xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 6cd70754)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
49 
50 /*
51  * helper function to extract extent size hint from inode
52  */
53 xfs_extlen_t
54 xfs_get_extsz_hint(
55 	struct xfs_inode	*ip)
56 {
57 	/*
58 	 * No point in aligning allocations if we need to COW to actually
59 	 * write to them.
60 	 */
61 	if (xfs_is_always_cow_inode(ip))
62 		return 0;
63 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 		return ip->i_d.di_extsize;
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return ip->i_mount->m_sb.sb_rextsize;
67 	return 0;
68 }
69 
70 /*
71  * Helper function to extract CoW extent size hint from inode.
72  * Between the extent size hint and the CoW extent size hint, we
73  * return the greater of the two.  If the value is zero (automatic),
74  * use the default size.
75  */
76 xfs_extlen_t
77 xfs_get_cowextsz_hint(
78 	struct xfs_inode	*ip)
79 {
80 	xfs_extlen_t		a, b;
81 
82 	a = 0;
83 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 		a = ip->i_d.di_cowextsize;
85 	b = xfs_get_extsz_hint(ip);
86 
87 	a = max(a, b);
88 	if (a == 0)
89 		return XFS_DEFAULT_COWEXTSZ_HINT;
90 	return a;
91 }
92 
93 /*
94  * These two are wrapper routines around the xfs_ilock() routine used to
95  * centralize some grungy code.  They are used in places that wish to lock the
96  * inode solely for reading the extents.  The reason these places can't just
97  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98  * bringing in of the extents from disk for a file in b-tree format.  If the
99  * inode is in b-tree format, then we need to lock the inode exclusively until
100  * the extents are read in.  Locking it exclusively all the time would limit
101  * our parallelism unnecessarily, though.  What we do instead is check to see
102  * if the extents have been read in yet, and only lock the inode exclusively
103  * if they have not.
104  *
105  * The functions return a value which should be given to the corresponding
106  * xfs_iunlock() call.
107  */
108 uint
109 xfs_ilock_data_map_shared(
110 	struct xfs_inode	*ip)
111 {
112 	uint			lock_mode = XFS_ILOCK_SHARED;
113 
114 	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
115 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
116 		lock_mode = XFS_ILOCK_EXCL;
117 	xfs_ilock(ip, lock_mode);
118 	return lock_mode;
119 }
120 
121 uint
122 xfs_ilock_attr_map_shared(
123 	struct xfs_inode	*ip)
124 {
125 	uint			lock_mode = XFS_ILOCK_SHARED;
126 
127 	if (ip->i_afp &&
128 	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
129 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 		lock_mode = XFS_ILOCK_EXCL;
131 	xfs_ilock(ip, lock_mode);
132 	return lock_mode;
133 }
134 
135 /*
136  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
138  * various combinations of the locks to be obtained.
139  *
140  * The 3 locks should always be ordered so that the IO lock is obtained first,
141  * the mmap lock second and the ilock last in order to prevent deadlock.
142  *
143  * Basic locking order:
144  *
145  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146  *
147  * mmap_lock locking order:
148  *
149  * i_rwsem -> page lock -> mmap_lock
150  * mmap_lock -> i_mmap_lock -> page_lock
151  *
152  * The difference in mmap_lock locking order mean that we cannot hold the
153  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154  * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
155  * in get_user_pages() to map the user pages into the kernel address space for
156  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157  * page faults already hold the mmap_lock.
158  *
159  * Hence to serialise fully against both syscall and mmap based IO, we need to
160  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161  * taken in places where we need to invalidate the page cache in a race
162  * free manner (e.g. truncate, hole punch and other extent manipulation
163  * functions).
164  */
165 void
166 xfs_ilock(
167 	xfs_inode_t		*ip,
168 	uint			lock_flags)
169 {
170 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171 
172 	/*
173 	 * You can't set both SHARED and EXCL for the same lock,
174 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 	 */
177 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184 
185 	if (lock_flags & XFS_IOLOCK_EXCL) {
186 		down_write_nested(&VFS_I(ip)->i_rwsem,
187 				  XFS_IOLOCK_DEP(lock_flags));
188 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
189 		down_read_nested(&VFS_I(ip)->i_rwsem,
190 				 XFS_IOLOCK_DEP(lock_flags));
191 	}
192 
193 	if (lock_flags & XFS_MMAPLOCK_EXCL)
194 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197 
198 	if (lock_flags & XFS_ILOCK_EXCL)
199 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 	else if (lock_flags & XFS_ILOCK_SHARED)
201 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203 
204 /*
205  * This is just like xfs_ilock(), except that the caller
206  * is guaranteed not to sleep.  It returns 1 if it gets
207  * the requested locks and 0 otherwise.  If the IO lock is
208  * obtained but the inode lock cannot be, then the IO lock
209  * is dropped before returning.
210  *
211  * ip -- the inode being locked
212  * lock_flags -- this parameter indicates the inode's locks to be
213  *       to be locked.  See the comment for xfs_ilock() for a list
214  *	 of valid values.
215  */
216 int
217 xfs_ilock_nowait(
218 	xfs_inode_t		*ip,
219 	uint			lock_flags)
220 {
221 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222 
223 	/*
224 	 * You can't set both SHARED and EXCL for the same lock,
225 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 	 */
228 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235 
236 	if (lock_flags & XFS_IOLOCK_EXCL) {
237 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 			goto out;
239 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
240 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 			goto out;
242 	}
243 
244 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 		if (!mrtryupdate(&ip->i_mmaplock))
246 			goto out_undo_iolock;
247 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 		if (!mrtryaccess(&ip->i_mmaplock))
249 			goto out_undo_iolock;
250 	}
251 
252 	if (lock_flags & XFS_ILOCK_EXCL) {
253 		if (!mrtryupdate(&ip->i_lock))
254 			goto out_undo_mmaplock;
255 	} else if (lock_flags & XFS_ILOCK_SHARED) {
256 		if (!mrtryaccess(&ip->i_lock))
257 			goto out_undo_mmaplock;
258 	}
259 	return 1;
260 
261 out_undo_mmaplock:
262 	if (lock_flags & XFS_MMAPLOCK_EXCL)
263 		mrunlock_excl(&ip->i_mmaplock);
264 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 		mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 	if (lock_flags & XFS_IOLOCK_EXCL)
268 		up_write(&VFS_I(ip)->i_rwsem);
269 	else if (lock_flags & XFS_IOLOCK_SHARED)
270 		up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 	return 0;
273 }
274 
275 /*
276  * xfs_iunlock() is used to drop the inode locks acquired with
277  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
278  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279  * that we know which locks to drop.
280  *
281  * ip -- the inode being unlocked
282  * lock_flags -- this parameter indicates the inode's locks to be
283  *       to be unlocked.  See the comment for xfs_ilock() for a list
284  *	 of valid values for this parameter.
