1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_da_format.h" 31 #include "xfs_da_btree.h" 32 #include "xfs_dir2.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_attr.h" 35 #include "xfs_trans_space.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_bmap.h" 41 #include "xfs_bmap_util.h" 42 #include "xfs_error.h" 43 #include "xfs_quota.h" 44 #include "xfs_filestream.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 #include "xfs_symlink.h" 49 #include "xfs_trans_priv.h" 50 #include "xfs_log.h" 51 #include "xfs_bmap_btree.h" 52 #include "xfs_reflink.h" 53 #include "xfs_dir2_priv.h" 54 55 kmem_zone_t *xfs_inode_zone; 56 57 /* 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents 59 * freed from a file in a single transaction. 60 */ 61 #define XFS_ITRUNC_MAX_EXTENTS 2 62 63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 66 67 /* 68 * helper function to extract extent size hint from inode 69 */ 70 xfs_extlen_t 71 xfs_get_extsz_hint( 72 struct xfs_inode *ip) 73 { 74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 75 return ip->i_d.di_extsize; 76 if (XFS_IS_REALTIME_INODE(ip)) 77 return ip->i_mount->m_sb.sb_rextsize; 78 return 0; 79 } 80 81 /* 82 * Helper function to extract CoW extent size hint from inode. 83 * Between the extent size hint and the CoW extent size hint, we 84 * return the greater of the two. If the value is zero (automatic), 85 * use the default size. 86 */ 87 xfs_extlen_t 88 xfs_get_cowextsz_hint( 89 struct xfs_inode *ip) 90 { 91 xfs_extlen_t a, b; 92 93 a = 0; 94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 95 a = ip->i_d.di_cowextsize; 96 b = xfs_get_extsz_hint(ip); 97 98 a = max(a, b); 99 if (a == 0) 100 return XFS_DEFAULT_COWEXTSZ_HINT; 101 return a; 102 } 103 104 /* 105 * These two are wrapper routines around the xfs_ilock() routine used to 106 * centralize some grungy code. They are used in places that wish to lock the 107 * inode solely for reading the extents. The reason these places can't just 108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 109 * bringing in of the extents from disk for a file in b-tree format. If the 110 * inode is in b-tree format, then we need to lock the inode exclusively until 111 * the extents are read in. Locking it exclusively all the time would limit 112 * our parallelism unnecessarily, though. What we do instead is check to see 113 * if the extents have been read in yet, and only lock the inode exclusively 114 * if they have not. 115 * 116 * The functions return a value which should be given to the corresponding 117 * xfs_iunlock() call. 118 */ 119 uint 120 xfs_ilock_data_map_shared( 121 struct xfs_inode *ip) 122 { 123 uint lock_mode = XFS_ILOCK_SHARED; 124 125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 127 lock_mode = XFS_ILOCK_EXCL; 128 xfs_ilock(ip, lock_mode); 129 return lock_mode; 130 } 131 132 uint 133 xfs_ilock_attr_map_shared( 134 struct xfs_inode *ip) 135 { 136 uint lock_mode = XFS_ILOCK_SHARED; 137 138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 140 lock_mode = XFS_ILOCK_EXCL; 141 xfs_ilock(ip, lock_mode); 142 return lock_mode; 143 } 144 145 /* 146 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 147 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 148 * various combinations of the locks to be obtained. 149 * 150 * The 3 locks should always be ordered so that the IO lock is obtained first, 151 * the mmap lock second and the ilock last in order to prevent deadlock. 152 * 153 * Basic locking order: 154 * 155 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 156 * 157 * mmap_sem locking order: 158 * 159 * i_rwsem -> page lock -> mmap_sem 160 * mmap_sem -> i_mmap_lock -> page_lock 161 * 162 * The difference in mmap_sem locking order mean that we cannot hold the 163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 165 * in get_user_pages() to map the user pages into the kernel address space for 166 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 167 * page faults already hold the mmap_sem. 168 * 169 * Hence to serialise fully against both syscall and mmap based IO, we need to 170 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 171 * taken in places where we need to invalidate the page cache in a race 172 * free manner (e.g. truncate, hole punch and other extent manipulation 173 * functions). 174 */ 175 void 176 xfs_ilock( 177 xfs_inode_t *ip, 178 uint lock_flags) 179 { 180 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 181 182 /* 183 * You can't set both SHARED and EXCL for the same lock, 184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 186 */ 187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 194 195 if (lock_flags & XFS_IOLOCK_EXCL) { 196 down_write_nested(&VFS_I(ip)->i_rwsem, 197 XFS_IOLOCK_DEP(lock_flags)); 198 } else if (lock_flags & XFS_IOLOCK_SHARED) { 199 down_read_nested(&VFS_I(ip)->i_rwsem, 200 XFS_IOLOCK_DEP(lock_flags)); 201 } 202 203 if (lock_flags & XFS_MMAPLOCK_EXCL) 204 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 205 else if (lock_flags & XFS_MMAPLOCK_SHARED) 206 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 207 208 if (lock_flags & XFS_ILOCK_EXCL) 209 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 210 else if (lock_flags & XFS_ILOCK_SHARED) 211 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 212 } 213 214 /* 215 * This is just like xfs_ilock(), except that the caller 216 * is guaranteed not to sleep. It returns 1 if it gets 217 * the requested locks and 0 otherwise. If the IO lock is 218 * obtained but the inode lock cannot be, then the IO lock 219 * is dropped before returning. 220 * 221 * ip -- the inode being locked 222 * lock_flags -- this parameter indicates the inode's locks to be 223 * to be locked. See the comment for xfs_ilock() for a list 224 * of valid values. 225 */ 226 int 227 xfs_ilock_nowait( 228 xfs_inode_t *ip, 229 uint lock_flags) 230 { 231 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 232 233 /* 234 * You can't set both SHARED and EXCL for the same lock, 235 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 236 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 237 */ 238 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 239 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 240 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 241 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 242 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 243 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 244 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 245 246 if (lock_flags & XFS_IOLOCK_EXCL) { 247 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 248 goto out; 249 } else if (lock_flags & XFS_IOLOCK_SHARED) { 250 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 251 goto out; 252 } 253 254 if (lock_flags & XFS_MMAPLOCK_EXCL) { 255 if (!mrtryupdate(&ip->i_mmaplock)) 256 goto out_undo_iolock; 257 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 258 if (!mrtryaccess(&ip->i_mmaplock)) 259 goto out_undo_iolock; 260 } 261 262 if (lock_flags & XFS_ILOCK_EXCL) { 263 if (!mrtryupdate(&ip->i_lock)) 264 goto out_undo_mmaplock; 265 } else if (lock_flags & XFS_ILOCK_SHARED) { 266 if (!mrtryaccess(&ip->i_lock)) 267 goto out_undo_mmaplock; 268 } 269 return 1; 270 271 out_undo_mmaplock: 272 if (lock_flags & XFS_MMAPLOCK_EXCL) 273 mrunlock_excl(&ip->i_mmaplock); 274 else if (lock_flags & XFS_MMAPLOCK_SHARED) 275 mrunlock_shared(&ip->i_mmaplock); 276 out_undo_iolock: 277 if (lock_flags & XFS_IOLOCK_EXCL) 278 up_write(&VFS_I(ip)->i_rwsem); 279 else if (lock_flags & XFS_IOLOCK_SHARED) 280 up_read(&VFS_I(ip)->i_rwsem); 281 out: 282 return 0; 283 } 284 285 /* 286 * xfs_iunlock() is used to drop the inode locks acquired with 287 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 288 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 289 * that we know which locks to drop. 290 * 291 * ip -- the inode being unlocked 292 * lock_flags -- this parameter indicates the inode's locks to be 293 * to be unlocked. See the comment for xfs_ilock() for a list 294 * of valid values for this parameter. 295 * 296 */ 297 void 298 xfs_iunlock( 299 xfs_inode_t *ip, 300 uint lock_flags) 301 { 302 /* 303 * You can't set both SHARED and EXCL for the same lock, 304 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 305 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 306 */ 307 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 308 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 309 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 310 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 311 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 312 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 313 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 314 ASSERT(lock_flags != 0); 315 316 if (lock_flags & XFS_IOLOCK_EXCL) 317 up_write(&VFS_I(ip)->i_rwsem); 318 else if (lock_flags & XFS_IOLOCK_SHARED) 319 up_read(&VFS_I(ip)->i_rwsem); 320 321 if (lock_flags & XFS_MMAPLOCK_EXCL) 322 mrunlock_excl(&ip->i_mmaplock); 323 else if (lock_flags & XFS_MMAPLOCK_SHARED) 324 mrunlock_shared(&ip->i_mmaplock); 325 326 if (lock_flags & XFS_ILOCK_EXCL) 327 mrunlock_excl(&ip->i_lock); 328 else if (lock_flags & XFS_ILOCK_SHARED) 329 mrunlock_shared(&ip->i_lock); 330 331 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 332 } 333 334 /* 335 * give up write locks. the i/o lock cannot be held nested 336 * if it is being demoted. 337 */ 338 void 339 xfs_ilock_demote( 340 xfs_inode_t *ip, 341 uint lock_flags) 342 { 343 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 344 ASSERT((lock_flags & 345 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 346 347 if (lock_flags & XFS_ILOCK_EXCL) 348 mrdemote(&ip->i_lock); 349 if (lock_flags & XFS_MMAPLOCK_EXCL) 350 mrdemote(&ip->i_mmaplock); 351 if (lock_flags & XFS_IOLOCK_EXCL) 352 downgrade_write(&VFS_I(ip)->i_rwsem); 353 354 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 355 } 356 357 #if defined(DEBUG) || defined(XFS_WARN) 358 int 359 xfs_isilocked( 360 xfs_inode_t *ip, 361 uint lock_flags) 362 { 363 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 364 if (!(lock_flags & XFS_ILOCK_SHARED)) 365 return !!ip->i_lock.mr_writer; 366 return rwsem_is_locked(&ip->i_lock.mr_lock); 367 } 368 369 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 370 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 371 return !!ip->i_mmaplock.mr_writer; 372 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 373 } 374 375 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 376 if (!(lock_flags & XFS_IOLOCK_SHARED)) 377 return !debug_locks || 378 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 379 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 380 } 381 382 ASSERT(0); 383 return 0; 384 } 385 #endif 386 387 #ifdef DEBUG 388 int xfs_locked_n; 389 int xfs_small_retries; 390 int xfs_middle_retries; 391 int xfs_lots_retries; 392 int xfs_lock_delays; 393 #endif 394 395 /* 396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 399 * errors and warnings. 400 */ 401 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 402 static bool 403 xfs_lockdep_subclass_ok( 404 int subclass) 405 { 406 return subclass < MAX_LOCKDEP_SUBCLASSES; 407 } 408 #else 409 #define xfs_lockdep_subclass_ok(subclass) (true) 410 #endif 411 412 /* 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 414 * value. This can be called for any type of inode lock combination, including 415 * parent locking. Care must be taken to ensure we don't overrun the subclass 416 * storage fields in the class mask we build. 417 */ 418 static inline int 419 xfs_lock_inumorder(int lock_mode, int subclass) 420 { 421 int class = 0; 422 423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 424 XFS_ILOCK_RTSUM))); 425 ASSERT(xfs_lockdep_subclass_ok(subclass)); 426 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 429 class += subclass << XFS_IOLOCK_SHIFT; 430 } 431 432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 434 class += subclass << XFS_MMAPLOCK_SHIFT; 435 } 436 437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 439 class += subclass << XFS_ILOCK_SHIFT; 440 } 441 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 443 } 444 445 /* 446 * The following routine will lock n inodes in exclusive mode. We assume the 447 * caller calls us with the inodes in i_ino order. 448 * 449 * We need to detect deadlock where an inode that we lock is in the AIL and we 450 * start waiting for another inode that is locked by a thread in a long running 451 * transaction (such as truncate). This can result in deadlock since the long 452 * running trans might need to wait for the inode we just locked in order to 453 * push the tail and free space in the log. 454 * 455 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 457 * lock more than one at a time, lockdep will report false positives saying we 458 * have violated locking orders. 459 */ 460 static void 461 xfs_lock_inodes( 462 xfs_inode_t **ips, 463 int inodes, 464 uint lock_mode) 465 { 466 int attempts = 0, i, j, try_lock; 467 xfs_log_item_t *lp; 468 469 /* 470 * Currently supports between 2 and 5 inodes with exclusive locking. We 471 * support an arbitrary depth of locking here, but absolute limits on 472 * inodes depend on the the type of locking and the limits placed by 473 * lockdep annotations in xfs_lock_inumorder. These are all checked by 474 * the asserts. 