xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 82ced6fd)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_acl.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
55 
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 
59 /*
60  * Used in xfs_itruncate().  This is the maximum number of extents
61  * freed from a file in a single transaction.
62  */
63 #define	XFS_ITRUNC_MAX_EXTENTS	2
64 
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 
70 #ifdef DEBUG
71 /*
72  * Make sure that the extents in the given memory buffer
73  * are valid.
74  */
75 STATIC void
76 xfs_validate_extents(
77 	xfs_ifork_t		*ifp,
78 	int			nrecs,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_irec_t		irec;
82 	xfs_bmbt_rec_host_t	rec;
83 	int			i;
84 
85 	for (i = 0; i < nrecs; i++) {
86 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 		rec.l0 = get_unaligned(&ep->l0);
88 		rec.l1 = get_unaligned(&ep->l1);
89 		xfs_bmbt_get_all(&rec, &irec);
90 		if (fmt == XFS_EXTFMT_NOSTATE)
91 			ASSERT(irec.br_state == XFS_EXT_NORM);
92 	}
93 }
94 #else /* DEBUG */
95 #define xfs_validate_extents(ifp, nrecs, fmt)
96 #endif /* DEBUG */
97 
98 /*
99  * Check that none of the inode's in the buffer have a next
100  * unlinked field of 0.
101  */
102 #if defined(DEBUG)
103 void
104 xfs_inobp_check(
105 	xfs_mount_t	*mp,
106 	xfs_buf_t	*bp)
107 {
108 	int		i;
109 	int		j;
110 	xfs_dinode_t	*dip;
111 
112 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 
114 	for (i = 0; i < j; i++) {
115 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 					i * mp->m_sb.sb_inodesize);
117 		if (!dip->di_next_unlinked)  {
118 			xfs_fs_cmn_err(CE_ALERT, mp,
119 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
120 				bp);
121 			ASSERT(dip->di_next_unlinked);
122 		}
123 	}
124 }
125 #endif
126 
127 /*
128  * Find the buffer associated with the given inode map
129  * We do basic validation checks on the buffer once it has been
130  * retrieved from disk.
131  */
132 STATIC int
133 xfs_imap_to_bp(
134 	xfs_mount_t	*mp,
135 	xfs_trans_t	*tp,
136 	struct xfs_imap	*imap,
137 	xfs_buf_t	**bpp,
138 	uint		buf_flags,
139 	uint		iget_flags)
140 {
141 	int		error;
142 	int		i;
143 	int		ni;
144 	xfs_buf_t	*bp;
145 
146 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 				   (int)imap->im_len, buf_flags, &bp);
148 	if (error) {
149 		if (error != EAGAIN) {
150 			cmn_err(CE_WARN,
151 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 				"an error %d on %s.  Returning error.",
153 				error, mp->m_fsname);
154 		} else {
155 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 		}
157 		return error;
158 	}
159 
160 	/*
161 	 * Validate the magic number and version of every inode in the buffer
162 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 	 */
164 #ifdef DEBUG
165 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else	/* usual case */
167 	ni = 1;
168 #endif
169 
170 	for (i = 0; i < ni; i++) {
171 		int		di_ok;
172 		xfs_dinode_t	*dip;
173 
174 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 					(i << mp->m_sb.sb_inodelog));
176 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
178 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 						XFS_ERRTAG_ITOBP_INOTOBP,
180 						XFS_RANDOM_ITOBP_INOTOBP))) {
181 			if (iget_flags & XFS_IGET_BULKSTAT) {
182 				xfs_trans_brelse(tp, bp);
183 				return XFS_ERROR(EINVAL);
184 			}
185 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 						XFS_ERRLEVEL_HIGH, mp, dip);
187 #ifdef DEBUG
188 			cmn_err(CE_PANIC,
189 					"Device %s - bad inode magic/vsn "
190 					"daddr %lld #%d (magic=%x)",
191 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 				(unsigned long long)imap->im_blkno, i,
193 				be16_to_cpu(dip->di_magic));
194 #endif
195 			xfs_trans_brelse(tp, bp);
196 			return XFS_ERROR(EFSCORRUPTED);
197 		}
198 	}
199 
200 	xfs_inobp_check(mp, bp);
201 
202 	/*
203 	 * Mark the buffer as an inode buffer now that it looks good
204 	 */
205 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206 
207 	*bpp = bp;
208 	return 0;
209 }
210 
211 /*
212  * This routine is called to map an inode number within a file
213  * system to the buffer containing the on-disk version of the
214  * inode.  It returns a pointer to the buffer containing the
215  * on-disk inode in the bpp parameter, and in the dip parameter
216  * it returns a pointer to the on-disk inode within that buffer.
217  *
218  * If a non-zero error is returned, then the contents of bpp and
219  * dipp are undefined.
220  *
221  * Use xfs_imap() to determine the size and location of the
222  * buffer to read from disk.
223  */
224 int
225 xfs_inotobp(
226 	xfs_mount_t	*mp,
227 	xfs_trans_t	*tp,
228 	xfs_ino_t	ino,
229 	xfs_dinode_t	**dipp,
230 	xfs_buf_t	**bpp,
231 	int		*offset,
232 	uint		imap_flags)
233 {
234 	struct xfs_imap	imap;
235 	xfs_buf_t	*bp;
236 	int		error;
237 
238 	imap.im_blkno = 0;
239 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
240 	if (error)
241 		return error;
242 
243 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
244 	if (error)
245 		return error;
246 
247 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
248 	*bpp = bp;
249 	*offset = imap.im_boffset;
250 	return 0;
251 }
252 
253 
254 /*
255  * This routine is called to map an inode to the buffer containing
256  * the on-disk version of the inode.  It returns a pointer to the
257  * buffer containing the on-disk inode in the bpp parameter, and in
258  * the dip parameter it returns a pointer to the on-disk inode within
259  * that buffer.
260  *
261  * If a non-zero error is returned, then the contents of bpp and
262  * dipp are undefined.
263  *
264  * The inode is expected to already been mapped to its buffer and read
265  * in once, thus we can use the mapping information stored in the inode
266  * rather than calling xfs_imap().  This allows us to avoid the overhead
267  * of looking at the inode btree for small block file systems
268  * (see xfs_imap()).
269  */
270 int
271 xfs_itobp(
272 	xfs_mount_t	*mp,
273 	xfs_trans_t	*tp,
274 	xfs_inode_t	*ip,
275 	xfs_dinode_t	**dipp,
276 	xfs_buf_t	**bpp,
277 	uint		buf_flags)
278 {
279 	xfs_buf_t	*bp;
280 	int		error;
281 
282 	ASSERT(ip->i_imap.im_blkno != 0);
283 
284 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
285 	if (error)
286 		return error;
287 
288 	if (!bp) {
289 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
290 		ASSERT(tp == NULL);
291 		*bpp = NULL;
292 		return EAGAIN;
293 	}
294 
295 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
296 	*bpp = bp;
297 	return 0;
298 }
299 
300 /*
301  * Move inode type and inode format specific information from the
302  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
303  * this means set if_rdev to the proper value.  For files, directories,
304  * and symlinks this means to bring in the in-line data or extent
305  * pointers.  For a file in B-tree format, only the root is immediately
306  * brought in-core.  The rest will be in-lined in if_extents when it
307  * is first referenced (see xfs_iread_extents()).
308  */
309 STATIC int
310 xfs_iformat(
311 	xfs_inode_t		*ip,
312 	xfs_dinode_t		*dip)
313 {
314 	xfs_attr_shortform_t	*atp;
315 	int			size;
316 	int			error;
317 	xfs_fsize_t             di_size;
318 	ip->i_df.if_ext_max =
319 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
320 	error = 0;
321 
322 	if (unlikely(be32_to_cpu(dip->di_nextents) +
323 		     be16_to_cpu(dip->di_anextents) >
324 		     be64_to_cpu(dip->di_nblocks))) {
325 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 			(unsigned long long)ip->i_ino,
328 			(int)(be32_to_cpu(dip->di_nextents) +
329 			      be16_to_cpu(dip->di_anextents)),
330 			(unsigned long long)
331 				be64_to_cpu(dip->di_nblocks));
332 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
333 				     ip->i_mount, dip);
334 		return XFS_ERROR(EFSCORRUPTED);
335 	}
336 
337 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
338 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 			"corrupt dinode %Lu, forkoff = 0x%x.",
340 			(unsigned long long)ip->i_ino,
341 			dip->di_forkoff);
342 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
343 				     ip->i_mount, dip);
344 		return XFS_ERROR(EFSCORRUPTED);
345 	}
346 
347 	switch (ip->i_d.di_mode & S_IFMT) {
348 	case S_IFIFO:
349 	case S_IFCHR:
350 	case S_IFBLK:
351 	case S_IFSOCK:
352 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
353 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
354 					      ip->i_mount, dip);
355 			return XFS_ERROR(EFSCORRUPTED);
356 		}
357 		ip->i_d.di_size = 0;
358 		ip->i_size = 0;
359 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
360 		break;
361 
362 	case S_IFREG:
363 	case S_IFLNK:
364 	case S_IFDIR:
365 		switch (dip->di_format) {
366 		case XFS_DINODE_FMT_LOCAL:
367 			/*
368 			 * no local regular files yet
369 			 */
370 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
371 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
372 					"corrupt inode %Lu "
373 					"(local format for regular file).",
374 					(unsigned long long) ip->i_ino);
375 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 						     XFS_ERRLEVEL_LOW,
377 						     ip->i_mount, dip);
378 				return XFS_ERROR(EFSCORRUPTED);
379 			}
380 
381 			di_size = be64_to_cpu(dip->di_size);
382 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
384 					"corrupt inode %Lu "
385 					"(bad size %Ld for local inode).",
386 					(unsigned long long) ip->i_ino,
387 					(long long) di_size);
388 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 						     XFS_ERRLEVEL_LOW,
390 						     ip->i_mount, dip);
391 				return XFS_ERROR(EFSCORRUPTED);
392 			}
393 
394 			size = (int)di_size;
395 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 			break;
397 		case XFS_DINODE_FMT_EXTENTS:
398 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 			break;
400 		case XFS_DINODE_FMT_BTREE:
401 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 			break;
403 		default:
404 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 					 ip->i_mount);
406 			return XFS_ERROR(EFSCORRUPTED);
407 		}
408 		break;
409 
410 	default:
411 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	if (error) {
415 		return error;
416 	}
417 	if (!XFS_DFORK_Q(dip))
418 		return 0;
419 	ASSERT(ip->i_afp == NULL);
420 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 	ip->i_afp->if_ext_max =
422 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 	switch (dip->di_aformat) {
424 	case XFS_DINODE_FMT_LOCAL:
425 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 		size = be16_to_cpu(atp->hdr.totsize);
427 
428 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
430 				"corrupt inode %Lu "
431 				"(bad attr fork size %Ld).",
432 				(unsigned long long) ip->i_ino,
433 				(long long) size);
434 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
435 					     XFS_ERRLEVEL_LOW,
436 					     ip->i_mount, dip);
437 			return XFS_ERROR(EFSCORRUPTED);
438 		}
439 
440 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
441 		break;
442 	case XFS_DINODE_FMT_EXTENTS:
443 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
444 		break;
445 	case XFS_DINODE_FMT_BTREE:
446 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
447 		break;
448 	default:
449 		error = XFS_ERROR(EFSCORRUPTED);
450 		break;
451 	}
452 	if (error) {
453 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
454 		ip->i_afp = NULL;
455 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
456 	}
457 	return error;
458 }
459 
460 /*
461  * The file is in-lined in the on-disk inode.
462  * If it fits into if_inline_data, then copy
463  * it there, otherwise allocate a buffer for it
464  * and copy the data there.  Either way, set
465  * if_data to point at the data.
466  * If we allocate a buffer for the data, make
467  * sure that its size is a multiple of 4 and
468  * record the real size in i_real_bytes.
469  */
470 STATIC int
471 xfs_iformat_local(
472 	xfs_inode_t	*ip,
473 	xfs_dinode_t	*dip,
474 	int		whichfork,
475 	int		size)
476 {
477 	xfs_ifork_t	*ifp;
478 	int		real_size;
479 
480 	/*
481 	 * If the size is unreasonable, then something
482 	 * is wrong and we just bail out rather than crash in
483 	 * kmem_alloc() or memcpy() below.
484 	 */
485 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
486 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
487 			"corrupt inode %Lu "
488 			"(bad size %d for local fork, size = %d).",
489 			(unsigned long long) ip->i_ino, size,
490 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
492 				     ip->i_mount, dip);
493 		return XFS_ERROR(EFSCORRUPTED);
494 	}
495 	ifp = XFS_IFORK_PTR(ip, whichfork);
496 	real_size = 0;
497 	if (size == 0)
498 		ifp->if_u1.if_data = NULL;
499 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
501 	else {
502 		real_size = roundup(size, 4);
503 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
504 	}
505 	ifp->if_bytes = size;
506 	ifp->if_real_bytes = real_size;
507 	if (size)
508 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 	ifp->if_flags &= ~XFS_IFEXTENTS;
510 	ifp->if_flags |= XFS_IFINLINE;
511 	return 0;
512 }
513 
514 /*
515  * The file consists of a set of extents all
516  * of which fit into the on-disk inode.
517  * If there are few enough extents to fit into
518  * the if_inline_ext, then copy them there.
519  * Otherwise allocate a buffer for them and copy
520  * them into it.  Either way, set if_extents
521  * to point at the extents.
522  */
523 STATIC int
524 xfs_iformat_extents(
525 	xfs_inode_t	*ip,
526 	xfs_dinode_t	*dip,
527 	int		whichfork)
528 {
529 	xfs_bmbt_rec_t	*dp;
530 	xfs_ifork_t	*ifp;
531 	int		nex;
532 	int		size;
533 	int		i;
534 
535 	ifp = XFS_IFORK_PTR(ip, whichfork);
536 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
538 
539 	/*
540 	 * If the number of extents is unreasonable, then something
541 	 * is wrong and we just bail out rather than crash in
542 	 * kmem_alloc() or memcpy() below.
543 	 */
544 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
545 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
546 			"corrupt inode %Lu ((a)extents = %d).",
547 			(unsigned long long) ip->i_ino, nex);
548 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
549 				     ip->i_mount, dip);
550 		return XFS_ERROR(EFSCORRUPTED);
551 	}
552 
553 	ifp->if_real_bytes = 0;
554 	if (nex == 0)
555 		ifp->if_u1.if_extents = NULL;
556 	else if (nex <= XFS_INLINE_EXTS)
557 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
558 	else
559 		xfs_iext_add(ifp, 0, nex);
560 
561 	ifp->if_bytes = size;
562 	if (size) {
563 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
564 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
565 		for (i = 0; i < nex; i++, dp++) {
566 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
567 			ep->l0 = get_unaligned_be64(&dp->l0);
568 			ep->l1 = get_unaligned_be64(&dp->l1);
569 		}
570 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
571 		if (whichfork != XFS_DATA_FORK ||
572 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
573 				if (unlikely(xfs_check_nostate_extents(
574 				    ifp, 0, nex))) {
575 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
576 							 XFS_ERRLEVEL_LOW,
577 							 ip->i_mount);
578 					return XFS_ERROR(EFSCORRUPTED);
579 				}
580 	}
581 	ifp->if_flags |= XFS_IFEXTENTS;
582 	return 0;
583 }
584 
585 /*
586  * The file has too many extents to fit into
587  * the inode, so they are in B-tree format.
588  * Allocate a buffer for the root of the B-tree
589  * and copy the root into it.  The i_extents
590  * field will remain NULL until all of the
591  * extents are read in (when they are needed).
592  */
593 STATIC int
594 xfs_iformat_btree(
595 	xfs_inode_t		*ip,
596 	xfs_dinode_t		*dip,
597 	int			whichfork)
598 {
599 	xfs_bmdr_block_t	*dfp;
600 	xfs_ifork_t		*ifp;
601 	/* REFERENCED */
602 	int			nrecs;
603 	int			size;
604 
605 	ifp = XFS_IFORK_PTR(ip, whichfork);
606 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
607 	size = XFS_BMAP_BROOT_SPACE(dfp);
608 	nrecs = be16_to_cpu(dfp->bb_numrecs);
609 
610 	/*
611 	 * blow out if -- fork has less extents than can fit in
612 	 * fork (fork shouldn't be a btree format), root btree
613 	 * block has more records than can fit into the fork,
614 	 * or the number of extents is greater than the number of
615 	 * blocks.
616 	 */
617 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
618 	    || XFS_BMDR_SPACE_CALC(nrecs) >
619 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
620 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
621 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 			"corrupt inode %Lu (btree).",
623 			(unsigned long long) ip->i_ino);
624 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
625 				 ip->i_mount);
626 		return XFS_ERROR(EFSCORRUPTED);
627 	}
628 
629 	ifp->if_broot_bytes = size;
630 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
631 	ASSERT(ifp->if_broot != NULL);
632 	/*
633 	 * Copy and convert from the on-disk structure
634 	 * to the in-memory structure.