285  *
286  */
287 void
288 xfs_iunlock(
289 	xfs_inode_t		*ip,
290 	uint			lock_flags)
291 {
292 	/*
293 	 * You can't set both SHARED and EXCL for the same lock,
294 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 	 */
297 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 	ASSERT(lock_flags != 0);
305 
306 	if (lock_flags & XFS_IOLOCK_EXCL)
307 		up_write(&VFS_I(ip)->i_rwsem);
308 	else if (lock_flags & XFS_IOLOCK_SHARED)
309 		up_read(&VFS_I(ip)->i_rwsem);
310 
311 	if (lock_flags & XFS_MMAPLOCK_EXCL)
312 		mrunlock_excl(&ip->i_mmaplock);
313 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 		mrunlock_shared(&ip->i_mmaplock);
315 
316 	if (lock_flags & XFS_ILOCK_EXCL)
317 		mrunlock_excl(&ip->i_lock);
318 	else if (lock_flags & XFS_ILOCK_SHARED)
319 		mrunlock_shared(&ip->i_lock);
320 
321 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323 
324 /*
325  * give up write locks.  the i/o lock cannot be held nested
326  * if it is being demoted.
327  */
328 void
329 xfs_ilock_demote(
330 	xfs_inode_t		*ip,
331 	uint			lock_flags)
332 {
333 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 	ASSERT((lock_flags &
335 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336 
337 	if (lock_flags & XFS_ILOCK_EXCL)
338 		mrdemote(&ip->i_lock);
339 	if (lock_flags & XFS_MMAPLOCK_EXCL)
340 		mrdemote(&ip->i_mmaplock);
341 	if (lock_flags & XFS_IOLOCK_EXCL)
342 		downgrade_write(&VFS_I(ip)->i_rwsem);
343 
344 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346 
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
349 xfs_isilocked(
350 	xfs_inode_t		*ip,
351 	uint			lock_flags)
352 {
353 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 		if (!(lock_flags & XFS_ILOCK_SHARED))
355 			return !!ip->i_lock.mr_writer;
356 		return rwsem_is_locked(&ip->i_lock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 			return !!ip->i_mmaplock.mr_writer;
362 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 	}
364 
365 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 		if (!(lock_flags & XFS_IOLOCK_SHARED))
367 			return !debug_locks ||
368 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 	}
371 
372 	ASSERT(0);
373 	return 0;
374 }
375 #endif
376 
377 /*
378  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381  * errors and warnings.
382  */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
385 xfs_lockdep_subclass_ok(
386 	int subclass)
387 {
388 	return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass)	(true)
392 #endif
393 
394 /*
395  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396  * value. This can be called for any type of inode lock combination, including
397  * parent locking. Care must be taken to ensure we don't overrun the subclass
398  * storage fields in the class mask we build.
399  */
400 static inline int
401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 	int	class = 0;
404 
405 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 			      XFS_ILOCK_RTSUM)));
407 	ASSERT(xfs_lockdep_subclass_ok(subclass));
408 
409 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 		class += subclass << XFS_IOLOCK_SHIFT;
412 	}
413 
414 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 		class += subclass << XFS_MMAPLOCK_SHIFT;
417 	}
418 
419 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 		class += subclass << XFS_ILOCK_SHIFT;
422 	}
423 
424 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426 
427 /*
428  * The following routine will lock n inodes in exclusive mode.  We assume the
429  * caller calls us with the inodes in i_ino order.
430  *
431  * We need to detect deadlock where an inode that we lock is in the AIL and we
432  * start waiting for another inode that is locked by a thread in a long running
433  * transaction (such as truncate). This can result in deadlock since the long
434  * running trans might need to wait for the inode we just locked in order to
435  * push the tail and free space in the log.
436  *
437  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439  * lock more than one at a time, lockdep will report false positives saying we
440  * have violated locking orders.
441  */
442 static void
443 xfs_lock_inodes(
444 	struct xfs_inode	**ips,
445 	int			inodes,
446 	uint			lock_mode)
447 {
448 	int			attempts = 0, i, j, try_lock;
449 	struct xfs_log_item	*lp;
450 
451 	/*
452 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
453 	 * support an arbitrary depth of locking here, but absolute limits on
454 	 * inodes depend on the type of locking and the limits placed by
455 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
456 	 * the asserts.
457 	 */
458 	ASSERT(ips && inodes >= 2 && inodes <= 5);
459 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 			    XFS_ILOCK_EXCL));
461 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 			      XFS_ILOCK_SHARED)));
463 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467 
468 	if (lock_mode & XFS_IOLOCK_EXCL) {
469 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472 
473 	try_lock = 0;
474 	i = 0;
475 again:
476 	for (; i < inodes; i++) {
477 		ASSERT(ips[i]);
478 
479 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
480 			continue;
481 
482 		/*
483 		 * If try_lock is not set yet, make sure all locked inodes are
484 		 * not in the AIL.  If any are, set try_lock to be used later.
485 		 */
486 		if (!try_lock) {
487 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 				lp = &ips[j]->i_itemp->ili_item;
489 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 					try_lock++;
491 			}
492 		}
493 
494 		/*
495 		 * If any of the previous locks we have locked is in the AIL,
496 		 * we must TRY to get the second and subsequent locks. If
497 		 * we can't get any, we must release all we have
498 		 * and try again.
499 		 */
500 		if (!try_lock) {
501 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 			continue;
503 		}
504 
505 		/* try_lock means we have an inode locked that is in the AIL. */
506 		ASSERT(i != 0);
507 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 			continue;
509 
510 		/*
511 		 * Unlock all previous guys and try again.  xfs_iunlock will try
512 		 * to push the tail if the inode is in the AIL.
513 		 */
514 		attempts++;
515 		for (j = i - 1; j >= 0; j--) {
516 			/*
517 			 * Check to see if we've already unlocked this one.  Not
518 			 * the first one going back, and the inode ptr is the
519 			 * same.
520 			 */
521 			if (j != (i - 1) && ips[j] == ips[j + 1])
522 				continue;
523 
524 			xfs_iunlock(ips[j], lock_mode);
525 		}
526 
527 		if ((attempts % 5) == 0) {
528 			delay(1); /* Don't just spin the CPU */
529 		}
530 		i = 0;
531 		try_lock = 0;
532 		goto again;
533 	}
534 }
535 
536 /*
537  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538  * the mmaplock or the ilock, but not more than one type at a time. If we lock
539  * more than one at a time, lockdep will report false positives saying we have
540  * violated locking orders.  The iolock must be double-locked separately since
541  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
542  * SHARED.
543  */
544 void
545 xfs_lock_two_inodes(
546 	struct xfs_inode	*ip0,
547 	uint			ip0_mode,
548 	struct xfs_inode	*ip1,
549 	uint			ip1_mode)
550 {
551 	struct xfs_inode	*temp;
552 	uint			mode_temp;
553 	int			attempts = 0;
554 	struct xfs_log_item	*lp;
555 
556 	ASSERT(hweight32(ip0_mode) == 1);
557 	ASSERT(hweight32(ip1_mode) == 1);
558 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568 
569 	ASSERT(ip0->i_ino != ip1->i_ino);
570 
571 	if (ip0->i_ino > ip1->i_ino) {
572 		temp = ip0;
573 		ip0 = ip1;
574 		ip1 = temp;
575 		mode_temp = ip0_mode;
576 		ip0_mode = ip1_mode;
577 		ip1_mode = mode_temp;
578 	}
579 
580  again:
581 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582 
583 	/*
584 	 * If the first lock we have locked is in the AIL, we must TRY to get
585 	 * the second lock. If we can't get it, we must release the first one
586 	 * and try again.
