xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_inum.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_inode.h"
31 #include "xfs_da_format.h"
32 #include "xfs_da_btree.h"
33 #include "xfs_dir2.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_attr.h"
36 #include "xfs_trans_space.h"
37 #include "xfs_trans.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_bmap_util.h"
43 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_dinode.h"
46 #include "xfs_filestream.h"
47 #include "xfs_cksum.h"
48 #include "xfs_trace.h"
49 #include "xfs_icache.h"
50 #include "xfs_symlink.h"
51 #include "xfs_trans_priv.h"
52 #include "xfs_log.h"
53 #include "xfs_bmap_btree.h"
54 
55 kmem_zone_t *xfs_inode_zone;
56 
57 /*
58  * Used in xfs_itruncate_extents().  This is the maximum number of extents
59  * freed from a file in a single transaction.
60  */
61 #define	XFS_ITRUNC_MAX_EXTENTS	2
62 
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 
65 /*
66  * helper function to extract extent size hint from inode
67  */
68 xfs_extlen_t
69 xfs_get_extsz_hint(
70 	struct xfs_inode	*ip)
71 {
72 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
73 		return ip->i_d.di_extsize;
74 	if (XFS_IS_REALTIME_INODE(ip))
75 		return ip->i_mount->m_sb.sb_rextsize;
76 	return 0;
77 }
78 
79 /*
80  * This is a wrapper routine around the xfs_ilock() routine used to centralize
81  * some grungy code.  It is used in places that wish to lock the inode solely
82  * for reading the extents.  The reason these places can't just call
83  * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
84  * extents from disk for a file in b-tree format.  If the inode is in b-tree
85  * format, then we need to lock the inode exclusively until the extents are read
86  * in.  Locking it exclusively all the time would limit our parallelism
87  * unnecessarily, though.  What we do instead is check to see if the extents
88  * have been read in yet, and only lock the inode exclusively if they have not.
89  *
90  * The function returns a value which should be given to the corresponding
91  * xfs_iunlock_map_shared().  This value is the mode in which the lock was
92  * actually taken.
93  */
94 uint
95 xfs_ilock_map_shared(
96 	xfs_inode_t	*ip)
97 {
98 	uint	lock_mode;
99 
100 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
101 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
102 		lock_mode = XFS_ILOCK_EXCL;
103 	} else {
104 		lock_mode = XFS_ILOCK_SHARED;
105 	}
106 
107 	xfs_ilock(ip, lock_mode);
108 
109 	return lock_mode;
110 }
111 
112 /*
113  * This is simply the unlock routine to go with xfs_ilock_map_shared().
114  * All it does is call xfs_iunlock() with the given lock_mode.
115  */
116 void
117 xfs_iunlock_map_shared(
118 	xfs_inode_t	*ip,
119 	unsigned int	lock_mode)
120 {
121 	xfs_iunlock(ip, lock_mode);
122 }
123 
124 /*
125  * The xfs inode contains 2 locks: a multi-reader lock called the
126  * i_iolock and a multi-reader lock called the i_lock.  This routine
127  * allows either or both of the locks to be obtained.
128  *
129  * The 2 locks should always be ordered so that the IO lock is
130  * obtained first in order to prevent deadlock.
131  *
132  * ip -- the inode being locked
133  * lock_flags -- this parameter indicates the inode's locks
134  *       to be locked.  It can be:
135  *		XFS_IOLOCK_SHARED,
136  *		XFS_IOLOCK_EXCL,
137  *		XFS_ILOCK_SHARED,
138  *		XFS_ILOCK_EXCL,
139  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
140  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
141  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
142  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
143  */
144 void
145 xfs_ilock(
146 	xfs_inode_t		*ip,
147 	uint			lock_flags)
148 {
149 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
150 
151 	/*
152 	 * You can't set both SHARED and EXCL for the same lock,
153 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
154 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
155 	 */
156 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
157 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
158 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
159 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
160 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
161 
162 	if (lock_flags & XFS_IOLOCK_EXCL)
163 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
164 	else if (lock_flags & XFS_IOLOCK_SHARED)
165 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
166 
167 	if (lock_flags & XFS_ILOCK_EXCL)
168 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
169 	else if (lock_flags & XFS_ILOCK_SHARED)
170 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
171 }
172 
173 /*
174  * This is just like xfs_ilock(), except that the caller
175  * is guaranteed not to sleep.  It returns 1 if it gets
176  * the requested locks and 0 otherwise.  If the IO lock is
177  * obtained but the inode lock cannot be, then the IO lock
178  * is dropped before returning.
179  *
180  * ip -- the inode being locked
181  * lock_flags -- this parameter indicates the inode's locks to be
182  *       to be locked.  See the comment for xfs_ilock() for a list
183  *	 of valid values.
184  */
185 int
186 xfs_ilock_nowait(
187 	xfs_inode_t		*ip,
188 	uint			lock_flags)
189 {
190 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
191 
192 	/*
193 	 * You can't set both SHARED and EXCL for the same lock,
194 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
195 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
196 	 */
197 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
198 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
199 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
200 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
201 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
202 
203 	if (lock_flags & XFS_IOLOCK_EXCL) {
204 		if (!mrtryupdate(&ip->i_iolock))
205 			goto out;
206 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
207 		if (!mrtryaccess(&ip->i_iolock))
208 			goto out;
209 	}
210 	if (lock_flags & XFS_ILOCK_EXCL) {
211 		if (!mrtryupdate(&ip->i_lock))
212 			goto out_undo_iolock;
213 	} else if (lock_flags & XFS_ILOCK_SHARED) {
214 		if (!mrtryaccess(&ip->i_lock))
215 			goto out_undo_iolock;
216 	}
217 	return 1;
218 
219  out_undo_iolock:
220 	if (lock_flags & XFS_IOLOCK_EXCL)
221 		mrunlock_excl(&ip->i_iolock);
222 	else if (lock_flags & XFS_IOLOCK_SHARED)
223 		mrunlock_shared(&ip->i_iolock);
224  out:
225 	return 0;
226 }
227 
228 /*
229  * xfs_iunlock() is used to drop the inode locks acquired with
230  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
231  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
232  * that we know which locks to drop.
233  *
234  * ip -- the inode being unlocked
235  * lock_flags -- this parameter indicates the inode's locks to be
236  *       to be unlocked.  See the comment for xfs_ilock() for a list
237  *	 of valid values for this parameter.
238  *
239  */
240 void
241 xfs_iunlock(
242 	xfs_inode_t		*ip,
243 	uint			lock_flags)
244 {
245 	/*
246 	 * You can't set both SHARED and EXCL for the same lock,
247 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
248 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
249 	 */
250 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
251 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
252 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
253 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
254 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
255 	ASSERT(lock_flags != 0);
256 
257 	if (lock_flags & XFS_IOLOCK_EXCL)
258 		mrunlock_excl(&ip->i_iolock);
259 	else if (lock_flags & XFS_IOLOCK_SHARED)
260 		mrunlock_shared(&ip->i_iolock);
261 
262 	if (lock_flags & XFS_ILOCK_EXCL)
263 		mrunlock_excl(&ip->i_lock);
264 	else if (lock_flags & XFS_ILOCK_SHARED)
265 		mrunlock_shared(&ip->i_lock);
266 
267 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
268 }
269 
270 /*
271  * give up write locks.  the i/o lock cannot be held nested
272  * if it is being demoted.
273  */
274 void
275 xfs_ilock_demote(
276 	xfs_inode_t		*ip,
277 	uint			lock_flags)
278 {
279 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
280 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
281 
282 	if (lock_flags & XFS_ILOCK_EXCL)
283 		mrdemote(&ip->i_lock);
284 	if (lock_flags & XFS_IOLOCK_EXCL)
285 		mrdemote(&ip->i_iolock);
286 
287 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289 
290 #if defined(DEBUG) || defined(XFS_WARN)
291 int
292 xfs_isilocked(
293 	xfs_inode_t		*ip,
294 	uint			lock_flags)
295 {
296 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
297 		if (!(lock_flags & XFS_ILOCK_SHARED))
298 			return !!ip->i_lock.mr_writer;
299 		return rwsem_is_locked(&ip->i_lock.mr_lock);
300 	}
301 
302 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
303 		if (!(lock_flags & XFS_IOLOCK_SHARED))
304 			return !!ip->i_iolock.mr_writer;
305 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
306 	}
307 
308 	ASSERT(0);
309 	return 0;
310 }
311 #endif
312 
313 #ifdef DEBUG
314 int xfs_locked_n;
315 int xfs_small_retries;
316 int xfs_middle_retries;
317 int xfs_lots_retries;
318 int xfs_lock_delays;
319 #endif
320 
321 /*
322  * Bump the subclass so xfs_lock_inodes() acquires each lock with
323  * a different value
324  */
325 static inline int
326 xfs_lock_inumorder(int lock_mode, int subclass)
327 {
328 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
329 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
330 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
331 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
332 
333 	return lock_mode;
334 }
335 
336 /*
337  * The following routine will lock n inodes in exclusive mode.
338  * We assume the caller calls us with the inodes in i_ino order.
339  *
340  * We need to detect deadlock where an inode that we lock
341  * is in the AIL and we start waiting for another inode that is locked
342  * by a thread in a long running transaction (such as truncate). This can
343  * result in deadlock since the long running trans might need to wait
344  * for the inode we just locked in order to push the tail and free space
345  * in the log.
346  */
347 void
348 xfs_lock_inodes(
349 	xfs_inode_t	**ips,
350 	int		inodes,
351 	uint		lock_mode)
352 {
353 	int		attempts = 0, i, j, try_lock;
354 	xfs_log_item_t	*lp;
355 
356 	ASSERT(ips && (inodes >= 2)); /* we need at least two */
357 
358 	try_lock = 0;
359 	i = 0;
360 
361 again:
362 	for (; i < inodes; i++) {
363 		ASSERT(ips[i]);
364 
365 		if (i && (ips[i] == ips[i-1]))	/* Already locked */
366 			continue;
367 
368 		/*
369 		 * If try_lock is not set yet, make sure all locked inodes
370 		 * are not in the AIL.
371 		 * If any are, set try_lock to be used later.
372 		 */
373 
374 		if (!try_lock) {
375 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
376 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
377 				if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
378 					try_lock++;
379 				}
380 			}
381 		}
382 
383 		/*
384 		 * If any of the previous locks we have locked is in the AIL,
385 		 * we must TRY to get the second and subsequent locks. If
386 		 * we can't get any, we must release all we have
387 		 * and try again.
388 		 */
389 
390 		if (try_lock) {
391 			/* try_lock must be 0 if i is 0. */
392 			/*
393 			 * try_lock means we have an inode locked
394 			 * that is in the AIL.
395 			 */
396 			ASSERT(i != 0);
397 			if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
398 				attempts++;
399 
400 				/*
401 				 * Unlock all previous guys and try again.
402 				 * xfs_iunlock will try to push the tail
403 				 * if the inode is in the AIL.
404 				 */
405 
406 				for(j = i - 1; j >= 0; j--) {
407 
408 					/*
409 					 * Check to see if we've already
410 					 * unlocked this one.
411 					 * Not the first one going back,
412 					 * and the inode ptr is the same.
413 					 */
414 					if ((j != (i - 1)) && ips[j] ==
415 								ips[j+1])
416 						continue;
417 
418 					xfs_iunlock(ips[j], lock_mode);
419 				}
420 
421 				if ((attempts % 5) == 0) {
422 					delay(1); /* Don't just spin the CPU */
423 #ifdef DEBUG
424 					xfs_lock_delays++;
425 #endif
426 				}
427 				i = 0;
428 				try_lock = 0;
429 				goto again;
430 			}
431 		} else {
432 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
433 		}
434 	}
435 
436 #ifdef DEBUG
437 	if (attempts) {
438 		if (attempts < 5) xfs_small_retries++;
439 		else if (attempts < 100) xfs_middle_retries++;
440 		else xfs_lots_retries++;
441 	} else {
442 		xfs_locked_n++;
443 	}
444 #endif
445 }
446 
447 /*
448  * xfs_lock_two_inodes() can only be used to lock one type of lock
449  * at a time - the iolock or the ilock, but not both at once. If
450  * we lock both at once, lockdep will report false positives saying
451  * we have violated locking orders.
452  */
453 void
454 xfs_lock_two_inodes(
455 	xfs_inode_t		*ip0,
456 	xfs_inode_t		*ip1,
457 	uint			lock_mode)
458 {
459 	xfs_inode_t		*temp;
460 	int			attempts = 0;
461 	xfs_log_item_t		*lp;
462 
463 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
464 		ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
465 	ASSERT(ip0->i_ino != ip1->i_ino);
466 
467 	if (ip0->i_ino > ip1->i_ino) {
468 		temp = ip0;
469 		ip0 = ip1;
470 		ip1 = temp;
471 	}
472 
473  again:
474 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
475 
476 	/*
477 	 * If the first lock we have locked is in the AIL, we must TRY to get
478 	 * the second lock. If we can't get it, we must release the first one
479 	 * and try again.
