovery will free the inode and we won't leak it. 2888 */ 2889 static int 2890 xfs_rename_alloc_whiteout( 2891 struct xfs_inode *dp, 2892 struct xfs_inode **wip) 2893 { 2894 struct xfs_inode *tmpfile; 2895 int error; 2896 2897 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2898 if (error) 2899 return error; 2900 2901 /* 2902 * Prepare the tmpfile inode as if it were created through the VFS. 2903 * Otherwise, the link increment paths will complain about nlink 0->1. 2904 * Drop the link count as done by d_tmpfile(), complete the inode setup 2905 * and flag it as linkable. 2906 */ 2907 drop_nlink(VFS_I(tmpfile)); 2908 xfs_setup_iops(tmpfile); 2909 xfs_finish_inode_setup(tmpfile); 2910 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2911 2912 *wip = tmpfile; 2913 return 0; 2914 } 2915 2916 /* 2917 * xfs_rename 2918 */ 2919 int 2920 xfs_rename( 2921 struct xfs_inode *src_dp, 2922 struct xfs_name *src_name, 2923 struct xfs_inode *src_ip, 2924 struct xfs_inode *target_dp, 2925 struct xfs_name *target_name, 2926 struct xfs_inode *target_ip, 2927 unsigned int flags) 2928 { 2929 struct xfs_mount *mp = src_dp->i_mount; 2930 struct xfs_trans *tp; 2931 struct xfs_defer_ops dfops; 2932 xfs_fsblock_t first_block; 2933 struct xfs_inode *wip = NULL; /* whiteout inode */ 2934 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2935 int num_inodes = __XFS_SORT_INODES; 2936 bool new_parent = (src_dp != target_dp); 2937 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2938 int spaceres; 2939 int error; 2940 2941 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2942 2943 if ((flags & RENAME_EXCHANGE) && !target_ip) 2944 return -EINVAL; 2945 2946 /* 2947 * If we are doing a whiteout operation, allocate the whiteout inode 2948 * we will be placing at the target and ensure the type is set 2949 * appropriately. 2950 */ 2951 if (flags & RENAME_WHITEOUT) { 2952 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2953 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2954 if (error) 2955 return error; 2956 2957 /* setup target dirent info as whiteout */ 2958 src_name->type = XFS_DIR3_FT_CHRDEV; 2959 } 2960 2961 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2962 inodes, &num_inodes); 2963 2964 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2965 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2966 if (error == -ENOSPC) { 2967 spaceres = 0; 2968 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2969 &tp); 2970 } 2971 if (error) 2972 goto out_release_wip; 2973 2974 /* 2975 * Attach the dquots to the inodes 2976 */ 2977 error = xfs_qm_vop_rename_dqattach(inodes); 2978 if (error) 2979 goto out_trans_cancel; 2980 2981 /* 2982 * Lock all the participating inodes. Depending upon whether 2983 * the target_name exists in the target directory, and 2984 * whether the target directory is the same as the source 2985 * directory, we can lock from 2 to 4 inodes. 2986 */ 2987 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2988 2989 /* 2990 * Join all the inodes to the transaction. From this point on, 2991 * we can rely on either trans_commit or trans_cancel to unlock 2992 * them. 2993 */ 2994 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2995 if (new_parent) 2996 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2997 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2998 if (target_ip) 2999 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3000 if (wip) 3001 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3002 3003 /* 3004 * If we are using project inheritance, we only allow renames 3005 * into our tree when the project IDs are the same; else the 3006 * tree quota mechanism would be circumvented. 3007 */ 3008 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3009 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3010 error = -EXDEV; 3011 goto out_trans_cancel; 3012 } 3013 3014 xfs_defer_init(&dfops, &first_block); 3015 3016 /* RENAME_EXCHANGE is unique from here on. */ 3017 if (flags & RENAME_EXCHANGE) 3018 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3019 target_dp, target_name, target_ip, 3020 &dfops, &first_block, spaceres); 3021 3022 /* 3023 * Set up the target. 