587 	 */
588 	lp = &ip0->i_itemp->ili_item;
589 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 			xfs_iunlock(ip0, ip0_mode);
592 			if ((++attempts % 5) == 0)
593 				delay(1); /* Don't just spin the CPU */
594 			goto again;
595 		}
596 	} else {
597 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 	}
599 }
600 
601 STATIC uint
602 _xfs_dic2xflags(
603 	uint16_t		di_flags,
604 	uint64_t		di_flags2,
605 	bool			has_attr)
606 {
607 	uint			flags = 0;
608 
609 	if (di_flags & XFS_DIFLAG_ANY) {
610 		if (di_flags & XFS_DIFLAG_REALTIME)
611 			flags |= FS_XFLAG_REALTIME;
612 		if (di_flags & XFS_DIFLAG_PREALLOC)
613 			flags |= FS_XFLAG_PREALLOC;
614 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
615 			flags |= FS_XFLAG_IMMUTABLE;
616 		if (di_flags & XFS_DIFLAG_APPEND)
617 			flags |= FS_XFLAG_APPEND;
618 		if (di_flags & XFS_DIFLAG_SYNC)
619 			flags |= FS_XFLAG_SYNC;
620 		if (di_flags & XFS_DIFLAG_NOATIME)
621 			flags |= FS_XFLAG_NOATIME;
622 		if (di_flags & XFS_DIFLAG_NODUMP)
623 			flags |= FS_XFLAG_NODUMP;
624 		if (di_flags & XFS_DIFLAG_RTINHERIT)
625 			flags |= FS_XFLAG_RTINHERIT;
626 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
627 			flags |= FS_XFLAG_PROJINHERIT;
628 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
629 			flags |= FS_XFLAG_NOSYMLINKS;
630 		if (di_flags & XFS_DIFLAG_EXTSIZE)
631 			flags |= FS_XFLAG_EXTSIZE;
632 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
633 			flags |= FS_XFLAG_EXTSZINHERIT;
634 		if (di_flags & XFS_DIFLAG_NODEFRAG)
635 			flags |= FS_XFLAG_NODEFRAG;
636 		if (di_flags & XFS_DIFLAG_FILESTREAM)
637 			flags |= FS_XFLAG_FILESTREAM;
638 	}
639 
640 	if (di_flags2 & XFS_DIFLAG2_ANY) {
641 		if (di_flags2 & XFS_DIFLAG2_DAX)
642 			flags |= FS_XFLAG_DAX;
643 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 			flags |= FS_XFLAG_COWEXTSIZE;
645 	}
646 
647 	if (has_attr)
648 		flags |= FS_XFLAG_HASATTR;
649 
650 	return flags;
651 }
652 
653 uint
654 xfs_ip2xflags(
655 	struct xfs_inode	*ip)
656 {
657 	struct xfs_icdinode	*dic = &ip->i_d;
658 
659 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
660 }
661 
662 /*
663  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664  * is allowed, otherwise it has to be an exact match. If a CI match is found,
665  * ci_name->name will point to a the actual name (caller must free) or
666  * will be set to NULL if an exact match is found.
667  */
668 int
669 xfs_lookup(
670 	xfs_inode_t		*dp,
671 	struct xfs_name		*name,
672 	xfs_inode_t		**ipp,
673 	struct xfs_name		*ci_name)
674 {
675 	xfs_ino_t		inum;
676 	int			error;
677 
678 	trace_xfs_lookup(dp, name);
679 
680 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
681 		return -EIO;
682 
683 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
684 	if (error)
685 		goto out_unlock;
686 
687 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 	if (error)
689 		goto out_free_name;
690 
691 	return 0;
692 
693 out_free_name:
694 	if (ci_name)
695 		kmem_free(ci_name->name);
696 out_unlock:
697 	*ipp = NULL;
698 	return error;
699 }
700 
701 /* Propagate di_flags from a parent inode to a child inode. */
702 static void
703 xfs_inode_inherit_flags(
704 	struct xfs_inode	*ip,
705 	const struct xfs_inode	*pip)
706 {
707 	unsigned int		di_flags = 0;
708 	umode_t			mode = VFS_I(ip)->i_mode;
709 
710 	if (S_ISDIR(mode)) {
711 		if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
712 			di_flags |= XFS_DIFLAG_RTINHERIT;
713 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
714 			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
715 			ip->i_d.di_extsize = pip->i_d.di_extsize;
716 		}
717 		if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
718 			di_flags |= XFS_DIFLAG_PROJINHERIT;
719 	} else if (S_ISREG(mode)) {
720 		if ((pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) &&
721 		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
722 			di_flags |= XFS_DIFLAG_REALTIME;
723 		if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
724 			di_flags |= XFS_DIFLAG_EXTSIZE;
725 			ip->i_d.di_extsize = pip->i_d.di_extsize;
726 		}
727 	}
728 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
729 	    xfs_inherit_noatime)
730 		di_flags |= XFS_DIFLAG_NOATIME;
731 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
732 	    xfs_inherit_nodump)
733 		di_flags |= XFS_DIFLAG_NODUMP;
734 	if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
735 	    xfs_inherit_sync)
736 		di_flags |= XFS_DIFLAG_SYNC;
737 	if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
738 	    xfs_inherit_nosymlinks)
739 		di_flags |= XFS_DIFLAG_NOSYMLINKS;
740 	if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
741 	    xfs_inherit_nodefrag)
742 		di_flags |= XFS_DIFLAG_NODEFRAG;
743 	if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
744 		di_flags |= XFS_DIFLAG_FILESTREAM;
745 
746 	ip->i_d.di_flags |= di_flags;
747 }
748 
749 /* Propagate di_flags2 from a parent inode to a child inode. */
750 static void
751 xfs_inode_inherit_flags2(
752 	struct xfs_inode	*ip,
753 	const struct xfs_inode	*pip)
754 {
755 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
756 		ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
757 		ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
758 	}
759 	if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
760 		ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
761 }
762 
763 /*
764  * Initialise a newly allocated inode and return the in-core inode to the
765  * caller locked exclusively.
766  */
767 static int
768 xfs_init_new_inode(
769 	struct user_namespace	*mnt_userns,
770 	struct xfs_trans	*tp,
771 	struct xfs_inode	*pip,
772 	xfs_ino_t		ino,
773 	umode_t			mode,
774 	xfs_nlink_t		nlink,
775 	dev_t			rdev,
776 	prid_t			prid,
777 	struct xfs_inode	**ipp)
778 {
779 	struct inode		*dir = pip ? VFS_I(pip) : NULL;
780 	struct xfs_mount	*mp = tp->t_mountp;
781 	struct xfs_inode	*ip;
782 	unsigned int		flags;
783 	int			error;
784 	struct timespec64	tv;
785 	struct inode		*inode;
786 
787 	/*
788 	 * Protect against obviously corrupt allocation btree records. Later
789 	 * xfs_iget checks will catch re-allocation of other active in-memory
790 	 * and on-disk inodes. If we don't catch reallocating the parent inode
791 	 * here we will deadlock in xfs_iget() so we have to do these checks
792 	 * first.
793 	 */
794 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
795 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
796 		return -EFSCORRUPTED;
797 	}
798 
799 	/*
800 	 * Get the in-core inode with the lock held exclusively to prevent
801 	 * others from looking at until we're done.
