1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_inum.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_error.h" 44 #include "xfs_quota.h" 45 #include "xfs_dinode.h" 46 #include "xfs_filestream.h" 47 #include "xfs_cksum.h" 48 #include "xfs_trace.h" 49 #include "xfs_icache.h" 50 #include "xfs_symlink.h" 51 #include "xfs_trans_priv.h" 52 #include "xfs_log.h" 53 #include "xfs_bmap_btree.h" 54 55 kmem_zone_t *xfs_inode_zone; 56 57 /* 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents 59 * freed from a file in a single transaction. 60 */ 61 #define XFS_ITRUNC_MAX_EXTENTS 2 62 63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 64 65 /* 66 * helper function to extract extent size hint from inode 67 */ 68 xfs_extlen_t 69 xfs_get_extsz_hint( 70 struct xfs_inode *ip) 71 { 72 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 73 return ip->i_d.di_extsize; 74 if (XFS_IS_REALTIME_INODE(ip)) 75 return ip->i_mount->m_sb.sb_rextsize; 76 return 0; 77 } 78 79 /* 80 * This is a wrapper routine around the xfs_ilock() routine used to centralize 81 * some grungy code. It is used in places that wish to lock the inode solely 82 * for reading the extents. The reason these places can't just call 83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the 84 * extents from disk for a file in b-tree format. If the inode is in b-tree 85 * format, then we need to lock the inode exclusively until the extents are read 86 * in. Locking it exclusively all the time would limit our parallelism 87 * unnecessarily, though. What we do instead is check to see if the extents 88 * have been read in yet, and only lock the inode exclusively if they have not. 89 * 90 * The function returns a value which should be given to the corresponding 91 * xfs_iunlock_map_shared(). This value is the mode in which the lock was 92 * actually taken. 93 */ 94 uint 95 xfs_ilock_map_shared( 96 xfs_inode_t *ip) 97 { 98 uint lock_mode; 99 100 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && 101 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { 102 lock_mode = XFS_ILOCK_EXCL; 103 } else { 104 lock_mode = XFS_ILOCK_SHARED; 105 } 106 107 xfs_ilock(ip, lock_mode); 108 109 return lock_mode; 110 } 111 112 /* 113 * This is simply the unlock routine to go with xfs_ilock_map_shared(). 114 * All it does is call xfs_iunlock() with the given lock_mode. 115 */ 116 void 117 xfs_iunlock_map_shared( 118 xfs_inode_t *ip, 119 unsigned int lock_mode) 120 { 121 xfs_iunlock(ip, lock_mode); 122 } 123 124 /* 125 * The xfs inode contains 2 locks: a multi-reader lock called the 126 * i_iolock and a multi-reader lock called the i_lock. This routine 127 * allows either or both of the locks to be obtained. 128 * 129 * The 2 locks should always be ordered so that the IO lock is 130 * obtained first in order to prevent deadlock. 131 * 132 * ip -- the inode being locked 133 * lock_flags -- this parameter indicates the inode's locks 134 * to be locked. It can be: 135 * XFS_IOLOCK_SHARED, 136 * XFS_IOLOCK_EXCL, 137 * XFS_ILOCK_SHARED, 138 * XFS_ILOCK_EXCL, 139 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 140 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 141 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 142 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 143 */ 144 void 145 xfs_ilock( 146 xfs_inode_t *ip, 147 uint lock_flags) 148 { 149 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 150 151 /* 152 * You can't set both SHARED and EXCL for the same lock, 153 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 154 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 155 */ 156 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 157 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 158 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 159 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 160 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 161 162 if (lock_flags & XFS_IOLOCK_EXCL) 163 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 164 else if (lock_flags & XFS_IOLOCK_SHARED) 165 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 166 167 if (lock_flags & XFS_ILOCK_EXCL) 168 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 169 else if (lock_flags & XFS_ILOCK_SHARED) 170 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 171 } 172 173 /* 174 * This is just like xfs_ilock(), except that the caller 175 * is guaranteed not to sleep. It returns 1 if it gets 176 * the requested locks and 0 otherwise. If the IO lock is 177 * obtained but the inode lock cannot be, then the IO lock 178 * is dropped before returning. 179 * 180 * ip -- the inode being locked 181 * lock_flags -- this parameter indicates the inode's locks to be 182 * to be locked. See the comment for xfs_ilock() for a list 183 * of valid values. 184 */ 185 int 186 xfs_ilock_nowait( 187 xfs_inode_t *ip, 188 uint lock_flags) 189 { 190 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 191 192 /* 193 * You can't set both SHARED and EXCL for the same lock, 194 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 195 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 196 */ 197 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 198 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 199 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 200 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 201 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 202 203 if (lock_flags & XFS_IOLOCK_EXCL) { 204 if (!mrtryupdate(&ip->i_iolock)) 205 goto out; 206 } else if (lock_flags & XFS_IOLOCK_SHARED) { 207 if (!mrtryaccess(&ip->i_iolock)) 208 goto out; 209 } 210 if (lock_flags & XFS_ILOCK_EXCL) { 211 if (!mrtryupdate(&ip->i_lock)) 212 goto out_undo_iolock; 213 } else if (lock_flags & XFS_ILOCK_SHARED) { 214 if (!mrtryaccess(&ip->i_lock)) 215 goto out_undo_iolock; 216 } 217 return 1; 218 219 out_undo_iolock: 220 if (lock_flags & XFS_IOLOCK_EXCL) 221 mrunlock_excl(&ip->i_iolock); 222 else if (lock_flags & XFS_IOLOCK_SHARED) 223 mrunlock_shared(&ip->i_iolock); 224 out: 225 return 0; 226 } 227 228 /* 229 * xfs_iunlock() is used to drop the inode locks acquired with 230 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 232 * that we know which locks to drop. 233 * 234 * ip -- the inode being unlocked 235 * lock_flags -- this parameter indicates the inode's locks to be 236 * to be unlocked. See the comment for xfs_ilock() for a list 237 * of valid values for this parameter. 238 * 239 */ 240 void 241 xfs_iunlock( 242 xfs_inode_t *ip, 243 uint lock_flags) 244 { 245 /* 246 * You can't set both SHARED and EXCL for the same lock, 247 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 248 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 249 */ 250 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 251 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 252 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 253 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 254 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 255 ASSERT(lock_flags != 0); 256 257 if (lock_flags & XFS_IOLOCK_EXCL) 258 mrunlock_excl(&ip->i_iolock); 259 else if (lock_flags & XFS_IOLOCK_SHARED) 260 mrunlock_shared(&ip->i_iolock); 261 262 if (lock_flags & XFS_ILOCK_EXCL) 263 mrunlock_excl(&ip->i_lock); 264 else if (lock_flags & XFS_ILOCK_SHARED) 265 mrunlock_shared(&ip->i_lock); 266 267 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 268 } 269 270 /* 271 * give up write locks. the i/o lock cannot be held nested 272 * if it is being demoted. 273 */ 274 void 275 xfs_ilock_demote( 276 xfs_inode_t *ip, 277 uint lock_flags) 278 { 279 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 280 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 281 282 if (lock_flags & XFS_ILOCK_EXCL) 283 mrdemote(&ip->i_lock); 284 if (lock_flags & XFS_IOLOCK_EXCL) 285 mrdemote(&ip->i_iolock); 286 287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 288 } 289 290 #if defined(DEBUG) || defined(XFS_WARN) 291 int 292 xfs_isilocked( 293 xfs_inode_t *ip, 294 uint lock_flags) 295 { 296 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 297 if (!(lock_flags & XFS_ILOCK_SHARED)) 298 return !!ip->i_lock.mr_writer; 299 return rwsem_is_locked(&ip->i_lock.mr_lock); 300 } 301 302 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 303 if (!(lock_flags & XFS_IOLOCK_SHARED)) 304 return !!ip->i_iolock.mr_writer; 305 return rwsem_is_locked(&ip->i_iolock.mr_lock); 306 } 307 308 ASSERT(0); 309 return 0; 310 } 311 #endif 312 313 #ifdef DEBUG 314 int xfs_locked_n; 315 int xfs_small_retries; 316 int xfs_middle_retries; 317 int xfs_lots_retries; 318 int xfs_lock_delays; 319 #endif 320 321 /* 322 * Bump the subclass so xfs_lock_inodes() acquires each lock with 323 * a different value 324 */ 325 static inline int 326 xfs_lock_inumorder(int lock_mode, int subclass) 327 { 328 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 329 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 330 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 331 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 332 333 return lock_mode; 334 } 335 336 /* 337 * The following routine will lock n inodes in exclusive mode. 338 * We assume the caller calls us with the inodes in i_ino order. 339 * 340 * We need to detect deadlock where an inode that we lock 341 * is in the AIL and we start waiting for another inode that is locked 342 * by a thread in a long running transaction (such as truncate). This can 343 * result in deadlock since the long running trans might need to wait 344 * for the inode we just locked in order to push the tail and free space 345 * in the log. 346 */ 347 void 348 xfs_lock_inodes( 349 xfs_inode_t **ips, 350 int inodes, 351 uint lock_mode) 352 { 353 int attempts = 0, i, j, try_lock; 354 xfs_log_item_t *lp; 355 356 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 357 358 try_lock = 0; 359 i = 0; 360 361 again: 362 for (; i < inodes; i++) { 363 ASSERT(ips[i]); 364 365 if (i && (ips[i] == ips[i-1])) /* Already locked */ 366 continue; 367 368 /* 369 * If try_lock is not set yet, make sure all locked inodes 370 * are not in the AIL. 371 * If any are, set try_lock to be used later. 372 */ 373 374 if (!try_lock) { 375 for (j = (i - 1); j >= 0 && !try_lock; j--) { 376 lp = (xfs_log_item_t *)ips[j]->i_itemp; 377 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 378 try_lock++; 379 } 380 } 381 } 382 383 /* 384 * If any of the previous locks we have locked is in the AIL, 385 * we must TRY to get the second and subsequent locks. If 386 * we can't get any, we must release all we have 387 * and try again. 388 */ 389 390 if (try_lock) { 391 /* try_lock must be 0 if i is 0. */ 392 /* 393 * try_lock means we have an inode locked 394 * that is in the AIL. 395 */ 396 ASSERT(i != 0); 397 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 398 attempts++; 399 400 /* 401 * Unlock all previous guys and try again. 402 * xfs_iunlock will try to push the tail 403 * if the inode is in the AIL. 404 */ 405 406 for(j = i - 1; j >= 0; j--) { 407 408 /* 409 * Check to see if we've already 410 * unlocked this one. 411 * Not the first one going back, 412 * and the inode ptr is the same. 413 */ 414 if ((j != (i - 1)) && ips[j] == 415 ips[j+1]) 416 continue; 417 418 xfs_iunlock(ips[j], lock_mode); 419 } 420 421 if ((attempts % 5) == 0) { 422 delay(1); /* Don't just spin the CPU */ 423 #ifdef DEBUG 424 xfs_lock_delays++; 425 #endif 426 } 427 i = 0; 428 try_lock = 0; 429 goto again; 430 } 431 } else { 432 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 433 } 434 } 435 436 #ifdef DEBUG 437 if (attempts) { 438 if (attempts < 5) xfs_small_retries++; 439 else if (attempts < 100) xfs_middle_retries++; 440 else xfs_lots_retries++; 441 } else { 442 xfs_locked_n++; 443 } 444 #endif 445 } 446 447 /* 448 * xfs_lock_two_inodes() can only be used to lock one type of lock 449 * at a time - the iolock or the ilock, but not both at once. If 450 * we lock both at once, lockdep will report false positives saying 451 * we have violated locking orders. 452 */ 453 void 454 xfs_lock_two_inodes( 455 xfs_inode_t *ip0, 456 xfs_inode_t *ip1, 457 uint lock_mode) 458 { 459 xfs_inode_t *temp; 460 int attempts = 0; 461 xfs_log_item_t *lp; 462 463 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 464 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 465 ASSERT(ip0->i_ino != ip1->i_ino); 466 467 if (ip0->i_ino > ip1->i_ino) { 468 temp = ip0; 469 ip0 = ip1; 470 ip1 = temp; 471 } 472 473 again: 474 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 475 476 /* 477 * If the first lock we have locked is in the AIL, we must TRY to get 478 * the second lock. If we can't get it, we must release the first one 479 * and try again. 