3024 */ 3025 if (target_ip == NULL) { 3026 /* 3027 * If there's no space reservation, check the entry will 3028 * fit before actually inserting it. 3029 */ 3030 if (!spaceres) { 3031 error = xfs_dir_canenter(tp, target_dp, target_name); 3032 if (error) 3033 goto out_trans_cancel; 3034 } 3035 /* 3036 * If target does not exist and the rename crosses 3037 * directories, adjust the target directory link count 3038 * to account for the ".." reference from the new entry. 3039 */ 3040 error = xfs_dir_createname(tp, target_dp, target_name, 3041 src_ip->i_ino, &first_block, 3042 &dfops, spaceres); 3043 if (error) 3044 goto out_bmap_cancel; 3045 3046 xfs_trans_ichgtime(tp, target_dp, 3047 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3048 3049 if (new_parent && src_is_directory) { 3050 error = xfs_bumplink(tp, target_dp); 3051 if (error) 3052 goto out_bmap_cancel; 3053 } 3054 } else { /* target_ip != NULL */ 3055 /* 3056 * If target exists and it's a directory, check that both 3057 * target and source are directories and that target can be 3058 * destroyed, or that neither is a directory. 3059 */ 3060 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3061 /* 3062 * Make sure target dir is empty. 3063 */ 3064 if (!(xfs_dir_isempty(target_ip)) || 3065 (VFS_I(target_ip)->i_nlink > 2)) { 3066 error = -EEXIST; 3067 goto out_trans_cancel; 3068 } 3069 } 3070 3071 /* 3072 * Link the source inode under the target name. 3073 * If the source inode is a directory and we are moving 3074 * it across directories, its ".." entry will be 3075 * inconsistent until we replace that down below. 3076 * 3077 * In case there is already an entry with the same 3078 * name at the destination directory, remove it first. 3079 */ 3080 error = xfs_dir_replace(tp, target_dp, target_name, 3081 src_ip->i_ino, 3082 &first_block, &dfops, spaceres); 3083 if (error) 3084 goto out_bmap_cancel; 3085 3086 xfs_trans_ichgtime(tp, target_dp, 3087 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3088 3089 /* 3090 * Decrement the link count on the target since the target 3091 * dir no longer points to it. 3092 */ 3093 error = xfs_droplink(tp, target_ip); 3094 if (error) 3095 goto out_bmap_cancel; 3096 3097 if (src_is_directory) { 3098 /* 3099 * Drop the link from the old "." entry. 3100 */ 3101 error = xfs_droplink(tp, target_ip); 3102 if (error) 3103 goto out_bmap_cancel; 3104 } 3105 } /* target_ip != NULL */ 3106 3107 /* 3108 * Remove the source. 3109 */ 3110 if (new_parent && src_is_directory) { 3111 /* 3112 * Rewrite the ".." entry to point to the new 3113 * directory. 3114 */ 3115 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3116 target_dp->i_ino, 3117 &first_block, &dfops, spaceres); 3118 ASSERT(error != -EEXIST); 3119 if (error) 3120 goto out_bmap_cancel; 3121 } 3122 3123 /* 3124 * We always want to hit the ctime on the source inode. 3125 * 3126 * This isn't strictly required by the standards since the source 3127 * inode isn't really being changed, but old unix file systems did 3128 * it and some incremental backup programs won't work without it. 3129 */ 3130 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3131 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3132 3133 /* 3134 * Adjust the link count on src_dp. This is necessary when 3135 * renaming a directory, either within one parent when 3136 * the target existed, or across two parent directories. 3137 */ 3138 if (src_is_directory && (new_parent || target_ip != NULL)) { 3139 3140 /* 3141 * Decrement link count on src_directory since the 3142 * entry that's moved no longer points to it. 3143 */ 3144 error = xfs_droplink(tp, src_dp); 3145 if (error) 3146 goto out_bmap_cancel; 3147 } 3148 3149 /* 3150 * For whiteouts, we only need to update the source dirent with the 3151 * inode number of the whiteout inode rather than removing it 3152 * altogether. 3153 */ 3154 if (wip) { 3155 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3156 &first_block, &dfops, spaceres); 3157 } else 3158 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3159 &first_block, &dfops, spaceres); 3160 if (error) 3161 goto out_bmap_cancel; 3162 3163 /* 3164 * For whiteouts, we need to bump the link count on the whiteout inode. 