1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 64 return ip->i_d.di_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_d.di_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && 128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_lock locking order: 148 * 149 * i_rwsem -> page lock -> mmap_lock 150 * mmap_lock -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_lock locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_lock. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 STATIC uint 602 _xfs_dic2xflags( 603 uint16_t di_flags, 604 uint64_t di_flags2, 605 bool has_attr) 606 { 607 uint flags = 0; 608 609 if (di_flags & XFS_DIFLAG_ANY) { 610 if (di_flags & XFS_DIFLAG_REALTIME) 611 flags |= FS_XFLAG_REALTIME; 612 if (di_flags & XFS_DIFLAG_PREALLOC) 613 flags |= FS_XFLAG_PREALLOC; 614 if (di_flags & XFS_DIFLAG_IMMUTABLE) 615 flags |= FS_XFLAG_IMMUTABLE; 616 if (di_flags & XFS_DIFLAG_APPEND) 617 flags |= FS_XFLAG_APPEND; 618 if (di_flags & XFS_DIFLAG_SYNC) 619 flags |= FS_XFLAG_SYNC; 620 if (di_flags & XFS_DIFLAG_NOATIME) 621 flags |= FS_XFLAG_NOATIME; 622 if (di_flags & XFS_DIFLAG_NODUMP) 623 flags |= FS_XFLAG_NODUMP; 624 if (di_flags & XFS_DIFLAG_RTINHERIT) 625 flags |= FS_XFLAG_RTINHERIT; 626 if (di_flags & XFS_DIFLAG_PROJINHERIT) 627 flags |= FS_XFLAG_PROJINHERIT; 628 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 629 flags |= FS_XFLAG_NOSYMLINKS; 630 if (di_flags & XFS_DIFLAG_EXTSIZE) 631 flags |= FS_XFLAG_EXTSIZE; 632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 633 flags |= FS_XFLAG_EXTSZINHERIT; 634 if (di_flags & XFS_DIFLAG_NODEFRAG) 635 flags |= FS_XFLAG_NODEFRAG; 636 if (di_flags & XFS_DIFLAG_FILESTREAM) 637 flags |= FS_XFLAG_FILESTREAM; 638 } 639 640 if (di_flags2 & XFS_DIFLAG2_ANY) { 641 if (di_flags2 & XFS_DIFLAG2_DAX) 642 flags |= FS_XFLAG_DAX; 643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 644 flags |= FS_XFLAG_COWEXTSIZE; 645 } 646 647 if (has_attr) 648 flags |= FS_XFLAG_HASATTR; 649 650 return flags; 651 } 652 653 uint 654 xfs_ip2xflags( 655 struct xfs_inode *ip) 656 { 657 struct xfs_icdinode *dic = &ip->i_d; 658 659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 660 } 661 662 /* 663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 664 * is allowed, otherwise it has to be an exact match. If a CI match is found, 665 * ci_name->name will point to a the actual name (caller must free) or 666 * will be set to NULL if an exact match is found. 667 */ 668 int 669 xfs_lookup( 670 xfs_inode_t *dp, 671 struct xfs_name *name, 672 xfs_inode_t **ipp, 673 struct xfs_name *ci_name) 674 { 675 xfs_ino_t inum; 676 int error; 677 678 trace_xfs_lookup(dp, name); 679 680 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 681 return -EIO; 682 683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 684 if (error) 685 goto out_unlock; 686 687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 688 if (error) 689 goto out_free_name; 690 691 return 0; 692 693 out_free_name: 694 if (ci_name) 695 kmem_free(ci_name->name); 696 out_unlock: 697 *ipp = NULL; 698 return error; 699 } 700 701 /* 702 * Allocate an inode on disk and return a copy of its in-core version. 703 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 704 * appropriately within the inode. The uid and gid for the inode are 705 * set according to the contents of the given cred structure. 706 * 707 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 708 * has a free inode available, call xfs_iget() to obtain the in-core 709 * version of the allocated inode. Finally, fill in the inode and 710 * log its initial contents. In this case, ialloc_context would be 711 * set to NULL. 712 * 713 * If xfs_dialloc() does not have an available inode, it will replenish 714 * its supply by doing an allocation. Since we can only do one 715 * allocation within a transaction without deadlocks, we must commit 716 * the current transaction before returning the inode itself. 717 * In this case, therefore, we will set ialloc_context and return. 718 * The caller should then commit the current transaction, start a new 719 * transaction, and call xfs_ialloc() again to actually get the inode. 720 * 721 * To ensure that some other process does not grab the inode that 722 * was allocated during the first call to xfs_ialloc(), this routine 723 * also returns the [locked] bp pointing to the head of the freelist 724 * as ialloc_context. The caller should hold this buffer across 725 * the commit and pass it back into this routine on the second call. 726 * 727 * If we are allocating quota inodes, we do not have a parent inode 728 * to attach to or associate with (i.e. pip == NULL) because they 729 * are not linked into the directory structure - they are attached 730 * directly to the superblock - and so have no parent. 731 */ 732 static int 733 xfs_ialloc( 734 xfs_trans_t *tp, 735 xfs_inode_t *pip, 736 umode_t mode, 737 xfs_nlink_t nlink, 738 dev_t rdev, 739 prid_t prid, 740 xfs_buf_t **ialloc_context, 741 xfs_inode_t **ipp) 742 { 743 struct xfs_mount *mp = tp->t_mountp; 744 xfs_ino_t ino; 745 xfs_inode_t *ip; 746 uint flags; 747 int error; 748 struct timespec64 tv; 749 struct inode *inode; 750 751 /* 752 * Call the space management code to pick 753 * the on-disk inode to be allocated. 754 */ 755 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, 756 ialloc_context, &ino); 757 if (error) 758 return error; 759 if (*ialloc_context || ino == NULLFSINO) { 760 *ipp = NULL; 761 return 0; 762 } 763 ASSERT(*ialloc_context == NULL); 764 765 /* 766 * Protect against obviously corrupt allocation btree records. Later 767 * xfs_iget checks will catch re-allocation of other active in-memory 768 * and on-disk inodes. If we don't catch reallocating the parent inode 769 * here we will deadlock in xfs_iget() so we have to do these checks 770 * first. 771 */ 772 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 773 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 774 return -EFSCORRUPTED; 775 } 776 777 /* 778 * Get the in-core inode with the lock held exclusively. 779 * This is because we're setting fields here we need 780 * to prevent others from looking at until we're done. 781 */ 782 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 783 XFS_ILOCK_EXCL, &ip); 784 if (error) 785 return error; 786 ASSERT(ip != NULL); 787 inode = VFS_I(ip); 788 inode->i_mode = mode; 789 set_nlink(inode, nlink); 790 inode->i_uid = current_fsuid(); 791 inode->i_rdev = rdev; 792 ip->i_d.di_projid = prid; 793 794 if (pip && XFS_INHERIT_GID(pip)) { 795 inode->i_gid = VFS_I(pip)->i_gid; 796 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 797 inode->i_mode |= S_ISGID; 798 } else { 799 inode->i_gid = current_fsgid(); 800 } 801 802 /* 803 * If the group ID of the new file does not match the effective group 804 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 805 * (and only if the irix_sgid_inherit compatibility variable is set). 806 */ 807 if (irix_sgid_inherit && 808 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid)) 809 inode->i_mode &= ~S_ISGID; 810 811 ip->i_d.di_size = 0; 812 ip->i_df.if_nextents = 0; 813 ASSERT(ip->i_d.di_nblocks == 0); 814 815 tv = current_time(inode); 816 inode->i_mtime = tv; 817 inode->i_atime = tv; 818 inode->i_ctime = tv; 819 820 ip->i_d.di_extsize = 0; 821 ip->i_d.di_dmevmask = 0; 822 ip->i_d.di_dmstate = 0; 823 ip->i_d.di_flags = 0; 824 825 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 826 inode_set_iversion(inode, 1); 827 ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2; 828 ip->i_d.di_cowextsize = 0; 829 ip->i_d.di_crtime = tv; 830 } 831 832 flags = XFS_ILOG_CORE; 833 switch (mode & S_IFMT) { 834 case S_IFIFO: 835 case S_IFCHR: 836 case S_IFBLK: 837 case S_IFSOCK: 838 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 839 ip->i_df.if_flags = 0; 840 flags |= XFS_ILOG_DEV; 841 break; 842 case S_IFREG: 843 case S_IFDIR: 844 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 845 uint di_flags = 0; 846 847 if (S_ISDIR(mode)) { 848 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 849 di_flags |= XFS_DIFLAG_RTINHERIT; 850 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 851 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 852 ip->i_d.di_extsize = pip->i_d.di_extsize; 853 } 854 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 855 di_flags |= XFS_DIFLAG_PROJINHERIT; 856 } else if (S_ISREG(mode)) { 857 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 858 di_flags |= XFS_DIFLAG_REALTIME; 859 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 860 di_flags |= XFS_DIFLAG_EXTSIZE; 861 ip->i_d.di_extsize = pip->i_d.di_extsize; 862 } 863 } 864 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 865 xfs_inherit_noatime) 866 di_flags |= XFS_DIFLAG_NOATIME; 867 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 868 xfs_inherit_nodump) 869 di_flags |= XFS_DIFLAG_NODUMP; 870 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 871 xfs_inherit_sync) 872 di_flags |= XFS_DIFLAG_SYNC; 873 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 874 xfs_inherit_nosymlinks) 875 di_flags |= XFS_DIFLAG_NOSYMLINKS; 876 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 877 xfs_inherit_nodefrag) 878 di_flags |= XFS_DIFLAG_NODEFRAG; 879 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 880 di_flags |= XFS_DIFLAG_FILESTREAM; 881 882 ip->i_d.di_flags |= di_flags; 883 } 884 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) { 885 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 886 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 887 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 888 } 889 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 890 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 891 } 892 /* FALLTHROUGH */ 893 case S_IFLNK: 894 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 895 ip->i_df.if_flags = XFS_IFEXTENTS; 896 ip->i_df.if_bytes = 0; 897 ip->i_df.if_u1.if_root = NULL; 898 break; 899 default: 900 ASSERT(0); 901 } 902 903 /* 904 * Log the new values stuffed into the inode. 905 */ 906 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 907 xfs_trans_log_inode(tp, ip, flags); 908 909 /* now that we have an i_mode we can setup the inode structure */ 910 xfs_setup_inode(ip); 911 912 *ipp = ip; 913 return 0; 914 } 915 916 /* 917 * Allocates a new inode from disk and return a pointer to the 918 * incore copy. This routine will internally commit the current 919 * transaction and allocate a new one if the Space Manager needed 920 * to do an allocation to replenish the inode free-list. 921 * 922 * This routine is designed to be called from xfs_create and 923 * xfs_create_dir. 924 * 925 */ 926 int 927 xfs_dir_ialloc( 928 xfs_trans_t **tpp, /* input: current transaction; 929 output: may be a new transaction. */ 930 xfs_inode_t *dp, /* directory within whose allocate 931 the inode. */ 932 umode_t mode, 933 xfs_nlink_t nlink, 934 dev_t rdev, 935 prid_t prid, /* project id */ 936 xfs_inode_t **ipp) /* pointer to inode; it will be 937 locked. */ 938 { 939 xfs_trans_t *tp; 940 xfs_inode_t *ip; 941 xfs_buf_t *ialloc_context = NULL; 942 int code; 943 void *dqinfo; 944 uint tflags; 945 946 tp = *tpp; 947 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 948 949 /* 950 * xfs_ialloc will return a pointer to an incore inode if 951 * the Space Manager has an available inode on the free 952 * list. Otherwise, it will do an allocation and replenish 953 * the freelist. Since we can only do one allocation per 954 * transaction without deadlocks, we will need to commit the 955 * current transaction and start a new one. We will then 956 * need to call xfs_ialloc again to get the inode. 957 * 958 * If xfs_ialloc did an allocation to replenish the freelist, 959 * it returns the bp containing the head of the freelist as 960 * ialloc_context. We will hold a lock on it across the 961 * transaction commit so that no other process can steal 962 * the inode(s) that we've just allocated. 963 */ 964 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, 965 &ip); 966 967 /* 968 * Return an error if we were unable to allocate a new inode. 969 * This should only happen if we run out of space on disk or 970 * encounter a disk error. 