1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include <linux/iversion.h> 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_dir2.h" 19 #include "xfs_attr.h" 20 #include "xfs_trans_space.h" 21 #include "xfs_trans.h" 22 #include "xfs_buf_item.h" 23 #include "xfs_inode_item.h" 24 #include "xfs_ialloc.h" 25 #include "xfs_bmap.h" 26 #include "xfs_bmap_util.h" 27 #include "xfs_errortag.h" 28 #include "xfs_error.h" 29 #include "xfs_quota.h" 30 #include "xfs_filestream.h" 31 #include "xfs_trace.h" 32 #include "xfs_icache.h" 33 #include "xfs_symlink.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_log.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_reflink.h" 38 39 kmem_zone_t *xfs_inode_zone; 40 41 /* 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents 43 * freed from a file in a single transaction. 44 */ 45 #define XFS_ITRUNC_MAX_EXTENTS 2 46 47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); 48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); 49 50 /* 51 * helper function to extract extent size hint from inode 52 */ 53 xfs_extlen_t 54 xfs_get_extsz_hint( 55 struct xfs_inode *ip) 56 { 57 /* 58 * No point in aligning allocations if we need to COW to actually 59 * write to them. 60 */ 61 if (xfs_is_always_cow_inode(ip)) 62 return 0; 63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 64 return ip->i_d.di_extsize; 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return ip->i_mount->m_sb.sb_rextsize; 67 return 0; 68 } 69 70 /* 71 * Helper function to extract CoW extent size hint from inode. 72 * Between the extent size hint and the CoW extent size hint, we 73 * return the greater of the two. If the value is zero (automatic), 74 * use the default size. 75 */ 76 xfs_extlen_t 77 xfs_get_cowextsz_hint( 78 struct xfs_inode *ip) 79 { 80 xfs_extlen_t a, b; 81 82 a = 0; 83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 84 a = ip->i_d.di_cowextsize; 85 b = xfs_get_extsz_hint(ip); 86 87 a = max(a, b); 88 if (a == 0) 89 return XFS_DEFAULT_COWEXTSZ_HINT; 90 return a; 91 } 92 93 /* 94 * These two are wrapper routines around the xfs_ilock() routine used to 95 * centralize some grungy code. They are used in places that wish to lock the 96 * inode solely for reading the extents. The reason these places can't just 97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 98 * bringing in of the extents from disk for a file in b-tree format. If the 99 * inode is in b-tree format, then we need to lock the inode exclusively until 100 * the extents are read in. Locking it exclusively all the time would limit 101 * our parallelism unnecessarily, though. What we do instead is check to see 102 * if the extents have been read in yet, and only lock the inode exclusively 103 * if they have not. 104 * 105 * The functions return a value which should be given to the corresponding 106 * xfs_iunlock() call. 107 */ 108 uint 109 xfs_ilock_data_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE && 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 uint 122 xfs_ilock_attr_map_shared( 123 struct xfs_inode *ip) 124 { 125 uint lock_mode = XFS_ILOCK_SHARED; 126 127 if (ip->i_afp && 128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE && 129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 130 lock_mode = XFS_ILOCK_EXCL; 131 xfs_ilock(ip, lock_mode); 132 return lock_mode; 133 } 134 135 /* 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows 138 * various combinations of the locks to be obtained. 139 * 140 * The 3 locks should always be ordered so that the IO lock is obtained first, 141 * the mmap lock second and the ilock last in order to prevent deadlock. 142 * 143 * Basic locking order: 144 * 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock 146 * 147 * mmap_lock locking order: 148 * 149 * i_rwsem -> page lock -> mmap_lock 150 * mmap_lock -> i_mmap_lock -> page_lock 151 * 152 * The difference in mmap_lock locking order mean that we cannot hold the 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock 155 * in get_user_pages() to map the user pages into the kernel address space for 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because 157 * page faults already hold the mmap_lock. 158 * 159 * Hence to serialise fully against both syscall and mmap based IO, we need to 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both 161 * taken in places where we need to invalidate the page cache in a race 162 * free manner (e.g. truncate, hole punch and other extent manipulation 163 * functions). 164 */ 165 void 166 xfs_ilock( 167 xfs_inode_t *ip, 168 uint lock_flags) 169 { 170 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 171 172 /* 173 * You can't set both SHARED and EXCL for the same lock, 174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 176 */ 177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 184 185 if (lock_flags & XFS_IOLOCK_EXCL) { 186 down_write_nested(&VFS_I(ip)->i_rwsem, 187 XFS_IOLOCK_DEP(lock_flags)); 188 } else if (lock_flags & XFS_IOLOCK_SHARED) { 189 down_read_nested(&VFS_I(ip)->i_rwsem, 190 XFS_IOLOCK_DEP(lock_flags)); 191 } 192 193 if (lock_flags & XFS_MMAPLOCK_EXCL) 194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 195 else if (lock_flags & XFS_MMAPLOCK_SHARED) 196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 197 198 if (lock_flags & XFS_ILOCK_EXCL) 199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 200 else if (lock_flags & XFS_ILOCK_SHARED) 201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 202 } 203 204 /* 205 * This is just like xfs_ilock(), except that the caller 206 * is guaranteed not to sleep. It returns 1 if it gets 207 * the requested locks and 0 otherwise. If the IO lock is 208 * obtained but the inode lock cannot be, then the IO lock 209 * is dropped before returning. 210 * 211 * ip -- the inode being locked 212 * lock_flags -- this parameter indicates the inode's locks to be 213 * to be locked. See the comment for xfs_ilock() for a list 214 * of valid values. 215 */ 216 int 217 xfs_ilock_nowait( 218 xfs_inode_t *ip, 219 uint lock_flags) 220 { 221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 222 223 /* 224 * You can't set both SHARED and EXCL for the same lock, 225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 227 */ 228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 235 236 if (lock_flags & XFS_IOLOCK_EXCL) { 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) 238 goto out; 239 } else if (lock_flags & XFS_IOLOCK_SHARED) { 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) 241 goto out; 242 } 243 244 if (lock_flags & XFS_MMAPLOCK_EXCL) { 245 if (!mrtryupdate(&ip->i_mmaplock)) 246 goto out_undo_iolock; 247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 248 if (!mrtryaccess(&ip->i_mmaplock)) 249 goto out_undo_iolock; 250 } 251 252 if (lock_flags & XFS_ILOCK_EXCL) { 253 if (!mrtryupdate(&ip->i_lock)) 254 goto out_undo_mmaplock; 255 } else if (lock_flags & XFS_ILOCK_SHARED) { 256 if (!mrtryaccess(&ip->i_lock)) 257 goto out_undo_mmaplock; 258 } 259 return 1; 260 261 out_undo_mmaplock: 262 if (lock_flags & XFS_MMAPLOCK_EXCL) 263 mrunlock_excl(&ip->i_mmaplock); 264 else if (lock_flags & XFS_MMAPLOCK_SHARED) 265 mrunlock_shared(&ip->i_mmaplock); 266 out_undo_iolock: 267 if (lock_flags & XFS_IOLOCK_EXCL) 268 up_write(&VFS_I(ip)->i_rwsem); 269 else if (lock_flags & XFS_IOLOCK_SHARED) 270 up_read(&VFS_I(ip)->i_rwsem); 271 out: 272 return 0; 273 } 274 275 /* 276 * xfs_iunlock() is used to drop the inode locks acquired with 277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 279 * that we know which locks to drop. 280 * 281 * ip -- the inode being unlocked 282 * lock_flags -- this parameter indicates the inode's locks to be 283 * to be unlocked. See the comment for xfs_ilock() for a list 284 * of valid values for this parameter. 285 * 286 */ 287 void 288 xfs_iunlock( 289 xfs_inode_t *ip, 290 uint lock_flags) 291 { 292 /* 293 * You can't set both SHARED and EXCL for the same lock, 294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 296 */ 297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); 304 ASSERT(lock_flags != 0); 305 306 if (lock_flags & XFS_IOLOCK_EXCL) 307 up_write(&VFS_I(ip)->i_rwsem); 308 else if (lock_flags & XFS_IOLOCK_SHARED) 309 up_read(&VFS_I(ip)->i_rwsem); 310 311 if (lock_flags & XFS_MMAPLOCK_EXCL) 312 mrunlock_excl(&ip->i_mmaplock); 313 else if (lock_flags & XFS_MMAPLOCK_SHARED) 314 mrunlock_shared(&ip->i_mmaplock); 315 316 if (lock_flags & XFS_ILOCK_EXCL) 317 mrunlock_excl(&ip->i_lock); 318 else if (lock_flags & XFS_ILOCK_SHARED) 319 mrunlock_shared(&ip->i_lock); 320 321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 322 } 323 324 /* 325 * give up write locks. the i/o lock cannot be held nested 326 * if it is being demoted. 327 */ 328 void 329 xfs_ilock_demote( 330 xfs_inode_t *ip, 331 uint lock_flags) 332 { 333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 334 ASSERT((lock_flags & 335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 336 337 if (lock_flags & XFS_ILOCK_EXCL) 338 mrdemote(&ip->i_lock); 339 if (lock_flags & XFS_MMAPLOCK_EXCL) 340 mrdemote(&ip->i_mmaplock); 341 if (lock_flags & XFS_IOLOCK_EXCL) 342 downgrade_write(&VFS_I(ip)->i_rwsem); 343 344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 345 } 346 347 #if defined(DEBUG) || defined(XFS_WARN) 348 int 349 xfs_isilocked( 350 xfs_inode_t *ip, 351 uint lock_flags) 352 { 353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 354 if (!(lock_flags & XFS_ILOCK_SHARED)) 355 return !!ip->i_lock.mr_writer; 356 return rwsem_is_locked(&ip->i_lock.mr_lock); 357 } 358 359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 360 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 361 return !!ip->i_mmaplock.mr_writer; 362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 363 } 364 365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 366 if (!(lock_flags & XFS_IOLOCK_SHARED)) 367 return !debug_locks || 368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); 369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem); 370 } 371 372 ASSERT(0); 373 return 0; 374 } 375 #endif 376 377 /* 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build 381 * errors and warnings. 382 */ 383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) 384 static bool 385 xfs_lockdep_subclass_ok( 386 int subclass) 387 { 388 return subclass < MAX_LOCKDEP_SUBCLASSES; 389 } 390 #else 391 #define xfs_lockdep_subclass_ok(subclass) (true) 392 #endif 393 394 /* 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 396 * value. This can be called for any type of inode lock combination, including 397 * parent locking. Care must be taken to ensure we don't overrun the subclass 398 * storage fields in the class mask we build. 399 */ 400 static inline int 401 xfs_lock_inumorder(int lock_mode, int subclass) 402 { 403 int class = 0; 404 405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | 406 XFS_ILOCK_RTSUM))); 407 ASSERT(xfs_lockdep_subclass_ok(subclass)); 408 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); 411 class += subclass << XFS_IOLOCK_SHIFT; 412 } 413 414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); 416 class += subclass << XFS_MMAPLOCK_SHIFT; 417 } 418 419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { 420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); 421 class += subclass << XFS_ILOCK_SHIFT; 422 } 423 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; 425 } 426 427 /* 428 * The following routine will lock n inodes in exclusive mode. We assume the 429 * caller calls us with the inodes in i_ino order. 430 * 431 * We need to detect deadlock where an inode that we lock is in the AIL and we 432 * start waiting for another inode that is locked by a thread in a long running 433 * transaction (such as truncate). This can result in deadlock since the long 434 * running trans might need to wait for the inode we just locked in order to 435 * push the tail and free space in the log. 436 * 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time - 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 439 * lock more than one at a time, lockdep will report false positives saying we 440 * have violated locking orders. 441 */ 442 static void 443 xfs_lock_inodes( 444 struct xfs_inode **ips, 445 int inodes, 446 uint lock_mode) 447 { 448 int attempts = 0, i, j, try_lock; 449 struct xfs_log_item *lp; 450 451 /* 452 * Currently supports between 2 and 5 inodes with exclusive locking. We 453 * support an arbitrary depth of locking here, but absolute limits on 454 * inodes depend on the type of locking and the limits placed by 455 * lockdep annotations in xfs_lock_inumorder. These are all checked by 456 * the asserts. 457 */ 458 ASSERT(ips && inodes >= 2 && inodes <= 5); 459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | 460 XFS_ILOCK_EXCL)); 461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | 462 XFS_ILOCK_SHARED))); 463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || 464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); 465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || 466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); 467 468 if (lock_mode & XFS_IOLOCK_EXCL) { 469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); 470 } else if (lock_mode & XFS_MMAPLOCK_EXCL) 471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); 472 473 try_lock = 0; 474 i = 0; 475 again: 476 for (; i < inodes; i++) { 477 ASSERT(ips[i]); 478 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 480 continue; 481 482 /* 483 * If try_lock is not set yet, make sure all locked inodes are 484 * not in the AIL. If any are, set try_lock to be used later. 485 */ 486 if (!try_lock) { 487 for (j = (i - 1); j >= 0 && !try_lock; j--) { 488 lp = &ips[j]->i_itemp->ili_item; 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) 490 try_lock++; 491 } 492 } 493 494 /* 495 * If any of the previous locks we have locked is in the AIL, 496 * we must TRY to get the second and subsequent locks. If 497 * we can't get any, we must release all we have 498 * and try again. 