3165 * This means that failures all the way up to this point leave the inode 3166 * on the unlinked list and so cleanup is a simple matter of dropping 3167 * the remaining reference to it. If we fail here after bumping the link 3168 * count, we're shutting down the filesystem so we'll never see the 3169 * intermediate state on disk. 3170 */ 3171 if (wip) { 3172 ASSERT(VFS_I(wip)->i_nlink == 0); 3173 error = xfs_bumplink(tp, wip); 3174 if (error) 3175 goto out_bmap_cancel; 3176 error = xfs_iunlink_remove(tp, wip); 3177 if (error) 3178 goto out_bmap_cancel; 3179 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3180 3181 /* 3182 * Now we have a real link, clear the "I'm a tmpfile" state 3183 * flag from the inode so it doesn't accidentally get misused in 3184 * future. 3185 */ 3186 VFS_I(wip)->i_state &= ~I_LINKABLE; 3187 } 3188 3189 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3190 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3191 if (new_parent) 3192 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3193 3194 error = xfs_finish_rename(tp, &dfops); 3195 if (wip) 3196 IRELE(wip); 3197 return error; 3198 3199 out_bmap_cancel: 3200 xfs_defer_cancel(&dfops); 3201 out_trans_cancel: 3202 xfs_trans_cancel(tp); 3203 out_release_wip: 3204 if (wip) 3205 IRELE(wip); 3206 return error; 3207 } 3208 3209 STATIC int 3210 xfs_iflush_cluster( 3211 struct xfs_inode *ip, 3212 struct xfs_buf *bp) 3213 { 3214 struct xfs_mount *mp = ip->i_mount; 3215 struct xfs_perag *pag; 3216 unsigned long first_index, mask; 3217 unsigned long inodes_per_cluster; 3218 int cilist_size; 3219 struct xfs_inode **cilist; 3220 struct xfs_inode *cip; 3221 int nr_found; 3222 int clcount = 0; 3223 int bufwasdelwri; 3224 int i; 3225 3226 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3227 3228 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3229 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3230 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3231 if (!cilist) 3232 goto out_put; 3233 3234 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3235 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3236 rcu_read_lock(); 3237 /* really need a gang lookup range call here */ 3238 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3239 first_index, inodes_per_cluster); 3240 if (nr_found == 0) 3241 goto out_free; 3242 3243 for (i = 0; i < nr_found; i++) { 3244 cip = cilist[i]; 3245 if (cip == ip) 3246 continue; 3247 3248 /* 3249 * because this is an RCU protected lookup, we could find a 3250 * recently freed or even reallocated inode during the lookup. 3251 * We need to check under the i_flags_lock for a valid inode 3252 * here. Skip it if it is not valid or the wrong inode. 3253 */ 3254 spin_lock(&cip->i_flags_lock); 3255 if (!cip->i_ino || 3256 __xfs_iflags_test(cip, XFS_ISTALE)) { 3257 spin_unlock(&cip->i_flags_lock); 3258 continue; 3259 } 3260 3261 /* 3262 * Once we fall off the end of the cluster, no point checking 3263 * any more inodes in the list because they will also all be 3264 * outside the cluster. 3265 */ 3266 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3267 spin_unlock(&cip->i_flags_lock); 3268 break; 3269 } 3270 spin_unlock(&cip->i_flags_lock); 3271 3272 /* 3273 * Do an un-protected check to see if the inode is dirty and 3274 * is a candidate for flushing. These checks will be repeated 3275 * later after the appropriate locks are acquired. 3276 */ 3277 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3278 continue; 3279 3280 /* 3281 * Try to get locks. If any are unavailable or it is pinned, 3282 * then this inode cannot be flushed and is skipped. 3283 */ 3284 3285 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3286 continue; 3287 if (!xfs_iflock_nowait(cip)) { 3288 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3289 continue; 3290 } 3291 if (xfs_ipincount(cip)) { 3292 xfs_ifunlock(cip); 3293 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3294 continue; 3295 } 3296 3297 3298 /* 3299 * Check the inode number again, just to be certain we are not 3300 * racing with freeing in xfs_reclaim_inode(). See the comments 3301 * in that function for more information as to why the initial 3302 * check is not sufficient. 