475 */ 476 ASSERT(ips && inodes >= 2 && inodes <= 5); 477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 478 XFS_ILOCK_EXCL)); 479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 480 XFS_ILOCK_SHARED))); 481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 485 486 if (lock_mode & XFS_IOLOCK_EXCL) { 487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 488 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 490 491 try_lock = 0; 492 i = 0; 493 again: 494 for (; i < inodes; i++) { 495 ASSERT(ips[i]); 496 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 498 continue; 499 500 /* 501 * If try_lock is not set yet, make sure all locked inodes are 502 * not in the AIL. If any are, set try_lock to be used later. 503 */ 504 if (!try_lock) { 505 for (j = (i - 1); j >= 0 && !try_lock; j--) { 506 lp = (xfs_log_item_t *)ips[j]->i_itemp; 507 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 508 try_lock++; 509 } 510 } 511 512 /* 513 * If any of the previous locks we have locked is in the AIL, 514 * we must TRY to get the second and subsequent locks. If 515 * we can't get any, we must release all we have 516 * and try again. 517 */ 518 if (!try_lock) { 519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 520 continue; 521 } 522 523 /* try_lock means we have an inode locked that is in the AIL. */ 524 ASSERT(i != 0); 525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 526 continue; 527 528 /* 529 * Unlock all previous guys and try again. xfs_iunlock will try 530 * to push the tail if the inode is in the AIL. 531 */ 532 attempts++; 533 for (j = i - 1; j >= 0; j--) { 534 /* 535 * Check to see if we've already unlocked this one. Not 536 * the first one going back, and the inode ptr is the 537 * same. 538 */ 539 if (j != (i - 1) && ips[j] == ips[j + 1]) 540 continue; 541 542 xfs_iunlock(ips[j], lock_mode); 543 } 544 545 if ((attempts % 5) == 0) { 546 delay(1); /* Don't just spin the CPU */ 547 #ifdef DEBUG 548 xfs_lock_delays++; 549 #endif 550 } 551 i = 0; 552 try_lock = 0; 553 goto again; 554 } 555 556 #ifdef DEBUG 557 if (attempts) { 558 if (attempts < 5) xfs_small_retries++; 559 else if (attempts < 100) xfs_middle_retries++; 560 else xfs_lots_retries++; 561 } else { 562 xfs_locked_n++; 563 } 564 #endif 565 } 566 567 /* 568 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 569 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 570 * lock more than one at a time, lockdep will report false positives saying we 571 * have violated locking orders. 572 */ 573 void 574 xfs_lock_two_inodes( 575 xfs_inode_t *ip0, 576 xfs_inode_t *ip1, 577 uint lock_mode) 578 { 579 xfs_inode_t *temp; 580 int attempts = 0; 581 xfs_log_item_t *lp; 582 583 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 584 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 585 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 586 587 ASSERT(ip0->i_ino != ip1->i_ino); 588 589 if (ip0->i_ino > ip1->i_ino) { 590 temp = ip0; 591 ip0 = ip1; 592 ip1 = temp; 593 } 594 595 again: 596 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 597 598 /* 599 * If the first lock we have locked is in the AIL, we must TRY to get 600 * the second lock. If we can't get it, we must release the first one 601 * and try again. 602 */ 603 lp = (xfs_log_item_t *)ip0->i_itemp; 604 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 605 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 606 xfs_iunlock(ip0, lock_mode); 607 if ((++attempts % 5) == 0) 608 delay(1); /* Don't just spin the CPU */ 609 goto again; 610 } 611 } else { 612 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 613 } 614 } 615 616 617 void 618 __xfs_iflock( 619 struct xfs_inode *ip) 620 { 621 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 622 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 623 624 do { 625 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 626 if (xfs_isiflocked(ip)) 627 io_schedule(); 628 } while (!xfs_iflock_nowait(ip)); 629 630 finish_wait(wq, &wait.wq_entry); 631 } 632 633 STATIC uint 634 _xfs_dic2xflags( 635 uint16_t di_flags, 636 uint64_t di_flags2, 637 bool has_attr) 638 { 639 uint flags = 0; 640 641 if (di_flags & XFS_DIFLAG_ANY) { 642 if (di_flags & XFS_DIFLAG_REALTIME) 643 flags |= FS_XFLAG_REALTIME; 644 if (di_flags & XFS_DIFLAG_PREALLOC) 645 flags |= FS_XFLAG_PREALLOC; 646 if (di_flags & XFS_DIFLAG_IMMUTABLE) 647 flags |= FS_XFLAG_IMMUTABLE; 648 if (di_flags & XFS_DIFLAG_APPEND) 649 flags |= FS_XFLAG_APPEND; 650 if (di_flags & XFS_DIFLAG_SYNC) 651 flags |= FS_XFLAG_SYNC; 652 if (di_flags & XFS_DIFLAG_NOATIME) 653 flags |= FS_XFLAG_NOATIME; 654 if (di_flags & XFS_DIFLAG_NODUMP) 655 flags |= FS_XFLAG_NODUMP; 656 if (di_flags & XFS_DIFLAG_RTINHERIT) 657 flags |= FS_XFLAG_RTINHERIT; 658 if (di_flags & XFS_DIFLAG_PROJINHERIT) 659 flags |= FS_XFLAG_PROJINHERIT; 660 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 661 flags |= FS_XFLAG_NOSYMLINKS; 662 if (di_flags & XFS_DIFLAG_EXTSIZE) 663 flags |= FS_XFLAG_EXTSIZE; 664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 665 flags |= FS_XFLAG_EXTSZINHERIT; 666 if (di_flags & XFS_DIFLAG_NODEFRAG) 667 flags |= FS_XFLAG_NODEFRAG; 668 if (di_flags & XFS_DIFLAG_FILESTREAM) 669 flags |= FS_XFLAG_FILESTREAM; 670 } 671 672 if (di_flags2 & XFS_DIFLAG2_ANY) { 673 if (di_flags2 & XFS_DIFLAG2_DAX) 674 flags |= FS_XFLAG_DAX; 675 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 676 flags |= FS_XFLAG_COWEXTSIZE; 677 } 678 679 if (has_attr) 680 flags |= FS_XFLAG_HASATTR; 681 682 return flags; 683 } 684 685 uint 686 xfs_ip2xflags( 687 struct xfs_inode *ip) 688 { 689 struct xfs_icdinode *dic = &ip->i_d; 690 691 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 692 } 693 694 /* 695 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 696 * is allowed, otherwise it has to be an exact match. If a CI match is found, 697 * ci_name->name will point to a the actual name (caller must free) or 698 * will be set to NULL if an exact match is found. 699 */ 700 int 701 xfs_lookup( 702 xfs_inode_t *dp, 703 struct xfs_name *name, 704 xfs_inode_t **ipp, 705 struct xfs_name *ci_name) 706 { 707 xfs_ino_t inum; 708 int error; 709 710 trace_xfs_lookup(dp, name); 711 712 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 713 return -EIO; 714 715 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 716 if (error) 717 goto out_unlock; 718 719 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 720 if (error) 721 goto out_free_name; 722 723 return 0; 724 725 out_free_name: 726 if (ci_name) 727 kmem_free(ci_name->name); 728 out_unlock: 729 *ipp = NULL; 730 return error; 731 } 732 733 /* 734 * Allocate an inode on disk and return a copy of its in-core version. 735 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 736 * appropriately within the inode. The uid and gid for the inode are 737 * set according to the contents of the given cred structure. 738 * 739 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 740 * has a free inode available, call xfs_iget() to obtain the in-core 741 * version of the allocated inode. Finally, fill in the inode and 742 * log its initial contents. In this case, ialloc_context would be 743 * set to NULL. 744 * 745 * If xfs_dialloc() does not have an available inode, it will replenish 746 * its supply by doing an allocation. Since we can only do one 747 * allocation within a transaction without deadlocks, we must commit 748 * the current transaction before returning the inode itself. 749 * In this case, therefore, we will set ialloc_context and return. 750 * The caller should then commit the current transaction, start a new 751 * transaction, and call xfs_ialloc() again to actually get the inode. 752 * 753 * To ensure that some other process does not grab the inode that 754 * was allocated during the first call to xfs_ialloc(), this routine 755 * also returns the [locked] bp pointing to the head of the freelist 756 * as ialloc_context. The caller should hold this buffer across 757 * the commit and pass it back into this routine on the second call. 758 * 759 * If we are allocating quota inodes, we do not have a parent inode 760 * to attach to or associate with (i.e. pip == NULL) because they 761 * are not linked into the directory structure - they are attached 762 * directly to the superblock - and so have no parent. 763 */ 764 static int 765 xfs_ialloc( 766 xfs_trans_t *tp, 767 xfs_inode_t *pip, 768 umode_t mode, 769 xfs_nlink_t nlink, 770 xfs_dev_t rdev, 771 prid_t prid, 772 int okalloc, 773 xfs_buf_t **ialloc_context, 774 xfs_inode_t **ipp) 775 { 776 struct xfs_mount *mp = tp->t_mountp; 777 xfs_ino_t ino; 778 xfs_inode_t *ip; 779 uint flags; 780 int error; 781 struct timespec tv; 782 struct inode *inode; 783 784 /* 785 * Call the space management code to pick 786 * the on-disk inode to be allocated. 787 */ 788 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 789 ialloc_context, &ino); 790 if (error) 791 return error; 792 if (*ialloc_context || ino == NULLFSINO) { 793 *ipp = NULL; 794 return 0; 795 } 796 ASSERT(*ialloc_context == NULL); 797 798 /* 799 * Get the in-core inode with the lock held exclusively. 800 * This is because we're setting fields here we need 801 * to prevent others from looking at until we're done. 802 */ 803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 804 XFS_ILOCK_EXCL, &ip); 805 if (error) 806 return error; 807 ASSERT(ip != NULL); 808 inode = VFS_I(ip); 809 810 /* 811 * We always convert v1 inodes to v2 now - we only support filesystems 812 * with >= v2 inode capability, so there is no reason for ever leaving 813 * an inode in v1 format. 814 */ 815 if (ip->i_d.di_version == 1) 816 ip->i_d.di_version = 2; 817 818 inode->i_mode = mode; 819 set_nlink(inode, nlink); 820 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 821 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 822 xfs_set_projid(ip, prid); 823 824 if (pip && XFS_INHERIT_GID(pip)) { 825 ip->i_d.di_gid = pip->i_d.di_gid; 826 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 827 inode->i_mode |= S_ISGID; 828 } 829 830 /* 831 * If the group ID of the new file does not match the effective group 832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 833 * (and only if the irix_sgid_inherit compatibility variable is set). 834 */ 835 if ((irix_sgid_inherit) && 836 (inode->i_mode & S_ISGID) && 837 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 838 inode->i_mode &= ~S_ISGID; 839 840 ip->i_d.di_size = 0; 841 ip->i_d.di_nextents = 0; 842 ASSERT(ip->i_d.di_nblocks == 0); 843 844 tv = current_time(inode); 845 inode->i_mtime = tv; 846 inode->i_atime = tv; 847 inode->i_ctime = tv; 848 849 ip->i_d.di_extsize = 0; 850 ip->i_d.di_dmevmask = 0; 851 ip->i_d.di_dmstate = 0; 852 ip->i_d.di_flags = 0; 853 854 if (ip->i_d.di_version == 3) { 855 inode->i_version = 1; 856 ip->i_d.di_flags2 = 0; 857 ip->i_d.di_cowextsize = 0; 858 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; 859 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; 860 } 861 862 863 flags = XFS_ILOG_CORE; 864 switch (mode & S_IFMT) { 865 case S_IFIFO: 866 case S_IFCHR: 867 case S_IFBLK: 868 case S_IFSOCK: 869 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 870 ip->i_df.if_u2.if_rdev = rdev; 871 ip->i_df.if_flags = 0; 872 flags |= XFS_ILOG_DEV; 873 break; 874 case S_IFREG: 875 case S_IFDIR: 876 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 877 uint di_flags = 0; 878 879 if (S_ISDIR(mode)) { 880 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 881 di_flags |= XFS_DIFLAG_RTINHERIT; 882 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 883 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 884 ip->i_d.di_extsize = pip->i_d.di_extsize; 885 } 886 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 887 di_flags |= XFS_DIFLAG_PROJINHERIT; 888 } else if (S_ISREG(mode)) { 889 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 890 di_flags |= XFS_DIFLAG_REALTIME; 891 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 892 di_flags |= XFS_DIFLAG_EXTSIZE; 893 ip->i_d.di_extsize = pip->i_d.di_extsize; 894 } 895 } 896 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 897 xfs_inherit_noatime) 898 di_flags |= XFS_DIFLAG_NOATIME; 899 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 900 xfs_inherit_nodump) 901 di_flags |= XFS_DIFLAG_NODUMP; 902 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 903 xfs_inherit_sync) 904 di_flags |= XFS_DIFLAG_SYNC; 905 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 906 xfs_inherit_nosymlinks) 907 di_flags |= XFS_DIFLAG_NOSYMLINKS; 908 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 909 xfs_inherit_nodefrag) 910 di_flags |= XFS_DIFLAG_NODEFRAG; 911 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 912 di_flags |= XFS_DIFLAG_FILESTREAM; 913 914 ip->i_d.di_flags |= di_flags; 915 } 916 if (pip && 917 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 918 pip->i_d.di_version == 3 && 919 ip->i_d.di_version == 3) { 920 uint64_t di_flags2 = 0; 921 922 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 923 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 924 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 925 } 926 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 927 di_flags2 |= XFS_DIFLAG2_DAX; 928 929 ip->i_d.di_flags2 |= di_flags2; 930 } 931 /* FALLTHROUGH */ 932 case S_IFLNK: 933 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 934 ip->i_df.if_flags = XFS_IFEXTENTS; 935 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 936 ip->i_df.if_u1.if_extents = NULL; 937 break; 938 default: 939 ASSERT(0); 940 } 941 /* 942 * Attribute fork settings for new inode. 943 */ 944 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 945 ip->i_d.di_anextents = 0; 946 947 /* 948 * Log the new values stuffed into the inode. 