802 	 */
803 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
804 	if (error)
805 		return error;
806 
807 	ASSERT(ip != NULL);
808 	inode = VFS_I(ip);
809 	set_nlink(inode, nlink);
810 	inode->i_rdev = rdev;
811 	ip->i_d.di_projid = prid;
812 
813 	if (dir && !(dir->i_mode & S_ISGID) &&
814 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
815 		inode->i_uid = fsuid_into_mnt(mnt_userns);
816 		inode->i_gid = dir->i_gid;
817 		inode->i_mode = mode;
818 	} else {
819 		inode_init_owner(mnt_userns, inode, dir, mode);
820 	}
821 
822 	/*
823 	 * If the group ID of the new file does not match the effective group
824 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
825 	 * (and only if the irix_sgid_inherit compatibility variable is set).
826 	 */
827 	if (irix_sgid_inherit &&
828 	    (inode->i_mode & S_ISGID) &&
829 	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
830 		inode->i_mode &= ~S_ISGID;
831 
832 	ip->i_d.di_size = 0;
833 	ip->i_df.if_nextents = 0;
834 	ASSERT(ip->i_d.di_nblocks == 0);
835 
836 	tv = current_time(inode);
837 	inode->i_mtime = tv;
838 	inode->i_atime = tv;
839 	inode->i_ctime = tv;
840 
841 	ip->i_d.di_extsize = 0;
842 	ip->i_d.di_dmevmask = 0;
843 	ip->i_d.di_dmstate = 0;
844 	ip->i_d.di_flags = 0;
845 
846 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
847 		inode_set_iversion(inode, 1);
848 		ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
849 		ip->i_d.di_cowextsize = 0;
850 		ip->i_d.di_crtime = tv;
851 	}
852 
853 	flags = XFS_ILOG_CORE;
854 	switch (mode & S_IFMT) {
855 	case S_IFIFO:
856 	case S_IFCHR:
857 	case S_IFBLK:
858 	case S_IFSOCK:
859 		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
860 		ip->i_df.if_flags = 0;
861 		flags |= XFS_ILOG_DEV;
862 		break;
863 	case S_IFREG:
864 	case S_IFDIR:
865 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY))
866 			xfs_inode_inherit_flags(ip, pip);
867 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY))
868 			xfs_inode_inherit_flags2(ip, pip);
869 		/* FALLTHROUGH */
870 	case S_IFLNK:
871 		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
872 		ip->i_df.if_flags = XFS_IFEXTENTS;
873 		ip->i_df.if_bytes = 0;
874 		ip->i_df.if_u1.if_root = NULL;
875 		break;
876 	default:
877 		ASSERT(0);
878 	}
879 
880 	/*
881 	 * Log the new values stuffed into the inode.
882 	 */
883 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
884 	xfs_trans_log_inode(tp, ip, flags);
885 
886 	/* now that we have an i_mode we can setup the inode structure */
887 	xfs_setup_inode(ip);
888 
889 	*ipp = ip;
890 	return 0;
891 }
892 
893 /*
894  * Allocates a new inode from disk and return a pointer to the incore copy. This
895  * routine will internally commit the current transaction and allocate a new one
896  * if we needed to allocate more on-disk free inodes to perform the requested
897  * operation.
898  *
899  * If we are allocating quota inodes, we do not have a parent inode to attach to
900  * or associate with (i.e. dp == NULL) because they are not linked into the
901  * directory structure - they are attached directly to the superblock - and so
902  * have no parent.
903  */
904 int
905 xfs_dir_ialloc(
906 	struct user_namespace	*mnt_userns,
907 	struct xfs_trans	**tpp,
908 	struct xfs_inode	*dp,
909 	umode_t			mode,
910 	xfs_nlink_t		nlink,
911 	dev_t			rdev,
912 	prid_t			prid,
913 	struct xfs_inode	**ipp)
914 {
915 	struct xfs_buf		*agibp;
916 	xfs_ino_t		parent_ino = dp ? dp->i_ino : 0;
917 	xfs_ino_t		ino;
918 	int			error;
919 
920 	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
921 
922 	/*
923 	 * Call the space management code to pick the on-disk inode to be
924 	 * allocated.
925 	 */
926 	error = xfs_dialloc_select_ag(tpp, parent_ino, mode, &agibp);
927 	if (error)
928 		return error;
929 
930 	if (!agibp)
931 		return -ENOSPC;
932 
933 	/* Allocate an inode from the selected AG */
934 	error = xfs_dialloc_ag(*tpp, agibp, parent_ino, &ino);
935 	if (error)
936 		return error;
937 	ASSERT(ino != NULLFSINO);
938 
939 	return xfs_init_new_inode(mnt_userns, *tpp, dp, ino, mode, nlink, rdev,
940 				  prid, ipp);
941 }
942 
943 /*
944  * Decrement the link count on an inode & log the change.  If this causes the
945  * link count to go to zero, move the inode to AGI unlinked list so that it can
946  * be freed when the last active reference goes away via xfs_inactive().
947  */
948 static int			/* error */
949 xfs_droplink(
950 	xfs_trans_t *tp,
951 	xfs_inode_t *ip)
952 {
953 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
954 
955 	drop_nlink(VFS_I(ip));
956 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
957 
958 	if (VFS_I(ip)->i_nlink)
959 		return 0;
960 
961 	return xfs_iunlink(tp, ip);
962 }
963 
964 /*
965  * Increment the link count on an inode & log the change.
966  */
967 static void
968 xfs_bumplink(
969 	xfs_trans_t *tp,
970 	xfs_inode_t *ip)
971 {
972 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
973 
974 	inc_nlink(VFS_I(ip));
975 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
976 }
977 
978 int
979 xfs_create(
980 	struct user_namespace	*mnt_userns,
981 	xfs_inode_t		*dp,
982 	struct xfs_name		*name,
983 	umode_t			mode,
984 	dev_t			rdev,
985 	xfs_inode_t		**ipp)
986 {
987 	int			is_dir = S_ISDIR(mode);
988 	struct xfs_mount	*mp = dp->i_mount;
989 	struct xfs_inode	*ip = NULL;
990 	struct xfs_trans	*tp = NULL;
991 	int			error;
992 	bool                    unlock_dp_on_error = false;
993 	prid_t			prid;
994 	struct xfs_dquot	*udqp = NULL;
995 	struct xfs_dquot	*gdqp = NULL;
996 	struct xfs_dquot	*pdqp = NULL;
997 	struct xfs_trans_res	*tres;
998 	uint			resblks;
999 
1000 	trace_xfs_create(dp, name);
1001 
1002 	if (XFS_FORCED_SHUTDOWN(mp))
1003 		return -EIO;
1004 
1005 	prid = xfs_get_initial_prid(dp);
1006 
1007 	/*
1008 	 * Make sure that we have allocated dquot(s) on disk.
1009 	 */
1010 	error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns),
1011 			fsgid_into_mnt(mnt_userns), prid,
1012 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1013 			&udqp, &gdqp, &pdqp);
1014 	if (error)
1015 		return error;
1016 
1017 	if (is_dir) {
1018 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1019 		tres = &M_RES(mp)->tr_mkdir;
1020 	} else {
1021 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1022 		tres = &M_RES(mp)->tr_create;
1023 	}
1024 
1025 	/*
1026 	 * Initially assume that the file does not exist and
1027 	 * reserve the resources for that case.  If that is not
1028 	 * the case we'll drop the one we have and get a more
1029 	 * appropriate transaction later.