3303 */ 3304 if (!cip->i_ino) { 3305 xfs_ifunlock(cip); 3306 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3307 continue; 3308 } 3309 3310 /* 3311 * arriving here means that this inode can be flushed. First 3312 * re-check that it's dirty before flushing. 3313 */ 3314 if (!xfs_inode_clean(cip)) { 3315 int error; 3316 error = xfs_iflush_int(cip, bp); 3317 if (error) { 3318 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3319 goto cluster_corrupt_out; 3320 } 3321 clcount++; 3322 } else { 3323 xfs_ifunlock(cip); 3324 } 3325 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3326 } 3327 3328 if (clcount) { 3329 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3330 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3331 } 3332 3333 out_free: 3334 rcu_read_unlock(); 3335 kmem_free(cilist); 3336 out_put: 3337 xfs_perag_put(pag); 3338 return 0; 3339 3340 3341 cluster_corrupt_out: 3342 /* 3343 * Corruption detected in the clustering loop. Invalidate the 3344 * inode buffer and shut down the filesystem. 3345 */ 3346 rcu_read_unlock(); 3347 /* 3348 * Clean up the buffer. If it was delwri, just release it -- 3349 * brelse can handle it with no problems. If not, shut down the 3350 * filesystem before releasing the buffer. 3351 */ 3352 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3353 if (bufwasdelwri) 3354 xfs_buf_relse(bp); 3355 3356 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3357 3358 if (!bufwasdelwri) { 3359 /* 3360 * Just like incore_relse: if we have b_iodone functions, 3361 * mark the buffer as an error and call them. Otherwise 3362 * mark it as stale and brelse. 3363 */ 3364 if (bp->b_iodone) { 3365 bp->b_flags &= ~XBF_DONE; 3366 xfs_buf_stale(bp); 3367 xfs_buf_ioerror(bp, -EIO); 3368 xfs_buf_ioend(bp); 3369 } else { 3370 xfs_buf_stale(bp); 3371 xfs_buf_relse(bp); 3372 } 3373 } 3374 3375 /* 3376 * Unlocks the flush lock 3377 */ 3378 xfs_iflush_abort(cip, false); 3379 kmem_free(cilist); 3380 xfs_perag_put(pag); 3381 return -EFSCORRUPTED; 3382 } 3383 3384 /* 3385 * Flush dirty inode metadata into the backing buffer. 3386 * 3387 * The caller must have the inode lock and the inode flush lock held. The 3388 * inode lock will still be held upon return to the caller, and the inode 3389 * flush lock will be released after the inode has reached the disk. 3390 * 3391 * The caller must write out the buffer returned in *bpp and release it. 3392 */ 3393 int 3394 xfs_iflush( 3395 struct xfs_inode *ip, 3396 struct xfs_buf **bpp) 3397 { 3398 struct xfs_mount *mp = ip->i_mount; 3399 struct xfs_buf *bp = NULL; 3400 struct xfs_dinode *dip; 3401 int error; 3402 3403 XFS_STATS_INC(mp, xs_iflush_count); 3404 3405 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3406 ASSERT(xfs_isiflocked(ip)); 3407 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3408 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3409 3410 *bpp = NULL; 3411 3412 xfs_iunpin_wait(ip); 3413 3414 /* 3415 * For stale inodes we cannot rely on the backing buffer remaining 3416 * stale in cache for the remaining life of the stale inode and so 3417 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3418 * inodes below. We have to check this after ensuring the inode is 3419 * unpinned so that it is safe to reclaim the stale inode after the 3420 * flush call. 3421 */ 3422 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3423 xfs_ifunlock(ip); 3424 return 0; 3425 } 3426 3427 /* 3428 * This may have been unpinned because the filesystem is shutting 3429 * down forcibly. If that's the case we must not write this inode 3430 * to disk, because the log record didn't make it to disk. 3431 * 3432 * We also have to remove the log item from the AIL in this case, 3433 * as we wait for an empty AIL as part of the unmount process. 