949 */ 950 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 951 xfs_trans_log_inode(tp, ip, flags); 952 953 /* now that we have an i_mode we can setup the inode structure */ 954 xfs_setup_inode(ip); 955 956 *ipp = ip; 957 return 0; 958 } 959 960 /* 961 * Allocates a new inode from disk and return a pointer to the 962 * incore copy. This routine will internally commit the current 963 * transaction and allocate a new one if the Space Manager needed 964 * to do an allocation to replenish the inode free-list. 965 * 966 * This routine is designed to be called from xfs_create and 967 * xfs_create_dir. 968 * 969 */ 970 int 971 xfs_dir_ialloc( 972 xfs_trans_t **tpp, /* input: current transaction; 973 output: may be a new transaction. */ 974 xfs_inode_t *dp, /* directory within whose allocate 975 the inode. */ 976 umode_t mode, 977 xfs_nlink_t nlink, 978 xfs_dev_t rdev, 979 prid_t prid, /* project id */ 980 int okalloc, /* ok to allocate new space */ 981 xfs_inode_t **ipp, /* pointer to inode; it will be 982 locked. */ 983 int *committed) 984 985 { 986 xfs_trans_t *tp; 987 xfs_inode_t *ip; 988 xfs_buf_t *ialloc_context = NULL; 989 int code; 990 void *dqinfo; 991 uint tflags; 992 993 tp = *tpp; 994 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 995 996 /* 997 * xfs_ialloc will return a pointer to an incore inode if 998 * the Space Manager has an available inode on the free 999 * list. Otherwise, it will do an allocation and replenish 1000 * the freelist. Since we can only do one allocation per 1001 * transaction without deadlocks, we will need to commit the 1002 * current transaction and start a new one. We will then 1003 * need to call xfs_ialloc again to get the inode. 1004 * 1005 * If xfs_ialloc did an allocation to replenish the freelist, 1006 * it returns the bp containing the head of the freelist as 1007 * ialloc_context. We will hold a lock on it across the 1008 * transaction commit so that no other process can steal 1009 * the inode(s) that we've just allocated. 1010 */ 1011 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 1012 &ialloc_context, &ip); 1013 1014 /* 1015 * Return an error if we were unable to allocate a new inode. 1016 * This should only happen if we run out of space on disk or 1017 * encounter a disk error. 1018 */ 1019 if (code) { 1020 *ipp = NULL; 1021 return code; 1022 } 1023 if (!ialloc_context && !ip) { 1024 *ipp = NULL; 1025 return -ENOSPC; 1026 } 1027 1028 /* 1029 * If the AGI buffer is non-NULL, then we were unable to get an 1030 * inode in one operation. We need to commit the current 1031 * transaction and call xfs_ialloc() again. It is guaranteed 1032 * to succeed the second time. 1033 */ 1034 if (ialloc_context) { 1035 /* 1036 * Normally, xfs_trans_commit releases all the locks. 1037 * We call bhold to hang on to the ialloc_context across 1038 * the commit. Holding this buffer prevents any other 1039 * processes from doing any allocations in this 1040 * allocation group. 1041 */ 1042 xfs_trans_bhold(tp, ialloc_context); 1043 1044 /* 1045 * We want the quota changes to be associated with the next 1046 * transaction, NOT this one. So, detach the dqinfo from this 1047 * and attach it to the next transaction. 1048 */ 1049 dqinfo = NULL; 1050 tflags = 0; 1051 if (tp->t_dqinfo) { 1052 dqinfo = (void *)tp->t_dqinfo; 1053 tp->t_dqinfo = NULL; 1054 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1055 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1056 } 1057 1058 code = xfs_trans_roll(&tp); 1059 if (committed != NULL) 1060 *committed = 1; 1061 1062 /* 1063 * Re-attach the quota info that we detached from prev trx. 1064 */ 1065 if (dqinfo) { 1066 tp->t_dqinfo = dqinfo; 1067 tp->t_flags |= tflags; 1068 } 1069 1070 if (code) { 1071 xfs_buf_relse(ialloc_context); 1072 *tpp = tp; 1073 *ipp = NULL; 1074 return code; 1075 } 1076 xfs_trans_bjoin(tp, ialloc_context); 1077 1078 /* 1079 * Call ialloc again. Since we've locked out all 1080 * other allocations in this allocation group, 1081 * this call should always succeed. 1082 */ 1083 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1084 okalloc, &ialloc_context, &ip); 1085 1086 /* 1087 * If we get an error at this point, return to the caller 1088 * so that the current transaction can be aborted. 1089 */ 1090 if (code) { 1091 *tpp = tp; 1092 *ipp = NULL; 1093 return code; 1094 } 1095 ASSERT(!ialloc_context && ip); 1096 1097 } else { 1098 if (committed != NULL) 1099 *committed = 0; 1100 } 1101 1102 *ipp = ip; 1103 *tpp = tp; 1104 1105 return 0; 1106 } 1107 1108 /* 1109 * Decrement the link count on an inode & log the change. If this causes the 1110 * link count to go to zero, move the inode to AGI unlinked list so that it can 1111 * be freed when the last active reference goes away via xfs_inactive(). 1112 */ 1113 static int /* error */ 1114 xfs_droplink( 1115 xfs_trans_t *tp, 1116 xfs_inode_t *ip) 1117 { 1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1119 1120 drop_nlink(VFS_I(ip)); 1121 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1122 1123 if (VFS_I(ip)->i_nlink) 1124 return 0; 1125 1126 return xfs_iunlink(tp, ip); 1127 } 1128 1129 /* 1130 * Increment the link count on an inode & log the change. 1131 */ 1132 static int 1133 xfs_bumplink( 1134 xfs_trans_t *tp, 1135 xfs_inode_t *ip) 1136 { 1137 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1138 1139 ASSERT(ip->i_d.di_version > 1); 1140 inc_nlink(VFS_I(ip)); 1141 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1142 return 0; 1143 } 1144 1145 int 1146 xfs_create( 1147 xfs_inode_t *dp, 1148 struct xfs_name *name, 1149 umode_t mode, 1150 xfs_dev_t rdev, 1151 xfs_inode_t **ipp) 1152 { 1153 int is_dir = S_ISDIR(mode); 1154 struct xfs_mount *mp = dp->i_mount; 1155 struct xfs_inode *ip = NULL; 1156 struct xfs_trans *tp = NULL; 1157 int error; 1158 struct xfs_defer_ops dfops; 1159 xfs_fsblock_t first_block; 1160 bool unlock_dp_on_error = false; 1161 prid_t prid; 1162 struct xfs_dquot *udqp = NULL; 1163 struct xfs_dquot *gdqp = NULL; 1164 struct xfs_dquot *pdqp = NULL; 1165 struct xfs_trans_res *tres; 1166 uint resblks; 1167 1168 trace_xfs_create(dp, name); 1169 1170 if (XFS_FORCED_SHUTDOWN(mp)) 1171 return -EIO; 1172 1173 prid = xfs_get_initial_prid(dp); 1174 1175 /* 1176 * Make sure that we have allocated dquot(s) on disk. 1177 */ 1178 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1179 xfs_kgid_to_gid(current_fsgid()), prid, 1180 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1181 &udqp, &gdqp, &pdqp); 1182 if (error) 1183 return error; 1184 1185 if (is_dir) { 1186 rdev = 0; 1187 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1188 tres = &M_RES(mp)->tr_mkdir; 1189 } else { 1190 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1191 tres = &M_RES(mp)->tr_create; 1192 } 1193 1194 /* 1195 * Initially assume that the file does not exist and 1196 * reserve the resources for that case. If that is not 1197 * the case we'll drop the one we have and get a more 1198 * appropriate transaction later. 1199 */ 1200 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1201 if (error == -ENOSPC) { 1202 /* flush outstanding delalloc blocks and retry */ 1203 xfs_flush_inodes(mp); 1204 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1205 } 1206 if (error == -ENOSPC) { 1207 /* No space at all so try a "no-allocation" reservation */ 1208 resblks = 0; 1209 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1210 } 1211 if (error) 1212 goto out_release_inode; 1213 1214 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1215 unlock_dp_on_error = true; 1216 1217 xfs_defer_init(&dfops, &first_block); 1218 1219 /* 1220 * Reserve disk quota and the inode. 1221 */ 1222 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1223 pdqp, resblks, 1, 0); 1224 if (error) 1225 goto out_trans_cancel; 1226 1227 if (!resblks) { 1228 error = xfs_dir_canenter(tp, dp, name); 1229 if (error) 1230 goto out_trans_cancel; 1231 } 1232 1233 /* 1234 * A newly created regular or special file just has one directory 1235 * entry pointing to them, but a directory also the "." entry 1236 * pointing to itself. 1237 */ 1238 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1239 prid, resblks > 0, &ip, NULL); 1240 if (error) 1241 goto out_trans_cancel; 1242 1243 /* 1244 * Now we join the directory inode to the transaction. We do not do it 1245 * earlier because xfs_dir_ialloc might commit the previous transaction 1246 * (and release all the locks). An error from here on will result in 1247 * the transaction cancel unlocking dp so don't do it explicitly in the 1248 * error path. 1249 */ 1250 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1251 unlock_dp_on_error = false; 1252 1253 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1254 &first_block, &dfops, resblks ? 1255 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1256 if (error) { 1257 ASSERT(error != -ENOSPC); 1258 goto out_trans_cancel; 1259 } 1260 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1261 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1262 1263 if (is_dir) { 1264 error = xfs_dir_init(tp, ip, dp); 1265 if (error) 1266 goto out_bmap_cancel; 1267 1268 error = xfs_bumplink(tp, dp); 1269 if (error) 1270 goto out_bmap_cancel; 1271 } 1272 1273 /* 1274 * If this is a synchronous mount, make sure that the 1275 * create transaction goes to disk before returning to 1276 * the user. 1277 */ 1278 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1279 xfs_trans_set_sync(tp); 1280 1281 /* 1282 * Attach the dquot(s) to the inodes and modify them incore. 1283 * These ids of the inode couldn't have changed since the new 1284 * inode has been locked ever since it was created. 1285 */ 1286 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1287 1288 error = xfs_defer_finish(&tp, &dfops); 1289 if (error) 1290 goto out_bmap_cancel; 1291 1292 error = xfs_trans_commit(tp); 1293 if (error) 1294 goto out_release_inode; 1295 1296 xfs_qm_dqrele(udqp); 1297 xfs_qm_dqrele(gdqp); 1298 xfs_qm_dqrele(pdqp); 1299 1300 *ipp = ip; 1301 return 0; 1302 1303 out_bmap_cancel: 1304 xfs_defer_cancel(&dfops); 1305 out_trans_cancel: 1306 xfs_trans_cancel(tp); 1307 out_release_inode: 1308 /* 1309 * Wait until after the current transaction is aborted to finish the 1310 * setup of the inode and release the inode. This prevents recursive 1311 * transactions and deadlocks from xfs_inactive. 1312 */ 1313 if (ip) { 1314 xfs_finish_inode_setup(ip); 1315 IRELE(ip); 1316 } 1317 1318 xfs_qm_dqrele(udqp); 1319 xfs_qm_dqrele(gdqp); 1320 xfs_qm_dqrele(pdqp); 1321 1322 if (unlock_dp_on_error) 1323 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1324 return error; 1325 } 1326 1327 int 1328 xfs_create_tmpfile( 1329 struct xfs_inode *dp, 1330 struct dentry *dentry, 1331 umode_t mode, 1332 struct xfs_inode **ipp) 1333 { 1334 struct xfs_mount *mp = dp->i_mount; 1335 struct xfs_inode *ip = NULL; 1336 struct xfs_trans *tp = NULL; 1337 int error; 1338 prid_t prid; 1339 struct xfs_dquot *udqp = NULL; 1340 struct xfs_dquot *gdqp = NULL; 1341 struct xfs_dquot *pdqp = NULL; 1342 struct xfs_trans_res *tres; 1343 uint resblks; 1344 1345 if (XFS_FORCED_SHUTDOWN(mp)) 1346 return -EIO; 1347 1348 prid = xfs_get_initial_prid(dp); 1349 1350 /* 1351 * Make sure that we have allocated dquot(s) on disk. 1352 */ 1353 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1354 xfs_kgid_to_gid(current_fsgid()), prid, 1355 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1356 &udqp, &gdqp, &pdqp); 1357 if (error) 1358 return error; 1359 1360 resblks = XFS_IALLOC_SPACE_RES(mp); 1361 tres = &M_RES(mp)->tr_create_tmpfile; 1362 1363 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1364 if (error == -ENOSPC) { 1365 /* No space at all so try a "no-allocation" reservation */ 1366 resblks = 0; 1367 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1368 } 1369 if (error) 1370 goto out_release_inode; 1371 1372 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1373 pdqp, resblks, 1, 0); 1374 if (error) 1375 goto out_trans_cancel; 1376 1377 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1378 prid, resblks > 0, &ip, NULL); 1379 if (error) 1380 goto out_trans_cancel; 1381 1382 if (mp->m_flags & XFS_MOUNT_WSYNC) 1383 xfs_trans_set_sync(tp); 1384 1385 /* 1386 * Attach the dquot(s) to the inodes and modify them incore. 1387 * These ids of the inode couldn't have changed since the new 1388 * inode has been locked ever since it was created. 1389 */ 1390 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1391 1392 error = xfs_iunlink(tp, ip); 1393 if (error) 1394 goto out_trans_cancel; 1395 1396 error = xfs_trans_commit(tp); 1397 if (error) 1398 goto out_release_inode; 1399 1400 xfs_qm_dqrele(udqp); 1401 xfs_qm_dqrele(gdqp); 1402 xfs_qm_dqrele(pdqp); 1403 1404 *ipp = ip; 1405 return 0; 1406 1407 out_trans_cancel: 1408 xfs_trans_cancel(tp); 1409 out_release_inode: 1410 /* 1411 * Wait until after the current transaction is aborted to finish the 1412 * setup of the inode and release the inode. This prevents recursive 1413 * transactions and deadlocks from xfs_inactive. 