1030 	 */
1031 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1032 			&tp);
1033 	if (error == -ENOSPC) {
1034 		/* flush outstanding delalloc blocks and retry */
1035 		xfs_flush_inodes(mp);
1036 		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1037 				resblks, &tp);
1038 	}
1039 	if (error)
1040 		goto out_release_dquots;
1041 
1042 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1043 	unlock_dp_on_error = true;
1044 
1045 	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1046 			XFS_IEXT_DIR_MANIP_CNT(mp));
1047 	if (error)
1048 		goto out_trans_cancel;
1049 
1050 	/*
1051 	 * A newly created regular or special file just has one directory
1052 	 * entry pointing to them, but a directory also the "." entry
1053 	 * pointing to itself.
1054 	 */
1055 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, is_dir ? 2 : 1, rdev,
1056 			       prid, &ip);
1057 	if (error)
1058 		goto out_trans_cancel;
1059 
1060 	/*
1061 	 * Now we join the directory inode to the transaction.  We do not do it
1062 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1063 	 * (and release all the locks).  An error from here on will result in
1064 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1065 	 * error path.
1066 	 */
1067 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1068 	unlock_dp_on_error = false;
1069 
1070 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1071 					resblks - XFS_IALLOC_SPACE_RES(mp));
1072 	if (error) {
1073 		ASSERT(error != -ENOSPC);
1074 		goto out_trans_cancel;
1075 	}
1076 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1077 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1078 
1079 	if (is_dir) {
1080 		error = xfs_dir_init(tp, ip, dp);
1081 		if (error)
1082 			goto out_trans_cancel;
1083 
1084 		xfs_bumplink(tp, dp);
1085 	}
1086 
1087 	/*
1088 	 * If this is a synchronous mount, make sure that the
1089 	 * create transaction goes to disk before returning to
1090 	 * the user.
1091 	 */
1092 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1093 		xfs_trans_set_sync(tp);
1094 
1095 	/*
1096 	 * Attach the dquot(s) to the inodes and modify them incore.
1097 	 * These ids of the inode couldn't have changed since the new
1098 	 * inode has been locked ever since it was created.
1099 	 */
1100 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1101 
1102 	error = xfs_trans_commit(tp);
1103 	if (error)
1104 		goto out_release_inode;
1105 
1106 	xfs_qm_dqrele(udqp);
1107 	xfs_qm_dqrele(gdqp);
1108 	xfs_qm_dqrele(pdqp);
1109 
1110 	*ipp = ip;
1111 	return 0;
1112 
1113  out_trans_cancel:
1114 	xfs_trans_cancel(tp);
1115  out_release_inode:
1116 	/*
1117 	 * Wait until after the current transaction is aborted to finish the
1118 	 * setup of the inode and release the inode.  This prevents recursive
1119 	 * transactions and deadlocks from xfs_inactive.
1120 	 */
1121 	if (ip) {
1122 		xfs_finish_inode_setup(ip);
1123 		xfs_irele(ip);
1124 	}
1125  out_release_dquots:
1126 	xfs_qm_dqrele(udqp);
1127 	xfs_qm_dqrele(gdqp);
1128 	xfs_qm_dqrele(pdqp);
1129 
1130 	if (unlock_dp_on_error)
1131 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1132 	return error;
1133 }
1134 
1135 int
1136 xfs_create_tmpfile(
1137 	struct user_namespace	*mnt_userns,
1138 	struct xfs_inode	*dp,
1139 	umode_t			mode,
1140 	struct xfs_inode	**ipp)
1141 {
1142 	struct xfs_mount	*mp = dp->i_mount;
1143 	struct xfs_inode	*ip = NULL;
1144 	struct xfs_trans	*tp = NULL;
1145 	int			error;
1146 	prid_t                  prid;
1147 	struct xfs_dquot	*udqp = NULL;
1148 	struct xfs_dquot	*gdqp = NULL;
1149 	struct xfs_dquot	*pdqp = NULL;
1150 	struct xfs_trans_res	*tres;
1151 	uint			resblks;
1152 
1153 	if (XFS_FORCED_SHUTDOWN(mp))
1154 		return -EIO;
1155 
1156 	prid = xfs_get_initial_prid(dp);
1157 
1158 	/*
1159 	 * Make sure that we have allocated dquot(s) on disk.
1160 	 */
1161 	error = xfs_qm_vop_dqalloc(dp, fsuid_into_mnt(mnt_userns),
1162 			fsgid_into_mnt(mnt_userns), prid,
1163 			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1164 			&udqp, &gdqp, &pdqp);
1165 	if (error)
1166 		return error;
1167 
1168 	resblks = XFS_IALLOC_SPACE_RES(mp);
1169 	tres = &M_RES(mp)->tr_create_tmpfile;
1170 
1171 	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1172 			&tp);
1173 	if (error)
1174 		goto out_release_dquots;
1175 
1176 	error = xfs_dir_ialloc(mnt_userns, &tp, dp, mode, 0, 0, prid, &ip);
1177 	if (error)
1178 		goto out_trans_cancel;
1179 
1180 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1181 		xfs_trans_set_sync(tp);
1182 
1183 	/*
1184 	 * Attach the dquot(s) to the inodes and modify them incore.
1185 	 * These ids of the inode couldn't have changed since the new
1186 	 * inode has been locked ever since it was created.
1187 	 */
1188 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1189 
1190 	error = xfs_iunlink(tp, ip);
1191 	if (error)
1192 		goto out_trans_cancel;
1193 
1194 	error = xfs_trans_commit(tp);
1195 	if (error)
1196 		goto out_release_inode;
1197 
1198 	xfs_qm_dqrele(udqp);
1199 	xfs_qm_dqrele(gdqp);
1200 	xfs_qm_dqrele(pdqp);
1201 
1202 	*ipp = ip;
1203 	return 0;
1204 
1205  out_trans_cancel:
1206 	xfs_trans_cancel(tp);
1207  out_release_inode:
1208 	/*
1209 	 * Wait until after the current transaction is aborted to finish the
1210 	 * setup of the inode and release the inode.  This prevents recursive
1211 	 * transactions and deadlocks from xfs_inactive.
1212 	 */
1213 	if (ip) {
1214 		xfs_finish_inode_setup(ip);
1215 		xfs_irele(ip);
1216 	}
1217  out_release_dquots:
1218 	xfs_qm_dqrele(udqp);
1219 	xfs_qm_dqrele(gdqp);
1220 	xfs_qm_dqrele(pdqp);
1221 
1222 	return error;
1223 }
1224 
1225 int
1226 xfs_link(
1227 	xfs_inode_t		*tdp,
1228 	xfs_inode_t		*sip,
1229 	struct xfs_name		*target_name)
1230 {
1231 	xfs_mount_t		*mp = tdp->i_mount;
1232 	xfs_trans_t		*tp;
1233 	int			error;
1234 	int			resblks;
1235 
1236 	trace_xfs_link(tdp, target_name);
1237 
1238 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1239 
1240 	if (XFS_FORCED_SHUTDOWN(mp))
1241 		return -EIO;
1242 
1243 	error = xfs_qm_dqattach(sip);
1244 	if (error)
1245 		goto std_return;
1246 
1247 	error = xfs_qm_dqattach(tdp);
1248 	if (error)
1249 		goto std_return;
1250 
1251 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1252 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1253 	if (error == -ENOSPC) {
1254 		resblks = 0;
1255 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1256 	}
1257 	if (error)
1258 		goto std_return;
1259 
1260 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1261 
1262 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1263 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1264 
1265 	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1266 			XFS_IEXT_DIR_MANIP_CNT(mp));
1267 	if (error)
1268 		goto error_return;
1269 
1270 	/*
1271 	 * If we are using project inheritance, we only allow hard link
1272 	 * creation in our tree when the project IDs are the same; else
1273 	 * the tree quota mechanism could be circumvented.