3434 */ 3435 if (XFS_FORCED_SHUTDOWN(mp)) { 3436 error = -EIO; 3437 goto abort_out; 3438 } 3439 3440 /* 3441 * Get the buffer containing the on-disk inode. We are doing a try-lock 3442 * operation here, so we may get an EAGAIN error. In that case, we 3443 * simply want to return with the inode still dirty. 3444 * 3445 * If we get any other error, we effectively have a corruption situation 3446 * and we cannot flush the inode, so we treat it the same as failing 3447 * xfs_iflush_int(). 3448 */ 3449 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3450 0); 3451 if (error == -EAGAIN) { 3452 xfs_ifunlock(ip); 3453 return error; 3454 } 3455 if (error) 3456 goto corrupt_out; 3457 3458 /* 3459 * First flush out the inode that xfs_iflush was called with. 3460 */ 3461 error = xfs_iflush_int(ip, bp); 3462 if (error) 3463 goto corrupt_out; 3464 3465 /* 3466 * If the buffer is pinned then push on the log now so we won't 3467 * get stuck waiting in the write for too long. 3468 */ 3469 if (xfs_buf_ispinned(bp)) 3470 xfs_log_force(mp, 0); 3471 3472 /* 3473 * inode clustering: 3474 * see if other inodes can be gathered into this write 3475 */ 3476 error = xfs_iflush_cluster(ip, bp); 3477 if (error) 3478 goto cluster_corrupt_out; 3479 3480 *bpp = bp; 3481 return 0; 3482 3483 corrupt_out: 3484 if (bp) 3485 xfs_buf_relse(bp); 3486 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3487 cluster_corrupt_out: 3488 error = -EFSCORRUPTED; 3489 abort_out: 3490 /* 3491 * Unlocks the flush lock 3492 */ 3493 xfs_iflush_abort(ip, false); 3494 return error; 3495 } 3496 3497 /* 3498 * If there are inline format data / attr forks attached to this inode, 3499 * make sure they're not corrupt. 3500 */ 3501 bool 3502 xfs_inode_verify_forks( 3503 struct xfs_inode *ip) 3504 { 3505 struct xfs_ifork *ifp; 3506 xfs_failaddr_t fa; 3507 3508 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); 3509 if (fa) { 3510 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 3511 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 3512 ifp->if_u1.if_data, ifp->if_bytes, fa); 3513 return false; 3514 } 3515 3516 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); 3517 if (fa) { 3518 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); 3519 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 3520 ifp ? ifp->if_u1.if_data : NULL, 3521 ifp ? ifp->if_bytes : 0, fa); 3522 return false; 3523 } 3524 return true; 3525 } 3526 3527 STATIC int 3528 xfs_iflush_int( 3529 struct xfs_inode *ip, 3530 struct xfs_buf *bp) 3531 { 3532 struct xfs_inode_log_item *iip = ip->i_itemp; 3533 struct xfs_dinode *dip; 3534 struct xfs_mount *mp = ip->i_mount; 3535 3536 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3537 ASSERT(xfs_isiflocked(ip)); 3538 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3539 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3540 ASSERT(iip != NULL && iip->ili_fields != 0); 3541 ASSERT(ip->i_d.di_version > 1); 3542 3543 /* set *dip = inode's place in the buffer */ 3544 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3545 3546 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3547 mp, XFS_ERRTAG_IFLUSH_1)) { 3548 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3549 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3550 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3551 goto corrupt_out; 3552 } 3553 if (S_ISREG(VFS_I(ip)->i_mode)) { 3554 if (XFS_TEST_ERROR( 3555 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3556 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3557 mp, XFS_ERRTAG_IFLUSH_3)) { 3558 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3559 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3560 __func__, ip->i_ino, ip); 3561 goto corrupt_out; 3562 } 3563 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3564 if (XFS_TEST_ERROR( 3565 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3566 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3567 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3568 mp, XFS_ERRTAG_IFLUSH_4)) { 3569 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3570 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3571 __func__, ip->i_ino, ip); 3572 goto corrupt_out; 3573 } 3574 } 3575 