480 	 */
481 	lp = (xfs_log_item_t *)ip0->i_itemp;
482 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
483 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
484 			xfs_iunlock(ip0, lock_mode);
485 			if ((++attempts % 5) == 0)
486 				delay(1); /* Don't just spin the CPU */
487 			goto again;
488 		}
489 	} else {
490 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
491 	}
492 }
493 
494 
495 void
496 __xfs_iflock(
497 	struct xfs_inode	*ip)
498 {
499 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
500 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
501 
502 	do {
503 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
504 		if (xfs_isiflocked(ip))
505 			io_schedule();
506 	} while (!xfs_iflock_nowait(ip));
507 
508 	finish_wait(wq, &wait.wait);
509 }
510 
511 STATIC uint
512 _xfs_dic2xflags(
513 	__uint16_t		di_flags)
514 {
515 	uint			flags = 0;
516 
517 	if (di_flags & XFS_DIFLAG_ANY) {
518 		if (di_flags & XFS_DIFLAG_REALTIME)
519 			flags |= XFS_XFLAG_REALTIME;
520 		if (di_flags & XFS_DIFLAG_PREALLOC)
521 			flags |= XFS_XFLAG_PREALLOC;
522 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
523 			flags |= XFS_XFLAG_IMMUTABLE;
524 		if (di_flags & XFS_DIFLAG_APPEND)
525 			flags |= XFS_XFLAG_APPEND;
526 		if (di_flags & XFS_DIFLAG_SYNC)
527 			flags |= XFS_XFLAG_SYNC;
528 		if (di_flags & XFS_DIFLAG_NOATIME)
529 			flags |= XFS_XFLAG_NOATIME;
530 		if (di_flags & XFS_DIFLAG_NODUMP)
531 			flags |= XFS_XFLAG_NODUMP;
532 		if (di_flags & XFS_DIFLAG_RTINHERIT)
533 			flags |= XFS_XFLAG_RTINHERIT;
534 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
535 			flags |= XFS_XFLAG_PROJINHERIT;
536 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
537 			flags |= XFS_XFLAG_NOSYMLINKS;
538 		if (di_flags & XFS_DIFLAG_EXTSIZE)
539 			flags |= XFS_XFLAG_EXTSIZE;
540 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
541 			flags |= XFS_XFLAG_EXTSZINHERIT;
542 		if (di_flags & XFS_DIFLAG_NODEFRAG)
543 			flags |= XFS_XFLAG_NODEFRAG;
544 		if (di_flags & XFS_DIFLAG_FILESTREAM)
545 			flags |= XFS_XFLAG_FILESTREAM;
546 	}
547 
548 	return flags;
549 }
550 
551 uint
552 xfs_ip2xflags(
553 	xfs_inode_t		*ip)
554 {
555 	xfs_icdinode_t		*dic = &ip->i_d;
556 
557 	return _xfs_dic2xflags(dic->di_flags) |
558 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
559 }
560 
561 uint
562 xfs_dic2xflags(
563 	xfs_dinode_t		*dip)
564 {
565 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
566 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
567 }
568 
569 /*
570  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
571  * is allowed, otherwise it has to be an exact match. If a CI match is found,
572  * ci_name->name will point to a the actual name (caller must free) or
573  * will be set to NULL if an exact match is found.
574  */
575 int
576 xfs_lookup(
577 	xfs_inode_t		*dp,
578 	struct xfs_name		*name,
579 	xfs_inode_t		**ipp,
580 	struct xfs_name		*ci_name)
581 {
582 	xfs_ino_t		inum;
583 	int			error;
584 	uint			lock_mode;
585 
586 	trace_xfs_lookup(dp, name);
587 
588 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
589 		return XFS_ERROR(EIO);
590 
591 	lock_mode = xfs_ilock_map_shared(dp);
592 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
593 	xfs_iunlock_map_shared(dp, lock_mode);
594 
595 	if (error)
596 		goto out;
597 
598 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
599 	if (error)
600 		goto out_free_name;
601 
602 	return 0;
603 
604 out_free_name:
605 	if (ci_name)
606 		kmem_free(ci_name->name);
607 out:
608 	*ipp = NULL;
609 	return error;
610 }
611 
612 /*
613  * Allocate an inode on disk and return a copy of its in-core version.
614  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
615  * appropriately within the inode.  The uid and gid for the inode are
616  * set according to the contents of the given cred structure.
617  *
618  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
619  * has a free inode available, call xfs_iget() to obtain the in-core
620  * version of the allocated inode.  Finally, fill in the inode and
621  * log its initial contents.  In this case, ialloc_context would be
622  * set to NULL.
623  *
624  * If xfs_dialloc() does not have an available inode, it will replenish
625  * its supply by doing an allocation. Since we can only do one
626  * allocation within a transaction without deadlocks, we must commit
627  * the current transaction before returning the inode itself.
628  * In this case, therefore, we will set ialloc_context and return.
629  * The caller should then commit the current transaction, start a new
630  * transaction, and call xfs_ialloc() again to actually get the inode.
631  *
632  * To ensure that some other process does not grab the inode that
633  * was allocated during the first call to xfs_ialloc(), this routine
634  * also returns the [locked] bp pointing to the head of the freelist
635  * as ialloc_context.  The caller should hold this buffer across
636  * the commit and pass it back into this routine on the second call.
637  *
638  * If we are allocating quota inodes, we do not have a parent inode
639  * to attach to or associate with (i.e. pip == NULL) because they
640  * are not linked into the directory structure - they are attached
641  * directly to the superblock - and so have no parent.
642  */
643 int
644 xfs_ialloc(
645 	xfs_trans_t	*tp,
646 	xfs_inode_t	*pip,
647 	umode_t		mode,
648 	xfs_nlink_t	nlink,
649 	xfs_dev_t	rdev,
650 	prid_t		prid,
651 	int		okalloc,
652 	xfs_buf_t	**ialloc_context,
653 	xfs_inode_t	**ipp)
654 {
655 	struct xfs_mount *mp = tp->t_mountp;
656 	xfs_ino_t	ino;
657 	xfs_inode_t	*ip;
658 	uint		flags;
659 	int		error;
660 	timespec_t	tv;
661 	int		filestreams = 0;
662 
663 	/*
664 	 * Call the space management code to pick
665 	 * the on-disk inode to be allocated.
666 	 */
667 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
668 			    ialloc_context, &ino);
669 	if (error)
670 		return error;
671 	if (*ialloc_context || ino == NULLFSINO) {
672 		*ipp = NULL;
673 		return 0;
674 	}
675 	ASSERT(*ialloc_context == NULL);
676 
677 	/*
678 	 * Get the in-core inode with the lock held exclusively.
679 	 * This is because we're setting fields here we need
680 	 * to prevent others from looking at until we're done.
681 	 */
682 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
683 			 XFS_ILOCK_EXCL, &ip);
684 	if (error)
685 		return error;
686 	ASSERT(ip != NULL);
687 
688 	ip->i_d.di_mode = mode;
689 	ip->i_d.di_onlink = 0;
690 	ip->i_d.di_nlink = nlink;
691 	ASSERT(ip->i_d.di_nlink == nlink);
692 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
693 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
694 	xfs_set_projid(ip, prid);
695 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
696 
697 	/*
698 	 * If the superblock version is up to where we support new format
699 	 * inodes and this is currently an old format inode, then change
700 	 * the inode version number now.  This way we only do the conversion
701 	 * here rather than here and in the flush/logging code.
702 	 */
703 	if (xfs_sb_version_hasnlink(&mp->m_sb) &&
704 	    ip->i_d.di_version == 1) {
705 		ip->i_d.di_version = 2;
706 		/*
707 		 * We've already zeroed the old link count, the projid field,
708 		 * and the pad field.
709 		 */
710 	}
711 
712 	/*
713 	 * Project ids won't be stored on disk if we are using a version 1 inode.
714 	 */
715 	if ((prid != 0) && (ip->i_d.di_version == 1))
716 		xfs_bump_ino_vers2(tp, ip);
717 
718 	if (pip && XFS_INHERIT_GID(pip)) {
719 		ip->i_d.di_gid = pip->i_d.di_gid;
720 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
721 			ip->i_d.di_mode |= S_ISGID;
722 		}
723 	}
724 
725 	/*
726 	 * If the group ID of the new file does not match the effective group
727 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
728 	 * (and only if the irix_sgid_inherit compatibility variable is set).
729 	 */
730 	if ((irix_sgid_inherit) &&
731 	    (ip->i_d.di_mode & S_ISGID) &&
732 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
733 		ip->i_d.di_mode &= ~S_ISGID;
734 	}
735 
736 	ip->i_d.di_size = 0;
737 	ip->i_d.di_nextents = 0;
738 	ASSERT(ip->i_d.di_nblocks == 0);
739 
740 	nanotime(&tv);
741 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
742 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
743 	ip->i_d.di_atime = ip->i_d.di_mtime;
744 	ip->i_d.di_ctime = ip->i_d.di_mtime;
745 
746 	/*
747 	 * di_gen will have been taken care of in xfs_iread.
748 	 */
749 	ip->i_d.di_extsize = 0;
750 	ip->i_d.di_dmevmask = 0;
751 	ip->i_d.di_dmstate = 0;
752 	ip->i_d.di_flags = 0;
753 
754 	if (ip->i_d.di_version == 3) {
755 		ASSERT(ip->i_d.di_ino == ino);
756 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
757 		ip->i_d.di_crc = 0;
758 		ip->i_d.di_changecount = 1;
759 		ip->i_d.di_lsn = 0;
760 		ip->i_d.di_flags2 = 0;
761 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
762 		ip->i_d.di_crtime = ip->i_d.di_mtime;
763 	}
764 
765 
766 	flags = XFS_ILOG_CORE;
767 	switch (mode & S_IFMT) {
768 	case S_IFIFO:
769 	case S_IFCHR:
770 	case S_IFBLK:
771 	case S_IFSOCK:
772 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
773 		ip->i_df.if_u2.if_rdev = rdev;
774 		ip->i_df.if_flags = 0;
775 		flags |= XFS_ILOG_DEV;
776 		break;
777 	case S_IFREG:
778 		/*
779 		 * we can't set up filestreams until after the VFS inode
780 		 * is set up properly.
781 		 */
782 		if (pip && xfs_inode_is_filestream(pip))
783 			filestreams = 1;
784 		/* fall through */
785 	case S_IFDIR:
786 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
787 			uint	di_flags = 0;
788 
789 			if (S_ISDIR(mode)) {
790 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
791 					di_flags |= XFS_DIFLAG_RTINHERIT;
792 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
793 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
794 					ip->i_d.di_extsize = pip->i_d.di_extsize;
795 				}
796 			} else if (S_ISREG(mode)) {
797 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
798 					di_flags |= XFS_DIFLAG_REALTIME;
799 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
800 					di_flags |= XFS_DIFLAG_EXTSIZE;
801 					ip->i_d.di_extsize = pip->i_d.di_extsize;
802 				}
803 			}
804 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
805 			    xfs_inherit_noatime)
806 				di_flags |= XFS_DIFLAG_NOATIME;
807 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
808 			    xfs_inherit_nodump)
809 				di_flags |= XFS_DIFLAG_NODUMP;
810 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
811 			    xfs_inherit_sync)
812 				di_flags |= XFS_DIFLAG_SYNC;
813 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
814 			    xfs_inherit_nosymlinks)
815 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
816 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
817 				di_flags |= XFS_DIFLAG_PROJINHERIT;
818 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
819 			    xfs_inherit_nodefrag)
820 				di_flags |= XFS_DIFLAG_NODEFRAG;
821 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
822 				di_flags |= XFS_DIFLAG_FILESTREAM;
823 			ip->i_d.di_flags |= di_flags;
824 		}
825 		/* FALLTHROUGH */
826 	case S_IFLNK:
827 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
828 		ip->i_df.if_flags = XFS_IFEXTENTS;
829 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
830 		ip->i_df.if_u1.if_extents = NULL;
831 		break;
832 	default:
833 		ASSERT(0);
834 	}
835 	/*
836 	 * Attribute fork settings for new inode.
837 	 */
838 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
839 	ip->i_d.di_anextents = 0;
840 
841 	/*
842 	 * Log the new values stuffed into the inode.
843 	 */
844 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
845 	xfs_trans_log_inode(tp, ip, flags);
846 
847 	/* now that we have an i_mode we can setup inode ops and unlock */
848 	xfs_setup_inode(ip);
849 
850 	/* now we have set up the vfs inode we can associate the filestream */
851 	if (filestreams) {
852 		error = xfs_filestream_associate(pip, ip);
853 		if (error < 0)
854 			return -error;
855 		if (!error)
856 			xfs_iflags_set(ip, XFS_IFILESTREAM);
857 	}
858 
859 	*ipp = ip;
860 	return 0;
861 }
862 
863 /*
864  * Allocates a new inode from disk and return a pointer to the
865  * incore copy. This routine will internally commit the current
866  * transaction and allocate a new one if the Space Manager needed
867  * to do an allocation to replenish the inode free-list.
868  *
869  * This routine is designed to be called from xfs_create and
870  * xfs_create_dir.