480 */ 481 lp = (xfs_log_item_t *)ip0->i_itemp; 482 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 483 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 484 xfs_iunlock(ip0, lock_mode); 485 if ((++attempts % 5) == 0) 486 delay(1); /* Don't just spin the CPU */ 487 goto again; 488 } 489 } else { 490 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 491 } 492 } 493 494 495 void 496 __xfs_iflock( 497 struct xfs_inode *ip) 498 { 499 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 500 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 501 502 do { 503 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 504 if (xfs_isiflocked(ip)) 505 io_schedule(); 506 } while (!xfs_iflock_nowait(ip)); 507 508 finish_wait(wq, &wait.wait); 509 } 510 511 STATIC uint 512 _xfs_dic2xflags( 513 __uint16_t di_flags) 514 { 515 uint flags = 0; 516 517 if (di_flags & XFS_DIFLAG_ANY) { 518 if (di_flags & XFS_DIFLAG_REALTIME) 519 flags |= XFS_XFLAG_REALTIME; 520 if (di_flags & XFS_DIFLAG_PREALLOC) 521 flags |= XFS_XFLAG_PREALLOC; 522 if (di_flags & XFS_DIFLAG_IMMUTABLE) 523 flags |= XFS_XFLAG_IMMUTABLE; 524 if (di_flags & XFS_DIFLAG_APPEND) 525 flags |= XFS_XFLAG_APPEND; 526 if (di_flags & XFS_DIFLAG_SYNC) 527 flags |= XFS_XFLAG_SYNC; 528 if (di_flags & XFS_DIFLAG_NOATIME) 529 flags |= XFS_XFLAG_NOATIME; 530 if (di_flags & XFS_DIFLAG_NODUMP) 531 flags |= XFS_XFLAG_NODUMP; 532 if (di_flags & XFS_DIFLAG_RTINHERIT) 533 flags |= XFS_XFLAG_RTINHERIT; 534 if (di_flags & XFS_DIFLAG_PROJINHERIT) 535 flags |= XFS_XFLAG_PROJINHERIT; 536 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 537 flags |= XFS_XFLAG_NOSYMLINKS; 538 if (di_flags & XFS_DIFLAG_EXTSIZE) 539 flags |= XFS_XFLAG_EXTSIZE; 540 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 541 flags |= XFS_XFLAG_EXTSZINHERIT; 542 if (di_flags & XFS_DIFLAG_NODEFRAG) 543 flags |= XFS_XFLAG_NODEFRAG; 544 if (di_flags & XFS_DIFLAG_FILESTREAM) 545 flags |= XFS_XFLAG_FILESTREAM; 546 } 547 548 return flags; 549 } 550 551 uint 552 xfs_ip2xflags( 553 xfs_inode_t *ip) 554 { 555 xfs_icdinode_t *dic = &ip->i_d; 556 557 return _xfs_dic2xflags(dic->di_flags) | 558 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 559 } 560 561 uint 562 xfs_dic2xflags( 563 xfs_dinode_t *dip) 564 { 565 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 566 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 567 } 568 569 /* 570 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 571 * is allowed, otherwise it has to be an exact match. If a CI match is found, 572 * ci_name->name will point to a the actual name (caller must free) or 573 * will be set to NULL if an exact match is found. 574 */ 575 int 576 xfs_lookup( 577 xfs_inode_t *dp, 578 struct xfs_name *name, 579 xfs_inode_t **ipp, 580 struct xfs_name *ci_name) 581 { 582 xfs_ino_t inum; 583 int error; 584 uint lock_mode; 585 586 trace_xfs_lookup(dp, name); 587 588 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 589 return XFS_ERROR(EIO); 590 591 lock_mode = xfs_ilock_map_shared(dp); 592 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 593 xfs_iunlock_map_shared(dp, lock_mode); 594 595 if (error) 596 goto out; 597 598 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 599 if (error) 600 goto out_free_name; 601 602 return 0; 603 604 out_free_name: 605 if (ci_name) 606 kmem_free(ci_name->name); 607 out: 608 *ipp = NULL; 609 return error; 610 } 611 612 /* 613 * Allocate an inode on disk and return a copy of its in-core version. 614 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 615 * appropriately within the inode. The uid and gid for the inode are 616 * set according to the contents of the given cred structure. 617 * 618 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 619 * has a free inode available, call xfs_iget() to obtain the in-core 620 * version of the allocated inode. Finally, fill in the inode and 621 * log its initial contents. In this case, ialloc_context would be 622 * set to NULL. 623 * 624 * If xfs_dialloc() does not have an available inode, it will replenish 625 * its supply by doing an allocation. Since we can only do one 626 * allocation within a transaction without deadlocks, we must commit 627 * the current transaction before returning the inode itself. 628 * In this case, therefore, we will set ialloc_context and return. 629 * The caller should then commit the current transaction, start a new 630 * transaction, and call xfs_ialloc() again to actually get the inode. 631 * 632 * To ensure that some other process does not grab the inode that 633 * was allocated during the first call to xfs_ialloc(), this routine 634 * also returns the [locked] bp pointing to the head of the freelist 635 * as ialloc_context. The caller should hold this buffer across 636 * the commit and pass it back into this routine on the second call. 637 * 638 * If we are allocating quota inodes, we do not have a parent inode 639 * to attach to or associate with (i.e. pip == NULL) because they 640 * are not linked into the directory structure - they are attached 641 * directly to the superblock - and so have no parent. 642 */ 643 int 644 xfs_ialloc( 645 xfs_trans_t *tp, 646 xfs_inode_t *pip, 647 umode_t mode, 648 xfs_nlink_t nlink, 649 xfs_dev_t rdev, 650 prid_t prid, 651 int okalloc, 652 xfs_buf_t **ialloc_context, 653 xfs_inode_t **ipp) 654 { 655 struct xfs_mount *mp = tp->t_mountp; 656 xfs_ino_t ino; 657 xfs_inode_t *ip; 658 uint flags; 659 int error; 660 timespec_t tv; 661 int filestreams = 0; 662 663 /* 664 * Call the space management code to pick 665 * the on-disk inode to be allocated. 666 */ 667 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 668 ialloc_context, &ino); 669 if (error) 670 return error; 671 if (*ialloc_context || ino == NULLFSINO) { 672 *ipp = NULL; 673 return 0; 674 } 675 ASSERT(*ialloc_context == NULL); 676 677 /* 678 * Get the in-core inode with the lock held exclusively. 679 * This is because we're setting fields here we need 680 * to prevent others from looking at until we're done. 681 */ 682 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 683 XFS_ILOCK_EXCL, &ip); 684 if (error) 685 return error; 686 ASSERT(ip != NULL); 687 688 ip->i_d.di_mode = mode; 689 ip->i_d.di_onlink = 0; 690 ip->i_d.di_nlink = nlink; 691 ASSERT(ip->i_d.di_nlink == nlink); 692 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 693 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 694 xfs_set_projid(ip, prid); 695 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 696 697 /* 698 * If the superblock version is up to where we support new format 699 * inodes and this is currently an old format inode, then change 700 * the inode version number now. This way we only do the conversion 701 * here rather than here and in the flush/logging code. 702 */ 703 if (xfs_sb_version_hasnlink(&mp->m_sb) && 704 ip->i_d.di_version == 1) { 705 ip->i_d.di_version = 2; 706 /* 707 * We've already zeroed the old link count, the projid field, 708 * and the pad field. 709 */ 710 } 711 712 /* 713 * Project ids won't be stored on disk if we are using a version 1 inode. 714 */ 715 if ((prid != 0) && (ip->i_d.di_version == 1)) 716 xfs_bump_ino_vers2(tp, ip); 717 718 if (pip && XFS_INHERIT_GID(pip)) { 719 ip->i_d.di_gid = pip->i_d.di_gid; 720 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 721 ip->i_d.di_mode |= S_ISGID; 722 } 723 } 724 725 /* 726 * If the group ID of the new file does not match the effective group 727 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 728 * (and only if the irix_sgid_inherit compatibility variable is set). 729 */ 730 if ((irix_sgid_inherit) && 731 (ip->i_d.di_mode & S_ISGID) && 732 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 733 ip->i_d.di_mode &= ~S_ISGID; 734 } 735 736 ip->i_d.di_size = 0; 737 ip->i_d.di_nextents = 0; 738 ASSERT(ip->i_d.di_nblocks == 0); 739 740 nanotime(&tv); 741 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 742 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 743 ip->i_d.di_atime = ip->i_d.di_mtime; 744 ip->i_d.di_ctime = ip->i_d.di_mtime; 745 746 /* 747 * di_gen will have been taken care of in xfs_iread. 748 */ 749 ip->i_d.di_extsize = 0; 750 ip->i_d.di_dmevmask = 0; 751 ip->i_d.di_dmstate = 0; 752 ip->i_d.di_flags = 0; 753 754 if (ip->i_d.di_version == 3) { 755 ASSERT(ip->i_d.di_ino == ino); 756 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 757 ip->i_d.di_crc = 0; 758 ip->i_d.di_changecount = 1; 759 ip->i_d.di_lsn = 0; 760 ip->i_d.di_flags2 = 0; 761 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 762 ip->i_d.di_crtime = ip->i_d.di_mtime; 763 } 764 765 766 flags = XFS_ILOG_CORE; 767 switch (mode & S_IFMT) { 768 case S_IFIFO: 769 case S_IFCHR: 770 case S_IFBLK: 771 case S_IFSOCK: 772 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 773 ip->i_df.if_u2.if_rdev = rdev; 774 ip->i_df.if_flags = 0; 775 flags |= XFS_ILOG_DEV; 776 break; 777 case S_IFREG: 778 /* 779 * we can't set up filestreams until after the VFS inode 780 * is set up properly. 781 */ 782 if (pip && xfs_inode_is_filestream(pip)) 783 filestreams = 1; 784 /* fall through */ 785 case S_IFDIR: 786 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 787 uint di_flags = 0; 788 789 if (S_ISDIR(mode)) { 790 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 791 di_flags |= XFS_DIFLAG_RTINHERIT; 792 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 793 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 794 ip->i_d.di_extsize = pip->i_d.di_extsize; 795 } 796 } else if (S_ISREG(mode)) { 797 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 798 di_flags |= XFS_DIFLAG_REALTIME; 799 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 800 di_flags |= XFS_DIFLAG_EXTSIZE; 801 ip->i_d.di_extsize = pip->i_d.di_extsize; 802 } 803 } 804 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 805 xfs_inherit_noatime) 806 di_flags |= XFS_DIFLAG_NOATIME; 807 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 808 xfs_inherit_nodump) 809 di_flags |= XFS_DIFLAG_NODUMP; 810 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 811 xfs_inherit_sync) 812 di_flags |= XFS_DIFLAG_SYNC; 813 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 814 xfs_inherit_nosymlinks) 815 di_flags |= XFS_DIFLAG_NOSYMLINKS; 816 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 817 di_flags |= XFS_DIFLAG_PROJINHERIT; 818 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 819 xfs_inherit_nodefrag) 820 di_flags |= XFS_DIFLAG_NODEFRAG; 821 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 822 di_flags |= XFS_DIFLAG_FILESTREAM; 823 ip->i_d.di_flags |= di_flags; 824 } 825 /* FALLTHROUGH */ 826 case S_IFLNK: 827 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 828 ip->i_df.if_flags = XFS_IFEXTENTS; 829 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 830 ip->i_df.if_u1.if_extents = NULL; 831 break; 832 default: 833 ASSERT(0); 834 } 835 /* 836 * Attribute fork settings for new inode. 837 */ 838 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 839 ip->i_d.di_anextents = 0; 840 841 /* 842 * Log the new values stuffed into the inode. 843 */ 844 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 845 xfs_trans_log_inode(tp, ip, flags); 846 847 /* now that we have an i_mode we can setup inode ops and unlock */ 848 xfs_setup_inode(ip); 849 850 /* now we have set up the vfs inode we can associate the filestream */ 851 if (filestreams) { 852 error = xfs_filestream_associate(pip, ip); 853 if (error < 0) 854 return -error; 855 if (!error) 856 xfs_iflags_set(ip, XFS_IFILESTREAM); 857 } 858 859 *ipp = ip; 860 return 0; 861 } 862 863 /* 864 * Allocates a new inode from disk and return a pointer to the 865 * incore copy. This routine will internally commit the current 866 * transaction and allocate a new one if the Space Manager needed 867 * to do an allocation to replenish the inode free-list. 868 * 869 * This routine is designed to be called from xfs_create and 870 * xfs_create_dir. 871 * 872 */ 873 int 874 xfs_dir_ialloc( 875 xfs_trans_t **tpp, /* input: current transaction; 876 output: may be a new transaction. */ 877 xfs_inode_t *dp, /* directory within whose allocate 878 the inode. */ 879 umode_t mode, 880 xfs_nlink_t nlink, 881 xfs_dev_t rdev, 882 prid_t prid, /* project id */ 883 int okalloc, /* ok to allocate new space */ 884 xfs_inode_t **ipp, /* pointer to inode; it will be 885 locked. */ 886 int *committed) 887 888 { 889 xfs_trans_t *tp; 890 xfs_trans_t *ntp; 891 xfs_inode_t *ip; 892 xfs_buf_t *ialloc_context = NULL; 893 int code; 894 void *dqinfo; 895 uint tflags; 896 897 tp = *tpp; 898 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 899 900 /* 901 * xfs_ialloc will return a pointer to an incore inode if 902 * the Space Manager has an available inode on the free 903 * list. Otherwise, it will do an allocation and replenish 904 * the freelist. Since we can only do one allocation per 905 * transaction without deadlocks, we will need to commit the 906 * current transaction and start a new one. We will then 907 * need to call xfs_ialloc again to get the inode. 