499 */ 500 if (!try_lock) { 501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 502 continue; 503 } 504 505 /* try_lock means we have an inode locked that is in the AIL. */ 506 ASSERT(i != 0); 507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 508 continue; 509 510 /* 511 * Unlock all previous guys and try again. xfs_iunlock will try 512 * to push the tail if the inode is in the AIL. 513 */ 514 attempts++; 515 for (j = i - 1; j >= 0; j--) { 516 /* 517 * Check to see if we've already unlocked this one. Not 518 * the first one going back, and the inode ptr is the 519 * same. 520 */ 521 if (j != (i - 1) && ips[j] == ips[j + 1]) 522 continue; 523 524 xfs_iunlock(ips[j], lock_mode); 525 } 526 527 if ((attempts % 5) == 0) { 528 delay(1); /* Don't just spin the CPU */ 529 } 530 i = 0; 531 try_lock = 0; 532 goto again; 533 } 534 } 535 536 /* 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock 539 * more than one at a time, lockdep will report false positives saying we have 540 * violated locking orders. The iolock must be double-locked separately since 541 * we use i_rwsem for that. We now support taking one lock EXCL and the other 542 * SHARED. 543 */ 544 void 545 xfs_lock_two_inodes( 546 struct xfs_inode *ip0, 547 uint ip0_mode, 548 struct xfs_inode *ip1, 549 uint ip1_mode) 550 { 551 struct xfs_inode *temp; 552 uint mode_temp; 553 int attempts = 0; 554 struct xfs_log_item *lp; 555 556 ASSERT(hweight32(ip0_mode) == 1); 557 ASSERT(hweight32(ip1_mode) == 1); 558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); 560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || 567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 568 569 ASSERT(ip0->i_ino != ip1->i_ino); 570 571 if (ip0->i_ino > ip1->i_ino) { 572 temp = ip0; 573 ip0 = ip1; 574 ip1 = temp; 575 mode_temp = ip0_mode; 576 ip0_mode = ip1_mode; 577 ip1_mode = mode_temp; 578 } 579 580 again: 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); 582 583 /* 584 * If the first lock we have locked is in the AIL, we must TRY to get 585 * the second lock. If we can't get it, we must release the first one 586 * and try again. 587 */ 588 lp = &ip0->i_itemp->ili_item; 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { 590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { 591 xfs_iunlock(ip0, ip0_mode); 592 if ((++attempts % 5) == 0) 593 delay(1); /* Don't just spin the CPU */ 594 goto again; 595 } 596 } else { 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); 598 } 599 } 600 601 STATIC uint 602 _xfs_dic2xflags( 603 uint16_t di_flags, 604 uint64_t di_flags2, 605 bool has_attr) 606 { 607 uint flags = 0; 608 609 if (di_flags & XFS_DIFLAG_ANY) { 610 if (di_flags & XFS_DIFLAG_REALTIME) 611 flags |= FS_XFLAG_REALTIME; 612 if (di_flags & XFS_DIFLAG_PREALLOC) 613 flags |= FS_XFLAG_PREALLOC; 614 if (di_flags & XFS_DIFLAG_IMMUTABLE) 615 flags |= FS_XFLAG_IMMUTABLE; 616 if (di_flags & XFS_DIFLAG_APPEND) 617 flags |= FS_XFLAG_APPEND; 618 if (di_flags & XFS_DIFLAG_SYNC) 619 flags |= FS_XFLAG_SYNC; 620 if (di_flags & XFS_DIFLAG_NOATIME) 621 flags |= FS_XFLAG_NOATIME; 622 if (di_flags & XFS_DIFLAG_NODUMP) 623 flags |= FS_XFLAG_NODUMP; 624 if (di_flags & XFS_DIFLAG_RTINHERIT) 625 flags |= FS_XFLAG_RTINHERIT; 626 if (di_flags & XFS_DIFLAG_PROJINHERIT) 627 flags |= FS_XFLAG_PROJINHERIT; 628 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 629 flags |= FS_XFLAG_NOSYMLINKS; 630 if (di_flags & XFS_DIFLAG_EXTSIZE) 631 flags |= FS_XFLAG_EXTSIZE; 632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 633 flags |= FS_XFLAG_EXTSZINHERIT; 634 if (di_flags & XFS_DIFLAG_NODEFRAG) 635 flags |= FS_XFLAG_NODEFRAG; 636 if (di_flags & XFS_DIFLAG_FILESTREAM) 637 flags |= FS_XFLAG_FILESTREAM; 638 } 639 640 if (di_flags2 & XFS_DIFLAG2_ANY) { 641 if (di_flags2 & XFS_DIFLAG2_DAX) 642 flags |= FS_XFLAG_DAX; 643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) 644 flags |= FS_XFLAG_COWEXTSIZE; 645 } 646 647 if (has_attr) 648 flags |= FS_XFLAG_HASATTR; 649 650 return flags; 651 } 652 653 uint 654 xfs_ip2xflags( 655 struct xfs_inode *ip) 656 { 657 struct xfs_icdinode *dic = &ip->i_d; 658 659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); 660 } 661 662 /* 663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 664 * is allowed, otherwise it has to be an exact match. If a CI match is found, 665 * ci_name->name will point to a the actual name (caller must free) or 666 * will be set to NULL if an exact match is found. 667 */ 668 int 669 xfs_lookup( 670 xfs_inode_t *dp, 671 struct xfs_name *name, 672 xfs_inode_t **ipp, 673 struct xfs_name *ci_name) 674 { 675 xfs_ino_t inum; 676 int error; 677 678 trace_xfs_lookup(dp, name); 679 680 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 681 return -EIO; 682 683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 684 if (error) 685 goto out_unlock; 686 687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 688 if (error) 689 goto out_free_name; 690 691 return 0; 692 693 out_free_name: 694 if (ci_name) 695 kmem_free(ci_name->name); 696 out_unlock: 697 *ipp = NULL; 698 return error; 699 } 700 701 /* Propagate di_flags from a parent inode to a child inode. */ 702 static void 703 xfs_inode_inherit_flags( 704 struct xfs_inode *ip, 705 const struct xfs_inode *pip) 706 { 707 unsigned int di_flags = 0; 708 umode_t mode = VFS_I(ip)->i_mode; 709 710 if (S_ISDIR(mode)) { 711 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 712 di_flags |= XFS_DIFLAG_RTINHERIT; 713 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 714 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 715 ip->i_d.di_extsize = pip->i_d.di_extsize; 716 } 717 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 718 di_flags |= XFS_DIFLAG_PROJINHERIT; 719 } else if (S_ISREG(mode)) { 720 if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) && 721 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) 722 di_flags |= XFS_DIFLAG_REALTIME; 723 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 724 di_flags |= XFS_DIFLAG_EXTSIZE; 725 ip->i_d.di_extsize = pip->i_d.di_extsize; 726 } 727 } 728 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 729 xfs_inherit_noatime) 730 di_flags |= XFS_DIFLAG_NOATIME; 731 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 732 xfs_inherit_nodump) 733 di_flags |= XFS_DIFLAG_NODUMP; 734 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 735 xfs_inherit_sync) 736 di_flags |= XFS_DIFLAG_SYNC; 737 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 738 xfs_inherit_nosymlinks) 739 di_flags |= XFS_DIFLAG_NOSYMLINKS; 740 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 741 xfs_inherit_nodefrag) 742 di_flags |= XFS_DIFLAG_NODEFRAG; 743 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 744 di_flags |= XFS_DIFLAG_FILESTREAM; 745 746 ip->i_d.di_flags |= di_flags; 747 } 748 749 /* Propagate di_flags2 from a parent inode to a child inode. */ 750 static void 751 xfs_inode_inherit_flags2( 752 struct xfs_inode *ip, 753 const struct xfs_inode *pip) 754 { 755 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { 756 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; 757 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; 758 } 759 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) 760 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX; 761 } 762 763 /* 764 * Initialise a newly allocated inode and return the in-core inode to the 765 * caller locked exclusively. 766 */ 767 static int 768 xfs_init_new_inode( 769 struct user_namespace *mnt_userns, 770 struct xfs_trans *tp, 771 struct xfs_inode *pip, 772 xfs_ino_t ino, 773 umode_t mode, 774 xfs_nlink_t nlink, 775 dev_t rdev, 776 prid_t prid, 777 struct xfs_inode **ipp) 778 { 779 struct inode *dir = pip ? VFS_I(pip) : NULL; 780 struct xfs_mount *mp = tp->t_mountp; 781 struct xfs_inode *ip; 782 unsigned int flags; 783 int error; 784 struct timespec64 tv; 785 struct inode *inode; 786 787 /* 788 * Protect against obviously corrupt allocation btree records. Later 789 * xfs_iget checks will catch re-allocation of other active in-memory 790 * and on-disk inodes. If we don't catch reallocating the parent inode 791 * here we will deadlock in xfs_iget() so we have to do these checks 792 * first. 793 */ 794 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { 795 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); 796 return -EFSCORRUPTED; 797 } 798 799 /* 800 * Get the in-core inode with the lock held exclusively to prevent 801 * others from looking at until we're done. 802 */ 803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); 804 if (error) 805 return error; 806 807 ASSERT(ip != NULL); 808 inode = VFS_I(ip); 809 set_nlink(inode, nlink); 810 inode->i_rdev = rdev; 811 ip->i_d.di_projid = prid; 812 813 if (dir && !(dir->i_mode & S_ISGID) && 814 (mp->m_flags & XFS_MOUNT_GRPID)) { 815 inode->i_uid = fsuid_into_mnt(mnt_userns); 816 inode->i_gid = dir->i_gid; 817 inode->i_mode = mode; 818 } else { 819 inode_init_owner(mnt_userns, inode, dir, mode); 820 } 821 822 /* 823 * If the group ID of the new file does not match the effective group 824 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 825 * (and only if the irix_sgid_inherit compatibility variable is set). 826 */ 827 if (irix_sgid_inherit && 828 (inode->i_mode & S_ISGID) && 829 !in_group_p(i_gid_into_mnt(mnt_userns, inode))) 830 inode->i_mode &= ~S_ISGID; 831 832 ip->i_d.di_size = 0; 833 ip->i_df.if_nextents = 0; 834 ASSERT(ip->i_d.di_nblocks == 0); 835 836 tv = current_time(inode); 837 inode->i_mtime = tv; 838 inode->i_atime = tv; 839 inode->i_ctime = tv; 840 841 ip->i_d.di_extsize = 0; 842 ip->i_d.di_dmevmask = 0; 843 ip->i_d.di_dmstate = 0; 844 ip->i_d.di_flags = 0; 845 846 if (xfs_sb_version_has_v3inode(&mp->m_sb)) { 847 inode_set_iversion(inode, 1); 848 ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2; 849 ip->i_d.di_cowextsize = 0; 850 ip->i_d.di_crtime = tv; 851 } 852 853 flags = XFS_ILOG_CORE; 854 switch (mode & S_IFMT) { 855 case S_IFIFO: 856 case S_IFCHR: 857 case S_IFBLK: 858 case S_IFSOCK: 859 ip->i_df.if_format = XFS_DINODE_FMT_DEV; 860 ip->i_df.if_flags = 0; 861 flags |= XFS_ILOG_DEV; 862 break; 863 case S_IFREG: 864 case S_IFDIR: 865 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) 866 xfs_inode_inherit_flags(ip, pip); 867 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) 868 xfs_inode_inherit_flags2(ip, pip); 869 /* FALLTHROUGH */ 870 case S_IFLNK: 871 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 872 ip->i_df.if_flags = XFS_IFEXTENTS; 873 ip->i_df.if_bytes = 0; 874 ip->i_df.if_u1.if_root = NULL; 875 break; 876 default: 877 ASSERT(0); 878 } 879 880 /* 881 * Log the new values stuffed into the inode. 882 */ 883 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 884 xfs_trans_log_inode(tp, ip, flags); 885 886 /* now that we have an i_mode we can setup the inode structure */ 887 xfs_setup_inode(ip); 888 889 *ipp = ip; 890 return 0; 891 } 892 893 /* 894 * Allocates a new inode from disk and return a pointer to the incore copy. This 895 * routine will internally commit the current transaction and allocate a new one 896 * if we needed to allocate more on-disk free inodes to perform the requested 897 * operation. 898 * 899 * If we are allocating quota inodes, we do not have a parent inode to attach to 900 * or associate with (i.e. dp == NULL) because they are not linked into the 901 * directory structure - they are attached directly to the superblock - and so 902 * have no parent. 903 */ 904 int 905 xfs_dir_ialloc( 906 struct user_namespace *mnt_userns, 907 struct xfs_trans **tpp, 908 struct xfs_inode *dp, 909 umode_t mode, 910 xfs_nlink_t nlink, 911 dev_t rdev, 912 prid_t prid, 913 struct xfs_inode **ipp) 914 { 915 struct xfs_buf *agibp; 916 xfs_ino_t parent_ino = dp ? dp->i_ino : 0; 917 xfs_ino_t ino; 918 int error; 919 920 ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); 921 922 /* 923 * Call the space management code to pick the on-disk inode to be 924 * allocated. 925 */ 926 error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp); 927 if (error) 928 return error; 929 930 if (!agibp) 931 return -ENOSPC; 932 933 /* Allocate an inode from the selected AG */ 934 error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino); 935 if (error) 936 return error; 937 ASSERT(ino != NULLFSINO); 938 939 return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev, 940 prid, ipp); 941 } 942 943 /* 944 * Decrement the link count on an inode & log the change. If this causes the 945 * link count to go to zero, move the inode to AGI unlinked list so that it can 946 * be freed when the last active reference goes away via xfs_inactive(). 947 */ 948 static int /* error */ 949 xfs_droplink( 950 xfs_trans_t *tp, 951 xfs_inode_t *ip) 952 { 953 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 954 955 drop_nlink(VFS_I(ip)); 956 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 957 958 if (VFS_I(ip)->i_nlink) 959 return 0; 960 961 return xfs_iunlink(tp, ip); 962 } 963 964 /* 965 * Increment the link count on an inode & log the change. 966 */ 967 static void 968 xfs_bumplink( 969 xfs_trans_t *tp, 970 xfs_inode_t *ip) 971 { 972 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 973 974 inc_nlink(VFS_I(ip)); 975 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 976 } 977 978 int 979 xfs_create( 980 struct user_namespace *mnt_userns, 981 xfs_inode_t *dp, 982 struct xfs_name *name, 983 umode_t mode, 984 dev_t rdev, 985 xfs_inode_t **ipp) 986 { 987 int is_dir = S_ISDIR(mode); 988 struct xfs_mount *mp = dp->i_mount; 989 struct xfs_inode *ip = NULL; 990 struct xfs_trans *tp = NULL; 991 int error; 992 bool unlock_dp_on_error = false; 993 prid_t prid; 994 struct xfs_dquot *udqp = NULL; 995 struct xfs_dquot *gdqp = NULL; 996 struct xfs_dquot *pdqp = NULL; 997 struct xfs_trans_res *tres; 998 uint resblks; 999 1000 trace_xfs_create(dp, name); 1001 1002 if (XFS_FORCED_SHUTDOWN(mp)) 1003 return -EIO; 1004 1005 prid = xfs_get_initial_prid(dp); 1006 1007 /* 1008 * Make sure that we have allocated dquot(s) on disk. 1009 */ 1010 error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns), 1011 fsgid_into_mnt(mnt_userns), prid, 1012 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1013 &udqp, &gdqp, &pdqp); 1014 if (error) 1015 return error; 1016 1017 if (is_dir) { 1018 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1019 tres = &M_RES(mp)->tr_mkdir; 1020 } else { 1021 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1022 tres = &M_RES(mp)->tr_create; 1023 } 1024 1025 /* 1026 * Initially assume that the file does not exist and 1027 * reserve the resources for that case. If that is not 1028 * the case we'll drop the one we have and get a more 1029 * appropriate transaction later. 