1274 	 */
1275 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1276 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1277 		error = -EXDEV;
1278 		goto error_return;
1279 	}
1280 
1281 	if (!resblks) {
1282 		error = xfs_dir_canenter(tp, tdp, target_name);
1283 		if (error)
1284 			goto error_return;
1285 	}
1286 
1287 	/*
1288 	 * Handle initial link state of O_TMPFILE inode
1289 	 */
1290 	if (VFS_I(sip)->i_nlink == 0) {
1291 		error = xfs_iunlink_remove(tp, sip);
1292 		if (error)
1293 			goto error_return;
1294 	}
1295 
1296 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1297 				   resblks);
1298 	if (error)
1299 		goto error_return;
1300 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1301 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1302 
1303 	xfs_bumplink(tp, sip);
1304 
1305 	/*
1306 	 * If this is a synchronous mount, make sure that the
1307 	 * link transaction goes to disk before returning to
1308 	 * the user.
1309 	 */
1310 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1311 		xfs_trans_set_sync(tp);
1312 
1313 	return xfs_trans_commit(tp);
1314 
1315  error_return:
1316 	xfs_trans_cancel(tp);
1317  std_return:
1318 	return error;
1319 }
1320 
1321 /* Clear the reflink flag and the cowblocks tag if possible. */
1322 static void
1323 xfs_itruncate_clear_reflink_flags(
1324 	struct xfs_inode	*ip)
1325 {
1326 	struct xfs_ifork	*dfork;
1327 	struct xfs_ifork	*cfork;
1328 
1329 	if (!xfs_is_reflink_inode(ip))
1330 		return;
1331 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1332 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1333 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1334 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1335 	if (cfork->if_bytes == 0)
1336 		xfs_inode_clear_cowblocks_tag(ip);
1337 }
1338 
1339 /*
1340  * Free up the underlying blocks past new_size.  The new size must be smaller
1341  * than the current size.  This routine can be used both for the attribute and
1342  * data fork, and does not modify the inode size, which is left to the caller.
1343  *
1344  * The transaction passed to this routine must have made a permanent log
1345  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1346  * given transaction and start new ones, so make sure everything involved in
1347  * the transaction is tidy before calling here.  Some transaction will be
1348  * returned to the caller to be committed.  The incoming transaction must
1349  * already include the inode, and both inode locks must be held exclusively.
1350  * The inode must also be "held" within the transaction.  On return the inode
1351  * will be "held" within the returned transaction.  This routine does NOT
1352  * require any disk space to be reserved for it within the transaction.
1353  *
1354  * If we get an error, we must return with the inode locked and linked into the
1355  * current transaction. This keeps things simple for the higher level code,
1356  * because it always knows that the inode is locked and held in the transaction
1357  * that returns to it whether errors occur or not.  We don't mark the inode
1358  * dirty on error so that transactions can be easily aborted if possible.
1359  */
1360 int
1361 xfs_itruncate_extents_flags(
1362 	struct xfs_trans	**tpp,
1363 	struct xfs_inode	*ip,
1364 	int			whichfork,
1365 	xfs_fsize_t		new_size,
1366 	int			flags)
1367 {
1368 	struct xfs_mount	*mp = ip->i_mount;
1369 	struct xfs_trans	*tp = *tpp;
1370 	xfs_fileoff_t		first_unmap_block;
1371 	xfs_filblks_t		unmap_len;
1372 	int			error = 0;
1373 
1374 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1375 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1376 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1377 	ASSERT(new_size <= XFS_ISIZE(ip));
1378 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1379 	ASSERT(ip->i_itemp != NULL);
1380 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1381 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1382 
1383 	trace_xfs_itruncate_extents_start(ip, new_size);
1384 
1385 	flags |= xfs_bmapi_aflag(whichfork);
1386 
1387 	/*
1388 	 * Since it is possible for space to become allocated beyond
1389 	 * the end of the file (in a crash where the space is allocated
1390 	 * but the inode size is not yet updated), simply remove any
1391 	 * blocks which show up between the new EOF and the maximum
1392 	 * possible file size.
1393 	 *
1394 	 * We have to free all the blocks to the bmbt maximum offset, even if
1395 	 * the page cache can't scale that far.
1396 	 */
1397 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1398 	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1399 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1400 		return 0;
1401 	}
1402 
1403 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1404 	while (unmap_len > 0) {
1405 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1406 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1407 				flags, XFS_ITRUNC_MAX_EXTENTS);
1408 		if (error)
1409 			goto out;
1410 
1411 		/* free the just unmapped extents */
1412 		error = xfs_defer_finish(&tp);
1413 		if (error)
1414 			goto out;
1415 	}
1416 
1417 	if (whichfork == XFS_DATA_FORK) {
1418 		/* Remove all pending CoW reservations. */
1419 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1420 				first_unmap_block, XFS_MAX_FILEOFF, true);
1421 		if (error)
1422 			goto out;
1423 
1424 		xfs_itruncate_clear_reflink_flags(ip);
1425 	}
1426 
1427 	/*
1428 	 * Always re-log the inode so that our permanent transaction can keep
1429 	 * on rolling it forward in the log.
1430 	 */
1431 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1432 
1433 	trace_xfs_itruncate_extents_end(ip, new_size);
1434 
1435 out:
1436 	*tpp = tp;
1437 	return error;
1438 }
1439 
1440 int
1441 xfs_release(
1442 	xfs_inode_t	*ip)
1443 {
1444 	xfs_mount_t	*mp = ip->i_mount;
1445 	int		error;
1446 
1447 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1448 		return 0;
1449 
1450 	/* If this is a read-only mount, don't do this (would generate I/O) */
1451 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1452 		return 0;
1453 
1454 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1455 		int truncated;
1456 
1457 		/*
1458 		 * If we previously truncated this file and removed old data
1459 		 * in the process, we want to initiate "early" writeout on
1460 		 * the last close.  This is an attempt to combat the notorious
1461 		 * NULL files problem which is particularly noticeable from a
1462 		 * truncate down, buffered (re-)write (delalloc), followed by
1463 		 * a crash.  What we are effectively doing here is
1464 		 * significantly reducing the time window where we'd otherwise
1465 		 * be exposed to that problem.
1466 		 */
1467 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1468 		if (truncated) {
1469 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1470 			if (ip->i_delayed_blks > 0) {
1471 				error = filemap_flush(VFS_I(ip)->i_mapping);
1472 				if (error)
1473 					return error;
1474 			}
1475 		}
1476 	}
1477 
1478 	if (VFS_I(ip)->i_nlink == 0)
1479 		return 0;
1480 
1481 	if (xfs_can_free_eofblocks(ip, false)) {
1482 
1483 		/*
1484 		 * Check if the inode is being opened, written and closed
1485 		 * frequently and we have delayed allocation blocks outstanding
1486 		 * (e.g. streaming writes from the NFS server), truncating the
1487 		 * blocks past EOF will cause fragmentation to occur.