908 * 909 * If xfs_ialloc did an allocation to replenish the freelist, 910 * it returns the bp containing the head of the freelist as 911 * ialloc_context. We will hold a lock on it across the 912 * transaction commit so that no other process can steal 913 * the inode(s) that we've just allocated. 914 */ 915 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 916 &ialloc_context, &ip); 917 918 /* 919 * Return an error if we were unable to allocate a new inode. 920 * This should only happen if we run out of space on disk or 921 * encounter a disk error. 922 */ 923 if (code) { 924 *ipp = NULL; 925 return code; 926 } 927 if (!ialloc_context && !ip) { 928 *ipp = NULL; 929 return XFS_ERROR(ENOSPC); 930 } 931 932 /* 933 * If the AGI buffer is non-NULL, then we were unable to get an 934 * inode in one operation. We need to commit the current 935 * transaction and call xfs_ialloc() again. It is guaranteed 936 * to succeed the second time. 937 */ 938 if (ialloc_context) { 939 struct xfs_trans_res tres; 940 941 /* 942 * Normally, xfs_trans_commit releases all the locks. 943 * We call bhold to hang on to the ialloc_context across 944 * the commit. Holding this buffer prevents any other 945 * processes from doing any allocations in this 946 * allocation group. 947 */ 948 xfs_trans_bhold(tp, ialloc_context); 949 /* 950 * Save the log reservation so we can use 951 * them in the next transaction. 952 */ 953 tres.tr_logres = xfs_trans_get_log_res(tp); 954 tres.tr_logcount = xfs_trans_get_log_count(tp); 955 956 /* 957 * We want the quota changes to be associated with the next 958 * transaction, NOT this one. So, detach the dqinfo from this 959 * and attach it to the next transaction. 960 */ 961 dqinfo = NULL; 962 tflags = 0; 963 if (tp->t_dqinfo) { 964 dqinfo = (void *)tp->t_dqinfo; 965 tp->t_dqinfo = NULL; 966 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 967 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 968 } 969 970 ntp = xfs_trans_dup(tp); 971 code = xfs_trans_commit(tp, 0); 972 tp = ntp; 973 if (committed != NULL) { 974 *committed = 1; 975 } 976 /* 977 * If we get an error during the commit processing, 978 * release the buffer that is still held and return 979 * to the caller. 980 */ 981 if (code) { 982 xfs_buf_relse(ialloc_context); 983 if (dqinfo) { 984 tp->t_dqinfo = dqinfo; 985 xfs_trans_free_dqinfo(tp); 986 } 987 *tpp = ntp; 988 *ipp = NULL; 989 return code; 990 } 991 992 /* 993 * transaction commit worked ok so we can drop the extra ticket 994 * reference that we gained in xfs_trans_dup() 995 */ 996 xfs_log_ticket_put(tp->t_ticket); 997 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 998 code = xfs_trans_reserve(tp, &tres, 0, 0); 999 1000 /* 1001 * Re-attach the quota info that we detached from prev trx. 1002 */ 1003 if (dqinfo) { 1004 tp->t_dqinfo = dqinfo; 1005 tp->t_flags |= tflags; 1006 } 1007 1008 if (code) { 1009 xfs_buf_relse(ialloc_context); 1010 *tpp = ntp; 1011 *ipp = NULL; 1012 return code; 1013 } 1014 xfs_trans_bjoin(tp, ialloc_context); 1015 1016 /* 1017 * Call ialloc again. Since we've locked out all 1018 * other allocations in this allocation group, 1019 * this call should always succeed. 1020 */ 1021 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1022 okalloc, &ialloc_context, &ip); 1023 1024 /* 1025 * If we get an error at this point, return to the caller 1026 * so that the current transaction can be aborted. 1027 */ 1028 if (code) { 1029 *tpp = tp; 1030 *ipp = NULL; 1031 return code; 1032 } 1033 ASSERT(!ialloc_context && ip); 1034 1035 } else { 1036 if (committed != NULL) 1037 *committed = 0; 1038 } 1039 1040 *ipp = ip; 1041 *tpp = tp; 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * Decrement the link count on an inode & log the change. 1048 * If this causes the link count to go to zero, initiate the 1049 * logging activity required to truncate a file. 1050 */ 1051 int /* error */ 1052 xfs_droplink( 1053 xfs_trans_t *tp, 1054 xfs_inode_t *ip) 1055 { 1056 int error; 1057 1058 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1059 1060 ASSERT (ip->i_d.di_nlink > 0); 1061 ip->i_d.di_nlink--; 1062 drop_nlink(VFS_I(ip)); 1063 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1064 1065 error = 0; 1066 if (ip->i_d.di_nlink == 0) { 1067 /* 1068 * We're dropping the last link to this file. 1069 * Move the on-disk inode to the AGI unlinked list. 1070 * From xfs_inactive() we will pull the inode from 1071 * the list and free it. 1072 */ 1073 error = xfs_iunlink(tp, ip); 1074 } 1075 return error; 1076 } 1077 1078 /* 1079 * This gets called when the inode's version needs to be changed from 1 to 2. 1080 * Currently this happens when the nlink field overflows the old 16-bit value 1081 * or when chproj is called to change the project for the first time. 1082 * As a side effect the superblock version will also get rev'd 1083 * to contain the NLINK bit. 1084 */ 1085 void 1086 xfs_bump_ino_vers2( 1087 xfs_trans_t *tp, 1088 xfs_inode_t *ip) 1089 { 1090 xfs_mount_t *mp; 1091 1092 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1093 ASSERT(ip->i_d.di_version == 1); 1094 1095 ip->i_d.di_version = 2; 1096 ip->i_d.di_onlink = 0; 1097 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 1098 mp = tp->t_mountp; 1099 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1100 spin_lock(&mp->m_sb_lock); 1101 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 1102 xfs_sb_version_addnlink(&mp->m_sb); 1103 spin_unlock(&mp->m_sb_lock); 1104 xfs_mod_sb(tp, XFS_SB_VERSIONNUM); 1105 } else { 1106 spin_unlock(&mp->m_sb_lock); 1107 } 1108 } 1109 /* Caller must log the inode */ 1110 } 1111 1112 /* 1113 * Increment the link count on an inode & log the change. 1114 */ 1115 int 1116 xfs_bumplink( 1117 xfs_trans_t *tp, 1118 xfs_inode_t *ip) 1119 { 1120 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1121 1122 ASSERT(ip->i_d.di_nlink > 0); 1123 ip->i_d.di_nlink++; 1124 inc_nlink(VFS_I(ip)); 1125 if ((ip->i_d.di_version == 1) && 1126 (ip->i_d.di_nlink > XFS_MAXLINK_1)) { 1127 /* 1128 * The inode has increased its number of links beyond 1129 * what can fit in an old format inode. It now needs 1130 * to be converted to a version 2 inode with a 32 bit 1131 * link count. If this is the first inode in the file 1132 * system to do this, then we need to bump the superblock 1133 * version number as well. 1134 */ 1135 xfs_bump_ino_vers2(tp, ip); 1136 } 1137 1138 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1139 return 0; 1140 } 1141 1142 int 1143 xfs_create( 1144 xfs_inode_t *dp, 1145 struct xfs_name *name, 1146 umode_t mode, 1147 xfs_dev_t rdev, 1148 xfs_inode_t **ipp) 1149 { 1150 int is_dir = S_ISDIR(mode); 1151 struct xfs_mount *mp = dp->i_mount; 1152 struct xfs_inode *ip = NULL; 1153 struct xfs_trans *tp = NULL; 1154 int error; 1155 xfs_bmap_free_t free_list; 1156 xfs_fsblock_t first_block; 1157 bool unlock_dp_on_error = false; 1158 uint cancel_flags; 1159 int committed; 1160 prid_t prid; 1161 struct xfs_dquot *udqp = NULL; 1162 struct xfs_dquot *gdqp = NULL; 1163 struct xfs_dquot *pdqp = NULL; 1164 struct xfs_trans_res tres; 1165 uint resblks; 1166 1167 trace_xfs_create(dp, name); 1168 1169 if (XFS_FORCED_SHUTDOWN(mp)) 1170 return XFS_ERROR(EIO); 1171 1172 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 1173 prid = xfs_get_projid(dp); 1174 else 1175 prid = XFS_PROJID_DEFAULT; 1176 1177 /* 1178 * Make sure that we have allocated dquot(s) on disk. 1179 */ 1180 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1181 xfs_kgid_to_gid(current_fsgid()), prid, 1182 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1183 &udqp, &gdqp, &pdqp); 1184 if (error) 1185 return error; 1186 1187 if (is_dir) { 1188 rdev = 0; 1189 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1190 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres; 1191 tres.tr_logcount = XFS_MKDIR_LOG_COUNT; 1192 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1193 } else { 1194 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1195 tres.tr_logres = M_RES(mp)->tr_create.tr_logres; 1196 tres.tr_logcount = XFS_CREATE_LOG_COUNT; 1197 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1198 } 1199 1200 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1201 1202 /* 1203 * Initially assume that the file does not exist and 1204 * reserve the resources for that case. If that is not 1205 * the case we'll drop the one we have and get a more 1206 * appropriate transaction later. 1207 */ 1208 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1209 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1210 if (error == ENOSPC) { 1211 /* flush outstanding delalloc blocks and retry */ 1212 xfs_flush_inodes(mp); 1213 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1214 } 1215 if (error == ENOSPC) { 1216 /* No space at all so try a "no-allocation" reservation */ 1217 resblks = 0; 1218 error = xfs_trans_reserve(tp, &tres, 0, 0); 1219 } 1220 if (error) { 1221 cancel_flags = 0; 1222 goto out_trans_cancel; 1223 } 1224 1225 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1226 unlock_dp_on_error = true; 1227 1228 xfs_bmap_init(&free_list, &first_block); 1229 1230 /* 1231 * Reserve disk quota and the inode. 1232 */ 1233 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1234 pdqp, resblks, 1, 0); 1235 if (error) 1236 goto out_trans_cancel; 1237 1238 error = xfs_dir_canenter(tp, dp, name, resblks); 1239 if (error) 1240 goto out_trans_cancel; 1241 1242 /* 1243 * A newly created regular or special file just has one directory 1244 * entry pointing to them, but a directory also the "." entry 1245 * pointing to itself. 1246 */ 1247 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1248 prid, resblks > 0, &ip, &committed); 1249 if (error) { 1250 if (error == ENOSPC) 1251 goto out_trans_cancel; 1252 goto out_trans_abort; 1253 } 1254 1255 /* 1256 * Now we join the directory inode to the transaction. We do not do it 1257 * earlier because xfs_dir_ialloc might commit the previous transaction 1258 * (and release all the locks). An error from here on will result in 1259 * the transaction cancel unlocking dp so don't do it explicitly in the 1260 * error path. 1261 */ 1262 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1263 unlock_dp_on_error = false; 1264 1265 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1266 &first_block, &free_list, resblks ? 1267 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1268 if (error) { 1269 ASSERT(error != ENOSPC); 1270 goto out_trans_abort; 1271 } 1272 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1273 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1274 1275 if (is_dir) { 1276 error = xfs_dir_init(tp, ip, dp); 1277 if (error) 1278 goto out_bmap_cancel; 1279 1280 error = xfs_bumplink(tp, dp); 1281 if (error) 1282 goto out_bmap_cancel; 1283 } 1284 1285 /* 1286 * If this is a synchronous mount, make sure that the 1287 * create transaction goes to disk before returning to 1288 * the user. 1289 */ 1290 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1291 xfs_trans_set_sync(tp); 1292 1293 /* 1294 * Attach the dquot(s) to the inodes and modify them incore. 1295 * These ids of the inode couldn't have changed since the new 1296 * inode has been locked ever since it was created. 1297 */ 1298 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1299 1300 error = xfs_bmap_finish(&tp, &free_list, &committed); 1301 if (error) 1302 goto out_bmap_cancel; 1303 1304 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1305 if (error) 1306 goto out_release_inode; 1307 1308 xfs_qm_dqrele(udqp); 1309 xfs_qm_dqrele(gdqp); 1310 xfs_qm_dqrele(pdqp); 1311 1312 *ipp = ip; 1313 return 0; 1314 1315 out_bmap_cancel: 1316 xfs_bmap_cancel(&free_list); 1317 out_trans_abort: 1318 cancel_flags |= XFS_TRANS_ABORT; 1319 out_trans_cancel: 1320 xfs_trans_cancel(tp, cancel_flags); 1321 out_release_inode: 1322 /* 1323 * Wait until after the current transaction is aborted to 1324 * release the inode. This prevents recursive transactions 1325 * and deadlocks from xfs_inactive. 