635 	 */
636 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
637 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
638 			 ifp->if_broot, size);
639 	ifp->if_flags &= ~XFS_IFEXTENTS;
640 	ifp->if_flags |= XFS_IFBROOT;
641 
642 	return 0;
643 }
644 
645 void
646 xfs_dinode_from_disk(
647 	xfs_icdinode_t		*to,
648 	xfs_dinode_t		*from)
649 {
650 	to->di_magic = be16_to_cpu(from->di_magic);
651 	to->di_mode = be16_to_cpu(from->di_mode);
652 	to->di_version = from ->di_version;
653 	to->di_format = from->di_format;
654 	to->di_onlink = be16_to_cpu(from->di_onlink);
655 	to->di_uid = be32_to_cpu(from->di_uid);
656 	to->di_gid = be32_to_cpu(from->di_gid);
657 	to->di_nlink = be32_to_cpu(from->di_nlink);
658 	to->di_projid = be16_to_cpu(from->di_projid);
659 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
660 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
661 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
662 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
663 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
664 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
665 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
666 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
667 	to->di_size = be64_to_cpu(from->di_size);
668 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
669 	to->di_extsize = be32_to_cpu(from->di_extsize);
670 	to->di_nextents = be32_to_cpu(from->di_nextents);
671 	to->di_anextents = be16_to_cpu(from->di_anextents);
672 	to->di_forkoff = from->di_forkoff;
673 	to->di_aformat	= from->di_aformat;
674 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
675 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
676 	to->di_flags	= be16_to_cpu(from->di_flags);
677 	to->di_gen	= be32_to_cpu(from->di_gen);
678 }
679 
680 void
681 xfs_dinode_to_disk(
682 	xfs_dinode_t		*to,
683 	xfs_icdinode_t		*from)
684 {
685 	to->di_magic = cpu_to_be16(from->di_magic);
686 	to->di_mode = cpu_to_be16(from->di_mode);
687 	to->di_version = from ->di_version;
688 	to->di_format = from->di_format;
689 	to->di_onlink = cpu_to_be16(from->di_onlink);
690 	to->di_uid = cpu_to_be32(from->di_uid);
691 	to->di_gid = cpu_to_be32(from->di_gid);
692 	to->di_nlink = cpu_to_be32(from->di_nlink);
693 	to->di_projid = cpu_to_be16(from->di_projid);
694 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 	to->di_size = cpu_to_be64(from->di_size);
703 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 	to->di_extsize = cpu_to_be32(from->di_extsize);
705 	to->di_nextents = cpu_to_be32(from->di_nextents);
706 	to->di_anextents = cpu_to_be16(from->di_anextents);
707 	to->di_forkoff = from->di_forkoff;
708 	to->di_aformat = from->di_aformat;
709 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 	to->di_flags = cpu_to_be16(from->di_flags);
712 	to->di_gen = cpu_to_be32(from->di_gen);
713 }
714 
715 STATIC uint
716 _xfs_dic2xflags(
717 	__uint16_t		di_flags)
718 {
719 	uint			flags = 0;
720 
721 	if (di_flags & XFS_DIFLAG_ANY) {
722 		if (di_flags & XFS_DIFLAG_REALTIME)
723 			flags |= XFS_XFLAG_REALTIME;
724 		if (di_flags & XFS_DIFLAG_PREALLOC)
725 			flags |= XFS_XFLAG_PREALLOC;
726 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 			flags |= XFS_XFLAG_IMMUTABLE;
728 		if (di_flags & XFS_DIFLAG_APPEND)
729 			flags |= XFS_XFLAG_APPEND;
730 		if (di_flags & XFS_DIFLAG_SYNC)
731 			flags |= XFS_XFLAG_SYNC;
732 		if (di_flags & XFS_DIFLAG_NOATIME)
733 			flags |= XFS_XFLAG_NOATIME;
734 		if (di_flags & XFS_DIFLAG_NODUMP)
735 			flags |= XFS_XFLAG_NODUMP;
736 		if (di_flags & XFS_DIFLAG_RTINHERIT)
737 			flags |= XFS_XFLAG_RTINHERIT;
738 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 			flags |= XFS_XFLAG_PROJINHERIT;
740 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 			flags |= XFS_XFLAG_NOSYMLINKS;
742 		if (di_flags & XFS_DIFLAG_EXTSIZE)
743 			flags |= XFS_XFLAG_EXTSIZE;
744 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 			flags |= XFS_XFLAG_EXTSZINHERIT;
746 		if (di_flags & XFS_DIFLAG_NODEFRAG)
747 			flags |= XFS_XFLAG_NODEFRAG;
748 		if (di_flags & XFS_DIFLAG_FILESTREAM)
749 			flags |= XFS_XFLAG_FILESTREAM;
750 	}
751 
752 	return flags;
753 }
754 
755 uint
756 xfs_ip2xflags(
757 	xfs_inode_t		*ip)
758 {
759 	xfs_icdinode_t		*dic = &ip->i_d;
760 
761 	return _xfs_dic2xflags(dic->di_flags) |
762 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
763 }
764 
765 uint
766 xfs_dic2xflags(
767 	xfs_dinode_t		*dip)
768 {
769 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
770 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
771 }
772 
773 /*
774  * Read the disk inode attributes into the in-core inode structure.
775  */
776 int
777 xfs_iread(
778 	xfs_mount_t	*mp,
779 	xfs_trans_t	*tp,
780 	xfs_inode_t	*ip,
781 	xfs_daddr_t	bno,
782 	uint		iget_flags)
783 {
784 	xfs_buf_t	*bp;
785 	xfs_dinode_t	*dip;
786 	int		error;
787 
788 	/*
789 	 * Fill in the location information in the in-core inode.
790 	 */
791 	ip->i_imap.im_blkno = bno;
792 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
793 	if (error)
794 		return error;
795 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
796 
797 	/*
798 	 * Get pointers to the on-disk inode and the buffer containing it.
799 	 */
800 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
801 			       XFS_BUF_LOCK, iget_flags);
802 	if (error)
803 		return error;
804 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
805 
806 	/*
807 	 * If we got something that isn't an inode it means someone
808 	 * (nfs or dmi) has a stale handle.
809 	 */
810 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
811 #ifdef DEBUG
812 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
813 				"dip->di_magic (0x%x) != "
814 				"XFS_DINODE_MAGIC (0x%x)",
815 				be16_to_cpu(dip->di_magic),
816 				XFS_DINODE_MAGIC);
817 #endif /* DEBUG */
818 		error = XFS_ERROR(EINVAL);
819 		goto out_brelse;
820 	}
821 
822 	/*
823 	 * If the on-disk inode is already linked to a directory
824 	 * entry, copy all of the inode into the in-core inode.
825 	 * xfs_iformat() handles copying in the inode format
826 	 * specific information.
827 	 * Otherwise, just get the truly permanent information.
828 	 */
829 	if (dip->di_mode) {
830 		xfs_dinode_from_disk(&ip->i_d, dip);
831 		error = xfs_iformat(ip, dip);
832 		if (error)  {
833 #ifdef DEBUG
834 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
835 					"xfs_iformat() returned error %d",
836 					error);
837 #endif /* DEBUG */
838 			goto out_brelse;
839 		}
840 	} else {
841 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
842 		ip->i_d.di_version = dip->di_version;
843 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
844 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
845 		/*
846 		 * Make sure to pull in the mode here as well in
847 		 * case the inode is released without being used.
848 		 * This ensures that xfs_inactive() will see that
849 		 * the inode is already free and not try to mess
850 		 * with the uninitialized part of it.
851 		 */
852 		ip->i_d.di_mode = 0;
853 		/*
854 		 * Initialize the per-fork minima and maxima for a new
855 		 * inode here.  xfs_iformat will do it for old inodes.
856 		 */
857 		ip->i_df.if_ext_max =
858 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
859 	}
860 
861 	/*
862 	 * The inode format changed when we moved the link count and
863 	 * made it 32 bits long.  If this is an old format inode,
864 	 * convert it in memory to look like a new one.  If it gets
865 	 * flushed to disk we will convert back before flushing or
866 	 * logging it.  We zero out the new projid field and the old link
867 	 * count field.  We'll handle clearing the pad field (the remains
868 	 * of the old uuid field) when we actually convert the inode to
869 	 * the new format. We don't change the version number so that we
870 	 * can distinguish this from a real new format inode.
871 	 */
872 	if (ip->i_d.di_version == 1) {
873 		ip->i_d.di_nlink = ip->i_d.di_onlink;
874 		ip->i_d.di_onlink = 0;
875 		ip->i_d.di_projid = 0;
876 	}
877 
878 	ip->i_delayed_blks = 0;
879 	ip->i_size = ip->i_d.di_size;
880 
881 	/*
882 	 * Mark the buffer containing the inode as something to keep
883 	 * around for a while.  This helps to keep recently accessed
884 	 * meta-data in-core longer.
885 	 */
886 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
887 
888 	/*
889 	 * Use xfs_trans_brelse() to release the buffer containing the
890 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
891 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
892 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
893 	 * will only release the buffer if it is not dirty within the
894 	 * transaction.  It will be OK to release the buffer in this case,
895 	 * because inodes on disk are never destroyed and we will be
896 	 * locking the new in-core inode before putting it in the hash
897 	 * table where other processes can find it.  Thus we don't have
898 	 * to worry about the inode being changed just because we released
899 	 * the buffer.
900 	 */
901  out_brelse:
902 	xfs_trans_brelse(tp, bp);
903 	return error;
904 }
905 
906 /*
907  * Read in extents from a btree-format inode.
908  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
909  */
910 int
911 xfs_iread_extents(
912 	xfs_trans_t	*tp,
913 	xfs_inode_t	*ip,
914 	int		whichfork)
915 {
916 	int		error;
917 	xfs_ifork_t	*ifp;
918 	xfs_extnum_t	nextents;
919 	size_t		size;
920 
921 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
922 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
923 				 ip->i_mount);
924 		return XFS_ERROR(EFSCORRUPTED);
925 	}
926 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
927 	size = nextents * sizeof(xfs_bmbt_rec_t);
928 	ifp = XFS_IFORK_PTR(ip, whichfork);
929 
930 	/*
931 	 * We know that the size is valid (it's checked in iformat_btree)
932 	 */
933 	ifp->if_lastex = NULLEXTNUM;
934 	ifp->if_bytes = ifp->if_real_bytes = 0;
935 	ifp->if_flags |= XFS_IFEXTENTS;
936 	xfs_iext_add(ifp, 0, nextents);
937 	error = xfs_bmap_read_extents(tp, ip, whichfork);
938 	if (error) {
939 		xfs_iext_destroy(ifp);
940 		ifp->if_flags &= ~XFS_IFEXTENTS;
941 		return error;
942 	}
943 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
944 	return 0;
945 }
946 
947 /*
948  * Allocate an inode on disk and return a copy of its in-core version.
949  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
950  * appropriately within the inode.  The uid and gid for the inode are
951  * set according to the contents of the given cred structure.
952  *
953  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954  * has a free inode available, call xfs_iget()
955  * to obtain the in-core version of the allocated inode.  Finally,
956  * fill in the inode and log its initial contents.  In this case,
957  * ialloc_context would be set to NULL and call_again set to false.
958  *
959  * If xfs_dialloc() does not have an available inode,
960  * it will replenish its supply by doing an allocation. Since we can
961  * only do one allocation within a transaction without deadlocks, we
962  * must commit the current transaction before returning the inode itself.
963  * In this case, therefore, we will set call_again to true and return.
964  * The caller should then commit the current transaction, start a new
965  * transaction, and call xfs_ialloc() again to actually get the inode.
966  *
967  * To ensure that some other process does not grab the inode that
968  * was allocated during the first call to xfs_ialloc(), this routine
969  * also returns the [locked] bp pointing to the head of the freelist
970  * as ialloc_context.  The caller should hold this buffer across
971  * the commit and pass it back into this routine on the second call.
972  *
973  * If we are allocating quota inodes, we do not have a parent inode
974  * to attach to or associate with (i.e. pip == NULL) because they
975  * are not linked into the directory structure - they are attached
976  * directly to the superblock - and so have no parent.
977  */
978 int
979 xfs_ialloc(
980 	xfs_trans_t	*tp,
981 	xfs_inode_t	*pip,
982 	mode_t		mode,
983 	xfs_nlink_t	nlink,
984 	xfs_dev_t	rdev,
985 	cred_t		*cr,
986 	xfs_prid_t	prid,
987 	int		okalloc,
988 	xfs_buf_t	**ialloc_context,
989 	boolean_t	*call_again,
990 	xfs_inode_t	**ipp)
991 {
992 	xfs_ino_t	ino;
993 	xfs_inode_t	*ip;
994 	uint		flags;
995 	int		error;
996 	timespec_t	tv;
997 	int		filestreams = 0;
998 
999 	/*
1000 	 * Call the space management code to pick
1001 	 * the on-disk inode to be allocated.
1002 	 */
1003 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 			    ialloc_context, call_again, &ino);
1005 	if (error)
1006 		return error;
1007 	if (*call_again || ino == NULLFSINO) {
1008 		*ipp = NULL;
1009 		return 0;
1010 	}
1011 	ASSERT(*ialloc_context == NULL);
1012 
1013 	/*
1014 	 * Get the in-core inode with the lock held exclusively.
1015 	 * This is because we're setting fields here we need
1016 	 * to prevent others from looking at until we're done.
1017 	 */
1018 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1020 	if (error)
1021 		return error;
1022 	ASSERT(ip != NULL);
1023 
1024 	ip->i_d.di_mode = (__uint16_t)mode;
1025 	ip->i_d.di_onlink = 0;
1026 	ip->i_d.di_nlink = nlink;
1027 	ASSERT(ip->i_d.di_nlink == nlink);
1028 	ip->i_d.di_uid = current_fsuid();
1029 	ip->i_d.di_gid = current_fsgid();
1030 	ip->i_d.di_projid = prid;
1031 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1032 
1033 	/*
1034 	 * If the superblock version is up to where we support new format
1035 	 * inodes and this is currently an old format inode, then change
1036 	 * the inode version number now.  This way we only do the conversion
1037 	 * here rather than here and in the flush/logging code.
1038 	 */
1039 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 	    ip->i_d.di_version == 1) {
1041 		ip->i_d.di_version = 2;
1042 		/*
1043 		 * We've already zeroed the old link count, the projid field,
1044 		 * and the pad field.
1045 		 */
1046 	}
1047 
1048 	/*
1049 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1050 	 */
1051 	if ((prid != 0) && (ip->i_d.di_version == 1))
1052 		xfs_bump_ino_vers2(tp, ip);
1053 
1054 	if (pip && XFS_INHERIT_GID(pip)) {
1055 		ip->i_d.di_gid = pip->i_d.di_gid;
1056 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 			ip->i_d.di_mode |= S_ISGID;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * If the group ID of the new file does not match the effective group
1063 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1065 	 */
1066 	if ((irix_sgid_inherit) &&
1067 	    (ip->i_d.di_mode & S_ISGID) &&
1068 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 		ip->i_d.di_mode &= ~S_ISGID;
1070 	}
1071 
1072 	ip->i_d.di_size = 0;
1073 	ip->i_size = 0;
1074 	ip->i_d.di_nextents = 0;
1075 	ASSERT(ip->i_d.di_nblocks == 0);
1076 
1077 	nanotime(&tv);
1078 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 	ip->i_d.di_atime = ip->i_d.di_mtime;
1081 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1082 
1083 	/*
1084 	 * di_gen will have been taken care of in xfs_iread.
1085 	 */
1086 	ip->i_d.di_extsize = 0;
1087 	ip->i_d.di_dmevmask = 0;
1088 	ip->i_d.di_dmstate = 0;
1089 	ip->i_d.di_flags = 0;
1090 	flags = XFS_ILOG_CORE;
1091 	switch (mode & S_IFMT) {
1092 	case S_IFIFO:
1093 	case S_IFCHR:
1094 	case S_IFBLK:
1095 	case S_IFSOCK:
1096 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 		ip->i_df.if_u2.if_rdev = rdev;
1098 		ip->i_df.if_flags = 0;
1099 		flags |= XFS_ILOG_DEV;
1100 		break;
1101 	case S_IFREG:
1102 		/*
1103 		 * we can't set up filestreams until after the VFS inode
1104 		 * is set up properly.
1105 		 */
1106 		if (pip && xfs_inode_is_filestream(pip))
1107 			filestreams = 1;
1108 		/* fall through */
1109 	case S_IFDIR:
1110 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1111 			uint	di_flags = 0;
1112 
1113 			if ((mode & S_IFMT) == S_IFDIR) {
1114 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 					di_flags |= XFS_DIFLAG_RTINHERIT;
1116 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1119 				}
1120 			} else if ((mode & S_IFMT) == S_IFREG) {
1121 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 					di_flags |= XFS_DIFLAG_REALTIME;
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 					di_flags |= XFS_DIFLAG_EXTSIZE;
1125 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1126 				}
1127 			}
1128 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 			    xfs_inherit_noatime)
1130 				di_flags |= XFS_DIFLAG_NOATIME;
1131 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1132 			    xfs_inherit_nodump)
1133 				di_flags |= XFS_DIFLAG_NODUMP;
1134 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1135 			    xfs_inherit_sync)
1136 				di_flags |= XFS_DIFLAG_SYNC;
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 			    xfs_inherit_nosymlinks)
1139 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 			    xfs_inherit_nodefrag)
1144 				di_flags |= XFS_DIFLAG_NODEFRAG;
1145 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 				di_flags |= XFS_DIFLAG_FILESTREAM;
1147 			ip->i_d.di_flags |= di_flags;
1148 		}
1149 		/* FALLTHROUGH */
1150 	case S_IFLNK:
1151 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 		ip->i_df.if_flags = XFS_IFEXTENTS;
1153 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 		ip->i_df.if_u1.if_extents = NULL;
1155 		break;
1156 	default:
1157 		ASSERT(0);
1158 	}
1159 	/*
1160 	 * Attribute fork settings for new inode.