1030 */ 1031 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1032 &tp); 1033 if (error == -ENOSPC) { 1034 /* flush outstanding delalloc blocks and retry */ 1035 xfs_flush_inodes(mp); 1036 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, 1037 resblks, &tp); 1038 } 1039 if (error) 1040 goto out_release_dquots; 1041 1042 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1043 unlock_dp_on_error = true; 1044 1045 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, 1046 XFS_IEXT_DIR_MANIP_CNT(mp)); 1047 if (error) 1048 goto out_trans_cancel; 1049 1050 /* 1051 * A newly created regular or special file just has one directory 1052 * entry pointing to them, but a directory also the "." entry 1053 * pointing to itself. 1054 */ 1055 error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev, 1056 prid, &ip); 1057 if (error) 1058 goto out_trans_cancel; 1059 1060 /* 1061 * Now we join the directory inode to the transaction. We do not do it 1062 * earlier because xfs_dir_ialloc might commit the previous transaction 1063 * (and release all the locks). An error from here on will result in 1064 * the transaction cancel unlocking dp so don't do it explicitly in the 1065 * error path. 1066 */ 1067 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1068 unlock_dp_on_error = false; 1069 1070 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1071 resblks - XFS_IALLOC_SPACE_RES(mp)); 1072 if (error) { 1073 ASSERT(error != -ENOSPC); 1074 goto out_trans_cancel; 1075 } 1076 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1077 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1078 1079 if (is_dir) { 1080 error = xfs_dir_init(tp, ip, dp); 1081 if (error) 1082 goto out_trans_cancel; 1083 1084 xfs_bumplink(tp, dp); 1085 } 1086 1087 /* 1088 * If this is a synchronous mount, make sure that the 1089 * create transaction goes to disk before returning to 1090 * the user. 1091 */ 1092 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1093 xfs_trans_set_sync(tp); 1094 1095 /* 1096 * Attach the dquot(s) to the inodes and modify them incore. 1097 * These ids of the inode couldn't have changed since the new 1098 * inode has been locked ever since it was created. 1099 */ 1100 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1101 1102 error = xfs_trans_commit(tp); 1103 if (error) 1104 goto out_release_inode; 1105 1106 xfs_qm_dqrele(udqp); 1107 xfs_qm_dqrele(gdqp); 1108 xfs_qm_dqrele(pdqp); 1109 1110 *ipp = ip; 1111 return 0; 1112 1113 out_trans_cancel: 1114 xfs_trans_cancel(tp); 1115 out_release_inode: 1116 /* 1117 * Wait until after the current transaction is aborted to finish the 1118 * setup of the inode and release the inode. This prevents recursive 1119 * transactions and deadlocks from xfs_inactive. 1120 */ 1121 if (ip) { 1122 xfs_finish_inode_setup(ip); 1123 xfs_irele(ip); 1124 } 1125 out_release_dquots: 1126 xfs_qm_dqrele(udqp); 1127 xfs_qm_dqrele(gdqp); 1128 xfs_qm_dqrele(pdqp); 1129 1130 if (unlock_dp_on_error) 1131 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1132 return error; 1133 } 1134 1135 int 1136 xfs_create_tmpfile( 1137 struct user_namespace *mnt_userns, 1138 struct xfs_inode *dp, 1139 umode_t mode, 1140 struct xfs_inode **ipp) 1141 { 1142 struct xfs_mount *mp = dp->i_mount; 1143 struct xfs_inode *ip = NULL; 1144 struct xfs_trans *tp = NULL; 1145 int error; 1146 prid_t prid; 1147 struct xfs_dquot *udqp = NULL; 1148 struct xfs_dquot *gdqp = NULL; 1149 struct xfs_dquot *pdqp = NULL; 1150 struct xfs_trans_res *tres; 1151 uint resblks; 1152 1153 if (XFS_FORCED_SHUTDOWN(mp)) 1154 return -EIO; 1155 1156 prid = xfs_get_initial_prid(dp); 1157 1158 /* 1159 * Make sure that we have allocated dquot(s) on disk. 1160 */ 1161 error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns), 1162 fsgid_into_mnt(mnt_userns), prid, 1163 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1164 &udqp, &gdqp, &pdqp); 1165 if (error) 1166 return error; 1167 1168 resblks = XFS_IALLOC_SPACE_RES(mp); 1169 tres = &M_RES(mp)->tr_create_tmpfile; 1170 1171 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, 1172 &tp); 1173 if (error) 1174 goto out_release_dquots; 1175 1176 error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid, &ip); 1177 if (error) 1178 goto out_trans_cancel; 1179 1180 if (mp->m_flags & XFS_MOUNT_WSYNC) 1181 xfs_trans_set_sync(tp); 1182 1183 /* 1184 * Attach the dquot(s) to the inodes and modify them incore. 1185 * These ids of the inode couldn't have changed since the new 1186 * inode has been locked ever since it was created. 1187 */ 1188 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1189 1190 error = xfs_iunlink(tp, ip); 1191 if (error) 1192 goto out_trans_cancel; 1193 1194 error = xfs_trans_commit(tp); 1195 if (error) 1196 goto out_release_inode; 1197 1198 xfs_qm_dqrele(udqp); 1199 xfs_qm_dqrele(gdqp); 1200 xfs_qm_dqrele(pdqp); 1201 1202 *ipp = ip; 1203 return 0; 1204 1205 out_trans_cancel: 1206 xfs_trans_cancel(tp); 1207 out_release_inode: 1208 /* 1209 * Wait until after the current transaction is aborted to finish the 1210 * setup of the inode and release the inode. This prevents recursive 1211 * transactions and deadlocks from xfs_inactive. 1212 */ 1213 if (ip) { 1214 xfs_finish_inode_setup(ip); 1215 xfs_irele(ip); 1216 } 1217 out_release_dquots: 1218 xfs_qm_dqrele(udqp); 1219 xfs_qm_dqrele(gdqp); 1220 xfs_qm_dqrele(pdqp); 1221 1222 return error; 1223 } 1224 1225 int 1226 xfs_link( 1227 xfs_inode_t *tdp, 1228 xfs_inode_t *sip, 1229 struct xfs_name *target_name) 1230 { 1231 xfs_mount_t *mp = tdp->i_mount; 1232 xfs_trans_t *tp; 1233 int error; 1234 int resblks; 1235 1236 trace_xfs_link(tdp, target_name); 1237 1238 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); 1239 1240 if (XFS_FORCED_SHUTDOWN(mp)) 1241 return -EIO; 1242 1243 error = xfs_qm_dqattach(sip); 1244 if (error) 1245 goto std_return; 1246 1247 error = xfs_qm_dqattach(tdp); 1248 if (error) 1249 goto std_return; 1250 1251 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1252 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); 1253 if (error == -ENOSPC) { 1254 resblks = 0; 1255 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); 1256 } 1257 if (error) 1258 goto std_return; 1259 1260 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); 1261 1262 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1263 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1264 1265 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, 1266 XFS_IEXT_DIR_MANIP_CNT(mp)); 1267 if (error) 1268 goto error_return; 1269 1270 /* 1271 * If we are using project inheritance, we only allow hard link 1272 * creation in our tree when the project IDs are the same; else 1273 * the tree quota mechanism could be circumvented. 1274 */ 1275 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1276 tdp->i_d.di_projid != sip->i_d.di_projid)) { 1277 error = -EXDEV; 1278 goto error_return; 1279 } 1280 1281 if (!resblks) { 1282 error = xfs_dir_canenter(tp, tdp, target_name); 1283 if (error) 1284 goto error_return; 1285 } 1286 1287 /* 1288 * Handle initial link state of O_TMPFILE inode 1289 */ 1290 if (VFS_I(sip)->i_nlink == 0) { 1291 error = xfs_iunlink_remove(tp, sip); 1292 if (error) 1293 goto error_return; 1294 } 1295 1296 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1297 resblks); 1298 if (error) 1299 goto error_return; 1300 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1301 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1302 1303 xfs_bumplink(tp, sip); 1304 1305 /* 1306 * If this is a synchronous mount, make sure that the 1307 * link transaction goes to disk before returning to 1308 * the user. 1309 */ 1310 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1311 xfs_trans_set_sync(tp); 1312 1313 return xfs_trans_commit(tp); 1314 1315 error_return: 1316 xfs_trans_cancel(tp); 1317 std_return: 1318 return error; 1319 } 1320 1321 /* Clear the reflink flag and the cowblocks tag if possible. */ 1322 static void 1323 xfs_itruncate_clear_reflink_flags( 1324 struct xfs_inode *ip) 1325 { 1326 struct xfs_ifork *dfork; 1327 struct xfs_ifork *cfork; 1328 1329 if (!xfs_is_reflink_inode(ip)) 1330 return; 1331 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 1332 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); 1333 if (dfork->if_bytes == 0 && cfork->if_bytes == 0) 1334 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1335 if (cfork->if_bytes == 0) 1336 xfs_inode_clear_cowblocks_tag(ip); 1337 } 1338 1339 /* 1340 * Free up the underlying blocks past new_size. The new size must be smaller 1341 * than the current size. This routine can be used both for the attribute and 1342 * data fork, and does not modify the inode size, which is left to the caller. 1343 * 1344 * The transaction passed to this routine must have made a permanent log 1345 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1346 * given transaction and start new ones, so make sure everything involved in 1347 * the transaction is tidy before calling here. Some transaction will be 1348 * returned to the caller to be committed. The incoming transaction must 1349 * already include the inode, and both inode locks must be held exclusively. 1350 * The inode must also be "held" within the transaction. On return the inode 1351 * will be "held" within the returned transaction. This routine does NOT 1352 * require any disk space to be reserved for it within the transaction. 1353 * 1354 * If we get an error, we must return with the inode locked and linked into the 1355 * current transaction. This keeps things simple for the higher level code, 1356 * because it always knows that the inode is locked and held in the transaction 1357 * that returns to it whether errors occur or not. We don't mark the inode 1358 * dirty on error so that transactions can be easily aborted if possible. 1359 */ 1360 int 1361 xfs_itruncate_extents_flags( 1362 struct xfs_trans **tpp, 1363 struct xfs_inode *ip, 1364 int whichfork, 1365 xfs_fsize_t new_size, 1366 int flags) 1367 { 1368 struct xfs_mount *mp = ip->i_mount; 1369 struct xfs_trans *tp = *tpp; 1370 xfs_fileoff_t first_unmap_block; 1371 xfs_filblks_t unmap_len; 1372 int error = 0; 1373 1374 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1375 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1376 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1377 ASSERT(new_size <= XFS_ISIZE(ip)); 1378 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1379 ASSERT(ip->i_itemp != NULL); 1380 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1381 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1382 1383 trace_xfs_itruncate_extents_start(ip, new_size); 1384 1385 flags |= xfs_bmapi_aflag(whichfork); 1386 1387 /* 1388 * Since it is possible for space to become allocated beyond 1389 * the end of the file (in a crash where the space is allocated 1390 * but the inode size is not yet updated), simply remove any 1391 * blocks which show up between the new EOF and the maximum 1392 * possible file size. 1393 * 1394 * We have to free all the blocks to the bmbt maximum offset, even if 1395 * the page cache can't scale that far. 1396 */ 1397 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1398 if (!xfs_verify_fileoff(mp, first_unmap_block)) { 1399 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); 1400 return 0; 1401 } 1402 1403 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; 1404 while (unmap_len > 0) { 1405 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1406 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, 1407 flags, XFS_ITRUNC_MAX_EXTENTS); 1408 if (error) 1409 goto out; 1410 1411 /* free the just unmapped extents */ 1412 error = xfs_defer_finish(&tp); 1413 if (error) 1414 goto out; 1415 } 1416 1417 if (whichfork == XFS_DATA_FORK) { 1418 /* Remove all pending CoW reservations. */ 1419 error = xfs_reflink_cancel_cow_blocks(ip, &tp, 1420 first_unmap_block, XFS_MAX_FILEOFF, true); 1421 if (error) 1422 goto out; 1423 1424 xfs_itruncate_clear_reflink_flags(ip); 1425 } 1426 1427 /* 1428 * Always re-log the inode so that our permanent transaction can keep 1429 * on rolling it forward in the log. 1430 */ 1431 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1432 1433 trace_xfs_itruncate_extents_end(ip, new_size); 1434 1435 out: 1436 *tpp = tp; 1437 return error; 1438 } 1439 1440 int 1441 xfs_release( 1442 xfs_inode_t *ip) 1443 { 1444 xfs_mount_t *mp = ip->i_mount; 1445 int error; 1446 1447 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) 1448 return 0; 1449 1450 /* If this is a read-only mount, don't do this (would generate I/O) */ 1451 if (mp->m_flags & XFS_MOUNT_RDONLY) 1452 return 0; 1453 1454 if (!XFS_FORCED_SHUTDOWN(mp)) { 1455 int truncated; 1456 1457 /* 1458 * If we previously truncated this file and removed old data 1459 * in the process, we want to initiate "early" writeout on 1460 * the last close. This is an attempt to combat the notorious 1461 * NULL files problem which is particularly noticeable from a 1462 * truncate down, buffered (re-)write (delalloc), followed by 1463 * a crash. What we are effectively doing here is 1464 * significantly reducing the time window where we'd otherwise 1465 * be exposed to that problem. 1466 */ 1467 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1468 if (truncated) { 1469 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1470 if (ip->i_delayed_blks > 0) { 1471 error = filemap_flush(VFS_I(ip)->i_mapping); 1472 if (error) 1473 return error; 1474 } 1475 } 1476 } 1477 1478 if (VFS_I(ip)->i_nlink == 0) 1479 return 0; 1480 1481 if (xfs_can_free_eofblocks(ip, false)) { 1482 1483 /* 1484 * Check if the inode is being opened, written and closed 1485 * frequently and we have delayed allocation blocks outstanding 1486 * (e.g. streaming writes from the NFS server), truncating the 1487 * blocks past EOF will cause fragmentation to occur. 