1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_da_format.h" 31 #include "xfs_da_btree.h" 32 #include "xfs_dir2.h" 33 #include "xfs_attr_sf.h" 34 #include "xfs_attr.h" 35 #include "xfs_trans_space.h" 36 #include "xfs_trans.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_ialloc.h" 40 #include "xfs_bmap.h" 41 #include "xfs_bmap_util.h" 42 #include "xfs_error.h" 43 #include "xfs_quota.h" 44 #include "xfs_filestream.h" 45 #include "xfs_cksum.h" 46 #include "xfs_trace.h" 47 #include "xfs_icache.h" 48 #include "xfs_symlink.h" 49 #include "xfs_trans_priv.h" 50 #include "xfs_log.h" 51 #include "xfs_bmap_btree.h" 52 #include "xfs_reflink.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); 63 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 64 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * Helper function to extract CoW extent size hint from inode. 82 * Between the extent size hint and the CoW extent size hint, we 83 * return the greater of the two. If the value is zero (automatic), 84 * use the default size. 85 */ 86 xfs_extlen_t 87 xfs_get_cowextsz_hint( 88 struct xfs_inode *ip) 89 { 90 xfs_extlen_t a, b; 91 92 a = 0; 93 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 94 a = ip->i_d.di_cowextsize; 95 b = xfs_get_extsz_hint(ip); 96 97 a = max(a, b); 98 if (a == 0) 99 return XFS_DEFAULT_COWEXTSZ_HINT; 100 return a; 101 } 102 103 /* 104 * These two are wrapper routines around the xfs_ilock() routine used to 105 * centralize some grungy code. They are used in places that wish to lock the 106 * inode solely for reading the extents. The reason these places can't just 107 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 108 * bringing in of the extents from disk for a file in b-tree format. If the 109 * inode is in b-tree format, then we need to lock the inode exclusively until 110 * the extents are read in. Locking it exclusively all the time would limit 111 * our parallelism unnecessarily, though. What we do instead is check to see 112 * if the extents have been read in yet, and only lock the inode exclusively 113 * if they have not. 114 * 115 * The functions return a value which should be given to the corresponding 116 * xfs_iunlock() call. 117 */ 118 uint 119 xfs_ilock_data_map_shared( 120 struct xfs_inode *ip) 121 { 122 uint lock_mode = XFS_ILOCK_SHARED; 123 124 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 125 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 126 lock_mode = XFS_ILOCK_EXCL; 127 xfs_ilock(ip, lock_mode); 128 return lock_mode; 129 } 130 131 uint 132 xfs_ilock_attr_map_shared( 133 struct xfs_inode *ip) 134 { 135 uint lock_mode = XFS_ILOCK_SHARED; 136 137 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 138 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 139 lock_mode = XFS_ILOCK_EXCL; 140 xfs_ilock(ip, lock_mode); 141 return lock_mode; 142 } 143 144 /* 145 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 146 * the i_lock. This routine allows various combinations of the locks to be 147 * obtained. 148 * 149 * The 3 locks should always be ordered so that the IO lock is obtained first, 150 * the mmap lock second and the ilock last in order to prevent deadlock. 151 * 152 * Basic locking order: 153 * 154 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 155 * 156 * mmap_sem locking order: 157 * 158 * i_iolock -> page lock -> mmap_sem 159 * mmap_sem -> i_mmap_lock -> page_lock 160 * 161 * The difference in mmap_sem locking order mean that we cannot hold the 162 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 163 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 164 * in get_user_pages() to map the user pages into the kernel address space for 165 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 166 * page faults already hold the mmap_sem. 167 * 168 * Hence to serialise fully against both syscall and mmap based IO, we need to 169 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 170 * taken in places where we need to invalidate the page cache in a race 171 * free manner (e.g. truncate, hole punch and other extent manipulation 172 * functions). 173 */ 174 void 175 xfs_ilock( 176 xfs_inode_t *ip, 177 uint lock_flags) 178 { 179 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 180 181 /* 182 * You can't set both SHARED and EXCL for the same lock, 183 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 184 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 185 */ 186 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 187 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 188 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 189 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 190 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 191 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 192 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 193 194 if (lock_flags & XFS_IOLOCK_EXCL) 195 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 196 else if (lock_flags & XFS_IOLOCK_SHARED) 197 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 198 199 if (lock_flags & XFS_MMAPLOCK_EXCL) 200 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 201 else if (lock_flags & XFS_MMAPLOCK_SHARED) 202 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 203 204 if (lock_flags & XFS_ILOCK_EXCL) 205 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 206 else if (lock_flags & XFS_ILOCK_SHARED) 207 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 208 } 209 210 /* 211 * This is just like xfs_ilock(), except that the caller 212 * is guaranteed not to sleep. It returns 1 if it gets 213 * the requested locks and 0 otherwise. If the IO lock is 214 * obtained but the inode lock cannot be, then the IO lock 215 * is dropped before returning. 216 * 217 * ip -- the inode being locked 218 * lock_flags -- this parameter indicates the inode's locks to be 219 * to be locked. See the comment for xfs_ilock() for a list 220 * of valid values. 221 */ 222 int 223 xfs_ilock_nowait( 224 xfs_inode_t *ip, 225 uint lock_flags) 226 { 227 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 228 229 /* 230 * You can't set both SHARED and EXCL for the same lock, 231 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 232 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 233 */ 234 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 235 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 236 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 237 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 238 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 239 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 240 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 241 242 if (lock_flags & XFS_IOLOCK_EXCL) { 243 if (!mrtryupdate(&ip->i_iolock)) 244 goto out; 245 } else if (lock_flags & XFS_IOLOCK_SHARED) { 246 if (!mrtryaccess(&ip->i_iolock)) 247 goto out; 248 } 249 250 if (lock_flags & XFS_MMAPLOCK_EXCL) { 251 if (!mrtryupdate(&ip->i_mmaplock)) 252 goto out_undo_iolock; 253 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 254 if (!mrtryaccess(&ip->i_mmaplock)) 255 goto out_undo_iolock; 256 } 257 258 if (lock_flags & XFS_ILOCK_EXCL) { 259 if (!mrtryupdate(&ip->i_lock)) 260 goto out_undo_mmaplock; 261 } else if (lock_flags & XFS_ILOCK_SHARED) { 262 if (!mrtryaccess(&ip->i_lock)) 263 goto out_undo_mmaplock; 264 } 265 return 1; 266 267 out_undo_mmaplock: 268 if (lock_flags & XFS_MMAPLOCK_EXCL) 269 mrunlock_excl(&ip->i_mmaplock); 270 else if (lock_flags & XFS_MMAPLOCK_SHARED) 271 mrunlock_shared(&ip->i_mmaplock); 272 out_undo_iolock: 273 if (lock_flags & XFS_IOLOCK_EXCL) 274 mrunlock_excl(&ip->i_iolock); 275 else if (lock_flags & XFS_IOLOCK_SHARED) 276 mrunlock_shared(&ip->i_iolock); 277 out: 278 return 0; 279 } 280 281 /* 282 * xfs_iunlock() is used to drop the inode locks acquired with 283 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 284 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 285 * that we know which locks to drop. 286 * 287 * ip -- the inode being unlocked 288 * lock_flags -- this parameter indicates the inode's locks to be 289 * to be unlocked. See the comment for xfs_ilock() for a list 290 * of valid values for this parameter. 291 * 292 */ 293 void 294 xfs_iunlock( 295 xfs_inode_t *ip, 296 uint lock_flags) 297 { 298 /* 299 * You can't set both SHARED and EXCL for the same lock, 300 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 301 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 302 */ 303 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 304 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 305 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 306 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 307 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 308 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 309 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 310 ASSERT(lock_flags != 0); 311 312 if (lock_flags & XFS_IOLOCK_EXCL) 313 mrunlock_excl(&ip->i_iolock); 314 else if (lock_flags & XFS_IOLOCK_SHARED) 315 mrunlock_shared(&ip->i_iolock); 316 317 if (lock_flags & XFS_MMAPLOCK_EXCL) 318 mrunlock_excl(&ip->i_mmaplock); 319 else if (lock_flags & XFS_MMAPLOCK_SHARED) 320 mrunlock_shared(&ip->i_mmaplock); 321 322 if (lock_flags & XFS_ILOCK_EXCL) 323 mrunlock_excl(&ip->i_lock); 324 else if (lock_flags & XFS_ILOCK_SHARED) 325 mrunlock_shared(&ip->i_lock); 326 327 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 328 } 329 330 /* 331 * give up write locks. the i/o lock cannot be held nested 332 * if it is being demoted. 333 */ 334 void 335 xfs_ilock_demote( 336 xfs_inode_t *ip, 337 uint lock_flags) 338 { 339 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 340 ASSERT((lock_flags & 341 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 342 343 if (lock_flags & XFS_ILOCK_EXCL) 344 mrdemote(&ip->i_lock); 345 if (lock_flags & XFS_MMAPLOCK_EXCL) 346 mrdemote(&ip->i_mmaplock); 347 if (lock_flags & XFS_IOLOCK_EXCL) 348 mrdemote(&ip->i_iolock); 349 350 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 351 } 352 353 #if defined(DEBUG) || defined(XFS_WARN) 354 int 355 xfs_isilocked( 356 xfs_inode_t *ip, 357 uint lock_flags) 358 { 359 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 360 if (!(lock_flags & XFS_ILOCK_SHARED)) 361 return !!ip->i_lock.mr_writer; 362 return rwsem_is_locked(&ip->i_lock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 366 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 367 return !!ip->i_mmaplock.mr_writer; 368 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 369 } 370 371 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 372 if (!(lock_flags & XFS_IOLOCK_SHARED)) 373 return !!ip->i_iolock.mr_writer; 374 return rwsem_is_locked(&ip->i_iolock.mr_lock); 375 } 376 377 ASSERT(0); 378 return 0; 379 } 380 #endif 381 382 #ifdef DEBUG 383 int xfs_locked_n; 384 int xfs_small_retries; 385 int xfs_middle_retries; 386 int xfs_lots_retries; 387 int xfs_lock_delays; 388 #endif 389 390 /* 391 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 392 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 393 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 394 * errors and warnings. 395 */ 396 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 397 static bool 398 xfs_lockdep_subclass_ok( 399 int subclass) 400 { 401 return subclass < MAX_LOCKDEP_SUBCLASSES; 402 } 403 #else 404 #define xfs_lockdep_subclass_ok(subclass) (true) 405 #endif 406 407 /* 408 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 409 * value. This can be called for any type of inode lock combination, including 410 * parent locking. Care must be taken to ensure we don't overrun the subclass 411 * storage fields in the class mask we build. 412 */ 413 static inline int 414 xfs_lock_inumorder(int lock_mode, int subclass) 415 { 416 int class = 0; 417 418 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 419 XFS_ILOCK_RTSUM))); 420 ASSERT(xfs_lockdep_subclass_ok(subclass)); 421 422 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 423 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 424 ASSERT(xfs_lockdep_subclass_ok(subclass + 425 XFS_IOLOCK_PARENT_VAL)); 426 class += subclass << XFS_IOLOCK_SHIFT; 427 if (lock_mode & XFS_IOLOCK_PARENT) 428 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT; 429 } 430 431 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 432 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 433 class += subclass << XFS_MMAPLOCK_SHIFT; 434 } 435 436 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 437 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 438 class += subclass << XFS_ILOCK_SHIFT; 439 } 440 441 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 442 } 443 444 /* 445 * The following routine will lock n inodes in exclusive mode. We assume the 446 * caller calls us with the inodes in i_ino order. 447 * 448 * We need to detect deadlock where an inode that we lock is in the AIL and we 449 * start waiting for another inode that is locked by a thread in a long running 450 * transaction (such as truncate). This can result in deadlock since the long 451 * running trans might need to wait for the inode we just locked in order to 452 * push the tail and free space in the log. 453 * 454 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 455 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 456 * lock more than one at a time, lockdep will report false positives saying we 457 * have violated locking orders. 