xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 		return ip->i_d.di_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_d.di_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
115 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp &&
128 	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_lock locking order:
148  *
149  * i_rwsem -> page lock -> mmap_lock
150  * mmap_lock -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_lock locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_lock.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	struct xfs_inode	**ips,
445 	int			inodes,
446 	uint			lock_mode)
447 {
448 	int			attempts = 0, i, j, try_lock;
449 	struct xfs_log_item	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = &ips[j]->i_itemp->ili_item;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = &ip0->i_itemp->ili_item;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 STATIC uint
602 _xfs_dic2xflags(
603 	uint16_t		di_flags,
604 	uint64_t		di_flags2,
605 	bool			has_attr)
606 {
607 	uint			flags = 0;
608 
609 	if (di_flags & XFS_DIFLAG_ANY) {
610 		if (di_flags & XFS_DIFLAG_REALTIME)
611 			flags |= FS_XFLAG_REALTIME;
612 		if (di_flags & XFS_DIFLAG_PREALLOC)
613 			flags |= FS_XFLAG_PREALLOC;
614 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
615 			flags |= FS_XFLAG_IMMUTABLE;
616 		if (di_flags & XFS_DIFLAG_APPEND)
617 			flags |= FS_XFLAG_APPEND;
618 		if (di_flags & XFS_DIFLAG_SYNC)
619 			flags |= FS_XFLAG_SYNC;
620 		if (di_flags & XFS_DIFLAG_NOATIME)
621 			flags |= FS_XFLAG_NOATIME;
622 		if (di_flags & XFS_DIFLAG_NODUMP)
623 			flags |= FS_XFLAG_NODUMP;
624 		if (di_flags & XFS_DIFLAG_RTINHERIT)
625 			flags |= FS_XFLAG_RTINHERIT;
626 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
627 			flags |= FS_XFLAG_PROJINHERIT;
628 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
629 			flags |= FS_XFLAG_NOSYMLINKS;
630 		if (di_flags & XFS_DIFLAG_EXTSIZE)
631 			flags |= FS_XFLAG_EXTSIZE;
632 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
633 			flags |= FS_XFLAG_EXTSZINHERIT;
634 		if (di_flags & XFS_DIFLAG_NODEFRAG)
635 			flags |= FS_XFLAG_NODEFRAG;
636 		if (di_flags & XFS_DIFLAG_FILESTREAM)
637 			flags |= FS_XFLAG_FILESTREAM;
638 	}
639 
640 	if (di_flags2 & XFS_DIFLAG2_ANY) {
641 		if (di_flags2 & XFS_DIFLAG2_DAX)
642 			flags |= FS_XFLAG_DAX;
643 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 			flags |= FS_XFLAG_COWEXTSIZE;
645 	}
646 
647 	if (has_attr)
648 		flags |= FS_XFLAG_HASATTR;
649 
650 	return flags;
651 }
652 
653 uint
654 xfs_ip2xflags(
655 	struct xfs_inode	*ip)
656 {
657 	struct xfs_icdinode	*dic = &ip->i_d;
658 
659 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
660 }
661 
662 /*
663  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664  * is allowed, otherwise it has to be an exact match. If a CI match is found,
665  * ci_name->name will point to a the actual name (caller must free) or
666  * will be set to NULL if an exact match is found.
667  */
668 int
669 xfs_lookup(
670 	xfs_inode_t		*dp,
671 	struct xfs_name		*name,
672 	xfs_inode_t		**ipp,
673 	struct xfs_name		*ci_name)
674 {
675 	xfs_ino_t		inum;
676 	int			error;
677 
678 	trace_xfs_lookup(dp, name);
679 
680 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
681 		return -EIO;
682 
683 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
684 	if (error)
685 		goto out_unlock;
686 
687 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 	if (error)
689 		goto out_free_name;
690 
691 	return 0;
692 
693 out_free_name:
694 	if (ci_name)
695 		kmem_free(ci_name->name);
696 out_unlock:
697 	*ipp = NULL;
698 	return error;
699 }
700 
701 /*
702  * Allocate an inode on disk and return a copy of its in-core version.
703  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
704  * appropriately within the inode.  The uid and gid for the inode are
705  * set according to the contents of the given cred structure.
706  *
707  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
708  * has a free inode available, call xfs_iget() to obtain the in-core
709  * version of the allocated inode.  Finally, fill in the inode and
710  * log its initial contents.  In this case, ialloc_context would be
711  * set to NULL.
712  *
713  * If xfs_dialloc() does not have an available inode, it will replenish
714  * its supply by doing an allocation. Since we can only do one
715  * allocation within a transaction without deadlocks, we must commit
716  * the current transaction before returning the inode itself.
717  * In this case, therefore, we will set ialloc_context and return.
718  * The caller should then commit the current transaction, start a new
719  * transaction, and call xfs_ialloc() again to actually get the inode.
720  *
721  * To ensure that some other process does not grab the inode that
722  * was allocated during the first call to xfs_ialloc(), this routine
723  * also returns the [locked] bp pointing to the head of the freelist
724  * as ialloc_context.  The caller should hold this buffer across
725  * the commit and pass it back into this routine on the second call.
726  *
727  * If we are allocating quota inodes, we do not have a parent inode
728  * to attach to or associate with (i.e. pip == NULL) because they
729  * are not linked into the directory structure - they are attached
730  * directly to the superblock - and so have no parent.
731  */
732 static int
733 xfs_ialloc(
734 	xfs_trans_t	*tp,
735 	xfs_inode_t	*pip,
736 	umode_t		mode,
737 	xfs_nlink_t	nlink,
738 	dev_t		rdev,
739 	prid_t		prid,
740 	xfs_buf_t	**ialloc_context,
741 	xfs_inode_t	**ipp)
742 {
743 	struct xfs_mount *mp = tp->t_mountp;
744 	xfs_ino_t	ino;
745 	xfs_inode_t	*ip;
746 	uint		flags;
747 	int		error;
748 	struct timespec64 tv;
749 	struct inode	*inode;
750 
751 	/*
752 	 * Call the space management code to pick
753 	 * the on-disk inode to be allocated.
754 	 */
755 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
756 			    ialloc_context, &ino);
757 	if (error)
758 		return error;
759 	if (*ialloc_context || ino == NULLFSINO) {
760 		*ipp = NULL;
761 		return 0;
762 	}
763 	ASSERT(*ialloc_context == NULL);
764 
765 	/*
766 	 * Protect against obviously corrupt allocation btree records. Later
767 	 * xfs_iget checks will catch re-allocation of other active in-memory
768 	 * and on-disk inodes. If we don't catch reallocating the parent inode
769 	 * here we will deadlock in xfs_iget() so we have to do these checks
770 	 * first.
771 	 */
772 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
773 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
774 		return -EFSCORRUPTED;
775 	}
776 
777 	/*
778 	 * Get the in-core inode with the lock held exclusively.
779 	 * This is because we're setting fields here we need
780 	 * to prevent others from looking at until we're done.
781 	 */
782 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
783 			 XFS_ILOCK_EXCL, &ip);
784 	if (error)
785 		return error;
786 	ASSERT(ip != NULL);
787 	inode = VFS_I(ip);
788 	inode->i_mode = mode;
789 	set_nlink(inode, nlink);
790 	inode->i_uid = current_fsuid();
791 	inode->i_rdev = rdev;
792 	ip->i_d.di_projid = prid;
793 
794 	if (pip && XFS_INHERIT_GID(pip)) {
795 		inode->i_gid = VFS_I(pip)->i_gid;
796 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
797 			inode->i_mode |= S_ISGID;
798 	} else {
799 		inode->i_gid = current_fsgid();
800 	}
801 
802 	/*
803 	 * If the group ID of the new file does not match the effective group
804 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
805 	 * (and only if the irix_sgid_inherit compatibility variable is set).
806 	 */
807 	if (irix_sgid_inherit &&
808 	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
809 		inode->i_mode &= ~S_ISGID;
810 
811 	ip->i_d.di_size = 0;
812 	ip->i_df.if_nextents = 0;
813 	ASSERT(ip->i_d.di_nblocks == 0);
814 
815 	tv = current_time(inode);
816 	inode->i_mtime = tv;
817 	inode->i_atime = tv;
818 	inode->i_ctime = tv;
819 
820 	ip->i_d.di_extsize = 0;
821 	ip->i_d.di_dmevmask = 0;
822 	ip->i_d.di_dmstate = 0;
823 	ip->i_d.di_flags = 0;
824 
825 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
826 		inode_set_iversion(inode, 1);
827 		ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
828 		ip->i_d.di_cowextsize = 0;
829 		ip->i_d.di_crtime = tv;
830 	}
831 
832 	flags = XFS_ILOG_CORE;
833 	switch (mode & S_IFMT) {
834 	case S_IFIFO:
835 	case S_IFCHR:
836 	case S_IFBLK:
837 	case S_IFSOCK:
838 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
839 		ip->i_df.if_flags = 0;
840 		flags |= XFS_ILOG_DEV;
841 		break;
842 	case S_IFREG:
843 	case S_IFDIR:
844 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
845 			uint		di_flags = 0;
846 
847 			if (S_ISDIR(mode)) {
848 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
849 					di_flags |= XFS_DIFLAG_RTINHERIT;
850 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
851 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
852 					ip->i_d.di_extsize = pip->i_d.di_extsize;
853 				}
854 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
855 					di_flags |= XFS_DIFLAG_PROJINHERIT;
856 			} else if (S_ISREG(mode)) {
857 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
858 					di_flags |= XFS_DIFLAG_REALTIME;
859 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
860 					di_flags |= XFS_DIFLAG_EXTSIZE;
861 					ip->i_d.di_extsize = pip->i_d.di_extsize;
862 				}
863 			}
864 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
865 			    xfs_inherit_noatime)
866 				di_flags |= XFS_DIFLAG_NOATIME;
867 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
868 			    xfs_inherit_nodump)
869 				di_flags |= XFS_DIFLAG_NODUMP;
870 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
871 			    xfs_inherit_sync)
872 				di_flags |= XFS_DIFLAG_SYNC;
873 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
874 			    xfs_inherit_nosymlinks)
875 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
876 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
877 			    xfs_inherit_nodefrag)
878 				di_flags |= XFS_DIFLAG_NODEFRAG;
879 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
880 				di_flags |= XFS_DIFLAG_FILESTREAM;
881 
882 			ip->i_d.di_flags |= di_flags;
883 		}
884 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
885 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
886 				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
887 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
888 			}
889 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
890 				ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
891 		}
892 		/* FALLTHROUGH */
893 	case S_IFLNK:
894 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
895 		ip->i_df.if_flags = XFS_IFEXTENTS;
896 		ip->i_df.if_bytes = 0;
897 		ip->i_df.if_u1.if_root = NULL;
898 		break;
899 	default:
900 		ASSERT(0);
901 	}
902 
903 	/*
904 	 * Log the new values stuffed into the inode.
905 	 */
906 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
907 	xfs_trans_log_inode(tp, ip, flags);
908 
909 	/* now that we have an i_mode we can setup the inode structure */
910 	xfs_setup_inode(ip);
911 
912 	*ipp = ip;
913 	return 0;
914 }
915 
916 /*
917  * Allocates a new inode from disk and return a pointer to the
918  * incore copy. This routine will internally commit the current
919  * transaction and allocate a new one if the Space Manager needed
920  * to do an allocation to replenish the inode free-list.
921  *
922  * This routine is designed to be called from xfs_create and
923  * xfs_create_dir.
924  *
925  */
926 int
927 xfs_dir_ialloc(
928 	xfs_trans_t	**tpp,		/* input: current transaction;
929 					   output: may be a new transaction. */
930 	xfs_inode_t	*dp,		/* directory within whose allocate
931 					   the inode. */
932 	umode_t		mode,
933 	xfs_nlink_t	nlink,
934 	dev_t		rdev,
935 	prid_t		prid,		/* project id */
936 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
937 					   locked. */
938 {
939 	xfs_trans_t	*tp;
940 	xfs_inode_t	*ip;
941 	xfs_buf_t	*ialloc_context = NULL;
942 	int		code;
943 	void		*dqinfo;
944 	uint		tflags;
945 
946 	tp = *tpp;
947 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
948 
949 	/*
950 	 * xfs_ialloc will return a pointer to an incore inode if
951 	 * the Space Manager has an available inode on the free
952 	 * list. Otherwise, it will do an allocation and replenish
953 	 * the freelist.  Since we can only do one allocation per
954 	 * transaction without deadlocks, we will need to commit the
955 	 * current transaction and start a new one.  We will then
956 	 * need to call xfs_ialloc again to get the inode.