971 */ 972 if (code) { 973 *ipp = NULL; 974 return code; 975 } 976 if (!ialloc_context && !ip) { 977 *ipp = NULL; 978 return -ENOSPC; 979 } 980 981 /* 982 * If the AGI buffer is non-NULL, then we were unable to get an 983 * inode in one operation. We need to commit the current 984 * transaction and call xfs_ialloc() again. It is guaranteed 985 * to succeed the second time. 986 */ 987 if (ialloc_context) { 988 /* 989 * Normally, xfs_trans_commit releases all the locks. 990 * We call bhold to hang on to the ialloc_context across 991 * the commit. Holding this buffer prevents any other 992 * processes from doing any allocations in this 993 * allocation group. 994 */ 995 xfs_trans_bhold(tp, ialloc_context); 996 997 /* 998 * We want the quota changes to be associated with the next 999 * transaction, NOT this one. So, detach the dqinfo from this 1000 * and attach it to the next transaction. 1001 */ 1002 dqinfo = NULL; 1003 tflags = 0; 1004 if (tp->t_dqinfo) { 1005 dqinfo = (void *)tp->t_dqinfo; 1006 tp->t_dqinfo = NULL; 1007 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1008 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1009 } 1010 1011 code = xfs_trans_roll(&tp); 1012 1013 /* 1014 * Re-attach the quota info that we detached from prev trx. 1015 */ 1016 if (dqinfo) { 1017 tp->t_dqinfo = dqinfo; 1018 tp->t_flags |= tflags; 1019 } 1020 1021 if (code) { 1022 xfs_buf_relse(ialloc_context); 1023 *tpp = tp; 1024 *ipp = NULL; 1025 return code; 1026 } 1027 xfs_trans_bjoin(tp, ialloc_context); 1028 1029 /* 1030 * Call ialloc again. Since we've locked out all 1031 * other allocations in this allocation group, 1032 * this call should always succeed. 1033 */ 1034 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1035 &ialloc_context, &ip); 1036 1037 /* 1038 * If we get an error at this point, return to the caller 1039 * so that the current transaction can be aborted. 1040 */ 1041 if (code) { 1042 *tpp = tp; 1043 *ipp = NULL; 1044 return code; 1045 } 1046 ASSERT(!ialloc_context && ip); 1047 1048 } 1049 1050 *ipp = ip; 1051 *tpp = tp; 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * Decrement the link count on an inode & log the change. If this causes the 1058 * link count to go to zero, move the inode to AGI unlinked list so that it can 1059 * be freed when the last active reference goes away via xfs_inactive(). 1060 */ 1061 static int /* error */ 1062 xfs_droplink( 1063 xfs_trans_t *tp, 1064 xfs_inode_t *ip) 1065 { 1066 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1067 1068 drop_nlink(VFS_I(ip)); 1069 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1070 1071 if (VFS_I(ip)->i_nlink) 1072 return 0; 1073 1074 return xfs_iunlink(tp, ip); 1075 } 1076 1077 /* 1078 * Increment the link count on an inode & log the change. 1079 */ 1080 static void 1081 xfs_bumplink( 1082 xfs_trans_t *tp, 1083 xfs_inode_t *ip) 1084 { 1085 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1086 1087 inc_nlink(VFS_I(ip)); 1088 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1089 } 1090 1091 int 1092 xfs_create( 1093 xfs_inode_t *dp, 1094 struct xfs_name *name, 1095 umode_t mode, 1096 dev_t rdev, 1097 xfs_inode_t **ipp) 1098 { 1099 int is_dir = S_ISDIR(mode); 1100 struct xfs_mount *mp = dp->i_mount; 1101 struct xfs_inode *ip = NULL; 1102 struct xfs_trans *tp = NULL; 1103 int error; 1104 bool unlock_dp_on_error = false; 1105 prid_t prid; 1106 struct xfs_dquot *udqp = NULL; 1107 struct xfs_dquot *gdqp = NULL; 1108 struct xfs_dquot *pdqp = NULL; 1109 struct xfs_trans_res *tres; 1110 uint resblks; 1111 1112 trace_xfs_create(dp, name); 1113 1114 if (XFS_FORCED_SHUTDOWN(mp)) 1115 return -EIO; 1116 1117 prid = xfs_get_initial_prid(dp); 1118 1119 /* 1120 * Make sure that we have allocated dquot(s) on disk. 1121 */ 1122 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1123 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1124 &udqp, &gdqp, &pdqp); 1125 if (error) 1126 return error; 1127 1128 if (is_dir) { 1129 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1130 tres = &M_RES(mp)->tr_mkdir; 1131 } else { 1132 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1133 tres = &M_RES(mp)->tr_create; 1134 } 1135 1136 /* 1137 * Initially assume that the file does not exist and 1138 * reserve the resources for that case. If that is not 1139 * the case we'll drop the one we have and get a more 1140 * appropriate transaction later. 1141 */ 1142 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1143 if (error == -ENOSPC) { 1144 /* flush outstanding delalloc blocks and retry */ 1145 xfs_flush_inodes(mp); 1146 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1147 } 1148 if (error) 1149 goto out_release_inode; 1150 1151 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1152 unlock_dp_on_error = true; 1153 1154 /* 1155 * Reserve disk quota and the inode. 1156 */ 1157 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1158 pdqp, resblks, 1, 0); 1159 if (error) 1160 goto out_trans_cancel; 1161 1162 /* 1163 * A newly created regular or special file just has one directory 1164 * entry pointing to them, but a directory also the "." entry 1165 * pointing to itself. 1166 */ 1167 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); 1168 if (error) 1169 goto out_trans_cancel; 1170 1171 /* 1172 * Now we join the directory inode to the transaction. We do not do it 1173 * earlier because xfs_dir_ialloc might commit the previous transaction 1174 * (and release all the locks). An error from here on will result in 1175 * the transaction cancel unlocking dp so don't do it explicitly in the 1176 * error path. 1177 */ 1178 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1179 unlock_dp_on_error = false; 1180 1181 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1182 resblks - XFS_IALLOC_SPACE_RES(mp)); 1183 if (error) { 1184 ASSERT(error != -ENOSPC); 1185 goto out_trans_cancel; 1186 } 1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1189 1190 if (is_dir) { 1191 error = xfs_dir_init(tp, ip, dp); 1192 if (error) 1193 goto out_trans_cancel; 1194 1195 xfs_bumplink(tp, dp); 1196 } 1197 1198 /* 1199 * If this is a synchronous mount, make sure that the 1200 * create transaction goes to disk before returning to 1201 * the user. 1202 */ 1203 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1204 xfs_trans_set_sync(tp); 1205 1206 /* 1207 * Attach the dquot(s) to the inodes and modify them incore. 1208 * These ids of the inode couldn't have changed since the new 1209 * inode has been locked ever since it was created. 1210 */ 1211 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1212 1213 error = xfs_trans_commit(tp); 1214 if (error) 1215 goto out_release_inode; 1216 1217 xfs_qm_dqrele(udqp); 1218 xfs_qm_dqrele(gdqp); 1219 xfs_qm_dqrele(pdqp); 1220 1221 *ipp = ip; 1222 return 0; 1223 1224 out_trans_cancel: 1225 xfs_trans_cancel(tp); 1226 out_release_inode: 1227 /* 1228 * Wait until after the current transaction is aborted to finish the 1229 * setup of the inode and release the inode. This prevents recursive 1230 * transactions and deadlocks from xfs_inactive. 1231 */ 1232 if (ip) { 1233 xfs_finish_inode_setup(ip); 1234 xfs_irele(ip); 1235 } 1236 1237 xfs_qm_dqrele(udqp); 1238 xfs_qm_dqrele(gdqp); 1239 xfs_qm_dqrele(pdqp); 1240 1241 if (unlock_dp_on_error) 1242 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1243 return error; 1244 } 1245 1246 int 1247 xfs_create_tmpfile( 1248 struct xfs_inode *dp, 1249 umode_t mode, 1250 struct xfs_inode **ipp) 1251 { 1252 struct xfs_mount *mp = dp->i_mount; 1253 struct xfs_inode *ip = NULL; 1254 struct xfs_trans *tp = NULL; 1255 int error; 1256 prid_t prid; 1257 struct xfs_dquot *udqp = NULL; 1258 struct xfs_dquot *gdqp = NULL; 1259 struct xfs_dquot *pdqp = NULL; 1260 struct xfs_trans_res *tres; 1261 uint resblks; 1262 1263 if (XFS_FORCED_SHUTDOWN(mp)) 1264 return -EIO; 1265 1266 prid = xfs_get_initial_prid(dp); 1267 1268 /* 1269 * Make sure that we have allocated dquot(s) on disk. 1270 */ 1271 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid, 1272 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1273 &udqp, &gdqp, &pdqp); 1274 if (error) 1275 return error; 1276 1277 resblks = XFS_IALLOC_SPACE_RES(mp); 1278 tres = &M_RES(mp)->tr_create_tmpfile; 1279 1280 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1281 if (error) 1282 goto out_release_inode; 1283 1284 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1285 pdqp, resblks, 1, 0); 1286 if (error) 1287 goto out_trans_cancel; 1288 1289 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); 1290 if (error) 1291 goto out_trans_cancel; 1292 1293 if (mp->m_flags & XFS_MOUNT_WSYNC) 1294 xfs_trans_set_sync(tp); 1295 1296 /* 1297 * Attach the dquot(s) to the inodes and modify them incore. 1298 * These ids of the inode couldn't have changed since the new 1299 * inode has been locked ever since it was created. 1300 */ 1301 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1302 1303 error = xfs_iunlink(tp, ip); 1304 if (error) 1305 goto out_trans_cancel; 1306 1307 error = xfs_trans_commit(tp); 1308 if (error) 1309 goto out_release_inode; 1310 1311 xfs_qm_dqrele(udqp); 1312 xfs_qm_dqrele(gdqp); 1313 xfs_qm_dqrele(pdqp); 1314 1315 *ipp = ip; 1316 return 0; 1317 1318 out_trans_cancel: 1319 xfs_trans_cancel(tp); 1320 out_release_inode: 1321 /* 1322 * Wait until after the current transaction is aborted to finish the 1323 * setup of the inode and release the inode. This prevents recursive 1324 * transactions and deadlocks from xfs_inactive. 1325 */ 1326 if (ip) { 1327 xfs_finish_inode_setup(ip); 1328 xfs_irele(ip); 1329 } 1330 1331 xfs_qm_dqrele(udqp); 1332 xfs_qm_dqrele(gdqp); 1333 xfs_qm_dqrele(pdqp); 1334 1335 return error; 1336 } 1337 1338 int 1339 xfs_link( 1340 xfs_inode_t *tdp, 1341 xfs_inode_t *sip, 1342 struct xfs_name *target_name) 1343 { 1344 xfs_mount_t *mp = tdp->i_mount; 1345 xfs_trans_t *tp; 1346 int error; 1347 int resblks; 1348 1349 trace_xfs_link(tdp, target_name); 1350 1351 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1352 1353 if (XFS_FORCED_SHUTDOWN(mp)) 1354 return -EIO; 1355 1356 error = xfs_qm_dqattach(sip); 1357 if (error) 1358 goto std_return; 1359 1360 error = xfs_qm_dqattach(tdp); 1361 if (error) 1362 goto std_return; 1363 1364 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1365 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1366 if (error == -ENOSPC) { 1367 resblks = 0; 1368 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1369 } 1370 if (error) 1371 goto std_return; 1372 1373 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1374 1375 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1376 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1377 1378 /* 1379 * If we are using project inheritance, we only allow hard link 1380 * creation in our tree when the project IDs are the same; else 1381 * the tree quota mechanism could be circumvented. 1382 */ 1383 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1384 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1385 error = -EXDEV; 1386 goto error_return; 1387 } 1388 1389 if (!resblks) { 1390 error = xfs_dir_canenter(tp, tdp, target_name); 1391 if (error) 1392 goto error_return; 1393 } 1394 1395 /* 1396 * Handle initial link state of O_TMPFILE inode 1397 */ 1398 if (VFS_I(sip)->i_nlink == 0) { 1399 error = xfs_iunlink_remove(tp, sip); 1400 if (error) 1401 goto error_return; 1402 } 1403 1404 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1405 resblks); 1406 if (error) 1407 goto error_return; 1408 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1409 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1410 1411 xfs_bumplink(tp, sip); 1412 1413 /* 1414 * If this is a synchronous mount, make sure that the 1415 * link transaction goes to disk before returning to 1416 * the user. 1417 */ 1418 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1419 xfs_trans_set_sync(tp); 1420 1421 return xfs_trans_commit(tp); 1422 1423 error_return: 1424 xfs_trans_cancel(tp); 1425 std_return: 1426 return error; 1427 } 1428 1429 /* Clear the reflink flag and the cowblocks tag if possible. */ 1430 static void 1431 xfs_itruncate_clear_reflink_flags( 1432 struct xfs_inode *ip) 1433 { 1434 struct xfs_ifork *dfork; 1435 struct xfs_ifork *cfork; 1436 1437 if (!xfs_is_reflink_inode(ip)) 1438 return; 1439 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1440 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1441 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1442 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1443 if (cfork->if_bytes == 0) 1444 xfs_inode_clear_cowblocks_tag(ip); 1445 } 1446 1447 /* 1448 * Free up the underlying blocks past new_size. The new size must be smaller 1449 * than the current size. This routine can be used both for the attribute and 1450 * data fork, and does not modify the inode size, which is left to the caller. 