458 */ 459 static void 460 xfs_lock_inodes( 461 xfs_inode_t **ips, 462 int inodes, 463 uint lock_mode) 464 { 465 int attempts = 0, i, j, try_lock; 466 xfs_log_item_t *lp; 467 468 /* 469 * Currently supports between 2 and 5 inodes with exclusive locking. We 470 * support an arbitrary depth of locking here, but absolute limits on 471 * inodes depend on the the type of locking and the limits placed by 472 * lockdep annotations in xfs_lock_inumorder. These are all checked by 473 * the asserts. 474 */ 475 ASSERT(ips && inodes >= 2 && inodes <= 5); 476 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 477 XFS_ILOCK_EXCL)); 478 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 479 XFS_ILOCK_SHARED))); 480 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) || 481 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1); 482 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 483 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 484 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 485 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 486 487 if (lock_mode & XFS_IOLOCK_EXCL) { 488 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 489 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 490 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 491 492 try_lock = 0; 493 i = 0; 494 again: 495 for (; i < inodes; i++) { 496 ASSERT(ips[i]); 497 498 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 499 continue; 500 501 /* 502 * If try_lock is not set yet, make sure all locked inodes are 503 * not in the AIL. If any are, set try_lock to be used later. 504 */ 505 if (!try_lock) { 506 for (j = (i - 1); j >= 0 && !try_lock; j--) { 507 lp = (xfs_log_item_t *)ips[j]->i_itemp; 508 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 509 try_lock++; 510 } 511 } 512 513 /* 514 * If any of the previous locks we have locked is in the AIL, 515 * we must TRY to get the second and subsequent locks. If 516 * we can't get any, we must release all we have 517 * and try again. 518 */ 519 if (!try_lock) { 520 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 521 continue; 522 } 523 524 /* try_lock means we have an inode locked that is in the AIL. */ 525 ASSERT(i != 0); 526 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 527 continue; 528 529 /* 530 * Unlock all previous guys and try again. xfs_iunlock will try 531 * to push the tail if the inode is in the AIL. 532 */ 533 attempts++; 534 for (j = i - 1; j >= 0; j--) { 535 /* 536 * Check to see if we've already unlocked this one. Not 537 * the first one going back, and the inode ptr is the 538 * same. 539 */ 540 if (j != (i - 1) && ips[j] == ips[j + 1]) 541 continue; 542 543 xfs_iunlock(ips[j], lock_mode); 544 } 545 546 if ((attempts % 5) == 0) { 547 delay(1); /* Don't just spin the CPU */ 548 #ifdef DEBUG 549 xfs_lock_delays++; 550 #endif 551 } 552 i = 0; 553 try_lock = 0; 554 goto again; 555 } 556 557 #ifdef DEBUG 558 if (attempts) { 559 if (attempts < 5) xfs_small_retries++; 560 else if (attempts < 100) xfs_middle_retries++; 561 else xfs_lots_retries++; 562 } else { 563 xfs_locked_n++; 564 } 565 #endif 566 } 567 568 /* 569 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 570 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 571 * lock more than one at a time, lockdep will report false positives saying we 572 * have violated locking orders. 573 */ 574 void 575 xfs_lock_two_inodes( 576 xfs_inode_t *ip0, 577 xfs_inode_t *ip1, 578 uint lock_mode) 579 { 580 xfs_inode_t *temp; 581 int attempts = 0; 582 xfs_log_item_t *lp; 583 584 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 585 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 586 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 587 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 588 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 589 590 ASSERT(ip0->i_ino != ip1->i_ino); 591 592 if (ip0->i_ino > ip1->i_ino) { 593 temp = ip0; 594 ip0 = ip1; 595 ip1 = temp; 596 } 597 598 again: 599 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 600 601 /* 602 * If the first lock we have locked is in the AIL, we must TRY to get 603 * the second lock. If we can't get it, we must release the first one 604 * and try again. 605 */ 606 lp = (xfs_log_item_t *)ip0->i_itemp; 607 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 608 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 609 xfs_iunlock(ip0, lock_mode); 610 if ((++attempts % 5) == 0) 611 delay(1); /* Don't just spin the CPU */ 612 goto again; 613 } 614 } else { 615 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 616 } 617 } 618 619 620 void 621 __xfs_iflock( 622 struct xfs_inode *ip) 623 { 624 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 625 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 626 627 do { 628 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 629 if (xfs_isiflocked(ip)) 630 io_schedule(); 631 } while (!xfs_iflock_nowait(ip)); 632 633 finish_wait(wq, &wait.wait); 634 } 635 636 STATIC uint 637 _xfs_dic2xflags( 638 __uint16_t di_flags, 639 uint64_t di_flags2, 640 bool has_attr) 641 { 642 uint flags = 0; 643 644 if (di_flags & XFS_DIFLAG_ANY) { 645 if (di_flags & XFS_DIFLAG_REALTIME) 646 flags |= FS_XFLAG_REALTIME; 647 if (di_flags & XFS_DIFLAG_PREALLOC) 648 flags |= FS_XFLAG_PREALLOC; 649 if (di_flags & XFS_DIFLAG_IMMUTABLE) 650 flags |= FS_XFLAG_IMMUTABLE; 651 if (di_flags & XFS_DIFLAG_APPEND) 652 flags |= FS_XFLAG_APPEND; 653 if (di_flags & XFS_DIFLAG_SYNC) 654 flags |= FS_XFLAG_SYNC; 655 if (di_flags & XFS_DIFLAG_NOATIME) 656 flags |= FS_XFLAG_NOATIME; 657 if (di_flags & XFS_DIFLAG_NODUMP) 658 flags |= FS_XFLAG_NODUMP; 659 if (di_flags & XFS_DIFLAG_RTINHERIT) 660 flags |= FS_XFLAG_RTINHERIT; 661 if (di_flags & XFS_DIFLAG_PROJINHERIT) 662 flags |= FS_XFLAG_PROJINHERIT; 663 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 664 flags |= FS_XFLAG_NOSYMLINKS; 665 if (di_flags & XFS_DIFLAG_EXTSIZE) 666 flags |= FS_XFLAG_EXTSIZE; 667 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 668 flags |= FS_XFLAG_EXTSZINHERIT; 669 if (di_flags & XFS_DIFLAG_NODEFRAG) 670 flags |= FS_XFLAG_NODEFRAG; 671 if (di_flags & XFS_DIFLAG_FILESTREAM) 672 flags |= FS_XFLAG_FILESTREAM; 673 } 674 675 if (di_flags2 & XFS_DIFLAG2_ANY) { 676 if (di_flags2 & XFS_DIFLAG2_DAX) 677 flags |= FS_XFLAG_DAX; 678 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 679 flags |= FS_XFLAG_COWEXTSIZE; 680 } 681 682 if (has_attr) 683 flags |= FS_XFLAG_HASATTR; 684 685 return flags; 686 } 687 688 uint 689 xfs_ip2xflags( 690 struct xfs_inode *ip) 691 { 692 struct xfs_icdinode *dic = &ip->i_d; 693 694 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 695 } 696 697 /* 698 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 699 * is allowed, otherwise it has to be an exact match. If a CI match is found, 700 * ci_name->name will point to a the actual name (caller must free) or 701 * will be set to NULL if an exact match is found. 702 */ 703 int 704 xfs_lookup( 705 xfs_inode_t *dp, 706 struct xfs_name *name, 707 xfs_inode_t **ipp, 708 struct xfs_name *ci_name) 709 { 710 xfs_ino_t inum; 711 int error; 712 713 trace_xfs_lookup(dp, name); 714 715 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 716 return -EIO; 717 718 xfs_ilock(dp, XFS_IOLOCK_SHARED); 719 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 720 if (error) 721 goto out_unlock; 722 723 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 724 if (error) 725 goto out_free_name; 726 727 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 728 return 0; 729 730 out_free_name: 731 if (ci_name) 732 kmem_free(ci_name->name); 733 out_unlock: 734 xfs_iunlock(dp, XFS_IOLOCK_SHARED); 735 *ipp = NULL; 736 return error; 737 } 738 739 /* 740 * Allocate an inode on disk and return a copy of its in-core version. 741 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 742 * appropriately within the inode. The uid and gid for the inode are 743 * set according to the contents of the given cred structure. 744 * 745 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 746 * has a free inode available, call xfs_iget() to obtain the in-core 747 * version of the allocated inode. Finally, fill in the inode and 748 * log its initial contents. In this case, ialloc_context would be 749 * set to NULL. 750 * 751 * If xfs_dialloc() does not have an available inode, it will replenish 752 * its supply by doing an allocation. Since we can only do one 753 * allocation within a transaction without deadlocks, we must commit 754 * the current transaction before returning the inode itself. 755 * In this case, therefore, we will set ialloc_context and return. 756 * The caller should then commit the current transaction, start a new 757 * transaction, and call xfs_ialloc() again to actually get the inode. 758 * 759 * To ensure that some other process does not grab the inode that 760 * was allocated during the first call to xfs_ialloc(), this routine 761 * also returns the [locked] bp pointing to the head of the freelist 762 * as ialloc_context. The caller should hold this buffer across 763 * the commit and pass it back into this routine on the second call. 764 * 765 * If we are allocating quota inodes, we do not have a parent inode 766 * to attach to or associate with (i.e. pip == NULL) because they 767 * are not linked into the directory structure - they are attached 768 * directly to the superblock - and so have no parent. 769 */ 770 static int 771 xfs_ialloc( 772 xfs_trans_t *tp, 773 xfs_inode_t *pip, 774 umode_t mode, 775 xfs_nlink_t nlink, 776 xfs_dev_t rdev, 777 prid_t prid, 778 int okalloc, 779 xfs_buf_t **ialloc_context, 780 xfs_inode_t **ipp) 781 { 782 struct xfs_mount *mp = tp->t_mountp; 783 xfs_ino_t ino; 784 xfs_inode_t *ip; 785 uint flags; 786 int error; 787 struct timespec tv; 788 struct inode *inode; 789 790 /* 791 * Call the space management code to pick 792 * the on-disk inode to be allocated. 793 */ 794 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 795 ialloc_context, &ino); 796 if (error) 797 return error; 798 if (*ialloc_context || ino == NULLFSINO) { 799 *ipp = NULL; 800 return 0; 801 } 802 ASSERT(*ialloc_context == NULL); 803 804 /* 805 * Get the in-core inode with the lock held exclusively. 806 * This is because we're setting fields here we need 807 * to prevent others from looking at until we're done. 808 */ 809 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 810 XFS_ILOCK_EXCL, &ip); 811 if (error) 812 return error; 813 ASSERT(ip != NULL); 814 inode = VFS_I(ip); 815 816 /* 817 * We always convert v1 inodes to v2 now - we only support filesystems 818 * with >= v2 inode capability, so there is no reason for ever leaving 819 * an inode in v1 format. 820 */ 821 if (ip->i_d.di_version == 1) 822 ip->i_d.di_version = 2; 823 824 inode->i_mode = mode; 825 set_nlink(inode, nlink); 826 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 827 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 828 xfs_set_projid(ip, prid); 829 830 if (pip && XFS_INHERIT_GID(pip)) { 831 ip->i_d.di_gid = pip->i_d.di_gid; 832 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) 833 inode->i_mode |= S_ISGID; 834 } 835 836 /* 837 * If the group ID of the new file does not match the effective group 838 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 839 * (and only if the irix_sgid_inherit compatibility variable is set). 840 */ 841 if ((irix_sgid_inherit) && 842 (inode->i_mode & S_ISGID) && 843 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) 844 inode->i_mode &= ~S_ISGID; 845 846 ip->i_d.di_size = 0; 847 ip->i_d.di_nextents = 0; 848 ASSERT(ip->i_d.di_nblocks == 0); 849 850 tv = current_time(inode); 851 inode->i_mtime = tv; 852 inode->i_atime = tv; 853 inode->i_ctime = tv; 854 855 ip->i_d.di_extsize = 0; 856 ip->i_d.di_dmevmask = 0; 857 ip->i_d.di_dmstate = 0; 858 ip->i_d.di_flags = 0; 859 860 if (ip->i_d.di_version == 3) { 861 inode->i_version = 1; 862 ip->i_d.di_flags2 = 0; 863 ip->i_d.di_cowextsize = 0; 864 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; 865 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; 866 } 867 868 869 flags = XFS_ILOG_CORE; 870 switch (mode & S_IFMT) { 871 case S_IFIFO: 872 case S_IFCHR: 873 case S_IFBLK: 874 case S_IFSOCK: 875 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 876 ip->i_df.if_u2.if_rdev = rdev; 877 ip->i_df.if_flags = 0; 878 flags |= XFS_ILOG_DEV; 879 break; 880 case S_IFREG: 881 case S_IFDIR: 882 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 883 uint64_t di_flags2 = 0; 884 uint di_flags = 0; 885 886 if (S_ISDIR(mode)) { 887 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 888 di_flags |= XFS_DIFLAG_RTINHERIT; 889 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 890 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 891 ip->i_d.di_extsize = pip->i_d.di_extsize; 892 } 893 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 894 di_flags |= XFS_DIFLAG_PROJINHERIT; 895 } else if (S_ISREG(mode)) { 896 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 897 di_flags |= XFS_DIFLAG_REALTIME; 898 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 899 di_flags |= XFS_DIFLAG_EXTSIZE; 900 ip->i_d.di_extsize = pip->i_d.di_extsize; 901 } 902 } 903 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 904 xfs_inherit_noatime) 905 di_flags |= XFS_DIFLAG_NOATIME; 906 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 907 xfs_inherit_nodump) 908 di_flags |= XFS_DIFLAG_NODUMP; 909 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 910 xfs_inherit_sync) 911 di_flags |= XFS_DIFLAG_SYNC; 912 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 913 xfs_inherit_nosymlinks) 914 di_flags |= XFS_DIFLAG_NOSYMLINKS; 915 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 916 xfs_inherit_nodefrag) 917 di_flags |= XFS_DIFLAG_NODEFRAG; 918 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 919 di_flags |= XFS_DIFLAG_FILESTREAM; 920 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 921 di_flags2 |= XFS_DIFLAG2_DAX; 922 923 ip->i_d.di_flags |= di_flags; 924 ip->i_d.di_flags2 |= di_flags2; 925 } 926 if (pip && 927 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && 928 pip->i_d.di_version == 3 && 929 ip->i_d.di_version == 3) { 930 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 931 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 932 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 933 } 934 } 935 /* FALLTHROUGH */ 936 case S_IFLNK: 937 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 938 ip->i_df.if_flags = XFS_IFEXTENTS; 939 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 940 ip->i_df.if_u1.if_extents = NULL; 941 break; 942 default: 943 ASSERT(0); 944 } 945 /* 946 * Attribute fork settings for new inode. 