957 	 *
958 	 * If xfs_ialloc did an allocation to replenish the freelist,
959 	 * it returns the bp containing the head of the freelist as
960 	 * ialloc_context. We will hold a lock on it across the
961 	 * transaction commit so that no other process can steal
962 	 * the inode(s) that we've just allocated.
963 	 */
964 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
965 			&ip);
966 
967 	/*
968 	 * Return an error if we were unable to allocate a new inode.
969 	 * This should only happen if we run out of space on disk or
970 	 * encounter a disk error.
971 	 */
972 	if (code) {
973 		*ipp = NULL;
974 		return code;
975 	}
976 	if (!ialloc_context && !ip) {
977 		*ipp = NULL;
978 		return -ENOSPC;
979 	}
980 
981 	/*
982 	 * If the AGI buffer is non-NULL, then we were unable to get an
983 	 * inode in one operation.  We need to commit the current
984 	 * transaction and call xfs_ialloc() again.  It is guaranteed
985 	 * to succeed the second time.
986 	 */
987 	if (ialloc_context) {
988 		/*
989 		 * Normally, xfs_trans_commit releases all the locks.
990 		 * We call bhold to hang on to the ialloc_context across
991 		 * the commit.  Holding this buffer prevents any other
992 		 * processes from doing any allocations in this
993 		 * allocation group.
994 		 */
995 		xfs_trans_bhold(tp, ialloc_context);
996 
997 		/*
998 		 * We want the quota changes to be associated with the next
999 		 * transaction, NOT this one. So, detach the dqinfo from this
1000 		 * and attach it to the next transaction.
1001 		 */
1002 		dqinfo = NULL;
1003 		tflags = 0;
1004 		if (tp->t_dqinfo) {
1005 			dqinfo = (void *)tp->t_dqinfo;
1006 			tp->t_dqinfo = NULL;
1007 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1008 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1009 		}
1010 
1011 		code = xfs_trans_roll(&tp);
1012 
1013 		/*
1014 		 * Re-attach the quota info that we detached from prev trx.
1015 		 */
1016 		if (dqinfo) {
1017 			tp->t_dqinfo = dqinfo;
1018 			tp->t_flags |= tflags;
1019 		}
1020 
1021 		if (code) {
1022 			xfs_buf_relse(ialloc_context);
1023 			*tpp = tp;
1024 			*ipp = NULL;
1025 			return code;
1026 		}
1027 		xfs_trans_bjoin(tp, ialloc_context);
1028 
1029 		/*
1030 		 * Call ialloc again. Since we've locked out all
1031 		 * other allocations in this allocation group,
1032 		 * this call should always succeed.
1033 		 */
1034 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1035 				  &ialloc_context, &ip);
1036 
1037 		/*
1038 		 * If we get an error at this point, return to the caller
1039 		 * so that the current transaction can be aborted.
1040 		 */
1041 		if (code) {
1042 			*tpp = tp;
1043 			*ipp = NULL;
1044 			return code;
1045 		}
1046 		ASSERT(!ialloc_context && ip);
1047 
1048 	}
1049 
1050 	*ipp = ip;
1051 	*tpp = tp;
1052 
1053 	return 0;
1054 }
1055 
1056 /*
1057  * Decrement the link count on an inode & log the change.  If this causes the
1058  * link count to go to zero, move the inode to AGI unlinked list so that it can
1059  * be freed when the last active reference goes away via xfs_inactive().
1060  */
1061 static int			/* error */
1062 xfs_droplink(
1063 	xfs_trans_t *tp,
1064 	xfs_inode_t *ip)
1065 {
1066 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1067 
1068 	drop_nlink(VFS_I(ip));
1069 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1070 
1071 	if (VFS_I(ip)->i_nlink)
1072 		return 0;
1073 
1074 	return xfs_iunlink(tp, ip);
1075 }
1076 
1077 /*
1078  * Increment the link count on an inode & log the change.
1079  */
1080 static void
1081 xfs_bumplink(
1082 	xfs_trans_t *tp,
1083 	xfs_inode_t *ip)
1084 {
1085 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1086 
1087 	inc_nlink(VFS_I(ip));
1088 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1089 }
1090 
1091 int
1092 xfs_create(
1093 	xfs_inode_t		*dp,
1094 	struct xfs_name		*name,
1095 	umode_t			mode,
1096 	dev_t			rdev,
1097 	xfs_inode_t		**ipp)
1098 {
1099 	int			is_dir = S_ISDIR(mode);
1100 	struct xfs_mount	*mp = dp->i_mount;
1101 	struct xfs_inode	*ip = NULL;
1102 	struct xfs_trans	*tp = NULL;
1103 	int			error;
1104 	bool                    unlock_dp_on_error = false;
1105 	prid_t			prid;
1106 	struct xfs_dquot	*udqp = NULL;
1107 	struct xfs_dquot	*gdqp = NULL;
1108 	struct xfs_dquot	*pdqp = NULL;
1109 	struct xfs_trans_res	*tres;
1110 	uint			resblks;
1111 
1112 	trace_xfs_create(dp, name);
1113 
1114 	if (XFS_FORCED_SHUTDOWN(mp))
1115 		return -EIO;
1116 
1117 	prid = xfs_get_initial_prid(dp);
1118 
1119 	/*
1120 	 * Make sure that we have allocated dquot(s) on disk.
1121 	 */
1122 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1123 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1124 					&udqp, &gdqp, &pdqp);
1125 	if (error)
1126 		return error;
1127 
1128 	if (is_dir) {
1129 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1130 		tres = &M_RES(mp)->tr_mkdir;
1131 	} else {
1132 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1133 		tres = &M_RES(mp)->tr_create;
1134 	}
1135 
1136 	/*
1137 	 * Initially assume that the file does not exist and
1138 	 * reserve the resources for that case.  If that is not
1139 	 * the case we'll drop the one we have and get a more
1140 	 * appropriate transaction later.
1141 	 */
1142 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1143 	if (error == -ENOSPC) {
1144 		/* flush outstanding delalloc blocks and retry */
1145 		xfs_flush_inodes(mp);
1146 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1147 	}
1148 	if (error)
1149 		goto out_release_inode;
1150 
1151 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1152 	unlock_dp_on_error = true;
1153 
1154 	/*
1155 	 * Reserve disk quota and the inode.
1156 	 */
1157 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1158 						pdqp, resblks, 1, 0);
1159 	if (error)
1160 		goto out_trans_cancel;
1161 
1162 	/*
1163 	 * A newly created regular or special file just has one directory
1164 	 * entry pointing to them, but a directory also the "." entry
1165 	 * pointing to itself.
1166 	 */
1167 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1168 	if (error)
1169 		goto out_trans_cancel;
1170 
1171 	/*
1172 	 * Now we join the directory inode to the transaction.  We do not do it
1173 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1174 	 * (and release all the locks).  An error from here on will result in
1175 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1176 	 * error path.
1177 	 */
1178 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1179 	unlock_dp_on_error = false;
1180 
1181 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1182 					resblks - XFS_IALLOC_SPACE_RES(mp));
1183 	if (error) {
1184 		ASSERT(error != -ENOSPC);
1185 		goto out_trans_cancel;
1186 	}
1187 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1188 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1189 
1190 	if (is_dir) {
1191 		error = xfs_dir_init(tp, ip, dp);
1192 		if (error)
1193 			goto out_trans_cancel;
1194 
1195 		xfs_bumplink(tp, dp);
1196 	}
1197 
1198 	/*
1199 	 * If this is a synchronous mount, make sure that the
1200 	 * create transaction goes to disk before returning to
1201 	 * the user.
1202 	 */
1203 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1204 		xfs_trans_set_sync(tp);
1205 
1206 	/*
1207 	 * Attach the dquot(s) to the inodes and modify them incore.
1208 	 * These ids of the inode couldn't have changed since the new
1209 	 * inode has been locked ever since it was created.
1210 	 */
1211 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1212 
1213 	error = xfs_trans_commit(tp);
1214 	if (error)
1215 		goto out_release_inode;
1216 
1217 	xfs_qm_dqrele(udqp);
1218 	xfs_qm_dqrele(gdqp);
1219 	xfs_qm_dqrele(pdqp);
1220 
1221 	*ipp = ip;
1222 	return 0;
1223 
1224  out_trans_cancel:
1225 	xfs_trans_cancel(tp);
1226  out_release_inode:
1227 	/*
1228 	 * Wait until after the current transaction is aborted to finish the
1229 	 * setup of the inode and release the inode.  This prevents recursive
1230 	 * transactions and deadlocks from xfs_inactive.
1231 	 */
1232 	if (ip) {
1233 		xfs_finish_inode_setup(ip);
1234 		xfs_irele(ip);
1235 	}
1236 
1237 	xfs_qm_dqrele(udqp);
1238 	xfs_qm_dqrele(gdqp);
1239 	xfs_qm_dqrele(pdqp);
1240 
1241 	if (unlock_dp_on_error)
1242 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1243 	return error;
1244 }
1245 
1246 int
1247 xfs_create_tmpfile(
1248 	struct xfs_inode	*dp,
1249 	umode_t			mode,
1250 	struct xfs_inode	**ipp)
1251 {
1252 	struct xfs_mount	*mp = dp->i_mount;
1253 	struct xfs_inode	*ip = NULL;
1254 	struct xfs_trans	*tp = NULL;
1255 	int			error;
1256 	prid_t                  prid;
1257 	struct xfs_dquot	*udqp = NULL;
1258 	struct xfs_dquot	*gdqp = NULL;
1259 	struct xfs_dquot	*pdqp = NULL;
1260 	struct xfs_trans_res	*tres;
1261 	uint			resblks;
1262 
1263 	if (XFS_FORCED_SHUTDOWN(mp))
1264 		return -EIO;
1265 
1266 	prid = xfs_get_initial_prid(dp);
1267 
1268 	/*
1269 	 * Make sure that we have allocated dquot(s) on disk.
1270 	 */
1271 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1272 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1273 				&udqp, &gdqp, &pdqp);
1274 	if (error)
1275 		return error;
1276 
1277 	resblks = XFS_IALLOC_SPACE_RES(mp);
1278 	tres = &M_RES(mp)->tr_create_tmpfile;
1279 
1280 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1281 	if (error)
1282 		goto out_release_inode;
1283 
1284 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1285 						pdqp, resblks, 1, 0);
1286 	if (error)
1287 		goto out_trans_cancel;
1288 
1289 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1290 	if (error)
1291 		goto out_trans_cancel;
1292 
1293 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1294 		xfs_trans_set_sync(tp);
1295 
1296 	/*
1297 	 * Attach the dquot(s) to the inodes and modify them incore.
1298 	 * These ids of the inode couldn't have changed since the new
1299 	 * inode has been locked ever since it was created.
1300 	 */
1301 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1302 
1303 	error = xfs_iunlink(tp, ip);
1304 	if (error)
1305 		goto out_trans_cancel;
1306 
1307 	error = xfs_trans_commit(tp);
1308 	if (error)
1309 		goto out_release_inode;
1310 
1311 	xfs_qm_dqrele(udqp);
1312 	xfs_qm_dqrele(gdqp);
1313 	xfs_qm_dqrele(pdqp);
1314 
1315 	*ipp = ip;
1316 	return 0;
1317 
1318  out_trans_cancel:
1319 	xfs_trans_cancel(tp);
1320  out_release_inode:
1321 	/*
1322 	 * Wait until after the current transaction is aborted to finish the
1323 	 * setup of the inode and release the inode.  This prevents recursive
1324 	 * transactions and deadlocks from xfs_inactive.
1325 	 */
1326 	if (ip) {
1327 		xfs_finish_inode_setup(ip);
1328 		xfs_irele(ip);
1329 	}
1330 
1331 	xfs_qm_dqrele(udqp);
1332 	xfs_qm_dqrele(gdqp);
1333 	xfs_qm_dqrele(pdqp);
1334 
1335 	return error;
1336 }
1337 
1338 int
1339 xfs_link(
1340 	xfs_inode_t		*tdp,
1341 	xfs_inode_t		*sip,
1342 	struct xfs_name		*target_name)
1343 {
1344 	xfs_mount_t		*mp = tdp->i_mount;
1345 	xfs_trans_t		*tp;
1346 	int			error;
1347 	int			resblks;
1348 
1349 	trace_xfs_link(tdp, target_name);
1350 
1351 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1352 
1353 	if (XFS_FORCED_SHUTDOWN(mp))
1354 		return -EIO;
1355 
1356 	error = xfs_qm_dqattach(sip);
1357 	if (error)
1358 		goto std_return;
1359 
1360 	error = xfs_qm_dqattach(tdp);
1361 	if (error)
1362 		goto std_return;
1363 
1364 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1365 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1366 	if (error == -ENOSPC) {
1367 		resblks = 0;
1368 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1369 	}
1370 	if (error)
1371 		goto std_return;
1372 
1373 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1374 
1375 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1376 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1377 
1378 	/*
1379 	 * If we are using project inheritance, we only allow hard link
1380 	 * creation in our tree when the project IDs are the same; else
1381 	 * the tree quota mechanism could be circumvented.