1488 		 *
1489 		 * In this case don't do the truncation, but we have to be
1490 		 * careful how we detect this case. Blocks beyond EOF show up as
1491 		 * i_delayed_blks even when the inode is clean, so we need to
1492 		 * truncate them away first before checking for a dirty release.
1493 		 * Hence on the first dirty close we will still remove the
1494 		 * speculative allocation, but after that we will leave it in
1495 		 * place.
1496 		 */
1497 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1498 			return 0;
1499 		/*
1500 		 * If we can't get the iolock just skip truncating the blocks
1501 		 * past EOF because we could deadlock with the mmap_lock
1502 		 * otherwise. We'll get another chance to drop them once the
1503 		 * last reference to the inode is dropped, so we'll never leak
1504 		 * blocks permanently.
1505 		 */
1506 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1507 			error = xfs_free_eofblocks(ip);
1508 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1509 			if (error)
1510 				return error;
1511 		}
1512 
1513 		/* delalloc blocks after truncation means it really is dirty */
1514 		if (ip->i_delayed_blks)
1515 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1516 	}
1517 	return 0;
1518 }
1519 
1520 /*
1521  * xfs_inactive_truncate
1522  *
1523  * Called to perform a truncate when an inode becomes unlinked.
1524  */
1525 STATIC int
1526 xfs_inactive_truncate(
1527 	struct xfs_inode *ip)
1528 {
1529 	struct xfs_mount	*mp = ip->i_mount;
1530 	struct xfs_trans	*tp;
1531 	int			error;
1532 
1533 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1534 	if (error) {
1535 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1536 		return error;
1537 	}
1538 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1539 	xfs_trans_ijoin(tp, ip, 0);
1540 
1541 	/*
1542 	 * Log the inode size first to prevent stale data exposure in the event
1543 	 * of a system crash before the truncate completes. See the related
1544 	 * comment in xfs_vn_setattr_size() for details.
1545 	 */
1546 	ip->i_d.di_size = 0;
1547 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1548 
1549 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1550 	if (error)
1551 		goto error_trans_cancel;
1552 
1553 	ASSERT(ip->i_df.if_nextents == 0);
1554 
1555 	error = xfs_trans_commit(tp);
1556 	if (error)
1557 		goto error_unlock;
1558 
1559 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1560 	return 0;
1561 
1562 error_trans_cancel:
1563 	xfs_trans_cancel(tp);
1564 error_unlock:
1565 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1566 	return error;
1567 }
1568 
1569 /*
1570  * xfs_inactive_ifree()
1571  *
1572  * Perform the inode free when an inode is unlinked.
1573  */
1574 STATIC int
1575 xfs_inactive_ifree(
1576 	struct xfs_inode *ip)
1577 {
1578 	struct xfs_mount	*mp = ip->i_mount;
1579 	struct xfs_trans	*tp;
1580 	int			error;
1581 
1582 	/*
1583 	 * We try to use a per-AG reservation for any block needed by the finobt
1584 	 * tree, but as the finobt feature predates the per-AG reservation
1585 	 * support a degraded file system might not have enough space for the
1586 	 * reservation at mount time.  In that case try to dip into the reserved
1587 	 * pool and pray.
1588 	 *
1589 	 * Send a warning if the reservation does happen to fail, as the inode
1590 	 * now remains allocated and sits on the unlinked list until the fs is
1591 	 * repaired.
1592 	 */
1593 	if (unlikely(mp->m_finobt_nores)) {
1594 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1595 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1596 				&tp);
1597 	} else {
1598 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1599 	}
1600 	if (error) {
1601 		if (error == -ENOSPC) {
1602 			xfs_warn_ratelimited(mp,
1603 			"Failed to remove inode(s) from unlinked list. "
1604 			"Please free space, unmount and run xfs_repair.");
1605 		} else {
1606 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1607 		}
1608 		return error;
1609 	}
1610 
1611 	/*
1612 	 * We do not hold the inode locked across the entire rolling transaction
1613 	 * here. We only need to hold it for the first transaction that
1614 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1615 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1616 	 * here breaks the relationship between cluster buffer invalidation and
1617 	 * stale inode invalidation on cluster buffer item journal commit
1618 	 * completion, and can result in leaving dirty stale inodes hanging
1619 	 * around in memory.
1620 	 *
1621 	 * We have no need for serialising this inode operation against other
1622 	 * operations - we freed the inode and hence reallocation is required
1623 	 * and that will serialise on reallocating the space the deferops need
1624 	 * to free. Hence we can unlock the inode on the first commit of
1625 	 * the transaction rather than roll it right through the deferops. This
1626 	 * avoids relogging the XFS_ISTALE inode.
1627 	 *
1628 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1629 	 * by asserting that the inode is still locked when it returns.
1630 	 */
1631 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1632 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1633 
1634 	error = xfs_ifree(tp, ip);
1635 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1636 	if (error) {
1637 		/*
1638 		 * If we fail to free the inode, shut down.  The cancel
1639 		 * might do that, we need to make sure.  Otherwise the
1640 		 * inode might be lost for a long time or forever.
1641 		 */
1642 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1643 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1644 				__func__, error);
1645 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1646 		}
1647 		xfs_trans_cancel(tp);
1648 		return error;
1649 	}
1650 
1651 	/*
1652 	 * Credit the quota account(s). The inode is gone.
1653 	 */
1654 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1655 
1656 	/*
1657 	 * Just ignore errors at this point.  There is nothing we can do except
1658 	 * to try to keep going. Make sure it's not a silent error.
1659 	 */
1660 	error = xfs_trans_commit(tp);
1661 	if (error)
1662 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1663 			__func__, error);
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * xfs_inactive
1670  *
1671  * This is called when the vnode reference count for the vnode
1672  * goes to zero.  If the file has been unlinked, then it must
1673  * now be truncated.  Also, we clear all of the read-ahead state
1674  * kept for the inode here since the file is now closed.
1675  */
1676 void
1677 xfs_inactive(
1678 	xfs_inode_t	*ip)
1679 {
1680 	struct xfs_mount	*mp;
1681 	int			error;
1682 	int			truncate = 0;
1683 
1684 	/*
1685 	 * If the inode is already free, then there can be nothing
1686 	 * to clean up here.
1687 	 */
1688 	if (VFS_I(ip)->i_mode == 0) {
1689 		ASSERT(ip->i_df.if_broot_bytes == 0);
1690 		return;
1691 	}
1692 
1693 	mp = ip->i_mount;
1694 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1695 
1696 	/* If this is a read-only mount, don't do this (would generate I/O) */
1697 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1698 		return;
1699 
1700 	/* Try to clean out the cow blocks if there are any. */
1701 	if (xfs_inode_has_cow_data(ip))
1702 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1703 
1704 	if (VFS_I(ip)->i_nlink != 0) {
1705 		/*
1706 		 * force is true because we are evicting an inode from the
1707 		 * cache. Post-eof blocks must be freed, lest we end up with
1708 		 * broken free space accounting.
1709 		 *
1710 		 * Note: don't bother with iolock here since lockdep complains
1711 		 * about acquiring it in reclaim context. We have the only
1712 		 * reference to the inode at this point anyways.