1488 * 1489 * In this case don't do the truncation, but we have to be 1490 * careful how we detect this case. Blocks beyond EOF show up as 1491 * i_delayed_blks even when the inode is clean, so we need to 1492 * truncate them away first before checking for a dirty release. 1493 * Hence on the first dirty close we will still remove the 1494 * speculative allocation, but after that we will leave it in 1495 * place. 1496 */ 1497 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1498 return 0; 1499 /* 1500 * If we can't get the iolock just skip truncating the blocks 1501 * past EOF because we could deadlock with the mmap_lock 1502 * otherwise. We'll get another chance to drop them once the 1503 * last reference to the inode is dropped, so we'll never leak 1504 * blocks permanently. 1505 */ 1506 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { 1507 error = xfs_free_eofblocks(ip); 1508 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 1509 if (error) 1510 return error; 1511 } 1512 1513 /* delalloc blocks after truncation means it really is dirty */ 1514 if (ip->i_delayed_blks) 1515 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1516 } 1517 return 0; 1518 } 1519 1520 /* 1521 * xfs_inactive_truncate 1522 * 1523 * Called to perform a truncate when an inode becomes unlinked. 1524 */ 1525 STATIC int 1526 xfs_inactive_truncate( 1527 struct xfs_inode *ip) 1528 { 1529 struct xfs_mount *mp = ip->i_mount; 1530 struct xfs_trans *tp; 1531 int error; 1532 1533 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 1534 if (error) { 1535 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1536 return error; 1537 } 1538 xfs_ilock(ip, XFS_ILOCK_EXCL); 1539 xfs_trans_ijoin(tp, ip, 0); 1540 1541 /* 1542 * Log the inode size first to prevent stale data exposure in the event 1543 * of a system crash before the truncate completes. See the related 1544 * comment in xfs_vn_setattr_size() for details. 1545 */ 1546 ip->i_d.di_size = 0; 1547 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1548 1549 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1550 if (error) 1551 goto error_trans_cancel; 1552 1553 ASSERT(ip->i_df.if_nextents == 0); 1554 1555 error = xfs_trans_commit(tp); 1556 if (error) 1557 goto error_unlock; 1558 1559 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1560 return 0; 1561 1562 error_trans_cancel: 1563 xfs_trans_cancel(tp); 1564 error_unlock: 1565 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1566 return error; 1567 } 1568 1569 /* 1570 * xfs_inactive_ifree() 1571 * 1572 * Perform the inode free when an inode is unlinked. 1573 */ 1574 STATIC int 1575 xfs_inactive_ifree( 1576 struct xfs_inode *ip) 1577 { 1578 struct xfs_mount *mp = ip->i_mount; 1579 struct xfs_trans *tp; 1580 int error; 1581 1582 /* 1583 * We try to use a per-AG reservation for any block needed by the finobt 1584 * tree, but as the finobt feature predates the per-AG reservation 1585 * support a degraded file system might not have enough space for the 1586 * reservation at mount time. In that case try to dip into the reserved 1587 * pool and pray. 1588 * 1589 * Send a warning if the reservation does happen to fail, as the inode 1590 * now remains allocated and sits on the unlinked list until the fs is 1591 * repaired. 1592 */ 1593 if (unlikely(mp->m_finobt_nores)) { 1594 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 1595 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, 1596 &tp); 1597 } else { 1598 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); 1599 } 1600 if (error) { 1601 if (error == -ENOSPC) { 1602 xfs_warn_ratelimited(mp, 1603 "Failed to remove inode(s) from unlinked list. " 1604 "Please free space, unmount and run xfs_repair."); 1605 } else { 1606 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1607 } 1608 return error; 1609 } 1610 1611 /* 1612 * We do not hold the inode locked across the entire rolling transaction 1613 * here. We only need to hold it for the first transaction that 1614 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the 1615 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode 1616 * here breaks the relationship between cluster buffer invalidation and 1617 * stale inode invalidation on cluster buffer item journal commit 1618 * completion, and can result in leaving dirty stale inodes hanging 1619 * around in memory. 1620 * 1621 * We have no need for serialising this inode operation against other 1622 * operations - we freed the inode and hence reallocation is required 1623 * and that will serialise on reallocating the space the deferops need 1624 * to free. Hence we can unlock the inode on the first commit of 1625 * the transaction rather than roll it right through the deferops. This 1626 * avoids relogging the XFS_ISTALE inode. 1627 * 1628 * We check that xfs_ifree() hasn't grown an internal transaction roll 1629 * by asserting that the inode is still locked when it returns. 1630 */ 1631 xfs_ilock(ip, XFS_ILOCK_EXCL); 1632 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1633 1634 error = xfs_ifree(tp, ip); 1635 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1636 if (error) { 1637 /* 1638 * If we fail to free the inode, shut down. The cancel 1639 * might do that, we need to make sure. Otherwise the 1640 * inode might be lost for a long time or forever. 1641 */ 1642 if (!XFS_FORCED_SHUTDOWN(mp)) { 1643 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1644 __func__, error); 1645 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1646 } 1647 xfs_trans_cancel(tp); 1648 return error; 1649 } 1650 1651 /* 1652 * Credit the quota account(s). The inode is gone. 1653 */ 1654 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1655 1656 /* 1657 * Just ignore errors at this point. There is nothing we can do except 1658 * to try to keep going. Make sure it's not a silent error. 1659 */ 1660 error = xfs_trans_commit(tp); 1661 if (error) 1662 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1663 __func__, error); 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * xfs_inactive 1670 * 1671 * This is called when the vnode reference count for the vnode 1672 * goes to zero. If the file has been unlinked, then it must 1673 * now be truncated. Also, we clear all of the read-ahead state 1674 * kept for the inode here since the file is now closed. 1675 */ 1676 void 1677 xfs_inactive( 1678 xfs_inode_t *ip) 1679 { 1680 struct xfs_mount *mp; 1681 int error; 1682 int truncate = 0; 1683 1684 /* 1685 * If the inode is already free, then there can be nothing 1686 * to clean up here. 1687 */ 1688 if (VFS_I(ip)->i_mode == 0) { 1689 ASSERT(ip->i_df.if_broot_bytes == 0); 1690 return; 1691 } 1692 1693 mp = ip->i_mount; 1694 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); 1695 1696 /* If this is a read-only mount, don't do this (would generate I/O) */ 1697 if (mp->m_flags & XFS_MOUNT_RDONLY) 1698 return; 1699 1700 /* Try to clean out the cow blocks if there are any. */ 1701 if (xfs_inode_has_cow_data(ip)) 1702 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); 1703 1704 if (VFS_I(ip)->i_nlink != 0) { 1705 /* 1706 * force is true because we are evicting an inode from the 1707 * cache. Post-eof blocks must be freed, lest we end up with 1708 * broken free space accounting. 1709 * 1710 * Note: don't bother with iolock here since lockdep complains 1711 * about acquiring it in reclaim context. We have the only 1712 * reference to the inode at this point anyways. 1713 */ 1714 if (xfs_can_free_eofblocks(ip, true)) 1715 xfs_free_eofblocks(ip); 1716 1717 return; 1718 } 1719 1720 if (S_ISREG(VFS_I(ip)->i_mode) && 1721 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1722 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) 1723 truncate = 1; 1724 1725 error = xfs_qm_dqattach(ip); 1726 if (error) 1727 return; 1728 1729 if (S_ISLNK(VFS_I(ip)->i_mode)) 1730 error = xfs_inactive_symlink(ip); 1731 else if (truncate) 1732 error = xfs_inactive_truncate(ip); 1733 if (error) 1734 return; 1735 1736 /* 1737 * If there are attributes associated with the file then blow them away 1738 * now. The code calls a routine that recursively deconstructs the 1739 * attribute fork. If also blows away the in-core attribute fork. 1740 */ 1741 if (XFS_IFORK_Q(ip)) { 1742 error = xfs_attr_inactive(ip); 1743 if (error) 1744 return; 1745 } 1746 1747 ASSERT(!ip->i_afp); 1748 ASSERT(ip->i_d.di_forkoff == 0); 1749 1750 /* 1751 * Free the inode. 1752 */ 1753 error = xfs_inactive_ifree(ip); 1754 if (error) 1755 return; 1756 1757 /* 1758 * Release the dquots held by inode, if any. 1759 */ 1760 xfs_qm_dqdetach(ip); 1761 } 1762 1763 /* 1764 * In-Core Unlinked List Lookups 1765 * ============================= 1766 * 1767 * Every inode is supposed to be reachable from some other piece of metadata 1768 * with the exception of the root directory. Inodes with a connection to a 1769 * file descriptor but not linked from anywhere in the on-disk directory tree 1770 * are collectively known as unlinked inodes, though the filesystem itself 1771 * maintains links to these inodes so that on-disk metadata are consistent. 1772 * 1773 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI 1774 * header contains a number of buckets that point to an inode, and each inode 1775 * record has a pointer to the next inode in the hash chain. This 1776 * singly-linked list causes scaling problems in the iunlink remove function 1777 * because we must walk that list to find the inode that points to the inode 1778 * being removed from the unlinked hash bucket list. 1779 * 1780 * What if we modelled the unlinked list as a collection of records capturing 1781 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd 1782 * have a fast way to look up unlinked list predecessors, which avoids the 1783 * slow list walk. That's exactly what we do here (in-core) with a per-AG 1784 * rhashtable. 1785 * 1786 * Because this is a backref cache, we ignore operational failures since the 1787 * iunlink code can fall back to the slow bucket walk. The only errors that 1788 * should bubble out are for obviously incorrect situations. 1789 * 1790 * All users of the backref cache MUST hold the AGI buffer lock to serialize 1791 * access or have otherwise provided for concurrency control. 1792 */ 1793 1794 /* Capture a "X.next_unlinked = Y" relationship. */ 1795 struct xfs_iunlink { 1796 struct rhash_head iu_rhash_head; 1797 xfs_agino_t iu_agino; /* X */ 1798 xfs_agino_t iu_next_unlinked; /* Y */ 1799 }; 1800 1801 /* Unlinked list predecessor lookup hashtable construction */ 1802 static int 1803 xfs_iunlink_obj_cmpfn( 1804 struct rhashtable_compare_arg *arg, 1805 const void *obj) 1806 { 1807 const xfs_agino_t *key = arg->key; 1808 const struct xfs_iunlink *iu = obj; 1809 1810 if (iu->iu_next_unlinked != *key) 1811 return 1; 1812 return 0; 1813 } 1814 1815 static const struct rhashtable_params xfs_iunlink_hash_params = { 1816 .min_size = XFS_AGI_UNLINKED_BUCKETS, 1817 .key_len = sizeof(xfs_agino_t), 1818 .key_offset = offsetof(struct xfs_iunlink, 1819 iu_next_unlinked), 1820 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head), 1821 .automatic_shrinking = true, 1822 .obj_cmpfn = xfs_iunlink_obj_cmpfn, 1823 }; 1824 1825 /* 1826 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such 1827 * relation is found. 1828 */ 1829 static xfs_agino_t 1830 xfs_iunlink_lookup_backref( 1831 struct xfs_perag *pag, 1832 xfs_agino_t agino) 1833 { 1834 struct xfs_iunlink *iu; 1835 1836 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1837 xfs_iunlink_hash_params); 1838 return iu ? iu->iu_agino : NULLAGINO; 1839 } 1840 1841 /* 1842 * Take ownership of an iunlink cache entry and insert it into the hash table. 1843 * If successful, the entry will be owned by the cache; if not, it is freed. 1844 * Either way, the caller does not own @iu after this call. 1845 */ 1846 static int 1847 xfs_iunlink_insert_backref( 1848 struct xfs_perag *pag, 1849 struct xfs_iunlink *iu) 1850 { 1851 int error; 1852 1853 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, 1854 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1855 /* 1856 * Fail loudly if there already was an entry because that's a sign of 1857 * corruption of in-memory data. Also fail loudly if we see an error 1858 * code we didn't anticipate from the rhashtable code. Currently we 1859 * only anticipate ENOMEM. 1860 */ 1861 if (error) { 1862 WARN(error != -ENOMEM, "iunlink cache insert error %d", error); 1863 kmem_free(iu); 1864 } 1865 /* 1866 * Absorb any runtime errors that aren't a result of corruption because 1867 * this is a cache and we can always fall back to bucket list scanning. 1868 */ 1869 if (error != 0 && error != -EEXIST) 1870 error = 0; 1871 return error; 1872 } 1873 1874 /* Remember that @prev_agino.next_unlinked = @this_agino. */ 1875 static int 1876 xfs_iunlink_add_backref( 1877 struct xfs_perag *pag, 1878 xfs_agino_t prev_agino, 1879 xfs_agino_t this_agino) 1880 { 1881 struct xfs_iunlink *iu; 1882 1883 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) 1884 return 0; 1885 1886 iu = kmem_zalloc(sizeof(*iu), KM_NOFS); 1887 iu->iu_agino = prev_agino; 1888 iu->iu_next_unlinked = this_agino; 1889 1890 return xfs_iunlink_insert_backref(pag, iu); 1891 } 1892 1893 /* 1894 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. 1895 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there 1896 * wasn't any such entry then we don't bother. 1897 */ 1898 static int 1899 xfs_iunlink_change_backref( 1900 struct xfs_perag *pag, 1901 xfs_agino_t agino, 1902 xfs_agino_t next_unlinked) 1903 { 1904 struct xfs_iunlink *iu; 1905 int error; 1906 1907 /* Look up the old entry; if there wasn't one then exit. */ 1908 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, 1909 xfs_iunlink_hash_params); 1910 if (!iu) 1911 return 0; 1912 1913 /* 1914 * Remove the entry. This shouldn't ever return an error, but if we 1915 * couldn't remove the old entry we don't want to add it again to the 1916 * hash table, and if the entry disappeared on us then someone's 1917 * violated the locking rules and we need to fail loudly. Either way 1918 * we cannot remove the inode because internal state is or would have 1919 * been corrupt. 