871  *
872  */
873 int
874 xfs_dir_ialloc(
875 	xfs_trans_t	**tpp,		/* input: current transaction;
876 					   output: may be a new transaction. */
877 	xfs_inode_t	*dp,		/* directory within whose allocate
878 					   the inode. */
879 	umode_t		mode,
880 	xfs_nlink_t	nlink,
881 	xfs_dev_t	rdev,
882 	prid_t		prid,		/* project id */
883 	int		okalloc,	/* ok to allocate new space */
884 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
885 					   locked. */
886 	int		*committed)
887 
888 {
889 	xfs_trans_t	*tp;
890 	xfs_trans_t	*ntp;
891 	xfs_inode_t	*ip;
892 	xfs_buf_t	*ialloc_context = NULL;
893 	int		code;
894 	void		*dqinfo;
895 	uint		tflags;
896 
897 	tp = *tpp;
898 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
899 
900 	/*
901 	 * xfs_ialloc will return a pointer to an incore inode if
902 	 * the Space Manager has an available inode on the free
903 	 * list. Otherwise, it will do an allocation and replenish
904 	 * the freelist.  Since we can only do one allocation per
905 	 * transaction without deadlocks, we will need to commit the
906 	 * current transaction and start a new one.  We will then
907 	 * need to call xfs_ialloc again to get the inode.
908 	 *
909 	 * If xfs_ialloc did an allocation to replenish the freelist,
910 	 * it returns the bp containing the head of the freelist as
911 	 * ialloc_context. We will hold a lock on it across the
912 	 * transaction commit so that no other process can steal
913 	 * the inode(s) that we've just allocated.
914 	 */
915 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
916 			  &ialloc_context, &ip);
917 
918 	/*
919 	 * Return an error if we were unable to allocate a new inode.
920 	 * This should only happen if we run out of space on disk or
921 	 * encounter a disk error.
922 	 */
923 	if (code) {
924 		*ipp = NULL;
925 		return code;
926 	}
927 	if (!ialloc_context && !ip) {
928 		*ipp = NULL;
929 		return XFS_ERROR(ENOSPC);
930 	}
931 
932 	/*
933 	 * If the AGI buffer is non-NULL, then we were unable to get an
934 	 * inode in one operation.  We need to commit the current
935 	 * transaction and call xfs_ialloc() again.  It is guaranteed
936 	 * to succeed the second time.
937 	 */
938 	if (ialloc_context) {
939 		struct xfs_trans_res tres;
940 
941 		/*
942 		 * Normally, xfs_trans_commit releases all the locks.
943 		 * We call bhold to hang on to the ialloc_context across
944 		 * the commit.  Holding this buffer prevents any other
945 		 * processes from doing any allocations in this
946 		 * allocation group.
947 		 */
948 		xfs_trans_bhold(tp, ialloc_context);
949 		/*
950 		 * Save the log reservation so we can use
951 		 * them in the next transaction.
952 		 */
953 		tres.tr_logres = xfs_trans_get_log_res(tp);
954 		tres.tr_logcount = xfs_trans_get_log_count(tp);
955 
956 		/*
957 		 * We want the quota changes to be associated with the next
958 		 * transaction, NOT this one. So, detach the dqinfo from this
959 		 * and attach it to the next transaction.
960 		 */
961 		dqinfo = NULL;
962 		tflags = 0;
963 		if (tp->t_dqinfo) {
964 			dqinfo = (void *)tp->t_dqinfo;
965 			tp->t_dqinfo = NULL;
966 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
967 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
968 		}
969 
970 		ntp = xfs_trans_dup(tp);
971 		code = xfs_trans_commit(tp, 0);
972 		tp = ntp;
973 		if (committed != NULL) {
974 			*committed = 1;
975 		}
976 		/*
977 		 * If we get an error during the commit processing,
978 		 * release the buffer that is still held and return
979 		 * to the caller.
980 		 */
981 		if (code) {
982 			xfs_buf_relse(ialloc_context);
983 			if (dqinfo) {
984 				tp->t_dqinfo = dqinfo;
985 				xfs_trans_free_dqinfo(tp);
986 			}
987 			*tpp = ntp;
988 			*ipp = NULL;
989 			return code;
990 		}
991 
992 		/*
993 		 * transaction commit worked ok so we can drop the extra ticket
994 		 * reference that we gained in xfs_trans_dup()
995 		 */
996 		xfs_log_ticket_put(tp->t_ticket);
997 		tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
998 		code = xfs_trans_reserve(tp, &tres, 0, 0);
999 
1000 		/*
1001 		 * Re-attach the quota info that we detached from prev trx.
1002 		 */
1003 		if (dqinfo) {
1004 			tp->t_dqinfo = dqinfo;
1005 			tp->t_flags |= tflags;
1006 		}
1007 
1008 		if (code) {
1009 			xfs_buf_relse(ialloc_context);
1010 			*tpp = ntp;
1011 			*ipp = NULL;
1012 			return code;
1013 		}
1014 		xfs_trans_bjoin(tp, ialloc_context);
1015 
1016 		/*
1017 		 * Call ialloc again. Since we've locked out all
1018 		 * other allocations in this allocation group,
1019 		 * this call should always succeed.
1020 		 */
1021 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1022 				  okalloc, &ialloc_context, &ip);
1023 
1024 		/*
1025 		 * If we get an error at this point, return to the caller
1026 		 * so that the current transaction can be aborted.
1027 		 */
1028 		if (code) {
1029 			*tpp = tp;
1030 			*ipp = NULL;
1031 			return code;
1032 		}
1033 		ASSERT(!ialloc_context && ip);
1034 
1035 	} else {
1036 		if (committed != NULL)
1037 			*committed = 0;
1038 	}
1039 
1040 	*ipp = ip;
1041 	*tpp = tp;
1042 
1043 	return 0;
1044 }
1045 
1046 /*
1047  * Decrement the link count on an inode & log the change.
1048  * If this causes the link count to go to zero, initiate the
1049  * logging activity required to truncate a file.
1050  */
1051 int				/* error */
1052 xfs_droplink(
1053 	xfs_trans_t *tp,
1054 	xfs_inode_t *ip)
1055 {
1056 	int	error;
1057 
1058 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1059 
1060 	ASSERT (ip->i_d.di_nlink > 0);
1061 	ip->i_d.di_nlink--;
1062 	drop_nlink(VFS_I(ip));
1063 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1064 
1065 	error = 0;
1066 	if (ip->i_d.di_nlink == 0) {
1067 		/*
1068 		 * We're dropping the last link to this file.
1069 		 * Move the on-disk inode to the AGI unlinked list.
1070 		 * From xfs_inactive() we will pull the inode from
1071 		 * the list and free it.
1072 		 */
1073 		error = xfs_iunlink(tp, ip);
1074 	}
1075 	return error;
1076 }
1077 
1078 /*
1079  * This gets called when the inode's version needs to be changed from 1 to 2.
1080  * Currently this happens when the nlink field overflows the old 16-bit value
1081  * or when chproj is called to change the project for the first time.
1082  * As a side effect the superblock version will also get rev'd
1083  * to contain the NLINK bit.
1084  */
1085 void
1086 xfs_bump_ino_vers2(
1087 	xfs_trans_t	*tp,
1088 	xfs_inode_t	*ip)
1089 {
1090 	xfs_mount_t	*mp;
1091 
1092 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1093 	ASSERT(ip->i_d.di_version == 1);
1094 
1095 	ip->i_d.di_version = 2;
1096 	ip->i_d.di_onlink = 0;
1097 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1098 	mp = tp->t_mountp;
1099 	if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1100 		spin_lock(&mp->m_sb_lock);
1101 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1102 			xfs_sb_version_addnlink(&mp->m_sb);
1103 			spin_unlock(&mp->m_sb_lock);
1104 			xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1105 		} else {
1106 			spin_unlock(&mp->m_sb_lock);
1107 		}
1108 	}
1109 	/* Caller must log the inode */
1110 }
1111 
1112 /*
1113  * Increment the link count on an inode & log the change.
1114  */
1115 int
1116 xfs_bumplink(
1117 	xfs_trans_t *tp,
1118 	xfs_inode_t *ip)
1119 {
1120 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1121 
1122 	ASSERT(ip->i_d.di_nlink > 0);
1123 	ip->i_d.di_nlink++;
1124 	inc_nlink(VFS_I(ip));
1125 	if ((ip->i_d.di_version == 1) &&
1126 	    (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1127 		/*
1128 		 * The inode has increased its number of links beyond
1129 		 * what can fit in an old format inode.  It now needs
1130 		 * to be converted to a version 2 inode with a 32 bit
1131 		 * link count.  If this is the first inode in the file
1132 		 * system to do this, then we need to bump the superblock
1133 		 * version number as well.
1134 		 */
1135 		xfs_bump_ino_vers2(tp, ip);
1136 	}
1137 
1138 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1139 	return 0;
1140 }
1141 
1142 int
1143 xfs_create(
1144 	xfs_inode_t		*dp,
1145 	struct xfs_name		*name,
1146 	umode_t			mode,
1147 	xfs_dev_t		rdev,
1148 	xfs_inode_t		**ipp)
1149 {
1150 	int			is_dir = S_ISDIR(mode);
1151 	struct xfs_mount	*mp = dp->i_mount;
1152 	struct xfs_inode	*ip = NULL;
1153 	struct xfs_trans	*tp = NULL;
1154 	int			error;
1155 	xfs_bmap_free_t		free_list;
1156 	xfs_fsblock_t		first_block;
1157 	bool                    unlock_dp_on_error = false;
1158 	uint			cancel_flags;
1159 	int			committed;
1160 	prid_t			prid;
1161 	struct xfs_dquot	*udqp = NULL;
1162 	struct xfs_dquot	*gdqp = NULL;
1163 	struct xfs_dquot	*pdqp = NULL;
1164 	struct xfs_trans_res	tres;
1165 	uint			resblks;
1166 
1167 	trace_xfs_create(dp, name);
1168 
1169 	if (XFS_FORCED_SHUTDOWN(mp))
1170 		return XFS_ERROR(EIO);
1171 
1172 	if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1173 		prid = xfs_get_projid(dp);
1174 	else
1175 		prid = XFS_PROJID_DEFAULT;
1176 
1177 	/*
1178 	 * Make sure that we have allocated dquot(s) on disk.
1179 	 */
1180 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1181 					xfs_kgid_to_gid(current_fsgid()), prid,
1182 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1183 					&udqp, &gdqp, &pdqp);
1184 	if (error)
1185 		return error;
1186 
1187 	if (is_dir) {
1188 		rdev = 0;
1189 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1190 		tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1191 		tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1192 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1193 	} else {
1194 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1195 		tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1196 		tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1197 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1198 	}
1199 
1200 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1201 
1202 	/*
1203 	 * Initially assume that the file does not exist and
1204 	 * reserve the resources for that case.  If that is not
1205 	 * the case we'll drop the one we have and get a more
1206 	 * appropriate transaction later.
1207 	 */
1208 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1209 	error = xfs_trans_reserve(tp, &tres, resblks, 0);
1210 	if (error == ENOSPC) {
1211 		/* flush outstanding delalloc blocks and retry */
1212 		xfs_flush_inodes(mp);
1213 		error = xfs_trans_reserve(tp, &tres, resblks, 0);
1214 	}
1215 	if (error == ENOSPC) {
1216 		/* No space at all so try a "no-allocation" reservation */
1217 		resblks = 0;
1218 		error = xfs_trans_reserve(tp, &tres, 0, 0);
1219 	}
1220 	if (error) {
1221 		cancel_flags = 0;
1222 		goto out_trans_cancel;
1223 	}
1224 
1225 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1226 	unlock_dp_on_error = true;
1227 
1228 	xfs_bmap_init(&free_list, &first_block);
1229 
1230 	/*
1231 	 * Reserve disk quota and the inode.
1232 	 */
1233 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1234 						pdqp, resblks, 1, 0);
1235 	if (error)
1236 		goto out_trans_cancel;
1237 
1238 	error = xfs_dir_canenter(tp, dp, name, resblks);
1239 	if (error)
1240 		goto out_trans_cancel;
1241 
1242 	/*
1243 	 * A newly created regular or special file just has one directory
1244 	 * entry pointing to them, but a directory also the "." entry
1245 	 * pointing to itself.
1246 	 */
1247 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1248 			       prid, resblks > 0, &ip, &committed);
1249 	if (error) {
1250 		if (error == ENOSPC)
1251 			goto out_trans_cancel;
1252 		goto out_trans_abort;
1253 	}
1254 
1255 	/*
1256 	 * Now we join the directory inode to the transaction.  We do not do it
1257 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1258 	 * (and release all the locks).  An error from here on will result in
1259 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1260 	 * error path.
1261 	 */
1262 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1263 	unlock_dp_on_error = false;
1264 
1265 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1266 					&first_block, &free_list, resblks ?
1267 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1268 	if (error) {
1269 		ASSERT(error != ENOSPC);
1270 		goto out_trans_abort;
1271 	}
1272 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1273 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1274 
1275 	if (is_dir) {
1276 		error = xfs_dir_init(tp, ip, dp);
1277 		if (error)
1278 			goto out_bmap_cancel;
1279 
1280 		error = xfs_bumplink(tp, dp);
1281 		if (error)
1282 			goto out_bmap_cancel;
1283 	}
1284 
1285 	/*
1286 	 * If this is a synchronous mount, make sure that the
1287 	 * create transaction goes to disk before returning to
1288 	 * the user.