1161 	 */
1162 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 	ip->i_d.di_anextents = 0;
1164 
1165 	/*
1166 	 * Log the new values stuffed into the inode.
1167 	 */
1168 	xfs_trans_log_inode(tp, ip, flags);
1169 
1170 	/* now that we have an i_mode we can setup inode ops and unlock */
1171 	xfs_setup_inode(ip);
1172 
1173 	/* now we have set up the vfs inode we can associate the filestream */
1174 	if (filestreams) {
1175 		error = xfs_filestream_associate(pip, ip);
1176 		if (error < 0)
1177 			return -error;
1178 		if (!error)
1179 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1180 	}
1181 
1182 	*ipp = ip;
1183 	return 0;
1184 }
1185 
1186 /*
1187  * Check to make sure that there are no blocks allocated to the
1188  * file beyond the size of the file.  We don't check this for
1189  * files with fixed size extents or real time extents, but we
1190  * at least do it for regular files.
1191  */
1192 #ifdef DEBUG
1193 void
1194 xfs_isize_check(
1195 	xfs_mount_t	*mp,
1196 	xfs_inode_t	*ip,
1197 	xfs_fsize_t	isize)
1198 {
1199 	xfs_fileoff_t	map_first;
1200 	int		nimaps;
1201 	xfs_bmbt_irec_t	imaps[2];
1202 
1203 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1204 		return;
1205 
1206 	if (XFS_IS_REALTIME_INODE(ip))
1207 		return;
1208 
1209 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1210 		return;
1211 
1212 	nimaps = 2;
1213 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1214 	/*
1215 	 * The filesystem could be shutting down, so bmapi may return
1216 	 * an error.
1217 	 */
1218 	if (xfs_bmapi(NULL, ip, map_first,
1219 			 (XFS_B_TO_FSB(mp,
1220 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1221 			  map_first),
1222 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1223 			 NULL, NULL))
1224 	    return;
1225 	ASSERT(nimaps == 1);
1226 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1227 }
1228 #endif	/* DEBUG */
1229 
1230 /*
1231  * Calculate the last possible buffered byte in a file.  This must
1232  * include data that was buffered beyond the EOF by the write code.
1233  * This also needs to deal with overflowing the xfs_fsize_t type
1234  * which can happen for sizes near the limit.
1235  *
1236  * We also need to take into account any blocks beyond the EOF.  It
1237  * may be the case that they were buffered by a write which failed.
1238  * In that case the pages will still be in memory, but the inode size
1239  * will never have been updated.
1240  */
1241 xfs_fsize_t
1242 xfs_file_last_byte(
1243 	xfs_inode_t	*ip)
1244 {
1245 	xfs_mount_t	*mp;
1246 	xfs_fsize_t	last_byte;
1247 	xfs_fileoff_t	last_block;
1248 	xfs_fileoff_t	size_last_block;
1249 	int		error;
1250 
1251 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1252 
1253 	mp = ip->i_mount;
1254 	/*
1255 	 * Only check for blocks beyond the EOF if the extents have
1256 	 * been read in.  This eliminates the need for the inode lock,
1257 	 * and it also saves us from looking when it really isn't
1258 	 * necessary.
1259 	 */
1260 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1262 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1263 			XFS_DATA_FORK);
1264 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1265 		if (error) {
1266 			last_block = 0;
1267 		}
1268 	} else {
1269 		last_block = 0;
1270 	}
1271 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1272 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1273 
1274 	last_byte = XFS_FSB_TO_B(mp, last_block);
1275 	if (last_byte < 0) {
1276 		return XFS_MAXIOFFSET(mp);
1277 	}
1278 	last_byte += (1 << mp->m_writeio_log);
1279 	if (last_byte < 0) {
1280 		return XFS_MAXIOFFSET(mp);
1281 	}
1282 	return last_byte;
1283 }
1284 
1285 #if defined(XFS_RW_TRACE)
1286 STATIC void
1287 xfs_itrunc_trace(
1288 	int		tag,
1289 	xfs_inode_t	*ip,
1290 	int		flag,
1291 	xfs_fsize_t	new_size,
1292 	xfs_off_t	toss_start,
1293 	xfs_off_t	toss_finish)
1294 {
1295 	if (ip->i_rwtrace == NULL) {
1296 		return;
1297 	}
1298 
1299 	ktrace_enter(ip->i_rwtrace,
1300 		     (void*)((long)tag),
1301 		     (void*)ip,
1302 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1303 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1304 		     (void*)((long)flag),
1305 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1306 		     (void*)(unsigned long)(new_size & 0xffffffff),
1307 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1308 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1309 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1310 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1311 		     (void*)(unsigned long)current_cpu(),
1312 		     (void*)(unsigned long)current_pid(),
1313 		     (void*)NULL,
1314 		     (void*)NULL,
1315 		     (void*)NULL);
1316 }
1317 #else
1318 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1319 #endif
1320 
1321 /*
1322  * Start the truncation of the file to new_size.  The new size
1323  * must be smaller than the current size.  This routine will
1324  * clear the buffer and page caches of file data in the removed
1325  * range, and xfs_itruncate_finish() will remove the underlying
1326  * disk blocks.
1327  *
1328  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1329  * must NOT have the inode lock held at all.  This is because we're
1330  * calling into the buffer/page cache code and we can't hold the
1331  * inode lock when we do so.
1332  *
1333  * We need to wait for any direct I/Os in flight to complete before we
1334  * proceed with the truncate. This is needed to prevent the extents
1335  * being read or written by the direct I/Os from being removed while the
1336  * I/O is in flight as there is no other method of synchronising
1337  * direct I/O with the truncate operation.  Also, because we hold
1338  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1339  * started until the truncate completes and drops the lock. Essentially,
1340  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1341  * ordering between direct I/Os and the truncate operation.
1342  *
1343  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1344  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1345  * in the case that the caller is locking things out of order and
1346  * may not be able to call xfs_itruncate_finish() with the inode lock
1347  * held without dropping the I/O lock.  If the caller must drop the
1348  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1349  * must be called again with all the same restrictions as the initial
1350  * call.
1351  */
1352 int
1353 xfs_itruncate_start(
1354 	xfs_inode_t	*ip,
1355 	uint		flags,
1356 	xfs_fsize_t	new_size)
1357 {
1358 	xfs_fsize_t	last_byte;
1359 	xfs_off_t	toss_start;
1360 	xfs_mount_t	*mp;
1361 	int		error = 0;
1362 
1363 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1365 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1366 	       (flags == XFS_ITRUNC_MAYBE));
1367 
1368 	mp = ip->i_mount;
1369 
1370 	/* wait for the completion of any pending DIOs */
1371 	if (new_size == 0 || new_size < ip->i_size)
1372 		xfs_ioend_wait(ip);
1373 
1374 	/*
1375 	 * Call toss_pages or flushinval_pages to get rid of pages
1376 	 * overlapping the region being removed.  We have to use
1377 	 * the less efficient flushinval_pages in the case that the
1378 	 * caller may not be able to finish the truncate without
1379 	 * dropping the inode's I/O lock.  Make sure
1380 	 * to catch any pages brought in by buffers overlapping
1381 	 * the EOF by searching out beyond the isize by our
1382 	 * block size. We round new_size up to a block boundary
1383 	 * so that we don't toss things on the same block as
1384 	 * new_size but before it.
1385 	 *
1386 	 * Before calling toss_page or flushinval_pages, make sure to
1387 	 * call remapf() over the same region if the file is mapped.
1388 	 * This frees up mapped file references to the pages in the
1389 	 * given range and for the flushinval_pages case it ensures
1390 	 * that we get the latest mapped changes flushed out.
1391 	 */
1392 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1393 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1394 	if (toss_start < 0) {
1395 		/*
1396 		 * The place to start tossing is beyond our maximum
1397 		 * file size, so there is no way that the data extended
1398 		 * out there.
1399 		 */
1400 		return 0;
1401 	}
1402 	last_byte = xfs_file_last_byte(ip);
1403 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1404 			 last_byte);
1405 	if (last_byte > toss_start) {
1406 		if (flags & XFS_ITRUNC_DEFINITE) {
1407 			xfs_tosspages(ip, toss_start,
1408 					-1, FI_REMAPF_LOCKED);
1409 		} else {
1410 			error = xfs_flushinval_pages(ip, toss_start,
1411 					-1, FI_REMAPF_LOCKED);
1412 		}
1413 	}
1414 
1415 #ifdef DEBUG
1416 	if (new_size == 0) {
1417 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1418 	}
1419 #endif
1420 	return error;
1421 }
1422 
1423 /*
1424  * Shrink the file to the given new_size.  The new size must be smaller than
1425  * the current size.  This will free up the underlying blocks in the removed
1426  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1427  *
1428  * The transaction passed to this routine must have made a permanent log
1429  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1430  * given transaction and start new ones, so make sure everything involved in
1431  * the transaction is tidy before calling here.  Some transaction will be
1432  * returned to the caller to be committed.  The incoming transaction must
1433  * already include the inode, and both inode locks must be held exclusively.
1434  * The inode must also be "held" within the transaction.  On return the inode
1435  * will be "held" within the returned transaction.  This routine does NOT
1436  * require any disk space to be reserved for it within the transaction.
1437  *
1438  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1439  * indicates the fork which is to be truncated.  For the attribute fork we only
1440  * support truncation to size 0.
1441  *
1442  * We use the sync parameter to indicate whether or not the first transaction
1443  * we perform might have to be synchronous.  For the attr fork, it needs to be
1444  * so if the unlink of the inode is not yet known to be permanent in the log.
1445  * This keeps us from freeing and reusing the blocks of the attribute fork
1446  * before the unlink of the inode becomes permanent.
1447  *
1448  * For the data fork, we normally have to run synchronously if we're being
1449  * called out of the inactive path or we're being called out of the create path
1450  * where we're truncating an existing file.  Either way, the truncate needs to
1451  * be sync so blocks don't reappear in the file with altered data in case of a
1452  * crash.  wsync filesystems can run the first case async because anything that
1453  * shrinks the inode has to run sync so by the time we're called here from
1454  * inactive, the inode size is permanently set to 0.
1455  *
1456  * Calls from the truncate path always need to be sync unless we're in a wsync
1457  * filesystem and the file has already been unlinked.
1458  *
1459  * The caller is responsible for correctly setting the sync parameter.  It gets
1460  * too hard for us to guess here which path we're being called out of just
1461  * based on inode state.
1462  *
1463  * If we get an error, we must return with the inode locked and linked into the
1464  * current transaction. This keeps things simple for the higher level code,
1465  * because it always knows that the inode is locked and held in the transaction
1466  * that returns to it whether errors occur or not.  We don't mark the inode
1467  * dirty on error so that transactions can be easily aborted if possible.
1468  */
1469 int
1470 xfs_itruncate_finish(
1471 	xfs_trans_t	**tp,
1472 	xfs_inode_t	*ip,
1473 	xfs_fsize_t	new_size,
1474 	int		fork,
1475 	int		sync)
1476 {
1477 	xfs_fsblock_t	first_block;
1478 	xfs_fileoff_t	first_unmap_block;
1479 	xfs_fileoff_t	last_block;
1480 	xfs_filblks_t	unmap_len=0;
1481 	xfs_mount_t	*mp;
1482 	xfs_trans_t	*ntp;
1483 	int		done;
1484 	int		committed;
1485 	xfs_bmap_free_t	free_list;
1486 	int		error;
1487 
1488 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1489 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1490 	ASSERT(*tp != NULL);
1491 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1492 	ASSERT(ip->i_transp == *tp);
1493 	ASSERT(ip->i_itemp != NULL);
1494 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1495 
1496 
1497 	ntp = *tp;
1498 	mp = (ntp)->t_mountp;
1499 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1500 
1501 	/*
1502 	 * We only support truncating the entire attribute fork.
1503 	 */
1504 	if (fork == XFS_ATTR_FORK) {
1505 		new_size = 0LL;
1506 	}
1507 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1508 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1509 	/*
1510 	 * The first thing we do is set the size to new_size permanently
1511 	 * on disk.  This way we don't have to worry about anyone ever
1512 	 * being able to look at the data being freed even in the face
1513 	 * of a crash.  What we're getting around here is the case where
1514 	 * we free a block, it is allocated to another file, it is written
1515 	 * to, and then we crash.  If the new data gets written to the
1516 	 * file but the log buffers containing the free and reallocation
1517 	 * don't, then we'd end up with garbage in the blocks being freed.
1518 	 * As long as we make the new_size permanent before actually
1519 	 * freeing any blocks it doesn't matter if they get writtten to.
1520 	 *
1521 	 * The callers must signal into us whether or not the size
1522 	 * setting here must be synchronous.  There are a few cases
1523 	 * where it doesn't have to be synchronous.  Those cases
1524 	 * occur if the file is unlinked and we know the unlink is
1525 	 * permanent or if the blocks being truncated are guaranteed
1526 	 * to be beyond the inode eof (regardless of the link count)
1527 	 * and the eof value is permanent.  Both of these cases occur
1528 	 * only on wsync-mounted filesystems.  In those cases, we're
1529 	 * guaranteed that no user will ever see the data in the blocks
1530 	 * that are being truncated so the truncate can run async.
1531 	 * In the free beyond eof case, the file may wind up with
1532 	 * more blocks allocated to it than it needs if we crash
1533 	 * and that won't get fixed until the next time the file
1534 	 * is re-opened and closed but that's ok as that shouldn't
1535 	 * be too many blocks.
1536 	 *
1537 	 * However, we can't just make all wsync xactions run async
1538 	 * because there's one call out of the create path that needs
1539 	 * to run sync where it's truncating an existing file to size
1540 	 * 0 whose size is > 0.
1541 	 *
1542 	 * It's probably possible to come up with a test in this
1543 	 * routine that would correctly distinguish all the above
1544 	 * cases from the values of the function parameters and the
1545 	 * inode state but for sanity's sake, I've decided to let the
1546 	 * layers above just tell us.  It's simpler to correctly figure
1547 	 * out in the layer above exactly under what conditions we
1548 	 * can run async and I think it's easier for others read and
1549 	 * follow the logic in case something has to be changed.
1550 	 * cscope is your friend -- rcc.
1551 	 *
1552 	 * The attribute fork is much simpler.
1553 	 *
1554 	 * For the attribute fork we allow the caller to tell us whether
1555 	 * the unlink of the inode that led to this call is yet permanent
1556 	 * in the on disk log.  If it is not and we will be freeing extents
1557 	 * in this inode then we make the first transaction synchronous
1558 	 * to make sure that the unlink is permanent by the time we free
1559 	 * the blocks.
1560 	 */
1561 	if (fork == XFS_DATA_FORK) {
1562 		if (ip->i_d.di_nextents > 0) {
1563 			/*
1564 			 * If we are not changing the file size then do
1565 			 * not update the on-disk file size - we may be
1566 			 * called from xfs_inactive_free_eofblocks().  If we
1567 			 * update the on-disk file size and then the system
1568 			 * crashes before the contents of the file are
1569 			 * flushed to disk then the files may be full of
1570 			 * holes (ie NULL files bug).
1571 			 */
1572 			if (ip->i_size != new_size) {
1573 				ip->i_d.di_size = new_size;
1574 				ip->i_size = new_size;
1575 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1576 			}
1577 		}
1578 	} else if (sync) {
1579 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1580 		if (ip->i_d.di_anextents > 0)
1581 			xfs_trans_set_sync(ntp);
1582 	}
1583 	ASSERT(fork == XFS_DATA_FORK ||
1584 		(fork == XFS_ATTR_FORK &&
1585 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1586 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1587 
1588 	/*
1589 	 * Since it is possible for space to become allocated beyond
1590 	 * the end of the file (in a crash where the space is allocated
1591 	 * but the inode size is not yet updated), simply remove any
1592 	 * blocks which show up between the new EOF and the maximum
1593 	 * possible file size.  If the first block to be removed is
1594 	 * beyond the maximum file size (ie it is the same as last_block),
1595 	 * then there is nothing to do.
1596 	 */
1597 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1598 	ASSERT(first_unmap_block <= last_block);
1599 	done = 0;
1600 	if (last_block == first_unmap_block) {
1601 		done = 1;
1602 	} else {
1603 		unmap_len = last_block - first_unmap_block + 1;
1604 	}
1605 	while (!done) {
1606 		/*
1607 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1608 		 * will tell us whether it freed the entire range or
1609 		 * not.  If this is a synchronous mount (wsync),
1610 		 * then we can tell bunmapi to keep all the
1611 		 * transactions asynchronous since the unlink
1612 		 * transaction that made this inode inactive has
1613 		 * already hit the disk.  There's no danger of
1614 		 * the freed blocks being reused, there being a
1615 		 * crash, and the reused blocks suddenly reappearing
1616 		 * in this file with garbage in them once recovery
1617 		 * runs.