1326 */ 1327 if (ip) 1328 IRELE(ip); 1329 1330 xfs_qm_dqrele(udqp); 1331 xfs_qm_dqrele(gdqp); 1332 xfs_qm_dqrele(pdqp); 1333 1334 if (unlock_dp_on_error) 1335 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1336 return error; 1337 } 1338 1339 int 1340 xfs_link( 1341 xfs_inode_t *tdp, 1342 xfs_inode_t *sip, 1343 struct xfs_name *target_name) 1344 { 1345 xfs_mount_t *mp = tdp->i_mount; 1346 xfs_trans_t *tp; 1347 int error; 1348 xfs_bmap_free_t free_list; 1349 xfs_fsblock_t first_block; 1350 int cancel_flags; 1351 int committed; 1352 int resblks; 1353 1354 trace_xfs_link(tdp, target_name); 1355 1356 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1357 1358 if (XFS_FORCED_SHUTDOWN(mp)) 1359 return XFS_ERROR(EIO); 1360 1361 error = xfs_qm_dqattach(sip, 0); 1362 if (error) 1363 goto std_return; 1364 1365 error = xfs_qm_dqattach(tdp, 0); 1366 if (error) 1367 goto std_return; 1368 1369 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1370 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1371 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1372 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1373 if (error == ENOSPC) { 1374 resblks = 0; 1375 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1376 } 1377 if (error) { 1378 cancel_flags = 0; 1379 goto error_return; 1380 } 1381 1382 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1383 1384 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1385 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1386 1387 /* 1388 * If we are using project inheritance, we only allow hard link 1389 * creation in our tree when the project IDs are the same; else 1390 * the tree quota mechanism could be circumvented. 1391 */ 1392 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1393 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1394 error = XFS_ERROR(EXDEV); 1395 goto error_return; 1396 } 1397 1398 error = xfs_dir_canenter(tp, tdp, target_name, resblks); 1399 if (error) 1400 goto error_return; 1401 1402 xfs_bmap_init(&free_list, &first_block); 1403 1404 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1405 &first_block, &free_list, resblks); 1406 if (error) 1407 goto abort_return; 1408 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1409 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1410 1411 error = xfs_bumplink(tp, sip); 1412 if (error) 1413 goto abort_return; 1414 1415 /* 1416 * If this is a synchronous mount, make sure that the 1417 * link transaction goes to disk before returning to 1418 * the user. 1419 */ 1420 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1421 xfs_trans_set_sync(tp); 1422 } 1423 1424 error = xfs_bmap_finish (&tp, &free_list, &committed); 1425 if (error) { 1426 xfs_bmap_cancel(&free_list); 1427 goto abort_return; 1428 } 1429 1430 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1431 1432 abort_return: 1433 cancel_flags |= XFS_TRANS_ABORT; 1434 error_return: 1435 xfs_trans_cancel(tp, cancel_flags); 1436 std_return: 1437 return error; 1438 } 1439 1440 /* 1441 * Free up the underlying blocks past new_size. The new size must be smaller 1442 * than the current size. This routine can be used both for the attribute and 1443 * data fork, and does not modify the inode size, which is left to the caller. 1444 * 1445 * The transaction passed to this routine must have made a permanent log 1446 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1447 * given transaction and start new ones, so make sure everything involved in 1448 * the transaction is tidy before calling here. Some transaction will be 1449 * returned to the caller to be committed. The incoming transaction must 1450 * already include the inode, and both inode locks must be held exclusively. 1451 * The inode must also be "held" within the transaction. On return the inode 1452 * will be "held" within the returned transaction. This routine does NOT 1453 * require any disk space to be reserved for it within the transaction. 1454 * 1455 * If we get an error, we must return with the inode locked and linked into the 1456 * current transaction. This keeps things simple for the higher level code, 1457 * because it always knows that the inode is locked and held in the transaction 1458 * that returns to it whether errors occur or not. We don't mark the inode 1459 * dirty on error so that transactions can be easily aborted if possible. 1460 */ 1461 int 1462 xfs_itruncate_extents( 1463 struct xfs_trans **tpp, 1464 struct xfs_inode *ip, 1465 int whichfork, 1466 xfs_fsize_t new_size) 1467 { 1468 struct xfs_mount *mp = ip->i_mount; 1469 struct xfs_trans *tp = *tpp; 1470 struct xfs_trans *ntp; 1471 xfs_bmap_free_t free_list; 1472 xfs_fsblock_t first_block; 1473 xfs_fileoff_t first_unmap_block; 1474 xfs_fileoff_t last_block; 1475 xfs_filblks_t unmap_len; 1476 int committed; 1477 int error = 0; 1478 int done = 0; 1479 1480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1481 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1482 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1483 ASSERT(new_size <= XFS_ISIZE(ip)); 1484 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1485 ASSERT(ip->i_itemp != NULL); 1486 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1487 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1488 1489 trace_xfs_itruncate_extents_start(ip, new_size); 1490 1491 /* 1492 * Since it is possible for space to become allocated beyond 1493 * the end of the file (in a crash where the space is allocated 1494 * but the inode size is not yet updated), simply remove any 1495 * blocks which show up between the new EOF and the maximum 1496 * possible file size. If the first block to be removed is 1497 * beyond the maximum file size (ie it is the same as last_block), 1498 * then there is nothing to do. 1499 */ 1500 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1501 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1502 if (first_unmap_block == last_block) 1503 return 0; 1504 1505 ASSERT(first_unmap_block < last_block); 1506 unmap_len = last_block - first_unmap_block + 1; 1507 while (!done) { 1508 xfs_bmap_init(&free_list, &first_block); 1509 error = xfs_bunmapi(tp, ip, 1510 first_unmap_block, unmap_len, 1511 xfs_bmapi_aflag(whichfork), 1512 XFS_ITRUNC_MAX_EXTENTS, 1513 &first_block, &free_list, 1514 &done); 1515 if (error) 1516 goto out_bmap_cancel; 1517 1518 /* 1519 * Duplicate the transaction that has the permanent 1520 * reservation and commit the old transaction. 1521 */ 1522 error = xfs_bmap_finish(&tp, &free_list, &committed); 1523 if (committed) 1524 xfs_trans_ijoin(tp, ip, 0); 1525 if (error) 1526 goto out_bmap_cancel; 1527 1528 if (committed) { 1529 /* 1530 * Mark the inode dirty so it will be logged and 1531 * moved forward in the log as part of every commit. 1532 */ 1533 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1534 } 1535 1536 ntp = xfs_trans_dup(tp); 1537 error = xfs_trans_commit(tp, 0); 1538 tp = ntp; 1539 1540 xfs_trans_ijoin(tp, ip, 0); 1541 1542 if (error) 1543 goto out; 1544 1545 /* 1546 * Transaction commit worked ok so we can drop the extra ticket 1547 * reference that we gained in xfs_trans_dup() 1548 */ 1549 xfs_log_ticket_put(tp->t_ticket); 1550 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1551 if (error) 1552 goto out; 1553 } 1554 1555 /* 1556 * Always re-log the inode so that our permanent transaction can keep 1557 * on rolling it forward in the log. 1558 */ 1559 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1560 1561 trace_xfs_itruncate_extents_end(ip, new_size); 1562 1563 out: 1564 *tpp = tp; 1565 return error; 1566 out_bmap_cancel: 1567 /* 1568 * If the bunmapi call encounters an error, return to the caller where 1569 * the transaction can be properly aborted. We just need to make sure 1570 * we're not holding any resources that we were not when we came in. 1571 */ 1572 xfs_bmap_cancel(&free_list); 1573 goto out; 1574 } 1575 1576 int 1577 xfs_release( 1578 xfs_inode_t *ip) 1579 { 1580 xfs_mount_t *mp = ip->i_mount; 1581 int error; 1582 1583 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1584 return 0; 1585 1586 /* If this is a read-only mount, don't do this (would generate I/O) */ 1587 if (mp->m_flags & XFS_MOUNT_RDONLY) 1588 return 0; 1589 1590 if (!XFS_FORCED_SHUTDOWN(mp)) { 1591 int truncated; 1592 1593 /* 1594 * If we are using filestreams, and we have an unlinked 1595 * file that we are processing the last close on, then nothing 1596 * will be able to reopen and write to this file. Purge this 1597 * inode from the filestreams cache so that it doesn't delay 1598 * teardown of the inode. 1599 */ 1600 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip)) 1601 xfs_filestream_deassociate(ip); 1602 1603 /* 1604 * If we previously truncated this file and removed old data 1605 * in the process, we want to initiate "early" writeout on 1606 * the last close. This is an attempt to combat the notorious 1607 * NULL files problem which is particularly noticeable from a 1608 * truncate down, buffered (re-)write (delalloc), followed by 1609 * a crash. What we are effectively doing here is 1610 * significantly reducing the time window where we'd otherwise 1611 * be exposed to that problem. 1612 */ 1613 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1614 if (truncated) { 1615 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1616 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) { 1617 error = -filemap_flush(VFS_I(ip)->i_mapping); 1618 if (error) 1619 return error; 1620 } 1621 } 1622 } 1623 1624 if (ip->i_d.di_nlink == 0) 1625 return 0; 1626 1627 if (xfs_can_free_eofblocks(ip, false)) { 1628 1629 /* 1630 * If we can't get the iolock just skip truncating the blocks 1631 * past EOF because we could deadlock with the mmap_sem 1632 * otherwise. We'll get another chance to drop them once the 1633 * last reference to the inode is dropped, so we'll never leak 1634 * blocks permanently. 1635 * 1636 * Further, check if the inode is being opened, written and 1637 * closed frequently and we have delayed allocation blocks 1638 * outstanding (e.g. streaming writes from the NFS server), 1639 * truncating the blocks past EOF will cause fragmentation to 1640 * occur. 1641 * 1642 * In this case don't do the truncation, either, but we have to 1643 * be careful how we detect this case. Blocks beyond EOF show 1644 * up as i_delayed_blks even when the inode is clean, so we 1645 * need to truncate them away first before checking for a dirty 1646 * release. Hence on the first dirty close we will still remove 1647 * the speculative allocation, but after that we will leave it 1648 * in place. 1649 */ 1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1651 return 0; 1652 1653 error = xfs_free_eofblocks(mp, ip, true); 1654 if (error && error != EAGAIN) 1655 return error; 1656 1657 /* delalloc blocks after truncation means it really is dirty */ 1658 if (ip->i_delayed_blks) 1659 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1660 } 1661 return 0; 1662 } 1663 1664 /* 1665 * xfs_inactive_truncate 1666 * 1667 * Called to perform a truncate when an inode becomes unlinked. 1668 */ 1669 STATIC int 1670 xfs_inactive_truncate( 1671 struct xfs_inode *ip) 1672 { 1673 struct xfs_mount *mp = ip->i_mount; 1674 struct xfs_trans *tp; 1675 int error; 1676 1677 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1678 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1679 if (error) { 1680 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1681 xfs_trans_cancel(tp, 0); 1682 return error; 1683 } 1684 1685 xfs_ilock(ip, XFS_ILOCK_EXCL); 1686 xfs_trans_ijoin(tp, ip, 0); 1687 1688 /* 1689 * Log the inode size first to prevent stale data exposure in the event 1690 * of a system crash before the truncate completes. See the related 1691 * comment in xfs_setattr_size() for details. 1692 */ 1693 ip->i_d.di_size = 0; 1694 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1695 1696 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1697 if (error) 1698 goto error_trans_cancel; 1699 1700 ASSERT(ip->i_d.di_nextents == 0); 1701 1702 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1703 if (error) 1704 goto error_unlock; 1705 1706 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1707 return 0; 1708 1709 error_trans_cancel: 1710 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1711 error_unlock: 1712 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1713 return error; 1714 } 1715 1716 /* 1717 * xfs_inactive_ifree() 1718 * 1719 * Perform the inode free when an inode is unlinked. 