947 */ 948 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 949 ip->i_d.di_anextents = 0; 950 951 /* 952 * Log the new values stuffed into the inode. 953 */ 954 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 955 xfs_trans_log_inode(tp, ip, flags); 956 957 /* now that we have an i_mode we can setup the inode structure */ 958 xfs_setup_inode(ip); 959 960 *ipp = ip; 961 return 0; 962 } 963 964 /* 965 * Allocates a new inode from disk and return a pointer to the 966 * incore copy. This routine will internally commit the current 967 * transaction and allocate a new one if the Space Manager needed 968 * to do an allocation to replenish the inode free-list. 969 * 970 * This routine is designed to be called from xfs_create and 971 * xfs_create_dir. 972 * 973 */ 974 int 975 xfs_dir_ialloc( 976 xfs_trans_t **tpp, /* input: current transaction; 977 output: may be a new transaction. */ 978 xfs_inode_t *dp, /* directory within whose allocate 979 the inode. */ 980 umode_t mode, 981 xfs_nlink_t nlink, 982 xfs_dev_t rdev, 983 prid_t prid, /* project id */ 984 int okalloc, /* ok to allocate new space */ 985 xfs_inode_t **ipp, /* pointer to inode; it will be 986 locked. */ 987 int *committed) 988 989 { 990 xfs_trans_t *tp; 991 xfs_inode_t *ip; 992 xfs_buf_t *ialloc_context = NULL; 993 int code; 994 void *dqinfo; 995 uint tflags; 996 997 tp = *tpp; 998 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 999 1000 /* 1001 * xfs_ialloc will return a pointer to an incore inode if 1002 * the Space Manager has an available inode on the free 1003 * list. Otherwise, it will do an allocation and replenish 1004 * the freelist. Since we can only do one allocation per 1005 * transaction without deadlocks, we will need to commit the 1006 * current transaction and start a new one. We will then 1007 * need to call xfs_ialloc again to get the inode. 1008 * 1009 * If xfs_ialloc did an allocation to replenish the freelist, 1010 * it returns the bp containing the head of the freelist as 1011 * ialloc_context. We will hold a lock on it across the 1012 * transaction commit so that no other process can steal 1013 * the inode(s) that we've just allocated. 1014 */ 1015 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 1016 &ialloc_context, &ip); 1017 1018 /* 1019 * Return an error if we were unable to allocate a new inode. 1020 * This should only happen if we run out of space on disk or 1021 * encounter a disk error. 1022 */ 1023 if (code) { 1024 *ipp = NULL; 1025 return code; 1026 } 1027 if (!ialloc_context && !ip) { 1028 *ipp = NULL; 1029 return -ENOSPC; 1030 } 1031 1032 /* 1033 * If the AGI buffer is non-NULL, then we were unable to get an 1034 * inode in one operation. We need to commit the current 1035 * transaction and call xfs_ialloc() again. It is guaranteed 1036 * to succeed the second time. 1037 */ 1038 if (ialloc_context) { 1039 /* 1040 * Normally, xfs_trans_commit releases all the locks. 1041 * We call bhold to hang on to the ialloc_context across 1042 * the commit. Holding this buffer prevents any other 1043 * processes from doing any allocations in this 1044 * allocation group. 1045 */ 1046 xfs_trans_bhold(tp, ialloc_context); 1047 1048 /* 1049 * We want the quota changes to be associated with the next 1050 * transaction, NOT this one. So, detach the dqinfo from this 1051 * and attach it to the next transaction. 1052 */ 1053 dqinfo = NULL; 1054 tflags = 0; 1055 if (tp->t_dqinfo) { 1056 dqinfo = (void *)tp->t_dqinfo; 1057 tp->t_dqinfo = NULL; 1058 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 1059 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 1060 } 1061 1062 code = xfs_trans_roll(&tp, NULL); 1063 if (committed != NULL) 1064 *committed = 1; 1065 1066 /* 1067 * Re-attach the quota info that we detached from prev trx. 1068 */ 1069 if (dqinfo) { 1070 tp->t_dqinfo = dqinfo; 1071 tp->t_flags |= tflags; 1072 } 1073 1074 if (code) { 1075 xfs_buf_relse(ialloc_context); 1076 *tpp = tp; 1077 *ipp = NULL; 1078 return code; 1079 } 1080 xfs_trans_bjoin(tp, ialloc_context); 1081 1082 /* 1083 * Call ialloc again. Since we've locked out all 1084 * other allocations in this allocation group, 1085 * this call should always succeed. 1086 */ 1087 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1088 okalloc, &ialloc_context, &ip); 1089 1090 /* 1091 * If we get an error at this point, return to the caller 1092 * so that the current transaction can be aborted. 1093 */ 1094 if (code) { 1095 *tpp = tp; 1096 *ipp = NULL; 1097 return code; 1098 } 1099 ASSERT(!ialloc_context && ip); 1100 1101 } else { 1102 if (committed != NULL) 1103 *committed = 0; 1104 } 1105 1106 *ipp = ip; 1107 *tpp = tp; 1108 1109 return 0; 1110 } 1111 1112 /* 1113 * Decrement the link count on an inode & log the change. If this causes the 1114 * link count to go to zero, move the inode to AGI unlinked list so that it can 1115 * be freed when the last active reference goes away via xfs_inactive(). 1116 */ 1117 static int /* error */ 1118 xfs_droplink( 1119 xfs_trans_t *tp, 1120 xfs_inode_t *ip) 1121 { 1122 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1123 1124 drop_nlink(VFS_I(ip)); 1125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1126 1127 if (VFS_I(ip)->i_nlink) 1128 return 0; 1129 1130 return xfs_iunlink(tp, ip); 1131 } 1132 1133 /* 1134 * Increment the link count on an inode & log the change. 1135 */ 1136 static int 1137 xfs_bumplink( 1138 xfs_trans_t *tp, 1139 xfs_inode_t *ip) 1140 { 1141 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1142 1143 ASSERT(ip->i_d.di_version > 1); 1144 inc_nlink(VFS_I(ip)); 1145 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1146 return 0; 1147 } 1148 1149 int 1150 xfs_create( 1151 xfs_inode_t *dp, 1152 struct xfs_name *name, 1153 umode_t mode, 1154 xfs_dev_t rdev, 1155 xfs_inode_t **ipp) 1156 { 1157 int is_dir = S_ISDIR(mode); 1158 struct xfs_mount *mp = dp->i_mount; 1159 struct xfs_inode *ip = NULL; 1160 struct xfs_trans *tp = NULL; 1161 int error; 1162 struct xfs_defer_ops dfops; 1163 xfs_fsblock_t first_block; 1164 bool unlock_dp_on_error = false; 1165 prid_t prid; 1166 struct xfs_dquot *udqp = NULL; 1167 struct xfs_dquot *gdqp = NULL; 1168 struct xfs_dquot *pdqp = NULL; 1169 struct xfs_trans_res *tres; 1170 uint resblks; 1171 1172 trace_xfs_create(dp, name); 1173 1174 if (XFS_FORCED_SHUTDOWN(mp)) 1175 return -EIO; 1176 1177 prid = xfs_get_initial_prid(dp); 1178 1179 /* 1180 * Make sure that we have allocated dquot(s) on disk. 1181 */ 1182 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1183 xfs_kgid_to_gid(current_fsgid()), prid, 1184 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1185 &udqp, &gdqp, &pdqp); 1186 if (error) 1187 return error; 1188 1189 if (is_dir) { 1190 rdev = 0; 1191 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1192 tres = &M_RES(mp)->tr_mkdir; 1193 } else { 1194 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1195 tres = &M_RES(mp)->tr_create; 1196 } 1197 1198 /* 1199 * Initially assume that the file does not exist and 1200 * reserve the resources for that case. If that is not 1201 * the case we'll drop the one we have and get a more 1202 * appropriate transaction later. 1203 */ 1204 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1205 if (error == -ENOSPC) { 1206 /* flush outstanding delalloc blocks and retry */ 1207 xfs_flush_inodes(mp); 1208 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1209 } 1210 if (error == -ENOSPC) { 1211 /* No space at all so try a "no-allocation" reservation */ 1212 resblks = 0; 1213 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1214 } 1215 if (error) 1216 goto out_release_inode; 1217 1218 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL | 1219 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT); 1220 unlock_dp_on_error = true; 1221 1222 xfs_defer_init(&dfops, &first_block); 1223 1224 /* 1225 * Reserve disk quota and the inode. 1226 */ 1227 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1228 pdqp, resblks, 1, 0); 1229 if (error) 1230 goto out_trans_cancel; 1231 1232 if (!resblks) { 1233 error = xfs_dir_canenter(tp, dp, name); 1234 if (error) 1235 goto out_trans_cancel; 1236 } 1237 1238 /* 1239 * A newly created regular or special file just has one directory 1240 * entry pointing to them, but a directory also the "." entry 1241 * pointing to itself. 1242 */ 1243 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1244 prid, resblks > 0, &ip, NULL); 1245 if (error) 1246 goto out_trans_cancel; 1247 1248 /* 1249 * Now we join the directory inode to the transaction. We do not do it 1250 * earlier because xfs_dir_ialloc might commit the previous transaction 1251 * (and release all the locks). An error from here on will result in 1252 * the transaction cancel unlocking dp so don't do it explicitly in the 1253 * error path. 1254 */ 1255 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1256 unlock_dp_on_error = false; 1257 1258 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1259 &first_block, &dfops, resblks ? 1260 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1261 if (error) { 1262 ASSERT(error != -ENOSPC); 1263 goto out_trans_cancel; 1264 } 1265 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1266 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1267 1268 if (is_dir) { 1269 error = xfs_dir_init(tp, ip, dp); 1270 if (error) 1271 goto out_bmap_cancel; 1272 1273 error = xfs_bumplink(tp, dp); 1274 if (error) 1275 goto out_bmap_cancel; 1276 } 1277 1278 /* 1279 * If this is a synchronous mount, make sure that the 1280 * create transaction goes to disk before returning to 1281 * the user. 1282 */ 1283 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1284 xfs_trans_set_sync(tp); 1285 1286 /* 1287 * Attach the dquot(s) to the inodes and modify them incore. 1288 * These ids of the inode couldn't have changed since the new 1289 * inode has been locked ever since it was created. 1290 */ 1291 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1292 1293 error = xfs_defer_finish(&tp, &dfops, NULL); 1294 if (error) 1295 goto out_bmap_cancel; 1296 1297 error = xfs_trans_commit(tp); 1298 if (error) 1299 goto out_release_inode; 1300 1301 xfs_qm_dqrele(udqp); 1302 xfs_qm_dqrele(gdqp); 1303 xfs_qm_dqrele(pdqp); 1304 1305 *ipp = ip; 1306 return 0; 1307 1308 out_bmap_cancel: 1309 xfs_defer_cancel(&dfops); 1310 out_trans_cancel: 1311 xfs_trans_cancel(tp); 1312 out_release_inode: 1313 /* 1314 * Wait until after the current transaction is aborted to finish the 1315 * setup of the inode and release the inode. This prevents recursive 1316 * transactions and deadlocks from xfs_inactive. 1317 */ 1318 if (ip) { 1319 xfs_finish_inode_setup(ip); 1320 IRELE(ip); 1321 } 1322 1323 xfs_qm_dqrele(udqp); 1324 xfs_qm_dqrele(gdqp); 1325 xfs_qm_dqrele(pdqp); 1326 1327 if (unlock_dp_on_error) 1328 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1329 return error; 1330 } 1331 1332 int 1333 xfs_create_tmpfile( 1334 struct xfs_inode *dp, 1335 struct dentry *dentry, 1336 umode_t mode, 1337 struct xfs_inode **ipp) 1338 { 1339 struct xfs_mount *mp = dp->i_mount; 1340 struct xfs_inode *ip = NULL; 1341 struct xfs_trans *tp = NULL; 1342 int error; 1343 prid_t prid; 1344 struct xfs_dquot *udqp = NULL; 1345 struct xfs_dquot *gdqp = NULL; 1346 struct xfs_dquot *pdqp = NULL; 1347 struct xfs_trans_res *tres; 1348 uint resblks; 1349 1350 if (XFS_FORCED_SHUTDOWN(mp)) 1351 return -EIO; 1352 1353 prid = xfs_get_initial_prid(dp); 1354 1355 /* 1356 * Make sure that we have allocated dquot(s) on disk. 1357 */ 1358 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1359 xfs_kgid_to_gid(current_fsgid()), prid, 1360 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1361 &udqp, &gdqp, &pdqp); 1362 if (error) 1363 return error; 1364 1365 resblks = XFS_IALLOC_SPACE_RES(mp); 1366 tres = &M_RES(mp)->tr_create_tmpfile; 1367 1368 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); 1369 if (error == -ENOSPC) { 1370 /* No space at all so try a "no-allocation" reservation */ 1371 resblks = 0; 1372 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); 1373 } 1374 if (error) 1375 goto out_release_inode; 1376 1377 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1378 pdqp, resblks, 1, 0); 1379 if (error) 1380 goto out_trans_cancel; 1381 1382 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1383 prid, resblks > 0, &ip, NULL); 1384 if (error) 1385 goto out_trans_cancel; 1386 1387 if (mp->m_flags & XFS_MOUNT_WSYNC) 1388 xfs_trans_set_sync(tp); 1389 1390 /* 1391 * Attach the dquot(s) to the inodes and modify them incore. 1392 * These ids of the inode couldn't have changed since the new 1393 * inode has been locked ever since it was created. 