1451 * 1452 * The transaction passed to this routine must have made a permanent log 1453 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1454 * given transaction and start new ones, so make sure everything involved in 1455 * the transaction is tidy before calling here. Some transaction will be 1456 * returned to the caller to be committed. The incoming transaction must 1457 * already include the inode, and both inode locks must be held exclusively. 1458 * The inode must also be "held" within the transaction. On return the inode 1459 * will be "held" within the returned transaction. This routine does NOT 1460 * require any disk space to be reserved for it within the transaction. 1461 * 1462 * If we get an error, we must return with the inode locked and linked into the 1463 * current transaction. This keeps things simple for the higher level code, 1464 * because it always knows that the inode is locked and held in the transaction 1465 * that returns to it whether errors occur or not. We don't mark the inode 1466 * dirty on error so that transactions can be easily aborted if possible. 1467 */ 1468 int 1469 xfs_itruncate_extents_flags( 1470 struct xfs_trans **tpp, 1471 struct xfs_inode *ip, 1472 int whichfork, 1473 xfs_fsize_t new_size, 1474 int flags) 1475 { 1476 struct xfs_mount *mp = ip->i_mount; 1477 struct xfs_trans *tp = *tpp; 1478 xfs_fileoff_t first_unmap_block; 1479 xfs_filblks_t unmap_len; 1480 int error = 0; 1481 1482 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1483 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1484 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1485 ASSERT(new_size <= XFS_ISIZE(ip)); 1486 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1487 ASSERT(ip->i_itemp != NULL); 1488 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1489 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1490 1491 trace_xfs_itruncate_extents_start(ip, new_size); 1492 1493 flags |= xfs_bmapi_aflag(whichfork); 1494 1495 /* 1496 * Since it is possible for space to become allocated beyond 1497 * the end of the file (in a crash where the space is allocated 1498 * but the inode size is not yet updated), simply remove any 1499 * blocks which show up between the new EOF and the maximum 1500 * possible file size. 1501 * 1502 * We have to free all the blocks to the bmbt maximum offset, even if 1503 * the page cache can't scale that far. 1504 */ 1505 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1506 if (first_unmap_block >= XFS_MAX_FILEOFF) { 1507 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1508 return 0; 1509 } 1510 1511 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1512 while (unmap_len > 0) { 1513 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1514 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1515 flags, XFS_ITRUNC_MAX_EXTENTS); 1516 if (error) 1517 goto out; 1518 1519 /* 1520 * Duplicate the transaction that has the permanent 1521 * reservation and commit the old transaction. 1522 */ 1523 error = xfs_defer_finish(&tp); 1524 if (error) 1525 goto out; 1526 1527 error = xfs_trans_roll_inode(&tp, ip); 1528 if (error) 1529 goto out; 1530 } 1531 1532 if (whichfork == XFS_DATA_FORK) { 1533 /* Remove all pending CoW reservations. */ 1534 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1535 first_unmap_block, XFS_MAX_FILEOFF, true); 1536 if (error) 1537 goto out; 1538 1539 xfs_itruncate_clear_reflink_flags(ip); 1540 } 1541 1542 /* 1543 * Always re-log the inode so that our permanent transaction can keep 1544 * on rolling it forward in the log. 1545 */ 1546 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1547 1548 trace_xfs_itruncate_extents_end(ip, new_size); 1549 1550 out: 1551 *tpp = tp; 1552 return error; 1553 } 1554 1555 int 1556 xfs_release( 1557 xfs_inode_t *ip) 1558 { 1559 xfs_mount_t *mp = ip->i_mount; 1560 int error; 1561 1562 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1563 return 0; 1564 1565 /* If this is a read-only mount, don't do this (would generate I/O) */ 1566 if (mp->m_flags & XFS_MOUNT_RDONLY) 1567 return 0; 1568 1569 if (!XFS_FORCED_SHUTDOWN(mp)) { 1570 int truncated; 1571 1572 /* 1573 * If we previously truncated this file and removed old data 1574 * in the process, we want to initiate "early" writeout on 1575 * the last close. This is an attempt to combat the notorious 1576 * NULL files problem which is particularly noticeable from a 1577 * truncate down, buffered (re-)write (delalloc), followed by 1578 * a crash. What we are effectively doing here is 1579 * significantly reducing the time window where we'd otherwise 1580 * be exposed to that problem. 1581 */ 1582 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1583 if (truncated) { 1584 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1585 if (ip->i_delayed_blks > 0) { 1586 error = filemap_flush(VFS_I(ip)->i_mapping); 1587 if (error) 1588 return error; 1589 } 1590 } 1591 } 1592 1593 if (VFS_I(ip)->i_nlink == 0) 1594 return 0; 1595 1596 if (xfs_can_free_eofblocks(ip, false)) { 1597 1598 /* 1599 * Check if the inode is being opened, written and closed 1600 * frequently and we have delayed allocation blocks outstanding 1601 * (e.g. streaming writes from the NFS server), truncating the 1602 * blocks past EOF will cause fragmentation to occur. 1603 * 1604 * In this case don't do the truncation, but we have to be 1605 * careful how we detect this case. Blocks beyond EOF show up as 1606 * i_delayed_blks even when the inode is clean, so we need to 1607 * truncate them away first before checking for a dirty release. 1608 * Hence on the first dirty close we will still remove the 1609 * speculative allocation, but after that we will leave it in 1610 * place. 1611 */ 1612 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1613 return 0; 1614 /* 1615 * If we can't get the iolock just skip truncating the blocks 1616 * past EOF because we could deadlock with the mmap_lock 1617 * otherwise. We'll get another chance to drop them once the 1618 * last reference to the inode is dropped, so we'll never leak 1619 * blocks permanently. 1620 */ 1621 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1622 error = xfs_free_eofblocks(ip); 1623 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1624 if (error) 1625 return error; 1626 } 1627 1628 /* delalloc blocks after truncation means it really is dirty */ 1629 if (ip->i_delayed_blks) 1630 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1631 } 1632 return 0; 1633 } 1634 1635 /* 1636 * xfs_inactive_truncate 1637 * 1638 * Called to perform a truncate when an inode becomes unlinked. 1639 */ 1640 STATIC int 1641 xfs_inactive_truncate( 1642 struct xfs_inode *ip) 1643 { 1644 struct xfs_mount *mp = ip->i_mount; 1645 struct xfs_trans *tp; 1646 int error; 1647 1648 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1649 if (error) { 1650 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1651 return error; 1652 } 1653 xfs_ilock(ip, XFS_ILOCK_EXCL); 1654 xfs_trans_ijoin(tp, ip, 0); 1655 1656 /* 1657 * Log the inode size first to prevent stale data exposure in the event 1658 * of a system crash before the truncate completes. See the related 1659 * comment in xfs_vn_setattr_size() for details. 1660 */ 1661 ip->i_d.di_size = 0; 1662 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1663 1664 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1665 if (error) 1666 goto error_trans_cancel; 1667 1668 ASSERT(ip->i_df.if_nextents == 0); 1669 1670 error = xfs_trans_commit(tp); 1671 if (error) 1672 goto error_unlock; 1673 1674 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1675 return 0; 1676 1677 error_trans_cancel: 1678 xfs_trans_cancel(tp); 1679 error_unlock: 1680 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1681 return error; 1682 } 1683 1684 /* 1685 * xfs_inactive_ifree() 1686 * 1687 * Perform the inode free when an inode is unlinked. 1688 */ 1689 STATIC int 1690 xfs_inactive_ifree( 1691 struct xfs_inode *ip) 1692 { 1693 struct xfs_mount *mp = ip->i_mount; 1694 struct xfs_trans *tp; 1695 int error; 1696 1697 /* 1698 * We try to use a per-AG reservation for any block needed by the finobt 1699 * tree, but as the finobt feature predates the per-AG reservation 1700 * support a degraded file system might not have enough space for the 1701 * reservation at mount time. In that case try to dip into the reserved 1702 * pool and pray. 1703 * 1704 * Send a warning if the reservation does happen to fail, as the inode 1705 * now remains allocated and sits on the unlinked list until the fs is 1706 * repaired. 1707 */ 1708 if (unlikely(mp->m_finobt_nores)) { 1709 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1710 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1711 &tp); 1712 } else { 1713 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1714 } 1715 if (error) { 1716 if (error == -ENOSPC) { 1717 xfs_warn_ratelimited(mp, 1718 "Failed to remove inode(s) from unlinked list. " 1719 "Please free space, unmount and run xfs_repair."); 1720 } else { 1721 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1722 } 1723 return error; 1724 } 1725 1726 /* 1727 * We do not hold the inode locked across the entire rolling transaction 1728 * here. We only need to hold it for the first transaction that 1729 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1730 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1731 * here breaks the relationship between cluster buffer invalidation and 1732 * stale inode invalidation on cluster buffer item journal commit 1733 * completion, and can result in leaving dirty stale inodes hanging 1734 * around in memory. 1735 * 1736 * We have no need for serialising this inode operation against other 1737 * operations - we freed the inode and hence reallocation is required 1738 * and that will serialise on reallocating the space the deferops need 1739 * to free. Hence we can unlock the inode on the first commit of 1740 * the transaction rather than roll it right through the deferops. This 1741 * avoids relogging the XFS_ISTALE inode. 1742 * 1743 * We check that xfs_ifree() hasn't grown an internal transaction roll 1744 * by asserting that the inode is still locked when it returns. 1745 */ 1746 xfs_ilock(ip, XFS_ILOCK_EXCL); 1747 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1748 1749 error = xfs_ifree(tp, ip); 1750 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1751 if (error) { 1752 /* 1753 * If we fail to free the inode, shut down. The cancel 1754 * might do that, we need to make sure. Otherwise the 1755 * inode might be lost for a long time or forever. 1756 */ 1757 if (!XFS_FORCED_SHUTDOWN(mp)) { 1758 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1759 __func__, error); 1760 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1761 } 1762 xfs_trans_cancel(tp); 1763 return error; 1764 } 1765 1766 /* 1767 * Credit the quota account(s). The inode is gone. 1768 */ 1769 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1770 1771 /* 1772 * Just ignore errors at this point. There is nothing we can do except 1773 * to try to keep going. Make sure it's not a silent error. 1774 */ 1775 error = xfs_trans_commit(tp); 1776 if (error) 1777 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1778 __func__, error); 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * xfs_inactive 1785 * 1786 * This is called when the vnode reference count for the vnode 1787 * goes to zero. If the file has been unlinked, then it must 1788 * now be truncated. Also, we clear all of the read-ahead state 1789 * kept for the inode here since the file is now closed. 