1382 	 */
1383 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1384 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1385 		error = -EXDEV;
1386 		goto error_return;
1387 	}
1388 
1389 	if (!resblks) {
1390 		error = xfs_dir_canenter(tp, tdp, target_name);
1391 		if (error)
1392 			goto error_return;
1393 	}
1394 
1395 	/*
1396 	 * Handle initial link state of O_TMPFILE inode
1397 	 */
1398 	if (VFS_I(sip)->i_nlink == 0) {
1399 		error = xfs_iunlink_remove(tp, sip);
1400 		if (error)
1401 			goto error_return;
1402 	}
1403 
1404 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1405 				   resblks);
1406 	if (error)
1407 		goto error_return;
1408 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1409 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1410 
1411 	xfs_bumplink(tp, sip);
1412 
1413 	/*
1414 	 * If this is a synchronous mount, make sure that the
1415 	 * link transaction goes to disk before returning to
1416 	 * the user.
1417 	 */
1418 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1419 		xfs_trans_set_sync(tp);
1420 
1421 	return xfs_trans_commit(tp);
1422 
1423  error_return:
1424 	xfs_trans_cancel(tp);
1425  std_return:
1426 	return error;
1427 }
1428 
1429 /* Clear the reflink flag and the cowblocks tag if possible. */
1430 static void
1431 xfs_itruncate_clear_reflink_flags(
1432 	struct xfs_inode	*ip)
1433 {
1434 	struct xfs_ifork	*dfork;
1435 	struct xfs_ifork	*cfork;
1436 
1437 	if (!xfs_is_reflink_inode(ip))
1438 		return;
1439 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1440 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1441 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1442 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1443 	if (cfork->if_bytes == 0)
1444 		xfs_inode_clear_cowblocks_tag(ip);
1445 }
1446 
1447 /*
1448  * Free up the underlying blocks past new_size.  The new size must be smaller
1449  * than the current size.  This routine can be used both for the attribute and
1450  * data fork, and does not modify the inode size, which is left to the caller.
1451  *
1452  * The transaction passed to this routine must have made a permanent log
1453  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1454  * given transaction and start new ones, so make sure everything involved in
1455  * the transaction is tidy before calling here.  Some transaction will be
1456  * returned to the caller to be committed.  The incoming transaction must
1457  * already include the inode, and both inode locks must be held exclusively.
1458  * The inode must also be "held" within the transaction.  On return the inode
1459  * will be "held" within the returned transaction.  This routine does NOT
1460  * require any disk space to be reserved for it within the transaction.
1461  *
1462  * If we get an error, we must return with the inode locked and linked into the
1463  * current transaction. This keeps things simple for the higher level code,
1464  * because it always knows that the inode is locked and held in the transaction
1465  * that returns to it whether errors occur or not.  We don't mark the inode
1466  * dirty on error so that transactions can be easily aborted if possible.
1467  */
1468 int
1469 xfs_itruncate_extents_flags(
1470 	struct xfs_trans	**tpp,
1471 	struct xfs_inode	*ip,
1472 	int			whichfork,
1473 	xfs_fsize_t		new_size,
1474 	int			flags)
1475 {
1476 	struct xfs_mount	*mp = ip->i_mount;
1477 	struct xfs_trans	*tp = *tpp;
1478 	xfs_fileoff_t		first_unmap_block;
1479 	xfs_filblks_t		unmap_len;
1480 	int			error = 0;
1481 
1482 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1483 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1484 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1485 	ASSERT(new_size <= XFS_ISIZE(ip));
1486 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1487 	ASSERT(ip->i_itemp != NULL);
1488 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1489 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1490 
1491 	trace_xfs_itruncate_extents_start(ip, new_size);
1492 
1493 	flags |= xfs_bmapi_aflag(whichfork);
1494 
1495 	/*
1496 	 * Since it is possible for space to become allocated beyond
1497 	 * the end of the file (in a crash where the space is allocated
1498 	 * but the inode size is not yet updated), simply remove any
1499 	 * blocks which show up between the new EOF and the maximum
1500 	 * possible file size.
1501 	 *
1502 	 * We have to free all the blocks to the bmbt maximum offset, even if
1503 	 * the page cache can't scale that far.
1504 	 */
1505 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1506 	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1507 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1508 		return 0;
1509 	}
1510 
1511 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1512 	while (unmap_len > 0) {
1513 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1514 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1515 				flags, XFS_ITRUNC_MAX_EXTENTS);
1516 		if (error)
1517 			goto out;
1518 
1519 		/*
1520 		 * Duplicate the transaction that has the permanent
1521 		 * reservation and commit the old transaction.
1522 		 */
1523 		error = xfs_defer_finish(&tp);
1524 		if (error)
1525 			goto out;
1526 
1527 		error = xfs_trans_roll_inode(&tp, ip);
1528 		if (error)
1529 			goto out;
1530 	}
1531 
1532 	if (whichfork == XFS_DATA_FORK) {
1533 		/* Remove all pending CoW reservations. */
1534 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1535 				first_unmap_block, XFS_MAX_FILEOFF, true);
1536 		if (error)
1537 			goto out;
1538 
1539 		xfs_itruncate_clear_reflink_flags(ip);
1540 	}
1541 
1542 	/*
1543 	 * Always re-log the inode so that our permanent transaction can keep
1544 	 * on rolling it forward in the log.
1545 	 */
1546 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1547 
1548 	trace_xfs_itruncate_extents_end(ip, new_size);
1549 
1550 out:
1551 	*tpp = tp;
1552 	return error;
1553 }
1554 
1555 int
1556 xfs_release(
1557 	xfs_inode_t	*ip)
1558 {
1559 	xfs_mount_t	*mp = ip->i_mount;
1560 	int		error;
1561 
1562 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1563 		return 0;
1564 
1565 	/* If this is a read-only mount, don't do this (would generate I/O) */
1566 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1567 		return 0;
1568 
1569 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1570 		int truncated;
1571 
1572 		/*
1573 		 * If we previously truncated this file and removed old data
1574 		 * in the process, we want to initiate "early" writeout on
1575 		 * the last close.  This is an attempt to combat the notorious
1576 		 * NULL files problem which is particularly noticeable from a
1577 		 * truncate down, buffered (re-)write (delalloc), followed by
1578 		 * a crash.  What we are effectively doing here is
1579 		 * significantly reducing the time window where we'd otherwise
1580 		 * be exposed to that problem.
1581 		 */
1582 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1583 		if (truncated) {
1584 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1585 			if (ip->i_delayed_blks > 0) {
1586 				error = filemap_flush(VFS_I(ip)->i_mapping);
1587 				if (error)
1588 					return error;
1589 			}
1590 		}
1591 	}
1592 
1593 	if (VFS_I(ip)->i_nlink == 0)
1594 		return 0;
1595 
1596 	if (xfs_can_free_eofblocks(ip, false)) {
1597 
1598 		/*
1599 		 * Check if the inode is being opened, written and closed
1600 		 * frequently and we have delayed allocation blocks outstanding
1601 		 * (e.g. streaming writes from the NFS server), truncating the
1602 		 * blocks past EOF will cause fragmentation to occur.
1603 		 *
1604 		 * In this case don't do the truncation, but we have to be
1605 		 * careful how we detect this case. Blocks beyond EOF show up as
1606 		 * i_delayed_blks even when the inode is clean, so we need to
1607 		 * truncate them away first before checking for a dirty release.
1608 		 * Hence on the first dirty close we will still remove the
1609 		 * speculative allocation, but after that we will leave it in
1610 		 * place.
1611 		 */
1612 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1613 			return 0;
1614 		/*
1615 		 * If we can't get the iolock just skip truncating the blocks
1616 		 * past EOF because we could deadlock with the mmap_lock
1617 		 * otherwise. We'll get another chance to drop them once the
1618 		 * last reference to the inode is dropped, so we'll never leak
1619 		 * blocks permanently.
1620 		 */
1621 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1622 			error = xfs_free_eofblocks(ip);
1623 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1624 			if (error)
1625 				return error;
1626 		}
1627 
1628 		/* delalloc blocks after truncation means it really is dirty */
1629 		if (ip->i_delayed_blks)
1630 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1631 	}
1632 	return 0;
1633 }
1634 
1635 /*
1636  * xfs_inactive_truncate
1637  *
1638  * Called to perform a truncate when an inode becomes unlinked.
1639  */
1640 STATIC int
1641 xfs_inactive_truncate(
1642 	struct xfs_inode *ip)
1643 {
1644 	struct xfs_mount	*mp = ip->i_mount;
1645 	struct xfs_trans	*tp;
1646 	int			error;
1647 
1648 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1649 	if (error) {
1650 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1651 		return error;
1652 	}
1653 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1654 	xfs_trans_ijoin(tp, ip, 0);
1655 
1656 	/*
1657 	 * Log the inode size first to prevent stale data exposure in the event
1658 	 * of a system crash before the truncate completes. See the related
1659 	 * comment in xfs_vn_setattr_size() for details.
1660 	 */
1661 	ip->i_d.di_size = 0;
1662 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1663 
1664 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1665 	if (error)
1666 		goto error_trans_cancel;
1667 
1668 	ASSERT(ip->i_df.if_nextents == 0);
1669 
1670 	error = xfs_trans_commit(tp);
1671 	if (error)
1672 		goto error_unlock;
1673 
1674 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1675 	return 0;
1676 
1677 error_trans_cancel:
1678 	xfs_trans_cancel(tp);
1679 error_unlock:
1680 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1681 	return error;
1682 }
1683 
1684 /*
1685  * xfs_inactive_ifree()
1686  *
1687  * Perform the inode free when an inode is unlinked.
1688  */
1689 STATIC int
1690 xfs_inactive_ifree(
1691 	struct xfs_inode *ip)
1692 {
1693 	struct xfs_mount	*mp = ip->i_mount;
1694 	struct xfs_trans	*tp;
1695 	int			error;
1696 
1697 	/*
1698 	 * We try to use a per-AG reservation for any block needed by the finobt
1699 	 * tree, but as the finobt feature predates the per-AG reservation
1700 	 * support a degraded file system might not have enough space for the
1701 	 * reservation at mount time.  In that case try to dip into the reserved
1702 	 * pool and pray.
1703 	 *
1704 	 * Send a warning if the reservation does happen to fail, as the inode
1705 	 * now remains allocated and sits on the unlinked list until the fs is
1706 	 * repaired.
1707 	 */
1708 	if (unlikely(mp->m_finobt_nores)) {
1709 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1710 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1711 				&tp);
1712 	} else {
1713 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1714 	}
1715 	if (error) {
1716 		if (error == -ENOSPC) {
1717 			xfs_warn_ratelimited(mp,
1718 			"Failed to remove inode(s) from unlinked list. "
1719 			"Please free space, unmount and run xfs_repair.");
1720 		} else {
1721 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1722 		}
1723 		return error;
1724 	}
1725 
1726 	/*
1727 	 * We do not hold the inode locked across the entire rolling transaction
1728 	 * here. We only need to hold it for the first transaction that
1729 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1730 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1731 	 * here breaks the relationship between cluster buffer invalidation and
1732 	 * stale inode invalidation on cluster buffer item journal commit
1733 	 * completion, and can result in leaving dirty stale inodes hanging
1734 	 * around in memory.
1735 	 *
1736 	 * We have no need for serialising this inode operation against other
1737 	 * operations - we freed the inode and hence reallocation is required
1738 	 * and that will serialise on reallocating the space the deferops need
1739 	 * to free. Hence we can unlock the inode on the first commit of
1740 	 * the transaction rather than roll it right through the deferops. This
1741 	 * avoids relogging the XFS_ISTALE inode.
1742 	 *
1743 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1744 	 * by asserting that the inode is still locked when it returns.
1745 	 */
1746 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1747 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1748 
1749 	error = xfs_ifree(tp, ip);
1750 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1751 	if (error) {
1752 		/*
1753 		 * If we fail to free the inode, shut down.  The cancel
1754 		 * might do that, we need to make sure.  Otherwise the
1755 		 * inode might be lost for a long time or forever.
1756 		 */
1757 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1758 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1759 				__func__, error);
1760 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1761 		}
1762 		xfs_trans_cancel(tp);
1763 		return error;
1764 	}
1765 
1766 	/*
1767 	 * Credit the quota account(s). The inode is gone.