1394 */ 1395 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1396 1397 error = xfs_iunlink(tp, ip); 1398 if (error) 1399 goto out_trans_cancel; 1400 1401 error = xfs_trans_commit(tp); 1402 if (error) 1403 goto out_release_inode; 1404 1405 xfs_qm_dqrele(udqp); 1406 xfs_qm_dqrele(gdqp); 1407 xfs_qm_dqrele(pdqp); 1408 1409 *ipp = ip; 1410 return 0; 1411 1412 out_trans_cancel: 1413 xfs_trans_cancel(tp); 1414 out_release_inode: 1415 /* 1416 * Wait until after the current transaction is aborted to finish the 1417 * setup of the inode and release the inode. This prevents recursive 1418 * transactions and deadlocks from xfs_inactive. 1419 */ 1420 if (ip) { 1421 xfs_finish_inode_setup(ip); 1422 IRELE(ip); 1423 } 1424 1425 xfs_qm_dqrele(udqp); 1426 xfs_qm_dqrele(gdqp); 1427 xfs_qm_dqrele(pdqp); 1428 1429 return error; 1430 } 1431 1432 int 1433 xfs_link( 1434 xfs_inode_t *tdp, 1435 xfs_inode_t *sip, 1436 struct xfs_name *target_name) 1437 { 1438 xfs_mount_t *mp = tdp->i_mount; 1439 xfs_trans_t *tp; 1440 int error; 1441 struct xfs_defer_ops dfops; 1442 xfs_fsblock_t first_block; 1443 int resblks; 1444 1445 trace_xfs_link(tdp, target_name); 1446 1447 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1448 1449 if (XFS_FORCED_SHUTDOWN(mp)) 1450 return -EIO; 1451 1452 error = xfs_qm_dqattach(sip, 0); 1453 if (error) 1454 goto std_return; 1455 1456 error = xfs_qm_dqattach(tdp, 0); 1457 if (error) 1458 goto std_return; 1459 1460 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1461 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1462 if (error == -ENOSPC) { 1463 resblks = 0; 1464 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1465 } 1466 if (error) 1467 goto std_return; 1468 1469 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 1470 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1471 1472 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1473 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 1474 1475 /* 1476 * If we are using project inheritance, we only allow hard link 1477 * creation in our tree when the project IDs are the same; else 1478 * the tree quota mechanism could be circumvented. 1479 */ 1480 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1481 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1482 error = -EXDEV; 1483 goto error_return; 1484 } 1485 1486 if (!resblks) { 1487 error = xfs_dir_canenter(tp, tdp, target_name); 1488 if (error) 1489 goto error_return; 1490 } 1491 1492 xfs_defer_init(&dfops, &first_block); 1493 1494 /* 1495 * Handle initial link state of O_TMPFILE inode 1496 */ 1497 if (VFS_I(sip)->i_nlink == 0) { 1498 error = xfs_iunlink_remove(tp, sip); 1499 if (error) 1500 goto error_return; 1501 } 1502 1503 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1504 &first_block, &dfops, resblks); 1505 if (error) 1506 goto error_return; 1507 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1508 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1509 1510 error = xfs_bumplink(tp, sip); 1511 if (error) 1512 goto error_return; 1513 1514 /* 1515 * If this is a synchronous mount, make sure that the 1516 * link transaction goes to disk before returning to 1517 * the user. 1518 */ 1519 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1520 xfs_trans_set_sync(tp); 1521 1522 error = xfs_defer_finish(&tp, &dfops, NULL); 1523 if (error) { 1524 xfs_defer_cancel(&dfops); 1525 goto error_return; 1526 } 1527 1528 return xfs_trans_commit(tp); 1529 1530 error_return: 1531 xfs_trans_cancel(tp); 1532 std_return: 1533 return error; 1534 } 1535 1536 /* 1537 * Free up the underlying blocks past new_size. The new size must be smaller 1538 * than the current size. This routine can be used both for the attribute and 1539 * data fork, and does not modify the inode size, which is left to the caller. 1540 * 1541 * The transaction passed to this routine must have made a permanent log 1542 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1543 * given transaction and start new ones, so make sure everything involved in 1544 * the transaction is tidy before calling here. Some transaction will be 1545 * returned to the caller to be committed. The incoming transaction must 1546 * already include the inode, and both inode locks must be held exclusively. 1547 * The inode must also be "held" within the transaction. On return the inode 1548 * will be "held" within the returned transaction. This routine does NOT 1549 * require any disk space to be reserved for it within the transaction. 1550 * 1551 * If we get an error, we must return with the inode locked and linked into the 1552 * current transaction. This keeps things simple for the higher level code, 1553 * because it always knows that the inode is locked and held in the transaction 1554 * that returns to it whether errors occur or not. We don't mark the inode 1555 * dirty on error so that transactions can be easily aborted if possible. 1556 */ 1557 int 1558 xfs_itruncate_extents( 1559 struct xfs_trans **tpp, 1560 struct xfs_inode *ip, 1561 int whichfork, 1562 xfs_fsize_t new_size) 1563 { 1564 struct xfs_mount *mp = ip->i_mount; 1565 struct xfs_trans *tp = *tpp; 1566 struct xfs_defer_ops dfops; 1567 xfs_fsblock_t first_block; 1568 xfs_fileoff_t first_unmap_block; 1569 xfs_fileoff_t last_block; 1570 xfs_filblks_t unmap_len; 1571 int error = 0; 1572 int done = 0; 1573 1574 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1575 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1576 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1577 ASSERT(new_size <= XFS_ISIZE(ip)); 1578 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1579 ASSERT(ip->i_itemp != NULL); 1580 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1581 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1582 1583 trace_xfs_itruncate_extents_start(ip, new_size); 1584 1585 /* 1586 * Since it is possible for space to become allocated beyond 1587 * the end of the file (in a crash where the space is allocated 1588 * but the inode size is not yet updated), simply remove any 1589 * blocks which show up between the new EOF and the maximum 1590 * possible file size. If the first block to be removed is 1591 * beyond the maximum file size (ie it is the same as last_block), 1592 * then there is nothing to do. 1593 */ 1594 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1595 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1596 if (first_unmap_block == last_block) 1597 return 0; 1598 1599 ASSERT(first_unmap_block < last_block); 1600 unmap_len = last_block - first_unmap_block + 1; 1601 while (!done) { 1602 xfs_defer_init(&dfops, &first_block); 1603 error = xfs_bunmapi(tp, ip, 1604 first_unmap_block, unmap_len, 1605 xfs_bmapi_aflag(whichfork), 1606 XFS_ITRUNC_MAX_EXTENTS, 1607 &first_block, &dfops, 1608 &done); 1609 if (error) 1610 goto out_bmap_cancel; 1611 1612 /* 1613 * Duplicate the transaction that has the permanent 1614 * reservation and commit the old transaction. 1615 */ 1616 error = xfs_defer_finish(&tp, &dfops, ip); 1617 if (error) 1618 goto out_bmap_cancel; 1619 1620 error = xfs_trans_roll(&tp, ip); 1621 if (error) 1622 goto out; 1623 } 1624 1625 /* Remove all pending CoW reservations. */ 1626 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, 1627 last_block); 1628 if (error) 1629 goto out; 1630 1631 /* 1632 * Clear the reflink flag if we truncated everything. 1633 */ 1634 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) { 1635 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1636 xfs_inode_clear_cowblocks_tag(ip); 1637 } 1638 1639 /* 1640 * Always re-log the inode so that our permanent transaction can keep 1641 * on rolling it forward in the log. 1642 */ 1643 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1644 1645 trace_xfs_itruncate_extents_end(ip, new_size); 1646 1647 out: 1648 *tpp = tp; 1649 return error; 1650 out_bmap_cancel: 1651 /* 1652 * If the bunmapi call encounters an error, return to the caller where 1653 * the transaction can be properly aborted. We just need to make sure 1654 * we're not holding any resources that we were not when we came in. 1655 */ 1656 xfs_defer_cancel(&dfops); 1657 goto out; 1658 } 1659 1660 int 1661 xfs_release( 1662 xfs_inode_t *ip) 1663 { 1664 xfs_mount_t *mp = ip->i_mount; 1665 int error; 1666 1667 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1668 return 0; 1669 1670 /* If this is a read-only mount, don't do this (would generate I/O) */ 1671 if (mp->m_flags & XFS_MOUNT_RDONLY) 1672 return 0; 1673 1674 if (!XFS_FORCED_SHUTDOWN(mp)) { 1675 int truncated; 1676 1677 /* 1678 * If we previously truncated this file and removed old data 1679 * in the process, we want to initiate "early" writeout on 1680 * the last close. This is an attempt to combat the notorious 1681 * NULL files problem which is particularly noticeable from a 1682 * truncate down, buffered (re-)write (delalloc), followed by 1683 * a crash. What we are effectively doing here is 1684 * significantly reducing the time window where we'd otherwise 1685 * be exposed to that problem. 1686 */ 1687 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1688 if (truncated) { 1689 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1690 if (ip->i_delayed_blks > 0) { 1691 error = filemap_flush(VFS_I(ip)->i_mapping); 1692 if (error) 1693 return error; 1694 } 1695 } 1696 } 1697 1698 if (VFS_I(ip)->i_nlink == 0) 1699 return 0; 1700 1701 if (xfs_can_free_eofblocks(ip, false)) { 1702 1703 /* 1704 * If we can't get the iolock just skip truncating the blocks 1705 * past EOF because we could deadlock with the mmap_sem 1706 * otherwise. We'll get another chance to drop them once the 1707 * last reference to the inode is dropped, so we'll never leak 1708 * blocks permanently. 1709 * 1710 * Further, check if the inode is being opened, written and 1711 * closed frequently and we have delayed allocation blocks 1712 * outstanding (e.g. streaming writes from the NFS server), 1713 * truncating the blocks past EOF will cause fragmentation to 1714 * occur. 1715 * 1716 * In this case don't do the truncation, either, but we have to 1717 * be careful how we detect this case. Blocks beyond EOF show 1718 * up as i_delayed_blks even when the inode is clean, so we 1719 * need to truncate them away first before checking for a dirty 1720 * release. Hence on the first dirty close we will still remove 1721 * the speculative allocation, but after that we will leave it 1722 * in place. 1723 */ 1724 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1725 return 0; 1726 1727 error = xfs_free_eofblocks(mp, ip, true); 1728 if (error && error != -EAGAIN) 1729 return error; 1730 1731 /* delalloc blocks after truncation means it really is dirty */ 1732 if (ip->i_delayed_blks) 1733 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1734 } 1735 return 0; 1736 } 1737 1738 /* 1739 * xfs_inactive_truncate 1740 * 1741 * Called to perform a truncate when an inode becomes unlinked. 1742 */ 1743 STATIC int 1744 xfs_inactive_truncate( 1745 struct xfs_inode *ip) 1746 { 1747 struct xfs_mount *mp = ip->i_mount; 1748 struct xfs_trans *tp; 1749 int error; 1750 1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1752 if (error) { 1753 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1754 return error; 1755 } 1756 1757 xfs_ilock(ip, XFS_ILOCK_EXCL); 1758 xfs_trans_ijoin(tp, ip, 0); 1759 1760 /* 1761 * Log the inode size first to prevent stale data exposure in the event 1762 * of a system crash before the truncate completes. See the related 1763 * comment in xfs_vn_setattr_size() for details. 1764 */ 1765 ip->i_d.di_size = 0; 1766 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1767 1768 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1769 if (error) 1770 goto error_trans_cancel; 1771 1772 ASSERT(ip->i_d.di_nextents == 0); 1773 1774 error = xfs_trans_commit(tp); 1775 if (error) 1776 goto error_unlock; 1777 1778 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1779 return 0; 1780 1781 error_trans_cancel: 1782 xfs_trans_cancel(tp); 1783 error_unlock: 1784 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1785 return error; 1786 } 1787 1788 /* 1789 * xfs_inactive_ifree() 1790 * 1791 * Perform the inode free when an inode is unlinked. 1792 */ 1793 STATIC int 1794 xfs_inactive_ifree( 1795 struct xfs_inode *ip) 1796 { 1797 struct xfs_defer_ops dfops; 1798 xfs_fsblock_t first_block; 1799 struct xfs_mount *mp = ip->i_mount; 1800 struct xfs_trans *tp; 1801 int error; 1802 1803 /* 1804 * The ifree transaction might need to allocate blocks for record 1805 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1806 * allow ifree to dip into the reserved block pool if necessary. 1807 * 1808 * Freeing large sets of inodes generally means freeing inode chunks, 1809 * directory and file data blocks, so this should be relatively safe. 1810 * Only under severe circumstances should it be possible to free enough 1811 * inodes to exhaust the reserve block pool via finobt expansion while 1812 * at the same time not creating free space in the filesystem. 1813 * 1814 * Send a warning if the reservation does happen to fail, as the inode 1815 * now remains allocated and sits on the unlinked list until the fs is 1816 * repaired. 1817 */ 1818 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1819 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); 1820 if (error) { 1821 if (error == -ENOSPC) { 1822 xfs_warn_ratelimited(mp, 1823 "Failed to remove inode(s) from unlinked list. " 1824 "Please free space, unmount and run xfs_repair."); 1825 } else { 1826 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1827 } 1828 return error; 1829 } 1830 1831 xfs_ilock(ip, XFS_ILOCK_EXCL); 1832 xfs_trans_ijoin(tp, ip, 0); 1833 1834 xfs_defer_init(&dfops, &first_block); 1835 error = xfs_ifree(tp, ip, &dfops); 1836 if (error) { 1837 /* 1838 * If we fail to free the inode, shut down. The cancel 1839 * might do that, we need to make sure. Otherwise the 1840 * inode might be lost for a long time or forever. 