1790 */ 1791 void 1792 xfs_inactive( 1793 xfs_inode_t *ip) 1794 { 1795 struct xfs_mount *mp; 1796 int error; 1797 int truncate = 0; 1798 1799 /* 1800 * If the inode is already free, then there can be nothing 1801 * to clean up here. 1802 */ 1803 if (VFS_I(ip)->i_mode == 0) { 1804 ASSERT(ip->i_df.if_broot_bytes == 0); 1805 return; 1806 } 1807 1808 mp = ip->i_mount; 1809 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1810 1811 /* If this is a read-only mount, don't do this (would generate I/O) */ 1812 if (mp->m_flags & XFS_MOUNT_RDONLY) 1813 return; 1814 1815 /* Try to clean out the cow blocks if there are any. */ 1816 if (xfs_inode_has_cow_data(ip)) 1817 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1818 1819 if (VFS_I(ip)->i_nlink != 0) { 1820 /* 1821 * force is true because we are evicting an inode from the 1822 * cache. Post-eof blocks must be freed, lest we end up with 1823 * broken free space accounting. 1824 * 1825 * Note: don't bother with iolock here since lockdep complains 1826 * about acquiring it in reclaim context. We have the only 1827 * reference to the inode at this point anyways. 1828 */ 1829 if (xfs_can_free_eofblocks(ip, true)) 1830 xfs_free_eofblocks(ip); 1831 1832 return; 1833 } 1834 1835 if (S_ISREG(VFS_I(ip)->i_mode) && 1836 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1837 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1838 truncate = 1; 1839 1840 error = xfs_qm_dqattach(ip); 1841 if (error) 1842 return; 1843 1844 if (S_ISLNK(VFS_I(ip)->i_mode)) 1845 error = xfs_inactive_symlink(ip); 1846 else if (truncate) 1847 error = xfs_inactive_truncate(ip); 1848 if (error) 1849 return; 1850 1851 /* 1852 * If there are attributes associated with the file then blow them away 1853 * now. The code calls a routine that recursively deconstructs the 1854 * attribute fork. If also blows away the in-core attribute fork. 1855 */ 1856 if (XFS_IFORK_Q(ip)) { 1857 error = xfs_attr_inactive(ip); 1858 if (error) 1859 return; 1860 } 1861 1862 ASSERT(!ip->i_afp); 1863 ASSERT(ip->i_d.di_forkoff == 0); 1864 1865 /* 1866 * Free the inode. 1867 */ 1868 error = xfs_inactive_ifree(ip); 1869 if (error) 1870 return; 1871 1872 /* 1873 * Release the dquots held by inode, if any. 1874 */ 1875 xfs_qm_dqdetach(ip); 1876 } 1877 1878 /* 1879 * In-Core Unlinked List Lookups 1880 * ============================= 1881 * 1882 * Every inode is supposed to be reachable from some other piece of metadata 1883 * with the exception of the root directory. Inodes with a connection to a 1884 * file descriptor but not linked from anywhere in the on-disk directory tree 1885 * are collectively known as unlinked inodes, though the filesystem itself 1886 * maintains links to these inodes so that on-disk metadata are consistent. 1887 * 1888 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1889 * header contains a number of buckets that point to an inode, and each inode 1890 * record has a pointer to the next inode in the hash chain. This 1891 * singly-linked list causes scaling problems in the iunlink remove function 1892 * because we must walk that list to find the inode that points to the inode 1893 * being removed from the unlinked hash bucket list. 1894 * 1895 * What if we modelled the unlinked list as a collection of records capturing 1896 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1897 * have a fast way to look up unlinked list predecessors, which avoids the 1898 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1899 * rhashtable. 1900 * 1901 * Because this is a backref cache, we ignore operational failures since the 1902 * iunlink code can fall back to the slow bucket walk. The only errors that 1903 * should bubble out are for obviously incorrect situations. 1904 * 1905 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1906 * access or have otherwise provided for concurrency control. 1907 */ 1908 1909 /* Capture a "X.next_unlinked = Y" relationship. */ 1910 struct xfs_iunlink { 1911 struct rhash_head iu_rhash_head; 1912 xfs_agino_t iu_agino; /* X */ 1913 xfs_agino_t iu_next_unlinked; /* Y */ 1914 }; 1915 1916 /* Unlinked list predecessor lookup hashtable construction */ 1917 static int 1918 xfs_iunlink_obj_cmpfn( 1919 struct rhashtable_compare_arg *arg, 1920 const void *obj) 1921 { 1922 const xfs_agino_t *key = arg->key; 1923 const struct xfs_iunlink *iu = obj; 1924 1925 if (iu->iu_next_unlinked != *key) 1926 return 1; 1927 return 0; 1928 } 1929 1930 static const struct rhashtable_params xfs_iunlink_hash_params = { 1931 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1932 .key_len = sizeof(xfs_agino_t), 1933 .key_offset = offsetof(struct xfs_iunlink, 1934 iu_next_unlinked), 1935 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1936 .automatic_shrinking = true, 1937 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1938 }; 1939 1940 /* 1941 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1942 * relation is found. 1943 */ 1944 static xfs_agino_t 1945 xfs_iunlink_lookup_backref( 1946 struct xfs_perag *pag, 1947 xfs_agino_t agino) 1948 { 1949 struct xfs_iunlink *iu; 1950 1951 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1952 xfs_iunlink_hash_params); 1953 return iu ? iu->iu_agino : NULLAGINO; 1954 } 1955 1956 /* 1957 * Take ownership of an iunlink cache entry and insert it into the hash table. 1958 * If successful, the entry will be owned by the cache; if not, it is freed. 1959 * Either way, the caller does not own @iu after this call. 1960 */ 1961 static int 1962 xfs_iunlink_insert_backref( 1963 struct xfs_perag *pag, 1964 struct xfs_iunlink *iu) 1965 { 1966 int error; 1967 1968 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1969 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1970 /* 1971 * Fail loudly if there already was an entry because that's a sign of 1972 * corruption of in-memory data. Also fail loudly if we see an error 1973 * code we didn't anticipate from the rhashtable code. Currently we 1974 * only anticipate ENOMEM. 1975 */ 1976 if (error) { 1977 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1978 kmem_free(iu); 1979 } 1980 /* 1981 * Absorb any runtime errors that aren't a result of corruption because 1982 * this is a cache and we can always fall back to bucket list scanning. 1983 */ 1984 if (error != 0 && error != -EEXIST) 1985 error = 0; 1986 return error; 1987 } 1988 1989 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1990 static int 1991 xfs_iunlink_add_backref( 1992 struct xfs_perag *pag, 1993 xfs_agino_t prev_agino, 1994 xfs_agino_t this_agino) 1995 { 1996 struct xfs_iunlink *iu; 1997 1998 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1999 return 0; 2000 2001 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 2002 iu->iu_agino = prev_agino; 2003 iu->iu_next_unlinked = this_agino; 2004 2005 return xfs_iunlink_insert_backref(pag, iu); 2006 } 2007 2008 /* 2009 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 2010 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 2011 * wasn't any such entry then we don't bother. 2012 */ 2013 static int 2014 xfs_iunlink_change_backref( 2015 struct xfs_perag *pag, 2016 xfs_agino_t agino, 2017 xfs_agino_t next_unlinked) 2018 { 2019 struct xfs_iunlink *iu; 2020 int error; 2021 2022 /* Look up the old entry; if there wasn't one then exit. */ 2023 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 2024 xfs_iunlink_hash_params); 2025 if (!iu) 2026 return 0; 2027 2028 /* 2029 * Remove the entry. This shouldn't ever return an error, but if we 2030 * couldn't remove the old entry we don't want to add it again to the 2031 * hash table, and if the entry disappeared on us then someone's 2032 * violated the locking rules and we need to fail loudly. Either way 2033 * we cannot remove the inode because internal state is or would have 2034 * been corrupt. 2035 */ 2036 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 2037 &iu->iu_rhash_head, xfs_iunlink_hash_params); 2038 if (error) 2039 return error; 2040 2041 /* If there is no new next entry just free our item and return. */ 2042 if (next_unlinked == NULLAGINO) { 2043 kmem_free(iu); 2044 return 0; 2045 } 2046 2047 /* Update the entry and re-add it to the hash table. */ 2048 iu->iu_next_unlinked = next_unlinked; 2049 return xfs_iunlink_insert_backref(pag, iu); 2050 } 2051 2052 /* Set up the in-core predecessor structures. */ 2053 int 2054 xfs_iunlink_init( 2055 struct xfs_perag *pag) 2056 { 2057 return rhashtable_init(&pag->pagi_unlinked_hash, 2058 &xfs_iunlink_hash_params); 2059 } 2060 2061 /* Free the in-core predecessor structures. */ 2062 static void 2063 xfs_iunlink_free_item( 2064 void *ptr, 2065 void *arg) 2066 { 2067 struct xfs_iunlink *iu = ptr; 2068 bool *freed_anything = arg; 2069 2070 *freed_anything = true; 2071 kmem_free(iu); 2072 } 2073 2074 void 2075 xfs_iunlink_destroy( 2076 struct xfs_perag *pag) 2077 { 2078 bool freed_anything = false; 2079 2080 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 2081 xfs_iunlink_free_item, &freed_anything); 2082 2083 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 2084 } 2085 2086 /* 2087 * Point the AGI unlinked bucket at an inode and log the results. The caller 2088 * is responsible for validating the old value. 2089 */ 2090 STATIC int 2091 xfs_iunlink_update_bucket( 2092 struct xfs_trans *tp, 2093 xfs_agnumber_t agno, 2094 struct xfs_buf *agibp, 2095 unsigned int bucket_index, 2096 xfs_agino_t new_agino) 2097 { 2098 struct xfs_agi *agi = agibp->b_addr; 2099 xfs_agino_t old_value; 2100 int offset; 2101 2102 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 2103 2104 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2105 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 2106 old_value, new_agino); 2107 2108 /* 2109 * We should never find the head of the list already set to the value 2110 * passed in because either we're adding or removing ourselves from the 2111 * head of the list. 2112 */ 2113 if (old_value == new_agino) { 2114 xfs_buf_mark_corrupt(agibp); 2115 return -EFSCORRUPTED; 2116 } 2117 2118 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2119 offset = offsetof(struct xfs_agi, agi_unlinked) + 2120 (sizeof(xfs_agino_t) * bucket_index); 2121 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2122 return 0; 2123 } 2124 2125 /* Set an on-disk inode's next_unlinked pointer. */ 2126 STATIC void 2127 xfs_iunlink_update_dinode( 2128 struct xfs_trans *tp, 2129 xfs_agnumber_t agno, 2130 xfs_agino_t agino, 2131 struct xfs_buf *ibp, 2132 struct xfs_dinode *dip, 2133 struct xfs_imap *imap, 2134 xfs_agino_t next_agino) 2135 { 2136 struct xfs_mount *mp = tp->t_mountp; 2137 int offset; 2138 2139 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2140 2141 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2142 be32_to_cpu(dip->di_next_unlinked), next_agino); 2143 2144 dip->di_next_unlinked = cpu_to_be32(next_agino); 2145 offset = imap->im_boffset + 2146 offsetof(struct xfs_dinode, di_next_unlinked); 2147 2148 /* need to recalc the inode CRC if appropriate */ 2149 xfs_dinode_calc_crc(mp, dip); 2150 xfs_trans_inode_buf(tp, ibp); 2151 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2152 } 2153 2154 /* Set an in-core inode's unlinked pointer and return the old value. */ 2155 STATIC int 2156 xfs_iunlink_update_inode( 2157 struct xfs_trans *tp, 2158 struct xfs_inode *ip, 2159 xfs_agnumber_t agno, 2160 xfs_agino_t next_agino, 2161 xfs_agino_t *old_next_agino) 2162 { 2163 struct xfs_mount *mp = tp->t_mountp; 2164 struct xfs_dinode *dip; 2165 struct xfs_buf *ibp; 2166 xfs_agino_t old_value; 2167 int error; 2168 2169 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2170 2171 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2172 if (error) 2173 return error; 2174 2175 /* Make sure the old pointer isn't garbage. */ 2176 old_value = be32_to_cpu(dip->di_next_unlinked); 2177 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2178 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2179 sizeof(*dip), __this_address); 2180 error = -EFSCORRUPTED; 2181 goto out; 2182 } 2183 2184 /* 2185 * Since we're updating a linked list, we should never find that the 2186 * current pointer is the same as the new value, unless we're 2187 * terminating the list. 2188 */ 2189 *old_next_agino = old_value; 2190 if (old_value == next_agino) { 2191 if (next_agino != NULLAGINO) { 2192 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2193 dip, sizeof(*dip), __this_address); 2194 error = -EFSCORRUPTED; 2195 } 2196 goto out; 2197 } 2198 2199 /* Ok, update the new pointer. */ 2200 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2201 ibp, dip, &ip->i_imap, next_agino); 2202 return 0; 2203 out: 2204 xfs_trans_brelse(tp, ibp); 2205 return error; 2206 } 2207 2208 /* 2209 * This is called when the inode's link count has gone to 0 or we are creating 2210 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2211 * 2212 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2213 * list when the inode is freed. 