1768 	 */
1769 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1770 
1771 	/*
1772 	 * Just ignore errors at this point.  There is nothing we can do except
1773 	 * to try to keep going. Make sure it's not a silent error.
1774 	 */
1775 	error = xfs_trans_commit(tp);
1776 	if (error)
1777 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1778 			__func__, error);
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * xfs_inactive
1785  *
1786  * This is called when the vnode reference count for the vnode
1787  * goes to zero.  If the file has been unlinked, then it must
1788  * now be truncated.  Also, we clear all of the read-ahead state
1789  * kept for the inode here since the file is now closed.
1790  */
1791 void
1792 xfs_inactive(
1793 	xfs_inode_t	*ip)
1794 {
1795 	struct xfs_mount	*mp;
1796 	int			error;
1797 	int			truncate = 0;
1798 
1799 	/*
1800 	 * If the inode is already free, then there can be nothing
1801 	 * to clean up here.
1802 	 */
1803 	if (VFS_I(ip)->i_mode == 0) {
1804 		ASSERT(ip->i_df.if_broot_bytes == 0);
1805 		return;
1806 	}
1807 
1808 	mp = ip->i_mount;
1809 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1810 
1811 	/* If this is a read-only mount, don't do this (would generate I/O) */
1812 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1813 		return;
1814 
1815 	/* Try to clean out the cow blocks if there are any. */
1816 	if (xfs_inode_has_cow_data(ip))
1817 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1818 
1819 	if (VFS_I(ip)->i_nlink != 0) {
1820 		/*
1821 		 * force is true because we are evicting an inode from the
1822 		 * cache. Post-eof blocks must be freed, lest we end up with
1823 		 * broken free space accounting.
1824 		 *
1825 		 * Note: don't bother with iolock here since lockdep complains
1826 		 * about acquiring it in reclaim context. We have the only
1827 		 * reference to the inode at this point anyways.
1828 		 */
1829 		if (xfs_can_free_eofblocks(ip, true))
1830 			xfs_free_eofblocks(ip);
1831 
1832 		return;
1833 	}
1834 
1835 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1836 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1837 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1838 		truncate = 1;
1839 
1840 	error = xfs_qm_dqattach(ip);
1841 	if (error)
1842 		return;
1843 
1844 	if (S_ISLNK(VFS_I(ip)->i_mode))
1845 		error = xfs_inactive_symlink(ip);
1846 	else if (truncate)
1847 		error = xfs_inactive_truncate(ip);
1848 	if (error)
1849 		return;
1850 
1851 	/*
1852 	 * If there are attributes associated with the file then blow them away
1853 	 * now.  The code calls a routine that recursively deconstructs the
1854 	 * attribute fork. If also blows away the in-core attribute fork.
1855 	 */
1856 	if (XFS_IFORK_Q(ip)) {
1857 		error = xfs_attr_inactive(ip);
1858 		if (error)
1859 			return;
1860 	}
1861 
1862 	ASSERT(!ip->i_afp);
1863 	ASSERT(ip->i_d.di_forkoff == 0);
1864 
1865 	/*
1866 	 * Free the inode.
1867 	 */
1868 	error = xfs_inactive_ifree(ip);
1869 	if (error)
1870 		return;
1871 
1872 	/*
1873 	 * Release the dquots held by inode, if any.
1874 	 */
1875 	xfs_qm_dqdetach(ip);
1876 }
1877 
1878 /*
1879  * In-Core Unlinked List Lookups
1880  * =============================
1881  *
1882  * Every inode is supposed to be reachable from some other piece of metadata
1883  * with the exception of the root directory.  Inodes with a connection to a
1884  * file descriptor but not linked from anywhere in the on-disk directory tree
1885  * are collectively known as unlinked inodes, though the filesystem itself
1886  * maintains links to these inodes so that on-disk metadata are consistent.
1887  *
1888  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1889  * header contains a number of buckets that point to an inode, and each inode
1890  * record has a pointer to the next inode in the hash chain.  This
1891  * singly-linked list causes scaling problems in the iunlink remove function
1892  * because we must walk that list to find the inode that points to the inode
1893  * being removed from the unlinked hash bucket list.
1894  *
1895  * What if we modelled the unlinked list as a collection of records capturing
1896  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1897  * have a fast way to look up unlinked list predecessors, which avoids the
1898  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1899  * rhashtable.
1900  *
1901  * Because this is a backref cache, we ignore operational failures since the
1902  * iunlink code can fall back to the slow bucket walk.  The only errors that
1903  * should bubble out are for obviously incorrect situations.
1904  *
1905  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1906  * access or have otherwise provided for concurrency control.
1907  */
1908 
1909 /* Capture a "X.next_unlinked = Y" relationship. */
1910 struct xfs_iunlink {
1911 	struct rhash_head	iu_rhash_head;
1912 	xfs_agino_t		iu_agino;		/* X */
1913 	xfs_agino_t		iu_next_unlinked;	/* Y */
1914 };
1915 
1916 /* Unlinked list predecessor lookup hashtable construction */
1917 static int
1918 xfs_iunlink_obj_cmpfn(
1919 	struct rhashtable_compare_arg	*arg,
1920 	const void			*obj)
1921 {
1922 	const xfs_agino_t		*key = arg->key;
1923 	const struct xfs_iunlink	*iu = obj;
1924 
1925 	if (iu->iu_next_unlinked != *key)
1926 		return 1;
1927 	return 0;
1928 }
1929 
1930 static const struct rhashtable_params xfs_iunlink_hash_params = {
1931 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1932 	.key_len		= sizeof(xfs_agino_t),
1933 	.key_offset		= offsetof(struct xfs_iunlink,
1934 					   iu_next_unlinked),
1935 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1936 	.automatic_shrinking	= true,
1937 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1938 };
1939 
1940 /*
1941  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1942  * relation is found.
1943  */
1944 static xfs_agino_t
1945 xfs_iunlink_lookup_backref(
1946 	struct xfs_perag	*pag,
1947 	xfs_agino_t		agino)
1948 {
1949 	struct xfs_iunlink	*iu;
1950 
1951 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1952 			xfs_iunlink_hash_params);
1953 	return iu ? iu->iu_agino : NULLAGINO;
1954 }
1955 
1956 /*
1957  * Take ownership of an iunlink cache entry and insert it into the hash table.
1958  * If successful, the entry will be owned by the cache; if not, it is freed.
1959  * Either way, the caller does not own @iu after this call.
1960  */
1961 static int
1962 xfs_iunlink_insert_backref(
1963 	struct xfs_perag	*pag,
1964 	struct xfs_iunlink	*iu)
1965 {
1966 	int			error;
1967 
1968 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1969 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1970 	/*
1971 	 * Fail loudly if there already was an entry because that's a sign of
1972 	 * corruption of in-memory data.  Also fail loudly if we see an error
1973 	 * code we didn't anticipate from the rhashtable code.  Currently we
1974 	 * only anticipate ENOMEM.
1975 	 */
1976 	if (error) {
1977 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1978 		kmem_free(iu);
1979 	}
1980 	/*
1981 	 * Absorb any runtime errors that aren't a result of corruption because
1982 	 * this is a cache and we can always fall back to bucket list scanning.
1983 	 */
1984 	if (error != 0 && error != -EEXIST)
1985 		error = 0;
1986 	return error;
1987 }
1988 
1989 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1990 static int
1991 xfs_iunlink_add_backref(
1992 	struct xfs_perag	*pag,
1993 	xfs_agino_t		prev_agino,
1994 	xfs_agino_t		this_agino)
1995 {
1996 	struct xfs_iunlink	*iu;
1997 
1998 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1999 		return 0;
2000 
2001 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2002 	iu->iu_agino = prev_agino;
2003 	iu->iu_next_unlinked = this_agino;
2004 
2005 	return xfs_iunlink_insert_backref(pag, iu);
2006 }
2007 
2008 /*
2009  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2010  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2011  * wasn't any such entry then we don't bother.
2012  */
2013 static int
2014 xfs_iunlink_change_backref(
2015 	struct xfs_perag	*pag,
2016 	xfs_agino_t		agino,
2017 	xfs_agino_t		next_unlinked)
2018 {
2019 	struct xfs_iunlink	*iu;
2020 	int			error;
2021 
2022 	/* Look up the old entry; if there wasn't one then exit. */
2023 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2024 			xfs_iunlink_hash_params);
2025 	if (!iu)
2026 		return 0;
2027 
2028 	/*
2029 	 * Remove the entry.  This shouldn't ever return an error, but if we
2030 	 * couldn't remove the old entry we don't want to add it again to the
2031 	 * hash table, and if the entry disappeared on us then someone's
2032 	 * violated the locking rules and we need to fail loudly.  Either way
2033 	 * we cannot remove the inode because internal state is or would have
2034 	 * been corrupt.
2035 	 */
2036 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2037 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2038 	if (error)
2039 		return error;
2040 
2041 	/* If there is no new next entry just free our item and return. */
2042 	if (next_unlinked == NULLAGINO) {
2043 		kmem_free(iu);
2044 		return 0;
2045 	}
2046 
2047 	/* Update the entry and re-add it to the hash table. */
2048 	iu->iu_next_unlinked = next_unlinked;
2049 	return xfs_iunlink_insert_backref(pag, iu);
2050 }
2051 
2052 /* Set up the in-core predecessor structures. */
2053 int
2054 xfs_iunlink_init(
2055 	struct xfs_perag	*pag)
2056 {
2057 	return rhashtable_init(&pag->pagi_unlinked_hash,
2058 			&xfs_iunlink_hash_params);
2059 }
2060 
2061 /* Free the in-core predecessor structures. */
2062 static void
2063 xfs_iunlink_free_item(
2064 	void			*ptr,
2065 	void			*arg)
2066 {
2067 	struct xfs_iunlink	*iu = ptr;
2068 	bool			*freed_anything = arg;
2069 
2070 	*freed_anything = true;
2071 	kmem_free(iu);
2072 }
2073 
2074 void
2075 xfs_iunlink_destroy(
2076 	struct xfs_perag	*pag)
2077 {
2078 	bool			freed_anything = false;
2079 
2080 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2081 			xfs_iunlink_free_item, &freed_anything);
2082 
2083 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2084 }
2085 
2086 /*
2087  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2088  * is responsible for validating the old value.
2089  */
2090 STATIC int
2091 xfs_iunlink_update_bucket(
2092 	struct xfs_trans	*tp,
2093 	xfs_agnumber_t		agno,
2094 	struct xfs_buf		*agibp,
2095 	unsigned int		bucket_index,
2096 	xfs_agino_t		new_agino)
2097 {
2098 	struct xfs_agi		*agi = agibp->b_addr;
2099 	xfs_agino_t		old_value;
2100 	int			offset;
2101 
2102 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2103 
2104 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2105 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2106 			old_value, new_agino);
2107 
2108 	/*
2109 	 * We should never find the head of the list already set to the value
2110 	 * passed in because either we're adding or removing ourselves from the
2111 	 * head of the list.
2112 	 */
2113 	if (old_value == new_agino) {
2114 		xfs_buf_mark_corrupt(agibp);
2115 		return -EFSCORRUPTED;
2116 	}
2117 
2118 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2119 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2120 			(sizeof(xfs_agino_t) * bucket_index);
2121 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2122 	return 0;
2123 }
2124 
2125 /* Set an on-disk inode's next_unlinked pointer. */
2126 STATIC void
2127 xfs_iunlink_update_dinode(
2128 	struct xfs_trans	*tp,
2129 	xfs_agnumber_t		agno,
2130 	xfs_agino_t		agino,
2131 	struct xfs_buf		*ibp,
2132 	struct xfs_dinode	*dip,
2133 	struct xfs_imap		*imap,
2134 	xfs_agino_t		next_agino)
2135 {
2136 	struct xfs_mount	*mp = tp->t_mountp;
2137 	int			offset;
2138 
2139 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2140 
2141 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2142 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2143 
2144 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2145 	offset = imap->im_boffset +
2146 			offsetof(struct xfs_dinode, di_next_unlinked);
2147 
2148 	/* need to recalc the inode CRC if appropriate */
2149 	xfs_dinode_calc_crc(mp, dip);
2150 	xfs_trans_inode_buf(tp, ibp);
2151 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2152 }
2153 
2154 /* Set an in-core inode's unlinked pointer and return the old value. */
2155 STATIC int
2156 xfs_iunlink_update_inode(
2157 	struct xfs_trans	*tp,
2158 	struct xfs_inode	*ip,
2159 	xfs_agnumber_t		agno,
2160 	xfs_agino_t		next_agino,
2161 	xfs_agino_t		*old_next_agino)
2162 {
2163 	struct xfs_mount	*mp = tp->t_mountp;
2164 	struct xfs_dinode	*dip;
2165 	struct xfs_buf		*ibp;
2166 	xfs_agino_t		old_value;
2167 	int			error;
2168 
2169 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2170 
2171 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2172 	if (error)
2173 		return error;
2174 
2175 	/* Make sure the old pointer isn't garbage. */
2176 	old_value = be32_to_cpu(dip->di_next_unlinked);
2177 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2178 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2179 				sizeof(*dip), __this_address);
2180 		error = -EFSCORRUPTED;
2181 		goto out;
2182 	}
2183 
2184 	/*
2185 	 * Since we're updating a linked list, we should never find that the
2186 	 * current pointer is the same as the new value, unless we're
2187 	 * terminating the list.