1618 		 */
1619 		xfs_bmap_init(&free_list, &first_block);
1620 		error = xfs_bunmapi(ntp, ip,
1621 				    first_unmap_block, unmap_len,
1622 				    xfs_bmapi_aflag(fork) |
1623 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1624 				    XFS_ITRUNC_MAX_EXTENTS,
1625 				    &first_block, &free_list,
1626 				    NULL, &done);
1627 		if (error) {
1628 			/*
1629 			 * If the bunmapi call encounters an error,
1630 			 * return to the caller where the transaction
1631 			 * can be properly aborted.  We just need to
1632 			 * make sure we're not holding any resources
1633 			 * that we were not when we came in.
1634 			 */
1635 			xfs_bmap_cancel(&free_list);
1636 			return error;
1637 		}
1638 
1639 		/*
1640 		 * Duplicate the transaction that has the permanent
1641 		 * reservation and commit the old transaction.
1642 		 */
1643 		error = xfs_bmap_finish(tp, &free_list, &committed);
1644 		ntp = *tp;
1645 		if (committed) {
1646 			/* link the inode into the next xact in the chain */
1647 			xfs_trans_ijoin(ntp, ip,
1648 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1649 			xfs_trans_ihold(ntp, ip);
1650 		}
1651 
1652 		if (error) {
1653 			/*
1654 			 * If the bmap finish call encounters an error, return
1655 			 * to the caller where the transaction can be properly
1656 			 * aborted.  We just need to make sure we're not
1657 			 * holding any resources that we were not when we came
1658 			 * in.
1659 			 *
1660 			 * Aborting from this point might lose some blocks in
1661 			 * the file system, but oh well.
1662 			 */
1663 			xfs_bmap_cancel(&free_list);
1664 			return error;
1665 		}
1666 
1667 		if (committed) {
1668 			/*
1669 			 * Mark the inode dirty so it will be logged and
1670 			 * moved forward in the log as part of every commit.
1671 			 */
1672 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1673 		}
1674 
1675 		ntp = xfs_trans_dup(ntp);
1676 		error = xfs_trans_commit(*tp, 0);
1677 		*tp = ntp;
1678 
1679 		/* link the inode into the next transaction in the chain */
1680 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1681 		xfs_trans_ihold(ntp, ip);
1682 
1683 		if (error)
1684 			return error;
1685 		/*
1686 		 * transaction commit worked ok so we can drop the extra ticket
1687 		 * reference that we gained in xfs_trans_dup()
1688 		 */
1689 		xfs_log_ticket_put(ntp->t_ticket);
1690 		error = xfs_trans_reserve(ntp, 0,
1691 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1692 					XFS_TRANS_PERM_LOG_RES,
1693 					XFS_ITRUNCATE_LOG_COUNT);
1694 		if (error)
1695 			return error;
1696 	}
1697 	/*
1698 	 * Only update the size in the case of the data fork, but
1699 	 * always re-log the inode so that our permanent transaction
1700 	 * can keep on rolling it forward in the log.
1701 	 */
1702 	if (fork == XFS_DATA_FORK) {
1703 		xfs_isize_check(mp, ip, new_size);
1704 		/*
1705 		 * If we are not changing the file size then do
1706 		 * not update the on-disk file size - we may be
1707 		 * called from xfs_inactive_free_eofblocks().  If we
1708 		 * update the on-disk file size and then the system
1709 		 * crashes before the contents of the file are
1710 		 * flushed to disk then the files may be full of
1711 		 * holes (ie NULL files bug).
1712 		 */
1713 		if (ip->i_size != new_size) {
1714 			ip->i_d.di_size = new_size;
1715 			ip->i_size = new_size;
1716 		}
1717 	}
1718 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1719 	ASSERT((new_size != 0) ||
1720 	       (fork == XFS_ATTR_FORK) ||
1721 	       (ip->i_delayed_blks == 0));
1722 	ASSERT((new_size != 0) ||
1723 	       (fork == XFS_ATTR_FORK) ||
1724 	       (ip->i_d.di_nextents == 0));
1725 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1726 	return 0;
1727 }
1728 
1729 /*
1730  * This is called when the inode's link count goes to 0.
1731  * We place the on-disk inode on a list in the AGI.  It
1732  * will be pulled from this list when the inode is freed.
1733  */
1734 int
1735 xfs_iunlink(
1736 	xfs_trans_t	*tp,
1737 	xfs_inode_t	*ip)
1738 {
1739 	xfs_mount_t	*mp;
1740 	xfs_agi_t	*agi;
1741 	xfs_dinode_t	*dip;
1742 	xfs_buf_t	*agibp;
1743 	xfs_buf_t	*ibp;
1744 	xfs_agino_t	agino;
1745 	short		bucket_index;
1746 	int		offset;
1747 	int		error;
1748 
1749 	ASSERT(ip->i_d.di_nlink == 0);
1750 	ASSERT(ip->i_d.di_mode != 0);
1751 	ASSERT(ip->i_transp == tp);
1752 
1753 	mp = tp->t_mountp;
1754 
1755 	/*
1756 	 * Get the agi buffer first.  It ensures lock ordering
1757 	 * on the list.
1758 	 */
1759 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1760 	if (error)
1761 		return error;
1762 	agi = XFS_BUF_TO_AGI(agibp);
1763 
1764 	/*
1765 	 * Get the index into the agi hash table for the
1766 	 * list this inode will go on.
1767 	 */
1768 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1769 	ASSERT(agino != 0);
1770 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1771 	ASSERT(agi->agi_unlinked[bucket_index]);
1772 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1773 
1774 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1775 		/*
1776 		 * There is already another inode in the bucket we need
1777 		 * to add ourselves to.  Add us at the front of the list.
1778 		 * Here we put the head pointer into our next pointer,
1779 		 * and then we fall through to point the head at us.
1780 		 */
1781 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1782 		if (error)
1783 			return error;
1784 
1785 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1786 		/* both on-disk, don't endian flip twice */
1787 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1788 		offset = ip->i_imap.im_boffset +
1789 			offsetof(xfs_dinode_t, di_next_unlinked);
1790 		xfs_trans_inode_buf(tp, ibp);
1791 		xfs_trans_log_buf(tp, ibp, offset,
1792 				  (offset + sizeof(xfs_agino_t) - 1));
1793 		xfs_inobp_check(mp, ibp);
1794 	}
1795 
1796 	/*
1797 	 * Point the bucket head pointer at the inode being inserted.
1798 	 */
1799 	ASSERT(agino != 0);
1800 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1801 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1802 		(sizeof(xfs_agino_t) * bucket_index);
1803 	xfs_trans_log_buf(tp, agibp, offset,
1804 			  (offset + sizeof(xfs_agino_t) - 1));
1805 	return 0;
1806 }
1807 
1808 /*
1809  * Pull the on-disk inode from the AGI unlinked list.
1810  */
1811 STATIC int
1812 xfs_iunlink_remove(
1813 	xfs_trans_t	*tp,
1814 	xfs_inode_t	*ip)
1815 {
1816 	xfs_ino_t	next_ino;
1817 	xfs_mount_t	*mp;
1818 	xfs_agi_t	*agi;
1819 	xfs_dinode_t	*dip;
1820 	xfs_buf_t	*agibp;
1821 	xfs_buf_t	*ibp;
1822 	xfs_agnumber_t	agno;
1823 	xfs_agino_t	agino;
1824 	xfs_agino_t	next_agino;
1825 	xfs_buf_t	*last_ibp;
1826 	xfs_dinode_t	*last_dip = NULL;
1827 	short		bucket_index;
1828 	int		offset, last_offset = 0;
1829 	int		error;
1830 
1831 	mp = tp->t_mountp;
1832 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1833 
1834 	/*
1835 	 * Get the agi buffer first.  It ensures lock ordering
1836 	 * on the list.
1837 	 */
1838 	error = xfs_read_agi(mp, tp, agno, &agibp);
1839 	if (error)
1840 		return error;
1841 
1842 	agi = XFS_BUF_TO_AGI(agibp);
1843 
1844 	/*
1845 	 * Get the index into the agi hash table for the
1846 	 * list this inode will go on.
1847 	 */
1848 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1849 	ASSERT(agino != 0);
1850 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1851 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1852 	ASSERT(agi->agi_unlinked[bucket_index]);
1853 
1854 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1855 		/*
1856 		 * We're at the head of the list.  Get the inode's
1857 		 * on-disk buffer to see if there is anyone after us
1858 		 * on the list.  Only modify our next pointer if it
1859 		 * is not already NULLAGINO.  This saves us the overhead
1860 		 * of dealing with the buffer when there is no need to
1861 		 * change it.
1862 		 */
1863 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1864 		if (error) {
1865 			cmn_err(CE_WARN,
1866 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1867 				error, mp->m_fsname);
1868 			return error;
1869 		}
1870 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1871 		ASSERT(next_agino != 0);
1872 		if (next_agino != NULLAGINO) {
1873 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1874 			offset = ip->i_imap.im_boffset +
1875 				offsetof(xfs_dinode_t, di_next_unlinked);
1876 			xfs_trans_inode_buf(tp, ibp);
1877 			xfs_trans_log_buf(tp, ibp, offset,
1878 					  (offset + sizeof(xfs_agino_t) - 1));
1879 			xfs_inobp_check(mp, ibp);
1880 		} else {
1881 			xfs_trans_brelse(tp, ibp);
1882 		}
1883 		/*
1884 		 * Point the bucket head pointer at the next inode.
1885 		 */
1886 		ASSERT(next_agino != 0);
1887 		ASSERT(next_agino != agino);
1888 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1889 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1890 			(sizeof(xfs_agino_t) * bucket_index);
1891 		xfs_trans_log_buf(tp, agibp, offset,
1892 				  (offset + sizeof(xfs_agino_t) - 1));
1893 	} else {
1894 		/*
1895 		 * We need to search the list for the inode being freed.
1896 		 */
1897 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1898 		last_ibp = NULL;
1899 		while (next_agino != agino) {
1900 			/*
1901 			 * If the last inode wasn't the one pointing to
1902 			 * us, then release its buffer since we're not
1903 			 * going to do anything with it.
1904 			 */
1905 			if (last_ibp != NULL) {
1906 				xfs_trans_brelse(tp, last_ibp);
1907 			}
1908 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1909 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1910 					    &last_ibp, &last_offset, 0);
1911 			if (error) {
1912 				cmn_err(CE_WARN,
1913 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1914 					error, mp->m_fsname);
1915 				return error;
1916 			}
1917 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1918 			ASSERT(next_agino != NULLAGINO);
1919 			ASSERT(next_agino != 0);
1920 		}
1921 		/*
1922 		 * Now last_ibp points to the buffer previous to us on
1923 		 * the unlinked list.  Pull us from the list.
1924 		 */
1925 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1926 		if (error) {
1927 			cmn_err(CE_WARN,
1928 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1929 				error, mp->m_fsname);
1930 			return error;
1931 		}
1932 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1933 		ASSERT(next_agino != 0);
1934 		ASSERT(next_agino != agino);
1935 		if (next_agino != NULLAGINO) {
1936 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1937 			offset = ip->i_imap.im_boffset +
1938 				offsetof(xfs_dinode_t, di_next_unlinked);
1939 			xfs_trans_inode_buf(tp, ibp);
1940 			xfs_trans_log_buf(tp, ibp, offset,
1941 					  (offset + sizeof(xfs_agino_t) - 1));
1942 			xfs_inobp_check(mp, ibp);
1943 		} else {
1944 			xfs_trans_brelse(tp, ibp);
1945 		}
1946 		/*
1947 		 * Point the previous inode on the list to the next inode.
1948 		 */
1949 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1950 		ASSERT(next_agino != 0);
1951 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1952 		xfs_trans_inode_buf(tp, last_ibp);
1953 		xfs_trans_log_buf(tp, last_ibp, offset,
1954 				  (offset + sizeof(xfs_agino_t) - 1));
1955 		xfs_inobp_check(mp, last_ibp);
1956 	}
1957 	return 0;
1958 }
1959 
1960 STATIC void
1961 xfs_ifree_cluster(
1962 	xfs_inode_t	*free_ip,
1963 	xfs_trans_t	*tp,
1964 	xfs_ino_t	inum)
1965 {
1966 	xfs_mount_t		*mp = free_ip->i_mount;
1967 	int			blks_per_cluster;
1968 	int			nbufs;
1969 	int			ninodes;
1970 	int			i, j, found, pre_flushed;
1971 	xfs_daddr_t		blkno;
1972 	xfs_buf_t		*bp;
1973 	xfs_inode_t		*ip, **ip_found;
1974 	xfs_inode_log_item_t	*iip;
1975 	xfs_log_item_t		*lip;
1976 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
1977 
1978 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1979 		blks_per_cluster = 1;
1980 		ninodes = mp->m_sb.sb_inopblock;
1981 		nbufs = XFS_IALLOC_BLOCKS(mp);
1982 	} else {
1983 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1984 					mp->m_sb.sb_blocksize;
1985 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1986 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1987 	}
1988 
1989 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1990 
1991 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1992 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1993 					 XFS_INO_TO_AGBNO(mp, inum));
1994 
1995 
1996 		/*
1997 		 * Look for each inode in memory and attempt to lock it,
1998 		 * we can be racing with flush and tail pushing here.
1999 		 * any inode we get the locks on, add to an array of
2000 		 * inode items to process later.
2001 		 *
2002 		 * The get the buffer lock, we could beat a flush
2003 		 * or tail pushing thread to the lock here, in which
2004 		 * case they will go looking for the inode buffer
2005 		 * and fail, we need some other form of interlock
2006 		 * here.
2007 		 */
2008 		found = 0;
2009 		for (i = 0; i < ninodes; i++) {
2010 			read_lock(&pag->pag_ici_lock);
2011 			ip = radix_tree_lookup(&pag->pag_ici_root,
2012 					XFS_INO_TO_AGINO(mp, (inum + i)));
2013 
2014 			/* Inode not in memory or we found it already,
2015 			 * nothing to do
2016 			 */
2017 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2018 				read_unlock(&pag->pag_ici_lock);
2019 				continue;
2020 			}
2021 
2022 			if (xfs_inode_clean(ip)) {
2023 				read_unlock(&pag->pag_ici_lock);
2024 				continue;
2025 			}
2026 
2027 			/* If we can get the locks then add it to the
2028 			 * list, otherwise by the time we get the bp lock
2029 			 * below it will already be attached to the
2030 			 * inode buffer.
2031 			 */
2032 
2033 			/* This inode will already be locked - by us, lets
2034 			 * keep it that way.
2035 			 */
2036 
2037 			if (ip == free_ip) {
2038 				if (xfs_iflock_nowait(ip)) {
2039 					xfs_iflags_set(ip, XFS_ISTALE);
2040 					if (xfs_inode_clean(ip)) {
2041 						xfs_ifunlock(ip);
2042 					} else {
2043 						ip_found[found++] = ip;
2044 					}
2045 				}
2046 				read_unlock(&pag->pag_ici_lock);
2047 				continue;
2048 			}
2049 
2050 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2051 				if (xfs_iflock_nowait(ip)) {
2052 					xfs_iflags_set(ip, XFS_ISTALE);
2053 
2054 					if (xfs_inode_clean(ip)) {
2055 						xfs_ifunlock(ip);
2056 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2057 					} else {
2058 						ip_found[found++] = ip;
2059 					}
2060 				} else {
2061 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2062 				}
2063 			}
2064 			read_unlock(&pag->pag_ici_lock);
2065 		}
2066 
2067 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2068 					mp->m_bsize * blks_per_cluster,
2069 					XFS_BUF_LOCK);
2070 
2071 		pre_flushed = 0;
2072 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2073 		while (lip) {
2074 			if (lip->li_type == XFS_LI_INODE) {
2075 				iip = (xfs_inode_log_item_t *)lip;
2076 				ASSERT(iip->ili_logged == 1);
2077 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2078 				xfs_trans_ail_copy_lsn(mp->m_ail,
2079 							&iip->ili_flush_lsn,
2080 							&iip->ili_item.li_lsn);
2081 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2082 				pre_flushed++;
2083 			}
2084 			lip = lip->li_bio_list;
2085 		}
2086 
2087 		for (i = 0; i < found; i++) {
2088 			ip = ip_found[i];
2089 			iip = ip->i_itemp;
2090 
2091 			if (!iip) {
2092 				ip->i_update_core = 0;
2093 				xfs_ifunlock(ip);
2094 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2095 				continue;
2096 			}
2097 
2098 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2099 			iip->ili_format.ilf_fields = 0;
2100 			iip->ili_logged = 1;
2101 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2102 						&iip->ili_item.li_lsn);
2103 
2104 			xfs_buf_attach_iodone(bp,
2105 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2106 				xfs_istale_done, (xfs_log_item_t *)iip);
2107 			if (ip != free_ip) {
2108 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2109 			}
2110 		}
2111 
2112 		if (found || pre_flushed)
2113 			xfs_trans_stale_inode_buf(tp, bp);
2114 		xfs_trans_binval(tp, bp);
2115 	}
2116 
2117 	kmem_free(ip_found);
2118 	xfs_put_perag(mp, pag);
2119 }
2120 
2121 /*
2122  * This is called to return an inode to the inode free list.