1841 */ 1842 if (!XFS_FORCED_SHUTDOWN(mp)) { 1843 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1844 __func__, error); 1845 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1846 } 1847 xfs_trans_cancel(tp); 1848 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1849 return error; 1850 } 1851 1852 /* 1853 * Credit the quota account(s). The inode is gone. 1854 */ 1855 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1856 1857 /* 1858 * Just ignore errors at this point. There is nothing we can do except 1859 * to try to keep going. Make sure it's not a silent error. 1860 */ 1861 error = xfs_defer_finish(&tp, &dfops, NULL); 1862 if (error) { 1863 xfs_notice(mp, "%s: xfs_defer_finish returned error %d", 1864 __func__, error); 1865 xfs_defer_cancel(&dfops); 1866 } 1867 error = xfs_trans_commit(tp); 1868 if (error) 1869 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1870 __func__, error); 1871 1872 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1873 return 0; 1874 } 1875 1876 /* 1877 * xfs_inactive 1878 * 1879 * This is called when the vnode reference count for the vnode 1880 * goes to zero. If the file has been unlinked, then it must 1881 * now be truncated. Also, we clear all of the read-ahead state 1882 * kept for the inode here since the file is now closed. 1883 */ 1884 void 1885 xfs_inactive( 1886 xfs_inode_t *ip) 1887 { 1888 struct xfs_mount *mp; 1889 int error; 1890 int truncate = 0; 1891 1892 /* 1893 * If the inode is already free, then there can be nothing 1894 * to clean up here. 1895 */ 1896 if (VFS_I(ip)->i_mode == 0) { 1897 ASSERT(ip->i_df.if_real_bytes == 0); 1898 ASSERT(ip->i_df.if_broot_bytes == 0); 1899 return; 1900 } 1901 1902 mp = ip->i_mount; 1903 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1904 1905 /* If this is a read-only mount, don't do this (would generate I/O) */ 1906 if (mp->m_flags & XFS_MOUNT_RDONLY) 1907 return; 1908 1909 if (VFS_I(ip)->i_nlink != 0) { 1910 /* 1911 * force is true because we are evicting an inode from the 1912 * cache. Post-eof blocks must be freed, lest we end up with 1913 * broken free space accounting. 1914 */ 1915 if (xfs_can_free_eofblocks(ip, true)) 1916 xfs_free_eofblocks(mp, ip, false); 1917 1918 return; 1919 } 1920 1921 if (S_ISREG(VFS_I(ip)->i_mode) && 1922 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1923 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1924 truncate = 1; 1925 1926 error = xfs_qm_dqattach(ip, 0); 1927 if (error) 1928 return; 1929 1930 if (S_ISLNK(VFS_I(ip)->i_mode)) 1931 error = xfs_inactive_symlink(ip); 1932 else if (truncate) 1933 error = xfs_inactive_truncate(ip); 1934 if (error) 1935 return; 1936 1937 /* 1938 * If there are attributes associated with the file then blow them away 1939 * now. The code calls a routine that recursively deconstructs the 1940 * attribute fork. If also blows away the in-core attribute fork. 1941 */ 1942 if (XFS_IFORK_Q(ip)) { 1943 error = xfs_attr_inactive(ip); 1944 if (error) 1945 return; 1946 } 1947 1948 ASSERT(!ip->i_afp); 1949 ASSERT(ip->i_d.di_anextents == 0); 1950 ASSERT(ip->i_d.di_forkoff == 0); 1951 1952 /* 1953 * Free the inode. 1954 */ 1955 error = xfs_inactive_ifree(ip); 1956 if (error) 1957 return; 1958 1959 /* 1960 * Release the dquots held by inode, if any. 1961 */ 1962 xfs_qm_dqdetach(ip); 1963 } 1964 1965 /* 1966 * This is called when the inode's link count goes to 0 or we are creating a 1967 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be 1968 * set to true as the link count is dropped to zero by the VFS after we've 1969 * created the file successfully, so we have to add it to the unlinked list 1970 * while the link count is non-zero. 1971 * 1972 * We place the on-disk inode on a list in the AGI. It will be pulled from this 1973 * list when the inode is freed. 1974 */ 1975 STATIC int 1976 xfs_iunlink( 1977 struct xfs_trans *tp, 1978 struct xfs_inode *ip) 1979 { 1980 xfs_mount_t *mp = tp->t_mountp; 1981 xfs_agi_t *agi; 1982 xfs_dinode_t *dip; 1983 xfs_buf_t *agibp; 1984 xfs_buf_t *ibp; 1985 xfs_agino_t agino; 1986 short bucket_index; 1987 int offset; 1988 int error; 1989 1990 ASSERT(VFS_I(ip)->i_mode != 0); 1991 1992 /* 1993 * Get the agi buffer first. It ensures lock ordering 1994 * on the list. 1995 */ 1996 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1997 if (error) 1998 return error; 1999 agi = XFS_BUF_TO_AGI(agibp); 2000 2001 /* 2002 * Get the index into the agi hash table for the 2003 * list this inode will go on. 2004 */ 2005 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2006 ASSERT(agino != 0); 2007 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2008 ASSERT(agi->agi_unlinked[bucket_index]); 2009 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2010 2011 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2012 /* 2013 * There is already another inode in the bucket we need 2014 * to add ourselves to. Add us at the front of the list. 2015 * Here we put the head pointer into our next pointer, 2016 * and then we fall through to point the head at us. 2017 */ 2018 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2019 0, 0); 2020 if (error) 2021 return error; 2022 2023 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2024 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2025 offset = ip->i_imap.im_boffset + 2026 offsetof(xfs_dinode_t, di_next_unlinked); 2027 2028 /* need to recalc the inode CRC if appropriate */ 2029 xfs_dinode_calc_crc(mp, dip); 2030 2031 xfs_trans_inode_buf(tp, ibp); 2032 xfs_trans_log_buf(tp, ibp, offset, 2033 (offset + sizeof(xfs_agino_t) - 1)); 2034 xfs_inobp_check(mp, ibp); 2035 } 2036 2037 /* 2038 * Point the bucket head pointer at the inode being inserted. 2039 */ 2040 ASSERT(agino != 0); 2041 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2042 offset = offsetof(xfs_agi_t, agi_unlinked) + 2043 (sizeof(xfs_agino_t) * bucket_index); 2044 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2045 xfs_trans_log_buf(tp, agibp, offset, 2046 (offset + sizeof(xfs_agino_t) - 1)); 2047 return 0; 2048 } 2049 2050 /* 2051 * Pull the on-disk inode from the AGI unlinked list. 2052 */ 2053 STATIC int 2054 xfs_iunlink_remove( 2055 xfs_trans_t *tp, 2056 xfs_inode_t *ip) 2057 { 2058 xfs_ino_t next_ino; 2059 xfs_mount_t *mp; 2060 xfs_agi_t *agi; 2061 xfs_dinode_t *dip; 2062 xfs_buf_t *agibp; 2063 xfs_buf_t *ibp; 2064 xfs_agnumber_t agno; 2065 xfs_agino_t agino; 2066 xfs_agino_t next_agino; 2067 xfs_buf_t *last_ibp; 2068 xfs_dinode_t *last_dip = NULL; 2069 short bucket_index; 2070 int offset, last_offset = 0; 2071 int error; 2072 2073 mp = tp->t_mountp; 2074 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2075 2076 /* 2077 * Get the agi buffer first. It ensures lock ordering 2078 * on the list. 2079 */ 2080 error = xfs_read_agi(mp, tp, agno, &agibp); 2081 if (error) 2082 return error; 2083 2084 agi = XFS_BUF_TO_AGI(agibp); 2085 2086 /* 2087 * Get the index into the agi hash table for the 2088 * list this inode will go on. 2089 */ 2090 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2091 ASSERT(agino != 0); 2092 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2093 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2094 ASSERT(agi->agi_unlinked[bucket_index]); 2095 2096 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2097 /* 2098 * We're at the head of the list. Get the inode's on-disk 2099 * buffer to see if there is anyone after us on the list. 2100 * Only modify our next pointer if it is not already NULLAGINO. 2101 * This saves us the overhead of dealing with the buffer when 2102 * there is no need to change it. 2103 */ 2104 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2105 0, 0); 2106 if (error) { 2107 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2108 __func__, error); 2109 return error; 2110 } 2111 next_agino = be32_to_cpu(dip->di_next_unlinked); 2112 ASSERT(next_agino != 0); 2113 if (next_agino != NULLAGINO) { 2114 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2115 offset = ip->i_imap.im_boffset + 2116 offsetof(xfs_dinode_t, di_next_unlinked); 2117 2118 /* need to recalc the inode CRC if appropriate */ 2119 xfs_dinode_calc_crc(mp, dip); 2120 2121 xfs_trans_inode_buf(tp, ibp); 2122 xfs_trans_log_buf(tp, ibp, offset, 2123 (offset + sizeof(xfs_agino_t) - 1)); 2124 xfs_inobp_check(mp, ibp); 2125 } else { 2126 xfs_trans_brelse(tp, ibp); 2127 } 2128 /* 2129 * Point the bucket head pointer at the next inode. 2130 */ 2131 ASSERT(next_agino != 0); 2132 ASSERT(next_agino != agino); 2133 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2134 offset = offsetof(xfs_agi_t, agi_unlinked) + 2135 (sizeof(xfs_agino_t) * bucket_index); 2136 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2137 xfs_trans_log_buf(tp, agibp, offset, 2138 (offset + sizeof(xfs_agino_t) - 1)); 2139 } else { 2140 /* 2141 * We need to search the list for the inode being freed. 2142 */ 2143 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2144 last_ibp = NULL; 2145 while (next_agino != agino) { 2146 struct xfs_imap imap; 2147 2148 if (last_ibp) 2149 xfs_trans_brelse(tp, last_ibp); 2150 2151 imap.im_blkno = 0; 2152 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2153 2154 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2155 if (error) { 2156 xfs_warn(mp, 2157 "%s: xfs_imap returned error %d.", 2158 __func__, error); 2159 return error; 2160 } 2161 2162 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2163 &last_ibp, 0, 0); 2164 if (error) { 2165 xfs_warn(mp, 2166 "%s: xfs_imap_to_bp returned error %d.", 2167 __func__, error); 2168 return error; 2169 } 2170 2171 last_offset = imap.im_boffset; 2172 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2173 ASSERT(next_agino != NULLAGINO); 2174 ASSERT(next_agino != 0); 2175 } 2176 2177 /* 2178 * Now last_ibp points to the buffer previous to us on the 2179 * unlinked list. Pull us from the list. 2180 */ 2181 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2182 0, 0); 2183 if (error) { 2184 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2185 __func__, error); 2186 return error; 2187 } 2188 next_agino = be32_to_cpu(dip->di_next_unlinked); 2189 ASSERT(next_agino != 0); 2190 ASSERT(next_agino != agino); 2191 if (next_agino != NULLAGINO) { 2192 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2193 offset = ip->i_imap.im_boffset + 2194 offsetof(xfs_dinode_t, di_next_unlinked); 2195 2196 /* need to recalc the inode CRC if appropriate */ 2197 xfs_dinode_calc_crc(mp, dip); 2198 2199 xfs_trans_inode_buf(tp, ibp); 2200 xfs_trans_log_buf(tp, ibp, offset, 2201 (offset + sizeof(xfs_agino_t) - 1)); 2202 xfs_inobp_check(mp, ibp); 2203 } else { 2204 xfs_trans_brelse(tp, ibp); 2205 } 2206 /* 2207 * Point the previous inode on the list to the next inode. 2208 */ 2209 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2210 ASSERT(next_agino != 0); 2211 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2212 2213 /* need to recalc the inode CRC if appropriate */ 2214 xfs_dinode_calc_crc(mp, last_dip); 2215 2216 xfs_trans_inode_buf(tp, last_ibp); 2217 xfs_trans_log_buf(tp, last_ibp, offset, 2218 (offset + sizeof(xfs_agino_t) - 1)); 2219 xfs_inobp_check(mp, last_ibp); 2220 } 2221 return 0; 2222 } 2223 2224 /* 2225 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2226 * inodes that are in memory - they all must be marked stale and attached to 2227 * the cluster buffer. 2228 */ 2229 STATIC int 2230 xfs_ifree_cluster( 2231 xfs_inode_t *free_ip, 2232 xfs_trans_t *tp, 2233 struct xfs_icluster *xic) 2234 { 2235 xfs_mount_t *mp = free_ip->i_mount; 2236 int blks_per_cluster; 2237 int inodes_per_cluster; 2238 int nbufs; 2239 int i, j; 2240 int ioffset; 2241 xfs_daddr_t blkno; 2242 xfs_buf_t *bp; 2243 xfs_inode_t *ip; 2244 xfs_inode_log_item_t *iip; 2245 xfs_log_item_t *lip; 2246 struct xfs_perag *pag; 2247 xfs_ino_t inum; 2248 2249 inum = xic->first_ino; 2250 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2251 blks_per_cluster = xfs_icluster_size_fsb(mp); 2252 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2253 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2254 2255 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2256 /* 2257 * The allocation bitmap tells us which inodes of the chunk were 2258 * physically allocated. Skip the cluster if an inode falls into 2259 * a sparse region. 2260 */ 2261 ioffset = inum - xic->first_ino; 2262 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2263 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); 2264 continue; 2265 } 2266 2267 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2268 XFS_INO_TO_AGBNO(mp, inum)); 2269 2270 /* 2271 * We obtain and lock the backing buffer first in the process 2272 * here, as we have to ensure that any dirty inode that we 2273 * can't get the flush lock on is attached to the buffer. 2274 * If we scan the in-memory inodes first, then buffer IO can 2275 * complete before we get a lock on it, and hence we may fail 2276 * to mark all the active inodes on the buffer stale. 2277 */ 2278 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2279 mp->m_bsize * blks_per_cluster, 2280 XBF_UNMAPPED); 2281 2282 if (!bp) 2283 return -ENOMEM; 2284 2285 /* 2286 * This buffer may not have been correctly initialised as we 2287 * didn't read it from disk. That's not important because we are 2288 * only using to mark the buffer as stale in the log, and to 2289 * attach stale cached inodes on it. That means it will never be 2290 * dispatched for IO. If it is, we want to know about it, and we 2291 * want it to fail. We can acheive this by adding a write 2292 * verifier to the buffer. 