2188 	 */
2189 	*old_next_agino = old_value;
2190 	if (old_value == next_agino) {
2191 		if (next_agino != NULLAGINO) {
2192 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2193 					dip, sizeof(*dip), __this_address);
2194 			error = -EFSCORRUPTED;
2195 		}
2196 		goto out;
2197 	}
2198 
2199 	/* Ok, update the new pointer. */
2200 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2201 			ibp, dip, &ip->i_imap, next_agino);
2202 	return 0;
2203 out:
2204 	xfs_trans_brelse(tp, ibp);
2205 	return error;
2206 }
2207 
2208 /*
2209  * This is called when the inode's link count has gone to 0 or we are creating
2210  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2211  *
2212  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2213  * list when the inode is freed.
2214  */
2215 STATIC int
2216 xfs_iunlink(
2217 	struct xfs_trans	*tp,
2218 	struct xfs_inode	*ip)
2219 {
2220 	struct xfs_mount	*mp = tp->t_mountp;
2221 	struct xfs_agi		*agi;
2222 	struct xfs_buf		*agibp;
2223 	xfs_agino_t		next_agino;
2224 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2225 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2226 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2227 	int			error;
2228 
2229 	ASSERT(VFS_I(ip)->i_nlink == 0);
2230 	ASSERT(VFS_I(ip)->i_mode != 0);
2231 	trace_xfs_iunlink(ip);
2232 
2233 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2234 	error = xfs_read_agi(mp, tp, agno, &agibp);
2235 	if (error)
2236 		return error;
2237 	agi = agibp->b_addr;
2238 
2239 	/*
2240 	 * Get the index into the agi hash table for the list this inode will
2241 	 * go on.  Make sure the pointer isn't garbage and that this inode
2242 	 * isn't already on the list.
2243 	 */
2244 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2245 	if (next_agino == agino ||
2246 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2247 		xfs_buf_mark_corrupt(agibp);
2248 		return -EFSCORRUPTED;
2249 	}
2250 
2251 	if (next_agino != NULLAGINO) {
2252 		xfs_agino_t		old_agino;
2253 
2254 		/*
2255 		 * There is already another inode in the bucket, so point this
2256 		 * inode to the current head of the list.
2257 		 */
2258 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2259 				&old_agino);
2260 		if (error)
2261 			return error;
2262 		ASSERT(old_agino == NULLAGINO);
2263 
2264 		/*
2265 		 * agino has been unlinked, add a backref from the next inode
2266 		 * back to agino.
2267 		 */
2268 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2269 		if (error)
2270 			return error;
2271 	}
2272 
2273 	/* Point the head of the list to point to this inode. */
2274 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2275 }
2276 
2277 /* Return the imap, dinode pointer, and buffer for an inode. */
2278 STATIC int
2279 xfs_iunlink_map_ino(
2280 	struct xfs_trans	*tp,
2281 	xfs_agnumber_t		agno,
2282 	xfs_agino_t		agino,
2283 	struct xfs_imap		*imap,
2284 	struct xfs_dinode	**dipp,
2285 	struct xfs_buf		**bpp)
2286 {
2287 	struct xfs_mount	*mp = tp->t_mountp;
2288 	int			error;
2289 
2290 	imap->im_blkno = 0;
2291 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2292 	if (error) {
2293 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2294 				__func__, error);
2295 		return error;
2296 	}
2297 
2298 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2299 	if (error) {
2300 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2301 				__func__, error);
2302 		return error;
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * Walk the unlinked chain from @head_agino until we find the inode that
2310  * points to @target_agino.  Return the inode number, map, dinode pointer,
2311  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2312  *
2313  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2314  * @agino, @imap, @dipp, and @bpp are all output parameters.
2315  *
2316  * Do not call this function if @target_agino is the head of the list.
2317  */
2318 STATIC int
2319 xfs_iunlink_map_prev(
2320 	struct xfs_trans	*tp,
2321 	xfs_agnumber_t		agno,
2322 	xfs_agino_t		head_agino,
2323 	xfs_agino_t		target_agino,
2324 	xfs_agino_t		*agino,
2325 	struct xfs_imap		*imap,
2326 	struct xfs_dinode	**dipp,
2327 	struct xfs_buf		**bpp,
2328 	struct xfs_perag	*pag)
2329 {
2330 	struct xfs_mount	*mp = tp->t_mountp;
2331 	xfs_agino_t		next_agino;
2332 	int			error;
2333 
2334 	ASSERT(head_agino != target_agino);
2335 	*bpp = NULL;
2336 
2337 	/* See if our backref cache can find it faster. */
2338 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2339 	if (*agino != NULLAGINO) {
2340 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2341 		if (error)
2342 			return error;
2343 
2344 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2345 			return 0;
2346 
2347 		/*
2348 		 * If we get here the cache contents were corrupt, so drop the
2349 		 * buffer and fall back to walking the bucket list.
2350 		 */
2351 		xfs_trans_brelse(tp, *bpp);
2352 		*bpp = NULL;
2353 		WARN_ON_ONCE(1);
2354 	}
2355 
2356 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2357 
2358 	/* Otherwise, walk the entire bucket until we find it. */
2359 	next_agino = head_agino;
2360 	while (next_agino != target_agino) {
2361 		xfs_agino_t	unlinked_agino;
2362 
2363 		if (*bpp)
2364 			xfs_trans_brelse(tp, *bpp);
2365 
2366 		*agino = next_agino;
2367 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2368 				bpp);
2369 		if (error)
2370 			return error;
2371 
2372 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2373 		/*
2374 		 * Make sure this pointer is valid and isn't an obvious
2375 		 * infinite loop.
2376 		 */
2377 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2378 		    next_agino == unlinked_agino) {
2379 			XFS_CORRUPTION_ERROR(__func__,
2380 					XFS_ERRLEVEL_LOW, mp,
2381 					*dipp, sizeof(**dipp));
2382 			error = -EFSCORRUPTED;
2383 			return error;
2384 		}
2385 		next_agino = unlinked_agino;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Pull the on-disk inode from the AGI unlinked list.
2393  */
2394 STATIC int
2395 xfs_iunlink_remove(
2396 	struct xfs_trans	*tp,
2397 	struct xfs_inode	*ip)
2398 {
2399 	struct xfs_mount	*mp = tp->t_mountp;
2400 	struct xfs_agi		*agi;
2401 	struct xfs_buf		*agibp;
2402 	struct xfs_buf		*last_ibp;
2403 	struct xfs_dinode	*last_dip = NULL;
2404 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2405 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2406 	xfs_agino_t		next_agino;
2407 	xfs_agino_t		head_agino;
2408 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2409 	int			error;
2410 
2411 	trace_xfs_iunlink_remove(ip);
2412 
2413 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2414 	error = xfs_read_agi(mp, tp, agno, &agibp);
2415 	if (error)
2416 		return error;
2417 	agi = agibp->b_addr;
2418 
2419 	/*
2420 	 * Get the index into the agi hash table for the list this inode will
2421 	 * go on.  Make sure the head pointer isn't garbage.
2422 	 */
2423 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2424 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2425 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2426 				agi, sizeof(*agi));
2427 		return -EFSCORRUPTED;
2428 	}
2429 
2430 	/*
2431 	 * Set our inode's next_unlinked pointer to NULL and then return
2432 	 * the old pointer value so that we can update whatever was previous
2433 	 * to us in the list to point to whatever was next in the list.
2434 	 */
2435 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2436 	if (error)
2437 		return error;
2438 
2439 	/*
2440 	 * If there was a backref pointing from the next inode back to this
2441 	 * one, remove it because we've removed this inode from the list.
2442 	 *
2443 	 * Later, if this inode was in the middle of the list we'll update
2444 	 * this inode's backref to point from the next inode.
2445 	 */
2446 	if (next_agino != NULLAGINO) {
2447 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2448 				NULLAGINO);
2449 		if (error)
2450 			return error;
2451 	}
2452 
2453 	if (head_agino != agino) {
2454 		struct xfs_imap	imap;
2455 		xfs_agino_t	prev_agino;
2456 
2457 		/* We need to search the list for the inode being freed. */
2458 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2459 				&prev_agino, &imap, &last_dip, &last_ibp,
2460 				agibp->b_pag);
2461 		if (error)
2462 			return error;
2463 
2464 		/* Point the previous inode on the list to the next inode. */
2465 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2466 				last_dip, &imap, next_agino);
2467 
2468 		/*
2469 		 * Now we deal with the backref for this inode.  If this inode
2470 		 * pointed at a real inode, change the backref that pointed to
2471 		 * us to point to our old next.  If this inode was the end of
2472 		 * the list, delete the backref that pointed to us.  Note that
2473 		 * change_backref takes care of deleting the backref if
2474 		 * next_agino is NULLAGINO.
2475 		 */
2476 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2477 				next_agino);
2478 	}
2479 
2480 	/* Point the head of the list to the next unlinked inode. */
2481 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2482 			next_agino);
2483 }
2484 
2485 /*
2486  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2487  * mark it stale. We should only find clean inodes in this lookup that aren't
2488  * already stale.
2489  */
2490 static void
2491 xfs_ifree_mark_inode_stale(
2492 	struct xfs_buf		*bp,
2493 	struct xfs_inode	*free_ip,
2494 	xfs_ino_t		inum)
2495 {
2496 	struct xfs_mount	*mp = bp->b_mount;
2497 	struct xfs_perag	*pag = bp->b_pag;
2498 	struct xfs_inode_log_item *iip;
2499 	struct xfs_inode	*ip;
2500 
2501 retry:
2502 	rcu_read_lock();
2503 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2504 
2505 	/* Inode not in memory, nothing to do */
2506 	if (!ip) {
2507 		rcu_read_unlock();
2508 		return;
2509 	}
2510 
2511 	/*
2512 	 * because this is an RCU protected lookup, we could find a recently
2513 	 * freed or even reallocated inode during the lookup. We need to check
2514 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2515 	 * valid, the wrong inode or stale.
2516 	 */
2517 	spin_lock(&ip->i_flags_lock);
2518 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2519 		goto out_iflags_unlock;
2520 
2521 	/*
2522 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2523 	 * other inodes that we did not find in the list attached to the buffer
2524 	 * and are not already marked stale. If we can't lock it, back off and
2525 	 * retry.
2526 	 */
2527 	if (ip != free_ip) {
2528 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2529 			spin_unlock(&ip->i_flags_lock);
2530 			rcu_read_unlock();
2531 			delay(1);
2532 			goto retry;
2533 		}
2534 	}
2535 	ip->i_flags |= XFS_ISTALE;
2536 
2537 	/*
2538 	 * If the inode is flushing, it is already attached to the buffer.  All
2539 	 * we needed to do here is mark the inode stale so buffer IO completion
2540 	 * will remove it from the AIL.
2541 	 */
2542 	iip = ip->i_itemp;
2543 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2544 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2545 		ASSERT(iip->ili_last_fields);
2546 		goto out_iunlock;
2547 	}
2548 
2549 	/*
2550 	 * Inodes not attached to the buffer can be released immediately.
2551 	 * Everything else has to go through xfs_iflush_abort() on journal
2552 	 * commit as the flock synchronises removal of the inode from the
2553 	 * cluster buffer against inode reclaim.
2554 	 */
2555 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2556 		goto out_iunlock;
2557 
2558 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2559 	spin_unlock(&ip->i_flags_lock);
2560 	rcu_read_unlock();
2561 
2562 	/* we have a dirty inode in memory that has not yet been flushed. */
2563 	spin_lock(&iip->ili_lock);
2564 	iip->ili_last_fields = iip->ili_fields;
2565 	iip->ili_fields = 0;
2566 	iip->ili_fsync_fields = 0;
2567 	spin_unlock(&iip->ili_lock);
2568 	ASSERT(iip->ili_last_fields);
2569 
2570 	if (ip != free_ip)
2571 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2572 	return;
2573 
2574 out_iunlock:
2575 	if (ip != free_ip)
2576 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2577 out_iflags_unlock:
2578 	spin_unlock(&ip->i_flags_lock);
2579 	rcu_read_unlock();
2580 }
2581 
2582 /*
2583  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2584  * inodes that are in memory - they all must be marked stale and attached to
2585  * the cluster buffer.