2123  * The inode should already be truncated to 0 length and have
2124  * no pages associated with it.  This routine also assumes that
2125  * the inode is already a part of the transaction.
2126  *
2127  * The on-disk copy of the inode will have been added to the list
2128  * of unlinked inodes in the AGI. We need to remove the inode from
2129  * that list atomically with respect to freeing it here.
2130  */
2131 int
2132 xfs_ifree(
2133 	xfs_trans_t	*tp,
2134 	xfs_inode_t	*ip,
2135 	xfs_bmap_free_t	*flist)
2136 {
2137 	int			error;
2138 	int			delete;
2139 	xfs_ino_t		first_ino;
2140 	xfs_dinode_t    	*dip;
2141 	xfs_buf_t       	*ibp;
2142 
2143 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2144 	ASSERT(ip->i_transp == tp);
2145 	ASSERT(ip->i_d.di_nlink == 0);
2146 	ASSERT(ip->i_d.di_nextents == 0);
2147 	ASSERT(ip->i_d.di_anextents == 0);
2148 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2149 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2150 	ASSERT(ip->i_d.di_nblocks == 0);
2151 
2152 	/*
2153 	 * Pull the on-disk inode from the AGI unlinked list.
2154 	 */
2155 	error = xfs_iunlink_remove(tp, ip);
2156 	if (error != 0) {
2157 		return error;
2158 	}
2159 
2160 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2161 	if (error != 0) {
2162 		return error;
2163 	}
2164 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2165 	ip->i_d.di_flags = 0;
2166 	ip->i_d.di_dmevmask = 0;
2167 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2168 	ip->i_df.if_ext_max =
2169 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2170 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2171 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2172 	/*
2173 	 * Bump the generation count so no one will be confused
2174 	 * by reincarnations of this inode.
2175 	 */
2176 	ip->i_d.di_gen++;
2177 
2178 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2179 
2180 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2181 	if (error)
2182 		return error;
2183 
2184         /*
2185 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2186 	* from picking up this inode when it is reclaimed (its incore state
2187 	* initialzed but not flushed to disk yet). The in-core di_mode is
2188 	* already cleared  and a corresponding transaction logged.
2189 	* The hack here just synchronizes the in-core to on-disk
2190 	* di_mode value in advance before the actual inode sync to disk.
2191 	* This is OK because the inode is already unlinked and would never
2192 	* change its di_mode again for this inode generation.
2193 	* This is a temporary hack that would require a proper fix
2194 	* in the future.
2195 	*/
2196 	dip->di_mode = 0;
2197 
2198 	if (delete) {
2199 		xfs_ifree_cluster(ip, tp, first_ino);
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Reallocate the space for if_broot based on the number of records
2207  * being added or deleted as indicated in rec_diff.  Move the records
2208  * and pointers in if_broot to fit the new size.  When shrinking this
2209  * will eliminate holes between the records and pointers created by
2210  * the caller.  When growing this will create holes to be filled in
2211  * by the caller.
2212  *
2213  * The caller must not request to add more records than would fit in
2214  * the on-disk inode root.  If the if_broot is currently NULL, then
2215  * if we adding records one will be allocated.  The caller must also
2216  * not request that the number of records go below zero, although
2217  * it can go to zero.
2218  *
2219  * ip -- the inode whose if_broot area is changing
2220  * ext_diff -- the change in the number of records, positive or negative,
2221  *	 requested for the if_broot array.
2222  */
2223 void
2224 xfs_iroot_realloc(
2225 	xfs_inode_t		*ip,
2226 	int			rec_diff,
2227 	int			whichfork)
2228 {
2229 	struct xfs_mount	*mp = ip->i_mount;
2230 	int			cur_max;
2231 	xfs_ifork_t		*ifp;
2232 	struct xfs_btree_block	*new_broot;
2233 	int			new_max;
2234 	size_t			new_size;
2235 	char			*np;
2236 	char			*op;
2237 
2238 	/*
2239 	 * Handle the degenerate case quietly.
2240 	 */
2241 	if (rec_diff == 0) {
2242 		return;
2243 	}
2244 
2245 	ifp = XFS_IFORK_PTR(ip, whichfork);
2246 	if (rec_diff > 0) {
2247 		/*
2248 		 * If there wasn't any memory allocated before, just
2249 		 * allocate it now and get out.
2250 		 */
2251 		if (ifp->if_broot_bytes == 0) {
2252 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2253 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2254 			ifp->if_broot_bytes = (int)new_size;
2255 			return;
2256 		}
2257 
2258 		/*
2259 		 * If there is already an existing if_broot, then we need
2260 		 * to realloc() it and shift the pointers to their new
2261 		 * location.  The records don't change location because
2262 		 * they are kept butted up against the btree block header.
2263 		 */
2264 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2265 		new_max = cur_max + rec_diff;
2266 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2267 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2268 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2269 				KM_SLEEP);
2270 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2271 						     ifp->if_broot_bytes);
2272 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2273 						     (int)new_size);
2274 		ifp->if_broot_bytes = (int)new_size;
2275 		ASSERT(ifp->if_broot_bytes <=
2276 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2277 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2278 		return;
2279 	}
2280 
2281 	/*
2282 	 * rec_diff is less than 0.  In this case, we are shrinking the
2283 	 * if_broot buffer.  It must already exist.  If we go to zero
2284 	 * records, just get rid of the root and clear the status bit.
2285 	 */
2286 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2287 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2288 	new_max = cur_max + rec_diff;
2289 	ASSERT(new_max >= 0);
2290 	if (new_max > 0)
2291 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2292 	else
2293 		new_size = 0;
2294 	if (new_size > 0) {
2295 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2296 		/*
2297 		 * First copy over the btree block header.
2298 		 */
2299 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2300 	} else {
2301 		new_broot = NULL;
2302 		ifp->if_flags &= ~XFS_IFBROOT;
2303 	}
2304 
2305 	/*
2306 	 * Only copy the records and pointers if there are any.
2307 	 */
2308 	if (new_max > 0) {
2309 		/*
2310 		 * First copy the records.
2311 		 */
2312 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2313 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2314 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2315 
2316 		/*
2317 		 * Then copy the pointers.
2318 		 */
2319 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2320 						     ifp->if_broot_bytes);
2321 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2322 						     (int)new_size);
2323 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2324 	}
2325 	kmem_free(ifp->if_broot);
2326 	ifp->if_broot = new_broot;
2327 	ifp->if_broot_bytes = (int)new_size;
2328 	ASSERT(ifp->if_broot_bytes <=
2329 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2330 	return;
2331 }
2332 
2333 
2334 /*
2335  * This is called when the amount of space needed for if_data
2336  * is increased or decreased.  The change in size is indicated by
2337  * the number of bytes that need to be added or deleted in the
2338  * byte_diff parameter.
2339  *
2340  * If the amount of space needed has decreased below the size of the
2341  * inline buffer, then switch to using the inline buffer.  Otherwise,
2342  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2343  * to what is needed.
2344  *
2345  * ip -- the inode whose if_data area is changing
2346  * byte_diff -- the change in the number of bytes, positive or negative,
2347  *	 requested for the if_data array.
2348  */
2349 void
2350 xfs_idata_realloc(
2351 	xfs_inode_t	*ip,
2352 	int		byte_diff,
2353 	int		whichfork)
2354 {
2355 	xfs_ifork_t	*ifp;
2356 	int		new_size;
2357 	int		real_size;
2358 
2359 	if (byte_diff == 0) {
2360 		return;
2361 	}
2362 
2363 	ifp = XFS_IFORK_PTR(ip, whichfork);
2364 	new_size = (int)ifp->if_bytes + byte_diff;
2365 	ASSERT(new_size >= 0);
2366 
2367 	if (new_size == 0) {
2368 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2369 			kmem_free(ifp->if_u1.if_data);
2370 		}
2371 		ifp->if_u1.if_data = NULL;
2372 		real_size = 0;
2373 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2374 		/*
2375 		 * If the valid extents/data can fit in if_inline_ext/data,
2376 		 * copy them from the malloc'd vector and free it.
2377 		 */
2378 		if (ifp->if_u1.if_data == NULL) {
2379 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2380 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2381 			ASSERT(ifp->if_real_bytes != 0);
2382 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2383 			      new_size);
2384 			kmem_free(ifp->if_u1.if_data);
2385 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2386 		}
2387 		real_size = 0;
2388 	} else {
2389 		/*
2390 		 * Stuck with malloc/realloc.
2391 		 * For inline data, the underlying buffer must be
2392 		 * a multiple of 4 bytes in size so that it can be
2393 		 * logged and stay on word boundaries.  We enforce
2394 		 * that here.
2395 		 */
2396 		real_size = roundup(new_size, 4);
2397 		if (ifp->if_u1.if_data == NULL) {
2398 			ASSERT(ifp->if_real_bytes == 0);
2399 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2400 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2401 			/*
2402 			 * Only do the realloc if the underlying size
2403 			 * is really changing.
2404 			 */
2405 			if (ifp->if_real_bytes != real_size) {
2406 				ifp->if_u1.if_data =
2407 					kmem_realloc(ifp->if_u1.if_data,
2408 							real_size,
2409 							ifp->if_real_bytes,
2410 							KM_SLEEP);
2411 			}
2412 		} else {
2413 			ASSERT(ifp->if_real_bytes == 0);
2414 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2415 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2416 				ifp->if_bytes);
2417 		}
2418 	}
2419 	ifp->if_real_bytes = real_size;
2420 	ifp->if_bytes = new_size;
2421 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2422 }
2423 
2424 void
2425 xfs_idestroy_fork(
2426 	xfs_inode_t	*ip,
2427 	int		whichfork)
2428 {
2429 	xfs_ifork_t	*ifp;
2430 
2431 	ifp = XFS_IFORK_PTR(ip, whichfork);
2432 	if (ifp->if_broot != NULL) {
2433 		kmem_free(ifp->if_broot);
2434 		ifp->if_broot = NULL;
2435 	}
2436 
2437 	/*
2438 	 * If the format is local, then we can't have an extents
2439 	 * array so just look for an inline data array.  If we're
2440 	 * not local then we may or may not have an extents list,
2441 	 * so check and free it up if we do.
2442 	 */
2443 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2444 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2445 		    (ifp->if_u1.if_data != NULL)) {
2446 			ASSERT(ifp->if_real_bytes != 0);
2447 			kmem_free(ifp->if_u1.if_data);
2448 			ifp->if_u1.if_data = NULL;
2449 			ifp->if_real_bytes = 0;
2450 		}
2451 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2452 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2453 		    ((ifp->if_u1.if_extents != NULL) &&
2454 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2455 		ASSERT(ifp->if_real_bytes != 0);
2456 		xfs_iext_destroy(ifp);
2457 	}
2458 	ASSERT(ifp->if_u1.if_extents == NULL ||
2459 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2460 	ASSERT(ifp->if_real_bytes == 0);
2461 	if (whichfork == XFS_ATTR_FORK) {
2462 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2463 		ip->i_afp = NULL;
2464 	}
2465 }
2466 
2467 /*
2468  * Increment the pin count of the given buffer.
2469  * This value is protected by ipinlock spinlock in the mount structure.
2470  */
2471 void
2472 xfs_ipin(
2473 	xfs_inode_t	*ip)
2474 {
2475 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2476 
2477 	atomic_inc(&ip->i_pincount);
2478 }
2479 
2480 /*
2481  * Decrement the pin count of the given inode, and wake up
2482  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2483  * inode must have been previously pinned with a call to xfs_ipin().
2484  */
2485 void
2486 xfs_iunpin(
2487 	xfs_inode_t	*ip)
2488 {
2489 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2490 
2491 	if (atomic_dec_and_test(&ip->i_pincount))
2492 		wake_up(&ip->i_ipin_wait);
2493 }
2494 
2495 /*
2496  * This is called to unpin an inode. It can be directed to wait or to return
2497  * immediately without waiting for the inode to be unpinned.  The caller must
2498  * have the inode locked in at least shared mode so that the buffer cannot be
2499  * subsequently pinned once someone is waiting for it to be unpinned.
2500  */
2501 STATIC void
2502 __xfs_iunpin_wait(
2503 	xfs_inode_t	*ip,
2504 	int		wait)
2505 {
2506 	xfs_inode_log_item_t	*iip = ip->i_itemp;
2507 
2508 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2509 	if (atomic_read(&ip->i_pincount) == 0)
2510 		return;
2511 
2512 	/* Give the log a push to start the unpinning I/O */
2513 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2514 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2515 	if (wait)
2516 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2517 }
2518 
2519 static inline void
2520 xfs_iunpin_wait(
2521 	xfs_inode_t	*ip)
2522 {
2523 	__xfs_iunpin_wait(ip, 1);
2524 }
2525 
2526 static inline void
2527 xfs_iunpin_nowait(
2528 	xfs_inode_t	*ip)
2529 {
2530 	__xfs_iunpin_wait(ip, 0);
2531 }
2532 
2533 
2534 /*
2535  * xfs_iextents_copy()
2536  *
2537  * This is called to copy the REAL extents (as opposed to the delayed
2538  * allocation extents) from the inode into the given buffer.  It
2539  * returns the number of bytes copied into the buffer.
2540  *
2541  * If there are no delayed allocation extents, then we can just
2542  * memcpy() the extents into the buffer.  Otherwise, we need to
2543  * examine each extent in turn and skip those which are delayed.
2544  */
2545 int
2546 xfs_iextents_copy(
2547 	xfs_inode_t		*ip,
2548 	xfs_bmbt_rec_t		*dp,
2549 	int			whichfork)
2550 {
2551 	int			copied;
2552 	int			i;
2553 	xfs_ifork_t		*ifp;
2554 	int			nrecs;
2555 	xfs_fsblock_t		start_block;
2556 
2557 	ifp = XFS_IFORK_PTR(ip, whichfork);
2558 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2559 	ASSERT(ifp->if_bytes > 0);
2560 
2561 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2562 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2563 	ASSERT(nrecs > 0);
2564 
2565 	/*
2566 	 * There are some delayed allocation extents in the
2567 	 * inode, so copy the extents one at a time and skip
2568 	 * the delayed ones.  There must be at least one
2569 	 * non-delayed extent.
2570 	 */
2571 	copied = 0;
2572 	for (i = 0; i < nrecs; i++) {
2573 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2574 		start_block = xfs_bmbt_get_startblock(ep);
2575 		if (isnullstartblock(start_block)) {
2576 			/*
2577 			 * It's a delayed allocation extent, so skip it.
2578 			 */
2579 			continue;
2580 		}
2581 
2582 		/* Translate to on disk format */
2583 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2584 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2585 		dp++;
2586 		copied++;
2587 	}
2588 	ASSERT(copied != 0);
2589 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2590 
2591 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2592 }
2593 
2594 /*
2595  * Each of the following cases stores data into the same region
2596  * of the on-disk inode, so only one of them can be valid at
2597  * any given time. While it is possible to have conflicting formats
2598  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2599  * in EXTENTS format, this can only happen when the fork has
2600  * changed formats after being modified but before being flushed.
2601  * In these cases, the format always takes precedence, because the
2602  * format indicates the current state of the fork.
2603  */
2604 /*ARGSUSED*/
2605 STATIC void
2606 xfs_iflush_fork(
2607 	xfs_inode_t		*ip,
2608 	xfs_dinode_t		*dip,
2609 	xfs_inode_log_item_t	*iip,
2610 	int			whichfork,
2611 	xfs_buf_t		*bp)
2612 {
2613 	char			*cp;
2614 	xfs_ifork_t		*ifp;
2615 	xfs_mount_t		*mp;
2616 #ifdef XFS_TRANS_DEBUG
2617 	int			first;
2618 #endif
2619 	static const short	brootflag[2] =
2620 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2621 	static const short	dataflag[2] =
2622 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2623 	static const short	extflag[2] =
2624 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2625 
2626 	if (!iip)
2627 		return;
2628 	ifp = XFS_IFORK_PTR(ip, whichfork);
2629 	/*
2630 	 * This can happen if we gave up in iformat in an error path,
2631 	 * for the attribute fork.