1920 */ 1921 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, 1922 &iu->iu_rhash_head, xfs_iunlink_hash_params); 1923 if (error) 1924 return error; 1925 1926 /* If there is no new next entry just free our item and return. */ 1927 if (next_unlinked == NULLAGINO) { 1928 kmem_free(iu); 1929 return 0; 1930 } 1931 1932 /* Update the entry and re-add it to the hash table. */ 1933 iu->iu_next_unlinked = next_unlinked; 1934 return xfs_iunlink_insert_backref(pag, iu); 1935 } 1936 1937 /* Set up the in-core predecessor structures. */ 1938 int 1939 xfs_iunlink_init( 1940 struct xfs_perag *pag) 1941 { 1942 return rhashtable_init(&pag->pagi_unlinked_hash, 1943 &xfs_iunlink_hash_params); 1944 } 1945 1946 /* Free the in-core predecessor structures. */ 1947 static void 1948 xfs_iunlink_free_item( 1949 void *ptr, 1950 void *arg) 1951 { 1952 struct xfs_iunlink *iu = ptr; 1953 bool *freed_anything = arg; 1954 1955 *freed_anything = true; 1956 kmem_free(iu); 1957 } 1958 1959 void 1960 xfs_iunlink_destroy( 1961 struct xfs_perag *pag) 1962 { 1963 bool freed_anything = false; 1964 1965 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, 1966 xfs_iunlink_free_item, &freed_anything); 1967 1968 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); 1969 } 1970 1971 /* 1972 * Point the AGI unlinked bucket at an inode and log the results. The caller 1973 * is responsible for validating the old value. 1974 */ 1975 STATIC int 1976 xfs_iunlink_update_bucket( 1977 struct xfs_trans *tp, 1978 xfs_agnumber_t agno, 1979 struct xfs_buf *agibp, 1980 unsigned int bucket_index, 1981 xfs_agino_t new_agino) 1982 { 1983 struct xfs_agi *agi = agibp->b_addr; 1984 xfs_agino_t old_value; 1985 int offset; 1986 1987 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino)); 1988 1989 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); 1990 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index, 1991 old_value, new_agino); 1992 1993 /* 1994 * We should never find the head of the list already set to the value 1995 * passed in because either we're adding or removing ourselves from the 1996 * head of the list. 1997 */ 1998 if (old_value == new_agino) { 1999 xfs_buf_mark_corrupt(agibp); 2000 return -EFSCORRUPTED; 2001 } 2002 2003 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); 2004 offset = offsetof(struct xfs_agi, agi_unlinked) + 2005 (sizeof(xfs_agino_t) * bucket_index); 2006 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); 2007 return 0; 2008 } 2009 2010 /* Set an on-disk inode's next_unlinked pointer. */ 2011 STATIC void 2012 xfs_iunlink_update_dinode( 2013 struct xfs_trans *tp, 2014 xfs_agnumber_t agno, 2015 xfs_agino_t agino, 2016 struct xfs_buf *ibp, 2017 struct xfs_dinode *dip, 2018 struct xfs_imap *imap, 2019 xfs_agino_t next_agino) 2020 { 2021 struct xfs_mount *mp = tp->t_mountp; 2022 int offset; 2023 2024 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2025 2026 trace_xfs_iunlink_update_dinode(mp, agno, agino, 2027 be32_to_cpu(dip->di_next_unlinked), next_agino); 2028 2029 dip->di_next_unlinked = cpu_to_be32(next_agino); 2030 offset = imap->im_boffset + 2031 offsetof(struct xfs_dinode, di_next_unlinked); 2032 2033 /* need to recalc the inode CRC if appropriate */ 2034 xfs_dinode_calc_crc(mp, dip); 2035 xfs_trans_inode_buf(tp, ibp); 2036 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); 2037 } 2038 2039 /* Set an in-core inode's unlinked pointer and return the old value. */ 2040 STATIC int 2041 xfs_iunlink_update_inode( 2042 struct xfs_trans *tp, 2043 struct xfs_inode *ip, 2044 xfs_agnumber_t agno, 2045 xfs_agino_t next_agino, 2046 xfs_agino_t *old_next_agino) 2047 { 2048 struct xfs_mount *mp = tp->t_mountp; 2049 struct xfs_dinode *dip; 2050 struct xfs_buf *ibp; 2051 xfs_agino_t old_value; 2052 int error; 2053 2054 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); 2055 2056 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0); 2057 if (error) 2058 return error; 2059 2060 /* Make sure the old pointer isn't garbage. */ 2061 old_value = be32_to_cpu(dip->di_next_unlinked); 2062 if (!xfs_verify_agino_or_null(mp, agno, old_value)) { 2063 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 2064 sizeof(*dip), __this_address); 2065 error = -EFSCORRUPTED; 2066 goto out; 2067 } 2068 2069 /* 2070 * Since we're updating a linked list, we should never find that the 2071 * current pointer is the same as the new value, unless we're 2072 * terminating the list. 2073 */ 2074 *old_next_agino = old_value; 2075 if (old_value == next_agino) { 2076 if (next_agino != NULLAGINO) { 2077 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 2078 dip, sizeof(*dip), __this_address); 2079 error = -EFSCORRUPTED; 2080 } 2081 goto out; 2082 } 2083 2084 /* Ok, update the new pointer. */ 2085 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino), 2086 ibp, dip, &ip->i_imap, next_agino); 2087 return 0; 2088 out: 2089 xfs_trans_brelse(tp, ibp); 2090 return error; 2091 } 2092 2093 /* 2094 * This is called when the inode's link count has gone to 0 or we are creating 2095 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. 2096 * 2097 * We place the on-disk inode on a list in the AGI. It will be pulled from this 2098 * list when the inode is freed. 2099 */ 2100 STATIC int 2101 xfs_iunlink( 2102 struct xfs_trans *tp, 2103 struct xfs_inode *ip) 2104 { 2105 struct xfs_mount *mp = tp->t_mountp; 2106 struct xfs_agi *agi; 2107 struct xfs_buf *agibp; 2108 xfs_agino_t next_agino; 2109 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2110 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2111 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2112 int error; 2113 2114 ASSERT(VFS_I(ip)->i_nlink == 0); 2115 ASSERT(VFS_I(ip)->i_mode != 0); 2116 trace_xfs_iunlink(ip); 2117 2118 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2119 error = xfs_read_agi(mp, tp, agno, &agibp); 2120 if (error) 2121 return error; 2122 agi = agibp->b_addr; 2123 2124 /* 2125 * Get the index into the agi hash table for the list this inode will 2126 * go on. Make sure the pointer isn't garbage and that this inode 2127 * isn't already on the list. 2128 */ 2129 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2130 if (next_agino == agino || 2131 !xfs_verify_agino_or_null(mp, agno, next_agino)) { 2132 xfs_buf_mark_corrupt(agibp); 2133 return -EFSCORRUPTED; 2134 } 2135 2136 if (next_agino != NULLAGINO) { 2137 xfs_agino_t old_agino; 2138 2139 /* 2140 * There is already another inode in the bucket, so point this 2141 * inode to the current head of the list. 2142 */ 2143 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino, 2144 &old_agino); 2145 if (error) 2146 return error; 2147 ASSERT(old_agino == NULLAGINO); 2148 2149 /* 2150 * agino has been unlinked, add a backref from the next inode 2151 * back to agino. 2152 */ 2153 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino); 2154 if (error) 2155 return error; 2156 } 2157 2158 /* Point the head of the list to point to this inode. */ 2159 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino); 2160 } 2161 2162 /* Return the imap, dinode pointer, and buffer for an inode. */ 2163 STATIC int 2164 xfs_iunlink_map_ino( 2165 struct xfs_trans *tp, 2166 xfs_agnumber_t agno, 2167 xfs_agino_t agino, 2168 struct xfs_imap *imap, 2169 struct xfs_dinode **dipp, 2170 struct xfs_buf **bpp) 2171 { 2172 struct xfs_mount *mp = tp->t_mountp; 2173 int error; 2174 2175 imap->im_blkno = 0; 2176 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); 2177 if (error) { 2178 xfs_warn(mp, "%s: xfs_imap returned error %d.", 2179 __func__, error); 2180 return error; 2181 } 2182 2183 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0); 2184 if (error) { 2185 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2186 __func__, error); 2187 return error; 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * Walk the unlinked chain from @head_agino until we find the inode that 2195 * points to @target_agino. Return the inode number, map, dinode pointer, 2196 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. 2197 * 2198 * @tp, @pag, @head_agino, and @target_agino are input parameters. 2199 * @agino, @imap, @dipp, and @bpp are all output parameters. 2200 * 2201 * Do not call this function if @target_agino is the head of the list. 2202 */ 2203 STATIC int 2204 xfs_iunlink_map_prev( 2205 struct xfs_trans *tp, 2206 xfs_agnumber_t agno, 2207 xfs_agino_t head_agino, 2208 xfs_agino_t target_agino, 2209 xfs_agino_t *agino, 2210 struct xfs_imap *imap, 2211 struct xfs_dinode **dipp, 2212 struct xfs_buf **bpp, 2213 struct xfs_perag *pag) 2214 { 2215 struct xfs_mount *mp = tp->t_mountp; 2216 xfs_agino_t next_agino; 2217 int error; 2218 2219 ASSERT(head_agino != target_agino); 2220 *bpp = NULL; 2221 2222 /* See if our backref cache can find it faster. */ 2223 *agino = xfs_iunlink_lookup_backref(pag, target_agino); 2224 if (*agino != NULLAGINO) { 2225 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp); 2226 if (error) 2227 return error; 2228 2229 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) 2230 return 0; 2231 2232 /* 2233 * If we get here the cache contents were corrupt, so drop the 2234 * buffer and fall back to walking the bucket list. 2235 */ 2236 xfs_trans_brelse(tp, *bpp); 2237 *bpp = NULL; 2238 WARN_ON_ONCE(1); 2239 } 2240 2241 trace_xfs_iunlink_map_prev_fallback(mp, agno); 2242 2243 /* Otherwise, walk the entire bucket until we find it. */ 2244 next_agino = head_agino; 2245 while (next_agino != target_agino) { 2246 xfs_agino_t unlinked_agino; 2247 2248 if (*bpp) 2249 xfs_trans_brelse(tp, *bpp); 2250 2251 *agino = next_agino; 2252 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp, 2253 bpp); 2254 if (error) 2255 return error; 2256 2257 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); 2258 /* 2259 * Make sure this pointer is valid and isn't an obvious 2260 * infinite loop. 2261 */ 2262 if (!xfs_verify_agino(mp, agno, unlinked_agino) || 2263 next_agino == unlinked_agino) { 2264 XFS_CORRUPTION_ERROR(__func__, 2265 XFS_ERRLEVEL_LOW, mp, 2266 *dipp, sizeof(**dipp)); 2267 error = -EFSCORRUPTED; 2268 return error; 2269 } 2270 next_agino = unlinked_agino; 2271 } 2272 2273 return 0; 2274 } 2275 2276 /* 2277 * Pull the on-disk inode from the AGI unlinked list. 2278 */ 2279 STATIC int 2280 xfs_iunlink_remove( 2281 struct xfs_trans *tp, 2282 struct xfs_inode *ip) 2283 { 2284 struct xfs_mount *mp = tp->t_mountp; 2285 struct xfs_agi *agi; 2286 struct xfs_buf *agibp; 2287 struct xfs_buf *last_ibp; 2288 struct xfs_dinode *last_dip = NULL; 2289 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2290 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2291 xfs_agino_t next_agino; 2292 xfs_agino_t head_agino; 2293 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2294 int error; 2295 2296 trace_xfs_iunlink_remove(ip); 2297 2298 /* Get the agi buffer first. It ensures lock ordering on the list. */ 2299 error = xfs_read_agi(mp, tp, agno, &agibp); 2300 if (error) 2301 return error; 2302 agi = agibp->b_addr; 2303 2304 /* 2305 * Get the index into the agi hash table for the list this inode will 2306 * go on. Make sure the head pointer isn't garbage. 2307 */ 2308 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2309 if (!xfs_verify_agino(mp, agno, head_agino)) { 2310 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 2311 agi, sizeof(*agi)); 2312 return -EFSCORRUPTED; 2313 } 2314 2315 /* 2316 * Set our inode's next_unlinked pointer to NULL and then return 2317 * the old pointer value so that we can update whatever was previous 2318 * to us in the list to point to whatever was next in the list. 2319 */ 2320 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino); 2321 if (error) 2322 return error; 2323 2324 /* 2325 * If there was a backref pointing from the next inode back to this 2326 * one, remove it because we've removed this inode from the list. 2327 * 2328 * Later, if this inode was in the middle of the list we'll update 2329 * this inode's backref to point from the next inode. 2330 */ 2331 if (next_agino != NULLAGINO) { 2332 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino, 2333 NULLAGINO); 2334 if (error) 2335 return error; 2336 } 2337 2338 if (head_agino != agino) { 2339 struct xfs_imap imap; 2340 xfs_agino_t prev_agino; 2341 2342 /* We need to search the list for the inode being freed. */ 2343 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino, 2344 &prev_agino, &imap, &last_dip, &last_ibp, 2345 agibp->b_pag); 2346 if (error) 2347 return error; 2348 2349 /* Point the previous inode on the list to the next inode. */ 2350 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp, 2351 last_dip, &imap, next_agino); 2352 2353 /* 2354 * Now we deal with the backref for this inode. If this inode 2355 * pointed at a real inode, change the backref that pointed to 2356 * us to point to our old next. If this inode was the end of 2357 * the list, delete the backref that pointed to us. Note that 2358 * change_backref takes care of deleting the backref if 2359 * next_agino is NULLAGINO. 2360 */ 2361 return xfs_iunlink_change_backref(agibp->b_pag, agino, 2362 next_agino); 2363 } 2364 2365 /* Point the head of the list to the next unlinked inode. */ 2366 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, 2367 next_agino); 2368 } 2369 2370 /* 2371 * Look up the inode number specified and if it is not already marked XFS_ISTALE 2372 * mark it stale. We should only find clean inodes in this lookup that aren't 2373 * already stale. 2374 */ 2375 static void 2376 xfs_ifree_mark_inode_stale( 2377 struct xfs_buf *bp, 2378 struct xfs_inode *free_ip, 2379 xfs_ino_t inum) 2380 { 2381 struct xfs_mount *mp = bp->b_mount; 2382 struct xfs_perag *pag = bp->b_pag; 2383 struct xfs_inode_log_item *iip; 2384 struct xfs_inode *ip; 2385 2386 retry: 2387 rcu_read_lock(); 2388 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); 2389 2390 /* Inode not in memory, nothing to do */ 2391 if (!ip) { 2392 rcu_read_unlock(); 2393 return; 2394 } 2395 2396 /* 2397 * because this is an RCU protected lookup, we could find a recently 2398 * freed or even reallocated inode during the lookup. We need to check 2399 * under the i_flags_lock for a valid inode here. Skip it if it is not 2400 * valid, the wrong inode or stale. 