2586  */
2587 STATIC int
2588 xfs_ifree_cluster(
2589 	struct xfs_inode	*free_ip,
2590 	struct xfs_trans	*tp,
2591 	struct xfs_icluster	*xic)
2592 {
2593 	struct xfs_mount	*mp = free_ip->i_mount;
2594 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2595 	struct xfs_buf		*bp;
2596 	xfs_daddr_t		blkno;
2597 	xfs_ino_t		inum = xic->first_ino;
2598 	int			nbufs;
2599 	int			i, j;
2600 	int			ioffset;
2601 	int			error;
2602 
2603 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2604 
2605 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2606 		/*
2607 		 * The allocation bitmap tells us which inodes of the chunk were
2608 		 * physically allocated. Skip the cluster if an inode falls into
2609 		 * a sparse region.
2610 		 */
2611 		ioffset = inum - xic->first_ino;
2612 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2613 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2614 			continue;
2615 		}
2616 
2617 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2618 					 XFS_INO_TO_AGBNO(mp, inum));
2619 
2620 		/*
2621 		 * We obtain and lock the backing buffer first in the process
2622 		 * here to ensure dirty inodes attached to the buffer remain in
2623 		 * the flushing state while we mark them stale.
2624 		 *
2625 		 * If we scan the in-memory inodes first, then buffer IO can
2626 		 * complete before we get a lock on it, and hence we may fail
2627 		 * to mark all the active inodes on the buffer stale.
2628 		 */
2629 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2630 				mp->m_bsize * igeo->blocks_per_cluster,
2631 				XBF_UNMAPPED, &bp);
2632 		if (error)
2633 			return error;
2634 
2635 		/*
2636 		 * This buffer may not have been correctly initialised as we
2637 		 * didn't read it from disk. That's not important because we are
2638 		 * only using to mark the buffer as stale in the log, and to
2639 		 * attach stale cached inodes on it. That means it will never be
2640 		 * dispatched for IO. If it is, we want to know about it, and we
2641 		 * want it to fail. We can acheive this by adding a write
2642 		 * verifier to the buffer.
2643 		 */
2644 		bp->b_ops = &xfs_inode_buf_ops;
2645 
2646 		/*
2647 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2648 		 * too. This requires lookups, and will skip inodes that we've
2649 		 * already marked XFS_ISTALE.
2650 		 */
2651 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2652 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2653 
2654 		xfs_trans_stale_inode_buf(tp, bp);
2655 		xfs_trans_binval(tp, bp);
2656 	}
2657 	return 0;
2658 }
2659 
2660 /*
2661  * This is called to return an inode to the inode free list.
2662  * The inode should already be truncated to 0 length and have
2663  * no pages associated with it.  This routine also assumes that
2664  * the inode is already a part of the transaction.
2665  *
2666  * The on-disk copy of the inode will have been added to the list
2667  * of unlinked inodes in the AGI. We need to remove the inode from
2668  * that list atomically with respect to freeing it here.
2669  */
2670 int
2671 xfs_ifree(
2672 	struct xfs_trans	*tp,
2673 	struct xfs_inode	*ip)
2674 {
2675 	int			error;
2676 	struct xfs_icluster	xic = { 0 };
2677 	struct xfs_inode_log_item *iip = ip->i_itemp;
2678 
2679 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2680 	ASSERT(VFS_I(ip)->i_nlink == 0);
2681 	ASSERT(ip->i_df.if_nextents == 0);
2682 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2683 	ASSERT(ip->i_d.di_nblocks == 0);
2684 
2685 	/*
2686 	 * Pull the on-disk inode from the AGI unlinked list.
2687 	 */
2688 	error = xfs_iunlink_remove(tp, ip);
2689 	if (error)
2690 		return error;
2691 
2692 	error = xfs_difree(tp, ip->i_ino, &xic);
2693 	if (error)
2694 		return error;
2695 
2696 	/*
2697 	 * Free any local-format data sitting around before we reset the
2698 	 * data fork to extents format.  Note that the attr fork data has
2699 	 * already been freed by xfs_attr_inactive.
2700 	 */
2701 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2702 		kmem_free(ip->i_df.if_u1.if_data);
2703 		ip->i_df.if_u1.if_data = NULL;
2704 		ip->i_df.if_bytes = 0;
2705 	}
2706 
2707 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2708 	ip->i_d.di_flags = 0;
2709 	ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2710 	ip->i_d.di_dmevmask = 0;
2711 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2712 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2713 
2714 	/* Don't attempt to replay owner changes for a deleted inode */
2715 	spin_lock(&iip->ili_lock);
2716 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2717 	spin_unlock(&iip->ili_lock);
2718 
2719 	/*
2720 	 * Bump the generation count so no one will be confused
2721 	 * by reincarnations of this inode.
2722 	 */
2723 	VFS_I(ip)->i_generation++;
2724 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2725 
2726 	if (xic.deleted)
2727 		error = xfs_ifree_cluster(ip, tp, &xic);
2728 
2729 	return error;
2730 }
2731 
2732 /*
2733  * This is called to unpin an inode.  The caller must have the inode locked
2734  * in at least shared mode so that the buffer cannot be subsequently pinned
2735  * once someone is waiting for it to be unpinned.
2736  */
2737 static void
2738 xfs_iunpin(
2739 	struct xfs_inode	*ip)
2740 {
2741 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2742 
2743 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2744 
2745 	/* Give the log a push to start the unpinning I/O */
2746 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2747 
2748 }
2749 
2750 static void
2751 __xfs_iunpin_wait(
2752 	struct xfs_inode	*ip)
2753 {
2754 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2755 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2756 
2757 	xfs_iunpin(ip);
2758 
2759 	do {
2760 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2761 		if (xfs_ipincount(ip))
2762 			io_schedule();
2763 	} while (xfs_ipincount(ip));
2764 	finish_wait(wq, &wait.wq_entry);
2765 }
2766 
2767 void
2768 xfs_iunpin_wait(
2769 	struct xfs_inode	*ip)
2770 {
2771 	if (xfs_ipincount(ip))
2772 		__xfs_iunpin_wait(ip);
2773 }
2774 
2775 /*
2776  * Removing an inode from the namespace involves removing the directory entry
2777  * and dropping the link count on the inode. Removing the directory entry can
2778  * result in locking an AGF (directory blocks were freed) and removing a link
2779  * count can result in placing the inode on an unlinked list which results in
2780  * locking an AGI.
2781  *
2782  * The big problem here is that we have an ordering constraint on AGF and AGI
2783  * locking - inode allocation locks the AGI, then can allocate a new extent for
2784  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2785  * removes the inode from the unlinked list, requiring that we lock the AGI
2786  * first, and then freeing the inode can result in an inode chunk being freed
2787  * and hence freeing disk space requiring that we lock an AGF.
2788  *
2789  * Hence the ordering that is imposed by other parts of the code is AGI before
2790  * AGF. This means we cannot remove the directory entry before we drop the inode
2791  * reference count and put it on the unlinked list as this results in a lock
2792  * order of AGF then AGI, and this can deadlock against inode allocation and
2793  * freeing. Therefore we must drop the link counts before we remove the
2794  * directory entry.
2795  *
2796  * This is still safe from a transactional point of view - it is not until we
2797  * get to xfs_defer_finish() that we have the possibility of multiple
2798  * transactions in this operation. Hence as long as we remove the directory
2799  * entry and drop the link count in the first transaction of the remove
2800  * operation, there are no transactional constraints on the ordering here.
2801  */
2802 int
2803 xfs_remove(
2804 	xfs_inode_t             *dp,
2805 	struct xfs_name		*name,
2806 	xfs_inode_t		*ip)
2807 {
2808 	xfs_mount_t		*mp = dp->i_mount;
2809 	xfs_trans_t             *tp = NULL;
2810 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2811 	int                     error = 0;
2812 	uint			resblks;
2813 
2814 	trace_xfs_remove(dp, name);
2815 
2816 	if (XFS_FORCED_SHUTDOWN(mp))
2817 		return -EIO;
2818 
2819 	error = xfs_qm_dqattach(dp);
2820 	if (error)
2821 		goto std_return;
2822 
2823 	error = xfs_qm_dqattach(ip);
2824 	if (error)
2825 		goto std_return;
2826 
2827 	/*
2828 	 * We try to get the real space reservation first,
2829 	 * allowing for directory btree deletion(s) implying
2830 	 * possible bmap insert(s).  If we can't get the space
2831 	 * reservation then we use 0 instead, and avoid the bmap
2832 	 * btree insert(s) in the directory code by, if the bmap
2833 	 * insert tries to happen, instead trimming the LAST
2834 	 * block from the directory.
2835 	 */
2836 	resblks = XFS_REMOVE_SPACE_RES(mp);
2837 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2838 	if (error == -ENOSPC) {
2839 		resblks = 0;
2840 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2841 				&tp);
2842 	}
2843 	if (error) {
2844 		ASSERT(error != -ENOSPC);
2845 		goto std_return;
2846 	}
2847 
2848 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2849 
2850 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2851 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2852 
2853 	/*
2854 	 * If we're removing a directory perform some additional validation.
2855 	 */
2856 	if (is_dir) {
2857 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2858 		if (VFS_I(ip)->i_nlink != 2) {
2859 			error = -ENOTEMPTY;
2860 			goto out_trans_cancel;
2861 		}
2862 		if (!xfs_dir_isempty(ip)) {
2863 			error = -ENOTEMPTY;
2864 			goto out_trans_cancel;
2865 		}
2866 
2867 		/* Drop the link from ip's "..".  */
2868 		error = xfs_droplink(tp, dp);
2869 		if (error)
2870 			goto out_trans_cancel;
2871 
2872 		/* Drop the "." link from ip to self.  */
2873 		error = xfs_droplink(tp, ip);
2874 		if (error)
2875 			goto out_trans_cancel;
2876 	} else {
2877 		/*
2878 		 * When removing a non-directory we need to log the parent
2879 		 * inode here.  For a directory this is done implicitly
2880 		 * by the xfs_droplink call for the ".." entry.
2881 		 */
2882 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2883 	}
2884 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2885 
2886 	/* Drop the link from dp to ip. */
2887 	error = xfs_droplink(tp, ip);
2888 	if (error)
2889 		goto out_trans_cancel;
2890 
2891 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2892 	if (error) {
2893 		ASSERT(error != -ENOENT);
2894 		goto out_trans_cancel;
2895 	}
2896 
2897 	/*
2898 	 * If this is a synchronous mount, make sure that the
2899 	 * remove transaction goes to disk before returning to
2900 	 * the user.
2901 	 */
2902 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2903 		xfs_trans_set_sync(tp);
2904 
2905 	error = xfs_trans_commit(tp);
2906 	if (error)
2907 		goto std_return;
2908 
2909 	if (is_dir && xfs_inode_is_filestream(ip))
2910 		xfs_filestream_deassociate(ip);
2911 
2912 	return 0;
2913 
2914  out_trans_cancel:
2915 	xfs_trans_cancel(tp);
2916  std_return:
2917 	return error;
2918 }
2919 
2920 /*
2921  * Enter all inodes for a rename transaction into a sorted array.
2922  */
2923 #define __XFS_SORT_INODES	5
2924 STATIC void
2925 xfs_sort_for_rename(
2926 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2927 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2928 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2929 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2930 	struct xfs_inode	*wip,	/* in: whiteout inode */
2931 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2932 	int			*num_inodes)  /* in/out: inodes in array */
2933 {
2934 	int			i, j;
2935 
2936 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2937 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2938 
2939 	/*
2940 	 * i_tab contains a list of pointers to inodes.  We initialize
2941 	 * the table here & we'll sort it.  We will then use it to
2942 	 * order the acquisition of the inode locks.
2943 	 *
2944 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2945 	 */
2946 	i = 0;
2947 	i_tab[i++] = dp1;
2948 	i_tab[i++] = dp2;
2949 	i_tab[i++] = ip1;
2950 	if (ip2)
2951 		i_tab[i++] = ip2;
2952 	if (wip)
2953 		i_tab[i++] = wip;
2954 	*num_inodes = i;
2955 
2956 	/*
2957 	 * Sort the elements via bubble sort.  (Remember, there are at
2958 	 * most 5 elements to sort, so this is adequate.)