1289 	 */
1290 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1291 		xfs_trans_set_sync(tp);
1292 
1293 	/*
1294 	 * Attach the dquot(s) to the inodes and modify them incore.
1295 	 * These ids of the inode couldn't have changed since the new
1296 	 * inode has been locked ever since it was created.
1297 	 */
1298 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1299 
1300 	error = xfs_bmap_finish(&tp, &free_list, &committed);
1301 	if (error)
1302 		goto out_bmap_cancel;
1303 
1304 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1305 	if (error)
1306 		goto out_release_inode;
1307 
1308 	xfs_qm_dqrele(udqp);
1309 	xfs_qm_dqrele(gdqp);
1310 	xfs_qm_dqrele(pdqp);
1311 
1312 	*ipp = ip;
1313 	return 0;
1314 
1315  out_bmap_cancel:
1316 	xfs_bmap_cancel(&free_list);
1317  out_trans_abort:
1318 	cancel_flags |= XFS_TRANS_ABORT;
1319  out_trans_cancel:
1320 	xfs_trans_cancel(tp, cancel_flags);
1321  out_release_inode:
1322 	/*
1323 	 * Wait until after the current transaction is aborted to
1324 	 * release the inode.  This prevents recursive transactions
1325 	 * and deadlocks from xfs_inactive.
1326 	 */
1327 	if (ip)
1328 		IRELE(ip);
1329 
1330 	xfs_qm_dqrele(udqp);
1331 	xfs_qm_dqrele(gdqp);
1332 	xfs_qm_dqrele(pdqp);
1333 
1334 	if (unlock_dp_on_error)
1335 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1336 	return error;
1337 }
1338 
1339 int
1340 xfs_link(
1341 	xfs_inode_t		*tdp,
1342 	xfs_inode_t		*sip,
1343 	struct xfs_name		*target_name)
1344 {
1345 	xfs_mount_t		*mp = tdp->i_mount;
1346 	xfs_trans_t		*tp;
1347 	int			error;
1348 	xfs_bmap_free_t         free_list;
1349 	xfs_fsblock_t           first_block;
1350 	int			cancel_flags;
1351 	int			committed;
1352 	int			resblks;
1353 
1354 	trace_xfs_link(tdp, target_name);
1355 
1356 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1357 
1358 	if (XFS_FORCED_SHUTDOWN(mp))
1359 		return XFS_ERROR(EIO);
1360 
1361 	error = xfs_qm_dqattach(sip, 0);
1362 	if (error)
1363 		goto std_return;
1364 
1365 	error = xfs_qm_dqattach(tdp, 0);
1366 	if (error)
1367 		goto std_return;
1368 
1369 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1370 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1371 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1372 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1373 	if (error == ENOSPC) {
1374 		resblks = 0;
1375 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1376 	}
1377 	if (error) {
1378 		cancel_flags = 0;
1379 		goto error_return;
1380 	}
1381 
1382 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1383 
1384 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1385 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1386 
1387 	/*
1388 	 * If we are using project inheritance, we only allow hard link
1389 	 * creation in our tree when the project IDs are the same; else
1390 	 * the tree quota mechanism could be circumvented.
1391 	 */
1392 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1393 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1394 		error = XFS_ERROR(EXDEV);
1395 		goto error_return;
1396 	}
1397 
1398 	error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1399 	if (error)
1400 		goto error_return;
1401 
1402 	xfs_bmap_init(&free_list, &first_block);
1403 
1404 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1405 					&first_block, &free_list, resblks);
1406 	if (error)
1407 		goto abort_return;
1408 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1409 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1410 
1411 	error = xfs_bumplink(tp, sip);
1412 	if (error)
1413 		goto abort_return;
1414 
1415 	/*
1416 	 * If this is a synchronous mount, make sure that the
1417 	 * link transaction goes to disk before returning to
1418 	 * the user.
1419 	 */
1420 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1421 		xfs_trans_set_sync(tp);
1422 	}
1423 
1424 	error = xfs_bmap_finish (&tp, &free_list, &committed);
1425 	if (error) {
1426 		xfs_bmap_cancel(&free_list);
1427 		goto abort_return;
1428 	}
1429 
1430 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1431 
1432  abort_return:
1433 	cancel_flags |= XFS_TRANS_ABORT;
1434  error_return:
1435 	xfs_trans_cancel(tp, cancel_flags);
1436  std_return:
1437 	return error;
1438 }
1439 
1440 /*
1441  * Free up the underlying blocks past new_size.  The new size must be smaller
1442  * than the current size.  This routine can be used both for the attribute and
1443  * data fork, and does not modify the inode size, which is left to the caller.
1444  *
1445  * The transaction passed to this routine must have made a permanent log
1446  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1447  * given transaction and start new ones, so make sure everything involved in
1448  * the transaction is tidy before calling here.  Some transaction will be
1449  * returned to the caller to be committed.  The incoming transaction must
1450  * already include the inode, and both inode locks must be held exclusively.
1451  * The inode must also be "held" within the transaction.  On return the inode
1452  * will be "held" within the returned transaction.  This routine does NOT
1453  * require any disk space to be reserved for it within the transaction.
1454  *
1455  * If we get an error, we must return with the inode locked and linked into the
1456  * current transaction. This keeps things simple for the higher level code,
1457  * because it always knows that the inode is locked and held in the transaction
1458  * that returns to it whether errors occur or not.  We don't mark the inode
1459  * dirty on error so that transactions can be easily aborted if possible.
1460  */
1461 int
1462 xfs_itruncate_extents(
1463 	struct xfs_trans	**tpp,
1464 	struct xfs_inode	*ip,
1465 	int			whichfork,
1466 	xfs_fsize_t		new_size)
1467 {
1468 	struct xfs_mount	*mp = ip->i_mount;
1469 	struct xfs_trans	*tp = *tpp;
1470 	struct xfs_trans	*ntp;
1471 	xfs_bmap_free_t		free_list;
1472 	xfs_fsblock_t		first_block;
1473 	xfs_fileoff_t		first_unmap_block;
1474 	xfs_fileoff_t		last_block;
1475 	xfs_filblks_t		unmap_len;
1476 	int			committed;
1477 	int			error = 0;
1478 	int			done = 0;
1479 
1480 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1481 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1482 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1483 	ASSERT(new_size <= XFS_ISIZE(ip));
1484 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1485 	ASSERT(ip->i_itemp != NULL);
1486 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1487 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1488 
1489 	trace_xfs_itruncate_extents_start(ip, new_size);
1490 
1491 	/*
1492 	 * Since it is possible for space to become allocated beyond
1493 	 * the end of the file (in a crash where the space is allocated
1494 	 * but the inode size is not yet updated), simply remove any
1495 	 * blocks which show up between the new EOF and the maximum
1496 	 * possible file size.  If the first block to be removed is
1497 	 * beyond the maximum file size (ie it is the same as last_block),
1498 	 * then there is nothing to do.
1499 	 */
1500 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1501 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1502 	if (first_unmap_block == last_block)
1503 		return 0;
1504 
1505 	ASSERT(first_unmap_block < last_block);
1506 	unmap_len = last_block - first_unmap_block + 1;
1507 	while (!done) {
1508 		xfs_bmap_init(&free_list, &first_block);
1509 		error = xfs_bunmapi(tp, ip,
1510 				    first_unmap_block, unmap_len,
1511 				    xfs_bmapi_aflag(whichfork),
1512 				    XFS_ITRUNC_MAX_EXTENTS,
1513 				    &first_block, &free_list,
1514 				    &done);
1515 		if (error)
1516 			goto out_bmap_cancel;
1517 
1518 		/*
1519 		 * Duplicate the transaction that has the permanent
1520 		 * reservation and commit the old transaction.
1521 		 */
1522 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1523 		if (committed)
1524 			xfs_trans_ijoin(tp, ip, 0);
1525 		if (error)
1526 			goto out_bmap_cancel;
1527 
1528 		if (committed) {
1529 			/*
1530 			 * Mark the inode dirty so it will be logged and
1531 			 * moved forward in the log as part of every commit.
1532 			 */
1533 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1534 		}
1535 
1536 		ntp = xfs_trans_dup(tp);
1537 		error = xfs_trans_commit(tp, 0);
1538 		tp = ntp;
1539 
1540 		xfs_trans_ijoin(tp, ip, 0);
1541 
1542 		if (error)
1543 			goto out;
1544 
1545 		/*
1546 		 * Transaction commit worked ok so we can drop the extra ticket
1547 		 * reference that we gained in xfs_trans_dup()
1548 		 */
1549 		xfs_log_ticket_put(tp->t_ticket);
1550 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1551 		if (error)
1552 			goto out;
1553 	}
1554 
1555 	/*
1556 	 * Always re-log the inode so that our permanent transaction can keep
1557 	 * on rolling it forward in the log.
1558 	 */
1559 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1560 
1561 	trace_xfs_itruncate_extents_end(ip, new_size);
1562 
1563 out:
1564 	*tpp = tp;
1565 	return error;
1566 out_bmap_cancel:
1567 	/*
1568 	 * If the bunmapi call encounters an error, return to the caller where
1569 	 * the transaction can be properly aborted.  We just need to make sure
1570 	 * we're not holding any resources that we were not when we came in.
1571 	 */
1572 	xfs_bmap_cancel(&free_list);
1573 	goto out;
1574 }
1575 
1576 int
1577 xfs_release(
1578 	xfs_inode_t	*ip)
1579 {
1580 	xfs_mount_t	*mp = ip->i_mount;
1581 	int		error;
1582 
1583 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1584 		return 0;
1585 
1586 	/* If this is a read-only mount, don't do this (would generate I/O) */
1587 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1588 		return 0;
1589 
1590 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1591 		int truncated;
1592 
1593 		/*
1594 		 * If we are using filestreams, and we have an unlinked
1595 		 * file that we are processing the last close on, then nothing
1596 		 * will be able to reopen and write to this file. Purge this
1597 		 * inode from the filestreams cache so that it doesn't delay
1598 		 * teardown of the inode.
1599 		 */
1600 		if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1601 			xfs_filestream_deassociate(ip);
1602 
1603 		/*
1604 		 * If we previously truncated this file and removed old data
1605 		 * in the process, we want to initiate "early" writeout on
1606 		 * the last close.  This is an attempt to combat the notorious
1607 		 * NULL files problem which is particularly noticeable from a
1608 		 * truncate down, buffered (re-)write (delalloc), followed by
1609 		 * a crash.  What we are effectively doing here is
1610 		 * significantly reducing the time window where we'd otherwise
1611 		 * be exposed to that problem.
1612 		 */
1613 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1614 		if (truncated) {
1615 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1616 			if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1617 				error = -filemap_flush(VFS_I(ip)->i_mapping);
1618 				if (error)
1619 					return error;
1620 			}
1621 		}
1622 	}
1623 
1624 	if (ip->i_d.di_nlink == 0)
1625 		return 0;
1626 
1627 	if (xfs_can_free_eofblocks(ip, false)) {
1628 
1629 		/*
1630 		 * If we can't get the iolock just skip truncating the blocks
1631 		 * past EOF because we could deadlock with the mmap_sem
1632 		 * otherwise.  We'll get another chance to drop them once the
1633 		 * last reference to the inode is dropped, so we'll never leak
1634 		 * blocks permanently.
1635 		 *
1636 		 * Further, check if the inode is being opened, written and
1637 		 * closed frequently and we have delayed allocation blocks
1638 		 * outstanding (e.g. streaming writes from the NFS server),
1639 		 * truncating the blocks past EOF will cause fragmentation to
1640 		 * occur.
1641 		 *
1642 		 * In this case don't do the truncation, either, but we have to
1643 		 * be careful how we detect this case. Blocks beyond EOF show
1644 		 * up as i_delayed_blks even when the inode is clean, so we
1645 		 * need to truncate them away first before checking for a dirty
1646 		 * release. Hence on the first dirty close we will still remove
1647 		 * the speculative allocation, but after that we will leave it
1648 		 * in place.
1649 		 */
1650 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 			return 0;
1652 
1653 		error = xfs_free_eofblocks(mp, ip, true);
1654 		if (error && error != EAGAIN)
1655 			return error;
1656 
1657 		/* delalloc blocks after truncation means it really is dirty */
1658 		if (ip->i_delayed_blks)
1659 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1660 	}
1661 	return 0;
1662 }
1663 
1664 /*
1665  * xfs_inactive_truncate
1666  *
1667  * Called to perform a truncate when an inode becomes unlinked.
1668  */
1669 STATIC int
1670 xfs_inactive_truncate(
1671 	struct xfs_inode *ip)
1672 {
1673 	struct xfs_mount	*mp = ip->i_mount;
1674 	struct xfs_trans	*tp;
1675 	int			error;
1676 
1677 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1678 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1679 	if (error) {
1680 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1681 		xfs_trans_cancel(tp, 0);
1682 		return error;
1683 	}
1684 
1685 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1686 	xfs_trans_ijoin(tp, ip, 0);
1687 
1688 	/*
1689 	 * Log the inode size first to prevent stale data exposure in the event
1690 	 * of a system crash before the truncate completes. See the related
1691 	 * comment in xfs_setattr_size() for details.