2401 */ 2402 spin_lock(&ip->i_flags_lock); 2403 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) 2404 goto out_iflags_unlock; 2405 2406 /* 2407 * Don't try to lock/unlock the current inode, but we _cannot_ skip the 2408 * other inodes that we did not find in the list attached to the buffer 2409 * and are not already marked stale. If we can't lock it, back off and 2410 * retry. 2411 */ 2412 if (ip != free_ip) { 2413 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2414 spin_unlock(&ip->i_flags_lock); 2415 rcu_read_unlock(); 2416 delay(1); 2417 goto retry; 2418 } 2419 } 2420 ip->i_flags |= XFS_ISTALE; 2421 2422 /* 2423 * If the inode is flushing, it is already attached to the buffer. All 2424 * we needed to do here is mark the inode stale so buffer IO completion 2425 * will remove it from the AIL. 2426 */ 2427 iip = ip->i_itemp; 2428 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { 2429 ASSERT(!list_empty(&iip->ili_item.li_bio_list)); 2430 ASSERT(iip->ili_last_fields); 2431 goto out_iunlock; 2432 } 2433 2434 /* 2435 * Inodes not attached to the buffer can be released immediately. 2436 * Everything else has to go through xfs_iflush_abort() on journal 2437 * commit as the flock synchronises removal of the inode from the 2438 * cluster buffer against inode reclaim. 2439 */ 2440 if (!iip || list_empty(&iip->ili_item.li_bio_list)) 2441 goto out_iunlock; 2442 2443 __xfs_iflags_set(ip, XFS_IFLUSHING); 2444 spin_unlock(&ip->i_flags_lock); 2445 rcu_read_unlock(); 2446 2447 /* we have a dirty inode in memory that has not yet been flushed. */ 2448 spin_lock(&iip->ili_lock); 2449 iip->ili_last_fields = iip->ili_fields; 2450 iip->ili_fields = 0; 2451 iip->ili_fsync_fields = 0; 2452 spin_unlock(&iip->ili_lock); 2453 ASSERT(iip->ili_last_fields); 2454 2455 if (ip != free_ip) 2456 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2457 return; 2458 2459 out_iunlock: 2460 if (ip != free_ip) 2461 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2462 out_iflags_unlock: 2463 spin_unlock(&ip->i_flags_lock); 2464 rcu_read_unlock(); 2465 } 2466 2467 /* 2468 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2469 * inodes that are in memory - they all must be marked stale and attached to 2470 * the cluster buffer. 2471 */ 2472 STATIC int 2473 xfs_ifree_cluster( 2474 struct xfs_inode *free_ip, 2475 struct xfs_trans *tp, 2476 struct xfs_icluster *xic) 2477 { 2478 struct xfs_mount *mp = free_ip->i_mount; 2479 struct xfs_ino_geometry *igeo = M_IGEO(mp); 2480 struct xfs_buf *bp; 2481 xfs_daddr_t blkno; 2482 xfs_ino_t inum = xic->first_ino; 2483 int nbufs; 2484 int i, j; 2485 int ioffset; 2486 int error; 2487 2488 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; 2489 2490 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { 2491 /* 2492 * The allocation bitmap tells us which inodes of the chunk were 2493 * physically allocated. Skip the cluster if an inode falls into 2494 * a sparse region. 2495 */ 2496 ioffset = inum - xic->first_ino; 2497 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { 2498 ASSERT(ioffset % igeo->inodes_per_cluster == 0); 2499 continue; 2500 } 2501 2502 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2503 XFS_INO_TO_AGBNO(mp, inum)); 2504 2505 /* 2506 * We obtain and lock the backing buffer first in the process 2507 * here to ensure dirty inodes attached to the buffer remain in 2508 * the flushing state while we mark them stale. 2509 * 2510 * If we scan the in-memory inodes first, then buffer IO can 2511 * complete before we get a lock on it, and hence we may fail 2512 * to mark all the active inodes on the buffer stale. 2513 */ 2514 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2515 mp->m_bsize * igeo->blocks_per_cluster, 2516 XBF_UNMAPPED, &bp); 2517 if (error) 2518 return error; 2519 2520 /* 2521 * This buffer may not have been correctly initialised as we 2522 * didn't read it from disk. That's not important because we are 2523 * only using to mark the buffer as stale in the log, and to 2524 * attach stale cached inodes on it. That means it will never be 2525 * dispatched for IO. If it is, we want to know about it, and we 2526 * want it to fail. We can acheive this by adding a write 2527 * verifier to the buffer. 2528 */ 2529 bp->b_ops = &xfs_inode_buf_ops; 2530 2531 /* 2532 * Now we need to set all the cached clean inodes as XFS_ISTALE, 2533 * too. This requires lookups, and will skip inodes that we've 2534 * already marked XFS_ISTALE. 2535 */ 2536 for (i = 0; i < igeo->inodes_per_cluster; i++) 2537 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i); 2538 2539 xfs_trans_stale_inode_buf(tp, bp); 2540 xfs_trans_binval(tp, bp); 2541 } 2542 return 0; 2543 } 2544 2545 /* 2546 * This is called to return an inode to the inode free list. 2547 * The inode should already be truncated to 0 length and have 2548 * no pages associated with it. This routine also assumes that 2549 * the inode is already a part of the transaction. 2550 * 2551 * The on-disk copy of the inode will have been added to the list 2552 * of unlinked inodes in the AGI. We need to remove the inode from 2553 * that list atomically with respect to freeing it here. 2554 */ 2555 int 2556 xfs_ifree( 2557 struct xfs_trans *tp, 2558 struct xfs_inode *ip) 2559 { 2560 int error; 2561 struct xfs_icluster xic = { 0 }; 2562 struct xfs_inode_log_item *iip = ip->i_itemp; 2563 2564 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2565 ASSERT(VFS_I(ip)->i_nlink == 0); 2566 ASSERT(ip->i_df.if_nextents == 0); 2567 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); 2568 ASSERT(ip->i_d.di_nblocks == 0); 2569 2570 /* 2571 * Pull the on-disk inode from the AGI unlinked list. 2572 */ 2573 error = xfs_iunlink_remove(tp, ip); 2574 if (error) 2575 return error; 2576 2577 error = xfs_difree(tp, ip->i_ino, &xic); 2578 if (error) 2579 return error; 2580 2581 /* 2582 * Free any local-format data sitting around before we reset the 2583 * data fork to extents format. Note that the attr fork data has 2584 * already been freed by xfs_attr_inactive. 2585 */ 2586 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { 2587 kmem_free(ip->i_df.if_u1.if_data); 2588 ip->i_df.if_u1.if_data = NULL; 2589 ip->i_df.if_bytes = 0; 2590 } 2591 2592 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ 2593 ip->i_d.di_flags = 0; 2594 ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2; 2595 ip->i_d.di_dmevmask = 0; 2596 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2597 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; 2598 2599 /* Don't attempt to replay owner changes for a deleted inode */ 2600 spin_lock(&iip->ili_lock); 2601 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); 2602 spin_unlock(&iip->ili_lock); 2603 2604 /* 2605 * Bump the generation count so no one will be confused 2606 * by reincarnations of this inode. 2607 */ 2608 VFS_I(ip)->i_generation++; 2609 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2610 2611 if (xic.deleted) 2612 error = xfs_ifree_cluster(ip, tp, &xic); 2613 2614 return error; 2615 } 2616 2617 /* 2618 * This is called to unpin an inode. The caller must have the inode locked 2619 * in at least shared mode so that the buffer cannot be subsequently pinned 2620 * once someone is waiting for it to be unpinned. 2621 */ 2622 static void 2623 xfs_iunpin( 2624 struct xfs_inode *ip) 2625 { 2626 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2627 2628 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2629 2630 /* Give the log a push to start the unpinning I/O */ 2631 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); 2632 2633 } 2634 2635 static void 2636 __xfs_iunpin_wait( 2637 struct xfs_inode *ip) 2638 { 2639 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2640 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2641 2642 xfs_iunpin(ip); 2643 2644 do { 2645 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2646 if (xfs_ipincount(ip)) 2647 io_schedule(); 2648 } while (xfs_ipincount(ip)); 2649 finish_wait(wq, &wait.wq_entry); 2650 } 2651 2652 void 2653 xfs_iunpin_wait( 2654 struct xfs_inode *ip) 2655 { 2656 if (xfs_ipincount(ip)) 2657 __xfs_iunpin_wait(ip); 2658 } 2659 2660 /* 2661 * Removing an inode from the namespace involves removing the directory entry 2662 * and dropping the link count on the inode. Removing the directory entry can 2663 * result in locking an AGF (directory blocks were freed) and removing a link 2664 * count can result in placing the inode on an unlinked list which results in 2665 * locking an AGI. 2666 * 2667 * The big problem here is that we have an ordering constraint on AGF and AGI 2668 * locking - inode allocation locks the AGI, then can allocate a new extent for 2669 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2670 * removes the inode from the unlinked list, requiring that we lock the AGI 2671 * first, and then freeing the inode can result in an inode chunk being freed 2672 * and hence freeing disk space requiring that we lock an AGF. 2673 * 2674 * Hence the ordering that is imposed by other parts of the code is AGI before 2675 * AGF. This means we cannot remove the directory entry before we drop the inode 2676 * reference count and put it on the unlinked list as this results in a lock 2677 * order of AGF then AGI, and this can deadlock against inode allocation and 2678 * freeing. Therefore we must drop the link counts before we remove the 2679 * directory entry. 2680 * 2681 * This is still safe from a transactional point of view - it is not until we 2682 * get to xfs_defer_finish() that we have the possibility of multiple 2683 * transactions in this operation. Hence as long as we remove the directory 2684 * entry and drop the link count in the first transaction of the remove 2685 * operation, there are no transactional constraints on the ordering here. 2686 */ 2687 int 2688 xfs_remove( 2689 xfs_inode_t *dp, 2690 struct xfs_name *name, 2691 xfs_inode_t *ip) 2692 { 2693 xfs_mount_t *mp = dp->i_mount; 2694 xfs_trans_t *tp = NULL; 2695 int is_dir = S_ISDIR(VFS_I(ip)->i_mode); 2696 int error = 0; 2697 uint resblks; 2698 2699 trace_xfs_remove(dp, name); 2700 2701 if (XFS_FORCED_SHUTDOWN(mp)) 2702 return -EIO; 2703 2704 error = xfs_qm_dqattach(dp); 2705 if (error) 2706 goto std_return; 2707 2708 error = xfs_qm_dqattach(ip); 2709 if (error) 2710 goto std_return; 2711 2712 /* 2713 * We try to get the real space reservation first, 2714 * allowing for directory btree deletion(s) implying 2715 * possible bmap insert(s). If we can't get the space 2716 * reservation then we use 0 instead, and avoid the bmap 2717 * btree insert(s) in the directory code by, if the bmap 2718 * insert tries to happen, instead trimming the LAST 2719 * block from the directory. 2720 */ 2721 resblks = XFS_REMOVE_SPACE_RES(mp); 2722 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); 2723 if (error == -ENOSPC) { 2724 resblks = 0; 2725 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, 2726 &tp); 2727 } 2728 if (error) { 2729 ASSERT(error != -ENOSPC); 2730 goto std_return; 2731 } 2732 2733 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); 2734 2735 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2736 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2737 2738 /* 2739 * If we're removing a directory perform some additional validation. 2740 */ 2741 if (is_dir) { 2742 ASSERT(VFS_I(ip)->i_nlink >= 2); 2743 if (VFS_I(ip)->i_nlink != 2) { 2744 error = -ENOTEMPTY; 2745 goto out_trans_cancel; 2746 } 2747 if (!xfs_dir_isempty(ip)) { 2748 error = -ENOTEMPTY; 2749 goto out_trans_cancel; 2750 } 2751 2752 /* Drop the link from ip's "..". */ 2753 error = xfs_droplink(tp, dp); 2754 if (error) 2755 goto out_trans_cancel; 2756 2757 /* Drop the "." link from ip to self. */ 2758 error = xfs_droplink(tp, ip); 2759 if (error) 2760 goto out_trans_cancel; 2761 } else { 2762 /* 2763 * When removing a non-directory we need to log the parent 2764 * inode here. For a directory this is done implicitly 2765 * by the xfs_droplink call for the ".." entry. 2766 */ 2767 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2768 } 2769 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2770 2771 /* Drop the link from dp to ip. */ 2772 error = xfs_droplink(tp, ip); 2773 if (error) 2774 goto out_trans_cancel; 2775 2776 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); 2777 if (error) { 2778 ASSERT(error != -ENOENT); 2779 goto out_trans_cancel; 2780 } 2781 2782 /* 2783 * If this is a synchronous mount, make sure that the 2784 * remove transaction goes to disk before returning to 2785 * the user. 2786 */ 2787 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2788 xfs_trans_set_sync(tp); 2789 2790 error = xfs_trans_commit(tp); 2791 if (error) 2792 goto std_return; 2793 2794 if (is_dir && xfs_inode_is_filestream(ip)) 2795 xfs_filestream_deassociate(ip); 2796 2797 return 0; 2798 2799 out_trans_cancel: 2800 xfs_trans_cancel(tp); 2801 std_return: 2802 return error; 2803 } 2804 2805 /* 2806 * Enter all inodes for a rename transaction into a sorted array. 2807 */ 2808 #define __XFS_SORT_INODES 5 2809 STATIC void 2810 xfs_sort_for_rename( 2811 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2812 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2813 struct xfs_inode *ip1, /* in: inode of old entry */ 2814 struct xfs_inode *ip2, /* in: inode of new entry */ 2815 struct xfs_inode *wip, /* in: whiteout inode */ 2816 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2817 int *num_inodes) /* in/out: inodes in array */ 2818 { 2819 int i, j; 2820 2821 ASSERT(*num_inodes == __XFS_SORT_INODES); 2822 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2823 2824 /* 2825 * i_tab contains a list of pointers to inodes. We initialize 2826 * the table here & we'll sort it. We will then use it to 2827 * order the acquisition of the inode locks. 2828 * 2829 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2830 */ 2831 i = 0; 2832 i_tab[i++] = dp1; 2833 i_tab[i++] = dp2; 2834 i_tab[i++] = ip1; 2835 if (ip2) 2836 i_tab[i++] = ip2; 2837 if (wip) 2838 i_tab[i++] = wip; 2839 *num_inodes = i; 2840 2841 /* 2842 * Sort the elements via bubble sort. (Remember, there are at 2843 * most 5 elements to sort, so this is adequate.) 