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3576 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3577 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3578 "%s: detected corrupt incore inode %Lu, " 3579 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3580 __func__, ip->i_ino, 3581 ip->i_d.di_nextents + ip->i_d.di_anextents, 3582 ip->i_d.di_nblocks, ip); 3583 goto corrupt_out; 3584 } 3585 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3586 mp, XFS_ERRTAG_IFLUSH_6)) { 3587 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3588 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3589 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3590 goto corrupt_out; 3591 } 3592 3593 /* 3594 * Inode item log recovery for v2 inodes are dependent on the 3595 * di_flushiter count for correct sequencing. We bump the flush 3596 * iteration count so we can detect flushes which postdate a log record 3597 * during recovery. This is redundant as we now log every change and 3598 * hence this can't happen but we need to still do it to ensure 3599 * backwards compatibility with old kernels that predate logging all 3600 * inode changes. 3601 */ 3602 if (ip->i_d.di_version < 3) 3603 ip->i_d.di_flushiter++; 3604 3605 /* Check the inline fork data before we write out. */ 3606 if (!xfs_inode_verify_forks(ip)) 3607 goto corrupt_out; 3608 3609 /* 3610 * Copy the dirty parts of the inode into the on-disk inode. We always 3611 * copy out the core of the inode, because if the inode is dirty at all 3612 * the core must be. 3613 */ 3614 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3615 3616 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3617 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3618 ip->i_d.di_flushiter = 0; 3619 3620 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3621 if (XFS_IFORK_Q(ip)) 3622 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3623 xfs_inobp_check(mp, bp); 3624 3625 /* 3626 * We've recorded everything logged in the inode, so we'd like to clear 3627 * the ili_fields bits so we don't log and flush things unnecessarily. 3628 * However, we can't stop logging all this information until the data 3629 * we've copied into the disk buffer is written to disk. If we did we 3630 * might overwrite the copy of the inode in the log with all the data 3631 * after re-logging only part of it, and in the face of a crash we 3632 * wouldn't have all the data we need to recover. 3633 * 3634 * What we do is move the bits to the ili_last_fields field. When 3635 * logging the inode, these bits are moved back to the ili_fields field. 3636 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3637 * know that the information those bits represent is permanently on 3638 * disk. As long as the flush completes before the inode is logged 3639 * again, then both ili_fields and ili_last_fields will be cleared. 3640 * 3641 * We can play with the ili_fields bits here, because the inode lock 3642 * must be held exclusively in order to set bits there and the flush 3643 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3644 * done routine can tell whether or not to look in the AIL. Also, store 3645 * the current LSN of the inode so that we can tell whether the item has 3646 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3647 * need the AIL lock, because it is a 64 bit value that cannot be read 3648 * atomically. 3649 */ 3650 iip->ili_last_fields = iip->ili_fields; 3651 iip->ili_fields = 0; 3652 iip->ili_fsync_fields = 0; 3653 iip->ili_logged = 1; 3654 3655 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3656 &iip->ili_item.li_lsn); 3657 3658 /* 3659 * Attach the function xfs_iflush_done to the inode's 3660 * buffer. This will remove the inode from the AIL 3661 * and unlock the inode's flush lock when the inode is 3662 * completely written to disk. 3663 */ 3664 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3665 3666 /* generate the checksum. */ 3667 xfs_dinode_calc_crc(mp, dip); 3668 3669 ASSERT(!list_empty(&bp->b_li_list)); 3670 ASSERT(bp->b_iodone != NULL); 3671 return 0; 3672 3673 corrupt_out: 3674 return -EFSCORRUPTED; 3675 } 3676