1692 	 */
1693 	ip->i_d.di_size = 0;
1694 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1695 
1696 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1697 	if (error)
1698 		goto error_trans_cancel;
1699 
1700 	ASSERT(ip->i_d.di_nextents == 0);
1701 
1702 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1703 	if (error)
1704 		goto error_unlock;
1705 
1706 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1707 	return 0;
1708 
1709 error_trans_cancel:
1710 	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1711 error_unlock:
1712 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 	return error;
1714 }
1715 
1716 /*
1717  * xfs_inactive_ifree()
1718  *
1719  * Perform the inode free when an inode is unlinked.
1720  */
1721 STATIC int
1722 xfs_inactive_ifree(
1723 	struct xfs_inode *ip)
1724 {
1725 	xfs_bmap_free_t		free_list;
1726 	xfs_fsblock_t		first_block;
1727 	int			committed;
1728 	struct xfs_mount	*mp = ip->i_mount;
1729 	struct xfs_trans	*tp;
1730 	int			error;
1731 
1732 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1733 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1734 	if (error) {
1735 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1736 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1737 		return error;
1738 	}
1739 
1740 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1741 	xfs_trans_ijoin(tp, ip, 0);
1742 
1743 	xfs_bmap_init(&free_list, &first_block);
1744 	error = xfs_ifree(tp, ip, &free_list);
1745 	if (error) {
1746 		/*
1747 		 * If we fail to free the inode, shut down.  The cancel
1748 		 * might do that, we need to make sure.  Otherwise the
1749 		 * inode might be lost for a long time or forever.
1750 		 */
1751 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1752 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1753 				__func__, error);
1754 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1755 		}
1756 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1757 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1758 		return error;
1759 	}
1760 
1761 	/*
1762 	 * Credit the quota account(s). The inode is gone.
1763 	 */
1764 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1765 
1766 	/*
1767 	 * Just ignore errors at this point.  There is nothing we can
1768 	 * do except to try to keep going. Make sure it's not a silent
1769 	 * error.
1770 	 */
1771 	error = xfs_bmap_finish(&tp,  &free_list, &committed);
1772 	if (error)
1773 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1774 			__func__, error);
1775 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1776 	if (error)
1777 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1778 			__func__, error);
1779 
1780 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 	return 0;
1782 }
1783 
1784 /*
1785  * xfs_inactive
1786  *
1787  * This is called when the vnode reference count for the vnode
1788  * goes to zero.  If the file has been unlinked, then it must
1789  * now be truncated.  Also, we clear all of the read-ahead state
1790  * kept for the inode here since the file is now closed.
1791  */
1792 void
1793 xfs_inactive(
1794 	xfs_inode_t	*ip)
1795 {
1796 	struct xfs_mount	*mp;
1797 	int			error;
1798 	int			truncate = 0;
1799 
1800 	/*
1801 	 * If the inode is already free, then there can be nothing
1802 	 * to clean up here.
1803 	 */
1804 	if (ip->i_d.di_mode == 0) {
1805 		ASSERT(ip->i_df.if_real_bytes == 0);
1806 		ASSERT(ip->i_df.if_broot_bytes == 0);
1807 		return;
1808 	}
1809 
1810 	mp = ip->i_mount;
1811 
1812 	/* If this is a read-only mount, don't do this (would generate I/O) */
1813 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1814 		return;
1815 
1816 	if (ip->i_d.di_nlink != 0) {
1817 		/*
1818 		 * force is true because we are evicting an inode from the
1819 		 * cache. Post-eof blocks must be freed, lest we end up with
1820 		 * broken free space accounting.
1821 		 */
1822 		if (xfs_can_free_eofblocks(ip, true))
1823 			xfs_free_eofblocks(mp, ip, false);
1824 
1825 		return;
1826 	}
1827 
1828 	if (S_ISREG(ip->i_d.di_mode) &&
1829 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1830 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1831 		truncate = 1;
1832 
1833 	error = xfs_qm_dqattach(ip, 0);
1834 	if (error)
1835 		return;
1836 
1837 	if (S_ISLNK(ip->i_d.di_mode))
1838 		error = xfs_inactive_symlink(ip);
1839 	else if (truncate)
1840 		error = xfs_inactive_truncate(ip);
1841 	if (error)
1842 		return;
1843 
1844 	/*
1845 	 * If there are attributes associated with the file then blow them away
1846 	 * now.  The code calls a routine that recursively deconstructs the
1847 	 * attribute fork.  We need to just commit the current transaction
1848 	 * because we can't use it for xfs_attr_inactive().
1849 	 */
1850 	if (ip->i_d.di_anextents > 0) {
1851 		ASSERT(ip->i_d.di_forkoff != 0);
1852 
1853 		error = xfs_attr_inactive(ip);
1854 		if (error)
1855 			return;
1856 	}
1857 
1858 	if (ip->i_afp)
1859 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1860 
1861 	ASSERT(ip->i_d.di_anextents == 0);
1862 
1863 	/*
1864 	 * Free the inode.
1865 	 */
1866 	error = xfs_inactive_ifree(ip);
1867 	if (error)
1868 		return;
1869 
1870 	/*
1871 	 * Release the dquots held by inode, if any.
1872 	 */
1873 	xfs_qm_dqdetach(ip);
1874 }
1875 
1876 /*
1877  * This is called when the inode's link count goes to 0.
1878  * We place the on-disk inode on a list in the AGI.  It
1879  * will be pulled from this list when the inode is freed.
1880  */
1881 int
1882 xfs_iunlink(
1883 	xfs_trans_t	*tp,
1884 	xfs_inode_t	*ip)
1885 {
1886 	xfs_mount_t	*mp;
1887 	xfs_agi_t	*agi;
1888 	xfs_dinode_t	*dip;
1889 	xfs_buf_t	*agibp;
1890 	xfs_buf_t	*ibp;
1891 	xfs_agino_t	agino;
1892 	short		bucket_index;
1893 	int		offset;
1894 	int		error;
1895 
1896 	ASSERT(ip->i_d.di_nlink == 0);
1897 	ASSERT(ip->i_d.di_mode != 0);
1898 
1899 	mp = tp->t_mountp;
1900 
1901 	/*
1902 	 * Get the agi buffer first.  It ensures lock ordering
1903 	 * on the list.
1904 	 */
1905 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1906 	if (error)
1907 		return error;
1908 	agi = XFS_BUF_TO_AGI(agibp);
1909 
1910 	/*
1911 	 * Get the index into the agi hash table for the
1912 	 * list this inode will go on.
1913 	 */
1914 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1915 	ASSERT(agino != 0);
1916 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1917 	ASSERT(agi->agi_unlinked[bucket_index]);
1918 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1919 
1920 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1921 		/*
1922 		 * There is already another inode in the bucket we need
1923 		 * to add ourselves to.  Add us at the front of the list.
1924 		 * Here we put the head pointer into our next pointer,
1925 		 * and then we fall through to point the head at us.
1926 		 */
1927 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1928 				       0, 0);
1929 		if (error)
1930 			return error;
1931 
1932 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1933 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1934 		offset = ip->i_imap.im_boffset +
1935 			offsetof(xfs_dinode_t, di_next_unlinked);
1936 
1937 		/* need to recalc the inode CRC if appropriate */
1938 		xfs_dinode_calc_crc(mp, dip);
1939 
1940 		xfs_trans_inode_buf(tp, ibp);
1941 		xfs_trans_log_buf(tp, ibp, offset,
1942 				  (offset + sizeof(xfs_agino_t) - 1));
1943 		xfs_inobp_check(mp, ibp);
1944 	}
1945 
1946 	/*
1947 	 * Point the bucket head pointer at the inode being inserted.
1948 	 */
1949 	ASSERT(agino != 0);
1950 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1951 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1952 		(sizeof(xfs_agino_t) * bucket_index);
1953 	xfs_trans_log_buf(tp, agibp, offset,
1954 			  (offset + sizeof(xfs_agino_t) - 1));
1955 	return 0;
1956 }
1957 
1958 /*
1959  * Pull the on-disk inode from the AGI unlinked list.
1960  */
1961 STATIC int
1962 xfs_iunlink_remove(
1963 	xfs_trans_t	*tp,
1964 	xfs_inode_t	*ip)
1965 {
1966 	xfs_ino_t	next_ino;
1967 	xfs_mount_t	*mp;
1968 	xfs_agi_t	*agi;
1969 	xfs_dinode_t	*dip;
1970 	xfs_buf_t	*agibp;
1971 	xfs_buf_t	*ibp;
1972 	xfs_agnumber_t	agno;
1973 	xfs_agino_t	agino;
1974 	xfs_agino_t	next_agino;
1975 	xfs_buf_t	*last_ibp;
1976 	xfs_dinode_t	*last_dip = NULL;
1977 	short		bucket_index;
1978 	int		offset, last_offset = 0;
1979 	int		error;
1980 
1981 	mp = tp->t_mountp;
1982 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1983 
1984 	/*
1985 	 * Get the agi buffer first.  It ensures lock ordering
1986 	 * on the list.
1987 	 */
1988 	error = xfs_read_agi(mp, tp, agno, &agibp);
1989 	if (error)
1990 		return error;
1991 
1992 	agi = XFS_BUF_TO_AGI(agibp);
1993 
1994 	/*
1995 	 * Get the index into the agi hash table for the
1996 	 * list this inode will go on.
1997 	 */
1998 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1999 	ASSERT(agino != 0);
2000 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2001 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2002 	ASSERT(agi->agi_unlinked[bucket_index]);
2003 
2004 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2005 		/*
2006 		 * We're at the head of the list.  Get the inode's on-disk
2007 		 * buffer to see if there is anyone after us on the list.
2008 		 * Only modify our next pointer if it is not already NULLAGINO.
2009 		 * This saves us the overhead of dealing with the buffer when
2010 		 * there is no need to change it.
2011 		 */
2012 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2013 				       0, 0);
2014 		if (error) {
2015 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2016 				__func__, error);
2017 			return error;
2018 		}
2019 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2020 		ASSERT(next_agino != 0);
2021 		if (next_agino != NULLAGINO) {
2022 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2023 			offset = ip->i_imap.im_boffset +
2024 				offsetof(xfs_dinode_t, di_next_unlinked);
2025 
2026 			/* need to recalc the inode CRC if appropriate */
2027 			xfs_dinode_calc_crc(mp, dip);
2028 
2029 			xfs_trans_inode_buf(tp, ibp);
2030 			xfs_trans_log_buf(tp, ibp, offset,
2031 					  (offset + sizeof(xfs_agino_t) - 1));
2032 			xfs_inobp_check(mp, ibp);
2033 		} else {
2034 			xfs_trans_brelse(tp, ibp);
2035 		}
2036 		/*
2037 		 * Point the bucket head pointer at the next inode.
2038 		 */
2039 		ASSERT(next_agino != 0);
2040 		ASSERT(next_agino != agino);
2041 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2042 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2043 			(sizeof(xfs_agino_t) * bucket_index);
2044 		xfs_trans_log_buf(tp, agibp, offset,
2045 				  (offset + sizeof(xfs_agino_t) - 1));
2046 	} else {
2047 		/*
2048 		 * We need to search the list for the inode being freed.
2049 		 */
2050 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2051 		last_ibp = NULL;
2052 		while (next_agino != agino) {
2053 			struct xfs_imap	imap;
2054 
2055 			if (last_ibp)
2056 				xfs_trans_brelse(tp, last_ibp);
2057 
2058 			imap.im_blkno = 0;
2059 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2060 
2061 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2062 			if (error) {
2063 				xfs_warn(mp,
2064 	"%s: xfs_imap returned error %d.",
2065 					 __func__, error);
2066 				return error;
2067 			}
2068 
2069 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2070 					       &last_ibp, 0, 0);
2071 			if (error) {
2072 				xfs_warn(mp,
2073 	"%s: xfs_imap_to_bp returned error %d.",
2074 					__func__, error);
2075 				return error;
2076 			}
2077 
2078 			last_offset = imap.im_boffset;
2079 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2080 			ASSERT(next_agino != NULLAGINO);
2081 			ASSERT(next_agino != 0);
2082 		}
2083 
2084 		/*
2085 		 * Now last_ibp points to the buffer previous to us on the
2086 		 * unlinked list.  Pull us from the list.
2087 		 */
2088 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2089 				       0, 0);
2090 		if (error) {
2091 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2092 				__func__, error);
2093 			return error;
2094 		}
2095 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2096 		ASSERT(next_agino != 0);
2097 		ASSERT(next_agino != agino);
2098 		if (next_agino != NULLAGINO) {
2099 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2100 			offset = ip->i_imap.im_boffset +
2101 				offsetof(xfs_dinode_t, di_next_unlinked);
2102 
2103 			/* need to recalc the inode CRC if appropriate */
2104 			xfs_dinode_calc_crc(mp, dip);
2105 
2106 			xfs_trans_inode_buf(tp, ibp);
2107 			xfs_trans_log_buf(tp, ibp, offset,
2108 					  (offset + sizeof(xfs_agino_t) - 1));
2109 			xfs_inobp_check(mp, ibp);
2110 		} else {
2111 			xfs_trans_brelse(tp, ibp);
2112 		}
2113 		/*
2114 		 * Point the previous inode on the list to the next inode.