2214 */ 2215 STATIC int 2216 xfs_iunlink( 2217 struct xfs_trans *tp, 2218 struct xfs_inode *ip) 2219 { 2220 struct xfs_mount *mp = tp->t_mountp; 2221 struct xfs_agi *agi; 2222 struct xfs_buf *agibp; 2223 xfs_agino_t next_agino; 2224 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2225 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2226 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2227 int error; 2228 2229 ASSERT(VFS_I(ip)->i_nlink == 0); 2230 ASSERT(VFS_I(ip)->i_mode != 0); 2231 trace_xfs_iunlink(ip); 2232 2233 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2234 error = xfs_read_agi(mp, tp, agno, &agibp); 2235 if (error) 2236 return error; 2237 agi = agibp->b_addr; 2238 2239 /* 2240 * Get the index into the agi hash table for the list this inode will 2241 * go on. Make sure the pointer isn't garbage and that this inode 2242 * isn't already on the list. 2243 */ 2244 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2245 if (next_agino == agino || 2246 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2247 xfs_buf_mark_corrupt(agibp); 2248 return -EFSCORRUPTED; 2249 } 2250 2251 if (next_agino != NULLAGINO) { 2252 xfs_agino_t old_agino; 2253 2254 /* 2255 * There is already another inode in the bucket, so point this 2256 * inode to the current head of the list. 2257 */ 2258 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2259 &old_agino); 2260 if (error) 2261 return error; 2262 ASSERT(old_agino == NULLAGINO); 2263 2264 /* 2265 * agino has been unlinked, add a backref from the next inode 2266 * back to agino. 2267 */ 2268 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2269 if (error) 2270 return error; 2271 } 2272 2273 /* Point the head of the list to point to this inode. */ 2274 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2275 } 2276 2277 /* Return the imap, dinode pointer, and buffer for an inode. */ 2278 STATIC int 2279 xfs_iunlink_map_ino( 2280 struct xfs_trans *tp, 2281 xfs_agnumber_t agno, 2282 xfs_agino_t agino, 2283 struct xfs_imap *imap, 2284 struct xfs_dinode **dipp, 2285 struct xfs_buf **bpp) 2286 { 2287 struct xfs_mount *mp = tp->t_mountp; 2288 int error; 2289 2290 imap->im_blkno = 0; 2291 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2292 if (error) { 2293 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2294 __func__, error); 2295 return error; 2296 } 2297 2298 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2299 if (error) { 2300 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2301 __func__, error); 2302 return error; 2303 } 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * Walk the unlinked chain from @head_agino until we find the inode that 2310 * points to @target_agino. Return the inode number, map, dinode pointer, 2311 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2312 * 2313 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2314 * @agino, @imap, @dipp, and @bpp are all output parameters. 2315 * 2316 * Do not call this function if @target_agino is the head of the list. 2317 */ 2318 STATIC int 2319 xfs_iunlink_map_prev( 2320 struct xfs_trans *tp, 2321 xfs_agnumber_t agno, 2322 xfs_agino_t head_agino, 2323 xfs_agino_t target_agino, 2324 xfs_agino_t *agino, 2325 struct xfs_imap *imap, 2326 struct xfs_dinode **dipp, 2327 struct xfs_buf **bpp, 2328 struct xfs_perag *pag) 2329 { 2330 struct xfs_mount *mp = tp->t_mountp; 2331 xfs_agino_t next_agino; 2332 int error; 2333 2334 ASSERT(head_agino != target_agino); 2335 *bpp = NULL; 2336 2337 /* See if our backref cache can find it faster. */ 2338 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2339 if (*agino != NULLAGINO) { 2340 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2341 if (error) 2342 return error; 2343 2344 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2345 return 0; 2346 2347 /* 2348 * If we get here the cache contents were corrupt, so drop the 2349 * buffer and fall back to walking the bucket list. 2350 */ 2351 xfs_trans_brelse(tp, *bpp); 2352 *bpp = NULL; 2353 WARN_ON_ONCE(1); 2354 } 2355 2356 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2357 2358 /* Otherwise, walk the entire bucket until we find it. */ 2359 next_agino = head_agino; 2360 while (next_agino != target_agino) { 2361 xfs_agino_t unlinked_agino; 2362 2363 if (*bpp) 2364 xfs_trans_brelse(tp, *bpp); 2365 2366 *agino = next_agino; 2367 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2368 bpp); 2369 if (error) 2370 return error; 2371 2372 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2373 /* 2374 * Make sure this pointer is valid and isn't an obvious 2375 * infinite loop. 2376 */ 2377 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2378 next_agino == unlinked_agino) { 2379 XFS_CORRUPTION_ERROR(__func__, 2380 XFS_ERRLEVEL_LOW, mp, 2381 *dipp, sizeof(**dipp)); 2382 error = -EFSCORRUPTED; 2383 return error; 2384 } 2385 next_agino = unlinked_agino; 2386 } 2387 2388 return 0; 2389 } 2390 2391 /* 2392 * Pull the on-disk inode from the AGI unlinked list. 2393 */ 2394 STATIC int 2395 xfs_iunlink_remove( 2396 struct xfs_trans *tp, 2397 struct xfs_inode *ip) 2398 { 2399 struct xfs_mount *mp = tp->t_mountp; 2400 struct xfs_agi *agi; 2401 struct xfs_buf *agibp; 2402 struct xfs_buf *last_ibp; 2403 struct xfs_dinode *last_dip = NULL; 2404 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2405 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2406 xfs_agino_t next_agino; 2407 xfs_agino_t head_agino; 2408 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2409 int error; 2410 2411 trace_xfs_iunlink_remove(ip); 2412 2413 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2414 error = xfs_read_agi(mp, tp, agno, &agibp); 2415 if (error) 2416 return error; 2417 agi = agibp->b_addr; 2418 2419 /* 2420 * Get the index into the agi hash table for the list this inode will 2421 * go on. Make sure the head pointer isn't garbage. 2422 */ 2423 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2424 if (!xfs_verify_agino(mp, agno, head_agino)) { 2425 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2426 agi, sizeof(*agi)); 2427 return -EFSCORRUPTED; 2428 } 2429 2430 /* 2431 * Set our inode's next_unlinked pointer to NULL and then return 2432 * the old pointer value so that we can update whatever was previous 2433 * to us in the list to point to whatever was next in the list. 2434 */ 2435 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2436 if (error) 2437 return error; 2438 2439 /* 2440 * If there was a backref pointing from the next inode back to this 2441 * one, remove it because we've removed this inode from the list. 2442 * 2443 * Later, if this inode was in the middle of the list we'll update 2444 * this inode's backref to point from the next inode. 2445 */ 2446 if (next_agino != NULLAGINO) { 2447 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2448 NULLAGINO); 2449 if (error) 2450 return error; 2451 } 2452 2453 if (head_agino != agino) { 2454 struct xfs_imap imap; 2455 xfs_agino_t prev_agino; 2456 2457 /* We need to search the list for the inode being freed. */ 2458 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2459 &prev_agino, &imap, &last_dip, &last_ibp, 2460 agibp->b_pag); 2461 if (error) 2462 return error; 2463 2464 /* Point the previous inode on the list to the next inode. */ 2465 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2466 last_dip, &imap, next_agino); 2467 2468 /* 2469 * Now we deal with the backref for this inode. If this inode 2470 * pointed at a real inode, change the backref that pointed to 2471 * us to point to our old next. If this inode was the end of 2472 * the list, delete the backref that pointed to us. Note that 2473 * change_backref takes care of deleting the backref if 2474 * next_agino is NULLAGINO. 2475 */ 2476 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2477 next_agino); 2478 } 2479 2480 /* Point the head of the list to the next unlinked inode. */ 2481 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2482 next_agino); 2483 } 2484 2485 /* 2486 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2487 * mark it stale. We should only find clean inodes in this lookup that aren't 2488 * already stale. 2489 */ 2490 static void 2491 xfs_ifree_mark_inode_stale( 2492 struct xfs_buf *bp, 2493 struct xfs_inode *free_ip, 2494 xfs_ino_t inum) 2495 { 2496 struct xfs_mount *mp = bp->b_mount; 2497 struct xfs_perag *pag = bp->b_pag; 2498 struct xfs_inode_log_item *iip; 2499 struct xfs_inode *ip; 2500 2501 retry: 2502 rcu_read_lock(); 2503 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2504 2505 /* Inode not in memory, nothing to do */ 2506 if (!ip) { 2507 rcu_read_unlock(); 2508 return; 2509 } 2510 2511 /* 2512 * because this is an RCU protected lookup, we could find a recently 2513 * freed or even reallocated inode during the lookup. We need to check 2514 * under the i_flags_lock for a valid inode here. Skip it if it is not 2515 * valid, the wrong inode or stale. 2516 */ 2517 spin_lock(&ip->i_flags_lock); 2518 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2519 goto out_iflags_unlock; 2520 2521 /* 2522 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2523 * other inodes that we did not find in the list attached to the buffer 2524 * and are not already marked stale. If we can't lock it, back off and 2525 * retry. 2526 */ 2527 if (ip != free_ip) { 2528 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2529 spin_unlock(&ip->i_flags_lock); 2530 rcu_read_unlock(); 2531 delay(1); 2532 goto retry; 2533 } 2534 } 2535 ip->i_flags |= XFS_ISTALE; 2536 2537 /* 2538 * If the inode is flushing, it is already attached to the buffer. All 2539 * we needed to do here is mark the inode stale so buffer IO completion 2540 * will remove it from the AIL. 2541 */ 2542 iip = ip->i_itemp; 2543 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2544 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2545 ASSERT(iip->ili_last_fields); 2546 goto out_iunlock; 2547 } 2548 2549 /* 2550 * Inodes not attached to the buffer can be released immediately. 2551 * Everything else has to go through xfs_iflush_abort() on journal 2552 * commit as the flock synchronises removal of the inode from the 2553 * cluster buffer against inode reclaim. 2554 */ 2555 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2556 goto out_iunlock; 2557 2558 __xfs_iflags_set(ip, XFS_IFLUSHING); 2559 spin_unlock(&ip->i_flags_lock); 2560 rcu_read_unlock(); 2561 2562 /* we have a dirty inode in memory that has not yet been flushed. */ 2563 spin_lock(&iip->ili_lock); 2564 iip->ili_last_fields = iip->ili_fields; 2565 iip->ili_fields = 0; 2566 iip->ili_fsync_fields = 0; 2567 spin_unlock(&iip->ili_lock); 2568 ASSERT(iip->ili_last_fields); 2569 2570 if (ip != free_ip) 2571 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2572 return; 2573 2574 out_iunlock: 2575 if (ip != free_ip) 2576 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2577 out_iflags_unlock: 2578 spin_unlock(&ip->i_flags_lock); 2579 rcu_read_unlock(); 2580 } 2581 2582 /* 2583 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2584 * inodes that are in memory - they all must be marked stale and attached to 2585 * the cluster buffer. 2586 */ 2587 STATIC int 2588 xfs_ifree_cluster( 2589 struct xfs_inode *free_ip, 2590 struct xfs_trans *tp, 2591 struct xfs_icluster *xic) 2592 { 2593 struct xfs_mount *mp = free_ip->i_mount; 2594 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2595 struct xfs_buf *bp; 2596 xfs_daddr_t blkno; 2597 xfs_ino_t inum = xic->first_ino; 2598 int nbufs; 2599 int i, j; 2600 int ioffset; 2601 int error; 2602 2603 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2604 2605 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2606 /* 2607 * The allocation bitmap tells us which inodes of the chunk were 2608 * physically allocated. Skip the cluster if an inode falls into 2609 * a sparse region. 2610 */ 2611 ioffset = inum - xic->first_ino; 2612 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2613 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2614 continue; 2615 } 2616 2617 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2618 XFS_INO_TO_AGBNO(mp, inum)); 2619 2620 /* 2621 * We obtain and lock the backing buffer first in the process 2622 * here to ensure dirty inodes attached to the buffer remain in 2623 * the flushing state while we mark them stale. 