2293 */ 2294 bp->b_ops = &xfs_inode_buf_ops; 2295 2296 /* 2297 * Walk the inodes already attached to the buffer and mark them 2298 * stale. These will all have the flush locks held, so an 2299 * in-memory inode walk can't lock them. By marking them all 2300 * stale first, we will not attempt to lock them in the loop 2301 * below as the XFS_ISTALE flag will be set. 2302 */ 2303 lip = bp->b_fspriv; 2304 while (lip) { 2305 if (lip->li_type == XFS_LI_INODE) { 2306 iip = (xfs_inode_log_item_t *)lip; 2307 ASSERT(iip->ili_logged == 1); 2308 lip->li_cb = xfs_istale_done; 2309 xfs_trans_ail_copy_lsn(mp->m_ail, 2310 &iip->ili_flush_lsn, 2311 &iip->ili_item.li_lsn); 2312 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2313 } 2314 lip = lip->li_bio_list; 2315 } 2316 2317 2318 /* 2319 * For each inode in memory attempt to add it to the inode 2320 * buffer and set it up for being staled on buffer IO 2321 * completion. This is safe as we've locked out tail pushing 2322 * and flushing by locking the buffer. 2323 * 2324 * We have already marked every inode that was part of a 2325 * transaction stale above, which means there is no point in 2326 * even trying to lock them. 2327 */ 2328 for (i = 0; i < inodes_per_cluster; i++) { 2329 retry: 2330 rcu_read_lock(); 2331 ip = radix_tree_lookup(&pag->pag_ici_root, 2332 XFS_INO_TO_AGINO(mp, (inum + i))); 2333 2334 /* Inode not in memory, nothing to do */ 2335 if (!ip) { 2336 rcu_read_unlock(); 2337 continue; 2338 } 2339 2340 /* 2341 * because this is an RCU protected lookup, we could 2342 * find a recently freed or even reallocated inode 2343 * during the lookup. We need to check under the 2344 * i_flags_lock for a valid inode here. Skip it if it 2345 * is not valid, the wrong inode or stale. 2346 */ 2347 spin_lock(&ip->i_flags_lock); 2348 if (ip->i_ino != inum + i || 2349 __xfs_iflags_test(ip, XFS_ISTALE)) { 2350 spin_unlock(&ip->i_flags_lock); 2351 rcu_read_unlock(); 2352 continue; 2353 } 2354 spin_unlock(&ip->i_flags_lock); 2355 2356 /* 2357 * Don't try to lock/unlock the current inode, but we 2358 * _cannot_ skip the other inodes that we did not find 2359 * in the list attached to the buffer and are not 2360 * already marked stale. If we can't lock it, back off 2361 * and retry. 2362 */ 2363 if (ip != free_ip && 2364 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2365 rcu_read_unlock(); 2366 delay(1); 2367 goto retry; 2368 } 2369 rcu_read_unlock(); 2370 2371 xfs_iflock(ip); 2372 xfs_iflags_set(ip, XFS_ISTALE); 2373 2374 /* 2375 * we don't need to attach clean inodes or those only 2376 * with unlogged changes (which we throw away, anyway). 2377 */ 2378 iip = ip->i_itemp; 2379 if (!iip || xfs_inode_clean(ip)) { 2380 ASSERT(ip != free_ip); 2381 xfs_ifunlock(ip); 2382 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2383 continue; 2384 } 2385 2386 iip->ili_last_fields = iip->ili_fields; 2387 iip->ili_fields = 0; 2388 iip->ili_fsync_fields = 0; 2389 iip->ili_logged = 1; 2390 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2391 &iip->ili_item.li_lsn); 2392 2393 xfs_buf_attach_iodone(bp, xfs_istale_done, 2394 &iip->ili_item); 2395 2396 if (ip != free_ip) 2397 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2398 } 2399 2400 xfs_trans_stale_inode_buf(tp, bp); 2401 xfs_trans_binval(tp, bp); 2402 } 2403 2404 xfs_perag_put(pag); 2405 return 0; 2406 } 2407 2408 /* 2409 * This is called to return an inode to the inode free list. 2410 * The inode should already be truncated to 0 length and have 2411 * no pages associated with it. This routine also assumes that 2412 * the inode is already a part of the transaction. 2413 * 2414 * The on-disk copy of the inode will have been added to the list 2415 * of unlinked inodes in the AGI. We need to remove the inode from 2416 * that list atomically with respect to freeing it here. 2417 */ 2418 int 2419 xfs_ifree( 2420 xfs_trans_t *tp, 2421 xfs_inode_t *ip, 2422 struct xfs_defer_ops *dfops) 2423 { 2424 int error; 2425 struct xfs_icluster xic = { 0 }; 2426 2427 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2428 ASSERT(VFS_I(ip)->i_nlink == 0); 2429 ASSERT(ip->i_d.di_nextents == 0); 2430 ASSERT(ip->i_d.di_anextents == 0); 2431 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2432 ASSERT(ip->i_d.di_nblocks == 0); 2433 2434 /* 2435 * Pull the on-disk inode from the AGI unlinked list. 2436 */ 2437 error = xfs_iunlink_remove(tp, ip); 2438 if (error) 2439 return error; 2440 2441 error = xfs_difree(tp, ip->i_ino, dfops, &xic); 2442 if (error) 2443 return error; 2444 2445 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2446 ip->i_d.di_flags = 0; 2447 ip->i_d.di_dmevmask = 0; 2448 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2449 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2450 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2451 /* 2452 * Bump the generation count so no one will be confused 2453 * by reincarnations of this inode. 2454 */ 2455 VFS_I(ip)->i_generation++; 2456 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2457 2458 if (xic.deleted) 2459 error = xfs_ifree_cluster(ip, tp, &xic); 2460 2461 return error; 2462 } 2463 2464 /* 2465 * This is called to unpin an inode. The caller must have the inode locked 2466 * in at least shared mode so that the buffer cannot be subsequently pinned 2467 * once someone is waiting for it to be unpinned. 2468 */ 2469 static void 2470 xfs_iunpin( 2471 struct xfs_inode *ip) 2472 { 2473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2474 2475 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2476 2477 /* Give the log a push to start the unpinning I/O */ 2478 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2479 2480 } 2481 2482 static void 2483 __xfs_iunpin_wait( 2484 struct xfs_inode *ip) 2485 { 2486 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2487 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2488 2489 xfs_iunpin(ip); 2490 2491 do { 2492 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2493 if (xfs_ipincount(ip)) 2494 io_schedule(); 2495 } while (xfs_ipincount(ip)); 2496 finish_wait(wq, &wait.wait); 2497 } 2498 2499 void 2500 xfs_iunpin_wait( 2501 struct xfs_inode *ip) 2502 { 2503 if (xfs_ipincount(ip)) 2504 __xfs_iunpin_wait(ip); 2505 } 2506 2507 /* 2508 * Removing an inode from the namespace involves removing the directory entry 2509 * and dropping the link count on the inode. Removing the directory entry can 2510 * result in locking an AGF (directory blocks were freed) and removing a link 2511 * count can result in placing the inode on an unlinked list which results in 2512 * locking an AGI. 2513 * 2514 * The big problem here is that we have an ordering constraint on AGF and AGI 2515 * locking - inode allocation locks the AGI, then can allocate a new extent for 2516 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2517 * removes the inode from the unlinked list, requiring that we lock the AGI 2518 * first, and then freeing the inode can result in an inode chunk being freed 2519 * and hence freeing disk space requiring that we lock an AGF. 2520 * 2521 * Hence the ordering that is imposed by other parts of the code is AGI before 2522 * AGF. This means we cannot remove the directory entry before we drop the inode 2523 * reference count and put it on the unlinked list as this results in a lock 2524 * order of AGF then AGI, and this can deadlock against inode allocation and 2525 * freeing. Therefore we must drop the link counts before we remove the 2526 * directory entry. 2527 * 2528 * This is still safe from a transactional point of view - it is not until we 2529 * get to xfs_defer_finish() that we have the possibility of multiple 2530 * transactions in this operation. Hence as long as we remove the directory 2531 * entry and drop the link count in the first transaction of the remove 2532 * operation, there are no transactional constraints on the ordering here. 2533 */ 2534 int 2535 xfs_remove( 2536 xfs_inode_t *dp, 2537 struct xfs_name *name, 2538 xfs_inode_t *ip) 2539 { 2540 xfs_mount_t *mp = dp->i_mount; 2541 xfs_trans_t *tp = NULL; 2542 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2543 int error = 0; 2544 struct xfs_defer_ops dfops; 2545 xfs_fsblock_t first_block; 2546 uint resblks; 2547 2548 trace_xfs_remove(dp, name); 2549 2550 if (XFS_FORCED_SHUTDOWN(mp)) 2551 return -EIO; 2552 2553 error = xfs_qm_dqattach(dp, 0); 2554 if (error) 2555 goto std_return; 2556 2557 error = xfs_qm_dqattach(ip, 0); 2558 if (error) 2559 goto std_return; 2560 2561 /* 2562 * We try to get the real space reservation first, 2563 * allowing for directory btree deletion(s) implying 2564 * possible bmap insert(s). If we can't get the space 2565 * reservation then we use 0 instead, and avoid the bmap 2566 * btree insert(s) in the directory code by, if the bmap 2567 * insert tries to happen, instead trimming the LAST 2568 * block from the directory. 2569 */ 2570 resblks = XFS_REMOVE_SPACE_RES(mp); 2571 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2572 if (error == -ENOSPC) { 2573 resblks = 0; 2574 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2575 &tp); 2576 } 2577 if (error) { 2578 ASSERT(error != -ENOSPC); 2579 goto std_return; 2580 } 2581 2582 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2583 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2584 2585 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2586 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2587 2588 /* 2589 * If we're removing a directory perform some additional validation. 2590 */ 2591 if (is_dir) { 2592 ASSERT(VFS_I(ip)->i_nlink >= 2); 2593 if (VFS_I(ip)->i_nlink != 2) { 2594 error = -ENOTEMPTY; 2595 goto out_trans_cancel; 2596 } 2597 if (!xfs_dir_isempty(ip)) { 2598 error = -ENOTEMPTY; 2599 goto out_trans_cancel; 2600 } 2601 2602 /* Drop the link from ip's "..". */ 2603 error = xfs_droplink(tp, dp); 2604 if (error) 2605 goto out_trans_cancel; 2606 2607 /* Drop the "." link from ip to self. */ 2608 error = xfs_droplink(tp, ip); 2609 if (error) 2610 goto out_trans_cancel; 2611 } else { 2612 /* 2613 * When removing a non-directory we need to log the parent 2614 * inode here. For a directory this is done implicitly 2615 * by the xfs_droplink call for the ".." entry. 2616 */ 2617 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2618 } 2619 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2620 2621 /* Drop the link from dp to ip. */ 2622 error = xfs_droplink(tp, ip); 2623 if (error) 2624 goto out_trans_cancel; 2625 2626 xfs_defer_init(&dfops, &first_block); 2627 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2628 &first_block, &dfops, resblks); 2629 if (error) { 2630 ASSERT(error != -ENOENT); 2631 goto out_bmap_cancel; 2632 } 2633 2634 /* 2635 * If this is a synchronous mount, make sure that the 2636 * remove transaction goes to disk before returning to 2637 * the user. 2638 */ 2639 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2640 xfs_trans_set_sync(tp); 2641 2642 error = xfs_defer_finish(&tp, &dfops, NULL); 2643 if (error) 2644 goto out_bmap_cancel; 2645 2646 error = xfs_trans_commit(tp); 2647 if (error) 2648 goto std_return; 2649 2650 if (is_dir && xfs_inode_is_filestream(ip)) 2651 xfs_filestream_deassociate(ip); 2652 2653 return 0; 2654 2655 out_bmap_cancel: 2656 xfs_defer_cancel(&dfops); 2657 out_trans_cancel: 2658 xfs_trans_cancel(tp); 2659 std_return: 2660 return error; 2661 } 2662 2663 /* 2664 * Enter all inodes for a rename transaction into a sorted array. 2665 */ 2666 #define __XFS_SORT_INODES 5 2667 STATIC void 2668 xfs_sort_for_rename( 2669 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2670 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2671 struct xfs_inode *ip1, /* in: inode of old entry */ 2672 struct xfs_inode *ip2, /* in: inode of new entry */ 2673 struct xfs_inode *wip, /* in: whiteout inode */ 2674 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2675 int *num_inodes) /* in/out: inodes in array */ 2676 { 2677 int i, j; 2678 2679 ASSERT(*num_inodes == __XFS_SORT_INODES); 2680 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2681 2682 /* 2683 * i_tab contains a list of pointers to inodes. We initialize 2684 * the table here & we'll sort it. We will then use it to 2685 * order the acquisition of the inode locks. 2686 * 2687 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2688 */ 2689 i = 0; 2690 i_tab[i++] = dp1; 2691 i_tab[i++] = dp2; 2692 i_tab[i++] = ip1; 2693 if (ip2) 2694 i_tab[i++] = ip2; 2695 if (wip) 2696 i_tab[i++] = wip; 2697 *num_inodes = i; 2698 2699 /* 2700 * Sort the elements via bubble sort. (Remember, there are at 2701 * most 5 elements to sort, so this is adequate.) 2702 */ 2703 for (i = 0; i < *num_inodes; i++) { 2704 for (j = 1; j < *num_inodes; j++) { 2705 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2706 struct xfs_inode *temp = i_tab[j]; 2707 i_tab[j] = i_tab[j-1]; 2708 i_tab[j-1] = temp; 2709 } 2710 } 2711 } 2712 } 2713 2714 static int 2715 xfs_finish_rename( 2716 struct xfs_trans *tp, 2717 struct xfs_defer_ops *dfops) 2718 { 2719 int error; 2720 2721 /* 2722 * If this is a synchronous mount, make sure that the rename transaction 2723 * goes to disk before returning to the user. 2724 */ 2725 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2726 xfs_trans_set_sync(tp); 2727 2728 error = xfs_defer_finish(&tp, dfops, NULL); 2729 if (error) { 2730 xfs_defer_cancel(dfops); 2731 xfs_trans_cancel(tp); 2732 return error; 2733 } 2734 2735 return xfs_trans_commit(tp); 2736 } 2737 2738 /* 2739 * xfs_cross_rename() 2740 * 2741 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2742 */ 2743 STATIC int 2744 xfs_cross_rename( 2745 struct xfs_trans *tp, 2746 struct xfs_inode *dp1, 2747 struct xfs_name *name1, 2748 struct xfs_inode *ip1, 2749 struct xfs_inode *dp2, 2750 struct xfs_name *name2, 2751 struct xfs_inode *ip2, 2752 struct xfs_defer_ops *dfops, 2753 xfs_fsblock_t *first_block, 2754 int spaceres) 2755 { 2756 int error = 0; 2757 int ip1_flags = 0; 2758 int ip2_flags = 0; 2759 int dp2_flags = 0; 2760 2761 /* Swap inode number for dirent in first parent */ 2762 error = xfs_dir_replace(tp, dp1, name1, 2763 ip2->i_ino, 2764 first_block, dfops, spaceres); 2765 if (error) 2766 goto out_trans_abort; 2767 2768 /* Swap inode number for dirent in second parent */ 2769 error = xfs_dir_replace(tp, dp2, name2, 2770 ip1->i_ino, 2771 first_block, dfops, spaceres); 2772 if (error) 2773 goto out_trans_abort; 2774 2775 /* 2776 * If we're renaming one or more directories across different parents, 2777 * update the respective ".." entries (and link counts) to match the new 2778 * parents. 