1414 */ 1415 if (ip) { 1416 xfs_finish_inode_setup(ip); 1417 IRELE(ip); 1418 } 1419 1420 xfs_qm_dqrele(udqp); 1421 xfs_qm_dqrele(gdqp); 1422 xfs_qm_dqrele(pdqp); 1423 1424 return error; 1425 } 1426 1427 int 1428 xfs_link( 1429 xfs_inode_t *tdp, 1430 xfs_inode_t *sip, 1431 struct xfs_name *target_name) 1432 { 1433 xfs_mount_t *mp = tdp->i_mount; 1434 xfs_trans_t *tp; 1435 int error; 1436 struct xfs_defer_ops dfops; 1437 xfs_fsblock_t first_block; 1438 int resblks; 1439 1440 trace_xfs_link(tdp, target_name); 1441 1442 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1443 1444 if (XFS_FORCED_SHUTDOWN(mp)) 1445 return -EIO; 1446 1447 error = xfs_qm_dqattach(sip, 0); 1448 if (error) 1449 goto std_return; 1450 1451 error = xfs_qm_dqattach(tdp, 0); 1452 if (error) 1453 goto std_return; 1454 1455 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1456 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1457 if (error == -ENOSPC) { 1458 resblks = 0; 1459 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1460 } 1461 if (error) 1462 goto std_return; 1463 1464 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1465 1466 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1467 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1468 1469 /* 1470 * If we are using project inheritance, we only allow hard link 1471 * creation in our tree when the project IDs are the same; else 1472 * the tree quota mechanism could be circumvented. 1473 */ 1474 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1475 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1476 error = -EXDEV; 1477 goto error_return; 1478 } 1479 1480 if (!resblks) { 1481 error = xfs_dir_canenter(tp, tdp, target_name); 1482 if (error) 1483 goto error_return; 1484 } 1485 1486 xfs_defer_init(&dfops, &first_block); 1487 1488 /* 1489 * Handle initial link state of O_TMPFILE inode 1490 */ 1491 if (VFS_I(sip)->i_nlink == 0) { 1492 error = xfs_iunlink_remove(tp, sip); 1493 if (error) 1494 goto error_return; 1495 } 1496 1497 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1498 &first_block, &dfops, resblks); 1499 if (error) 1500 goto error_return; 1501 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1502 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1503 1504 error = xfs_bumplink(tp, sip); 1505 if (error) 1506 goto error_return; 1507 1508 /* 1509 * If this is a synchronous mount, make sure that the 1510 * link transaction goes to disk before returning to 1511 * the user. 1512 */ 1513 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1514 xfs_trans_set_sync(tp); 1515 1516 error = xfs_defer_finish(&tp, &dfops); 1517 if (error) { 1518 xfs_defer_cancel(&dfops); 1519 goto error_return; 1520 } 1521 1522 return xfs_trans_commit(tp); 1523 1524 error_return: 1525 xfs_trans_cancel(tp); 1526 std_return: 1527 return error; 1528 } 1529 1530 /* 1531 * Free up the underlying blocks past new_size. The new size must be smaller 1532 * than the current size. This routine can be used both for the attribute and 1533 * data fork, and does not modify the inode size, which is left to the caller. 1534 * 1535 * The transaction passed to this routine must have made a permanent log 1536 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1537 * given transaction and start new ones, so make sure everything involved in 1538 * the transaction is tidy before calling here. Some transaction will be 1539 * returned to the caller to be committed. The incoming transaction must 1540 * already include the inode, and both inode locks must be held exclusively. 1541 * The inode must also be "held" within the transaction. On return the inode 1542 * will be "held" within the returned transaction. This routine does NOT 1543 * require any disk space to be reserved for it within the transaction. 1544 * 1545 * If we get an error, we must return with the inode locked and linked into the 1546 * current transaction. This keeps things simple for the higher level code, 1547 * because it always knows that the inode is locked and held in the transaction 1548 * that returns to it whether errors occur or not. We don't mark the inode 1549 * dirty on error so that transactions can be easily aborted if possible. 1550 */ 1551 int 1552 xfs_itruncate_extents( 1553 struct xfs_trans **tpp, 1554 struct xfs_inode *ip, 1555 int whichfork, 1556 xfs_fsize_t new_size) 1557 { 1558 struct xfs_mount *mp = ip->i_mount; 1559 struct xfs_trans *tp = *tpp; 1560 struct xfs_defer_ops dfops; 1561 xfs_fsblock_t first_block; 1562 xfs_fileoff_t first_unmap_block; 1563 xfs_fileoff_t last_block; 1564 xfs_filblks_t unmap_len; 1565 int error = 0; 1566 int done = 0; 1567 1568 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1569 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1570 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1571 ASSERT(new_size <= XFS_ISIZE(ip)); 1572 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1573 ASSERT(ip->i_itemp != NULL); 1574 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1575 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1576 1577 trace_xfs_itruncate_extents_start(ip, new_size); 1578 1579 /* 1580 * Since it is possible for space to become allocated beyond 1581 * the end of the file (in a crash where the space is allocated 1582 * but the inode size is not yet updated), simply remove any 1583 * blocks which show up between the new EOF and the maximum 1584 * possible file size. If the first block to be removed is 1585 * beyond the maximum file size (ie it is the same as last_block), 1586 * then there is nothing to do. 1587 */ 1588 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1589 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1590 if (first_unmap_block == last_block) 1591 return 0; 1592 1593 ASSERT(first_unmap_block < last_block); 1594 unmap_len = last_block - first_unmap_block + 1; 1595 while (!done) { 1596 xfs_defer_init(&dfops, &first_block); 1597 error = xfs_bunmapi(tp, ip, 1598 first_unmap_block, unmap_len, 1599 xfs_bmapi_aflag(whichfork), 1600 XFS_ITRUNC_MAX_EXTENTS, 1601 &first_block, &dfops, 1602 &done); 1603 if (error) 1604 goto out_bmap_cancel; 1605 1606 /* 1607 * Duplicate the transaction that has the permanent 1608 * reservation and commit the old transaction. 1609 */ 1610 xfs_defer_ijoin(&dfops, ip); 1611 error = xfs_defer_finish(&tp, &dfops); 1612 if (error) 1613 goto out_bmap_cancel; 1614 1615 error = xfs_trans_roll_inode(&tp, ip); 1616 if (error) 1617 goto out; 1618 } 1619 1620 /* Remove all pending CoW reservations. */ 1621 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, 1622 last_block, true); 1623 if (error) 1624 goto out; 1625 1626 /* 1627 * Clear the reflink flag if there are no data fork blocks and 1628 * there are no extents staged in the cow fork. 1629 */ 1630 if (xfs_is_reflink_inode(ip) && ip->i_cnextents == 0) { 1631 if (ip->i_d.di_nblocks == 0) 1632 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1633 xfs_inode_clear_cowblocks_tag(ip); 1634 } 1635 1636 /* 1637 * Always re-log the inode so that our permanent transaction can keep 1638 * on rolling it forward in the log. 1639 */ 1640 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1641 1642 trace_xfs_itruncate_extents_end(ip, new_size); 1643 1644 out: 1645 *tpp = tp; 1646 return error; 1647 out_bmap_cancel: 1648 /* 1649 * If the bunmapi call encounters an error, return to the caller where 1650 * the transaction can be properly aborted. We just need to make sure 1651 * we're not holding any resources that we were not when we came in. 1652 */ 1653 xfs_defer_cancel(&dfops); 1654 goto out; 1655 } 1656 1657 int 1658 xfs_release( 1659 xfs_inode_t *ip) 1660 { 1661 xfs_mount_t *mp = ip->i_mount; 1662 int error; 1663 1664 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1665 return 0; 1666 1667 /* If this is a read-only mount, don't do this (would generate I/O) */ 1668 if (mp->m_flags & XFS_MOUNT_RDONLY) 1669 return 0; 1670 1671 if (!XFS_FORCED_SHUTDOWN(mp)) { 1672 int truncated; 1673 1674 /* 1675 * If we previously truncated this file and removed old data 1676 * in the process, we want to initiate "early" writeout on 1677 * the last close. This is an attempt to combat the notorious 1678 * NULL files problem which is particularly noticeable from a 1679 * truncate down, buffered (re-)write (delalloc), followed by 1680 * a crash. What we are effectively doing here is 1681 * significantly reducing the time window where we'd otherwise 1682 * be exposed to that problem. 1683 */ 1684 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1685 if (truncated) { 1686 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1687 if (ip->i_delayed_blks > 0) { 1688 error = filemap_flush(VFS_I(ip)->i_mapping); 1689 if (error) 1690 return error; 1691 } 1692 } 1693 } 1694 1695 if (VFS_I(ip)->i_nlink == 0) 1696 return 0; 1697 1698 if (xfs_can_free_eofblocks(ip, false)) { 1699 1700 /* 1701 * Check if the inode is being opened, written and closed 1702 * frequently and we have delayed allocation blocks outstanding 1703 * (e.g. streaming writes from the NFS server), truncating the 1704 * blocks past EOF will cause fragmentation to occur. 1705 * 1706 * In this case don't do the truncation, but we have to be 1707 * careful how we detect this case. Blocks beyond EOF show up as 1708 * i_delayed_blks even when the inode is clean, so we need to 1709 * truncate them away first before checking for a dirty release. 1710 * Hence on the first dirty close we will still remove the 1711 * speculative allocation, but after that we will leave it in 1712 * place. 1713 */ 1714 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1715 return 0; 1716 /* 1717 * If we can't get the iolock just skip truncating the blocks 1718 * past EOF because we could deadlock with the mmap_sem 1719 * otherwise. We'll get another chance to drop them once the 1720 * last reference to the inode is dropped, so we'll never leak 1721 * blocks permanently. 1722 */ 1723 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1724 error = xfs_free_eofblocks(ip); 1725 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1726 if (error) 1727 return error; 1728 } 1729 1730 /* delalloc blocks after truncation means it really is dirty */ 1731 if (ip->i_delayed_blks) 1732 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1733 } 1734 return 0; 1735 } 1736 1737 /* 1738 * xfs_inactive_truncate 1739 * 1740 * Called to perform a truncate when an inode becomes unlinked. 1741 */ 1742 STATIC int 1743 xfs_inactive_truncate( 1744 struct xfs_inode *ip) 1745 { 1746 struct xfs_mount *mp = ip->i_mount; 1747 struct xfs_trans *tp; 1748 int error; 1749 1750 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1751 if (error) { 1752 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1753 return error; 1754 } 1755 1756 xfs_ilock(ip, XFS_ILOCK_EXCL); 1757 xfs_trans_ijoin(tp, ip, 0); 1758 1759 /* 1760 * Log the inode size first to prevent stale data exposure in the event 1761 * of a system crash before the truncate completes. See the related 1762 * comment in xfs_vn_setattr_size() for details. 1763 */ 1764 ip->i_d.di_size = 0; 1765 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1766 1767 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1768 if (error) 1769 goto error_trans_cancel; 1770 1771 ASSERT(ip->i_d.di_nextents == 0); 1772 1773 error = xfs_trans_commit(tp); 1774 if (error) 1775 goto error_unlock; 1776 1777 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1778 return 0; 1779 1780 error_trans_cancel: 1781 xfs_trans_cancel(tp); 1782 error_unlock: 1783 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1784 return error; 1785 } 1786 1787 /* 1788 * xfs_inactive_ifree() 1789 * 1790 * Perform the inode free when an inode is unlinked. 1791 */ 1792 STATIC int 1793 xfs_inactive_ifree( 1794 struct xfs_inode *ip) 1795 { 1796 struct xfs_defer_ops dfops; 1797 xfs_fsblock_t first_block; 1798 struct xfs_mount *mp = ip->i_mount; 1799 struct xfs_trans *tp; 1800 int error; 1801 1802 /* 1803 * We try to use a per-AG reservation for any block needed by the finobt 1804 * tree, but as the finobt feature predates the per-AG reservation 1805 * support a degraded file system might not have enough space for the 1806 * reservation at mount time. In that case try to dip into the reserved 1807 * pool and pray. 1808 * 1809 * Send a warning if the reservation does happen to fail, as the inode 1810 * now remains allocated and sits on the unlinked list until the fs is 1811 * repaired. 1812 */ 1813 if (unlikely(mp->m_inotbt_nores)) { 1814 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1815 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1816 &tp); 1817 } else { 1818 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1819 } 1820 if (error) { 1821 if (error == -ENOSPC) { 1822 xfs_warn_ratelimited(mp, 1823 "Failed to remove inode(s) from unlinked list. " 1824 "Please free space, unmount and run xfs_repair."); 1825 } else { 1826 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1827 } 1828 return error; 1829 } 1830 1831 xfs_ilock(ip, XFS_ILOCK_EXCL); 1832 xfs_trans_ijoin(tp, ip, 0); 1833 1834 xfs_defer_init(&dfops, &first_block); 1835 error = xfs_ifree(tp, ip, &dfops); 1836 if (error) { 1837 /* 1838 * If we fail to free the inode, shut down. The cancel 1839 * might do that, we need to make sure. Otherwise the 1840 * inode might be lost for a long time or forever. 1841 */ 1842 if (!XFS_FORCED_SHUTDOWN(mp)) { 1843 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1844 __func__, error); 1845 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1846 } 1847 xfs_trans_cancel(tp); 1848 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1849 return error; 1850 } 1851 1852 /* 1853 * Credit the quota account(s). The inode is gone. 1854 */ 1855 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1856 1857 /* 1858 * Just ignore errors at this point. There is nothing we can do except 1859 * to try to keep going. Make sure it's not a silent error. 