1720 */ 1721 STATIC int 1722 xfs_inactive_ifree( 1723 struct xfs_inode *ip) 1724 { 1725 xfs_bmap_free_t free_list; 1726 xfs_fsblock_t first_block; 1727 int committed; 1728 struct xfs_mount *mp = ip->i_mount; 1729 struct xfs_trans *tp; 1730 int error; 1731 1732 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1733 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0); 1734 if (error) { 1735 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1736 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1737 return error; 1738 } 1739 1740 xfs_ilock(ip, XFS_ILOCK_EXCL); 1741 xfs_trans_ijoin(tp, ip, 0); 1742 1743 xfs_bmap_init(&free_list, &first_block); 1744 error = xfs_ifree(tp, ip, &free_list); 1745 if (error) { 1746 /* 1747 * If we fail to free the inode, shut down. The cancel 1748 * might do that, we need to make sure. Otherwise the 1749 * inode might be lost for a long time or forever. 1750 */ 1751 if (!XFS_FORCED_SHUTDOWN(mp)) { 1752 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1753 __func__, error); 1754 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1755 } 1756 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1757 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1758 return error; 1759 } 1760 1761 /* 1762 * Credit the quota account(s). The inode is gone. 1763 */ 1764 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1765 1766 /* 1767 * Just ignore errors at this point. There is nothing we can 1768 * do except to try to keep going. Make sure it's not a silent 1769 * error. 1770 */ 1771 error = xfs_bmap_finish(&tp, &free_list, &committed); 1772 if (error) 1773 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1774 __func__, error); 1775 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1776 if (error) 1777 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1778 __func__, error); 1779 1780 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1781 return 0; 1782 } 1783 1784 /* 1785 * xfs_inactive 1786 * 1787 * This is called when the vnode reference count for the vnode 1788 * goes to zero. If the file has been unlinked, then it must 1789 * now be truncated. Also, we clear all of the read-ahead state 1790 * kept for the inode here since the file is now closed. 1791 */ 1792 void 1793 xfs_inactive( 1794 xfs_inode_t *ip) 1795 { 1796 struct xfs_mount *mp; 1797 int error; 1798 int truncate = 0; 1799 1800 /* 1801 * If the inode is already free, then there can be nothing 1802 * to clean up here. 1803 */ 1804 if (ip->i_d.di_mode == 0) { 1805 ASSERT(ip->i_df.if_real_bytes == 0); 1806 ASSERT(ip->i_df.if_broot_bytes == 0); 1807 return; 1808 } 1809 1810 mp = ip->i_mount; 1811 1812 /* If this is a read-only mount, don't do this (would generate I/O) */ 1813 if (mp->m_flags & XFS_MOUNT_RDONLY) 1814 return; 1815 1816 if (ip->i_d.di_nlink != 0) { 1817 /* 1818 * force is true because we are evicting an inode from the 1819 * cache. Post-eof blocks must be freed, lest we end up with 1820 * broken free space accounting. 1821 */ 1822 if (xfs_can_free_eofblocks(ip, true)) 1823 xfs_free_eofblocks(mp, ip, false); 1824 1825 return; 1826 } 1827 1828 if (S_ISREG(ip->i_d.di_mode) && 1829 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1830 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1831 truncate = 1; 1832 1833 error = xfs_qm_dqattach(ip, 0); 1834 if (error) 1835 return; 1836 1837 if (S_ISLNK(ip->i_d.di_mode)) 1838 error = xfs_inactive_symlink(ip); 1839 else if (truncate) 1840 error = xfs_inactive_truncate(ip); 1841 if (error) 1842 return; 1843 1844 /* 1845 * If there are attributes associated with the file then blow them away 1846 * now. The code calls a routine that recursively deconstructs the 1847 * attribute fork. We need to just commit the current transaction 1848 * because we can't use it for xfs_attr_inactive(). 1849 */ 1850 if (ip->i_d.di_anextents > 0) { 1851 ASSERT(ip->i_d.di_forkoff != 0); 1852 1853 error = xfs_attr_inactive(ip); 1854 if (error) 1855 return; 1856 } 1857 1858 if (ip->i_afp) 1859 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1860 1861 ASSERT(ip->i_d.di_anextents == 0); 1862 1863 /* 1864 * Free the inode. 1865 */ 1866 error = xfs_inactive_ifree(ip); 1867 if (error) 1868 return; 1869 1870 /* 1871 * Release the dquots held by inode, if any. 1872 */ 1873 xfs_qm_dqdetach(ip); 1874 } 1875 1876 /* 1877 * This is called when the inode's link count goes to 0. 1878 * We place the on-disk inode on a list in the AGI. It 1879 * will be pulled from this list when the inode is freed. 1880 */ 1881 int 1882 xfs_iunlink( 1883 xfs_trans_t *tp, 1884 xfs_inode_t *ip) 1885 { 1886 xfs_mount_t *mp; 1887 xfs_agi_t *agi; 1888 xfs_dinode_t *dip; 1889 xfs_buf_t *agibp; 1890 xfs_buf_t *ibp; 1891 xfs_agino_t agino; 1892 short bucket_index; 1893 int offset; 1894 int error; 1895 1896 ASSERT(ip->i_d.di_nlink == 0); 1897 ASSERT(ip->i_d.di_mode != 0); 1898 1899 mp = tp->t_mountp; 1900 1901 /* 1902 * Get the agi buffer first. It ensures lock ordering 1903 * on the list. 1904 */ 1905 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1906 if (error) 1907 return error; 1908 agi = XFS_BUF_TO_AGI(agibp); 1909 1910 /* 1911 * Get the index into the agi hash table for the 1912 * list this inode will go on. 1913 */ 1914 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1915 ASSERT(agino != 0); 1916 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1917 ASSERT(agi->agi_unlinked[bucket_index]); 1918 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1919 1920 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1921 /* 1922 * There is already another inode in the bucket we need 1923 * to add ourselves to. Add us at the front of the list. 1924 * Here we put the head pointer into our next pointer, 1925 * and then we fall through to point the head at us. 1926 */ 1927 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1928 0, 0); 1929 if (error) 1930 return error; 1931 1932 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1933 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1934 offset = ip->i_imap.im_boffset + 1935 offsetof(xfs_dinode_t, di_next_unlinked); 1936 1937 /* need to recalc the inode CRC if appropriate */ 1938 xfs_dinode_calc_crc(mp, dip); 1939 1940 xfs_trans_inode_buf(tp, ibp); 1941 xfs_trans_log_buf(tp, ibp, offset, 1942 (offset + sizeof(xfs_agino_t) - 1)); 1943 xfs_inobp_check(mp, ibp); 1944 } 1945 1946 /* 1947 * Point the bucket head pointer at the inode being inserted. 1948 */ 1949 ASSERT(agino != 0); 1950 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 1951 offset = offsetof(xfs_agi_t, agi_unlinked) + 1952 (sizeof(xfs_agino_t) * bucket_index); 1953 xfs_trans_log_buf(tp, agibp, offset, 1954 (offset + sizeof(xfs_agino_t) - 1)); 1955 return 0; 1956 } 1957 1958 /* 1959 * Pull the on-disk inode from the AGI unlinked list. 1960 */ 1961 STATIC int 1962 xfs_iunlink_remove( 1963 xfs_trans_t *tp, 1964 xfs_inode_t *ip) 1965 { 1966 xfs_ino_t next_ino; 1967 xfs_mount_t *mp; 1968 xfs_agi_t *agi; 1969 xfs_dinode_t *dip; 1970 xfs_buf_t *agibp; 1971 xfs_buf_t *ibp; 1972 xfs_agnumber_t agno; 1973 xfs_agino_t agino; 1974 xfs_agino_t next_agino; 1975 xfs_buf_t *last_ibp; 1976 xfs_dinode_t *last_dip = NULL; 1977 short bucket_index; 1978 int offset, last_offset = 0; 1979 int error; 1980 1981 mp = tp->t_mountp; 1982 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 1983 1984 /* 1985 * Get the agi buffer first. It ensures lock ordering 1986 * on the list. 1987 */ 1988 error = xfs_read_agi(mp, tp, agno, &agibp); 1989 if (error) 1990 return error; 1991 1992 agi = XFS_BUF_TO_AGI(agibp); 1993 1994 /* 1995 * Get the index into the agi hash table for the 1996 * list this inode will go on. 1997 */ 1998 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1999 ASSERT(agino != 0); 2000 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2001 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2002 ASSERT(agi->agi_unlinked[bucket_index]); 2003 2004 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2005 /* 2006 * We're at the head of the list. Get the inode's on-disk 2007 * buffer to see if there is anyone after us on the list. 2008 * Only modify our next pointer if it is not already NULLAGINO. 2009 * This saves us the overhead of dealing with the buffer when 2010 * there is no need to change it. 2011 */ 2012 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2013 0, 0); 2014 if (error) { 2015 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2016 __func__, error); 2017 return error; 2018 } 2019 next_agino = be32_to_cpu(dip->di_next_unlinked); 2020 ASSERT(next_agino != 0); 2021 if (next_agino != NULLAGINO) { 2022 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2023 offset = ip->i_imap.im_boffset + 2024 offsetof(xfs_dinode_t, di_next_unlinked); 2025 2026 /* need to recalc the inode CRC if appropriate */ 2027 xfs_dinode_calc_crc(mp, dip); 2028 2029 xfs_trans_inode_buf(tp, ibp); 2030 xfs_trans_log_buf(tp, ibp, offset, 2031 (offset + sizeof(xfs_agino_t) - 1)); 2032 xfs_inobp_check(mp, ibp); 2033 } else { 2034 xfs_trans_brelse(tp, ibp); 2035 } 2036 /* 2037 * Point the bucket head pointer at the next inode. 2038 */ 2039 ASSERT(next_agino != 0); 2040 ASSERT(next_agino != agino); 2041 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2042 offset = offsetof(xfs_agi_t, agi_unlinked) + 2043 (sizeof(xfs_agino_t) * bucket_index); 2044 xfs_trans_log_buf(tp, agibp, offset, 2045 (offset + sizeof(xfs_agino_t) - 1)); 2046 } else { 2047 /* 2048 * We need to search the list for the inode being freed. 2049 */ 2050 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2051 last_ibp = NULL; 2052 while (next_agino != agino) { 2053 struct xfs_imap imap; 2054 2055 if (last_ibp) 2056 xfs_trans_brelse(tp, last_ibp); 2057 2058 imap.im_blkno = 0; 2059 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2060 2061 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2062 if (error) { 2063 xfs_warn(mp, 2064 "%s: xfs_imap returned error %d.", 2065 __func__, error); 2066 return error; 2067 } 2068 2069 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2070 &last_ibp, 0, 0); 2071 if (error) { 2072 xfs_warn(mp, 2073 "%s: xfs_imap_to_bp returned error %d.", 2074 __func__, error); 2075 return error; 2076 } 2077 2078 last_offset = imap.im_boffset; 2079 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2080 ASSERT(next_agino != NULLAGINO); 2081 ASSERT(next_agino != 0); 2082 } 2083 2084 /* 2085 * Now last_ibp points to the buffer previous to us on the 2086 * unlinked list. Pull us from the list. 2087 */ 2088 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2089 0, 0); 2090 if (error) { 2091 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2092 __func__, error); 2093 return error; 2094 } 2095 next_agino = be32_to_cpu(dip->di_next_unlinked); 2096 ASSERT(next_agino != 0); 2097 ASSERT(next_agino != agino); 2098 if (next_agino != NULLAGINO) { 2099 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2100 offset = ip->i_imap.im_boffset + 2101 offsetof(xfs_dinode_t, di_next_unlinked); 2102 2103 /* need to recalc the inode CRC if appropriate */ 2104 xfs_dinode_calc_crc(mp, dip); 2105 2106 xfs_trans_inode_buf(tp, ibp); 2107 xfs_trans_log_buf(tp, ibp, offset, 2108 (offset + sizeof(xfs_agino_t) - 1)); 2109 xfs_inobp_check(mp, ibp); 2110 } else { 2111 xfs_trans_brelse(tp, ibp); 2112 } 2113 /* 2114 * Point the previous inode on the list to the next inode. 2115 */ 2116 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2117 ASSERT(next_agino != 0); 2118 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2119 2120 /* need to recalc the inode CRC if appropriate */ 2121 xfs_dinode_calc_crc(mp, last_dip); 2122 2123 xfs_trans_inode_buf(tp, last_ibp); 2124 xfs_trans_log_buf(tp, last_ibp, offset, 2125 (offset + sizeof(xfs_agino_t) - 1)); 2126 xfs_inobp_check(mp, last_ibp); 2127 } 2128 return 0; 2129 } 2130 2131 /* 2132 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2133 * inodes that are in memory - they all must be marked stale and attached to 2134 * the cluster buffer. 