2624 * 2625 * If we scan the in-memory inodes first, then buffer IO can 2626 * complete before we get a lock on it, and hence we may fail 2627 * to mark all the active inodes on the buffer stale. 2628 */ 2629 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2630 mp->m_bsize * igeo->blocks_per_cluster, 2631 XBF_UNMAPPED, &bp); 2632 if (error) 2633 return error; 2634 2635 /* 2636 * This buffer may not have been correctly initialised as we 2637 * didn't read it from disk. That's not important because we are 2638 * only using to mark the buffer as stale in the log, and to 2639 * attach stale cached inodes on it. That means it will never be 2640 * dispatched for IO. If it is, we want to know about it, and we 2641 * want it to fail. We can acheive this by adding a write 2642 * verifier to the buffer. 2643 */ 2644 bp->b_ops = &xfs_inode_buf_ops; 2645 2646 /* 2647 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2648 * too. This requires lookups, and will skip inodes that we've 2649 * already marked XFS_ISTALE. 2650 */ 2651 for (i = 0; i < igeo->inodes_per_cluster; i++) 2652 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2653 2654 xfs_trans_stale_inode_buf(tp, bp); 2655 xfs_trans_binval(tp, bp); 2656 } 2657 return 0; 2658 } 2659 2660 /* 2661 * This is called to return an inode to the inode free list. 2662 * The inode should already be truncated to 0 length and have 2663 * no pages associated with it. This routine also assumes that 2664 * the inode is already a part of the transaction. 2665 * 2666 * The on-disk copy of the inode will have been added to the list 2667 * of unlinked inodes in the AGI. We need to remove the inode from 2668 * that list atomically with respect to freeing it here. 2669 */ 2670 int 2671 xfs_ifree( 2672 struct xfs_trans *tp, 2673 struct xfs_inode *ip) 2674 { 2675 int error; 2676 struct xfs_icluster xic = { 0 }; 2677 struct xfs_inode_log_item *iip = ip->i_itemp; 2678 2679 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2680 ASSERT(VFS_I(ip)->i_nlink == 0); 2681 ASSERT(ip->i_df.if_nextents == 0); 2682 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2683 ASSERT(ip->i_d.di_nblocks == 0); 2684 2685 /* 2686 * Pull the on-disk inode from the AGI unlinked list. 2687 */ 2688 error = xfs_iunlink_remove(tp, ip); 2689 if (error) 2690 return error; 2691 2692 error = xfs_difree(tp, ip->i_ino, &xic); 2693 if (error) 2694 return error; 2695 2696 /* 2697 * Free any local-format data sitting around before we reset the 2698 * data fork to extents format. Note that the attr fork data has 2699 * already been freed by xfs_attr_inactive. 2700 */ 2701 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2702 kmem_free(ip->i_df.if_u1.if_data); 2703 ip->i_df.if_u1.if_data = NULL; 2704 ip->i_df.if_bytes = 0; 2705 } 2706 2707 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2708 ip->i_d.di_flags = 0; 2709 ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2; 2710 ip->i_d.di_dmevmask = 0; 2711 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2712 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2713 2714 /* Don't attempt to replay owner changes for a deleted inode */ 2715 spin_lock(&iip->ili_lock); 2716 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2717 spin_unlock(&iip->ili_lock); 2718 2719 /* 2720 * Bump the generation count so no one will be confused 2721 * by reincarnations of this inode. 2722 */ 2723 VFS_I(ip)->i_generation++; 2724 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2725 2726 if (xic.deleted) 2727 error = xfs_ifree_cluster(ip, tp, &xic); 2728 2729 return error; 2730 } 2731 2732 /* 2733 * This is called to unpin an inode. The caller must have the inode locked 2734 * in at least shared mode so that the buffer cannot be subsequently pinned 2735 * once someone is waiting for it to be unpinned. 2736 */ 2737 static void 2738 xfs_iunpin( 2739 struct xfs_inode *ip) 2740 { 2741 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2742 2743 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2744 2745 /* Give the log a push to start the unpinning I/O */ 2746 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2747 2748 } 2749 2750 static void 2751 __xfs_iunpin_wait( 2752 struct xfs_inode *ip) 2753 { 2754 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2755 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2756 2757 xfs_iunpin(ip); 2758 2759 do { 2760 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2761 if (xfs_ipincount(ip)) 2762 io_schedule(); 2763 } while (xfs_ipincount(ip)); 2764 finish_wait(wq, &wait.wq_entry); 2765 } 2766 2767 void 2768 xfs_iunpin_wait( 2769 struct xfs_inode *ip) 2770 { 2771 if (xfs_ipincount(ip)) 2772 __xfs_iunpin_wait(ip); 2773 } 2774 2775 /* 2776 * Removing an inode from the namespace involves removing the directory entry 2777 * and dropping the link count on the inode. Removing the directory entry can 2778 * result in locking an AGF (directory blocks were freed) and removing a link 2779 * count can result in placing the inode on an unlinked list which results in 2780 * locking an AGI. 2781 * 2782 * The big problem here is that we have an ordering constraint on AGF and AGI 2783 * locking - inode allocation locks the AGI, then can allocate a new extent for 2784 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2785 * removes the inode from the unlinked list, requiring that we lock the AGI 2786 * first, and then freeing the inode can result in an inode chunk being freed 2787 * and hence freeing disk space requiring that we lock an AGF. 2788 * 2789 * Hence the ordering that is imposed by other parts of the code is AGI before 2790 * AGF. This means we cannot remove the directory entry before we drop the inode 2791 * reference count and put it on the unlinked list as this results in a lock 2792 * order of AGF then AGI, and this can deadlock against inode allocation and 2793 * freeing. Therefore we must drop the link counts before we remove the 2794 * directory entry. 2795 * 2796 * This is still safe from a transactional point of view - it is not until we 2797 * get to xfs_defer_finish() that we have the possibility of multiple 2798 * transactions in this operation. Hence as long as we remove the directory 2799 * entry and drop the link count in the first transaction of the remove 2800 * operation, there are no transactional constraints on the ordering here. 2801 */ 2802 int 2803 xfs_remove( 2804 xfs_inode_t *dp, 2805 struct xfs_name *name, 2806 xfs_inode_t *ip) 2807 { 2808 xfs_mount_t *mp = dp->i_mount; 2809 xfs_trans_t *tp = NULL; 2810 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2811 int error = 0; 2812 uint resblks; 2813 2814 trace_xfs_remove(dp, name); 2815 2816 if (XFS_FORCED_SHUTDOWN(mp)) 2817 return -EIO; 2818 2819 error = xfs_qm_dqattach(dp); 2820 if (error) 2821 goto std_return; 2822 2823 error = xfs_qm_dqattach(ip); 2824 if (error) 2825 goto std_return; 2826 2827 /* 2828 * We try to get the real space reservation first, 2829 * allowing for directory btree deletion(s) implying 2830 * possible bmap insert(s). If we can't get the space 2831 * reservation then we use 0 instead, and avoid the bmap 2832 * btree insert(s) in the directory code by, if the bmap 2833 * insert tries to happen, instead trimming the LAST 2834 * block from the directory. 2835 */ 2836 resblks = XFS_REMOVE_SPACE_RES(mp); 2837 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2838 if (error == -ENOSPC) { 2839 resblks = 0; 2840 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2841 &tp); 2842 } 2843 if (error) { 2844 ASSERT(error != -ENOSPC); 2845 goto std_return; 2846 } 2847 2848 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2849 2850 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2851 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2852 2853 /* 2854 * If we're removing a directory perform some additional validation. 2855 */ 2856 if (is_dir) { 2857 ASSERT(VFS_I(ip)->i_nlink >= 2); 2858 if (VFS_I(ip)->i_nlink != 2) { 2859 error = -ENOTEMPTY; 2860 goto out_trans_cancel; 2861 } 2862 if (!xfs_dir_isempty(ip)) { 2863 error = -ENOTEMPTY; 2864 goto out_trans_cancel; 2865 } 2866 2867 /* Drop the link from ip's "..". */ 2868 error = xfs_droplink(tp, dp); 2869 if (error) 2870 goto out_trans_cancel; 2871 2872 /* Drop the "." link from ip to self. */ 2873 error = xfs_droplink(tp, ip); 2874 if (error) 2875 goto out_trans_cancel; 2876 } else { 2877 /* 2878 * When removing a non-directory we need to log the parent 2879 * inode here. For a directory this is done implicitly 2880 * by the xfs_droplink call for the ".." entry. 2881 */ 2882 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2883 } 2884 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2885 2886 /* Drop the link from dp to ip. */ 2887 error = xfs_droplink(tp, ip); 2888 if (error) 2889 goto out_trans_cancel; 2890 2891 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2892 if (error) { 2893 ASSERT(error != -ENOENT); 2894 goto out_trans_cancel; 2895 } 2896 2897 /* 2898 * If this is a synchronous mount, make sure that the 2899 * remove transaction goes to disk before returning to 2900 * the user. 2901 */ 2902 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2903 xfs_trans_set_sync(tp); 2904 2905 error = xfs_trans_commit(tp); 2906 if (error) 2907 goto std_return; 2908 2909 if (is_dir && xfs_inode_is_filestream(ip)) 2910 xfs_filestream_deassociate(ip); 2911 2912 return 0; 2913 2914 out_trans_cancel: 2915 xfs_trans_cancel(tp); 2916 std_return: 2917 return error; 2918 } 2919 2920 /* 2921 * Enter all inodes for a rename transaction into a sorted array. 2922 */ 2923 #define __XFS_SORT_INODES 5 2924 STATIC void 2925 xfs_sort_for_rename( 2926 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2927 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2928 struct xfs_inode *ip1, /* in: inode of old entry */ 2929 struct xfs_inode *ip2, /* in: inode of new entry */ 2930 struct xfs_inode *wip, /* in: whiteout inode */ 2931 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2932 int *num_inodes) /* in/out: inodes in array */ 2933 { 2934 int i, j; 2935 2936 ASSERT(*num_inodes == __XFS_SORT_INODES); 2937 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2938 2939 /* 2940 * i_tab contains a list of pointers to inodes. We initialize 2941 * the table here & we'll sort it. We will then use it to 2942 * order the acquisition of the inode locks. 2943 * 2944 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2945 */ 2946 i = 0; 2947 i_tab[i++] = dp1; 2948 i_tab[i++] = dp2; 2949 i_tab[i++] = ip1; 2950 if (ip2) 2951 i_tab[i++] = ip2; 2952 if (wip) 2953 i_tab[i++] = wip; 2954 *num_inodes = i; 2955 2956 /* 2957 * Sort the elements via bubble sort. (Remember, there are at 2958 * most 5 elements to sort, so this is adequate.) 2959 */ 2960 for (i = 0; i < *num_inodes; i++) { 2961 for (j = 1; j < *num_inodes; j++) { 2962 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2963 struct xfs_inode *temp = i_tab[j]; 2964 i_tab[j] = i_tab[j-1]; 2965 i_tab[j-1] = temp; 2966 } 2967 } 2968 } 2969 } 2970 2971 static int 2972 xfs_finish_rename( 2973 struct xfs_trans *tp) 2974 { 2975 /* 2976 * If this is a synchronous mount, make sure that the rename transaction 2977 * goes to disk before returning to the user. 2978 */ 2979 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2980 xfs_trans_set_sync(tp); 2981 2982 return xfs_trans_commit(tp); 2983 } 2984 2985 /* 2986 * xfs_cross_rename() 2987 * 2988 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2989 */ 2990 STATIC int 2991 xfs_cross_rename( 2992 struct xfs_trans *tp, 2993 struct xfs_inode *dp1, 2994 struct xfs_name *name1, 2995 struct xfs_inode *ip1, 2996 struct xfs_inode *dp2, 2997 struct xfs_name *name2, 2998 struct xfs_inode *ip2, 2999 int spaceres) 3000 { 3001 int error = 0; 3002 int ip1_flags = 0; 3003 int ip2_flags = 0; 3004 int dp2_flags = 0; 3005 3006 /* Swap inode number for dirent in first parent */ 3007 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 3008 if (error) 3009 goto out_trans_abort; 3010 3011 /* Swap inode number for dirent in second parent */ 3012 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 3013 if (error) 3014 goto out_trans_abort; 3015 3016 /* 3017 * If we're renaming one or more directories across different parents, 3018 * update the respective ".." entries (and link counts) to match the new 3019 * parents. 