2844 */ 2845 for (i = 0; i < *num_inodes; i++) { 2846 for (j = 1; j < *num_inodes; j++) { 2847 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2848 struct xfs_inode *temp = i_tab[j]; 2849 i_tab[j] = i_tab[j-1]; 2850 i_tab[j-1] = temp; 2851 } 2852 } 2853 } 2854 } 2855 2856 static int 2857 xfs_finish_rename( 2858 struct xfs_trans *tp) 2859 { 2860 /* 2861 * If this is a synchronous mount, make sure that the rename transaction 2862 * goes to disk before returning to the user. 2863 */ 2864 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2865 xfs_trans_set_sync(tp); 2866 2867 return xfs_trans_commit(tp); 2868 } 2869 2870 /* 2871 * xfs_cross_rename() 2872 * 2873 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2874 */ 2875 STATIC int 2876 xfs_cross_rename( 2877 struct xfs_trans *tp, 2878 struct xfs_inode *dp1, 2879 struct xfs_name *name1, 2880 struct xfs_inode *ip1, 2881 struct xfs_inode *dp2, 2882 struct xfs_name *name2, 2883 struct xfs_inode *ip2, 2884 int spaceres) 2885 { 2886 int error = 0; 2887 int ip1_flags = 0; 2888 int ip2_flags = 0; 2889 int dp2_flags = 0; 2890 2891 /* Swap inode number for dirent in first parent */ 2892 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); 2893 if (error) 2894 goto out_trans_abort; 2895 2896 /* Swap inode number for dirent in second parent */ 2897 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); 2898 if (error) 2899 goto out_trans_abort; 2900 2901 /* 2902 * If we're renaming one or more directories across different parents, 2903 * update the respective ".." entries (and link counts) to match the new 2904 * parents. 2905 */ 2906 if (dp1 != dp2) { 2907 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2908 2909 if (S_ISDIR(VFS_I(ip2)->i_mode)) { 2910 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2911 dp1->i_ino, spaceres); 2912 if (error) 2913 goto out_trans_abort; 2914 2915 /* transfer ip2 ".." reference to dp1 */ 2916 if (!S_ISDIR(VFS_I(ip1)->i_mode)) { 2917 error = xfs_droplink(tp, dp2); 2918 if (error) 2919 goto out_trans_abort; 2920 xfs_bumplink(tp, dp1); 2921 } 2922 2923 /* 2924 * Although ip1 isn't changed here, userspace needs 2925 * to be warned about the change, so that applications 2926 * relying on it (like backup ones), will properly 2927 * notify the change 2928 */ 2929 ip1_flags |= XFS_ICHGTIME_CHG; 2930 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2931 } 2932 2933 if (S_ISDIR(VFS_I(ip1)->i_mode)) { 2934 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2935 dp2->i_ino, spaceres); 2936 if (error) 2937 goto out_trans_abort; 2938 2939 /* transfer ip1 ".." reference to dp2 */ 2940 if (!S_ISDIR(VFS_I(ip2)->i_mode)) { 2941 error = xfs_droplink(tp, dp1); 2942 if (error) 2943 goto out_trans_abort; 2944 xfs_bumplink(tp, dp2); 2945 } 2946 2947 /* 2948 * Although ip2 isn't changed here, userspace needs 2949 * to be warned about the change, so that applications 2950 * relying on it (like backup ones), will properly 2951 * notify the change 2952 */ 2953 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2954 ip2_flags |= XFS_ICHGTIME_CHG; 2955 } 2956 } 2957 2958 if (ip1_flags) { 2959 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2960 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2961 } 2962 if (ip2_flags) { 2963 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2964 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2965 } 2966 if (dp2_flags) { 2967 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2968 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2969 } 2970 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2971 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2972 return xfs_finish_rename(tp); 2973 2974 out_trans_abort: 2975 xfs_trans_cancel(tp); 2976 return error; 2977 } 2978 2979 /* 2980 * xfs_rename_alloc_whiteout() 2981 * 2982 * Return a referenced, unlinked, unlocked inode that can be used as a 2983 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2984 * crash between allocating the inode and linking it into the rename transaction 2985 * recovery will free the inode and we won't leak it. 2986 */ 2987 static int 2988 xfs_rename_alloc_whiteout( 2989 struct user_namespace *mnt_userns, 2990 struct xfs_inode *dp, 2991 struct xfs_inode **wip) 2992 { 2993 struct xfs_inode *tmpfile; 2994 int error; 2995 2996 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, 2997 &tmpfile); 2998 if (error) 2999 return error; 3000 3001 /* 3002 * Prepare the tmpfile inode as if it were created through the VFS. 3003 * Complete the inode setup and flag it as linkable. nlink is already 3004 * zero, so we can skip the drop_nlink. 3005 */ 3006 xfs_setup_iops(tmpfile); 3007 xfs_finish_inode_setup(tmpfile); 3008 VFS_I(tmpfile)->i_state |= I_LINKABLE; 3009 3010 *wip = tmpfile; 3011 return 0; 3012 } 3013 3014 /* 3015 * xfs_rename 3016 */ 3017 int 3018 xfs_rename( 3019 struct user_namespace *mnt_userns, 3020 struct xfs_inode *src_dp, 3021 struct xfs_name *src_name, 3022 struct xfs_inode *src_ip, 3023 struct xfs_inode *target_dp, 3024 struct xfs_name *target_name, 3025 struct xfs_inode *target_ip, 3026 unsigned int flags) 3027 { 3028 struct xfs_mount *mp = src_dp->i_mount; 3029 struct xfs_trans *tp; 3030 struct xfs_inode *wip = NULL; /* whiteout inode */ 3031 struct xfs_inode *inodes[__XFS_SORT_INODES]; 3032 int i; 3033 int num_inodes = __XFS_SORT_INODES; 3034 bool new_parent = (src_dp != target_dp); 3035 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); 3036 int spaceres; 3037 int error; 3038 3039 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 3040 3041 if ((flags & RENAME_EXCHANGE) && !target_ip) 3042 return -EINVAL; 3043 3044 /* 3045 * If we are doing a whiteout operation, allocate the whiteout inode 3046 * we will be placing at the target and ensure the type is set 3047 * appropriately. 3048 */ 3049 if (flags & RENAME_WHITEOUT) { 3050 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 3051 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); 3052 if (error) 3053 return error; 3054 3055 /* setup target dirent info as whiteout */ 3056 src_name->type = XFS_DIR3_FT_CHRDEV; 3057 } 3058 3059 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 3060 inodes, &num_inodes); 3061 3062 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 3063 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); 3064 if (error == -ENOSPC) { 3065 spaceres = 0; 3066 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, 3067 &tp); 3068 } 3069 if (error) 3070 goto out_release_wip; 3071 3072 /* 3073 * Attach the dquots to the inodes 3074 */ 3075 error = xfs_qm_vop_rename_dqattach(inodes); 3076 if (error) 3077 goto out_trans_cancel; 3078 3079 /* 3080 * Lock all the participating inodes. Depending upon whether 3081 * the target_name exists in the target directory, and 3082 * whether the target directory is the same as the source 3083 * directory, we can lock from 2 to 4 inodes. 3084 */ 3085 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 3086 3087 /* 3088 * Join all the inodes to the transaction. From this point on, 3089 * we can rely on either trans_commit or trans_cancel to unlock 3090 * them. 3091 */ 3092 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 3093 if (new_parent) 3094 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 3095 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 3096 if (target_ip) 3097 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 3098 if (wip) 3099 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 3100 3101 /* 3102 * If we are using project inheritance, we only allow renames 3103 * into our tree when the project IDs are the same; else the 3104 * tree quota mechanism would be circumvented. 3105 */ 3106 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 3107 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) { 3108 error = -EXDEV; 3109 goto out_trans_cancel; 3110 } 3111 3112 /* RENAME_EXCHANGE is unique from here on. */ 3113 if (flags & RENAME_EXCHANGE) 3114 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3115 target_dp, target_name, target_ip, 3116 spaceres); 3117 3118 /* 3119 * Check for expected errors before we dirty the transaction 3120 * so we can return an error without a transaction abort. 3121 * 3122 * Extent count overflow check: 3123 * 3124 * From the perspective of src_dp, a rename operation is essentially a 3125 * directory entry remove operation. Hence the only place where we check 3126 * for extent count overflow for src_dp is in 3127 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns 3128 * -ENOSPC when it detects a possible extent count overflow and in 3129 * response, the higher layers of directory handling code do the 3130 * following: 3131 * 1. Data/Free blocks: XFS lets these blocks linger until a 3132 * future remove operation removes them. 3133 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the 3134 * Leaf space and unmaps the last block. 3135 * 3136 * For target_dp, there are two cases depending on whether the 3137 * destination directory entry exists or not. 3138 * 3139 * When destination directory entry does not exist (i.e. target_ip == 3140 * NULL), extent count overflow check is performed only when transaction 3141 * has a non-zero sized space reservation associated with it. With a 3142 * zero-sized space reservation, XFS allows a rename operation to 3143 * continue only when the directory has sufficient free space in its 3144 * data/leaf/free space blocks to hold the new entry. 3145 * 3146 * When destination directory entry exists (i.e. target_ip != NULL), all 3147 * we need to do is change the inode number associated with the already 3148 * existing entry. Hence there is no need to perform an extent count 3149 * overflow check. 3150 */ 3151 if (target_ip == NULL) { 3152 /* 3153 * If there's no space reservation, check the entry will 3154 * fit before actually inserting it. 3155 */ 3156 if (!spaceres) { 3157 error = xfs_dir_canenter(tp, target_dp, target_name); 3158 if (error) 3159 goto out_trans_cancel; 3160 } else { 3161 error = xfs_iext_count_may_overflow(target_dp, 3162 XFS_DATA_FORK, 3163 XFS_IEXT_DIR_MANIP_CNT(mp)); 3164 if (error) 3165 goto out_trans_cancel; 3166 } 3167 } else { 3168 /* 3169 * If target exists and it's a directory, check that whether 3170 * it can be destroyed. 3171 */ 3172 if (S_ISDIR(VFS_I(target_ip)->i_mode) && 3173 (!xfs_dir_isempty(target_ip) || 3174 (VFS_I(target_ip)->i_nlink > 2))) { 3175 error = -EEXIST; 3176 goto out_trans_cancel; 3177 } 3178 } 3179 3180 /* 3181 * Lock the AGI buffers we need to handle bumping the nlink of the 3182 * whiteout inode off the unlinked list and to handle dropping the 3183 * nlink of the target inode. Per locking order rules, do this in 3184 * increasing AG order and before directory block allocation tries to 3185 * grab AGFs because we grab AGIs before AGFs. 3186 * 3187 * The (vfs) caller must ensure that if src is a directory then 3188 * target_ip is either null or an empty directory. 3189 */ 3190 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { 3191 if (inodes[i] == wip || 3192 (inodes[i] == target_ip && 3193 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { 3194 struct xfs_buf *bp; 3195 xfs_agnumber_t agno; 3196 3197 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); 3198 error = xfs_read_agi(mp, tp, agno, &bp); 3199 if (error) 3200 goto out_trans_cancel; 3201 } 3202 } 3203 3204 /* 3205 * Directory entry creation below may acquire the AGF. Remove 3206 * the whiteout from the unlinked list first to preserve correct 3207 * AGI/AGF locking order. This dirties the transaction so failures 3208 * after this point will abort and log recovery will clean up the 3209 * mess. 3210 * 3211 * For whiteouts, we need to bump the link count on the whiteout 3212 * inode. After this point, we have a real link, clear the tmpfile 3213 * state flag from the inode so it doesn't accidentally get misused 3214 * in future. 3215 */ 3216 if (wip) { 3217 ASSERT(VFS_I(wip)->i_nlink == 0); 3218 error = xfs_iunlink_remove(tp, wip); 3219 if (error) 3220 goto out_trans_cancel; 3221 3222 xfs_bumplink(tp, wip); 3223 VFS_I(wip)->i_state &= ~I_LINKABLE; 3224 } 3225 3226 /* 3227 * Set up the target. 3228 */ 3229 if (target_ip == NULL) { 3230 /* 3231 * If target does not exist and the rename crosses 3232 * directories, adjust the target directory link count 3233 * to account for the ".." reference from the new entry. 3234 */ 3235 error = xfs_dir_createname(tp, target_dp, target_name, 3236 src_ip->i_ino, spaceres); 3237 if (error) 3238 goto out_trans_cancel; 3239 3240 xfs_trans_ichgtime(tp, target_dp, 3241 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3242 3243 if (new_parent && src_is_directory) { 3244 xfs_bumplink(tp, target_dp); 3245 } 3246 } else { /* target_ip != NULL */ 3247 /* 3248 * Link the source inode under the target name. 3249 * If the source inode is a directory and we are moving 3250 * it across directories, its ".." entry will be 3251 * inconsistent until we replace that down below. 3252 * 3253 * In case there is already an entry with the same 3254 * name at the destination directory, remove it first. 3255 */ 3256 error = xfs_dir_replace(tp, target_dp, target_name, 3257 src_ip->i_ino, spaceres); 3258 if (error) 3259 goto out_trans_cancel; 3260 3261 xfs_trans_ichgtime(tp, target_dp, 3262 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3263 3264 /* 3265 * Decrement the link count on the target since the target 3266 * dir no longer points to it. 3267 */ 3268 error = xfs_droplink(tp, target_ip); 3269 if (error) 3270 goto out_trans_cancel; 3271 3272 if (src_is_directory) { 3273 /* 3274 * Drop the link from the old "." entry. 3275 */ 3276 error = xfs_droplink(tp, target_ip); 3277 if (error) 3278 goto out_trans_cancel; 3279 } 3280 } /* target_ip != NULL */ 3281 3282 /* 3283 * Remove the source. 3284 */ 3285 if (new_parent && src_is_directory) { 3286 /* 3287 * Rewrite the ".." entry to point to the new 3288 * directory. 3289 */ 3290 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3291 target_dp->i_ino, spaceres); 3292 ASSERT(error != -EEXIST); 3293 if (error) 3294 goto out_trans_cancel; 3295 } 3296 3297 /* 3298 * We always want to hit the ctime on the source inode. 