2959 	 */
2960 	for (i = 0; i < *num_inodes; i++) {
2961 		for (j = 1; j < *num_inodes; j++) {
2962 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2963 				struct xfs_inode *temp = i_tab[j];
2964 				i_tab[j] = i_tab[j-1];
2965 				i_tab[j-1] = temp;
2966 			}
2967 		}
2968 	}
2969 }
2970 
2971 static int
2972 xfs_finish_rename(
2973 	struct xfs_trans	*tp)
2974 {
2975 	/*
2976 	 * If this is a synchronous mount, make sure that the rename transaction
2977 	 * goes to disk before returning to the user.
2978 	 */
2979 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2980 		xfs_trans_set_sync(tp);
2981 
2982 	return xfs_trans_commit(tp);
2983 }
2984 
2985 /*
2986  * xfs_cross_rename()
2987  *
2988  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2989  */
2990 STATIC int
2991 xfs_cross_rename(
2992 	struct xfs_trans	*tp,
2993 	struct xfs_inode	*dp1,
2994 	struct xfs_name		*name1,
2995 	struct xfs_inode	*ip1,
2996 	struct xfs_inode	*dp2,
2997 	struct xfs_name		*name2,
2998 	struct xfs_inode	*ip2,
2999 	int			spaceres)
3000 {
3001 	int		error = 0;
3002 	int		ip1_flags = 0;
3003 	int		ip2_flags = 0;
3004 	int		dp2_flags = 0;
3005 
3006 	/* Swap inode number for dirent in first parent */
3007 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3008 	if (error)
3009 		goto out_trans_abort;
3010 
3011 	/* Swap inode number for dirent in second parent */
3012 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3013 	if (error)
3014 		goto out_trans_abort;
3015 
3016 	/*
3017 	 * If we're renaming one or more directories across different parents,
3018 	 * update the respective ".." entries (and link counts) to match the new
3019 	 * parents.
3020 	 */
3021 	if (dp1 != dp2) {
3022 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3023 
3024 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3025 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3026 						dp1->i_ino, spaceres);
3027 			if (error)
3028 				goto out_trans_abort;
3029 
3030 			/* transfer ip2 ".." reference to dp1 */
3031 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3032 				error = xfs_droplink(tp, dp2);
3033 				if (error)
3034 					goto out_trans_abort;
3035 				xfs_bumplink(tp, dp1);
3036 			}
3037 
3038 			/*
3039 			 * Although ip1 isn't changed here, userspace needs
3040 			 * to be warned about the change, so that applications
3041 			 * relying on it (like backup ones), will properly
3042 			 * notify the change
3043 			 */
3044 			ip1_flags |= XFS_ICHGTIME_CHG;
3045 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3046 		}
3047 
3048 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3049 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3050 						dp2->i_ino, spaceres);
3051 			if (error)
3052 				goto out_trans_abort;
3053 
3054 			/* transfer ip1 ".." reference to dp2 */
3055 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3056 				error = xfs_droplink(tp, dp1);
3057 				if (error)
3058 					goto out_trans_abort;
3059 				xfs_bumplink(tp, dp2);
3060 			}
3061 
3062 			/*
3063 			 * Although ip2 isn't changed here, userspace needs
3064 			 * to be warned about the change, so that applications
3065 			 * relying on it (like backup ones), will properly
3066 			 * notify the change
3067 			 */
3068 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3069 			ip2_flags |= XFS_ICHGTIME_CHG;
3070 		}
3071 	}
3072 
3073 	if (ip1_flags) {
3074 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3075 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3076 	}
3077 	if (ip2_flags) {
3078 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3079 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3080 	}
3081 	if (dp2_flags) {
3082 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3083 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3084 	}
3085 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3086 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3087 	return xfs_finish_rename(tp);
3088 
3089 out_trans_abort:
3090 	xfs_trans_cancel(tp);
3091 	return error;
3092 }
3093 
3094 /*
3095  * xfs_rename_alloc_whiteout()
3096  *
3097  * Return a referenced, unlinked, unlocked inode that can be used as a
3098  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3099  * crash between allocating the inode and linking it into the rename transaction
3100  * recovery will free the inode and we won't leak it.
3101  */
3102 static int
3103 xfs_rename_alloc_whiteout(
3104 	struct xfs_inode	*dp,
3105 	struct xfs_inode	**wip)
3106 {
3107 	struct xfs_inode	*tmpfile;
3108 	int			error;
3109 
3110 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3111 	if (error)
3112 		return error;
3113 
3114 	/*
3115 	 * Prepare the tmpfile inode as if it were created through the VFS.
3116 	 * Complete the inode setup and flag it as linkable.  nlink is already
3117 	 * zero, so we can skip the drop_nlink.
3118 	 */
3119 	xfs_setup_iops(tmpfile);
3120 	xfs_finish_inode_setup(tmpfile);
3121 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3122 
3123 	*wip = tmpfile;
3124 	return 0;
3125 }
3126 
3127 /*
3128  * xfs_rename
3129  */
3130 int
3131 xfs_rename(
3132 	struct xfs_inode	*src_dp,
3133 	struct xfs_name		*src_name,
3134 	struct xfs_inode	*src_ip,
3135 	struct xfs_inode	*target_dp,
3136 	struct xfs_name		*target_name,
3137 	struct xfs_inode	*target_ip,
3138 	unsigned int		flags)
3139 {
3140 	struct xfs_mount	*mp = src_dp->i_mount;
3141 	struct xfs_trans	*tp;
3142 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3143 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3144 	struct xfs_buf		*agibp;
3145 	int			num_inodes = __XFS_SORT_INODES;
3146 	bool			new_parent = (src_dp != target_dp);
3147 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3148 	int			spaceres;
3149 	int			error;
3150 
3151 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3152 
3153 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3154 		return -EINVAL;
3155 
3156 	/*
3157 	 * If we are doing a whiteout operation, allocate the whiteout inode
3158 	 * we will be placing at the target and ensure the type is set
3159 	 * appropriately.
3160 	 */
3161 	if (flags & RENAME_WHITEOUT) {
3162 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3163 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3164 		if (error)
3165 			return error;
3166 
3167 		/* setup target dirent info as whiteout */
3168 		src_name->type = XFS_DIR3_FT_CHRDEV;
3169 	}
3170 
3171 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3172 				inodes, &num_inodes);
3173 
3174 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3175 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3176 	if (error == -ENOSPC) {
3177 		spaceres = 0;
3178 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3179 				&tp);
3180 	}
3181 	if (error)
3182 		goto out_release_wip;
3183 
3184 	/*
3185 	 * Attach the dquots to the inodes
3186 	 */
3187 	error = xfs_qm_vop_rename_dqattach(inodes);
3188 	if (error)
3189 		goto out_trans_cancel;
3190 
3191 	/*
3192 	 * Lock all the participating inodes. Depending upon whether
3193 	 * the target_name exists in the target directory, and
3194 	 * whether the target directory is the same as the source
3195 	 * directory, we can lock from 2 to 4 inodes.
3196 	 */
3197 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3198 
3199 	/*
3200 	 * Join all the inodes to the transaction. From this point on,
3201 	 * we can rely on either trans_commit or trans_cancel to unlock
3202 	 * them.
3203 	 */
3204 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3205 	if (new_parent)
3206 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3207 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3208 	if (target_ip)
3209 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3210 	if (wip)
3211 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3212 
3213 	/*
3214 	 * If we are using project inheritance, we only allow renames
3215 	 * into our tree when the project IDs are the same; else the
3216 	 * tree quota mechanism would be circumvented.
3217 	 */
3218 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3219 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3220 		error = -EXDEV;
3221 		goto out_trans_cancel;
3222 	}
3223 
3224 	/* RENAME_EXCHANGE is unique from here on. */
3225 	if (flags & RENAME_EXCHANGE)
3226 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3227 					target_dp, target_name, target_ip,
3228 					spaceres);
3229 
3230 	/*
3231 	 * Check for expected errors before we dirty the transaction
3232 	 * so we can return an error without a transaction abort.
3233 	 */
3234 	if (target_ip == NULL) {
3235 		/*
3236 		 * If there's no space reservation, check the entry will
3237 		 * fit before actually inserting it.
3238 		 */
3239 		if (!spaceres) {
3240 			error = xfs_dir_canenter(tp, target_dp, target_name);
3241 			if (error)
3242 				goto out_trans_cancel;
3243 		}
3244 	} else {
3245 		/*
3246 		 * If target exists and it's a directory, check that whether
3247 		 * it can be destroyed.
3248 		 */
3249 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3250 		    (!xfs_dir_isempty(target_ip) ||
3251 		     (VFS_I(target_ip)->i_nlink > 2))) {
3252 			error = -EEXIST;
3253 			goto out_trans_cancel;
3254 		}
3255 	}
3256 
3257 	/*
3258 	 * Directory entry creation below may acquire the AGF. Remove
3259 	 * the whiteout from the unlinked list first to preserve correct
3260 	 * AGI/AGF locking order. This dirties the transaction so failures
3261 	 * after this point will abort and log recovery will clean up the
3262 	 * mess.
3263 	 *
3264 	 * For whiteouts, we need to bump the link count on the whiteout
3265 	 * inode. After this point, we have a real link, clear the tmpfile
3266 	 * state flag from the inode so it doesn't accidentally get misused
3267 	 * in future.
3268 	 */
3269 	if (wip) {
3270 		ASSERT(VFS_I(wip)->i_nlink == 0);
3271 		error = xfs_iunlink_remove(tp, wip);
3272 		if (error)
3273 			goto out_trans_cancel;
3274 
3275 		xfs_bumplink(tp, wip);
3276 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3277 	}
3278 
3279 	/*
3280 	 * Set up the target.
3281 	 */
3282 	if (target_ip == NULL) {
3283 		/*
3284 		 * If target does not exist and the rename crosses
3285 		 * directories, adjust the target directory link count
3286 		 * to account for the ".." reference from the new entry.
3287 		 */
3288 		error = xfs_dir_createname(tp, target_dp, target_name,
3289 					   src_ip->i_ino, spaceres);
3290 		if (error)
3291 			goto out_trans_cancel;
3292 
3293 		xfs_trans_ichgtime(tp, target_dp,
3294 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3295 
3296 		if (new_parent && src_is_directory) {
3297 			xfs_bumplink(tp, target_dp);
3298 		}
3299 	} else { /* target_ip != NULL */
3300 		/*
3301 		 * Link the source inode under the target name.
3302 		 * If the source inode is a directory and we are moving
3303 		 * it across directories, its ".." entry will be
3304 		 * inconsistent until we replace that down below.
3305 		 *
3306 		 * In case there is already an entry with the same
3307 		 * name at the destination directory, remove it first.
3308 		 */
3309 
3310 		/*
3311 		 * Check whether the replace operation will need to allocate
3312 		 * blocks.  This happens when the shortform directory lacks
3313 		 * space and we have to convert it to a block format directory.
3314 		 * When more blocks are necessary, we must lock the AGI first
3315 		 * to preserve locking order (AGI -> AGF).
3316 		 */
3317 		if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3318 			error = xfs_read_agi(mp, tp,
3319 					XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3320 					&agibp);
3321 			if (error)
3322 				goto out_trans_cancel;
3323 		}
3324 
3325 		error = xfs_dir_replace(tp, target_dp, target_name,
3326 					src_ip->i_ino, spaceres);
3327 		if (error)
3328 			goto out_trans_cancel;
3329 
3330 		xfs_trans_ichgtime(tp, target_dp,
3331 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3332 
3333 		/*
3334 		 * Decrement the link count on the target since the target
3335 		 * dir no longer points to it.
3336 		 */
3337 		error = xfs_droplink(tp, target_ip);
3338 		if (error)
3339 			goto out_trans_cancel;
3340 
3341 		if (src_is_directory) {
3342 			/*
3343 			 * Drop the link from the old "." entry.
3344 			 */
3345 			error = xfs_droplink(tp, target_ip);
3346 			if (error)
3347 				goto out_trans_cancel;
3348 		}
3349 	} /* target_ip != NULL */
3350 
3351 	/*
3352 	 * Remove the source.
3353 	 */
3354 	if (new_parent && src_is_directory) {
3355 		/*
3356 		 * Rewrite the ".." entry to point to the new
3357 		 * directory.
3358 		 */
3359 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3360 					target_dp->i_ino, spaceres);
3361 		ASSERT(error != -EEXIST);
3362 		if (error)
3363 			goto out_trans_cancel;
3364 	}
3365 
3366 	/*
3367 	 * We always want to hit the ctime on the source inode.
3368 	 *
3369 	 * This isn't strictly required by the standards since the source
3370 	 * inode isn't really being changed, but old unix file systems did
3371 	 * it and some incremental backup programs won't work without it.