3020 */ 3021 if (dp1 != dp2) { 3022 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3023 3024 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 3025 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 3026 dp1->i_ino, spaceres); 3027 if (error) 3028 goto out_trans_abort; 3029 3030 /* transfer ip2 ".." reference to dp1 */ 3031 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 3032 error = xfs_droplink(tp, dp2); 3033 if (error) 3034 goto out_trans_abort; 3035 xfs_bumplink(tp, dp1); 3036 } 3037 3038 /* 3039 * Although ip1 isn't changed here, userspace needs 3040 * to be warned about the change, so that applications 3041 * relying on it (like backup ones), will properly 3042 * notify the change 3043 */ 3044 ip1_flags |= XFS_ICHGTIME_CHG; 3045 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3046 } 3047 3048 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 3049 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 3050 dp2->i_ino, spaceres); 3051 if (error) 3052 goto out_trans_abort; 3053 3054 /* transfer ip1 ".." reference to dp2 */ 3055 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 3056 error = xfs_droplink(tp, dp1); 3057 if (error) 3058 goto out_trans_abort; 3059 xfs_bumplink(tp, dp2); 3060 } 3061 3062 /* 3063 * Although ip2 isn't changed here, userspace needs 3064 * to be warned about the change, so that applications 3065 * relying on it (like backup ones), will properly 3066 * notify the change 3067 */ 3068 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 3069 ip2_flags |= XFS_ICHGTIME_CHG; 3070 } 3071 } 3072 3073 if (ip1_flags) { 3074 xfs_trans_ichgtime(tp, ip1, ip1_flags); 3075 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 3076 } 3077 if (ip2_flags) { 3078 xfs_trans_ichgtime(tp, ip2, ip2_flags); 3079 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 3080 } 3081 if (dp2_flags) { 3082 xfs_trans_ichgtime(tp, dp2, dp2_flags); 3083 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 3084 } 3085 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3086 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 3087 return xfs_finish_rename(tp); 3088 3089 out_trans_abort: 3090 xfs_trans_cancel(tp); 3091 return error; 3092 } 3093 3094 /* 3095 * xfs_rename_alloc_whiteout() 3096 * 3097 * Return a referenced, unlinked, unlocked inode that can be used as a 3098 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 3099 * crash between allocating the inode and linking it into the rename transaction 3100 * recovery will free the inode and we won't leak it. 3101 */ 3102 static int 3103 xfs_rename_alloc_whiteout( 3104 struct xfs_inode *dp, 3105 struct xfs_inode **wip) 3106 { 3107 struct xfs_inode *tmpfile; 3108 int error; 3109 3110 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); 3111 if (error) 3112 return error; 3113 3114 /* 3115 * Prepare the tmpfile inode as if it were created through the VFS. 3116 * Complete the inode setup and flag it as linkable. nlink is already 3117 * zero, so we can skip the drop_nlink. 3118 */ 3119 xfs_setup_iops(tmpfile); 3120 xfs_finish_inode_setup(tmpfile); 3121 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3122 3123 *wip = tmpfile; 3124 return 0; 3125 } 3126 3127 /* 3128 * xfs_rename 3129 */ 3130 int 3131 xfs_rename( 3132 struct xfs_inode *src_dp, 3133 struct xfs_name *src_name, 3134 struct xfs_inode *src_ip, 3135 struct xfs_inode *target_dp, 3136 struct xfs_name *target_name, 3137 struct xfs_inode *target_ip, 3138 unsigned int flags) 3139 { 3140 struct xfs_mount *mp = src_dp->i_mount; 3141 struct xfs_trans *tp; 3142 struct xfs_inode *wip = NULL; /* whiteout inode */ 3143 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3144 struct xfs_buf *agibp; 3145 int num_inodes = __XFS_SORT_INODES; 3146 bool new_parent = (src_dp != target_dp); 3147 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3148 int spaceres; 3149 int error; 3150 3151 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3152 3153 if ((flags & RENAME_EXCHANGE) && !target_ip) 3154 return -EINVAL; 3155 3156 /* 3157 * If we are doing a whiteout operation, allocate the whiteout inode 3158 * we will be placing at the target and ensure the type is set 3159 * appropriately. 3160 */ 3161 if (flags & RENAME_WHITEOUT) { 3162 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3163 error = xfs_rename_alloc_whiteout(target_dp, &wip); 3164 if (error) 3165 return error; 3166 3167 /* setup target dirent info as whiteout */ 3168 src_name->type = XFS_DIR3_FT_CHRDEV; 3169 } 3170 3171 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3172 inodes, &num_inodes); 3173 3174 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3175 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3176 if (error == -ENOSPC) { 3177 spaceres = 0; 3178 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3179 &tp); 3180 } 3181 if (error) 3182 goto out_release_wip; 3183 3184 /* 3185 * Attach the dquots to the inodes 3186 */ 3187 error = xfs_qm_vop_rename_dqattach(inodes); 3188 if (error) 3189 goto out_trans_cancel; 3190 3191 /* 3192 * Lock all the participating inodes. Depending upon whether 3193 * the target_name exists in the target directory, and 3194 * whether the target directory is the same as the source 3195 * directory, we can lock from 2 to 4 inodes. 3196 */ 3197 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3198 3199 /* 3200 * Join all the inodes to the transaction. From this point on, 3201 * we can rely on either trans_commit or trans_cancel to unlock 3202 * them. 3203 */ 3204 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3205 if (new_parent) 3206 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3207 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3208 if (target_ip) 3209 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3210 if (wip) 3211 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3212 3213 /* 3214 * If we are using project inheritance, we only allow renames 3215 * into our tree when the project IDs are the same; else the 3216 * tree quota mechanism would be circumvented. 3217 */ 3218 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3219 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3220 error = -EXDEV; 3221 goto out_trans_cancel; 3222 } 3223 3224 /* RENAME_EXCHANGE is unique from here on. */ 3225 if (flags & RENAME_EXCHANGE) 3226 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3227 target_dp, target_name, target_ip, 3228 spaceres); 3229 3230 /* 3231 * Check for expected errors before we dirty the transaction 3232 * so we can return an error without a transaction abort. 3233 */ 3234 if (target_ip == NULL) { 3235 /* 3236 * If there's no space reservation, check the entry will 3237 * fit before actually inserting it. 3238 */ 3239 if (!spaceres) { 3240 error = xfs_dir_canenter(tp, target_dp, target_name); 3241 if (error) 3242 goto out_trans_cancel; 3243 } 3244 } else { 3245 /* 3246 * If target exists and it's a directory, check that whether 3247 * it can be destroyed. 3248 */ 3249 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3250 (!xfs_dir_isempty(target_ip) || 3251 (VFS_I(target_ip)->i_nlink > 2))) { 3252 error = -EEXIST; 3253 goto out_trans_cancel; 3254 } 3255 } 3256 3257 /* 3258 * Directory entry creation below may acquire the AGF. Remove 3259 * the whiteout from the unlinked list first to preserve correct 3260 * AGI/AGF locking order. This dirties the transaction so failures 3261 * after this point will abort and log recovery will clean up the 3262 * mess. 3263 * 3264 * For whiteouts, we need to bump the link count on the whiteout 3265 * inode. After this point, we have a real link, clear the tmpfile 3266 * state flag from the inode so it doesn't accidentally get misused 3267 * in future. 3268 */ 3269 if (wip) { 3270 ASSERT(VFS_I(wip)->i_nlink == 0); 3271 error = xfs_iunlink_remove(tp, wip); 3272 if (error) 3273 goto out_trans_cancel; 3274 3275 xfs_bumplink(tp, wip); 3276 VFS_I(wip)->i_state &= ~I_LINKABLE; 3277 } 3278 3279 /* 3280 * Set up the target. 3281 */ 3282 if (target_ip == NULL) { 3283 /* 3284 * If target does not exist and the rename crosses 3285 * directories, adjust the target directory link count 3286 * to account for the ".." reference from the new entry. 3287 */ 3288 error = xfs_dir_createname(tp, target_dp, target_name, 3289 src_ip->i_ino, spaceres); 3290 if (error) 3291 goto out_trans_cancel; 3292 3293 xfs_trans_ichgtime(tp, target_dp, 3294 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3295 3296 if (new_parent && src_is_directory) { 3297 xfs_bumplink(tp, target_dp); 3298 } 3299 } else { /* target_ip != NULL */ 3300 /* 3301 * Link the source inode under the target name. 3302 * If the source inode is a directory and we are moving 3303 * it across directories, its ".." entry will be 3304 * inconsistent until we replace that down below. 3305 * 3306 * In case there is already an entry with the same 3307 * name at the destination directory, remove it first. 3308 */ 3309 3310 /* 3311 * Check whether the replace operation will need to allocate 3312 * blocks. This happens when the shortform directory lacks 3313 * space and we have to convert it to a block format directory. 3314 * When more blocks are necessary, we must lock the AGI first 3315 * to preserve locking order (AGI -> AGF). 3316 */ 3317 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) { 3318 error = xfs_read_agi(mp, tp, 3319 XFS_INO_TO_AGNO(mp, target_ip->i_ino), 3320 &agibp); 3321 if (error) 3322 goto out_trans_cancel; 3323 } 3324 3325 error = xfs_dir_replace(tp, target_dp, target_name, 3326 src_ip->i_ino, spaceres); 3327 if (error) 3328 goto out_trans_cancel; 3329 3330 xfs_trans_ichgtime(tp, target_dp, 3331 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3332 3333 /* 3334 * Decrement the link count on the target since the target 3335 * dir no longer points to it. 3336 */ 3337 error = xfs_droplink(tp, target_ip); 3338 if (error) 3339 goto out_trans_cancel; 3340 3341 if (src_is_directory) { 3342 /* 3343 * Drop the link from the old "." entry. 3344 */ 3345 error = xfs_droplink(tp, target_ip); 3346 if (error) 3347 goto out_trans_cancel; 3348 } 3349 } /* target_ip != NULL */ 3350 3351 /* 3352 * Remove the source. 3353 */ 3354 if (new_parent && src_is_directory) { 3355 /* 3356 * Rewrite the ".." entry to point to the new 3357 * directory. 3358 */ 3359 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3360 target_dp->i_ino, spaceres); 3361 ASSERT(error != -EEXIST); 3362 if (error) 3363 goto out_trans_cancel; 3364 } 3365 3366 /* 3367 * We always want to hit the ctime on the source inode. 3368 * 3369 * This isn't strictly required by the standards since the source 3370 * inode isn't really being changed, but old unix file systems did 3371 * it and some incremental backup programs won't work without it. 3372 */ 3373 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3374 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3375 3376 /* 3377 * Adjust the link count on src_dp. This is necessary when 3378 * renaming a directory, either within one parent when 3379 * the target existed, or across two parent directories. 3380 */ 3381 if (src_is_directory && (new_parent || target_ip != NULL)) { 3382 3383 /* 3384 * Decrement link count on src_directory since the 3385 * entry that's moved no longer points to it. 3386 */ 3387 error = xfs_droplink(tp, src_dp); 3388 if (error) 3389 goto out_trans_cancel; 3390 } 3391 3392 /* 3393 * For whiteouts, we only need to update the source dirent with the 3394 * inode number of the whiteout inode rather than removing it 3395 * altogether. 