3299 * 3300 * This isn't strictly required by the standards since the source 3301 * inode isn't really being changed, but old unix file systems did 3302 * it and some incremental backup programs won't work without it. 3303 */ 3304 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3305 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3306 3307 /* 3308 * Adjust the link count on src_dp. This is necessary when 3309 * renaming a directory, either within one parent when 3310 * the target existed, or across two parent directories. 3311 */ 3312 if (src_is_directory && (new_parent || target_ip != NULL)) { 3313 3314 /* 3315 * Decrement link count on src_directory since the 3316 * entry that's moved no longer points to it. 3317 */ 3318 error = xfs_droplink(tp, src_dp); 3319 if (error) 3320 goto out_trans_cancel; 3321 } 3322 3323 /* 3324 * For whiteouts, we only need to update the source dirent with the 3325 * inode number of the whiteout inode rather than removing it 3326 * altogether. 3327 */ 3328 if (wip) { 3329 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3330 spaceres); 3331 } else { 3332 /* 3333 * NOTE: We don't need to check for extent count overflow here 3334 * because the dir remove name code will leave the dir block in 3335 * place if the extent count would overflow. 3336 */ 3337 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3338 spaceres); 3339 } 3340 3341 if (error) 3342 goto out_trans_cancel; 3343 3344 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3345 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3346 if (new_parent) 3347 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3348 3349 error = xfs_finish_rename(tp); 3350 if (wip) 3351 xfs_irele(wip); 3352 return error; 3353 3354 out_trans_cancel: 3355 xfs_trans_cancel(tp); 3356 out_release_wip: 3357 if (wip) 3358 xfs_irele(wip); 3359 return error; 3360 } 3361 3362 static int 3363 xfs_iflush( 3364 struct xfs_inode *ip, 3365 struct xfs_buf *bp) 3366 { 3367 struct xfs_inode_log_item *iip = ip->i_itemp; 3368 struct xfs_dinode *dip; 3369 struct xfs_mount *mp = ip->i_mount; 3370 int error; 3371 3372 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3373 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); 3374 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 3375 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3376 ASSERT(iip->ili_item.li_buf == bp); 3377 3378 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); 3379 3380 /* 3381 * We don't flush the inode if any of the following checks fail, but we 3382 * do still update the log item and attach to the backing buffer as if 3383 * the flush happened. This is a formality to facilitate predictable 3384 * error handling as the caller will shutdown and fail the buffer. 3385 */ 3386 error = -EFSCORRUPTED; 3387 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3388 mp, XFS_ERRTAG_IFLUSH_1)) { 3389 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3390 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, 3391 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3392 goto flush_out; 3393 } 3394 if (S_ISREG(VFS_I(ip)->i_mode)) { 3395 if (XFS_TEST_ERROR( 3396 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3397 ip->i_df.if_format != XFS_DINODE_FMT_BTREE, 3398 mp, XFS_ERRTAG_IFLUSH_3)) { 3399 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3400 "%s: Bad regular inode %Lu, ptr "PTR_FMT, 3401 __func__, ip->i_ino, ip); 3402 goto flush_out; 3403 } 3404 } else if (S_ISDIR(VFS_I(ip)->i_mode)) { 3405 if (XFS_TEST_ERROR( 3406 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && 3407 ip->i_df.if_format != XFS_DINODE_FMT_BTREE && 3408 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, 3409 mp, XFS_ERRTAG_IFLUSH_4)) { 3410 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3411 "%s: Bad directory inode %Lu, ptr "PTR_FMT, 3412 __func__, ip->i_ino, ip); 3413 goto flush_out; 3414 } 3415 } 3416 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > 3417 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { 3418 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3419 "%s: detected corrupt incore inode %Lu, " 3420 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, 3421 __func__, ip->i_ino, 3422 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), 3423 ip->i_d.di_nblocks, ip); 3424 goto flush_out; 3425 } 3426 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3427 mp, XFS_ERRTAG_IFLUSH_6)) { 3428 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3429 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, 3430 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3431 goto flush_out; 3432 } 3433 3434 /* 3435 * Inode item log recovery for v2 inodes are dependent on the 3436 * di_flushiter count for correct sequencing. We bump the flush 3437 * iteration count so we can detect flushes which postdate a log record 3438 * during recovery. This is redundant as we now log every change and 3439 * hence this can't happen but we need to still do it to ensure 3440 * backwards compatibility with old kernels that predate logging all 3441 * inode changes. 3442 */ 3443 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) 3444 ip->i_d.di_flushiter++; 3445 3446 /* 3447 * If there are inline format data / attr forks attached to this inode, 3448 * make sure they are not corrupt. 3449 */ 3450 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && 3451 xfs_ifork_verify_local_data(ip)) 3452 goto flush_out; 3453 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && 3454 xfs_ifork_verify_local_attr(ip)) 3455 goto flush_out; 3456 3457 /* 3458 * Copy the dirty parts of the inode into the on-disk inode. We always 3459 * copy out the core of the inode, because if the inode is dirty at all 3460 * the core must be. 3461 */ 3462 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); 3463 3464 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3465 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3466 ip->i_d.di_flushiter = 0; 3467 3468 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3469 if (XFS_IFORK_Q(ip)) 3470 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3471 3472 /* 3473 * We've recorded everything logged in the inode, so we'd like to clear 3474 * the ili_fields bits so we don't log and flush things unnecessarily. 3475 * However, we can't stop logging all this information until the data 3476 * we've copied into the disk buffer is written to disk. If we did we 3477 * might overwrite the copy of the inode in the log with all the data 3478 * after re-logging only part of it, and in the face of a crash we 3479 * wouldn't have all the data we need to recover. 3480 * 3481 * What we do is move the bits to the ili_last_fields field. When 3482 * logging the inode, these bits are moved back to the ili_fields field. 3483 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since 3484 * we know that the information those bits represent is permanently on 3485 * disk. As long as the flush completes before the inode is logged 3486 * again, then both ili_fields and ili_last_fields will be cleared. 3487 */ 3488 error = 0; 3489 flush_out: 3490 spin_lock(&iip->ili_lock); 3491 iip->ili_last_fields = iip->ili_fields; 3492 iip->ili_fields = 0; 3493 iip->ili_fsync_fields = 0; 3494 spin_unlock(&iip->ili_lock); 3495 3496 /* 3497 * Store the current LSN of the inode so that we can tell whether the 3498 * item has moved in the AIL from xfs_buf_inode_iodone(). 3499 */ 3500 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3501 &iip->ili_item.li_lsn); 3502 3503 /* generate the checksum. */ 3504 xfs_dinode_calc_crc(mp, dip); 3505 return error; 3506 } 3507 3508 /* 3509 * Non-blocking flush of dirty inode metadata into the backing buffer. 3510 * 3511 * The caller must have a reference to the inode and hold the cluster buffer 3512 * locked. The function will walk across all the inodes on the cluster buffer it 3513 * can find and lock without blocking, and flush them to the cluster buffer. 3514 * 3515 * On successful flushing of at least one inode, the caller must write out the 3516 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and 3517 * the caller needs to release the buffer. On failure, the filesystem will be 3518 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED 3519 * will be returned. 3520 */ 3521 int 3522 xfs_iflush_cluster( 3523 struct xfs_buf *bp) 3524 { 3525 struct xfs_mount *mp = bp->b_mount; 3526 struct xfs_log_item *lip, *n; 3527 struct xfs_inode *ip; 3528 struct xfs_inode_log_item *iip; 3529 int clcount = 0; 3530 int error = 0; 3531 3532 /* 3533 * We must use the safe variant here as on shutdown xfs_iflush_abort() 3534 * can remove itself from the list. 3535 */ 3536 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { 3537 iip = (struct xfs_inode_log_item *)lip; 3538 ip = iip->ili_inode; 3539 3540 /* 3541 * Quick and dirty check to avoid locks if possible. 3542 */ 3543 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) 3544 continue; 3545 if (xfs_ipincount(ip)) 3546 continue; 3547 3548 /* 3549 * The inode is still attached to the buffer, which means it is 3550 * dirty but reclaim might try to grab it. Check carefully for 3551 * that, and grab the ilock while still holding the i_flags_lock 3552 * to guarantee reclaim will not be able to reclaim this inode 3553 * once we drop the i_flags_lock. 3554 */ 3555 spin_lock(&ip->i_flags_lock); 3556 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); 3557 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { 3558 spin_unlock(&ip->i_flags_lock); 3559 continue; 3560 } 3561 3562 /* 3563 * ILOCK will pin the inode against reclaim and prevent 3564 * concurrent transactions modifying the inode while we are 3565 * flushing the inode. If we get the lock, set the flushing 3566 * state before we drop the i_flags_lock. 3567 */ 3568 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 3569 spin_unlock(&ip->i_flags_lock); 3570 continue; 3571 } 3572 __xfs_iflags_set(ip, XFS_IFLUSHING); 3573 spin_unlock(&ip->i_flags_lock); 3574 3575 /* 3576 * Abort flushing this inode if we are shut down because the 3577 * inode may not currently be in the AIL. This can occur when 3578 * log I/O failure unpins the inode without inserting into the 3579 * AIL, leaving a dirty/unpinned inode attached to the buffer 3580 * that otherwise looks like it should be flushed. 3581 */ 3582 if (XFS_FORCED_SHUTDOWN(mp)) { 3583 xfs_iunpin_wait(ip); 3584 xfs_iflush_abort(ip); 3585 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3586 error = -EIO; 3587 continue; 3588 } 3589 3590 /* don't block waiting on a log force to unpin dirty inodes */ 3591 if (xfs_ipincount(ip)) { 3592 xfs_iflags_clear(ip, XFS_IFLUSHING); 3593 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3594 continue; 3595 } 3596 3597 if (!xfs_inode_clean(ip)) 3598 error = xfs_iflush(ip, bp); 3599 else 3600 xfs_iflags_clear(ip, XFS_IFLUSHING); 3601 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3602 if (error) 3603 break; 3604 clcount++; 3605 } 3606 3607 if (error) { 3608 bp->b_flags |= XBF_ASYNC; 3609 xfs_buf_ioend_fail(bp); 3610 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3611 return error; 3612 } 3613 3614 if (!clcount) 3615 return -EAGAIN; 3616 3617 XFS_STATS_INC(mp, xs_icluster_flushcnt); 3618 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); 3619 return 0; 3620 3621 } 3622 3623 /* Release an inode. */ 3624 void 3625 xfs_irele( 3626 struct xfs_inode *ip) 3627 { 3628 trace_xfs_irele(ip, _RET_IP_); 3629 iput(VFS_I(ip)); 3630 } 3631 3632 /* 3633 * Ensure all commited transactions touching the inode are written to the log. 3634 */ 3635 int 3636 xfs_log_force_inode( 3637 struct xfs_inode *ip) 3638 { 3639 xfs_lsn_t lsn = 0; 3640 3641 xfs_ilock(ip, XFS_ILOCK_SHARED); 3642 if (xfs_ipincount(ip)) 3643 lsn = ip->i_itemp->ili_last_lsn; 3644 xfs_iunlock(ip, XFS_ILOCK_SHARED); 3645 3646 if (!lsn) 3647 return 0; 3648 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL); 3649 } 3650 3651 /* 3652 * Grab the exclusive iolock for a data copy from src to dest, making sure to 3653 * abide vfs locking order (lowest pointer value goes first) and breaking the 3654 * layout leases before proceeding. The loop is needed because we cannot call 3655 * the blocking break_layout() with the iolocks held, and therefore have to 3656 * back out both locks. 3657 */ 3658 static int 3659 xfs_iolock_two_inodes_and_break_layout( 3660 struct inode *src, 3661 struct inode *dest) 3662 { 3663 int error; 3664 3665 if (src > dest) 3666 swap(src, dest); 3667 3668 retry: 3669 /* Wait to break both inodes' layouts before we start locking. */ 3670 error = break_layout(src, true); 3671 if (error) 3672 return error; 3673 if (src != dest) { 3674 error = break_layout(dest, true); 3675 if (error) 3676 return error; 3677 } 3678 3679 /* Lock one inode and make sure nobody got in and leased it. */ 3680 inode_lock(src); 3681 error = break_layout(src, false); 3682 if (error) { 3683 inode_unlock(src); 3684 if (error == -EWOULDBLOCK) 3685 goto retry; 3686 return error; 3687 } 3688 3689 if (src == dest) 3690 return 0; 3691 3692 /* Lock the other inode and make sure nobody got in and leased it. */ 3693 inode_lock_nested(dest, I_MUTEX_NONDIR2); 3694 error = break_layout(dest, false); 3695 if (error) { 3696 inode_unlock(src); 3697 inode_unlock(dest); 3698 if (error == -EWOULDBLOCK) 3699 goto retry; 3700 return error; 3701 } 3702 3703 return 0; 3704 } 3705 3706 /* 3707 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or 3708 * mmap activity. 3709 */ 3710 int 3711 xfs_ilock2_io_mmap( 3712 struct xfs_inode *ip1, 3713 struct xfs_inode *ip2) 3714 { 3715 int ret; 3716 3717 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); 3718 if (ret) 3719 return ret; 3720 if (ip1 == ip2) 3721 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); 3722 else 3723 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, 3724 ip2, XFS_MMAPLOCK_EXCL); 3725 return 0; 3726 } 3727 3728 /* Unlock both inodes to allow IO and mmap activity. */ 3729 void 3730 xfs_iunlock2_io_mmap( 3731 struct xfs_inode *ip1, 3732 struct xfs_inode *ip2) 3733 { 3734 bool same_inode = (ip1 == ip2); 3735 3736 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); 3737 if (!same_inode) 3738 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); 3739 inode_unlock(VFS_I(ip2)); 3740 if (!same_inode) 3741 inode_unlock(VFS_I(ip1)); 3742 } 3743