2135 */ 2136 STATIC int 2137 xfs_ifree_cluster( 2138 xfs_inode_t *free_ip, 2139 xfs_trans_t *tp, 2140 xfs_ino_t inum) 2141 { 2142 xfs_mount_t *mp = free_ip->i_mount; 2143 int blks_per_cluster; 2144 int nbufs; 2145 int ninodes; 2146 int i, j; 2147 xfs_daddr_t blkno; 2148 xfs_buf_t *bp; 2149 xfs_inode_t *ip; 2150 xfs_inode_log_item_t *iip; 2151 xfs_log_item_t *lip; 2152 struct xfs_perag *pag; 2153 2154 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2155 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { 2156 blks_per_cluster = 1; 2157 ninodes = mp->m_sb.sb_inopblock; 2158 nbufs = XFS_IALLOC_BLOCKS(mp); 2159 } else { 2160 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / 2161 mp->m_sb.sb_blocksize; 2162 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; 2163 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; 2164 } 2165 2166 for (j = 0; j < nbufs; j++, inum += ninodes) { 2167 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2168 XFS_INO_TO_AGBNO(mp, inum)); 2169 2170 /* 2171 * We obtain and lock the backing buffer first in the process 2172 * here, as we have to ensure that any dirty inode that we 2173 * can't get the flush lock on is attached to the buffer. 2174 * If we scan the in-memory inodes first, then buffer IO can 2175 * complete before we get a lock on it, and hence we may fail 2176 * to mark all the active inodes on the buffer stale. 2177 */ 2178 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2179 mp->m_bsize * blks_per_cluster, 2180 XBF_UNMAPPED); 2181 2182 if (!bp) 2183 return ENOMEM; 2184 2185 /* 2186 * This buffer may not have been correctly initialised as we 2187 * didn't read it from disk. That's not important because we are 2188 * only using to mark the buffer as stale in the log, and to 2189 * attach stale cached inodes on it. That means it will never be 2190 * dispatched for IO. If it is, we want to know about it, and we 2191 * want it to fail. We can acheive this by adding a write 2192 * verifier to the buffer. 2193 */ 2194 bp->b_ops = &xfs_inode_buf_ops; 2195 2196 /* 2197 * Walk the inodes already attached to the buffer and mark them 2198 * stale. These will all have the flush locks held, so an 2199 * in-memory inode walk can't lock them. By marking them all 2200 * stale first, we will not attempt to lock them in the loop 2201 * below as the XFS_ISTALE flag will be set. 2202 */ 2203 lip = bp->b_fspriv; 2204 while (lip) { 2205 if (lip->li_type == XFS_LI_INODE) { 2206 iip = (xfs_inode_log_item_t *)lip; 2207 ASSERT(iip->ili_logged == 1); 2208 lip->li_cb = xfs_istale_done; 2209 xfs_trans_ail_copy_lsn(mp->m_ail, 2210 &iip->ili_flush_lsn, 2211 &iip->ili_item.li_lsn); 2212 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2213 } 2214 lip = lip->li_bio_list; 2215 } 2216 2217 2218 /* 2219 * For each inode in memory attempt to add it to the inode 2220 * buffer and set it up for being staled on buffer IO 2221 * completion. This is safe as we've locked out tail pushing 2222 * and flushing by locking the buffer. 2223 * 2224 * We have already marked every inode that was part of a 2225 * transaction stale above, which means there is no point in 2226 * even trying to lock them. 2227 */ 2228 for (i = 0; i < ninodes; i++) { 2229 retry: 2230 rcu_read_lock(); 2231 ip = radix_tree_lookup(&pag->pag_ici_root, 2232 XFS_INO_TO_AGINO(mp, (inum + i))); 2233 2234 /* Inode not in memory, nothing to do */ 2235 if (!ip) { 2236 rcu_read_unlock(); 2237 continue; 2238 } 2239 2240 /* 2241 * because this is an RCU protected lookup, we could 2242 * find a recently freed or even reallocated inode 2243 * during the lookup. We need to check under the 2244 * i_flags_lock for a valid inode here. Skip it if it 2245 * is not valid, the wrong inode or stale. 2246 */ 2247 spin_lock(&ip->i_flags_lock); 2248 if (ip->i_ino != inum + i || 2249 __xfs_iflags_test(ip, XFS_ISTALE)) { 2250 spin_unlock(&ip->i_flags_lock); 2251 rcu_read_unlock(); 2252 continue; 2253 } 2254 spin_unlock(&ip->i_flags_lock); 2255 2256 /* 2257 * Don't try to lock/unlock the current inode, but we 2258 * _cannot_ skip the other inodes that we did not find 2259 * in the list attached to the buffer and are not 2260 * already marked stale. If we can't lock it, back off 2261 * and retry. 2262 */ 2263 if (ip != free_ip && 2264 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2265 rcu_read_unlock(); 2266 delay(1); 2267 goto retry; 2268 } 2269 rcu_read_unlock(); 2270 2271 xfs_iflock(ip); 2272 xfs_iflags_set(ip, XFS_ISTALE); 2273 2274 /* 2275 * we don't need to attach clean inodes or those only 2276 * with unlogged changes (which we throw away, anyway). 2277 */ 2278 iip = ip->i_itemp; 2279 if (!iip || xfs_inode_clean(ip)) { 2280 ASSERT(ip != free_ip); 2281 xfs_ifunlock(ip); 2282 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2283 continue; 2284 } 2285 2286 iip->ili_last_fields = iip->ili_fields; 2287 iip->ili_fields = 0; 2288 iip->ili_logged = 1; 2289 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2290 &iip->ili_item.li_lsn); 2291 2292 xfs_buf_attach_iodone(bp, xfs_istale_done, 2293 &iip->ili_item); 2294 2295 if (ip != free_ip) 2296 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2297 } 2298 2299 xfs_trans_stale_inode_buf(tp, bp); 2300 xfs_trans_binval(tp, bp); 2301 } 2302 2303 xfs_perag_put(pag); 2304 return 0; 2305 } 2306 2307 /* 2308 * This is called to return an inode to the inode free list. 2309 * The inode should already be truncated to 0 length and have 2310 * no pages associated with it. This routine also assumes that 2311 * the inode is already a part of the transaction. 2312 * 2313 * The on-disk copy of the inode will have been added to the list 2314 * of unlinked inodes in the AGI. We need to remove the inode from 2315 * that list atomically with respect to freeing it here. 2316 */ 2317 int 2318 xfs_ifree( 2319 xfs_trans_t *tp, 2320 xfs_inode_t *ip, 2321 xfs_bmap_free_t *flist) 2322 { 2323 int error; 2324 int delete; 2325 xfs_ino_t first_ino; 2326 2327 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2328 ASSERT(ip->i_d.di_nlink == 0); 2329 ASSERT(ip->i_d.di_nextents == 0); 2330 ASSERT(ip->i_d.di_anextents == 0); 2331 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2332 ASSERT(ip->i_d.di_nblocks == 0); 2333 2334 /* 2335 * Pull the on-disk inode from the AGI unlinked list. 2336 */ 2337 error = xfs_iunlink_remove(tp, ip); 2338 if (error) 2339 return error; 2340 2341 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2342 if (error) 2343 return error; 2344 2345 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2346 ip->i_d.di_flags = 0; 2347 ip->i_d.di_dmevmask = 0; 2348 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2349 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2350 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2351 /* 2352 * Bump the generation count so no one will be confused 2353 * by reincarnations of this inode. 2354 */ 2355 ip->i_d.di_gen++; 2356 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2357 2358 if (delete) 2359 error = xfs_ifree_cluster(ip, tp, first_ino); 2360 2361 return error; 2362 } 2363 2364 /* 2365 * This is called to unpin an inode. The caller must have the inode locked 2366 * in at least shared mode so that the buffer cannot be subsequently pinned 2367 * once someone is waiting for it to be unpinned. 2368 */ 2369 static void 2370 xfs_iunpin( 2371 struct xfs_inode *ip) 2372 { 2373 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2374 2375 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2376 2377 /* Give the log a push to start the unpinning I/O */ 2378 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2379 2380 } 2381 2382 static void 2383 __xfs_iunpin_wait( 2384 struct xfs_inode *ip) 2385 { 2386 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2387 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2388 2389 xfs_iunpin(ip); 2390 2391 do { 2392 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2393 if (xfs_ipincount(ip)) 2394 io_schedule(); 2395 } while (xfs_ipincount(ip)); 2396 finish_wait(wq, &wait.wait); 2397 } 2398 2399 void 2400 xfs_iunpin_wait( 2401 struct xfs_inode *ip) 2402 { 2403 if (xfs_ipincount(ip)) 2404 __xfs_iunpin_wait(ip); 2405 } 2406 2407 /* 2408 * Removing an inode from the namespace involves removing the directory entry 2409 * and dropping the link count on the inode. Removing the directory entry can 2410 * result in locking an AGF (directory blocks were freed) and removing a link 2411 * count can result in placing the inode on an unlinked list which results in 2412 * locking an AGI. 2413 * 2414 * The big problem here is that we have an ordering constraint on AGF and AGI 2415 * locking - inode allocation locks the AGI, then can allocate a new extent for 2416 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2417 * removes the inode from the unlinked list, requiring that we lock the AGI 2418 * first, and then freeing the inode can result in an inode chunk being freed 2419 * and hence freeing disk space requiring that we lock an AGF. 2420 * 2421 * Hence the ordering that is imposed by other parts of the code is AGI before 2422 * AGF. This means we cannot remove the directory entry before we drop the inode 2423 * reference count and put it on the unlinked list as this results in a lock 2424 * order of AGF then AGI, and this can deadlock against inode allocation and 2425 * freeing. Therefore we must drop the link counts before we remove the 2426 * directory entry. 2427 * 2428 * This is still safe from a transactional point of view - it is not until we 2429 * get to xfs_bmap_finish() that we have the possibility of multiple 2430 * transactions in this operation. Hence as long as we remove the directory 2431 * entry and drop the link count in the first transaction of the remove 2432 * operation, there are no transactional constraints on the ordering here. 2433 */ 2434 int 2435 xfs_remove( 2436 xfs_inode_t *dp, 2437 struct xfs_name *name, 2438 xfs_inode_t *ip) 2439 { 2440 xfs_mount_t *mp = dp->i_mount; 2441 xfs_trans_t *tp = NULL; 2442 int is_dir = S_ISDIR(ip->i_d.di_mode); 2443 int error = 0; 2444 xfs_bmap_free_t free_list; 2445 xfs_fsblock_t first_block; 2446 int cancel_flags; 2447 int committed; 2448 int link_zero; 2449 uint resblks; 2450 uint log_count; 2451 2452 trace_xfs_remove(dp, name); 2453 2454 if (XFS_FORCED_SHUTDOWN(mp)) 2455 return XFS_ERROR(EIO); 2456 2457 error = xfs_qm_dqattach(dp, 0); 2458 if (error) 2459 goto std_return; 2460 2461 error = xfs_qm_dqattach(ip, 0); 2462 if (error) 2463 goto std_return; 2464 2465 if (is_dir) { 2466 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2467 log_count = XFS_DEFAULT_LOG_COUNT; 2468 } else { 2469 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2470 log_count = XFS_REMOVE_LOG_COUNT; 2471 } 2472 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2473 2474 /* 2475 * We try to get the real space reservation first, 2476 * allowing for directory btree deletion(s) implying 2477 * possible bmap insert(s). If we can't get the space 2478 * reservation then we use 0 instead, and avoid the bmap 2479 * btree insert(s) in the directory code by, if the bmap 2480 * insert tries to happen, instead trimming the LAST 2481 * block from the directory. 2482 */ 2483 resblks = XFS_REMOVE_SPACE_RES(mp); 2484 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2485 if (error == ENOSPC) { 2486 resblks = 0; 2487 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2488 } 2489 if (error) { 2490 ASSERT(error != ENOSPC); 2491 cancel_flags = 0; 2492 goto out_trans_cancel; 2493 } 2494 2495 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2496 2497 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2498 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2499 2500 /* 2501 * If we're removing a directory perform some additional validation. 2502 */ 2503 cancel_flags |= XFS_TRANS_ABORT; 2504 if (is_dir) { 2505 ASSERT(ip->i_d.di_nlink >= 2); 2506 if (ip->i_d.di_nlink != 2) { 2507 error = XFS_ERROR(ENOTEMPTY); 2508 goto out_trans_cancel; 2509 } 2510 if (!xfs_dir_isempty(ip)) { 2511 error = XFS_ERROR(ENOTEMPTY); 2512 goto out_trans_cancel; 2513 } 2514 2515 /* Drop the link from ip's "..". */ 2516 error = xfs_droplink(tp, dp); 2517 if (error) 2518 goto out_trans_cancel; 2519 2520 /* Drop the "." link from ip to self. */ 2521 error = xfs_droplink(tp, ip); 2522 if (error) 2523 goto out_trans_cancel; 2524 } else { 2525 /* 2526 * When removing a non-directory we need to log the parent 2527 * inode here. For a directory this is done implicitly 2528 * by the xfs_droplink call for the ".." entry. 