2115 		 */
2116 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2117 		ASSERT(next_agino != 0);
2118 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2119 
2120 		/* need to recalc the inode CRC if appropriate */
2121 		xfs_dinode_calc_crc(mp, last_dip);
2122 
2123 		xfs_trans_inode_buf(tp, last_ibp);
2124 		xfs_trans_log_buf(tp, last_ibp, offset,
2125 				  (offset + sizeof(xfs_agino_t) - 1));
2126 		xfs_inobp_check(mp, last_ibp);
2127 	}
2128 	return 0;
2129 }
2130 
2131 /*
2132  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2133  * inodes that are in memory - they all must be marked stale and attached to
2134  * the cluster buffer.
2135  */
2136 STATIC int
2137 xfs_ifree_cluster(
2138 	xfs_inode_t	*free_ip,
2139 	xfs_trans_t	*tp,
2140 	xfs_ino_t	inum)
2141 {
2142 	xfs_mount_t		*mp = free_ip->i_mount;
2143 	int			blks_per_cluster;
2144 	int			nbufs;
2145 	int			ninodes;
2146 	int			i, j;
2147 	xfs_daddr_t		blkno;
2148 	xfs_buf_t		*bp;
2149 	xfs_inode_t		*ip;
2150 	xfs_inode_log_item_t	*iip;
2151 	xfs_log_item_t		*lip;
2152 	struct xfs_perag	*pag;
2153 
2154 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2155 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2156 		blks_per_cluster = 1;
2157 		ninodes = mp->m_sb.sb_inopblock;
2158 		nbufs = XFS_IALLOC_BLOCKS(mp);
2159 	} else {
2160 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2161 					mp->m_sb.sb_blocksize;
2162 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2163 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2164 	}
2165 
2166 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2167 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2168 					 XFS_INO_TO_AGBNO(mp, inum));
2169 
2170 		/*
2171 		 * We obtain and lock the backing buffer first in the process
2172 		 * here, as we have to ensure that any dirty inode that we
2173 		 * can't get the flush lock on is attached to the buffer.
2174 		 * If we scan the in-memory inodes first, then buffer IO can
2175 		 * complete before we get a lock on it, and hence we may fail
2176 		 * to mark all the active inodes on the buffer stale.
2177 		 */
2178 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2179 					mp->m_bsize * blks_per_cluster,
2180 					XBF_UNMAPPED);
2181 
2182 		if (!bp)
2183 			return ENOMEM;
2184 
2185 		/*
2186 		 * This buffer may not have been correctly initialised as we
2187 		 * didn't read it from disk. That's not important because we are
2188 		 * only using to mark the buffer as stale in the log, and to
2189 		 * attach stale cached inodes on it. That means it will never be
2190 		 * dispatched for IO. If it is, we want to know about it, and we
2191 		 * want it to fail. We can acheive this by adding a write
2192 		 * verifier to the buffer.
2193 		 */
2194 		 bp->b_ops = &xfs_inode_buf_ops;
2195 
2196 		/*
2197 		 * Walk the inodes already attached to the buffer and mark them
2198 		 * stale. These will all have the flush locks held, so an
2199 		 * in-memory inode walk can't lock them. By marking them all
2200 		 * stale first, we will not attempt to lock them in the loop
2201 		 * below as the XFS_ISTALE flag will be set.
2202 		 */
2203 		lip = bp->b_fspriv;
2204 		while (lip) {
2205 			if (lip->li_type == XFS_LI_INODE) {
2206 				iip = (xfs_inode_log_item_t *)lip;
2207 				ASSERT(iip->ili_logged == 1);
2208 				lip->li_cb = xfs_istale_done;
2209 				xfs_trans_ail_copy_lsn(mp->m_ail,
2210 							&iip->ili_flush_lsn,
2211 							&iip->ili_item.li_lsn);
2212 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2213 			}
2214 			lip = lip->li_bio_list;
2215 		}
2216 
2217 
2218 		/*
2219 		 * For each inode in memory attempt to add it to the inode
2220 		 * buffer and set it up for being staled on buffer IO
2221 		 * completion.  This is safe as we've locked out tail pushing
2222 		 * and flushing by locking the buffer.
2223 		 *
2224 		 * We have already marked every inode that was part of a
2225 		 * transaction stale above, which means there is no point in
2226 		 * even trying to lock them.
2227 		 */
2228 		for (i = 0; i < ninodes; i++) {
2229 retry:
2230 			rcu_read_lock();
2231 			ip = radix_tree_lookup(&pag->pag_ici_root,
2232 					XFS_INO_TO_AGINO(mp, (inum + i)));
2233 
2234 			/* Inode not in memory, nothing to do */
2235 			if (!ip) {
2236 				rcu_read_unlock();
2237 				continue;
2238 			}
2239 
2240 			/*
2241 			 * because this is an RCU protected lookup, we could
2242 			 * find a recently freed or even reallocated inode
2243 			 * during the lookup. We need to check under the
2244 			 * i_flags_lock for a valid inode here. Skip it if it
2245 			 * is not valid, the wrong inode or stale.
2246 			 */
2247 			spin_lock(&ip->i_flags_lock);
2248 			if (ip->i_ino != inum + i ||
2249 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2250 				spin_unlock(&ip->i_flags_lock);
2251 				rcu_read_unlock();
2252 				continue;
2253 			}
2254 			spin_unlock(&ip->i_flags_lock);
2255 
2256 			/*
2257 			 * Don't try to lock/unlock the current inode, but we
2258 			 * _cannot_ skip the other inodes that we did not find
2259 			 * in the list attached to the buffer and are not
2260 			 * already marked stale. If we can't lock it, back off
2261 			 * and retry.
2262 			 */
2263 			if (ip != free_ip &&
2264 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2265 				rcu_read_unlock();
2266 				delay(1);
2267 				goto retry;
2268 			}
2269 			rcu_read_unlock();
2270 
2271 			xfs_iflock(ip);
2272 			xfs_iflags_set(ip, XFS_ISTALE);
2273 
2274 			/*
2275 			 * we don't need to attach clean inodes or those only
2276 			 * with unlogged changes (which we throw away, anyway).
2277 			 */
2278 			iip = ip->i_itemp;
2279 			if (!iip || xfs_inode_clean(ip)) {
2280 				ASSERT(ip != free_ip);
2281 				xfs_ifunlock(ip);
2282 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2283 				continue;
2284 			}
2285 
2286 			iip->ili_last_fields = iip->ili_fields;
2287 			iip->ili_fields = 0;
2288 			iip->ili_logged = 1;
2289 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2290 						&iip->ili_item.li_lsn);
2291 
2292 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2293 						  &iip->ili_item);
2294 
2295 			if (ip != free_ip)
2296 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2297 		}
2298 
2299 		xfs_trans_stale_inode_buf(tp, bp);
2300 		xfs_trans_binval(tp, bp);
2301 	}
2302 
2303 	xfs_perag_put(pag);
2304 	return 0;
2305 }
2306 
2307 /*
2308  * This is called to return an inode to the inode free list.
2309  * The inode should already be truncated to 0 length and have
2310  * no pages associated with it.  This routine also assumes that
2311  * the inode is already a part of the transaction.
2312  *
2313  * The on-disk copy of the inode will have been added to the list
2314  * of unlinked inodes in the AGI. We need to remove the inode from
2315  * that list atomically with respect to freeing it here.
2316  */
2317 int
2318 xfs_ifree(
2319 	xfs_trans_t	*tp,
2320 	xfs_inode_t	*ip,
2321 	xfs_bmap_free_t	*flist)
2322 {
2323 	int			error;
2324 	int			delete;
2325 	xfs_ino_t		first_ino;
2326 
2327 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2328 	ASSERT(ip->i_d.di_nlink == 0);
2329 	ASSERT(ip->i_d.di_nextents == 0);
2330 	ASSERT(ip->i_d.di_anextents == 0);
2331 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2332 	ASSERT(ip->i_d.di_nblocks == 0);
2333 
2334 	/*
2335 	 * Pull the on-disk inode from the AGI unlinked list.
2336 	 */
2337 	error = xfs_iunlink_remove(tp, ip);
2338 	if (error)
2339 		return error;
2340 
2341 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2342 	if (error)
2343 		return error;
2344 
2345 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2346 	ip->i_d.di_flags = 0;
2347 	ip->i_d.di_dmevmask = 0;
2348 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2349 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2350 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2351 	/*
2352 	 * Bump the generation count so no one will be confused
2353 	 * by reincarnations of this inode.
2354 	 */
2355 	ip->i_d.di_gen++;
2356 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2357 
2358 	if (delete)
2359 		error = xfs_ifree_cluster(ip, tp, first_ino);
2360 
2361 	return error;
2362 }
2363 
2364 /*
2365  * This is called to unpin an inode.  The caller must have the inode locked
2366  * in at least shared mode so that the buffer cannot be subsequently pinned
2367  * once someone is waiting for it to be unpinned.
2368  */
2369 static void
2370 xfs_iunpin(
2371 	struct xfs_inode	*ip)
2372 {
2373 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2374 
2375 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2376 
2377 	/* Give the log a push to start the unpinning I/O */
2378 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2379 
2380 }
2381 
2382 static void
2383 __xfs_iunpin_wait(
2384 	struct xfs_inode	*ip)
2385 {
2386 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2387 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2388 
2389 	xfs_iunpin(ip);
2390 
2391 	do {
2392 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2393 		if (xfs_ipincount(ip))
2394 			io_schedule();
2395 	} while (xfs_ipincount(ip));
2396 	finish_wait(wq, &wait.wait);
2397 }
2398 
2399 void
2400 xfs_iunpin_wait(
2401 	struct xfs_inode	*ip)
2402 {
2403 	if (xfs_ipincount(ip))
2404 		__xfs_iunpin_wait(ip);
2405 }
2406 
2407 /*
2408  * Removing an inode from the namespace involves removing the directory entry
2409  * and dropping the link count on the inode. Removing the directory entry can
2410  * result in locking an AGF (directory blocks were freed) and removing a link
2411  * count can result in placing the inode on an unlinked list which results in
2412  * locking an AGI.
2413  *
2414  * The big problem here is that we have an ordering constraint on AGF and AGI
2415  * locking - inode allocation locks the AGI, then can allocate a new extent for
2416  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2417  * removes the inode from the unlinked list, requiring that we lock the AGI
2418  * first, and then freeing the inode can result in an inode chunk being freed
2419  * and hence freeing disk space requiring that we lock an AGF.
2420  *
2421  * Hence the ordering that is imposed by other parts of the code is AGI before
2422  * AGF. This means we cannot remove the directory entry before we drop the inode
2423  * reference count and put it on the unlinked list as this results in a lock
2424  * order of AGF then AGI, and this can deadlock against inode allocation and
2425  * freeing. Therefore we must drop the link counts before we remove the
2426  * directory entry.
2427  *
2428  * This is still safe from a transactional point of view - it is not until we
2429  * get to xfs_bmap_finish() that we have the possibility of multiple
2430  * transactions in this operation. Hence as long as we remove the directory
2431  * entry and drop the link count in the first transaction of the remove
2432  * operation, there are no transactional constraints on the ordering here.
2433  */
2434 int
2435 xfs_remove(
2436 	xfs_inode_t             *dp,
2437 	struct xfs_name		*name,
2438 	xfs_inode_t		*ip)
2439 {
2440 	xfs_mount_t		*mp = dp->i_mount;
2441 	xfs_trans_t             *tp = NULL;
2442 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2443 	int                     error = 0;
2444 	xfs_bmap_free_t         free_list;
2445 	xfs_fsblock_t           first_block;
2446 	int			cancel_flags;
2447 	int			committed;
2448 	int			link_zero;
2449 	uint			resblks;
2450 	uint			log_count;
2451 
2452 	trace_xfs_remove(dp, name);
2453 
2454 	if (XFS_FORCED_SHUTDOWN(mp))
2455 		return XFS_ERROR(EIO);
2456 
2457 	error = xfs_qm_dqattach(dp, 0);
2458 	if (error)
2459 		goto std_return;
2460 
2461 	error = xfs_qm_dqattach(ip, 0);
2462 	if (error)
2463 		goto std_return;
2464 
2465 	if (is_dir) {
2466 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2467 		log_count = XFS_DEFAULT_LOG_COUNT;
2468 	} else {
2469 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2470 		log_count = XFS_REMOVE_LOG_COUNT;
2471 	}
2472 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2473 
2474 	/*
2475 	 * We try to get the real space reservation first,
2476 	 * allowing for directory btree deletion(s) implying
2477 	 * possible bmap insert(s).  If we can't get the space
2478 	 * reservation then we use 0 instead, and avoid the bmap
2479 	 * btree insert(s) in the directory code by, if the bmap
2480 	 * insert tries to happen, instead trimming the LAST
2481 	 * block from the directory.
2482 	 */
2483 	resblks = XFS_REMOVE_SPACE_RES(mp);
2484 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2485 	if (error == ENOSPC) {
2486 		resblks = 0;
2487 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2488 	}
2489 	if (error) {
2490 		ASSERT(error != ENOSPC);
2491 		cancel_flags = 0;
2492 		goto out_trans_cancel;
2493 	}
2494 
2495 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2496 
2497 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2498 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2499 
2500 	/*
2501 	 * If we're removing a directory perform some additional validation.