2632 	 */
2633 	if (!ifp) {
2634 		ASSERT(whichfork == XFS_ATTR_FORK);
2635 		return;
2636 	}
2637 	cp = XFS_DFORK_PTR(dip, whichfork);
2638 	mp = ip->i_mount;
2639 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2640 	case XFS_DINODE_FMT_LOCAL:
2641 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2642 		    (ifp->if_bytes > 0)) {
2643 			ASSERT(ifp->if_u1.if_data != NULL);
2644 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2645 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2646 		}
2647 		break;
2648 
2649 	case XFS_DINODE_FMT_EXTENTS:
2650 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2651 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2652 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2653 			(ifp->if_bytes == 0));
2654 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2655 			(ifp->if_bytes > 0));
2656 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2657 		    (ifp->if_bytes > 0)) {
2658 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2659 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2660 				whichfork);
2661 		}
2662 		break;
2663 
2664 	case XFS_DINODE_FMT_BTREE:
2665 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2666 		    (ifp->if_broot_bytes > 0)) {
2667 			ASSERT(ifp->if_broot != NULL);
2668 			ASSERT(ifp->if_broot_bytes <=
2669 			       (XFS_IFORK_SIZE(ip, whichfork) +
2670 				XFS_BROOT_SIZE_ADJ));
2671 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2672 				(xfs_bmdr_block_t *)cp,
2673 				XFS_DFORK_SIZE(dip, mp, whichfork));
2674 		}
2675 		break;
2676 
2677 	case XFS_DINODE_FMT_DEV:
2678 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2679 			ASSERT(whichfork == XFS_DATA_FORK);
2680 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2681 		}
2682 		break;
2683 
2684 	case XFS_DINODE_FMT_UUID:
2685 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2686 			ASSERT(whichfork == XFS_DATA_FORK);
2687 			memcpy(XFS_DFORK_DPTR(dip),
2688 			       &ip->i_df.if_u2.if_uuid,
2689 			       sizeof(uuid_t));
2690 		}
2691 		break;
2692 
2693 	default:
2694 		ASSERT(0);
2695 		break;
2696 	}
2697 }
2698 
2699 STATIC int
2700 xfs_iflush_cluster(
2701 	xfs_inode_t	*ip,
2702 	xfs_buf_t	*bp)
2703 {
2704 	xfs_mount_t		*mp = ip->i_mount;
2705 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
2706 	unsigned long		first_index, mask;
2707 	unsigned long		inodes_per_cluster;
2708 	int			ilist_size;
2709 	xfs_inode_t		**ilist;
2710 	xfs_inode_t		*iq;
2711 	int			nr_found;
2712 	int			clcount = 0;
2713 	int			bufwasdelwri;
2714 	int			i;
2715 
2716 	ASSERT(pag->pagi_inodeok);
2717 	ASSERT(pag->pag_ici_init);
2718 
2719 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2720 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2721 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2722 	if (!ilist)
2723 		return 0;
2724 
2725 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2726 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2727 	read_lock(&pag->pag_ici_lock);
2728 	/* really need a gang lookup range call here */
2729 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2730 					first_index, inodes_per_cluster);
2731 	if (nr_found == 0)
2732 		goto out_free;
2733 
2734 	for (i = 0; i < nr_found; i++) {
2735 		iq = ilist[i];
2736 		if (iq == ip)
2737 			continue;
2738 		/* if the inode lies outside this cluster, we're done. */
2739 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2740 			break;
2741 		/*
2742 		 * Do an un-protected check to see if the inode is dirty and
2743 		 * is a candidate for flushing.  These checks will be repeated
2744 		 * later after the appropriate locks are acquired.
2745 		 */
2746 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2747 			continue;
2748 
2749 		/*
2750 		 * Try to get locks.  If any are unavailable or it is pinned,
2751 		 * then this inode cannot be flushed and is skipped.
2752 		 */
2753 
2754 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2755 			continue;
2756 		if (!xfs_iflock_nowait(iq)) {
2757 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2758 			continue;
2759 		}
2760 		if (xfs_ipincount(iq)) {
2761 			xfs_ifunlock(iq);
2762 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2763 			continue;
2764 		}
2765 
2766 		/*
2767 		 * arriving here means that this inode can be flushed.  First
2768 		 * re-check that it's dirty before flushing.
2769 		 */
2770 		if (!xfs_inode_clean(iq)) {
2771 			int	error;
2772 			error = xfs_iflush_int(iq, bp);
2773 			if (error) {
2774 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2775 				goto cluster_corrupt_out;
2776 			}
2777 			clcount++;
2778 		} else {
2779 			xfs_ifunlock(iq);
2780 		}
2781 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2782 	}
2783 
2784 	if (clcount) {
2785 		XFS_STATS_INC(xs_icluster_flushcnt);
2786 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2787 	}
2788 
2789 out_free:
2790 	read_unlock(&pag->pag_ici_lock);
2791 	kmem_free(ilist);
2792 	return 0;
2793 
2794 
2795 cluster_corrupt_out:
2796 	/*
2797 	 * Corruption detected in the clustering loop.  Invalidate the
2798 	 * inode buffer and shut down the filesystem.
2799 	 */
2800 	read_unlock(&pag->pag_ici_lock);
2801 	/*
2802 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2803 	 * brelse can handle it with no problems.  If not, shut down the
2804 	 * filesystem before releasing the buffer.
2805 	 */
2806 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2807 	if (bufwasdelwri)
2808 		xfs_buf_relse(bp);
2809 
2810 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2811 
2812 	if (!bufwasdelwri) {
2813 		/*
2814 		 * Just like incore_relse: if we have b_iodone functions,
2815 		 * mark the buffer as an error and call them.  Otherwise
2816 		 * mark it as stale and brelse.
2817 		 */
2818 		if (XFS_BUF_IODONE_FUNC(bp)) {
2819 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2820 			XFS_BUF_UNDONE(bp);
2821 			XFS_BUF_STALE(bp);
2822 			XFS_BUF_ERROR(bp,EIO);
2823 			xfs_biodone(bp);
2824 		} else {
2825 			XFS_BUF_STALE(bp);
2826 			xfs_buf_relse(bp);
2827 		}
2828 	}
2829 
2830 	/*
2831 	 * Unlocks the flush lock
2832 	 */
2833 	xfs_iflush_abort(iq);
2834 	kmem_free(ilist);
2835 	return XFS_ERROR(EFSCORRUPTED);
2836 }
2837 
2838 /*
2839  * xfs_iflush() will write a modified inode's changes out to the
2840  * inode's on disk home.  The caller must have the inode lock held
2841  * in at least shared mode and the inode flush completion must be
2842  * active as well.  The inode lock will still be held upon return from
2843  * the call and the caller is free to unlock it.
2844  * The inode flush will be completed when the inode reaches the disk.
2845  * The flags indicate how the inode's buffer should be written out.
2846  */
2847 int
2848 xfs_iflush(
2849 	xfs_inode_t		*ip,
2850 	uint			flags)
2851 {
2852 	xfs_inode_log_item_t	*iip;
2853 	xfs_buf_t		*bp;
2854 	xfs_dinode_t		*dip;
2855 	xfs_mount_t		*mp;
2856 	int			error;
2857 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2858 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2859 
2860 	XFS_STATS_INC(xs_iflush_count);
2861 
2862 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2863 	ASSERT(!completion_done(&ip->i_flush));
2864 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2865 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2866 
2867 	iip = ip->i_itemp;
2868 	mp = ip->i_mount;
2869 
2870 	/*
2871 	 * If the inode isn't dirty, then just release the inode
2872 	 * flush lock and do nothing.
2873 	 */
2874 	if (xfs_inode_clean(ip)) {
2875 		xfs_ifunlock(ip);
2876 		return 0;
2877 	}
2878 
2879 	/*
2880 	 * We can't flush the inode until it is unpinned, so wait for it if we
2881 	 * are allowed to block.  We know noone new can pin it, because we are
2882 	 * holding the inode lock shared and you need to hold it exclusively to
2883 	 * pin the inode.
2884 	 *
2885 	 * If we are not allowed to block, force the log out asynchronously so
2886 	 * that when we come back the inode will be unpinned. If other inodes
2887 	 * in the same cluster are dirty, they will probably write the inode
2888 	 * out for us if they occur after the log force completes.
2889 	 */
2890 	if (noblock && xfs_ipincount(ip)) {
2891 		xfs_iunpin_nowait(ip);
2892 		xfs_ifunlock(ip);
2893 		return EAGAIN;
2894 	}
2895 	xfs_iunpin_wait(ip);
2896 
2897 	/*
2898 	 * This may have been unpinned because the filesystem is shutting
2899 	 * down forcibly. If that's the case we must not write this inode
2900 	 * to disk, because the log record didn't make it to disk!
2901 	 */
2902 	if (XFS_FORCED_SHUTDOWN(mp)) {
2903 		ip->i_update_core = 0;
2904 		if (iip)
2905 			iip->ili_format.ilf_fields = 0;
2906 		xfs_ifunlock(ip);
2907 		return XFS_ERROR(EIO);
2908 	}
2909 
2910 	/*
2911 	 * Decide how buffer will be flushed out.  This is done before
2912 	 * the call to xfs_iflush_int because this field is zeroed by it.
2913 	 */
2914 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2915 		/*
2916 		 * Flush out the inode buffer according to the directions
2917 		 * of the caller.  In the cases where the caller has given
2918 		 * us a choice choose the non-delwri case.  This is because
2919 		 * the inode is in the AIL and we need to get it out soon.
2920 		 */
2921 		switch (flags) {
2922 		case XFS_IFLUSH_SYNC:
2923 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2924 			flags = 0;
2925 			break;
2926 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2927 		case XFS_IFLUSH_ASYNC:
2928 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2929 			flags = INT_ASYNC;
2930 			break;
2931 		case XFS_IFLUSH_DELWRI:
2932 			flags = INT_DELWRI;
2933 			break;
2934 		default:
2935 			ASSERT(0);
2936 			flags = 0;
2937 			break;
2938 		}
2939 	} else {
2940 		switch (flags) {
2941 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2942 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2943 		case XFS_IFLUSH_DELWRI:
2944 			flags = INT_DELWRI;
2945 			break;
2946 		case XFS_IFLUSH_ASYNC_NOBLOCK:
2947 		case XFS_IFLUSH_ASYNC:
2948 			flags = INT_ASYNC;
2949 			break;
2950 		case XFS_IFLUSH_SYNC:
2951 			flags = 0;
2952 			break;
2953 		default:
2954 			ASSERT(0);
2955 			flags = 0;
2956 			break;
2957 		}
2958 	}
2959 
2960 	/*
2961 	 * Get the buffer containing the on-disk inode.
2962 	 */
2963 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2964 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2965 	if (error || !bp) {
2966 		xfs_ifunlock(ip);
2967 		return error;
2968 	}
2969 
2970 	/*
2971 	 * First flush out the inode that xfs_iflush was called with.
2972 	 */
2973 	error = xfs_iflush_int(ip, bp);
2974 	if (error)
2975 		goto corrupt_out;
2976 
2977 	/*
2978 	 * If the buffer is pinned then push on the log now so we won't
2979 	 * get stuck waiting in the write for too long.
2980 	 */
2981 	if (XFS_BUF_ISPINNED(bp))
2982 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2983 
2984 	/*
2985 	 * inode clustering:
2986 	 * see if other inodes can be gathered into this write
2987 	 */
2988 	error = xfs_iflush_cluster(ip, bp);
2989 	if (error)
2990 		goto cluster_corrupt_out;
2991 
2992 	if (flags & INT_DELWRI) {
2993 		xfs_bdwrite(mp, bp);
2994 	} else if (flags & INT_ASYNC) {
2995 		error = xfs_bawrite(mp, bp);
2996 	} else {
2997 		error = xfs_bwrite(mp, bp);
2998 	}
2999 	return error;
3000 
3001 corrupt_out:
3002 	xfs_buf_relse(bp);
3003 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3004 cluster_corrupt_out:
3005 	/*
3006 	 * Unlocks the flush lock
3007 	 */
3008 	xfs_iflush_abort(ip);
3009 	return XFS_ERROR(EFSCORRUPTED);
3010 }
3011 
3012 
3013 STATIC int
3014 xfs_iflush_int(
3015 	xfs_inode_t		*ip,
3016 	xfs_buf_t		*bp)
3017 {
3018 	xfs_inode_log_item_t	*iip;
3019 	xfs_dinode_t		*dip;
3020 	xfs_mount_t		*mp;
3021 #ifdef XFS_TRANS_DEBUG
3022 	int			first;
3023 #endif
3024 
3025 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3026 	ASSERT(!completion_done(&ip->i_flush));
3027 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3028 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3029 
3030 	iip = ip->i_itemp;
3031 	mp = ip->i_mount;
3032 
3033 
3034 	/*
3035 	 * If the inode isn't dirty, then just release the inode
3036 	 * flush lock and do nothing.
3037 	 */
3038 	if (xfs_inode_clean(ip)) {
3039 		xfs_ifunlock(ip);
3040 		return 0;
3041 	}
3042 
3043 	/* set *dip = inode's place in the buffer */
3044 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3045 
3046 	/*
3047 	 * Clear i_update_core before copying out the data.
3048 	 * This is for coordination with our timestamp updates
3049 	 * that don't hold the inode lock. They will always
3050 	 * update the timestamps BEFORE setting i_update_core,
3051 	 * so if we clear i_update_core after they set it we
3052 	 * are guaranteed to see their updates to the timestamps.
3053 	 * I believe that this depends on strongly ordered memory
3054 	 * semantics, but we have that.  We use the SYNCHRONIZE
3055 	 * macro to make sure that the compiler does not reorder
3056 	 * the i_update_core access below the data copy below.
3057 	 */
3058 	ip->i_update_core = 0;
3059 	SYNCHRONIZE();
3060 
3061 	/*
3062 	 * Make sure to get the latest atime from the Linux inode.
3063 	 */
3064 	xfs_synchronize_atime(ip);
3065 
3066 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3067 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3068 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3069 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3070 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3071 		goto corrupt_out;
3072 	}
3073 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3074 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3075 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3076 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3077 			ip->i_ino, ip, ip->i_d.di_magic);
3078 		goto corrupt_out;
3079 	}
3080 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3081 		if (XFS_TEST_ERROR(
3082 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3083 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3084 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3085 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3086 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3087 				ip->i_ino, ip);
3088 			goto corrupt_out;
3089 		}
3090 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3091 		if (XFS_TEST_ERROR(
3092 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3093 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3094 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3095 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3096 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3097 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3098 				ip->i_ino, ip);
3099 			goto corrupt_out;
3100 		}
3101 	}
3102 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3103 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3104 				XFS_RANDOM_IFLUSH_5)) {
3105 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3106 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3107 			ip->i_ino,
3108 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3109 			ip->i_d.di_nblocks,
3110 			ip);
3111 		goto corrupt_out;
3112 	}
3113 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3114 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3115 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3116 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3117 			ip->i_ino, ip->i_d.di_forkoff, ip);
3118 		goto corrupt_out;
3119 	}
3120 	/*
3121 	 * bump the flush iteration count, used to detect flushes which
3122 	 * postdate a log record during recovery.
3123 	 */
3124 
3125 	ip->i_d.di_flushiter++;
3126 
3127 	/*
3128 	 * Copy the dirty parts of the inode into the on-disk
3129 	 * inode.  We always copy out the core of the inode,
3130 	 * because if the inode is dirty at all the core must
3131 	 * be.
3132 	 */
3133 	xfs_dinode_to_disk(dip, &ip->i_d);
3134 
3135 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3136 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3137 		ip->i_d.di_flushiter = 0;
3138 
3139 	/*
3140 	 * If this is really an old format inode and the superblock version
3141 	 * has not been updated to support only new format inodes, then
3142 	 * convert back to the old inode format.  If the superblock version
3143 	 * has been updated, then make the conversion permanent.
3144 	 */
3145 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3146 	if (ip->i_d.di_version == 1) {
3147 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3148 			/*
3149 			 * Convert it back.
3150 			 */
3151 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3152 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3153 		} else {
3154 			/*
3155 			 * The superblock version has already been bumped,
3156 			 * so just make the conversion to the new inode
3157 			 * format permanent.
3158 			 */
3159 			ip->i_d.di_version = 2;
3160 			dip->di_version = 2;
3161 			ip->i_d.di_onlink = 0;
3162 			dip->di_onlink = 0;
3163 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3164 			memset(&(dip->di_pad[0]), 0,
3165 			      sizeof(dip->di_pad));
3166 			ASSERT(ip->i_d.di_projid == 0);
3167 		}
3168 	}
3169 
3170 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3171 	if (XFS_IFORK_Q(ip))
3172 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3173 	xfs_inobp_check(mp, bp);
3174 
3175 	/*
3176 	 * We've recorded everything logged in the inode, so we'd
3177 	 * like to clear the ilf_fields bits so we don't log and
3178 	 * flush things unnecessarily.  However, we can't stop
3179 	 * logging all this information until the data we've copied
3180 	 * into the disk buffer is written to disk.  If we did we might
3181 	 * overwrite the copy of the inode in the log with all the
3182 	 * data after re-logging only part of it, and in the face of
3183 	 * a crash we wouldn't have all the data we need to recover.
3184 	 *
3185 	 * What we do is move the bits to the ili_last_fields field.
3186 	 * When logging the inode, these bits are moved back to the
3187 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3188 	 * clear ili_last_fields, since we know that the information
3189 	 * those bits represent is permanently on disk.  As long as
3190 	 * the flush completes before the inode is logged again, then
3191 	 * both ilf_fields and ili_last_fields will be cleared.
3192 	 *
3193 	 * We can play with the ilf_fields bits here, because the inode
3194 	 * lock must be held exclusively in order to set bits there
3195 	 * and the flush lock protects the ili_last_fields bits.
3196 	 * Set ili_logged so the flush done
3197 	 * routine can tell whether or not to look in the AIL.
3198 	 * Also, store the current LSN of the inode so that we can tell
3199 	 * whether the item has moved in the AIL from xfs_iflush_done().
3200 	 * In order to read the lsn we need the AIL lock, because
3201 	 * it is a 64 bit value that cannot be read atomically.