3396 */ 3397 if (wip) { 3398 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3399 spaceres); 3400 } else 3401 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3402 spaceres); 3403 if (error) 3404 goto out_trans_cancel; 3405 3406 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3407 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3408 if (new_parent) 3409 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3410 3411 error = xfs_finish_rename(tp); 3412 if (wip) 3413 xfs_irele(wip); 3414 return error; 3415 3416 out_trans_cancel: 3417 xfs_trans_cancel(tp); 3418 out_release_wip: 3419 if (wip) 3420 xfs_irele(wip); 3421 return error; 3422 } 3423 3424 static int 3425 xfs_iflush( 3426 struct xfs_inode *ip, 3427 struct xfs_buf *bp) 3428 { 3429 struct xfs_inode_log_item *iip = ip->i_itemp; 3430 struct xfs_dinode *dip; 3431 struct xfs_mount *mp = ip->i_mount; 3432 int error; 3433 3434 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3435 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3436 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3437 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3438 ASSERT(iip->ili_item.li_buf == bp); 3439 3440 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3441 3442 /* 3443 * We don't flush the inode if any of the following checks fail, but we 3444 * do still update the log item and attach to the backing buffer as if 3445 * the flush happened. This is a formality to facilitate predictable 3446 * error handling as the caller will shutdown and fail the buffer. 3447 */ 3448 error = -EFSCORRUPTED; 3449 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3450 mp, XFS_ERRTAG_IFLUSH_1)) { 3451 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3452 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3453 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3454 goto flush_out; 3455 } 3456 if (S_ISREG(VFS_I(ip)->i_mode)) { 3457 if (XFS_TEST_ERROR( 3458 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3459 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3460 mp, XFS_ERRTAG_IFLUSH_3)) { 3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3462 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3463 __func__, ip->i_ino, ip); 3464 goto flush_out; 3465 } 3466 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3467 if (XFS_TEST_ERROR( 3468 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3469 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3470 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3471 mp, XFS_ERRTAG_IFLUSH_4)) { 3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3473 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3474 __func__, ip->i_ino, ip); 3475 goto flush_out; 3476 } 3477 } 3478 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3479 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3481 "%s: detected corrupt incore inode %Lu, " 3482 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3483 __func__, ip->i_ino, 3484 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3485 ip->i_d.di_nblocks, ip); 3486 goto flush_out; 3487 } 3488 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3489 mp, XFS_ERRTAG_IFLUSH_6)) { 3490 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3491 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3492 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3493 goto flush_out; 3494 } 3495 3496 /* 3497 * Inode item log recovery for v2 inodes are dependent on the 3498 * di_flushiter count for correct sequencing. We bump the flush 3499 * iteration count so we can detect flushes which postdate a log record 3500 * during recovery. This is redundant as we now log every change and 3501 * hence this can't happen but we need to still do it to ensure 3502 * backwards compatibility with old kernels that predate logging all 3503 * inode changes. 3504 */ 3505 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3506 ip->i_d.di_flushiter++; 3507 3508 /* 3509 * If there are inline format data / attr forks attached to this inode, 3510 * make sure they are not corrupt. 3511 */ 3512 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3513 xfs_ifork_verify_local_data(ip)) 3514 goto flush_out; 3515 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3516 xfs_ifork_verify_local_attr(ip)) 3517 goto flush_out; 3518 3519 /* 3520 * Copy the dirty parts of the inode into the on-disk inode. We always 3521 * copy out the core of the inode, because if the inode is dirty at all 3522 * the core must be. 3523 */ 3524 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3525 3526 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3527 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3528 ip->i_d.di_flushiter = 0; 3529 3530 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3531 if (XFS_IFORK_Q(ip)) 3532 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3533 3534 /* 3535 * We've recorded everything logged in the inode, so we'd like to clear 3536 * the ili_fields bits so we don't log and flush things unnecessarily. 3537 * However, we can't stop logging all this information until the data 3538 * we've copied into the disk buffer is written to disk. If we did we 3539 * might overwrite the copy of the inode in the log with all the data 3540 * after re-logging only part of it, and in the face of a crash we 3541 * wouldn't have all the data we need to recover. 3542 * 3543 * What we do is move the bits to the ili_last_fields field. When 3544 * logging the inode, these bits are moved back to the ili_fields field. 3545 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3546 * we know that the information those bits represent is permanently on 3547 * disk. As long as the flush completes before the inode is logged 3548 * again, then both ili_fields and ili_last_fields will be cleared. 3549 */ 3550 error = 0; 3551 flush_out: 3552 spin_lock(&iip->ili_lock); 3553 iip->ili_last_fields = iip->ili_fields; 3554 iip->ili_fields = 0; 3555 iip->ili_fsync_fields = 0; 3556 spin_unlock(&iip->ili_lock); 3557 3558 /* 3559 * Store the current LSN of the inode so that we can tell whether the 3560 * item has moved in the AIL from xfs_buf_inode_iodone(). 3561 */ 3562 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3563 &iip->ili_item.li_lsn); 3564 3565 /* generate the checksum. */ 3566 xfs_dinode_calc_crc(mp, dip); 3567 return error; 3568 } 3569 3570 /* 3571 * Non-blocking flush of dirty inode metadata into the backing buffer. 3572 * 3573 * The caller must have a reference to the inode and hold the cluster buffer 3574 * locked. The function will walk across all the inodes on the cluster buffer it 3575 * can find and lock without blocking, and flush them to the cluster buffer. 3576 * 3577 * On successful flushing of at least one inode, the caller must write out the 3578 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3579 * the caller needs to release the buffer. On failure, the filesystem will be 3580 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3581 * will be returned. 3582 */ 3583 int 3584 xfs_iflush_cluster( 3585 struct xfs_buf *bp) 3586 { 3587 struct xfs_mount *mp = bp->b_mount; 3588 struct xfs_log_item *lip, *n; 3589 struct xfs_inode *ip; 3590 struct xfs_inode_log_item *iip; 3591 int clcount = 0; 3592 int error = 0; 3593 3594 /* 3595 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3596 * can remove itself from the list. 3597 */ 3598 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3599 iip = (struct xfs_inode_log_item *)lip; 3600 ip = iip->ili_inode; 3601 3602 /* 3603 * Quick and dirty check to avoid locks if possible. 3604 */ 3605 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3606 continue; 3607 if (xfs_ipincount(ip)) 3608 continue; 3609 3610 /* 3611 * The inode is still attached to the buffer, which means it is 3612 * dirty but reclaim might try to grab it. Check carefully for 3613 * that, and grab the ilock while still holding the i_flags_lock 3614 * to guarantee reclaim will not be able to reclaim this inode 3615 * once we drop the i_flags_lock. 3616 */ 3617 spin_lock(&ip->i_flags_lock); 3618 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3619 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3620 spin_unlock(&ip->i_flags_lock); 3621 continue; 3622 } 3623 3624 /* 3625 * ILOCK will pin the inode against reclaim and prevent 3626 * concurrent transactions modifying the inode while we are 3627 * flushing the inode. If we get the lock, set the flushing 3628 * state before we drop the i_flags_lock. 3629 */ 3630 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3631 spin_unlock(&ip->i_flags_lock); 3632 continue; 3633 } 3634 __xfs_iflags_set(ip, XFS_IFLUSHING); 3635 spin_unlock(&ip->i_flags_lock); 3636 3637 /* 3638 * Abort flushing this inode if we are shut down because the 3639 * inode may not currently be in the AIL. This can occur when 3640 * log I/O failure unpins the inode without inserting into the 3641 * AIL, leaving a dirty/unpinned inode attached to the buffer 3642 * that otherwise looks like it should be flushed. 3643 */ 3644 if (XFS_FORCED_SHUTDOWN(mp)) { 3645 xfs_iunpin_wait(ip); 3646 xfs_iflush_abort(ip); 3647 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3648 error = -EIO; 3649 continue; 3650 } 3651 3652 /* don't block waiting on a log force to unpin dirty inodes */ 3653 if (xfs_ipincount(ip)) { 3654 xfs_iflags_clear(ip, XFS_IFLUSHING); 3655 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3656 continue; 3657 } 3658 3659 if (!xfs_inode_clean(ip)) 3660 error = xfs_iflush(ip, bp); 3661 else 3662 xfs_iflags_clear(ip, XFS_IFLUSHING); 3663 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3664 if (error) 3665 break; 3666 clcount++; 3667 } 3668 3669 if (error) { 3670 bp->b_flags |= XBF_ASYNC; 3671 xfs_buf_ioend_fail(bp); 3672 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3673 return error; 3674 } 3675 3676 if (!clcount) 3677 return -EAGAIN; 3678 3679 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3680 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3681 return 0; 3682 3683 } 3684 3685 /* Release an inode. */ 3686 void 3687 xfs_irele( 3688 struct xfs_inode *ip) 3689 { 3690 trace_xfs_irele(ip, _RET_IP_); 3691 iput(VFS_I(ip)); 3692 } 3693 3694 /* 3695 * Ensure all commited transactions touching the inode are written to the log. 3696 */ 3697 int 3698 xfs_log_force_inode( 3699 struct xfs_inode *ip) 3700 { 3701 xfs_lsn_t lsn = 0; 3702 3703 xfs_ilock(ip, XFS_ILOCK_SHARED); 3704 if (xfs_ipincount(ip)) 3705 lsn = ip->i_itemp->ili_last_lsn; 3706 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3707 3708 if (!lsn) 3709 return 0; 3710 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3711 } 3712 3713 /* 3714 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3715 * abide vfs locking order (lowest pointer value goes first) and breaking the 3716 * layout leases before proceeding. The loop is needed because we cannot call 3717 * the blocking break_layout() with the iolocks held, and therefore have to 3718 * back out both locks. 3719 */ 3720 static int 3721 xfs_iolock_two_inodes_and_break_layout( 3722 struct inode *src, 3723 struct inode *dest) 3724 { 3725 int error; 3726 3727 if (src > dest) 3728 swap(src, dest); 3729 3730 retry: 3731 /* Wait to break both inodes' layouts before we start locking. */ 3732 error = break_layout(src, true); 3733 if (error) 3734 return error; 3735 if (src != dest) { 3736 error = break_layout(dest, true); 3737 if (error) 3738 return error; 3739 } 3740 3741 /* Lock one inode and make sure nobody got in and leased it. */ 3742 inode_lock(src); 3743 error = break_layout(src, false); 3744 if (error) { 3745 inode_unlock(src); 3746 if (error == -EWOULDBLOCK) 3747 goto retry; 3748 return error; 3749 } 3750 3751 if (src == dest) 3752 return 0; 3753 3754 /* Lock the other inode and make sure nobody got in and leased it. */ 3755 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3756 error = break_layout(dest, false); 3757 if (error) { 3758 inode_unlock(src); 3759 inode_unlock(dest); 3760 if (error == -EWOULDBLOCK) 3761 goto retry; 3762 return error; 3763 } 3764 3765 return 0; 3766 } 3767 3768 /* 3769 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3770 * mmap activity. 3771 */ 3772 int 3773 xfs_ilock2_io_mmap( 3774 struct xfs_inode *ip1, 3775 struct xfs_inode *ip2) 3776 { 3777 int ret; 3778 3779 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3780 if (ret) 3781 return ret; 3782 if (ip1 == ip2) 3783 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3784 else 3785 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3786 ip2, XFS_MMAPLOCK_EXCL); 3787 return 0; 3788 } 3789 3790 /* Unlock both inodes to allow IO and mmap activity. */ 3791 void 3792 xfs_iunlock2_io_mmap( 3793 struct xfs_inode *ip1, 3794 struct xfs_inode *ip2) 3795 { 3796 bool same_inode = (ip1 == ip2); 3797 3798 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3799 if (!same_inode) 3800 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3801 inode_unlock(VFS_I(ip2)); 3802 if (!same_inode) 3803 inode_unlock(VFS_I(ip1)); 3804 } 3805