1860 */ 1861 error = xfs_defer_finish(&tp, &dfops); 1862 if (error) { 1863 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1864 __func__, error); 1865 xfs_defer_cancel(&dfops); 1866 } 1867 error = xfs_trans_commit(tp); 1868 if (error) 1869 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1870 __func__, error); 1871 1872 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1873 return 0; 1874 } 1875 1876 /* 1877 * xfs_inactive 1878 * 1879 * This is called when the vnode reference count for the vnode 1880 * goes to zero. If the file has been unlinked, then it must 1881 * now be truncated. Also, we clear all of the read-ahead state 1882 * kept for the inode here since the file is now closed. 1883 */ 1884 void 1885 xfs_inactive( 1886 xfs_inode_t *ip) 1887 { 1888 struct xfs_mount *mp; 1889 int error; 1890 int truncate = 0; 1891 1892 /* 1893 * If the inode is already free, then there can be nothing 1894 * to clean up here. 1895 */ 1896 if (VFS_I(ip)->i_mode == 0) { 1897 ASSERT(ip->i_df.if_real_bytes == 0); 1898 ASSERT(ip->i_df.if_broot_bytes == 0); 1899 return; 1900 } 1901 1902 mp = ip->i_mount; 1903 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1904 1905 /* If this is a read-only mount, don't do this (would generate I/O) */ 1906 if (mp->m_flags & XFS_MOUNT_RDONLY) 1907 return; 1908 1909 if (VFS_I(ip)->i_nlink != 0) { 1910 /* 1911 * force is true because we are evicting an inode from the 1912 * cache. Post-eof blocks must be freed, lest we end up with 1913 * broken free space accounting. 1914 * 1915 * Note: don't bother with iolock here since lockdep complains 1916 * about acquiring it in reclaim context. We have the only 1917 * reference to the inode at this point anyways. 1918 */ 1919 if (xfs_can_free_eofblocks(ip, true)) 1920 xfs_free_eofblocks(ip); 1921 1922 return; 1923 } 1924 1925 if (S_ISREG(VFS_I(ip)->i_mode) && 1926 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1927 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1928 truncate = 1; 1929 1930 error = xfs_qm_dqattach(ip, 0); 1931 if (error) 1932 return; 1933 1934 if (S_ISLNK(VFS_I(ip)->i_mode)) 1935 error = xfs_inactive_symlink(ip); 1936 else if (truncate) 1937 error = xfs_inactive_truncate(ip); 1938 if (error) 1939 return; 1940 1941 /* 1942 * If there are attributes associated with the file then blow them away 1943 * now. The code calls a routine that recursively deconstructs the 1944 * attribute fork. If also blows away the in-core attribute fork. 1945 */ 1946 if (XFS_IFORK_Q(ip)) { 1947 error = xfs_attr_inactive(ip); 1948 if (error) 1949 return; 1950 } 1951 1952 ASSERT(!ip->i_afp); 1953 ASSERT(ip->i_d.di_anextents == 0); 1954 ASSERT(ip->i_d.di_forkoff == 0); 1955 1956 /* 1957 * Free the inode. 1958 */ 1959 error = xfs_inactive_ifree(ip); 1960 if (error) 1961 return; 1962 1963 /* 1964 * Release the dquots held by inode, if any. 1965 */ 1966 xfs_qm_dqdetach(ip); 1967 } 1968 1969 /* 1970 * This is called when the inode's link count goes to 0 or we are creating a 1971 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1972 * set to true as the link count is dropped to zero by the VFS after we've 1973 * created the file successfully, so we have to add it to the unlinked list 1974 * while the link count is non-zero. 1975 * 1976 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1977 * list when the inode is freed. 1978 */ 1979 STATIC int 1980 xfs_iunlink( 1981 struct xfs_trans *tp, 1982 struct xfs_inode *ip) 1983 { 1984 xfs_mount_t *mp = tp->t_mountp; 1985 xfs_agi_t *agi; 1986 xfs_dinode_t *dip; 1987 xfs_buf_t *agibp; 1988 xfs_buf_t *ibp; 1989 xfs_agino_t agino; 1990 short bucket_index; 1991 int offset; 1992 int error; 1993 1994 ASSERT(VFS_I(ip)->i_mode != 0); 1995 1996 /* 1997 * Get the agi buffer first. It ensures lock ordering 1998 * on the list. 1999 */ 2000 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 2001 if (error) 2002 return error; 2003 agi = XFS_BUF_TO_AGI(agibp); 2004 2005 /* 2006 * Get the index into the agi hash table for the 2007 * list this inode will go on. 2008 */ 2009 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2010 ASSERT(agino != 0); 2011 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2012 ASSERT(agi->agi_unlinked[bucket_index]); 2013 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2014 2015 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2016 /* 2017 * There is already another inode in the bucket we need 2018 * to add ourselves to. Add us at the front of the list. 2019 * Here we put the head pointer into our next pointer, 2020 * and then we fall through to point the head at us. 2021 */ 2022 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2023 0, 0); 2024 if (error) 2025 return error; 2026 2027 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2028 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2029 offset = ip->i_imap.im_boffset + 2030 offsetof(xfs_dinode_t, di_next_unlinked); 2031 2032 /* need to recalc the inode CRC if appropriate */ 2033 xfs_dinode_calc_crc(mp, dip); 2034 2035 xfs_trans_inode_buf(tp, ibp); 2036 xfs_trans_log_buf(tp, ibp, offset, 2037 (offset + sizeof(xfs_agino_t) - 1)); 2038 xfs_inobp_check(mp, ibp); 2039 } 2040 2041 /* 2042 * Point the bucket head pointer at the inode being inserted. 2043 */ 2044 ASSERT(agino != 0); 2045 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2046 offset = offsetof(xfs_agi_t, agi_unlinked) + 2047 (sizeof(xfs_agino_t) * bucket_index); 2048 xfs_trans_log_buf(tp, agibp, offset, 2049 (offset + sizeof(xfs_agino_t) - 1)); 2050 return 0; 2051 } 2052 2053 /* 2054 * Pull the on-disk inode from the AGI unlinked list. 2055 */ 2056 STATIC int 2057 xfs_iunlink_remove( 2058 xfs_trans_t *tp, 2059 xfs_inode_t *ip) 2060 { 2061 xfs_ino_t next_ino; 2062 xfs_mount_t *mp; 2063 xfs_agi_t *agi; 2064 xfs_dinode_t *dip; 2065 xfs_buf_t *agibp; 2066 xfs_buf_t *ibp; 2067 xfs_agnumber_t agno; 2068 xfs_agino_t agino; 2069 xfs_agino_t next_agino; 2070 xfs_buf_t *last_ibp; 2071 xfs_dinode_t *last_dip = NULL; 2072 short bucket_index; 2073 int offset, last_offset = 0; 2074 int error; 2075 2076 mp = tp->t_mountp; 2077 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2078 2079 /* 2080 * Get the agi buffer first. It ensures lock ordering 2081 * on the list. 2082 */ 2083 error = xfs_read_agi(mp, tp, agno, &agibp); 2084 if (error) 2085 return error; 2086 2087 agi = XFS_BUF_TO_AGI(agibp); 2088 2089 /* 2090 * Get the index into the agi hash table for the 2091 * list this inode will go on. 2092 */ 2093 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2094 ASSERT(agino != 0); 2095 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2096 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2097 ASSERT(agi->agi_unlinked[bucket_index]); 2098 2099 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2100 /* 2101 * We're at the head of the list. Get the inode's on-disk 2102 * buffer to see if there is anyone after us on the list. 2103 * Only modify our next pointer if it is not already NULLAGINO. 2104 * This saves us the overhead of dealing with the buffer when 2105 * there is no need to change it. 2106 */ 2107 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2108 0, 0); 2109 if (error) { 2110 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2111 __func__, error); 2112 return error; 2113 } 2114 next_agino = be32_to_cpu(dip->di_next_unlinked); 2115 ASSERT(next_agino != 0); 2116 if (next_agino != NULLAGINO) { 2117 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2118 offset = ip->i_imap.im_boffset + 2119 offsetof(xfs_dinode_t, di_next_unlinked); 2120 2121 /* need to recalc the inode CRC if appropriate */ 2122 xfs_dinode_calc_crc(mp, dip); 2123 2124 xfs_trans_inode_buf(tp, ibp); 2125 xfs_trans_log_buf(tp, ibp, offset, 2126 (offset + sizeof(xfs_agino_t) - 1)); 2127 xfs_inobp_check(mp, ibp); 2128 } else { 2129 xfs_trans_brelse(tp, ibp); 2130 } 2131 /* 2132 * Point the bucket head pointer at the next inode. 2133 */ 2134 ASSERT(next_agino != 0); 2135 ASSERT(next_agino != agino); 2136 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2137 offset = offsetof(xfs_agi_t, agi_unlinked) + 2138 (sizeof(xfs_agino_t) * bucket_index); 2139 xfs_trans_log_buf(tp, agibp, offset, 2140 (offset + sizeof(xfs_agino_t) - 1)); 2141 } else { 2142 /* 2143 * We need to search the list for the inode being freed. 2144 */ 2145 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2146 last_ibp = NULL; 2147 while (next_agino != agino) { 2148 struct xfs_imap imap; 2149 2150 if (last_ibp) 2151 xfs_trans_brelse(tp, last_ibp); 2152 2153 imap.im_blkno = 0; 2154 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2155 2156 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2157 if (error) { 2158 xfs_warn(mp, 2159 "%s: xfs_imap returned error %d.", 2160 __func__, error); 2161 return error; 2162 } 2163 2164 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2165 &last_ibp, 0, 0); 2166 if (error) { 2167 xfs_warn(mp, 2168 "%s: xfs_imap_to_bp returned error %d.", 2169 __func__, error); 2170 return error; 2171 } 2172 2173 last_offset = imap.im_boffset; 2174 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2175 ASSERT(next_agino != NULLAGINO); 2176 ASSERT(next_agino != 0); 2177 } 2178 2179 /* 2180 * Now last_ibp points to the buffer previous to us on the 2181 * unlinked list. Pull us from the list. 2182 */ 2183 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2184 0, 0); 2185 if (error) { 2186 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2187 __func__, error); 2188 return error; 2189 } 2190 next_agino = be32_to_cpu(dip->di_next_unlinked); 2191 ASSERT(next_agino != 0); 2192 ASSERT(next_agino != agino); 2193 if (next_agino != NULLAGINO) { 2194 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2195 offset = ip->i_imap.im_boffset + 2196 offsetof(xfs_dinode_t, di_next_unlinked); 2197 2198 /* need to recalc the inode CRC if appropriate */ 2199 xfs_dinode_calc_crc(mp, dip); 2200 2201 xfs_trans_inode_buf(tp, ibp); 2202 xfs_trans_log_buf(tp, ibp, offset, 2203 (offset + sizeof(xfs_agino_t) - 1)); 2204 xfs_inobp_check(mp, ibp); 2205 } else { 2206 xfs_trans_brelse(tp, ibp); 2207 } 2208 /* 2209 * Point the previous inode on the list to the next inode. 2210 */ 2211 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2212 ASSERT(next_agino != 0); 2213 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2214 2215 /* need to recalc the inode CRC if appropriate */ 2216 xfs_dinode_calc_crc(mp, last_dip); 2217 2218 xfs_trans_inode_buf(tp, last_ibp); 2219 xfs_trans_log_buf(tp, last_ibp, offset, 2220 (offset + sizeof(xfs_agino_t) - 1)); 2221 xfs_inobp_check(mp, last_ibp); 2222 } 2223 return 0; 2224 } 2225 2226 /* 2227 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2228 * inodes that are in memory - they all must be marked stale and attached to 2229 * the cluster buffer. 2230 */ 2231 STATIC int 2232 xfs_ifree_cluster( 2233 xfs_inode_t *free_ip, 2234 xfs_trans_t *tp, 2235 struct xfs_icluster *xic) 2236 { 2237 xfs_mount_t *mp = free_ip->i_mount; 2238 int blks_per_cluster; 2239 int inodes_per_cluster; 2240 int nbufs; 2241 int i, j; 2242 int ioffset; 2243 xfs_daddr_t blkno; 2244 xfs_buf_t *bp; 2245 xfs_inode_t *ip; 2246 xfs_inode_log_item_t *iip; 2247 xfs_log_item_t *lip; 2248 struct xfs_perag *pag; 2249 xfs_ino_t inum; 2250 2251 inum = xic->first_ino; 2252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2253 blks_per_cluster = xfs_icluster_size_fsb(mp); 2254 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2255 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2256 2257 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2258 /* 2259 * The allocation bitmap tells us which inodes of the chunk were 2260 * physically allocated. Skip the cluster if an inode falls into 2261 * a sparse region. 2262 */ 2263 ioffset = inum - xic->first_ino; 2264 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2265 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2266 continue; 2267 } 2268 2269 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2270 XFS_INO_TO_AGBNO(mp, inum)); 2271 2272 /* 2273 * We obtain and lock the backing buffer first in the process 2274 * here, as we have to ensure that any dirty inode that we 2275 * can't get the flush lock on is attached to the buffer. 2276 * If we scan the in-memory inodes first, then buffer IO can 2277 * complete before we get a lock on it, and hence we may fail 2278 * to mark all the active inodes on the buffer stale. 2279 */ 2280 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2281 mp->m_bsize * blks_per_cluster, 2282 XBF_UNMAPPED); 2283 2284 if (!bp) 2285 return -ENOMEM; 2286 2287 /* 2288 * This buffer may not have been correctly initialised as we 2289 * didn't read it from disk. That's not important because we are 2290 * only using to mark the buffer as stale in the log, and to 2291 * attach stale cached inodes on it. That means it will never be 2292 * dispatched for IO. If it is, we want to know about it, and we 2293 * want it to fail. We can acheive this by adding a write 2294 * verifier to the buffer. 2295 */ 2296 bp->b_ops = &xfs_inode_buf_ops; 2297 2298 /* 2299 * Walk the inodes already attached to the buffer and mark them 2300 * stale. These will all have the flush locks held, so an 2301 * in-memory inode walk can't lock them. By marking them all 2302 * stale first, we will not attempt to lock them in the loop 2303 * below as the XFS_ISTALE flag will be set. 2304 */ 2305 lip = bp->b_fspriv; 2306 while (lip) { 2307 if (lip->li_type == XFS_LI_INODE) { 2308 iip = (xfs_inode_log_item_t *)lip; 2309 ASSERT(iip->ili_logged == 1); 2310 lip->li_cb = xfs_istale_done; 2311 xfs_trans_ail_copy_lsn(mp->m_ail, 2312 &iip->ili_flush_lsn, 2313 &iip->ili_item.li_lsn); 2314 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2315 } 2316 lip = lip->li_bio_list; 2317 } 2318 2319 2320 /* 2321 * For each inode in memory attempt to add it to the inode 2322 * buffer and set it up for being staled on buffer IO 2323 * completion. This is safe as we've locked out tail pushing 2324 * and flushing by locking the buffer. 