2779 */ 2780 if (dp1 != dp2) { 2781 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2782 2783 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2784 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2785 dp1->i_ino, first_block, 2786 dfops, spaceres); 2787 if (error) 2788 goto out_trans_abort; 2789 2790 /* transfer ip2 ".." reference to dp1 */ 2791 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2792 error = xfs_droplink(tp, dp2); 2793 if (error) 2794 goto out_trans_abort; 2795 error = xfs_bumplink(tp, dp1); 2796 if (error) 2797 goto out_trans_abort; 2798 } 2799 2800 /* 2801 * Although ip1 isn't changed here, userspace needs 2802 * to be warned about the change, so that applications 2803 * relying on it (like backup ones), will properly 2804 * notify the change 2805 */ 2806 ip1_flags |= XFS_ICHGTIME_CHG; 2807 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2808 } 2809 2810 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2811 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2812 dp2->i_ino, first_block, 2813 dfops, spaceres); 2814 if (error) 2815 goto out_trans_abort; 2816 2817 /* transfer ip1 ".." reference to dp2 */ 2818 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2819 error = xfs_droplink(tp, dp1); 2820 if (error) 2821 goto out_trans_abort; 2822 error = xfs_bumplink(tp, dp2); 2823 if (error) 2824 goto out_trans_abort; 2825 } 2826 2827 /* 2828 * Although ip2 isn't changed here, userspace needs 2829 * to be warned about the change, so that applications 2830 * relying on it (like backup ones), will properly 2831 * notify the change 2832 */ 2833 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2834 ip2_flags |= XFS_ICHGTIME_CHG; 2835 } 2836 } 2837 2838 if (ip1_flags) { 2839 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2840 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2841 } 2842 if (ip2_flags) { 2843 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2844 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2845 } 2846 if (dp2_flags) { 2847 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2848 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2849 } 2850 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2851 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2852 return xfs_finish_rename(tp, dfops); 2853 2854 out_trans_abort: 2855 xfs_defer_cancel(dfops); 2856 xfs_trans_cancel(tp); 2857 return error; 2858 } 2859 2860 /* 2861 * xfs_rename_alloc_whiteout() 2862 * 2863 * Return a referenced, unlinked, unlocked inode that that can be used as a 2864 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2865 * crash between allocating the inode and linking it into the rename transaction 2866 * recovery will free the inode and we won't leak it. 2867 */ 2868 static int 2869 xfs_rename_alloc_whiteout( 2870 struct xfs_inode *dp, 2871 struct xfs_inode **wip) 2872 { 2873 struct xfs_inode *tmpfile; 2874 int error; 2875 2876 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2877 if (error) 2878 return error; 2879 2880 /* 2881 * Prepare the tmpfile inode as if it were created through the VFS. 2882 * Otherwise, the link increment paths will complain about nlink 0->1. 2883 * Drop the link count as done by d_tmpfile(), complete the inode setup 2884 * and flag it as linkable. 2885 */ 2886 drop_nlink(VFS_I(tmpfile)); 2887 xfs_setup_iops(tmpfile); 2888 xfs_finish_inode_setup(tmpfile); 2889 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2890 2891 *wip = tmpfile; 2892 return 0; 2893 } 2894 2895 /* 2896 * xfs_rename 2897 */ 2898 int 2899 xfs_rename( 2900 struct xfs_inode *src_dp, 2901 struct xfs_name *src_name, 2902 struct xfs_inode *src_ip, 2903 struct xfs_inode *target_dp, 2904 struct xfs_name *target_name, 2905 struct xfs_inode *target_ip, 2906 unsigned int flags) 2907 { 2908 struct xfs_mount *mp = src_dp->i_mount; 2909 struct xfs_trans *tp; 2910 struct xfs_defer_ops dfops; 2911 xfs_fsblock_t first_block; 2912 struct xfs_inode *wip = NULL; /* whiteout inode */ 2913 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2914 int num_inodes = __XFS_SORT_INODES; 2915 bool new_parent = (src_dp != target_dp); 2916 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 2917 int spaceres; 2918 int error; 2919 2920 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2921 2922 if ((flags & RENAME_EXCHANGE) && !target_ip) 2923 return -EINVAL; 2924 2925 /* 2926 * If we are doing a whiteout operation, allocate the whiteout inode 2927 * we will be placing at the target and ensure the type is set 2928 * appropriately. 2929 */ 2930 if (flags & RENAME_WHITEOUT) { 2931 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2932 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2933 if (error) 2934 return error; 2935 2936 /* setup target dirent info as whiteout */ 2937 src_name->type = XFS_DIR3_FT_CHRDEV; 2938 } 2939 2940 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2941 inodes, &num_inodes); 2942 2943 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2944 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 2945 if (error == -ENOSPC) { 2946 spaceres = 0; 2947 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 2948 &tp); 2949 } 2950 if (error) 2951 goto out_release_wip; 2952 2953 /* 2954 * Attach the dquots to the inodes 2955 */ 2956 error = xfs_qm_vop_rename_dqattach(inodes); 2957 if (error) 2958 goto out_trans_cancel; 2959 2960 /* 2961 * Lock all the participating inodes. Depending upon whether 2962 * the target_name exists in the target directory, and 2963 * whether the target directory is the same as the source 2964 * directory, we can lock from 2 to 4 inodes. 2965 */ 2966 if (!new_parent) 2967 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2968 else 2969 xfs_lock_two_inodes(src_dp, target_dp, 2970 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT); 2971 2972 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2973 2974 /* 2975 * Join all the inodes to the transaction. From this point on, 2976 * we can rely on either trans_commit or trans_cancel to unlock 2977 * them. 2978 */ 2979 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2980 if (new_parent) 2981 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL); 2982 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2983 if (target_ip) 2984 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2985 if (wip) 2986 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2987 2988 /* 2989 * If we are using project inheritance, we only allow renames 2990 * into our tree when the project IDs are the same; else the 2991 * tree quota mechanism would be circumvented. 2992 */ 2993 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2994 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2995 error = -EXDEV; 2996 goto out_trans_cancel; 2997 } 2998 2999 xfs_defer_init(&dfops, &first_block); 3000 3001 /* RENAME_EXCHANGE is unique from here on. */ 3002 if (flags & RENAME_EXCHANGE) 3003 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3004 target_dp, target_name, target_ip, 3005 &dfops, &first_block, spaceres); 3006 3007 /* 3008 * Set up the target. 3009 */ 3010 if (target_ip == NULL) { 3011 /* 3012 * If there's no space reservation, check the entry will 3013 * fit before actually inserting it. 3014 */ 3015 if (!spaceres) { 3016 error = xfs_dir_canenter(tp, target_dp, target_name); 3017 if (error) 3018 goto out_trans_cancel; 3019 } 3020 /* 3021 * If target does not exist and the rename crosses 3022 * directories, adjust the target directory link count 3023 * to account for the ".." reference from the new entry. 3024 */ 3025 error = xfs_dir_createname(tp, target_dp, target_name, 3026 src_ip->i_ino, &first_block, 3027 &dfops, spaceres); 3028 if (error) 3029 goto out_bmap_cancel; 3030 3031 xfs_trans_ichgtime(tp, target_dp, 3032 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3033 3034 if (new_parent && src_is_directory) { 3035 error = xfs_bumplink(tp, target_dp); 3036 if (error) 3037 goto out_bmap_cancel; 3038 } 3039 } else { /* target_ip != NULL */ 3040 /* 3041 * If target exists and it's a directory, check that both 3042 * target and source are directories and that target can be 3043 * destroyed, or that neither is a directory. 3044 */ 3045 if (S_ISDIR(VFS_I(target_ip)->i_mode)) { 3046 /* 3047 * Make sure target dir is empty. 3048 */ 3049 if (!(xfs_dir_isempty(target_ip)) || 3050 (VFS_I(target_ip)->i_nlink > 2)) { 3051 error = -EEXIST; 3052 goto out_trans_cancel; 3053 } 3054 } 3055 3056 /* 3057 * Link the source inode under the target name. 3058 * If the source inode is a directory and we are moving 3059 * it across directories, its ".." entry will be 3060 * inconsistent until we replace that down below. 3061 * 3062 * In case there is already an entry with the same 3063 * name at the destination directory, remove it first. 3064 */ 3065 error = xfs_dir_replace(tp, target_dp, target_name, 3066 src_ip->i_ino, 3067 &first_block, &dfops, spaceres); 3068 if (error) 3069 goto out_bmap_cancel; 3070 3071 xfs_trans_ichgtime(tp, target_dp, 3072 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3073 3074 /* 3075 * Decrement the link count on the target since the target 3076 * dir no longer points to it. 3077 */ 3078 error = xfs_droplink(tp, target_ip); 3079 if (error) 3080 goto out_bmap_cancel; 3081 3082 if (src_is_directory) { 3083 /* 3084 * Drop the link from the old "." entry. 3085 */ 3086 error = xfs_droplink(tp, target_ip); 3087 if (error) 3088 goto out_bmap_cancel; 3089 } 3090 } /* target_ip != NULL */ 3091 3092 /* 3093 * Remove the source. 3094 */ 3095 if (new_parent && src_is_directory) { 3096 /* 3097 * Rewrite the ".." entry to point to the new 3098 * directory. 3099 */ 3100 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3101 target_dp->i_ino, 3102 &first_block, &dfops, spaceres); 3103 ASSERT(error != -EEXIST); 3104 if (error) 3105 goto out_bmap_cancel; 3106 } 3107 3108 /* 3109 * We always want to hit the ctime on the source inode. 3110 * 3111 * This isn't strictly required by the standards since the source 3112 * inode isn't really being changed, but old unix file systems did 3113 * it and some incremental backup programs won't work without it. 3114 */ 3115 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3116 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3117 3118 /* 3119 * Adjust the link count on src_dp. This is necessary when 3120 * renaming a directory, either within one parent when 3121 * the target existed, or across two parent directories. 3122 */ 3123 if (src_is_directory && (new_parent || target_ip != NULL)) { 3124 3125 /* 3126 * Decrement link count on src_directory since the 3127 * entry that's moved no longer points to it. 3128 */ 3129 error = xfs_droplink(tp, src_dp); 3130 if (error) 3131 goto out_bmap_cancel; 3132 } 3133 3134 /* 3135 * For whiteouts, we only need to update the source dirent with the 3136 * inode number of the whiteout inode rather than removing it 3137 * altogether. 3138 */ 3139 if (wip) { 3140 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3141 &first_block, &dfops, spaceres); 3142 } else 3143 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3144 &first_block, &dfops, spaceres); 3145 if (error) 3146 goto out_bmap_cancel; 3147 3148 /* 3149 * For whiteouts, we need to bump the link count on the whiteout inode. 3150 * This means that failures all the way up to this point leave the inode 3151 * on the unlinked list and so cleanup is a simple matter of dropping 3152 * the remaining reference to it. If we fail here after bumping the link 3153 * count, we're shutting down the filesystem so we'll never see the 3154 * intermediate state on disk. 3155 */ 3156 if (wip) { 3157 ASSERT(VFS_I(wip)->i_nlink == 0); 3158 error = xfs_bumplink(tp, wip); 3159 if (error) 3160 goto out_bmap_cancel; 3161 error = xfs_iunlink_remove(tp, wip); 3162 if (error) 3163 goto out_bmap_cancel; 3164 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3165 3166 /* 3167 * Now we have a real link, clear the "I'm a tmpfile" state 3168 * flag from the inode so it doesn't accidentally get misused in 3169 * future. 3170 */ 3171 VFS_I(wip)->i_state &= ~I_LINKABLE; 3172 } 3173 3174 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3175 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3176 if (new_parent) 3177 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3178 3179 error = xfs_finish_rename(tp, &dfops); 3180 if (wip) 3181 IRELE(wip); 3182 return error; 3183 3184 out_bmap_cancel: 3185 xfs_defer_cancel(&dfops); 3186 out_trans_cancel: 3187 xfs_trans_cancel(tp); 3188 out_release_wip: 3189 if (wip) 3190 IRELE(wip); 3191 return error; 3192 } 3193 3194 STATIC int 3195 xfs_iflush_cluster( 3196 struct xfs_inode *ip, 3197 struct xfs_buf *bp) 3198 { 3199 struct xfs_mount *mp = ip->i_mount; 3200 struct xfs_perag *pag; 3201 unsigned long first_index, mask; 3202 unsigned long inodes_per_cluster; 3203 int cilist_size; 3204 struct xfs_inode **cilist; 3205 struct xfs_inode *cip; 3206 int nr_found; 3207 int clcount = 0; 3208 int bufwasdelwri; 3209 int i; 3210 3211 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3212 3213 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3214 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3215 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); 3216 if (!cilist) 3217 goto out_put; 3218 3219 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3220 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3221 rcu_read_lock(); 3222 /* really need a gang lookup range call here */ 3223 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, 3224 first_index, inodes_per_cluster); 3225 if (nr_found == 0) 3226 goto out_free; 3227 3228 for (i = 0; i < nr_found; i++) { 3229 cip = cilist[i]; 3230 if (cip == ip) 3231 continue; 3232 3233 /* 3234 * because this is an RCU protected lookup, we could find a 3235 * recently freed or even reallocated inode during the lookup. 