2529 */ 2530 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2531 } 2532 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2533 2534 /* Drop the link from dp to ip. */ 2535 error = xfs_droplink(tp, ip); 2536 if (error) 2537 goto out_trans_cancel; 2538 2539 /* Determine if this is the last link while the inode is locked */ 2540 link_zero = (ip->i_d.di_nlink == 0); 2541 2542 xfs_bmap_init(&free_list, &first_block); 2543 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2544 &first_block, &free_list, resblks); 2545 if (error) { 2546 ASSERT(error != ENOENT); 2547 goto out_bmap_cancel; 2548 } 2549 2550 /* 2551 * If this is a synchronous mount, make sure that the 2552 * remove transaction goes to disk before returning to 2553 * the user. 2554 */ 2555 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2556 xfs_trans_set_sync(tp); 2557 2558 error = xfs_bmap_finish(&tp, &free_list, &committed); 2559 if (error) 2560 goto out_bmap_cancel; 2561 2562 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2563 if (error) 2564 goto std_return; 2565 2566 /* 2567 * If we are using filestreams, kill the stream association. 2568 * If the file is still open it may get a new one but that 2569 * will get killed on last close in xfs_close() so we don't 2570 * have to worry about that. 2571 */ 2572 if (!is_dir && link_zero && xfs_inode_is_filestream(ip)) 2573 xfs_filestream_deassociate(ip); 2574 2575 return 0; 2576 2577 out_bmap_cancel: 2578 xfs_bmap_cancel(&free_list); 2579 out_trans_cancel: 2580 xfs_trans_cancel(tp, cancel_flags); 2581 std_return: 2582 return error; 2583 } 2584 2585 /* 2586 * Enter all inodes for a rename transaction into a sorted array. 2587 */ 2588 STATIC void 2589 xfs_sort_for_rename( 2590 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2591 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2592 xfs_inode_t *ip1, /* in: inode of old entry */ 2593 xfs_inode_t *ip2, /* in: inode of new entry, if it 2594 already exists, NULL otherwise. */ 2595 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2596 int *num_inodes) /* out: number of inodes in array */ 2597 { 2598 xfs_inode_t *temp; 2599 int i, j; 2600 2601 /* 2602 * i_tab contains a list of pointers to inodes. We initialize 2603 * the table here & we'll sort it. We will then use it to 2604 * order the acquisition of the inode locks. 2605 * 2606 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2607 */ 2608 i_tab[0] = dp1; 2609 i_tab[1] = dp2; 2610 i_tab[2] = ip1; 2611 if (ip2) { 2612 *num_inodes = 4; 2613 i_tab[3] = ip2; 2614 } else { 2615 *num_inodes = 3; 2616 i_tab[3] = NULL; 2617 } 2618 2619 /* 2620 * Sort the elements via bubble sort. (Remember, there are at 2621 * most 4 elements to sort, so this is adequate.) 2622 */ 2623 for (i = 0; i < *num_inodes; i++) { 2624 for (j = 1; j < *num_inodes; j++) { 2625 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2626 temp = i_tab[j]; 2627 i_tab[j] = i_tab[j-1]; 2628 i_tab[j-1] = temp; 2629 } 2630 } 2631 } 2632 } 2633 2634 /* 2635 * xfs_rename 2636 */ 2637 int 2638 xfs_rename( 2639 xfs_inode_t *src_dp, 2640 struct xfs_name *src_name, 2641 xfs_inode_t *src_ip, 2642 xfs_inode_t *target_dp, 2643 struct xfs_name *target_name, 2644 xfs_inode_t *target_ip) 2645 { 2646 xfs_trans_t *tp = NULL; 2647 xfs_mount_t *mp = src_dp->i_mount; 2648 int new_parent; /* moving to a new dir */ 2649 int src_is_directory; /* src_name is a directory */ 2650 int error; 2651 xfs_bmap_free_t free_list; 2652 xfs_fsblock_t first_block; 2653 int cancel_flags; 2654 int committed; 2655 xfs_inode_t *inodes[4]; 2656 int spaceres; 2657 int num_inodes; 2658 2659 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2660 2661 new_parent = (src_dp != target_dp); 2662 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2663 2664 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2665 inodes, &num_inodes); 2666 2667 xfs_bmap_init(&free_list, &first_block); 2668 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2669 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2670 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2671 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2672 if (error == ENOSPC) { 2673 spaceres = 0; 2674 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2675 } 2676 if (error) { 2677 xfs_trans_cancel(tp, 0); 2678 goto std_return; 2679 } 2680 2681 /* 2682 * Attach the dquots to the inodes 2683 */ 2684 error = xfs_qm_vop_rename_dqattach(inodes); 2685 if (error) { 2686 xfs_trans_cancel(tp, cancel_flags); 2687 goto std_return; 2688 } 2689 2690 /* 2691 * Lock all the participating inodes. Depending upon whether 2692 * the target_name exists in the target directory, and 2693 * whether the target directory is the same as the source 2694 * directory, we can lock from 2 to 4 inodes. 2695 */ 2696 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2697 2698 /* 2699 * Join all the inodes to the transaction. From this point on, 2700 * we can rely on either trans_commit or trans_cancel to unlock 2701 * them. 2702 */ 2703 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2704 if (new_parent) 2705 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2706 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2707 if (target_ip) 2708 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2709 2710 /* 2711 * If we are using project inheritance, we only allow renames 2712 * into our tree when the project IDs are the same; else the 2713 * tree quota mechanism would be circumvented. 2714 */ 2715 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2716 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2717 error = XFS_ERROR(EXDEV); 2718 goto error_return; 2719 } 2720 2721 /* 2722 * Set up the target. 2723 */ 2724 if (target_ip == NULL) { 2725 /* 2726 * If there's no space reservation, check the entry will 2727 * fit before actually inserting it. 2728 */ 2729 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres); 2730 if (error) 2731 goto error_return; 2732 /* 2733 * If target does not exist and the rename crosses 2734 * directories, adjust the target directory link count 2735 * to account for the ".." reference from the new entry. 2736 */ 2737 error = xfs_dir_createname(tp, target_dp, target_name, 2738 src_ip->i_ino, &first_block, 2739 &free_list, spaceres); 2740 if (error == ENOSPC) 2741 goto error_return; 2742 if (error) 2743 goto abort_return; 2744 2745 xfs_trans_ichgtime(tp, target_dp, 2746 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2747 2748 if (new_parent && src_is_directory) { 2749 error = xfs_bumplink(tp, target_dp); 2750 if (error) 2751 goto abort_return; 2752 } 2753 } else { /* target_ip != NULL */ 2754 /* 2755 * If target exists and it's a directory, check that both 2756 * target and source are directories and that target can be 2757 * destroyed, or that neither is a directory. 2758 */ 2759 if (S_ISDIR(target_ip->i_d.di_mode)) { 2760 /* 2761 * Make sure target dir is empty. 2762 */ 2763 if (!(xfs_dir_isempty(target_ip)) || 2764 (target_ip->i_d.di_nlink > 2)) { 2765 error = XFS_ERROR(EEXIST); 2766 goto error_return; 2767 } 2768 } 2769 2770 /* 2771 * Link the source inode under the target name. 2772 * If the source inode is a directory and we are moving 2773 * it across directories, its ".." entry will be 2774 * inconsistent until we replace that down below. 2775 * 2776 * In case there is already an entry with the same 2777 * name at the destination directory, remove it first. 2778 */ 2779 error = xfs_dir_replace(tp, target_dp, target_name, 2780 src_ip->i_ino, 2781 &first_block, &free_list, spaceres); 2782 if (error) 2783 goto abort_return; 2784 2785 xfs_trans_ichgtime(tp, target_dp, 2786 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2787 2788 /* 2789 * Decrement the link count on the target since the target 2790 * dir no longer points to it. 2791 */ 2792 error = xfs_droplink(tp, target_ip); 2793 if (error) 2794 goto abort_return; 2795 2796 if (src_is_directory) { 2797 /* 2798 * Drop the link from the old "." entry. 2799 */ 2800 error = xfs_droplink(tp, target_ip); 2801 if (error) 2802 goto abort_return; 2803 } 2804 } /* target_ip != NULL */ 2805 2806 /* 2807 * Remove the source. 2808 */ 2809 if (new_parent && src_is_directory) { 2810 /* 2811 * Rewrite the ".." entry to point to the new 2812 * directory. 2813 */ 2814 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2815 target_dp->i_ino, 2816 &first_block, &free_list, spaceres); 2817 ASSERT(error != EEXIST); 2818 if (error) 2819 goto abort_return; 2820 } 2821 2822 /* 2823 * We always want to hit the ctime on the source inode. 2824 * 2825 * This isn't strictly required by the standards since the source 2826 * inode isn't really being changed, but old unix file systems did 2827 * it and some incremental backup programs won't work without it. 2828 */ 2829 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2830 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2831 2832 /* 2833 * Adjust the link count on src_dp. This is necessary when 2834 * renaming a directory, either within one parent when 2835 * the target existed, or across two parent directories. 2836 */ 2837 if (src_is_directory && (new_parent || target_ip != NULL)) { 2838 2839 /* 2840 * Decrement link count on src_directory since the 2841 * entry that's moved no longer points to it. 2842 */ 2843 error = xfs_droplink(tp, src_dp); 2844 if (error) 2845 goto abort_return; 2846 } 2847 2848 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2849 &first_block, &free_list, spaceres); 2850 if (error) 2851 goto abort_return; 2852 2853 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2854 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2855 if (new_parent) 2856 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2857 2858 /* 2859 * If this is a synchronous mount, make sure that the 2860 * rename transaction goes to disk before returning to 2861 * the user. 2862 */ 2863 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2864 xfs_trans_set_sync(tp); 2865 } 2866 2867 error = xfs_bmap_finish(&tp, &free_list, &committed); 2868 if (error) { 2869 xfs_bmap_cancel(&free_list); 2870 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2871 XFS_TRANS_ABORT)); 2872 goto std_return; 2873 } 2874 2875 /* 2876 * trans_commit will unlock src_ip, target_ip & decrement 2877 * the vnode references. 2878 */ 2879 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2880 2881 abort_return: 2882 cancel_flags |= XFS_TRANS_ABORT; 2883 error_return: 2884 xfs_bmap_cancel(&free_list); 2885 xfs_trans_cancel(tp, cancel_flags); 2886 std_return: 2887 return error; 2888 } 2889 2890 STATIC int 2891 xfs_iflush_cluster( 2892 xfs_inode_t *ip, 2893 xfs_buf_t *bp) 2894 { 2895 xfs_mount_t *mp = ip->i_mount; 2896 struct xfs_perag *pag; 2897 unsigned long first_index, mask; 2898 unsigned long inodes_per_cluster; 2899 int ilist_size; 2900 xfs_inode_t **ilist; 2901 xfs_inode_t *iq; 2902 int nr_found; 2903 int clcount = 0; 2904 int bufwasdelwri; 2905 int i; 2906 2907 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2908 2909 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog; 2910 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2911 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2912 if (!ilist) 2913 goto out_put; 2914 2915 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1); 2916 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2917 rcu_read_lock(); 2918 /* really need a gang lookup range call here */ 2919 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2920 first_index, inodes_per_cluster); 2921 if (nr_found == 0) 2922 goto out_free; 2923 2924 for (i = 0; i < nr_found; i++) { 2925 iq = ilist[i]; 2926 if (iq == ip) 2927 continue; 2928 2929 /* 2930 * because this is an RCU protected lookup, we could find a 2931 * recently freed or even reallocated inode during the lookup. 2932 * We need to check under the i_flags_lock for a valid inode 2933 * here. Skip it if it is not valid or the wrong inode. 2934 */ 2935 spin_lock(&ip->i_flags_lock); 2936 if (!ip->i_ino || 2937 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2938 spin_unlock(&ip->i_flags_lock); 2939 continue; 2940 } 2941 spin_unlock(&ip->i_flags_lock); 2942 2943 /* 2944 * Do an un-protected check to see if the inode is dirty and 2945 * is a candidate for flushing. These checks will be repeated 2946 * later after the appropriate locks are acquired. 2947 */ 2948 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2949 continue; 2950 2951 /* 2952 * Try to get locks. If any are unavailable or it is pinned, 2953 * then this inode cannot be flushed and is skipped. 