2325 * 2326 * We have already marked every inode that was part of a 2327 * transaction stale above, which means there is no point in 2328 * even trying to lock them. 2329 */ 2330 for (i = 0; i < inodes_per_cluster; i++) { 2331 retry: 2332 rcu_read_lock(); 2333 ip = radix_tree_lookup(&pag->pag_ici_root, 2334 XFS_INO_TO_AGINO(mp, (inum + i))); 2335 2336 /* Inode not in memory, nothing to do */ 2337 if (!ip) { 2338 rcu_read_unlock(); 2339 continue; 2340 } 2341 2342 /* 2343 * because this is an RCU protected lookup, we could 2344 * find a recently freed or even reallocated inode 2345 * during the lookup. We need to check under the 2346 * i_flags_lock for a valid inode here. Skip it if it 2347 * is not valid, the wrong inode or stale. 2348 */ 2349 spin_lock(&ip->i_flags_lock); 2350 if (ip->i_ino != inum + i || 2351 __xfs_iflags_test(ip, XFS_ISTALE)) { 2352 spin_unlock(&ip->i_flags_lock); 2353 rcu_read_unlock(); 2354 continue; 2355 } 2356 spin_unlock(&ip->i_flags_lock); 2357 2358 /* 2359 * Don't try to lock/unlock the current inode, but we 2360 * _cannot_ skip the other inodes that we did not find 2361 * in the list attached to the buffer and are not 2362 * already marked stale. If we can't lock it, back off 2363 * and retry. 2364 */ 2365 if (ip != free_ip) { 2366 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2367 rcu_read_unlock(); 2368 delay(1); 2369 goto retry; 2370 } 2371 2372 /* 2373 * Check the inode number again in case we're 2374 * racing with freeing in xfs_reclaim_inode(). 2375 * See the comments in that function for more 2376 * information as to why the initial check is 2377 * not sufficient. 2378 */ 2379 if (ip->i_ino != inum + i) { 2380 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2381 continue; 2382 } 2383 } 2384 rcu_read_unlock(); 2385 2386 xfs_iflock(ip); 2387 xfs_iflags_set(ip, XFS_ISTALE); 2388 2389 /* 2390 * we don't need to attach clean inodes or those only 2391 * with unlogged changes (which we throw away, anyway). 2392 */ 2393 iip = ip->i_itemp; 2394 if (!iip || xfs_inode_clean(ip)) { 2395 ASSERT(ip != free_ip); 2396 xfs_ifunlock(ip); 2397 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2398 continue; 2399 } 2400 2401 iip->ili_last_fields = iip->ili_fields; 2402 iip->ili_fields = 0; 2403 iip->ili_fsync_fields = 0; 2404 iip->ili_logged = 1; 2405 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2406 &iip->ili_item.li_lsn); 2407 2408 xfs_buf_attach_iodone(bp, xfs_istale_done, 2409 &iip->ili_item); 2410 2411 if (ip != free_ip) 2412 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2413 } 2414 2415 xfs_trans_stale_inode_buf(tp, bp); 2416 xfs_trans_binval(tp, bp); 2417 } 2418 2419 xfs_perag_put(pag); 2420 return 0; 2421 } 2422 2423 /* 2424 * This is called to return an inode to the inode free list. 2425 * The inode should already be truncated to 0 length and have 2426 * no pages associated with it. This routine also assumes that 2427 * the inode is already a part of the transaction. 2428 * 2429 * The on-disk copy of the inode will have been added to the list 2430 * of unlinked inodes in the AGI. We need to remove the inode from 2431 * that list atomically with respect to freeing it here. 2432 */ 2433 int 2434 xfs_ifree( 2435 xfs_trans_t *tp, 2436 xfs_inode_t *ip, 2437 struct xfs_defer_ops *dfops) 2438 { 2439 int error; 2440 struct xfs_icluster xic = { 0 }; 2441 2442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2443 ASSERT(VFS_I(ip)->i_nlink == 0); 2444 ASSERT(ip->i_d.di_nextents == 0); 2445 ASSERT(ip->i_d.di_anextents == 0); 2446 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2447 ASSERT(ip->i_d.di_nblocks == 0); 2448 2449 /* 2450 * Pull the on-disk inode from the AGI unlinked list. 2451 */ 2452 error = xfs_iunlink_remove(tp, ip); 2453 if (error) 2454 return error; 2455 2456 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2457 if (error) 2458 return error; 2459 2460 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2461 ip->i_d.di_flags = 0; 2462 ip->i_d.di_dmevmask = 0; 2463 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2464 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2465 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2466 /* 2467 * Bump the generation count so no one will be confused 2468 * by reincarnations of this inode. 2469 */ 2470 VFS_I(ip)->i_generation++; 2471 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2472 2473 if (xic.deleted) 2474 error = xfs_ifree_cluster(ip, tp, &xic); 2475 2476 return error; 2477 } 2478 2479 /* 2480 * This is called to unpin an inode. The caller must have the inode locked 2481 * in at least shared mode so that the buffer cannot be subsequently pinned 2482 * once someone is waiting for it to be unpinned. 2483 */ 2484 static void 2485 xfs_iunpin( 2486 struct xfs_inode *ip) 2487 { 2488 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2489 2490 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2491 2492 /* Give the log a push to start the unpinning I/O */ 2493 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2494 2495 } 2496 2497 static void 2498 __xfs_iunpin_wait( 2499 struct xfs_inode *ip) 2500 { 2501 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2502 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2503 2504 xfs_iunpin(ip); 2505 2506 do { 2507 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2508 if (xfs_ipincount(ip)) 2509 io_schedule(); 2510 } while (xfs_ipincount(ip)); 2511 finish_wait(wq, &wait.wq_entry); 2512 } 2513 2514 void 2515 xfs_iunpin_wait( 2516 struct xfs_inode *ip) 2517 { 2518 if (xfs_ipincount(ip)) 2519 __xfs_iunpin_wait(ip); 2520 } 2521 2522 /* 2523 * Removing an inode from the namespace involves removing the directory entry 2524 * and dropping the link count on the inode. Removing the directory entry can 2525 * result in locking an AGF (directory blocks were freed) and removing a link 2526 * count can result in placing the inode on an unlinked list which results in 2527 * locking an AGI. 2528 * 2529 * The big problem here is that we have an ordering constraint on AGF and AGI 2530 * locking - inode allocation locks the AGI, then can allocate a new extent for 2531 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2532 * removes the inode from the unlinked list, requiring that we lock the AGI 2533 * first, and then freeing the inode can result in an inode chunk being freed 2534 * and hence freeing disk space requiring that we lock an AGF. 2535 * 2536 * Hence the ordering that is imposed by other parts of the code is AGI before 2537 * AGF. This means we cannot remove the directory entry before we drop the inode 2538 * reference count and put it on the unlinked list as this results in a lock 2539 * order of AGF then AGI, and this can deadlock against inode allocation and 2540 * freeing. Therefore we must drop the link counts before we remove the 2541 * directory entry. 2542 * 2543 * This is still safe from a transactional point of view - it is not until we 2544 * get to xfs_defer_finish() that we have the possibility of multiple 2545 * transactions in this operation. Hence as long as we remove the directory 2546 * entry and drop the link count in the first transaction of the remove 2547 * operation, there are no transactional constraints on the ordering here. 2548 */ 2549 int 2550 xfs_remove( 2551 xfs_inode_t *dp, 2552 struct xfs_name *name, 2553 xfs_inode_t *ip) 2554 { 2555 xfs_mount_t *mp = dp->i_mount; 2556 xfs_trans_t *tp = NULL; 2557 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2558 int error = 0; 2559 struct xfs_defer_ops dfops; 2560 xfs_fsblock_t first_block; 2561 uint resblks; 2562 2563 trace_xfs_remove(dp, name); 2564 2565 if (XFS_FORCED_SHUTDOWN(mp)) 2566 return -EIO; 2567 2568 error = xfs_qm_dqattach(dp, 0); 2569 if (error) 2570 goto std_return; 2571 2572 error = xfs_qm_dqattach(ip, 0); 2573 if (error) 2574 goto std_return; 2575 2576 /* 2577 * We try to get the real space reservation first, 2578 * allowing for directory btree deletion(s) implying 2579 * possible bmap insert(s). If we can't get the space 2580 * reservation then we use 0 instead, and avoid the bmap 2581 * btree insert(s) in the directory code by, if the bmap 2582 * insert tries to happen, instead trimming the LAST 2583 * block from the directory. 2584 */ 2585 resblks = XFS_REMOVE_SPACE_RES(mp); 2586 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2587 if (error == -ENOSPC) { 2588 resblks = 0; 2589 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2590 &tp); 2591 } 2592 if (error) { 2593 ASSERT(error != -ENOSPC); 2594 goto std_return; 2595 } 2596 2597 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2598 2599 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2600 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2601 2602 /* 2603 * If we're removing a directory perform some additional validation. 2604 */ 2605 if (is_dir) { 2606 ASSERT(VFS_I(ip)->i_nlink >= 2); 2607 if (VFS_I(ip)->i_nlink != 2) { 2608 error = -ENOTEMPTY; 2609 goto out_trans_cancel; 2610 } 2611 if (!xfs_dir_isempty(ip)) { 2612 error = -ENOTEMPTY; 2613 goto out_trans_cancel; 2614 } 2615 2616 /* Drop the link from ip's "..". */ 2617 error = xfs_droplink(tp, dp); 2618 if (error) 2619 goto out_trans_cancel; 2620 2621 /* Drop the "." link from ip to self. */ 2622 error = xfs_droplink(tp, ip); 2623 if (error) 2624 goto out_trans_cancel; 2625 } else { 2626 /* 2627 * When removing a non-directory we need to log the parent 2628 * inode here. For a directory this is done implicitly 2629 * by the xfs_droplink call for the ".." entry. 2630 */ 2631 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2632 } 2633 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2634 2635 /* Drop the link from dp to ip. */ 2636 error = xfs_droplink(tp, ip); 2637 if (error) 2638 goto out_trans_cancel; 2639 2640 xfs_defer_init(&dfops, &first_block); 2641 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2642 &first_block, &dfops, resblks); 2643 if (error) { 2644 ASSERT(error != -ENOENT); 2645 goto out_bmap_cancel; 2646 } 2647 2648 /* 2649 * If this is a synchronous mount, make sure that the 2650 * remove transaction goes to disk before returning to 2651 * the user. 2652 */ 2653 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2654 xfs_trans_set_sync(tp); 2655 2656 error = xfs_defer_finish(&tp, &dfops); 2657 if (error) 2658 goto out_bmap_cancel; 2659 2660 error = xfs_trans_commit(tp); 2661 if (error) 2662 goto std_return; 2663 2664 if (is_dir && xfs_inode_is_filestream(ip)) 2665 xfs_filestream_deassociate(ip); 2666 2667 return 0; 2668 2669 out_bmap_cancel: 2670 xfs_defer_cancel(&dfops); 2671 out_trans_cancel: 2672 xfs_trans_cancel(tp); 2673 std_return: 2674 return error; 2675 } 2676 2677 /* 2678 * Enter all inodes for a rename transaction into a sorted array. 2679 */ 2680 #define __XFS_SORT_INODES 5 2681 STATIC void 2682 xfs_sort_for_rename( 2683 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2684 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2685 struct xfs_inode *ip1, /* in: inode of old entry */ 2686 struct xfs_inode *ip2, /* in: inode of new entry */ 2687 struct xfs_inode *wip, /* in: whiteout inode */ 2688 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2689 int *num_inodes) /* in/out: inodes in array */ 2690 { 2691 int i, j; 2692 2693 ASSERT(*num_inodes == __XFS_SORT_INODES); 2694 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2695 2696 /* 2697 * i_tab contains a list of pointers to inodes. We initialize 2698 * the table here & we'll sort it. We will then use it to 2699 * order the acquisition of the inode locks. 2700 * 2701 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2702 */ 2703 i = 0; 2704 i_tab[i++] = dp1; 2705 i_tab[i++] = dp2; 2706 i_tab[i++] = ip1; 2707 if (ip2) 2708 i_tab[i++] = ip2; 2709 if (wip) 2710 i_tab[i++] = wip; 2711 *num_inodes = i; 2712 2713 /* 2714 * Sort the elements via bubble sort. (Remember, there are at 2715 * most 5 elements to sort, so this is adequate.) 2716 */ 2717 for (i = 0; i < *num_inodes; i++) { 2718 for (j = 1; j < *num_inodes; j++) { 2719 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2720 struct xfs_inode *temp = i_tab[j]; 2721 i_tab[j] = i_tab[j-1]; 2722 i_tab[j-1] = temp; 2723 } 2724 } 2725 } 2726 } 2727 2728 static int 2729 xfs_finish_rename( 2730 struct xfs_trans *tp, 2731 struct xfs_defer_ops *dfops) 2732 { 2733 int error; 2734 2735 /* 2736 * If this is a synchronous mount, make sure that the rename transaction 2737 * goes to disk before returning to the user. 2738 */ 2739 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2740 xfs_trans_set_sync(tp); 2741 2742 error = xfs_defer_finish(&tp, dfops); 2743 if (error) { 2744 xfs_defer_cancel(dfops); 2745 xfs_trans_cancel(tp); 2746 return error; 2747 } 2748 2749 return xfs_trans_commit(tp); 2750 } 2751 2752 /* 2753 * xfs_cross_rename() 2754 * 2755 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2756 */ 2757 STATIC int 2758 xfs_cross_rename( 2759 struct xfs_trans *tp, 2760 struct xfs_inode *dp1, 2761 struct xfs_name *name1, 2762 struct xfs_inode *ip1, 2763 struct xfs_inode *dp2, 2764 struct xfs_name *name2, 2765 struct xfs_inode *ip2, 2766 struct xfs_defer_ops *dfops, 2767 xfs_fsblock_t *first_block, 2768 int spaceres) 2769 { 2770 int error = 0; 2771 int ip1_flags = 0; 2772 int ip2_flags = 0; 2773 int dp2_flags = 0; 2774 2775 /* Swap inode number for dirent in first parent */ 2776 error = xfs_dir_replace(tp, dp1, name1, 2777 ip2->i_ino, 2778 first_block, dfops, spaceres); 2779 if (error) 2780 goto out_trans_abort; 2781 2782 /* Swap inode number for dirent in second parent */ 2783 error = xfs_dir_replace(tp, dp2, name2, 2784 ip1->i_ino, 2785 first_block, dfops, spaceres); 2786 if (error) 2787 goto out_trans_abort; 2788 2789 /* 2790 * If we're renaming one or more directories across different parents, 2791 * update the respective ".." entries (and link counts) to match the new 2792 * parents. 