2502 	 */
2503 	cancel_flags |= XFS_TRANS_ABORT;
2504 	if (is_dir) {
2505 		ASSERT(ip->i_d.di_nlink >= 2);
2506 		if (ip->i_d.di_nlink != 2) {
2507 			error = XFS_ERROR(ENOTEMPTY);
2508 			goto out_trans_cancel;
2509 		}
2510 		if (!xfs_dir_isempty(ip)) {
2511 			error = XFS_ERROR(ENOTEMPTY);
2512 			goto out_trans_cancel;
2513 		}
2514 
2515 		/* Drop the link from ip's "..".  */
2516 		error = xfs_droplink(tp, dp);
2517 		if (error)
2518 			goto out_trans_cancel;
2519 
2520 		/* Drop the "." link from ip to self.  */
2521 		error = xfs_droplink(tp, ip);
2522 		if (error)
2523 			goto out_trans_cancel;
2524 	} else {
2525 		/*
2526 		 * When removing a non-directory we need to log the parent
2527 		 * inode here.  For a directory this is done implicitly
2528 		 * by the xfs_droplink call for the ".." entry.
2529 		 */
2530 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2531 	}
2532 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2533 
2534 	/* Drop the link from dp to ip. */
2535 	error = xfs_droplink(tp, ip);
2536 	if (error)
2537 		goto out_trans_cancel;
2538 
2539 	/* Determine if this is the last link while the inode is locked */
2540 	link_zero = (ip->i_d.di_nlink == 0);
2541 
2542 	xfs_bmap_init(&free_list, &first_block);
2543 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2544 					&first_block, &free_list, resblks);
2545 	if (error) {
2546 		ASSERT(error != ENOENT);
2547 		goto out_bmap_cancel;
2548 	}
2549 
2550 	/*
2551 	 * If this is a synchronous mount, make sure that the
2552 	 * remove transaction goes to disk before returning to
2553 	 * the user.
2554 	 */
2555 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2556 		xfs_trans_set_sync(tp);
2557 
2558 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2559 	if (error)
2560 		goto out_bmap_cancel;
2561 
2562 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2563 	if (error)
2564 		goto std_return;
2565 
2566 	/*
2567 	 * If we are using filestreams, kill the stream association.
2568 	 * If the file is still open it may get a new one but that
2569 	 * will get killed on last close in xfs_close() so we don't
2570 	 * have to worry about that.
2571 	 */
2572 	if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2573 		xfs_filestream_deassociate(ip);
2574 
2575 	return 0;
2576 
2577  out_bmap_cancel:
2578 	xfs_bmap_cancel(&free_list);
2579  out_trans_cancel:
2580 	xfs_trans_cancel(tp, cancel_flags);
2581  std_return:
2582 	return error;
2583 }
2584 
2585 /*
2586  * Enter all inodes for a rename transaction into a sorted array.
2587  */
2588 STATIC void
2589 xfs_sort_for_rename(
2590 	xfs_inode_t	*dp1,	/* in: old (source) directory inode */
2591 	xfs_inode_t	*dp2,	/* in: new (target) directory inode */
2592 	xfs_inode_t	*ip1,	/* in: inode of old entry */
2593 	xfs_inode_t	*ip2,	/* in: inode of new entry, if it
2594 				   already exists, NULL otherwise. */
2595 	xfs_inode_t	**i_tab,/* out: array of inode returned, sorted */
2596 	int		*num_inodes)  /* out: number of inodes in array */
2597 {
2598 	xfs_inode_t		*temp;
2599 	int			i, j;
2600 
2601 	/*
2602 	 * i_tab contains a list of pointers to inodes.  We initialize
2603 	 * the table here & we'll sort it.  We will then use it to
2604 	 * order the acquisition of the inode locks.
2605 	 *
2606 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2607 	 */
2608 	i_tab[0] = dp1;
2609 	i_tab[1] = dp2;
2610 	i_tab[2] = ip1;
2611 	if (ip2) {
2612 		*num_inodes = 4;
2613 		i_tab[3] = ip2;
2614 	} else {
2615 		*num_inodes = 3;
2616 		i_tab[3] = NULL;
2617 	}
2618 
2619 	/*
2620 	 * Sort the elements via bubble sort.  (Remember, there are at
2621 	 * most 4 elements to sort, so this is adequate.)
2622 	 */
2623 	for (i = 0; i < *num_inodes; i++) {
2624 		for (j = 1; j < *num_inodes; j++) {
2625 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2626 				temp = i_tab[j];
2627 				i_tab[j] = i_tab[j-1];
2628 				i_tab[j-1] = temp;
2629 			}
2630 		}
2631 	}
2632 }
2633 
2634 /*
2635  * xfs_rename
2636  */
2637 int
2638 xfs_rename(
2639 	xfs_inode_t	*src_dp,
2640 	struct xfs_name	*src_name,
2641 	xfs_inode_t	*src_ip,
2642 	xfs_inode_t	*target_dp,
2643 	struct xfs_name	*target_name,
2644 	xfs_inode_t	*target_ip)
2645 {
2646 	xfs_trans_t	*tp = NULL;
2647 	xfs_mount_t	*mp = src_dp->i_mount;
2648 	int		new_parent;		/* moving to a new dir */
2649 	int		src_is_directory;	/* src_name is a directory */
2650 	int		error;
2651 	xfs_bmap_free_t free_list;
2652 	xfs_fsblock_t   first_block;
2653 	int		cancel_flags;
2654 	int		committed;
2655 	xfs_inode_t	*inodes[4];
2656 	int		spaceres;
2657 	int		num_inodes;
2658 
2659 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2660 
2661 	new_parent = (src_dp != target_dp);
2662 	src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2663 
2664 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2665 				inodes, &num_inodes);
2666 
2667 	xfs_bmap_init(&free_list, &first_block);
2668 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2669 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2670 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2671 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2672 	if (error == ENOSPC) {
2673 		spaceres = 0;
2674 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2675 	}
2676 	if (error) {
2677 		xfs_trans_cancel(tp, 0);
2678 		goto std_return;
2679 	}
2680 
2681 	/*
2682 	 * Attach the dquots to the inodes
2683 	 */
2684 	error = xfs_qm_vop_rename_dqattach(inodes);
2685 	if (error) {
2686 		xfs_trans_cancel(tp, cancel_flags);
2687 		goto std_return;
2688 	}
2689 
2690 	/*
2691 	 * Lock all the participating inodes. Depending upon whether
2692 	 * the target_name exists in the target directory, and
2693 	 * whether the target directory is the same as the source
2694 	 * directory, we can lock from 2 to 4 inodes.
2695 	 */
2696 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2697 
2698 	/*
2699 	 * Join all the inodes to the transaction. From this point on,
2700 	 * we can rely on either trans_commit or trans_cancel to unlock
2701 	 * them.
2702 	 */
2703 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2704 	if (new_parent)
2705 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2706 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2707 	if (target_ip)
2708 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2709 
2710 	/*
2711 	 * If we are using project inheritance, we only allow renames
2712 	 * into our tree when the project IDs are the same; else the
2713 	 * tree quota mechanism would be circumvented.
2714 	 */
2715 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2716 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2717 		error = XFS_ERROR(EXDEV);
2718 		goto error_return;
2719 	}
2720 
2721 	/*
2722 	 * Set up the target.
2723 	 */
2724 	if (target_ip == NULL) {
2725 		/*
2726 		 * If there's no space reservation, check the entry will
2727 		 * fit before actually inserting it.
2728 		 */
2729 		error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2730 		if (error)
2731 			goto error_return;
2732 		/*
2733 		 * If target does not exist and the rename crosses
2734 		 * directories, adjust the target directory link count
2735 		 * to account for the ".." reference from the new entry.
2736 		 */
2737 		error = xfs_dir_createname(tp, target_dp, target_name,
2738 						src_ip->i_ino, &first_block,
2739 						&free_list, spaceres);
2740 		if (error == ENOSPC)
2741 			goto error_return;
2742 		if (error)
2743 			goto abort_return;
2744 
2745 		xfs_trans_ichgtime(tp, target_dp,
2746 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2747 
2748 		if (new_parent && src_is_directory) {
2749 			error = xfs_bumplink(tp, target_dp);
2750 			if (error)
2751 				goto abort_return;
2752 		}
2753 	} else { /* target_ip != NULL */
2754 		/*
2755 		 * If target exists and it's a directory, check that both
2756 		 * target and source are directories and that target can be
2757 		 * destroyed, or that neither is a directory.
2758 		 */
2759 		if (S_ISDIR(target_ip->i_d.di_mode)) {
2760 			/*
2761 			 * Make sure target dir is empty.
2762 			 */
2763 			if (!(xfs_dir_isempty(target_ip)) ||
2764 			    (target_ip->i_d.di_nlink > 2)) {
2765 				error = XFS_ERROR(EEXIST);
2766 				goto error_return;
2767 			}
2768 		}
2769 
2770 		/*
2771 		 * Link the source inode under the target name.
2772 		 * If the source inode is a directory and we are moving
2773 		 * it across directories, its ".." entry will be
2774 		 * inconsistent until we replace that down below.
2775 		 *
2776 		 * In case there is already an entry with the same
2777 		 * name at the destination directory, remove it first.
2778 		 */
2779 		error = xfs_dir_replace(tp, target_dp, target_name,
2780 					src_ip->i_ino,
2781 					&first_block, &free_list, spaceres);
2782 		if (error)
2783 			goto abort_return;
2784 
2785 		xfs_trans_ichgtime(tp, target_dp,
2786 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787 
2788 		/*
2789 		 * Decrement the link count on the target since the target
2790 		 * dir no longer points to it.
2791 		 */
2792 		error = xfs_droplink(tp, target_ip);
2793 		if (error)
2794 			goto abort_return;
2795 
2796 		if (src_is_directory) {
2797 			/*
2798 			 * Drop the link from the old "." entry.
2799 			 */
2800 			error = xfs_droplink(tp, target_ip);
2801 			if (error)
2802 				goto abort_return;
2803 		}
2804 	} /* target_ip != NULL */
2805 
2806 	/*
2807 	 * Remove the source.
2808 	 */
2809 	if (new_parent && src_is_directory) {
2810 		/*
2811 		 * Rewrite the ".." entry to point to the new
2812 		 * directory.
2813 		 */
2814 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2815 					target_dp->i_ino,
2816 					&first_block, &free_list, spaceres);
2817 		ASSERT(error != EEXIST);
2818 		if (error)
2819 			goto abort_return;
2820 	}
2821 
2822 	/*
2823 	 * We always want to hit the ctime on the source inode.
2824 	 *
2825 	 * This isn't strictly required by the standards since the source
2826 	 * inode isn't really being changed, but old unix file systems did
2827 	 * it and some incremental backup programs won't work without it.
2828 	 */
2829 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2830 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2831 
2832 	/*
2833 	 * Adjust the link count on src_dp.  This is necessary when
2834 	 * renaming a directory, either within one parent when
2835 	 * the target existed, or across two parent directories.
2836 	 */
2837 	if (src_is_directory && (new_parent || target_ip != NULL)) {
2838 
2839 		/*
2840 		 * Decrement link count on src_directory since the
2841 		 * entry that's moved no longer points to it.
2842 		 */
2843 		error = xfs_droplink(tp, src_dp);
2844 		if (error)
2845 			goto abort_return;
2846 	}
2847 
2848 	error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2849 					&first_block, &free_list, spaceres);
2850 	if (error)
2851 		goto abort_return;
2852 
2853 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2854 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2855 	if (new_parent)
2856 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2857 
2858 	/*
2859 	 * If this is a synchronous mount, make sure that the
2860 	 * rename transaction goes to disk before returning to
2861 	 * the user.
2862 	 */
2863 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2864 		xfs_trans_set_sync(tp);
2865 	}
2866 
2867 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2868 	if (error) {
2869 		xfs_bmap_cancel(&free_list);
2870 		xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2871 				 XFS_TRANS_ABORT));
2872 		goto std_return;
2873 	}
2874 
2875 	/*
2876 	 * trans_commit will unlock src_ip, target_ip & decrement
2877 	 * the vnode references.
2878 	 */
2879 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2880 
2881  abort_return:
2882 	cancel_flags |= XFS_TRANS_ABORT;
2883  error_return:
2884 	xfs_bmap_cancel(&free_list);
2885 	xfs_trans_cancel(tp, cancel_flags);
2886  std_return:
2887 	return error;
2888 }
2889 
2890 STATIC int
2891 xfs_iflush_cluster(
2892 	xfs_inode_t	*ip,
2893 	xfs_buf_t	*bp)
2894 {
2895 	xfs_mount_t		*mp = ip->i_mount;
2896 	struct xfs_perag	*pag;
2897 	unsigned long		first_index, mask;
2898 	unsigned long		inodes_per_cluster;
2899 	int			ilist_size;
2900 	xfs_inode_t		**ilist;
2901 	xfs_inode_t		*iq;
2902 	int			nr_found;
2903 	int			clcount = 0;
2904 	int			bufwasdelwri;
2905 	int			i;
2906 
2907 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2908 
2909 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2910 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2911 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2912 	if (!ilist)
2913 		goto out_put;
2914 
2915 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2916 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2917 	rcu_read_lock();
2918 	/* really need a gang lookup range call here */
2919 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2920 					first_index, inodes_per_cluster);
2921 	if (nr_found == 0)
2922 		goto out_free;
2923 
2924 	for (i = 0; i < nr_found; i++) {
2925 		iq = ilist[i];
2926 		if (iq == ip)
2927 			continue;
2928 
2929 		/*
2930 		 * because this is an RCU protected lookup, we could find a
2931 		 * recently freed or even reallocated inode during the lookup.