2954 */ 2955 2956 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2957 continue; 2958 if (!xfs_iflock_nowait(iq)) { 2959 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2960 continue; 2961 } 2962 if (xfs_ipincount(iq)) { 2963 xfs_ifunlock(iq); 2964 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2965 continue; 2966 } 2967 2968 /* 2969 * arriving here means that this inode can be flushed. First 2970 * re-check that it's dirty before flushing. 2971 */ 2972 if (!xfs_inode_clean(iq)) { 2973 int error; 2974 error = xfs_iflush_int(iq, bp); 2975 if (error) { 2976 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2977 goto cluster_corrupt_out; 2978 } 2979 clcount++; 2980 } else { 2981 xfs_ifunlock(iq); 2982 } 2983 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2984 } 2985 2986 if (clcount) { 2987 XFS_STATS_INC(xs_icluster_flushcnt); 2988 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 2989 } 2990 2991 out_free: 2992 rcu_read_unlock(); 2993 kmem_free(ilist); 2994 out_put: 2995 xfs_perag_put(pag); 2996 return 0; 2997 2998 2999 cluster_corrupt_out: 3000 /* 3001 * Corruption detected in the clustering loop. Invalidate the 3002 * inode buffer and shut down the filesystem. 3003 */ 3004 rcu_read_unlock(); 3005 /* 3006 * Clean up the buffer. If it was delwri, just release it -- 3007 * brelse can handle it with no problems. If not, shut down the 3008 * filesystem before releasing the buffer. 3009 */ 3010 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3011 if (bufwasdelwri) 3012 xfs_buf_relse(bp); 3013 3014 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3015 3016 if (!bufwasdelwri) { 3017 /* 3018 * Just like incore_relse: if we have b_iodone functions, 3019 * mark the buffer as an error and call them. Otherwise 3020 * mark it as stale and brelse. 3021 */ 3022 if (bp->b_iodone) { 3023 XFS_BUF_UNDONE(bp); 3024 xfs_buf_stale(bp); 3025 xfs_buf_ioerror(bp, EIO); 3026 xfs_buf_ioend(bp, 0); 3027 } else { 3028 xfs_buf_stale(bp); 3029 xfs_buf_relse(bp); 3030 } 3031 } 3032 3033 /* 3034 * Unlocks the flush lock 3035 */ 3036 xfs_iflush_abort(iq, false); 3037 kmem_free(ilist); 3038 xfs_perag_put(pag); 3039 return XFS_ERROR(EFSCORRUPTED); 3040 } 3041 3042 /* 3043 * Flush dirty inode metadata into the backing buffer. 3044 * 3045 * The caller must have the inode lock and the inode flush lock held. The 3046 * inode lock will still be held upon return to the caller, and the inode 3047 * flush lock will be released after the inode has reached the disk. 3048 * 3049 * The caller must write out the buffer returned in *bpp and release it. 3050 */ 3051 int 3052 xfs_iflush( 3053 struct xfs_inode *ip, 3054 struct xfs_buf **bpp) 3055 { 3056 struct xfs_mount *mp = ip->i_mount; 3057 struct xfs_buf *bp; 3058 struct xfs_dinode *dip; 3059 int error; 3060 3061 XFS_STATS_INC(xs_iflush_count); 3062 3063 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3064 ASSERT(xfs_isiflocked(ip)); 3065 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3066 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3067 3068 *bpp = NULL; 3069 3070 xfs_iunpin_wait(ip); 3071 3072 /* 3073 * For stale inodes we cannot rely on the backing buffer remaining 3074 * stale in cache for the remaining life of the stale inode and so 3075 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3076 * inodes below. We have to check this after ensuring the inode is 3077 * unpinned so that it is safe to reclaim the stale inode after the 3078 * flush call. 3079 */ 3080 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3081 xfs_ifunlock(ip); 3082 return 0; 3083 } 3084 3085 /* 3086 * This may have been unpinned because the filesystem is shutting 3087 * down forcibly. If that's the case we must not write this inode 3088 * to disk, because the log record didn't make it to disk. 3089 * 3090 * We also have to remove the log item from the AIL in this case, 3091 * as we wait for an empty AIL as part of the unmount process. 3092 */ 3093 if (XFS_FORCED_SHUTDOWN(mp)) { 3094 error = XFS_ERROR(EIO); 3095 goto abort_out; 3096 } 3097 3098 /* 3099 * Get the buffer containing the on-disk inode. 3100 */ 3101 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3102 0); 3103 if (error || !bp) { 3104 xfs_ifunlock(ip); 3105 return error; 3106 } 3107 3108 /* 3109 * First flush out the inode that xfs_iflush was called with. 3110 */ 3111 error = xfs_iflush_int(ip, bp); 3112 if (error) 3113 goto corrupt_out; 3114 3115 /* 3116 * If the buffer is pinned then push on the log now so we won't 3117 * get stuck waiting in the write for too long. 3118 */ 3119 if (xfs_buf_ispinned(bp)) 3120 xfs_log_force(mp, 0); 3121 3122 /* 3123 * inode clustering: 3124 * see if other inodes can be gathered into this write 3125 */ 3126 error = xfs_iflush_cluster(ip, bp); 3127 if (error) 3128 goto cluster_corrupt_out; 3129 3130 *bpp = bp; 3131 return 0; 3132 3133 corrupt_out: 3134 xfs_buf_relse(bp); 3135 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3136 cluster_corrupt_out: 3137 error = XFS_ERROR(EFSCORRUPTED); 3138 abort_out: 3139 /* 3140 * Unlocks the flush lock 3141 */ 3142 xfs_iflush_abort(ip, false); 3143 return error; 3144 } 3145 3146 STATIC int 3147 xfs_iflush_int( 3148 struct xfs_inode *ip, 3149 struct xfs_buf *bp) 3150 { 3151 struct xfs_inode_log_item *iip = ip->i_itemp; 3152 struct xfs_dinode *dip; 3153 struct xfs_mount *mp = ip->i_mount; 3154 3155 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3156 ASSERT(xfs_isiflocked(ip)); 3157 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3158 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3159 ASSERT(iip != NULL && iip->ili_fields != 0); 3160 3161 /* set *dip = inode's place in the buffer */ 3162 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3163 3164 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3165 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3166 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3167 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3168 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3169 goto corrupt_out; 3170 } 3171 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3172 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3173 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3174 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3175 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3176 goto corrupt_out; 3177 } 3178 if (S_ISREG(ip->i_d.di_mode)) { 3179 if (XFS_TEST_ERROR( 3180 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3181 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3182 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3183 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3184 "%s: Bad regular inode %Lu, ptr 0x%p", 3185 __func__, ip->i_ino, ip); 3186 goto corrupt_out; 3187 } 3188 } else if (S_ISDIR(ip->i_d.di_mode)) { 3189 if (XFS_TEST_ERROR( 3190 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3191 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3192 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3193 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3194 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3195 "%s: Bad directory inode %Lu, ptr 0x%p", 3196 __func__, ip->i_ino, ip); 3197 goto corrupt_out; 3198 } 3199 } 3200 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3201 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3202 XFS_RANDOM_IFLUSH_5)) { 3203 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3204 "%s: detected corrupt incore inode %Lu, " 3205 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3206 __func__, ip->i_ino, 3207 ip->i_d.di_nextents + ip->i_d.di_anextents, 3208 ip->i_d.di_nblocks, ip); 3209 goto corrupt_out; 3210 } 3211 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3212 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3213 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3214 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3215 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3216 goto corrupt_out; 3217 } 3218 3219 /* 3220 * Inode item log recovery for v1/v2 inodes are dependent on the 3221 * di_flushiter count for correct sequencing. We bump the flush 3222 * iteration count so we can detect flushes which postdate a log record 3223 * during recovery. This is redundant as we now log every change and 3224 * hence this can't happen but we need to still do it to ensure 3225 * backwards compatibility with old kernels that predate logging all 3226 * inode changes. 3227 */ 3228 if (ip->i_d.di_version < 3) 3229 ip->i_d.di_flushiter++; 3230 3231 /* 3232 * Copy the dirty parts of the inode into the on-disk 3233 * inode. We always copy out the core of the inode, 3234 * because if the inode is dirty at all the core must 3235 * be. 3236 */ 3237 xfs_dinode_to_disk(dip, &ip->i_d); 3238 3239 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3240 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3241 ip->i_d.di_flushiter = 0; 3242 3243 /* 3244 * If this is really an old format inode and the superblock version 3245 * has not been updated to support only new format inodes, then 3246 * convert back to the old inode format. If the superblock version 3247 * has been updated, then make the conversion permanent. 3248 */ 3249 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); 3250 if (ip->i_d.di_version == 1) { 3251 if (!xfs_sb_version_hasnlink(&mp->m_sb)) { 3252 /* 3253 * Convert it back. 3254 */ 3255 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); 3256 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink); 3257 } else { 3258 /* 3259 * The superblock version has already been bumped, 3260 * so just make the conversion to the new inode 3261 * format permanent. 3262 */ 3263 ip->i_d.di_version = 2; 3264 dip->di_version = 2; 3265 ip->i_d.di_onlink = 0; 3266 dip->di_onlink = 0; 3267 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 3268 memset(&(dip->di_pad[0]), 0, 3269 sizeof(dip->di_pad)); 3270 ASSERT(xfs_get_projid(ip) == 0); 3271 } 3272 } 3273 3274 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp); 3275 if (XFS_IFORK_Q(ip)) 3276 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); 3277 xfs_inobp_check(mp, bp); 3278 3279 /* 3280 * We've recorded everything logged in the inode, so we'd like to clear 3281 * the ili_fields bits so we don't log and flush things unnecessarily. 3282 * However, we can't stop logging all this information until the data 3283 * we've copied into the disk buffer is written to disk. If we did we 3284 * might overwrite the copy of the inode in the log with all the data 3285 * after re-logging only part of it, and in the face of a crash we 3286 * wouldn't have all the data we need to recover. 3287 * 3288 * What we do is move the bits to the ili_last_fields field. When 3289 * logging the inode, these bits are moved back to the ili_fields field. 3290 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3291 * know that the information those bits represent is permanently on 3292 * disk. As long as the flush completes before the inode is logged 3293 * again, then both ili_fields and ili_last_fields will be cleared. 3294 * 3295 * We can play with the ili_fields bits here, because the inode lock 3296 * must be held exclusively in order to set bits there and the flush 3297 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3298 * done routine can tell whether or not to look in the AIL. Also, store 3299 * the current LSN of the inode so that we can tell whether the item has 3300 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3301 * need the AIL lock, because it is a 64 bit value that cannot be read 3302 * atomically. 3303 */ 3304 iip->ili_last_fields = iip->ili_fields; 3305 iip->ili_fields = 0; 3306 iip->ili_logged = 1; 3307 3308 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3309 &iip->ili_item.li_lsn); 3310 3311 /* 3312 * Attach the function xfs_iflush_done to the inode's 3313 * buffer. This will remove the inode from the AIL 3314 * and unlock the inode's flush lock when the inode is 3315 * completely written to disk. 3316 */ 3317 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3318 3319 /* update the lsn in the on disk inode if required */ 3320 if (ip->i_d.di_version == 3) 3321 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3322 3323 /* generate the checksum. */ 3324 xfs_dinode_calc_crc(mp, dip); 3325 3326 ASSERT(bp->b_fspriv != NULL); 3327 ASSERT(bp->b_iodone != NULL); 3328 return 0; 3329 3330 corrupt_out: 3331 return XFS_ERROR(EFSCORRUPTED); 3332 } 3333