2793 */ 2794 if (dp1 != dp2) { 2795 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2796 2797 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2798 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2799 dp1->i_ino, first_block, 2800 dfops, spaceres); 2801 if (error) 2802 goto out_trans_abort; 2803 2804 /* transfer ip2 ".." reference to dp1 */ 2805 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2806 error = xfs_droplink(tp, dp2); 2807 if (error) 2808 goto out_trans_abort; 2809 error = xfs_bumplink(tp, dp1); 2810 if (error) 2811 goto out_trans_abort; 2812 } 2813 2814 /* 2815 * Although ip1 isn't changed here, userspace needs 2816 * to be warned about the change, so that applications 2817 * relying on it (like backup ones), will properly 2818 * notify the change 2819 */ 2820 ip1_flags |= XFS_ICHGTIME_CHG; 2821 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2822 } 2823 2824 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2825 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2826 dp2->i_ino, first_block, 2827 dfops, spaceres); 2828 if (error) 2829 goto out_trans_abort; 2830 2831 /* transfer ip1 ".." reference to dp2 */ 2832 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2833 error = xfs_droplink(tp, dp1); 2834 if (error) 2835 goto out_trans_abort; 2836 error = xfs_bumplink(tp, dp2); 2837 if (error) 2838 goto out_trans_abort; 2839 } 2840 2841 /* 2842 * Although ip2 isn't changed here, userspace needs 2843 * to be warned about the change, so that applications 2844 * relying on it (like backup ones), will properly 2845 * notify the change 2846 */ 2847 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2848 ip2_flags |= XFS_ICHGTIME_CHG; 2849 } 2850 } 2851 2852 if (ip1_flags) { 2853 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2854 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2855 } 2856 if (ip2_flags) { 2857 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2858 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2859 } 2860 if (dp2_flags) { 2861 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2862 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2863 } 2864 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2865 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2866 return xfs_finish_rename(tp, dfops); 2867 2868 out_trans_abort: 2869 xfs_defer_cancel(dfops); 2870 xfs_trans_cancel(tp); 2871 return error; 2872 } 2873 2874 /* 2875 * xfs_rename_alloc_whiteout() 2876 * 2877 * Return a referenced, unlinked, unlocked inode that that can be used as a 2878 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2879 * crash between allocating the inode and linking it into the rename transaction 2880 * recovery will free the inode and we won't leak it. 2881 */ 2882 static int 2883 xfs_rename_alloc_whiteout( 2884 struct xfs_inode *dp, 2885 struct xfs_inode **wip) 2886 { 2887 struct xfs_inode *tmpfile; 2888 int error; 2889 2890 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2891 if (error) 2892 return error; 2893 2894 /* 2895 * Prepare the tmpfile inode as if it were created through the VFS. 2896 * Otherwise, the link increment paths will complain about nlink 0->1. 2897 * Drop the link count as done by d_tmpfile(), complete the inode setup 2898 * and flag it as linkable. 2899 */ 2900 drop_nlink(VFS_I(tmpfile)); 2901 xfs_setup_iops(tmpfile); 2902 xfs_finish_inode_setup(tmpfile); 2903 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2904 2905 *wip = tmpfile; 2906 return 0; 2907 } 2908 2909 /* 2910 * xfs_rename 2911 */ 2912 int 2913 xfs_rename( 2914 struct xfs_inode *src_dp, 2915 struct xfs_name *src_name, 2916 struct xfs_inode *src_ip, 2917 struct xfs_inode *target_dp, 2918 struct xfs_name *target_name, 2919 struct xfs_inode *target_ip, 2920 unsigned int flags) 2921 { 2922 struct xfs_mount *mp = src_dp->i_mount; 2923 struct xfs_trans *tp; 2924 struct xfs_defer_ops dfops; 2925 xfs_fsblock_t first_block; 2926 struct xfs_inode *wip = NULL; /* whiteout inode */ 2927 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2928 int num_inodes = __XFS_SORT_INODES; 2929 bool new_parent = (src_dp != target_dp); 2930 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2931 int spaceres; 2932 int error; 2933 2934 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2935 2936 if ((flags & RENAME_EXCHANGE) && !target_ip) 2937 return -EINVAL; 2938 2939 /* 2940 * If we are doing a whiteout operation, allocate the whiteout inode 2941 * we will be placing at the target and ensure the type is set 2942 * appropriately. 2943 */ 2944 if (flags & RENAME_WHITEOUT) { 2945 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2946 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2947 if (error) 2948 return error; 2949 2950 /* setup target dirent info as whiteout */ 2951 src_name->type = XFS_DIR3_FT_CHRDEV; 2952 } 2953 2954 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2955 inodes, &num_inodes); 2956 2957 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2958 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2959 if (error == -ENOSPC) { 2960 spaceres = 0; 2961 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2962 &tp); 2963 } 2964 if (error) 2965 goto out_release_wip; 2966 2967 /* 2968 * Attach the dquots to the inodes 2969 */ 2970 error = xfs_qm_vop_rename_dqattach(inodes); 2971 if (error) 2972 goto out_trans_cancel; 2973 2974 /* 2975 * Lock all the participating inodes. Depending upon whether 2976 * the target_name exists in the target directory, and 2977 * whether the target directory is the same as the source 2978 * directory, we can lock from 2 to 4 inodes. 2979 */ 2980 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2981 2982 /* 2983 * Join all the inodes to the transaction. From this point on, 2984 * we can rely on either trans_commit or trans_cancel to unlock 2985 * them. 2986 */ 2987 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2988 if (new_parent) 2989 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2990 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2991 if (target_ip) 2992 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2993 if (wip) 2994 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2995 2996 /* 2997 * If we are using project inheritance, we only allow renames 2998 * into our tree when the project IDs are the same; else the 2999 * tree quota mechanism would be circumvented. 3000 */ 3001 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3002 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 3003 error = -EXDEV; 3004 goto out_trans_cancel; 3005 } 3006 3007 xfs_defer_init(&dfops, &first_block); 3008 3009 /* RENAME_EXCHANGE is unique from here on. */ 3010 if (flags & RENAME_EXCHANGE) 3011 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3012 target_dp, target_name, target_ip, 3013 &dfops, &first_block, spaceres); 3014 3015 /* 3016 * Set up the target. 3017 */ 3018 if (target_ip == NULL) { 3019 /* 3020 * If there's no space reservation, check the entry will 3021 * fit before actually inserting it. 3022 */ 3023 if (!spaceres) { 3024 error = xfs_dir_canenter(tp, target_dp, target_name); 3025 if (error) 3026 goto out_trans_cancel; 3027 } 3028 /* 3029 * If target does not exist and the rename crosses 3030 * directories, adjust the target directory link count 3031 * to account for the ".." reference from the new entry. 3032 */ 3033 error = xfs_dir_createname(tp, target_dp, target_name, 3034 src_ip->i_ino, &first_block, 3035 &dfops, spaceres); 3036 if (error) 3037 goto out_bmap_cancel; 3038 3039 xfs_trans_ichgtime(tp, target_dp, 3040 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3041 3042 if (new_parent && src_is_directory) { 3043 error = xfs_bumplink(tp, target_dp); 3044 if (error) 3045 goto out_bmap_cancel; 3046 } 3047 } else { /* target_ip != NULL */ 3048 /* 3049 * If target exists and it's a directory, check that both 3050 * target and source are directories and that target can be 3051 * destroyed, or that neither is a directory. 3052 */ 3053 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3054 /* 3055 * Make sure target dir is empty. 3056 */ 3057 if (!(xfs_dir_isempty(target_ip)) || 3058 (VFS_I(target_ip)->i_nlink > 2)) { 3059 error = -EEXIST; 3060 goto out_trans_cancel; 3061 } 3062 } 3063 3064 /* 3065 * Link the source inode under the target name. 3066 * If the source inode is a directory and we are moving 3067 * it across directories, its ".." entry will be 3068 * inconsistent until we replace that down below. 3069 * 3070 * In case there is already an entry with the same 3071 * name at the destination directory, remove it first. 3072 */ 3073 error = xfs_dir_replace(tp, target_dp, target_name, 3074 src_ip->i_ino, 3075 &first_block, &dfops, spaceres); 3076 if (error) 3077 goto out_bmap_cancel; 3078 3079 xfs_trans_ichgtime(tp, target_dp, 3080 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3081 3082 /* 3083 * Decrement the link count on the target since the target 3084 * dir no longer points to it. 3085 */ 3086 error = xfs_droplink(tp, target_ip); 3087 if (error) 3088 goto out_bmap_cancel; 3089 3090 if (src_is_directory) { 3091 /* 3092 * Drop the link from the old "." entry. 3093 */ 3094 error = xfs_droplink(tp, target_ip); 3095 if (error) 3096 goto out_bmap_cancel; 3097 } 3098 } /* target_ip != NULL */ 3099 3100 /* 3101 * Remove the source. 3102 */ 3103 if (new_parent && src_is_directory) { 3104 /* 3105 * Rewrite the ".." entry to point to the new 3106 * directory. 3107 */ 3108 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3109 target_dp->i_ino, 3110 &first_block, &dfops, spaceres); 3111 ASSERT(error != -EEXIST); 3112 if (error) 3113 goto out_bmap_cancel; 3114 } 3115 3116 /* 3117 * We always want to hit the ctime on the source inode. 3118 * 3119 * This isn't strictly required by the standards since the source 3120 * inode isn't really being changed, but old unix file systems did 3121 * it and some incremental backup programs won't work without it. 3122 */ 3123 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3124 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3125 3126 /* 3127 * Adjust the link count on src_dp. This is necessary when 3128 * renaming a directory, either within one parent when 3129 * the target existed, or across two parent directories. 3130 */ 3131 if (src_is_directory && (new_parent || target_ip != NULL)) { 3132 3133 /* 3134 * Decrement link count on src_directory since the 3135 * entry that's moved no longer points to it. 3136 */ 3137 error = xfs_droplink(tp, src_dp); 3138 if (error) 3139 goto out_bmap_cancel; 3140 } 3141 3142 /* 3143 * For whiteouts, we only need to update the source dirent with the 3144 * inode number of the whiteout inode rather than removing it 3145 * altogether. 3146 */ 3147 if (wip) { 3148 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3149 &first_block, &dfops, spaceres); 3150 } else 3151 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3152 &first_block, &dfops, spaceres); 3153 if (error) 3154 goto out_bmap_cancel; 3155 3156 /* 3157 * For whiteouts, we need to bump the link count on the whiteout inode. 3158 * This means that failures all the way up to this point leave the inode 3159 * on the unlinked list and so cleanup is a simple matter of dropping 3160 * the remaining reference to it. If we fail here after bumping the link 3161 * count, we're shutting down the filesystem so we'll never see the 3162 * intermediate state on disk. 3163 */ 3164 if (wip) { 3165 ASSERT(VFS_I(wip)->i_nlink == 0); 3166 error = xfs_bumplink(tp, wip); 3167 if (error) 3168 goto out_bmap_cancel; 3169 error = xfs_iunlink_remove(tp, wip); 3170 if (error) 3171 goto out_bmap_cancel; 3172 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3173 3174 /* 3175 * Now we have a real link, clear the "I'm a tmpfile" state 3176 * flag from the inode so it doesn't accidentally get misused in 3177 * future. 3178 */ 3179 VFS_I(wip)->i_state &= ~I_LINKABLE; 3180 } 3181 3182 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3183 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3184 if (new_parent) 3185 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3186 3187 error = xfs_finish_rename(tp, &dfops); 3188 if (wip) 3189 IRELE(wip); 3190 return error; 3191 3192 out_bmap_cancel: 3193 xfs_defer_cancel(&dfops); 3194 out_trans_cancel: 3195 xfs_trans_cancel(tp); 3196 out_release_wip: 3197 if (wip) 3198 IRELE(wip); 3199 return error; 3200 } 3201 3202 STATIC int 3203 xfs_iflush_cluster( 3204 struct xfs_inode *ip, 3205 struct xfs_buf *bp) 3206 { 3207 struct xfs_mount *mp = ip->i_mount; 3208 struct xfs_perag *pag; 3209 unsigned long first_index, mask; 3210 unsigned long inodes_per_cluster; 3211 int cilist_size; 3212 struct xfs_inode **cilist; 3213 struct xfs_inode *cip; 3214 int nr_found; 3215 int clcount = 0; 3216 int bufwasdelwri; 3217 int i; 3218 3219 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3220 3221 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3222 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3223 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3224 if (!cilist) 3225 goto out_put; 3226 3227 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3228 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3229 rcu_read_lock(); 3230 /* really need a gang lookup range call here */ 3231 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3232 first_index, inodes_per_cluster); 3233 if (nr_found == 0) 3234 goto out_free; 3235 3236 for (i = 0; i < nr_found; i++) { 3237 cip = cilist[i]; 3238 if (cip == ip) 3239 continue; 3240 3241 /* 3242 * because this is an RCU protected lookup, we could find a 3243 * recently freed or even reallocated inode during the lookup. 