3202 	 */
3203 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3204 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3205 		iip->ili_format.ilf_fields = 0;
3206 		iip->ili_logged = 1;
3207 
3208 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3209 					&iip->ili_item.li_lsn);
3210 
3211 		/*
3212 		 * Attach the function xfs_iflush_done to the inode's
3213 		 * buffer.  This will remove the inode from the AIL
3214 		 * and unlock the inode's flush lock when the inode is
3215 		 * completely written to disk.
3216 		 */
3217 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3218 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3219 
3220 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3221 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3222 	} else {
3223 		/*
3224 		 * We're flushing an inode which is not in the AIL and has
3225 		 * not been logged but has i_update_core set.  For this
3226 		 * case we can use a B_DELWRI flush and immediately drop
3227 		 * the inode flush lock because we can avoid the whole
3228 		 * AIL state thing.  It's OK to drop the flush lock now,
3229 		 * because we've already locked the buffer and to do anything
3230 		 * you really need both.
3231 		 */
3232 		if (iip != NULL) {
3233 			ASSERT(iip->ili_logged == 0);
3234 			ASSERT(iip->ili_last_fields == 0);
3235 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3236 		}
3237 		xfs_ifunlock(ip);
3238 	}
3239 
3240 	return 0;
3241 
3242 corrupt_out:
3243 	return XFS_ERROR(EFSCORRUPTED);
3244 }
3245 
3246 
3247 
3248 #ifdef XFS_ILOCK_TRACE
3249 void
3250 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3251 {
3252 	ktrace_enter(ip->i_lock_trace,
3253 		     (void *)ip,
3254 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3255 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3256 		     (void *)ra,		/* caller of ilock */
3257 		     (void *)(unsigned long)current_cpu(),
3258 		     (void *)(unsigned long)current_pid(),
3259 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3260 }
3261 #endif
3262 
3263 /*
3264  * Return a pointer to the extent record at file index idx.
3265  */
3266 xfs_bmbt_rec_host_t *
3267 xfs_iext_get_ext(
3268 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3269 	xfs_extnum_t	idx)		/* index of target extent */
3270 {
3271 	ASSERT(idx >= 0);
3272 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3273 		return ifp->if_u1.if_ext_irec->er_extbuf;
3274 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3275 		xfs_ext_irec_t	*erp;		/* irec pointer */
3276 		int		erp_idx = 0;	/* irec index */
3277 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3278 
3279 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3280 		return &erp->er_extbuf[page_idx];
3281 	} else if (ifp->if_bytes) {
3282 		return &ifp->if_u1.if_extents[idx];
3283 	} else {
3284 		return NULL;
3285 	}
3286 }
3287 
3288 /*
3289  * Insert new item(s) into the extent records for incore inode
3290  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3291  */
3292 void
3293 xfs_iext_insert(
3294 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3295 	xfs_extnum_t	idx,		/* starting index of new items */
3296 	xfs_extnum_t	count,		/* number of inserted items */
3297 	xfs_bmbt_irec_t	*new)		/* items to insert */
3298 {
3299 	xfs_extnum_t	i;		/* extent record index */
3300 
3301 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3302 	xfs_iext_add(ifp, idx, count);
3303 	for (i = idx; i < idx + count; i++, new++)
3304 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3305 }
3306 
3307 /*
3308  * This is called when the amount of space required for incore file
3309  * extents needs to be increased. The ext_diff parameter stores the
3310  * number of new extents being added and the idx parameter contains
3311  * the extent index where the new extents will be added. If the new
3312  * extents are being appended, then we just need to (re)allocate and
3313  * initialize the space. Otherwise, if the new extents are being
3314  * inserted into the middle of the existing entries, a bit more work
3315  * is required to make room for the new extents to be inserted. The
3316  * caller is responsible for filling in the new extent entries upon
3317  * return.
3318  */
3319 void
3320 xfs_iext_add(
3321 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3322 	xfs_extnum_t	idx,		/* index to begin adding exts */
3323 	int		ext_diff)	/* number of extents to add */
3324 {
3325 	int		byte_diff;	/* new bytes being added */
3326 	int		new_size;	/* size of extents after adding */
3327 	xfs_extnum_t	nextents;	/* number of extents in file */
3328 
3329 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3330 	ASSERT((idx >= 0) && (idx <= nextents));
3331 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3332 	new_size = ifp->if_bytes + byte_diff;
3333 	/*
3334 	 * If the new number of extents (nextents + ext_diff)
3335 	 * fits inside the inode, then continue to use the inline
3336 	 * extent buffer.
3337 	 */
3338 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3339 		if (idx < nextents) {
3340 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3341 				&ifp->if_u2.if_inline_ext[idx],
3342 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3343 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3344 		}
3345 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3346 		ifp->if_real_bytes = 0;
3347 		ifp->if_lastex = nextents + ext_diff;
3348 	}
3349 	/*
3350 	 * Otherwise use a linear (direct) extent list.
3351 	 * If the extents are currently inside the inode,
3352 	 * xfs_iext_realloc_direct will switch us from
3353 	 * inline to direct extent allocation mode.
3354 	 */
3355 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3356 		xfs_iext_realloc_direct(ifp, new_size);
3357 		if (idx < nextents) {
3358 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3359 				&ifp->if_u1.if_extents[idx],
3360 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3361 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3362 		}
3363 	}
3364 	/* Indirection array */
3365 	else {
3366 		xfs_ext_irec_t	*erp;
3367 		int		erp_idx = 0;
3368 		int		page_idx = idx;
3369 
3370 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3371 		if (ifp->if_flags & XFS_IFEXTIREC) {
3372 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3373 		} else {
3374 			xfs_iext_irec_init(ifp);
3375 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3376 			erp = ifp->if_u1.if_ext_irec;
3377 		}
3378 		/* Extents fit in target extent page */
3379 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3380 			if (page_idx < erp->er_extcount) {
3381 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3382 					&erp->er_extbuf[page_idx],
3383 					(erp->er_extcount - page_idx) *
3384 					sizeof(xfs_bmbt_rec_t));
3385 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3386 			}
3387 			erp->er_extcount += ext_diff;
3388 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3389 		}
3390 		/* Insert a new extent page */
3391 		else if (erp) {
3392 			xfs_iext_add_indirect_multi(ifp,
3393 				erp_idx, page_idx, ext_diff);
3394 		}
3395 		/*
3396 		 * If extent(s) are being appended to the last page in
3397 		 * the indirection array and the new extent(s) don't fit
3398 		 * in the page, then erp is NULL and erp_idx is set to
3399 		 * the next index needed in the indirection array.
3400 		 */
3401 		else {
3402 			int	count = ext_diff;
3403 
3404 			while (count) {
3405 				erp = xfs_iext_irec_new(ifp, erp_idx);
3406 				erp->er_extcount = count;
3407 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3408 				if (count) {
3409 					erp_idx++;
3410 				}
3411 			}
3412 		}
3413 	}
3414 	ifp->if_bytes = new_size;
3415 }
3416 
3417 /*
3418  * This is called when incore extents are being added to the indirection
3419  * array and the new extents do not fit in the target extent list. The
3420  * erp_idx parameter contains the irec index for the target extent list
3421  * in the indirection array, and the idx parameter contains the extent
3422  * index within the list. The number of extents being added is stored
3423  * in the count parameter.
3424  *
3425  *    |-------|   |-------|
3426  *    |       |   |       |    idx - number of extents before idx
3427  *    |  idx  |   | count |
3428  *    |       |   |       |    count - number of extents being inserted at idx
3429  *    |-------|   |-------|
3430  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3431  *    |-------|   |-------|
3432  */
3433 void
3434 xfs_iext_add_indirect_multi(
3435 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3436 	int		erp_idx,		/* target extent irec index */
3437 	xfs_extnum_t	idx,			/* index within target list */
3438 	int		count)			/* new extents being added */
3439 {
3440 	int		byte_diff;		/* new bytes being added */
3441 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3442 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3443 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3444 	xfs_extnum_t	nex2;			/* extents after idx + count */
3445 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3446 	int		nlists;			/* number of irec's (lists) */
3447 
3448 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3449 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3450 	nex2 = erp->er_extcount - idx;
3451 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3452 
3453 	/*
3454 	 * Save second part of target extent list
3455 	 * (all extents past */
3456 	if (nex2) {
3457 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3458 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3459 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3460 		erp->er_extcount -= nex2;
3461 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3462 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3463 	}
3464 
3465 	/*
3466 	 * Add the new extents to the end of the target
3467 	 * list, then allocate new irec record(s) and
3468 	 * extent buffer(s) as needed to store the rest
3469 	 * of the new extents.
3470 	 */
3471 	ext_cnt = count;
3472 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3473 	if (ext_diff) {
3474 		erp->er_extcount += ext_diff;
3475 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3476 		ext_cnt -= ext_diff;
3477 	}
3478 	while (ext_cnt) {
3479 		erp_idx++;
3480 		erp = xfs_iext_irec_new(ifp, erp_idx);
3481 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3482 		erp->er_extcount = ext_diff;
3483 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3484 		ext_cnt -= ext_diff;
3485 	}
3486 
3487 	/* Add nex2 extents back to indirection array */
3488 	if (nex2) {
3489 		xfs_extnum_t	ext_avail;
3490 		int		i;
3491 
3492 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3493 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3494 		i = 0;
3495 		/*
3496 		 * If nex2 extents fit in the current page, append
3497 		 * nex2_ep after the new extents.
3498 		 */
3499 		if (nex2 <= ext_avail) {
3500 			i = erp->er_extcount;
3501 		}
3502 		/*
3503 		 * Otherwise, check if space is available in the
3504 		 * next page.
3505 		 */
3506 		else if ((erp_idx < nlists - 1) &&
3507 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3508 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3509 			erp_idx++;
3510 			erp++;
3511 			/* Create a hole for nex2 extents */
3512 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3513 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3514 		}
3515 		/*
3516 		 * Final choice, create a new extent page for
3517 		 * nex2 extents.
3518 		 */
3519 		else {
3520 			erp_idx++;
3521 			erp = xfs_iext_irec_new(ifp, erp_idx);
3522 		}
3523 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3524 		kmem_free(nex2_ep);
3525 		erp->er_extcount += nex2;
3526 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3527 	}
3528 }
3529 
3530 /*
3531  * This is called when the amount of space required for incore file
3532  * extents needs to be decreased. The ext_diff parameter stores the
3533  * number of extents to be removed and the idx parameter contains
3534  * the extent index where the extents will be removed from.
3535  *
3536  * If the amount of space needed has decreased below the linear
3537  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3538  * extent array.  Otherwise, use kmem_realloc() to adjust the
3539  * size to what is needed.
3540  */
3541 void
3542 xfs_iext_remove(
3543 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3544 	xfs_extnum_t	idx,		/* index to begin removing exts */
3545 	int		ext_diff)	/* number of extents to remove */
3546 {
3547 	xfs_extnum_t	nextents;	/* number of extents in file */
3548 	int		new_size;	/* size of extents after removal */
3549 
3550 	ASSERT(ext_diff > 0);
3551 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3552 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3553 
3554 	if (new_size == 0) {
3555 		xfs_iext_destroy(ifp);
3556 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3557 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3558 	} else if (ifp->if_real_bytes) {
3559 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3560 	} else {
3561 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3562 	}
3563 	ifp->if_bytes = new_size;
3564 }
3565 
3566 /*
3567  * This removes ext_diff extents from the inline buffer, beginning
3568  * at extent index idx.
3569  */
3570 void
3571 xfs_iext_remove_inline(
3572 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3573 	xfs_extnum_t	idx,		/* index to begin removing exts */
3574 	int		ext_diff)	/* number of extents to remove */
3575 {
3576 	int		nextents;	/* number of extents in file */
3577 
3578 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3579 	ASSERT(idx < XFS_INLINE_EXTS);
3580 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3581 	ASSERT(((nextents - ext_diff) > 0) &&
3582 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3583 
3584 	if (idx + ext_diff < nextents) {
3585 		memmove(&ifp->if_u2.if_inline_ext[idx],
3586 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3587 			(nextents - (idx + ext_diff)) *
3588 			 sizeof(xfs_bmbt_rec_t));
3589 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3590 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3591 	} else {
3592 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3593 			ext_diff * sizeof(xfs_bmbt_rec_t));
3594 	}
3595 }
3596 
3597 /*
3598  * This removes ext_diff extents from a linear (direct) extent list,
3599  * beginning at extent index idx. If the extents are being removed
3600  * from the end of the list (ie. truncate) then we just need to re-
3601  * allocate the list to remove the extra space. Otherwise, if the
3602  * extents are being removed from the middle of the existing extent
3603  * entries, then we first need to move the extent records beginning
3604  * at idx + ext_diff up in the list to overwrite the records being
3605  * removed, then remove the extra space via kmem_realloc.
3606  */
3607 void
3608 xfs_iext_remove_direct(
3609 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3610 	xfs_extnum_t	idx,		/* index to begin removing exts */
3611 	int		ext_diff)	/* number of extents to remove */
3612 {
3613 	xfs_extnum_t	nextents;	/* number of extents in file */
3614 	int		new_size;	/* size of extents after removal */
3615 
3616 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3617 	new_size = ifp->if_bytes -
3618 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3619 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3620 
3621 	if (new_size == 0) {
3622 		xfs_iext_destroy(ifp);
3623 		return;
3624 	}
3625 	/* Move extents up in the list (if needed) */
3626 	if (idx + ext_diff < nextents) {
3627 		memmove(&ifp->if_u1.if_extents[idx],
3628 			&ifp->if_u1.if_extents[idx + ext_diff],
3629 			(nextents - (idx + ext_diff)) *
3630 			 sizeof(xfs_bmbt_rec_t));
3631 	}
3632 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3633 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3634 	/*
3635 	 * Reallocate the direct extent list. If the extents
3636 	 * will fit inside the inode then xfs_iext_realloc_direct
3637 	 * will switch from direct to inline extent allocation
3638 	 * mode for us.
3639 	 */
3640 	xfs_iext_realloc_direct(ifp, new_size);
3641 	ifp->if_bytes = new_size;
3642 }
3643 
3644 /*
3645  * This is called when incore extents are being removed from the
3646  * indirection array and the extents being removed span multiple extent
3647  * buffers. The idx parameter contains the file extent index where we
3648  * want to begin removing extents, and the count parameter contains
3649  * how many extents need to be removed.
3650  *
3651  *    |-------|   |-------|
3652  *    | nex1  |   |       |    nex1 - number of extents before idx
3653  *    |-------|   | count |
3654  *    |       |   |       |    count - number of extents being removed at idx
3655  *    | count |   |-------|
3656  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3657  *    |-------|   |-------|
3658  */
3659 void
3660 xfs_iext_remove_indirect(
3661 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3662 	xfs_extnum_t	idx,		/* index to begin removing extents */
3663 	int		count)		/* number of extents to remove */
3664 {
3665 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3666 	int		erp_idx = 0;	/* indirection array index */
3667 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3668 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3669 	xfs_extnum_t	nex1;		/* number of extents before idx */
3670 	xfs_extnum_t	nex2;		/* extents after idx + count */
3671 	int		nlists;		/* entries in indirection array */
3672 	int		page_idx = idx;	/* index in target extent list */
3673 
3674 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3675 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3676 	ASSERT(erp != NULL);
3677 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3678 	nex1 = page_idx;
3679 	ext_cnt = count;
3680 	while (ext_cnt) {
3681 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3682 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3683 		/*
3684 		 * Check for deletion of entire list;
3685 		 * xfs_iext_irec_remove() updates extent offsets.
3686 		 */
3687 		if (ext_diff == erp->er_extcount) {
3688 			xfs_iext_irec_remove(ifp, erp_idx);
3689 			ext_cnt -= ext_diff;
3690 			nex1 = 0;
3691 			if (ext_cnt) {
3692 				ASSERT(erp_idx < ifp->if_real_bytes /
3693 					XFS_IEXT_BUFSZ);
3694 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3695 				nex1 = 0;
3696 				continue;
3697 			} else {
3698 				break;
3699 			}
3700 		}
3701 		/* Move extents up (if needed) */
3702 		if (nex2) {
3703 			memmove(&erp->er_extbuf[nex1],
3704 				&erp->er_extbuf[nex1 + ext_diff],
3705 				nex2 * sizeof(xfs_bmbt_rec_t));
3706 		}
3707 		/* Zero out rest of page */
3708 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3709 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3710 		/* Update remaining counters */
3711 		erp->er_extcount -= ext_diff;
3712 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3713 		ext_cnt -= ext_diff;
3714 		nex1 = 0;
3715 		erp_idx++;
3716 		erp++;
3717 	}
3718 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3719 	xfs_iext_irec_compact(ifp);
3720 }
3721 
3722 /*
3723  * Create, destroy, or resize a linear (direct) block of extents.