2932 		 * We need to check under the i_flags_lock for a valid inode
2933 		 * here. Skip it if it is not valid or the wrong inode.
2934 		 */
2935 		spin_lock(&ip->i_flags_lock);
2936 		if (!ip->i_ino ||
2937 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2938 			spin_unlock(&ip->i_flags_lock);
2939 			continue;
2940 		}
2941 		spin_unlock(&ip->i_flags_lock);
2942 
2943 		/*
2944 		 * Do an un-protected check to see if the inode is dirty and
2945 		 * is a candidate for flushing.  These checks will be repeated
2946 		 * later after the appropriate locks are acquired.
2947 		 */
2948 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2949 			continue;
2950 
2951 		/*
2952 		 * Try to get locks.  If any are unavailable or it is pinned,
2953 		 * then this inode cannot be flushed and is skipped.
2954 		 */
2955 
2956 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2957 			continue;
2958 		if (!xfs_iflock_nowait(iq)) {
2959 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2960 			continue;
2961 		}
2962 		if (xfs_ipincount(iq)) {
2963 			xfs_ifunlock(iq);
2964 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2965 			continue;
2966 		}
2967 
2968 		/*
2969 		 * arriving here means that this inode can be flushed.  First
2970 		 * re-check that it's dirty before flushing.
2971 		 */
2972 		if (!xfs_inode_clean(iq)) {
2973 			int	error;
2974 			error = xfs_iflush_int(iq, bp);
2975 			if (error) {
2976 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2977 				goto cluster_corrupt_out;
2978 			}
2979 			clcount++;
2980 		} else {
2981 			xfs_ifunlock(iq);
2982 		}
2983 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2984 	}
2985 
2986 	if (clcount) {
2987 		XFS_STATS_INC(xs_icluster_flushcnt);
2988 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2989 	}
2990 
2991 out_free:
2992 	rcu_read_unlock();
2993 	kmem_free(ilist);
2994 out_put:
2995 	xfs_perag_put(pag);
2996 	return 0;
2997 
2998 
2999 cluster_corrupt_out:
3000 	/*
3001 	 * Corruption detected in the clustering loop.  Invalidate the
3002 	 * inode buffer and shut down the filesystem.
3003 	 */
3004 	rcu_read_unlock();
3005 	/*
3006 	 * Clean up the buffer.  If it was delwri, just release it --
3007 	 * brelse can handle it with no problems.  If not, shut down the
3008 	 * filesystem before releasing the buffer.
3009 	 */
3010 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3011 	if (bufwasdelwri)
3012 		xfs_buf_relse(bp);
3013 
3014 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3015 
3016 	if (!bufwasdelwri) {
3017 		/*
3018 		 * Just like incore_relse: if we have b_iodone functions,
3019 		 * mark the buffer as an error and call them.  Otherwise
3020 		 * mark it as stale and brelse.
3021 		 */
3022 		if (bp->b_iodone) {
3023 			XFS_BUF_UNDONE(bp);
3024 			xfs_buf_stale(bp);
3025 			xfs_buf_ioerror(bp, EIO);
3026 			xfs_buf_ioend(bp, 0);
3027 		} else {
3028 			xfs_buf_stale(bp);
3029 			xfs_buf_relse(bp);
3030 		}
3031 	}
3032 
3033 	/*
3034 	 * Unlocks the flush lock
3035 	 */
3036 	xfs_iflush_abort(iq, false);
3037 	kmem_free(ilist);
3038 	xfs_perag_put(pag);
3039 	return XFS_ERROR(EFSCORRUPTED);
3040 }
3041 
3042 /*
3043  * Flush dirty inode metadata into the backing buffer.
3044  *
3045  * The caller must have the inode lock and the inode flush lock held.  The
3046  * inode lock will still be held upon return to the caller, and the inode
3047  * flush lock will be released after the inode has reached the disk.
3048  *
3049  * The caller must write out the buffer returned in *bpp and release it.
3050  */
3051 int
3052 xfs_iflush(
3053 	struct xfs_inode	*ip,
3054 	struct xfs_buf		**bpp)
3055 {
3056 	struct xfs_mount	*mp = ip->i_mount;
3057 	struct xfs_buf		*bp;
3058 	struct xfs_dinode	*dip;
3059 	int			error;
3060 
3061 	XFS_STATS_INC(xs_iflush_count);
3062 
3063 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3064 	ASSERT(xfs_isiflocked(ip));
3065 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3066 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3067 
3068 	*bpp = NULL;
3069 
3070 	xfs_iunpin_wait(ip);
3071 
3072 	/*
3073 	 * For stale inodes we cannot rely on the backing buffer remaining
3074 	 * stale in cache for the remaining life of the stale inode and so
3075 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3076 	 * inodes below. We have to check this after ensuring the inode is
3077 	 * unpinned so that it is safe to reclaim the stale inode after the
3078 	 * flush call.
3079 	 */
3080 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3081 		xfs_ifunlock(ip);
3082 		return 0;
3083 	}
3084 
3085 	/*
3086 	 * This may have been unpinned because the filesystem is shutting
3087 	 * down forcibly. If that's the case we must not write this inode
3088 	 * to disk, because the log record didn't make it to disk.
3089 	 *
3090 	 * We also have to remove the log item from the AIL in this case,
3091 	 * as we wait for an empty AIL as part of the unmount process.
3092 	 */
3093 	if (XFS_FORCED_SHUTDOWN(mp)) {
3094 		error = XFS_ERROR(EIO);
3095 		goto abort_out;
3096 	}
3097 
3098 	/*
3099 	 * Get the buffer containing the on-disk inode.
3100 	 */
3101 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3102 			       0);
3103 	if (error || !bp) {
3104 		xfs_ifunlock(ip);
3105 		return error;
3106 	}
3107 
3108 	/*
3109 	 * First flush out the inode that xfs_iflush was called with.
3110 	 */
3111 	error = xfs_iflush_int(ip, bp);
3112 	if (error)
3113 		goto corrupt_out;
3114 
3115 	/*
3116 	 * If the buffer is pinned then push on the log now so we won't
3117 	 * get stuck waiting in the write for too long.
3118 	 */
3119 	if (xfs_buf_ispinned(bp))
3120 		xfs_log_force(mp, 0);
3121 
3122 	/*
3123 	 * inode clustering:
3124 	 * see if other inodes can be gathered into this write
3125 	 */
3126 	error = xfs_iflush_cluster(ip, bp);
3127 	if (error)
3128 		goto cluster_corrupt_out;
3129 
3130 	*bpp = bp;
3131 	return 0;
3132 
3133 corrupt_out:
3134 	xfs_buf_relse(bp);
3135 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3136 cluster_corrupt_out:
3137 	error = XFS_ERROR(EFSCORRUPTED);
3138 abort_out:
3139 	/*
3140 	 * Unlocks the flush lock
3141 	 */
3142 	xfs_iflush_abort(ip, false);
3143 	return error;
3144 }
3145 
3146 STATIC int
3147 xfs_iflush_int(
3148 	struct xfs_inode	*ip,
3149 	struct xfs_buf		*bp)
3150 {
3151 	struct xfs_inode_log_item *iip = ip->i_itemp;
3152 	struct xfs_dinode	*dip;
3153 	struct xfs_mount	*mp = ip->i_mount;
3154 
3155 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3156 	ASSERT(xfs_isiflocked(ip));
3157 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3158 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3159 	ASSERT(iip != NULL && iip->ili_fields != 0);
3160 
3161 	/* set *dip = inode's place in the buffer */
3162 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3163 
3164 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3165 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3166 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3167 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3168 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3169 		goto corrupt_out;
3170 	}
3171 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3172 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3173 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3174 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3175 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3176 		goto corrupt_out;
3177 	}
3178 	if (S_ISREG(ip->i_d.di_mode)) {
3179 		if (XFS_TEST_ERROR(
3180 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3181 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3182 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3183 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3184 				"%s: Bad regular inode %Lu, ptr 0x%p",
3185 				__func__, ip->i_ino, ip);
3186 			goto corrupt_out;
3187 		}
3188 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3189 		if (XFS_TEST_ERROR(
3190 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3191 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3192 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3193 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3194 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3195 				"%s: Bad directory inode %Lu, ptr 0x%p",
3196 				__func__, ip->i_ino, ip);
3197 			goto corrupt_out;
3198 		}
3199 	}
3200 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3201 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3202 				XFS_RANDOM_IFLUSH_5)) {
3203 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3204 			"%s: detected corrupt incore inode %Lu, "
3205 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3206 			__func__, ip->i_ino,
3207 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3208 			ip->i_d.di_nblocks, ip);
3209 		goto corrupt_out;
3210 	}
3211 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3212 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3213 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3214 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3215 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3216 		goto corrupt_out;
3217 	}
3218 
3219 	/*
3220 	 * Inode item log recovery for v1/v2 inodes are dependent on the
3221 	 * di_flushiter count for correct sequencing. We bump the flush
3222 	 * iteration count so we can detect flushes which postdate a log record
3223 	 * during recovery. This is redundant as we now log every change and
3224 	 * hence this can't happen but we need to still do it to ensure
3225 	 * backwards compatibility with old kernels that predate logging all
3226 	 * inode changes.
3227 	 */
3228 	if (ip->i_d.di_version < 3)
3229 		ip->i_d.di_flushiter++;
3230 
3231 	/*
3232 	 * Copy the dirty parts of the inode into the on-disk
3233 	 * inode.  We always copy out the core of the inode,
3234 	 * because if the inode is dirty at all the core must
3235 	 * be.
3236 	 */
3237 	xfs_dinode_to_disk(dip, &ip->i_d);
3238 
3239 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3240 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3241 		ip->i_d.di_flushiter = 0;
3242 
3243 	/*
3244 	 * If this is really an old format inode and the superblock version
3245 	 * has not been updated to support only new format inodes, then
3246 	 * convert back to the old inode format.  If the superblock version
3247 	 * has been updated, then make the conversion permanent.
3248 	 */
3249 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3250 	if (ip->i_d.di_version == 1) {
3251 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3252 			/*
3253 			 * Convert it back.
3254 			 */
3255 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3256 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3257 		} else {
3258 			/*
3259 			 * The superblock version has already been bumped,
3260 			 * so just make the conversion to the new inode
3261 			 * format permanent.
3262 			 */
3263 			ip->i_d.di_version = 2;
3264 			dip->di_version = 2;
3265 			ip->i_d.di_onlink = 0;
3266 			dip->di_onlink = 0;
3267 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3268 			memset(&(dip->di_pad[0]), 0,
3269 			      sizeof(dip->di_pad));
3270 			ASSERT(xfs_get_projid(ip) == 0);
3271 		}
3272 	}
3273 
3274 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3275 	if (XFS_IFORK_Q(ip))
3276 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3277 	xfs_inobp_check(mp, bp);
3278 
3279 	/*
3280 	 * We've recorded everything logged in the inode, so we'd like to clear
3281 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3282 	 * However, we can't stop logging all this information until the data
3283 	 * we've copied into the disk buffer is written to disk.  If we did we
3284 	 * might overwrite the copy of the inode in the log with all the data
3285 	 * after re-logging only part of it, and in the face of a crash we
3286 	 * wouldn't have all the data we need to recover.
3287 	 *
3288 	 * What we do is move the bits to the ili_last_fields field.  When
3289 	 * logging the inode, these bits are moved back to the ili_fields field.
3290 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3291 	 * know that the information those bits represent is permanently on
3292 	 * disk.  As long as the flush completes before the inode is logged
3293 	 * again, then both ili_fields and ili_last_fields will be cleared.
3294 	 *
3295 	 * We can play with the ili_fields bits here, because the inode lock
3296 	 * must be held exclusively in order to set bits there and the flush
3297 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3298 	 * done routine can tell whether or not to look in the AIL.  Also, store
3299 	 * the current LSN of the inode so that we can tell whether the item has
3300 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3301 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3302 	 * atomically.
3303 	 */
3304 	iip->ili_last_fields = iip->ili_fields;
3305 	iip->ili_fields = 0;
3306 	iip->ili_logged = 1;
3307 
3308 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3309 				&iip->ili_item.li_lsn);
3310 
3311 	/*
3312 	 * Attach the function xfs_iflush_done to the inode's
3313 	 * buffer.  This will remove the inode from the AIL
3314 	 * and unlock the inode's flush lock when the inode is
3315 	 * completely written to disk.
3316 	 */
3317 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3318 
3319 	/* update the lsn in the on disk inode if required */
3320 	if (ip->i_d.di_version == 3)
3321 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3322 
3323 	/* generate the checksum. */
3324 	xfs_dinode_calc_crc(mp, dip);
3325 
3326 	ASSERT(bp->b_fspriv != NULL);
3327 	ASSERT(bp->b_iodone != NULL);
3328 	return 0;
3329 
3330 corrupt_out:
3331 	return XFS_ERROR(EFSCORRUPTED);
3332 }
3333