3372 	 */
3373 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3374 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3375 
3376 	/*
3377 	 * Adjust the link count on src_dp.  This is necessary when
3378 	 * renaming a directory, either within one parent when
3379 	 * the target existed, or across two parent directories.
3380 	 */
3381 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3382 
3383 		/*
3384 		 * Decrement link count on src_directory since the
3385 		 * entry that's moved no longer points to it.
3386 		 */
3387 		error = xfs_droplink(tp, src_dp);
3388 		if (error)
3389 			goto out_trans_cancel;
3390 	}
3391 
3392 	/*
3393 	 * For whiteouts, we only need to update the source dirent with the
3394 	 * inode number of the whiteout inode rather than removing it
3395 	 * altogether.
3396 	 */
3397 	if (wip) {
3398 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3399 					spaceres);
3400 	} else
3401 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3402 					   spaceres);
3403 	if (error)
3404 		goto out_trans_cancel;
3405 
3406 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3407 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3408 	if (new_parent)
3409 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3410 
3411 	error = xfs_finish_rename(tp);
3412 	if (wip)
3413 		xfs_irele(wip);
3414 	return error;
3415 
3416 out_trans_cancel:
3417 	xfs_trans_cancel(tp);
3418 out_release_wip:
3419 	if (wip)
3420 		xfs_irele(wip);
3421 	return error;
3422 }
3423 
3424 static int
3425 xfs_iflush(
3426 	struct xfs_inode	*ip,
3427 	struct xfs_buf		*bp)
3428 {
3429 	struct xfs_inode_log_item *iip = ip->i_itemp;
3430 	struct xfs_dinode	*dip;
3431 	struct xfs_mount	*mp = ip->i_mount;
3432 	int			error;
3433 
3434 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3435 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3436 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3437 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3438 	ASSERT(iip->ili_item.li_buf == bp);
3439 
3440 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3441 
3442 	/*
3443 	 * We don't flush the inode if any of the following checks fail, but we
3444 	 * do still update the log item and attach to the backing buffer as if
3445 	 * the flush happened. This is a formality to facilitate predictable
3446 	 * error handling as the caller will shutdown and fail the buffer.
3447 	 */
3448 	error = -EFSCORRUPTED;
3449 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3450 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3451 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3453 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3454 		goto flush_out;
3455 	}
3456 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3457 		if (XFS_TEST_ERROR(
3458 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3459 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3460 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3461 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3463 				__func__, ip->i_ino, ip);
3464 			goto flush_out;
3465 		}
3466 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3467 		if (XFS_TEST_ERROR(
3468 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3469 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3470 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3471 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3472 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3474 				__func__, ip->i_ino, ip);
3475 			goto flush_out;
3476 		}
3477 	}
3478 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3479 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3480 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 			"%s: detected corrupt incore inode %Lu, "
3482 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3483 			__func__, ip->i_ino,
3484 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3485 			ip->i_d.di_nblocks, ip);
3486 		goto flush_out;
3487 	}
3488 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3489 				mp, XFS_ERRTAG_IFLUSH_6)) {
3490 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3491 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3492 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3493 		goto flush_out;
3494 	}
3495 
3496 	/*
3497 	 * Inode item log recovery for v2 inodes are dependent on the
3498 	 * di_flushiter count for correct sequencing. We bump the flush
3499 	 * iteration count so we can detect flushes which postdate a log record
3500 	 * during recovery. This is redundant as we now log every change and
3501 	 * hence this can't happen but we need to still do it to ensure
3502 	 * backwards compatibility with old kernels that predate logging all
3503 	 * inode changes.
3504 	 */
3505 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3506 		ip->i_d.di_flushiter++;
3507 
3508 	/*
3509 	 * If there are inline format data / attr forks attached to this inode,
3510 	 * make sure they are not corrupt.
3511 	 */
3512 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3513 	    xfs_ifork_verify_local_data(ip))
3514 		goto flush_out;
3515 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3516 	    xfs_ifork_verify_local_attr(ip))
3517 		goto flush_out;
3518 
3519 	/*
3520 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3521 	 * copy out the core of the inode, because if the inode is dirty at all
3522 	 * the core must be.
3523 	 */
3524 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3525 
3526 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3527 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3528 		ip->i_d.di_flushiter = 0;
3529 
3530 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3531 	if (XFS_IFORK_Q(ip))
3532 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3533 
3534 	/*
3535 	 * We've recorded everything logged in the inode, so we'd like to clear
3536 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3537 	 * However, we can't stop logging all this information until the data
3538 	 * we've copied into the disk buffer is written to disk.  If we did we
3539 	 * might overwrite the copy of the inode in the log with all the data
3540 	 * after re-logging only part of it, and in the face of a crash we
3541 	 * wouldn't have all the data we need to recover.
3542 	 *
3543 	 * What we do is move the bits to the ili_last_fields field.  When
3544 	 * logging the inode, these bits are moved back to the ili_fields field.
3545 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3546 	 * we know that the information those bits represent is permanently on
3547 	 * disk.  As long as the flush completes before the inode is logged
3548 	 * again, then both ili_fields and ili_last_fields will be cleared.
3549 	 */
3550 	error = 0;
3551 flush_out:
3552 	spin_lock(&iip->ili_lock);
3553 	iip->ili_last_fields = iip->ili_fields;
3554 	iip->ili_fields = 0;
3555 	iip->ili_fsync_fields = 0;
3556 	spin_unlock(&iip->ili_lock);
3557 
3558 	/*
3559 	 * Store the current LSN of the inode so that we can tell whether the
3560 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3561 	 */
3562 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3563 				&iip->ili_item.li_lsn);
3564 
3565 	/* generate the checksum. */
3566 	xfs_dinode_calc_crc(mp, dip);
3567 	return error;
3568 }
3569 
3570 /*
3571  * Non-blocking flush of dirty inode metadata into the backing buffer.
3572  *
3573  * The caller must have a reference to the inode and hold the cluster buffer
3574  * locked. The function will walk across all the inodes on the cluster buffer it
3575  * can find and lock without blocking, and flush them to the cluster buffer.
3576  *
3577  * On successful flushing of at least one inode, the caller must write out the
3578  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3579  * the caller needs to release the buffer. On failure, the filesystem will be
3580  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3581  * will be returned.
3582  */
3583 int
3584 xfs_iflush_cluster(
3585 	struct xfs_buf		*bp)
3586 {
3587 	struct xfs_mount	*mp = bp->b_mount;
3588 	struct xfs_log_item	*lip, *n;
3589 	struct xfs_inode	*ip;
3590 	struct xfs_inode_log_item *iip;
3591 	int			clcount = 0;
3592 	int			error = 0;
3593 
3594 	/*
3595 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3596 	 * can remove itself from the list.
3597 	 */
3598 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3599 		iip = (struct xfs_inode_log_item *)lip;
3600 		ip = iip->ili_inode;
3601 
3602 		/*
3603 		 * Quick and dirty check to avoid locks if possible.
3604 		 */
3605 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3606 			continue;
3607 		if (xfs_ipincount(ip))
3608 			continue;
3609 
3610 		/*
3611 		 * The inode is still attached to the buffer, which means it is
3612 		 * dirty but reclaim might try to grab it. Check carefully for
3613 		 * that, and grab the ilock while still holding the i_flags_lock
3614 		 * to guarantee reclaim will not be able to reclaim this inode
3615 		 * once we drop the i_flags_lock.
3616 		 */
3617 		spin_lock(&ip->i_flags_lock);
3618 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3619 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3620 			spin_unlock(&ip->i_flags_lock);
3621 			continue;
3622 		}
3623 
3624 		/*
3625 		 * ILOCK will pin the inode against reclaim and prevent
3626 		 * concurrent transactions modifying the inode while we are
3627 		 * flushing the inode. If we get the lock, set the flushing
3628 		 * state before we drop the i_flags_lock.
3629 		 */
3630 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3631 			spin_unlock(&ip->i_flags_lock);
3632 			continue;
3633 		}
3634 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3635 		spin_unlock(&ip->i_flags_lock);
3636 
3637 		/*
3638 		 * Abort flushing this inode if we are shut down because the
3639 		 * inode may not currently be in the AIL. This can occur when
3640 		 * log I/O failure unpins the inode without inserting into the
3641 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3642 		 * that otherwise looks like it should be flushed.
3643 		 */
3644 		if (XFS_FORCED_SHUTDOWN(mp)) {
3645 			xfs_iunpin_wait(ip);
3646 			xfs_iflush_abort(ip);
3647 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3648 			error = -EIO;
3649 			continue;
3650 		}
3651 
3652 		/* don't block waiting on a log force to unpin dirty inodes */
3653 		if (xfs_ipincount(ip)) {
3654 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3655 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3656 			continue;
3657 		}
3658 
3659 		if (!xfs_inode_clean(ip))
3660 			error = xfs_iflush(ip, bp);
3661 		else
3662 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3663 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3664 		if (error)
3665 			break;
3666 		clcount++;
3667 	}
3668 
3669 	if (error) {
3670 		bp->b_flags |= XBF_ASYNC;
3671 		xfs_buf_ioend_fail(bp);
3672 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3673 		return error;
3674 	}
3675 
3676 	if (!clcount)
3677 		return -EAGAIN;
3678 
3679 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3680 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3681 	return 0;
3682 
3683 }
3684 
3685 /* Release an inode. */
3686 void
3687 xfs_irele(
3688 	struct xfs_inode	*ip)
3689 {
3690 	trace_xfs_irele(ip, _RET_IP_);
3691 	iput(VFS_I(ip));
3692 }
3693 
3694 /*
3695  * Ensure all commited transactions touching the inode are written to the log.
3696  */
3697 int
3698 xfs_log_force_inode(
3699 	struct xfs_inode	*ip)
3700 {
3701 	xfs_lsn_t		lsn = 0;
3702 
3703 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3704 	if (xfs_ipincount(ip))
3705 		lsn = ip->i_itemp->ili_last_lsn;
3706 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3707 
3708 	if (!lsn)
3709 		return 0;
3710 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3711 }
3712 
3713 /*
3714  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3715  * abide vfs locking order (lowest pointer value goes first) and breaking the
3716  * layout leases before proceeding.  The loop is needed because we cannot call
3717  * the blocking break_layout() with the iolocks held, and therefore have to
3718  * back out both locks.
3719  */
3720 static int
3721 xfs_iolock_two_inodes_and_break_layout(
3722 	struct inode		*src,
3723 	struct inode		*dest)
3724 {
3725 	int			error;
3726 
3727 	if (src > dest)
3728 		swap(src, dest);
3729 
3730 retry:
3731 	/* Wait to break both inodes' layouts before we start locking. */
3732 	error = break_layout(src, true);
3733 	if (error)
3734 		return error;
3735 	if (src != dest) {
3736 		error = break_layout(dest, true);
3737 		if (error)
3738 			return error;
3739 	}
3740 
3741 	/* Lock one inode and make sure nobody got in and leased it. */
3742 	inode_lock(src);
3743 	error = break_layout(src, false);
3744 	if (error) {
3745 		inode_unlock(src);
3746 		if (error == -EWOULDBLOCK)
3747 			goto retry;
3748 		return error;
3749 	}
3750 
3751 	if (src == dest)
3752 		return 0;
3753 
3754 	/* Lock the other inode and make sure nobody got in and leased it. */
3755 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3756 	error = break_layout(dest, false);
3757 	if (error) {
3758 		inode_unlock(src);
3759 		inode_unlock(dest);
3760 		if (error == -EWOULDBLOCK)
3761 			goto retry;
3762 		return error;
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 /*
3769  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3770  * mmap activity.
3771  */
3772 int
3773 xfs_ilock2_io_mmap(
3774 	struct xfs_inode	*ip1,
3775 	struct xfs_inode	*ip2)
3776 {
3777 	int			ret;
3778 
3779 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3780 	if (ret)
3781 		return ret;
3782 	if (ip1 == ip2)
3783 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3784 	else
3785 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3786 				    ip2, XFS_MMAPLOCK_EXCL);
3787 	return 0;
3788 }
3789 
3790 /* Unlock both inodes to allow IO and mmap activity. */
3791 void
3792 xfs_iunlock2_io_mmap(
3793 	struct xfs_inode	*ip1,
3794 	struct xfs_inode	*ip2)
3795 {
3796 	bool			same_inode = (ip1 == ip2);
3797 
3798 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3799 	if (!same_inode)
3800 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3801 	inode_unlock(VFS_I(ip2));
3802 	if (!same_inode)
3803 		inode_unlock(VFS_I(ip1));
3804 }
3805