3724  */
3725 void
3726 xfs_iext_realloc_direct(
3727 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3728 	int		new_size)	/* new size of extents */
3729 {
3730 	int		rnew_size;	/* real new size of extents */
3731 
3732 	rnew_size = new_size;
3733 
3734 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3735 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3736 		 (new_size != ifp->if_real_bytes)));
3737 
3738 	/* Free extent records */
3739 	if (new_size == 0) {
3740 		xfs_iext_destroy(ifp);
3741 	}
3742 	/* Resize direct extent list and zero any new bytes */
3743 	else if (ifp->if_real_bytes) {
3744 		/* Check if extents will fit inside the inode */
3745 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3746 			xfs_iext_direct_to_inline(ifp, new_size /
3747 				(uint)sizeof(xfs_bmbt_rec_t));
3748 			ifp->if_bytes = new_size;
3749 			return;
3750 		}
3751 		if (!is_power_of_2(new_size)){
3752 			rnew_size = roundup_pow_of_two(new_size);
3753 		}
3754 		if (rnew_size != ifp->if_real_bytes) {
3755 			ifp->if_u1.if_extents =
3756 				kmem_realloc(ifp->if_u1.if_extents,
3757 						rnew_size,
3758 						ifp->if_real_bytes, KM_NOFS);
3759 		}
3760 		if (rnew_size > ifp->if_real_bytes) {
3761 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3762 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3763 				rnew_size - ifp->if_real_bytes);
3764 		}
3765 	}
3766 	/*
3767 	 * Switch from the inline extent buffer to a direct
3768 	 * extent list. Be sure to include the inline extent
3769 	 * bytes in new_size.
3770 	 */
3771 	else {
3772 		new_size += ifp->if_bytes;
3773 		if (!is_power_of_2(new_size)) {
3774 			rnew_size = roundup_pow_of_two(new_size);
3775 		}
3776 		xfs_iext_inline_to_direct(ifp, rnew_size);
3777 	}
3778 	ifp->if_real_bytes = rnew_size;
3779 	ifp->if_bytes = new_size;
3780 }
3781 
3782 /*
3783  * Switch from linear (direct) extent records to inline buffer.
3784  */
3785 void
3786 xfs_iext_direct_to_inline(
3787 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3788 	xfs_extnum_t	nextents)	/* number of extents in file */
3789 {
3790 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3791 	ASSERT(nextents <= XFS_INLINE_EXTS);
3792 	/*
3793 	 * The inline buffer was zeroed when we switched
3794 	 * from inline to direct extent allocation mode,
3795 	 * so we don't need to clear it here.
3796 	 */
3797 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3798 		nextents * sizeof(xfs_bmbt_rec_t));
3799 	kmem_free(ifp->if_u1.if_extents);
3800 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3801 	ifp->if_real_bytes = 0;
3802 }
3803 
3804 /*
3805  * Switch from inline buffer to linear (direct) extent records.
3806  * new_size should already be rounded up to the next power of 2
3807  * by the caller (when appropriate), so use new_size as it is.
3808  * However, since new_size may be rounded up, we can't update
3809  * if_bytes here. It is the caller's responsibility to update
3810  * if_bytes upon return.
3811  */
3812 void
3813 xfs_iext_inline_to_direct(
3814 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3815 	int		new_size)	/* number of extents in file */
3816 {
3817 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3818 	memset(ifp->if_u1.if_extents, 0, new_size);
3819 	if (ifp->if_bytes) {
3820 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3821 			ifp->if_bytes);
3822 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3823 			sizeof(xfs_bmbt_rec_t));
3824 	}
3825 	ifp->if_real_bytes = new_size;
3826 }
3827 
3828 /*
3829  * Resize an extent indirection array to new_size bytes.
3830  */
3831 void
3832 xfs_iext_realloc_indirect(
3833 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3834 	int		new_size)	/* new indirection array size */
3835 {
3836 	int		nlists;		/* number of irec's (ex lists) */
3837 	int		size;		/* current indirection array size */
3838 
3839 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3840 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3841 	size = nlists * sizeof(xfs_ext_irec_t);
3842 	ASSERT(ifp->if_real_bytes);
3843 	ASSERT((new_size >= 0) && (new_size != size));
3844 	if (new_size == 0) {
3845 		xfs_iext_destroy(ifp);
3846 	} else {
3847 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3848 			kmem_realloc(ifp->if_u1.if_ext_irec,
3849 				new_size, size, KM_NOFS);
3850 	}
3851 }
3852 
3853 /*
3854  * Switch from indirection array to linear (direct) extent allocations.
3855  */
3856 void
3857 xfs_iext_indirect_to_direct(
3858 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3859 {
3860 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3861 	xfs_extnum_t	nextents;	/* number of extents in file */
3862 	int		size;		/* size of file extents */
3863 
3864 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3865 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3866 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3867 	size = nextents * sizeof(xfs_bmbt_rec_t);
3868 
3869 	xfs_iext_irec_compact_pages(ifp);
3870 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3871 
3872 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3873 	kmem_free(ifp->if_u1.if_ext_irec);
3874 	ifp->if_flags &= ~XFS_IFEXTIREC;
3875 	ifp->if_u1.if_extents = ep;
3876 	ifp->if_bytes = size;
3877 	if (nextents < XFS_LINEAR_EXTS) {
3878 		xfs_iext_realloc_direct(ifp, size);
3879 	}
3880 }
3881 
3882 /*
3883  * Free incore file extents.
3884  */
3885 void
3886 xfs_iext_destroy(
3887 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3888 {
3889 	if (ifp->if_flags & XFS_IFEXTIREC) {
3890 		int	erp_idx;
3891 		int	nlists;
3892 
3893 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3894 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3895 			xfs_iext_irec_remove(ifp, erp_idx);
3896 		}
3897 		ifp->if_flags &= ~XFS_IFEXTIREC;
3898 	} else if (ifp->if_real_bytes) {
3899 		kmem_free(ifp->if_u1.if_extents);
3900 	} else if (ifp->if_bytes) {
3901 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3902 			sizeof(xfs_bmbt_rec_t));
3903 	}
3904 	ifp->if_u1.if_extents = NULL;
3905 	ifp->if_real_bytes = 0;
3906 	ifp->if_bytes = 0;
3907 }
3908 
3909 /*
3910  * Return a pointer to the extent record for file system block bno.
3911  */
3912 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3913 xfs_iext_bno_to_ext(
3914 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3915 	xfs_fileoff_t	bno,		/* block number to search for */
3916 	xfs_extnum_t	*idxp)		/* index of target extent */
3917 {
3918 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3919 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3920 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3921 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3922 	int		high;		/* upper boundary in search */
3923 	xfs_extnum_t	idx = 0;	/* index of target extent */
3924 	int		low;		/* lower boundary in search */
3925 	xfs_extnum_t	nextents;	/* number of file extents */
3926 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3927 
3928 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3929 	if (nextents == 0) {
3930 		*idxp = 0;
3931 		return NULL;
3932 	}
3933 	low = 0;
3934 	if (ifp->if_flags & XFS_IFEXTIREC) {
3935 		/* Find target extent list */
3936 		int	erp_idx = 0;
3937 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3938 		base = erp->er_extbuf;
3939 		high = erp->er_extcount - 1;
3940 	} else {
3941 		base = ifp->if_u1.if_extents;
3942 		high = nextents - 1;
3943 	}
3944 	/* Binary search extent records */
3945 	while (low <= high) {
3946 		idx = (low + high) >> 1;
3947 		ep = base + idx;
3948 		startoff = xfs_bmbt_get_startoff(ep);
3949 		blockcount = xfs_bmbt_get_blockcount(ep);
3950 		if (bno < startoff) {
3951 			high = idx - 1;
3952 		} else if (bno >= startoff + blockcount) {
3953 			low = idx + 1;
3954 		} else {
3955 			/* Convert back to file-based extent index */
3956 			if (ifp->if_flags & XFS_IFEXTIREC) {
3957 				idx += erp->er_extoff;
3958 			}
3959 			*idxp = idx;
3960 			return ep;
3961 		}
3962 	}
3963 	/* Convert back to file-based extent index */
3964 	if (ifp->if_flags & XFS_IFEXTIREC) {
3965 		idx += erp->er_extoff;
3966 	}
3967 	if (bno >= startoff + blockcount) {
3968 		if (++idx == nextents) {
3969 			ep = NULL;
3970 		} else {
3971 			ep = xfs_iext_get_ext(ifp, idx);
3972 		}
3973 	}
3974 	*idxp = idx;
3975 	return ep;
3976 }
3977 
3978 /*
3979  * Return a pointer to the indirection array entry containing the
3980  * extent record for filesystem block bno. Store the index of the
3981  * target irec in *erp_idxp.
3982  */
3983 xfs_ext_irec_t *			/* pointer to found extent record */
3984 xfs_iext_bno_to_irec(
3985 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3986 	xfs_fileoff_t	bno,		/* block number to search for */
3987 	int		*erp_idxp)	/* irec index of target ext list */
3988 {
3989 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3990 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3991 	int		erp_idx;	/* indirection array index */
3992 	int		nlists;		/* number of extent irec's (lists) */
3993 	int		high;		/* binary search upper limit */
3994 	int		low;		/* binary search lower limit */
3995 
3996 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3997 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3998 	erp_idx = 0;
3999 	low = 0;
4000 	high = nlists - 1;
4001 	while (low <= high) {
4002 		erp_idx = (low + high) >> 1;
4003 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4004 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4005 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4006 			high = erp_idx - 1;
4007 		} else if (erp_next && bno >=
4008 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4009 			low = erp_idx + 1;
4010 		} else {
4011 			break;
4012 		}
4013 	}
4014 	*erp_idxp = erp_idx;
4015 	return erp;
4016 }
4017 
4018 /*
4019  * Return a pointer to the indirection array entry containing the
4020  * extent record at file extent index *idxp. Store the index of the
4021  * target irec in *erp_idxp and store the page index of the target
4022  * extent record in *idxp.
4023  */
4024 xfs_ext_irec_t *
4025 xfs_iext_idx_to_irec(
4026 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4027 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4028 	int		*erp_idxp,	/* pointer to target irec */
4029 	int		realloc)	/* new bytes were just added */
4030 {
4031 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4032 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4033 	int		erp_idx;	/* indirection array index */
4034 	int		nlists;		/* number of irec's (ex lists) */
4035 	int		high;		/* binary search upper limit */
4036 	int		low;		/* binary search lower limit */
4037 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4038 
4039 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4040 	ASSERT(page_idx >= 0 && page_idx <=
4041 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4042 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4043 	erp_idx = 0;
4044 	low = 0;
4045 	high = nlists - 1;
4046 
4047 	/* Binary search extent irec's */
4048 	while (low <= high) {
4049 		erp_idx = (low + high) >> 1;
4050 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4051 		prev = erp_idx > 0 ? erp - 1 : NULL;
4052 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4053 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4054 			high = erp_idx - 1;
4055 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4056 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4057 			    !realloc)) {
4058 			low = erp_idx + 1;
4059 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4060 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4061 			ASSERT(realloc);
4062 			page_idx = 0;
4063 			erp_idx++;
4064 			erp = erp_idx < nlists ? erp + 1 : NULL;
4065 			break;
4066 		} else {
4067 			page_idx -= erp->er_extoff;
4068 			break;
4069 		}
4070 	}
4071 	*idxp = page_idx;
4072 	*erp_idxp = erp_idx;
4073 	return(erp);
4074 }
4075 
4076 /*
4077  * Allocate and initialize an indirection array once the space needed
4078  * for incore extents increases above XFS_IEXT_BUFSZ.
4079  */
4080 void
4081 xfs_iext_irec_init(
4082 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4083 {
4084 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4085 	xfs_extnum_t	nextents;	/* number of extents in file */
4086 
4087 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4088 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4089 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4090 
4091 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4092 
4093 	if (nextents == 0) {
4094 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4095 	} else if (!ifp->if_real_bytes) {
4096 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4097 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4098 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4099 	}
4100 	erp->er_extbuf = ifp->if_u1.if_extents;
4101 	erp->er_extcount = nextents;
4102 	erp->er_extoff = 0;
4103 
4104 	ifp->if_flags |= XFS_IFEXTIREC;
4105 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4106 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4107 	ifp->if_u1.if_ext_irec = erp;
4108 
4109 	return;
4110 }
4111 
4112 /*
4113  * Allocate and initialize a new entry in the indirection array.
4114  */
4115 xfs_ext_irec_t *
4116 xfs_iext_irec_new(
4117 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4118 	int		erp_idx)	/* index for new irec */
4119 {
4120 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4121 	int		i;		/* loop counter */
4122 	int		nlists;		/* number of irec's (ex lists) */
4123 
4124 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4125 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4126 
4127 	/* Resize indirection array */
4128 	xfs_iext_realloc_indirect(ifp, ++nlists *
4129 				  sizeof(xfs_ext_irec_t));
4130 	/*
4131 	 * Move records down in the array so the
4132 	 * new page can use erp_idx.
4133 	 */
4134 	erp = ifp->if_u1.if_ext_irec;
4135 	for (i = nlists - 1; i > erp_idx; i--) {
4136 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4137 	}
4138 	ASSERT(i == erp_idx);
4139 
4140 	/* Initialize new extent record */
4141 	erp = ifp->if_u1.if_ext_irec;
4142 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4143 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4144 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4145 	erp[erp_idx].er_extcount = 0;
4146 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4147 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4148 	return (&erp[erp_idx]);
4149 }
4150 
4151 /*
4152  * Remove a record from the indirection array.
4153  */
4154 void
4155 xfs_iext_irec_remove(
4156 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4157 	int		erp_idx)	/* irec index to remove */
4158 {
4159 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4160 	int		i;		/* loop counter */
4161 	int		nlists;		/* number of irec's (ex lists) */
4162 
4163 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4164 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4165 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4166 	if (erp->er_extbuf) {
4167 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4168 			-erp->er_extcount);
4169 		kmem_free(erp->er_extbuf);
4170 	}
4171 	/* Compact extent records */
4172 	erp = ifp->if_u1.if_ext_irec;
4173 	for (i = erp_idx; i < nlists - 1; i++) {
4174 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4175 	}
4176 	/*
4177 	 * Manually free the last extent record from the indirection
4178 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4179 	 * of zero would result in a call to xfs_iext_destroy() which
4180 	 * would in turn call this function again, creating a nasty
4181 	 * infinite loop.
4182 	 */
4183 	if (--nlists) {
4184 		xfs_iext_realloc_indirect(ifp,
4185 			nlists * sizeof(xfs_ext_irec_t));
4186 	} else {
4187 		kmem_free(ifp->if_u1.if_ext_irec);
4188 	}
4189 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4190 }
4191 
4192 /*
4193  * This is called to clean up large amounts of unused memory allocated
4194  * by the indirection array.  Before compacting anything though, verify
4195  * that the indirection array is still needed and switch back to the
4196  * linear extent list (or even the inline buffer) if possible.  The
4197  * compaction policy is as follows:
4198  *
4199  *    Full Compaction: Extents fit into a single page (or inline buffer)
4200  * Partial Compaction: Extents occupy less than 50% of allocated space
4201  *      No Compaction: Extents occupy at least 50% of allocated space
4202  */
4203 void
4204 xfs_iext_irec_compact(
4205 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4206 {
4207 	xfs_extnum_t	nextents;	/* number of extents in file */
4208 	int		nlists;		/* number of irec's (ex lists) */
4209 
4210 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4211 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4212 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4213 
4214 	if (nextents == 0) {
4215 		xfs_iext_destroy(ifp);
4216 	} else if (nextents <= XFS_INLINE_EXTS) {
4217 		xfs_iext_indirect_to_direct(ifp);
4218 		xfs_iext_direct_to_inline(ifp, nextents);
4219 	} else if (nextents <= XFS_LINEAR_EXTS) {
4220 		xfs_iext_indirect_to_direct(ifp);
4221 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4222 		xfs_iext_irec_compact_pages(ifp);
4223 	}
4224 }
4225 
4226 /*
4227  * Combine extents from neighboring extent pages.
4228  */
4229 void
4230 xfs_iext_irec_compact_pages(
4231 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4232 {
4233 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4234 	int		erp_idx = 0;	/* indirection array index */
4235 	int		nlists;		/* number of irec's (ex lists) */
4236 
4237 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4238 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4239 	while (erp_idx < nlists - 1) {
4240 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4241 		erp_next = erp + 1;
4242 		if (erp_next->er_extcount <=
4243 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4244 			memcpy(&erp->er_extbuf[erp->er_extcount],
4245 				erp_next->er_extbuf, erp_next->er_extcount *
4246 				sizeof(xfs_bmbt_rec_t));
4247 			erp->er_extcount += erp_next->er_extcount;
4248 			/*
4249 			 * Free page before removing extent record
4250 			 * so er_extoffs don't get modified in
4251 			 * xfs_iext_irec_remove.
4252 			 */
4253 			kmem_free(erp_next->er_extbuf);
4254 			erp_next->er_extbuf = NULL;
4255 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4256 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4257 		} else {
4258 			erp_idx++;
4259 		}
4260 	}
4261 }
4262 
4263 /*
4264  * This is called to update the er_extoff field in the indirection
4265  * array when extents have been added or removed from one of the
4266  * extent lists. erp_idx contains the irec index to begin updating
4267  * at and ext_diff contains the number of extents that were added
4268  * or removed.
4269  */
4270 void
4271 xfs_iext_irec_update_extoffs(
4272 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4273 	int		erp_idx,	/* irec index to update */
4274 	int		ext_diff)	/* number of new extents */
4275 {
4276 	int		i;		/* loop counter */
4277 	int		nlists;		/* number of irec's (ex lists */
4278 
4279 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4280 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4281 	for (i = erp_idx; i < nlists; i++) {
4282 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4283 	}
4284 }
4285