3244 * We need to check under the i_flags_lock for a valid inode 3245 * here. Skip it if it is not valid or the wrong inode. 3246 */ 3247 spin_lock(&cip->i_flags_lock); 3248 if (!cip->i_ino || 3249 __xfs_iflags_test(cip, XFS_ISTALE)) { 3250 spin_unlock(&cip->i_flags_lock); 3251 continue; 3252 } 3253 3254 /* 3255 * Once we fall off the end of the cluster, no point checking 3256 * any more inodes in the list because they will also all be 3257 * outside the cluster. 3258 */ 3259 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3260 spin_unlock(&cip->i_flags_lock); 3261 break; 3262 } 3263 spin_unlock(&cip->i_flags_lock); 3264 3265 /* 3266 * Do an un-protected check to see if the inode is dirty and 3267 * is a candidate for flushing. These checks will be repeated 3268 * later after the appropriate locks are acquired. 3269 */ 3270 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3271 continue; 3272 3273 /* 3274 * Try to get locks. If any are unavailable or it is pinned, 3275 * then this inode cannot be flushed and is skipped. 3276 */ 3277 3278 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3279 continue; 3280 if (!xfs_iflock_nowait(cip)) { 3281 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3282 continue; 3283 } 3284 if (xfs_ipincount(cip)) { 3285 xfs_ifunlock(cip); 3286 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3287 continue; 3288 } 3289 3290 3291 /* 3292 * Check the inode number again, just to be certain we are not 3293 * racing with freeing in xfs_reclaim_inode(). See the comments 3294 * in that function for more information as to why the initial 3295 * check is not sufficient. 3296 */ 3297 if (!cip->i_ino) { 3298 xfs_ifunlock(cip); 3299 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3300 continue; 3301 } 3302 3303 /* 3304 * arriving here means that this inode can be flushed. First 3305 * re-check that it's dirty before flushing. 3306 */ 3307 if (!xfs_inode_clean(cip)) { 3308 int error; 3309 error = xfs_iflush_int(cip, bp); 3310 if (error) { 3311 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3312 goto cluster_corrupt_out; 3313 } 3314 clcount++; 3315 } else { 3316 xfs_ifunlock(cip); 3317 } 3318 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3319 } 3320 3321 if (clcount) { 3322 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3323 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3324 } 3325 3326 out_free: 3327 rcu_read_unlock(); 3328 kmem_free(cilist); 3329 out_put: 3330 xfs_perag_put(pag); 3331 return 0; 3332 3333 3334 cluster_corrupt_out: 3335 /* 3336 * Corruption detected in the clustering loop. Invalidate the 3337 * inode buffer and shut down the filesystem. 3338 */ 3339 rcu_read_unlock(); 3340 /* 3341 * Clean up the buffer. If it was delwri, just release it -- 3342 * brelse can handle it with no problems. If not, shut down the 3343 * filesystem before releasing the buffer. 3344 */ 3345 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3346 if (bufwasdelwri) 3347 xfs_buf_relse(bp); 3348 3349 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3350 3351 if (!bufwasdelwri) { 3352 /* 3353 * Just like incore_relse: if we have b_iodone functions, 3354 * mark the buffer as an error and call them. Otherwise 3355 * mark it as stale and brelse. 3356 */ 3357 if (bp->b_iodone) { 3358 bp->b_flags &= ~XBF_DONE; 3359 xfs_buf_stale(bp); 3360 xfs_buf_ioerror(bp, -EIO); 3361 xfs_buf_ioend(bp); 3362 } else { 3363 xfs_buf_stale(bp); 3364 xfs_buf_relse(bp); 3365 } 3366 } 3367 3368 /* 3369 * Unlocks the flush lock 3370 */ 3371 xfs_iflush_abort(cip, false); 3372 kmem_free(cilist); 3373 xfs_perag_put(pag); 3374 return -EFSCORRUPTED; 3375 } 3376 3377 /* 3378 * Flush dirty inode metadata into the backing buffer. 3379 * 3380 * The caller must have the inode lock and the inode flush lock held. The 3381 * inode lock will still be held upon return to the caller, and the inode 3382 * flush lock will be released after the inode has reached the disk. 3383 * 3384 * The caller must write out the buffer returned in *bpp and release it. 3385 */ 3386 int 3387 xfs_iflush( 3388 struct xfs_inode *ip, 3389 struct xfs_buf **bpp) 3390 { 3391 struct xfs_mount *mp = ip->i_mount; 3392 struct xfs_buf *bp = NULL; 3393 struct xfs_dinode *dip; 3394 int error; 3395 3396 XFS_STATS_INC(mp, xs_iflush_count); 3397 3398 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3399 ASSERT(xfs_isiflocked(ip)); 3400 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3401 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3402 3403 *bpp = NULL; 3404 3405 xfs_iunpin_wait(ip); 3406 3407 /* 3408 * For stale inodes we cannot rely on the backing buffer remaining 3409 * stale in cache for the remaining life of the stale inode and so 3410 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3411 * inodes below. We have to check this after ensuring the inode is 3412 * unpinned so that it is safe to reclaim the stale inode after the 3413 * flush call. 3414 */ 3415 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3416 xfs_ifunlock(ip); 3417 return 0; 3418 } 3419 3420 /* 3421 * This may have been unpinned because the filesystem is shutting 3422 * down forcibly. If that's the case we must not write this inode 3423 * to disk, because the log record didn't make it to disk. 3424 * 3425 * We also have to remove the log item from the AIL in this case, 3426 * as we wait for an empty AIL as part of the unmount process. 3427 */ 3428 if (XFS_FORCED_SHUTDOWN(mp)) { 3429 error = -EIO; 3430 goto abort_out; 3431 } 3432 3433 /* 3434 * Get the buffer containing the on-disk inode. We are doing a try-lock 3435 * operation here, so we may get an EAGAIN error. In that case, we 3436 * simply want to return with the inode still dirty. 3437 * 3438 * If we get any other error, we effectively have a corruption situation 3439 * and we cannot flush the inode, so we treat it the same as failing 3440 * xfs_iflush_int(). 3441 */ 3442 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3443 0); 3444 if (error == -EAGAIN) { 3445 xfs_ifunlock(ip); 3446 return error; 3447 } 3448 if (error) 3449 goto corrupt_out; 3450 3451 /* 3452 * First flush out the inode that xfs_iflush was called with. 3453 */ 3454 error = xfs_iflush_int(ip, bp); 3455 if (error) 3456 goto corrupt_out; 3457 3458 /* 3459 * If the buffer is pinned then push on the log now so we won't 3460 * get stuck waiting in the write for too long. 3461 */ 3462 if (xfs_buf_ispinned(bp)) 3463 xfs_log_force(mp, 0); 3464 3465 /* 3466 * inode clustering: 3467 * see if other inodes can be gathered into this write 3468 */ 3469 error = xfs_iflush_cluster(ip, bp); 3470 if (error) 3471 goto cluster_corrupt_out; 3472 3473 *bpp = bp; 3474 return 0; 3475 3476 corrupt_out: 3477 if (bp) 3478 xfs_buf_relse(bp); 3479 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3480 cluster_corrupt_out: 3481 error = -EFSCORRUPTED; 3482 abort_out: 3483 /* 3484 * Unlocks the flush lock 3485 */ 3486 xfs_iflush_abort(ip, false); 3487 return error; 3488 } 3489 3490 STATIC int 3491 xfs_iflush_int( 3492 struct xfs_inode *ip, 3493 struct xfs_buf *bp) 3494 { 3495 struct xfs_inode_log_item *iip = ip->i_itemp; 3496 struct xfs_dinode *dip; 3497 struct xfs_mount *mp = ip->i_mount; 3498 3499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3500 ASSERT(xfs_isiflocked(ip)); 3501 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3502 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3503 ASSERT(iip != NULL && iip->ili_fields != 0); 3504 ASSERT(ip->i_d.di_version > 1); 3505 3506 /* set *dip = inode's place in the buffer */ 3507 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3508 3509 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3510 mp, XFS_ERRTAG_IFLUSH_1)) { 3511 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3512 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3513 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3514 goto corrupt_out; 3515 } 3516 if (S_ISREG(VFS_I(ip)->i_mode)) { 3517 if (XFS_TEST_ERROR( 3518 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3519 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3520 mp, XFS_ERRTAG_IFLUSH_3)) { 3521 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3522 "%s: Bad regular inode %Lu, ptr 0x%p", 3523 __func__, ip->i_ino, ip); 3524 goto corrupt_out; 3525 } 3526 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3527 if (XFS_TEST_ERROR( 3528 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3529 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3530 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3531 mp, XFS_ERRTAG_IFLUSH_4)) { 3532 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3533 "%s: Bad directory inode %Lu, ptr 0x%p", 3534 __func__, ip->i_ino, ip); 3535 goto corrupt_out; 3536 } 3537 } 3538 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3539 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3540 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3541 "%s: detected corrupt incore inode %Lu, " 3542 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3543 __func__, ip->i_ino, 3544 ip->i_d.di_nextents + ip->i_d.di_anextents, 3545 ip->i_d.di_nblocks, ip); 3546 goto corrupt_out; 3547 } 3548 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3549 mp, XFS_ERRTAG_IFLUSH_6)) { 3550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3551 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3552 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3553 goto corrupt_out; 3554 } 3555 3556 /* 3557 * Inode item log recovery for v2 inodes are dependent on the 3558 * di_flushiter count for correct sequencing. We bump the flush 3559 * iteration count so we can detect flushes which postdate a log record 3560 * during recovery. This is redundant as we now log every change and 3561 * hence this can't happen but we need to still do it to ensure 3562 * backwards compatibility with old kernels that predate logging all 3563 * inode changes. 3564 */ 3565 if (ip->i_d.di_version < 3) 3566 ip->i_d.di_flushiter++; 3567 3568 /* Check the inline directory data. */ 3569 if (S_ISDIR(VFS_I(ip)->i_mode) && 3570 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL && 3571 xfs_dir2_sf_verify(ip)) 3572 goto corrupt_out; 3573 3574 /* 3575 * Copy the dirty parts of the inode into the on-disk inode. We always 3576 * copy out the core of the inode, because if the inode is dirty at all 3577 * the core must be. 3578 */ 3579 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3580 3581 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3582 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3583 ip->i_d.di_flushiter = 0; 3584 3585 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3586 if (XFS_IFORK_Q(ip)) 3587 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3588 xfs_inobp_check(mp, bp); 3589 3590 /* 3591 * We've recorded everything logged in the inode, so we'd like to clear 3592 * the ili_fields bits so we don't log and flush things unnecessarily. 3593 * However, we can't stop logging all this information until the data 3594 * we've copied into the disk buffer is written to disk. If we did we 3595 * might overwrite the copy of the inode in the log with all the data 3596 * after re-logging only part of it, and in the face of a crash we 3597 * wouldn't have all the data we need to recover. 3598 * 3599 * What we do is move the bits to the ili_last_fields field. When 3600 * logging the inode, these bits are moved back to the ili_fields field. 3601 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3602 * know that the information those bits represent is permanently on 3603 * disk. As long as the flush completes before the inode is logged 3604 * again, then both ili_fields and ili_last_fields will be cleared. 3605 * 3606 * We can play with the ili_fields bits here, because the inode lock 3607 * must be held exclusively in order to set bits there and the flush 3608 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3609 * done routine can tell whether or not to look in the AIL. Also, store 3610 * the current LSN of the inode so that we can tell whether the item has 3611 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3612 * need the AIL lock, because it is a 64 bit value that cannot be read 3613 * atomically. 3614 */ 3615 iip->ili_last_fields = iip->ili_fields; 3616 iip->ili_fields = 0; 3617 iip->ili_fsync_fields = 0; 3618 iip->ili_logged = 1; 3619 3620 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3621 &iip->ili_item.li_lsn); 3622 3623 /* 3624 * Attach the function xfs_iflush_done to the inode's 3625 * buffer. This will remove the inode from the AIL 3626 * and unlock the inode's flush lock when the inode is 3627 * completely written to disk. 3628 */ 3629 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3630 3631 /* generate the checksum. */ 3632 xfs_dinode_calc_crc(mp, dip); 3633 3634 ASSERT(bp->b_fspriv != NULL); 3635 ASSERT(bp->b_iodone != NULL); 3636 return 0; 3637 3638 corrupt_out: 3639 return -EFSCORRUPTED; 3640 } 3641