3236 * We need to check under the i_flags_lock for a valid inode 3237 * here. Skip it if it is not valid or the wrong inode. 3238 */ 3239 spin_lock(&cip->i_flags_lock); 3240 if (!cip->i_ino || 3241 __xfs_iflags_test(cip, XFS_ISTALE)) { 3242 spin_unlock(&cip->i_flags_lock); 3243 continue; 3244 } 3245 3246 /* 3247 * Once we fall off the end of the cluster, no point checking 3248 * any more inodes in the list because they will also all be 3249 * outside the cluster. 3250 */ 3251 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { 3252 spin_unlock(&cip->i_flags_lock); 3253 break; 3254 } 3255 spin_unlock(&cip->i_flags_lock); 3256 3257 /* 3258 * Do an un-protected check to see if the inode is dirty and 3259 * is a candidate for flushing. These checks will be repeated 3260 * later after the appropriate locks are acquired. 3261 */ 3262 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) 3263 continue; 3264 3265 /* 3266 * Try to get locks. If any are unavailable or it is pinned, 3267 * then this inode cannot be flushed and is skipped. 3268 */ 3269 3270 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) 3271 continue; 3272 if (!xfs_iflock_nowait(cip)) { 3273 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3274 continue; 3275 } 3276 if (xfs_ipincount(cip)) { 3277 xfs_ifunlock(cip); 3278 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3279 continue; 3280 } 3281 3282 3283 /* 3284 * Check the inode number again, just to be certain we are not 3285 * racing with freeing in xfs_reclaim_inode(). See the comments 3286 * in that function for more information as to why the initial 3287 * check is not sufficient. 3288 */ 3289 if (!cip->i_ino) { 3290 xfs_ifunlock(cip); 3291 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3292 continue; 3293 } 3294 3295 /* 3296 * arriving here means that this inode can be flushed. First 3297 * re-check that it's dirty before flushing. 3298 */ 3299 if (!xfs_inode_clean(cip)) { 3300 int error; 3301 error = xfs_iflush_int(cip, bp); 3302 if (error) { 3303 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3304 goto cluster_corrupt_out; 3305 } 3306 clcount++; 3307 } else { 3308 xfs_ifunlock(cip); 3309 } 3310 xfs_iunlock(cip, XFS_ILOCK_SHARED); 3311 } 3312 3313 if (clcount) { 3314 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3315 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3316 } 3317 3318 out_free: 3319 rcu_read_unlock(); 3320 kmem_free(cilist); 3321 out_put: 3322 xfs_perag_put(pag); 3323 return 0; 3324 3325 3326 cluster_corrupt_out: 3327 /* 3328 * Corruption detected in the clustering loop. Invalidate the 3329 * inode buffer and shut down the filesystem. 3330 */ 3331 rcu_read_unlock(); 3332 /* 3333 * Clean up the buffer. If it was delwri, just release it -- 3334 * brelse can handle it with no problems. If not, shut down the 3335 * filesystem before releasing the buffer. 3336 */ 3337 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3338 if (bufwasdelwri) 3339 xfs_buf_relse(bp); 3340 3341 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3342 3343 if (!bufwasdelwri) { 3344 /* 3345 * Just like incore_relse: if we have b_iodone functions, 3346 * mark the buffer as an error and call them. Otherwise 3347 * mark it as stale and brelse. 3348 */ 3349 if (bp->b_iodone) { 3350 bp->b_flags &= ~XBF_DONE; 3351 xfs_buf_stale(bp); 3352 xfs_buf_ioerror(bp, -EIO); 3353 xfs_buf_ioend(bp); 3354 } else { 3355 xfs_buf_stale(bp); 3356 xfs_buf_relse(bp); 3357 } 3358 } 3359 3360 /* 3361 * Unlocks the flush lock 3362 */ 3363 xfs_iflush_abort(cip, false); 3364 kmem_free(cilist); 3365 xfs_perag_put(pag); 3366 return -EFSCORRUPTED; 3367 } 3368 3369 /* 3370 * Flush dirty inode metadata into the backing buffer. 3371 * 3372 * The caller must have the inode lock and the inode flush lock held. The 3373 * inode lock will still be held upon return to the caller, and the inode 3374 * flush lock will be released after the inode has reached the disk. 3375 * 3376 * The caller must write out the buffer returned in *bpp and release it. 3377 */ 3378 int 3379 xfs_iflush( 3380 struct xfs_inode *ip, 3381 struct xfs_buf **bpp) 3382 { 3383 struct xfs_mount *mp = ip->i_mount; 3384 struct xfs_buf *bp = NULL; 3385 struct xfs_dinode *dip; 3386 int error; 3387 3388 XFS_STATS_INC(mp, xs_iflush_count); 3389 3390 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3391 ASSERT(xfs_isiflocked(ip)); 3392 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3393 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3394 3395 *bpp = NULL; 3396 3397 xfs_iunpin_wait(ip); 3398 3399 /* 3400 * For stale inodes we cannot rely on the backing buffer remaining 3401 * stale in cache for the remaining life of the stale inode and so 3402 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3403 * inodes below. We have to check this after ensuring the inode is 3404 * unpinned so that it is safe to reclaim the stale inode after the 3405 * flush call. 3406 */ 3407 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3408 xfs_ifunlock(ip); 3409 return 0; 3410 } 3411 3412 /* 3413 * This may have been unpinned because the filesystem is shutting 3414 * down forcibly. If that's the case we must not write this inode 3415 * to disk, because the log record didn't make it to disk. 3416 * 3417 * We also have to remove the log item from the AIL in this case, 3418 * as we wait for an empty AIL as part of the unmount process. 3419 */ 3420 if (XFS_FORCED_SHUTDOWN(mp)) { 3421 error = -EIO; 3422 goto abort_out; 3423 } 3424 3425 /* 3426 * Get the buffer containing the on-disk inode. We are doing a try-lock 3427 * operation here, so we may get an EAGAIN error. In that case, we 3428 * simply want to return with the inode still dirty. 3429 * 3430 * If we get any other error, we effectively have a corruption situation 3431 * and we cannot flush the inode, so we treat it the same as failing 3432 * xfs_iflush_int(). 3433 */ 3434 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3435 0); 3436 if (error == -EAGAIN) { 3437 xfs_ifunlock(ip); 3438 return error; 3439 } 3440 if (error) 3441 goto corrupt_out; 3442 3443 /* 3444 * First flush out the inode that xfs_iflush was called with. 3445 */ 3446 error = xfs_iflush_int(ip, bp); 3447 if (error) 3448 goto corrupt_out; 3449 3450 /* 3451 * If the buffer is pinned then push on the log now so we won't 3452 * get stuck waiting in the write for too long. 3453 */ 3454 if (xfs_buf_ispinned(bp)) 3455 xfs_log_force(mp, 0); 3456 3457 /* 3458 * inode clustering: 3459 * see if other inodes can be gathered into this write 3460 */ 3461 error = xfs_iflush_cluster(ip, bp); 3462 if (error) 3463 goto cluster_corrupt_out; 3464 3465 *bpp = bp; 3466 return 0; 3467 3468 corrupt_out: 3469 if (bp) 3470 xfs_buf_relse(bp); 3471 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3472 cluster_corrupt_out: 3473 error = -EFSCORRUPTED; 3474 abort_out: 3475 /* 3476 * Unlocks the flush lock 3477 */ 3478 xfs_iflush_abort(ip, false); 3479 return error; 3480 } 3481 3482 STATIC int 3483 xfs_iflush_int( 3484 struct xfs_inode *ip, 3485 struct xfs_buf *bp) 3486 { 3487 struct xfs_inode_log_item *iip = ip->i_itemp; 3488 struct xfs_dinode *dip; 3489 struct xfs_mount *mp = ip->i_mount; 3490 3491 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3492 ASSERT(xfs_isiflocked(ip)); 3493 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3494 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3495 ASSERT(iip != NULL && iip->ili_fields != 0); 3496 ASSERT(ip->i_d.di_version > 1); 3497 3498 /* set *dip = inode's place in the buffer */ 3499 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3500 3501 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3502 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3503 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3504 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3505 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3506 goto corrupt_out; 3507 } 3508 if (S_ISREG(VFS_I(ip)->i_mode)) { 3509 if (XFS_TEST_ERROR( 3510 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3511 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3512 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3514 "%s: Bad regular inode %Lu, ptr 0x%p", 3515 __func__, ip->i_ino, ip); 3516 goto corrupt_out; 3517 } 3518 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3519 if (XFS_TEST_ERROR( 3520 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3521 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3522 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3523 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3524 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3525 "%s: Bad directory inode %Lu, ptr 0x%p", 3526 __func__, ip->i_ino, ip); 3527 goto corrupt_out; 3528 } 3529 } 3530 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3531 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3532 XFS_RANDOM_IFLUSH_5)) { 3533 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3534 "%s: detected corrupt incore inode %Lu, " 3535 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3536 __func__, ip->i_ino, 3537 ip->i_d.di_nextents + ip->i_d.di_anextents, 3538 ip->i_d.di_nblocks, ip); 3539 goto corrupt_out; 3540 } 3541 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3542 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3543 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3544 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3545 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3546 goto corrupt_out; 3547 } 3548 3549 /* 3550 * Inode item log recovery for v2 inodes are dependent on the 3551 * di_flushiter count for correct sequencing. We bump the flush 3552 * iteration count so we can detect flushes which postdate a log record 3553 * during recovery. This is redundant as we now log every change and 3554 * hence this can't happen but we need to still do it to ensure 3555 * backwards compatibility with old kernels that predate logging all 3556 * inode changes. 3557 */ 3558 if (ip->i_d.di_version < 3) 3559 ip->i_d.di_flushiter++; 3560 3561 /* 3562 * Copy the dirty parts of the inode into the on-disk inode. We always 3563 * copy out the core of the inode, because if the inode is dirty at all 3564 * the core must be. 3565 */ 3566 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3567 3568 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3569 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3570 ip->i_d.di_flushiter = 0; 3571 3572 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3573 if (XFS_IFORK_Q(ip)) 3574 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3575 xfs_inobp_check(mp, bp); 3576 3577 /* 3578 * We've recorded everything logged in the inode, so we'd like to clear 3579 * the ili_fields bits so we don't log and flush things unnecessarily. 3580 * However, we can't stop logging all this information until the data 3581 * we've copied into the disk buffer is written to disk. If we did we 3582 * might overwrite the copy of the inode in the log with all the data 3583 * after re-logging only part of it, and in the face of a crash we 3584 * wouldn't have all the data we need to recover. 3585 * 3586 * What we do is move the bits to the ili_last_fields field. When 3587 * logging the inode, these bits are moved back to the ili_fields field. 3588 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3589 * know that the information those bits represent is permanently on 3590 * disk. As long as the flush completes before the inode is logged 3591 * again, then both ili_fields and ili_last_fields will be cleared. 3592 * 3593 * We can play with the ili_fields bits here, because the inode lock 3594 * must be held exclusively in order to set bits there and the flush 3595 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3596 * done routine can tell whether or not to look in the AIL. Also, store 3597 * the current LSN of the inode so that we can tell whether the item has 3598 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3599 * need the AIL lock, because it is a 64 bit value that cannot be read 3600 * atomically. 3601 */ 3602 iip->ili_last_fields = iip->ili_fields; 3603 iip->ili_fields = 0; 3604 iip->ili_fsync_fields = 0; 3605 iip->ili_logged = 1; 3606 3607 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3608 &iip->ili_item.li_lsn); 3609 3610 /* 3611 * Attach the function xfs_iflush_done to the inode's 3612 * buffer. This will remove the inode from the AIL 3613 * and unlock the inode's flush lock when the inode is 3614 * completely written to disk. 3615 */ 3616 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3617 3618 /* generate the checksum. */ 3619 xfs_dinode_calc_crc(mp, dip); 3620 3621 ASSERT(bp->b_fspriv != NULL); 3622 ASSERT(bp->b_iodone != NULL); 3623 return 0; 3624 3625 corrupt_out: 3626 return -EFSCORRUPTED; 3627 } 3628