1713 		 */
1714 		if (xfs_can_free_eofblocks(ip, true))
1715 			xfs_free_eofblocks(ip);
1716 
1717 		return;
1718 	}
1719 
1720 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1721 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1722 	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1723 		truncate = 1;
1724 
1725 	error = xfs_qm_dqattach(ip);
1726 	if (error)
1727 		return;
1728 
1729 	if (S_ISLNK(VFS_I(ip)->i_mode))
1730 		error = xfs_inactive_symlink(ip);
1731 	else if (truncate)
1732 		error = xfs_inactive_truncate(ip);
1733 	if (error)
1734 		return;
1735 
1736 	/*
1737 	 * If there are attributes associated with the file then blow them away
1738 	 * now.  The code calls a routine that recursively deconstructs the
1739 	 * attribute fork. If also blows away the in-core attribute fork.
1740 	 */
1741 	if (XFS_IFORK_Q(ip)) {
1742 		error = xfs_attr_inactive(ip);
1743 		if (error)
1744 			return;
1745 	}
1746 
1747 	ASSERT(!ip->i_afp);
1748 	ASSERT(ip->i_d.di_forkoff == 0);
1749 
1750 	/*
1751 	 * Free the inode.
1752 	 */
1753 	error = xfs_inactive_ifree(ip);
1754 	if (error)
1755 		return;
1756 
1757 	/*
1758 	 * Release the dquots held by inode, if any.
1759 	 */
1760 	xfs_qm_dqdetach(ip);
1761 }
1762 
1763 /*
1764  * In-Core Unlinked List Lookups
1765  * =============================
1766  *
1767  * Every inode is supposed to be reachable from some other piece of metadata
1768  * with the exception of the root directory.  Inodes with a connection to a
1769  * file descriptor but not linked from anywhere in the on-disk directory tree
1770  * are collectively known as unlinked inodes, though the filesystem itself
1771  * maintains links to these inodes so that on-disk metadata are consistent.
1772  *
1773  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1774  * header contains a number of buckets that point to an inode, and each inode
1775  * record has a pointer to the next inode in the hash chain.  This
1776  * singly-linked list causes scaling problems in the iunlink remove function
1777  * because we must walk that list to find the inode that points to the inode
1778  * being removed from the unlinked hash bucket list.
1779  *
1780  * What if we modelled the unlinked list as a collection of records capturing
1781  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1782  * have a fast way to look up unlinked list predecessors, which avoids the
1783  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1784  * rhashtable.
1785  *
1786  * Because this is a backref cache, we ignore operational failures since the
1787  * iunlink code can fall back to the slow bucket walk.  The only errors that
1788  * should bubble out are for obviously incorrect situations.
1789  *
1790  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1791  * access or have otherwise provided for concurrency control.
1792  */
1793 
1794 /* Capture a "X.next_unlinked = Y" relationship. */
1795 struct xfs_iunlink {
1796 	struct rhash_head	iu_rhash_head;
1797 	xfs_agino_t		iu_agino;		/* X */
1798 	xfs_agino_t		iu_next_unlinked;	/* Y */
1799 };
1800 
1801 /* Unlinked list predecessor lookup hashtable construction */
1802 static int
1803 xfs_iunlink_obj_cmpfn(
1804 	struct rhashtable_compare_arg	*arg,
1805 	const void			*obj)
1806 {
1807 	const xfs_agino_t		*key = arg->key;
1808 	const struct xfs_iunlink	*iu = obj;
1809 
1810 	if (iu->iu_next_unlinked != *key)
1811 		return 1;
1812 	return 0;
1813 }
1814 
1815 static const struct rhashtable_params xfs_iunlink_hash_params = {
1816 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1817 	.key_len		= sizeof(xfs_agino_t),
1818 	.key_offset		= offsetof(struct xfs_iunlink,
1819 					   iu_next_unlinked),
1820 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1821 	.automatic_shrinking	= true,
1822 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1823 };
1824 
1825 /*
1826  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1827  * relation is found.
1828  */
1829 static xfs_agino_t
1830 xfs_iunlink_lookup_backref(
1831 	struct xfs_perag	*pag,
1832 	xfs_agino_t		agino)
1833 {
1834 	struct xfs_iunlink	*iu;
1835 
1836 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1837 			xfs_iunlink_hash_params);
1838 	return iu ? iu->iu_agino : NULLAGINO;
1839 }
1840 
1841 /*
1842  * Take ownership of an iunlink cache entry and insert it into the hash table.
1843  * If successful, the entry will be owned by the cache; if not, it is freed.
1844  * Either way, the caller does not own @iu after this call.
1845  */
1846 static int
1847 xfs_iunlink_insert_backref(
1848 	struct xfs_perag	*pag,
1849 	struct xfs_iunlink	*iu)
1850 {
1851 	int			error;
1852 
1853 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1854 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1855 	/*
1856 	 * Fail loudly if there already was an entry because that's a sign of
1857 	 * corruption of in-memory data.  Also fail loudly if we see an error
1858 	 * code we didn't anticipate from the rhashtable code.  Currently we
1859 	 * only anticipate ENOMEM.
1860 	 */
1861 	if (error) {
1862 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1863 		kmem_free(iu);
1864 	}
1865 	/*
1866 	 * Absorb any runtime errors that aren't a result of corruption because
1867 	 * this is a cache and we can always fall back to bucket list scanning.
1868 	 */
1869 	if (error != 0 && error != -EEXIST)
1870 		error = 0;
1871 	return error;
1872 }
1873 
1874 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1875 static int
1876 xfs_iunlink_add_backref(
1877 	struct xfs_perag	*pag,
1878 	xfs_agino_t		prev_agino,
1879 	xfs_agino_t		this_agino)
1880 {
1881 	struct xfs_iunlink	*iu;
1882 
1883 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1884 		return 0;
1885 
1886 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1887 	iu->iu_agino = prev_agino;
1888 	iu->iu_next_unlinked = this_agino;
1889 
1890 	return xfs_iunlink_insert_backref(pag, iu);
1891 }
1892 
1893 /*
1894  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1895  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1896  * wasn't any such entry then we don't bother.
1897  */
1898 static int
1899 xfs_iunlink_change_backref(
1900 	struct xfs_perag	*pag,
1901 	xfs_agino_t		agino,
1902 	xfs_agino_t		next_unlinked)
1903 {
1904 	struct xfs_iunlink	*iu;
1905 	int			error;
1906 
1907 	/* Look up the old entry; if there wasn't one then exit. */
1908 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1909 			xfs_iunlink_hash_params);
1910 	if (!iu)
1911 		return 0;
1912 
1913 	/*
1914 	 * Remove the entry.  This shouldn't ever return an error, but if we
1915 	 * couldn't remove the old entry we don't want to add it again to the
1916 	 * hash table, and if the entry disappeared on us then someone's
1917 	 * violated the locking rules and we need to fail loudly.  Either way
1918 	 * we cannot remove the inode because internal state is or would have
1919 	 * been corrupt.
1920 	 */
1921 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1922 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1923 	if (error)
1924 		return error;
1925 
1926 	/* If there is no new next entry just free our item and return. */
1927 	if (next_unlinked == NULLAGINO) {
1928 		kmem_free(iu);
1929 		return 0;
1930 	}
1931 
1932 	/* Update the entry and re-add it to the hash table. */
1933 	iu->iu_next_unlinked = next_unlinked;
1934 	return xfs_iunlink_insert_backref(pag, iu);
1935 }
1936 
1937 /* Set up the in-core predecessor structures. */
1938 int
1939 xfs_iunlink_init(
1940 	struct xfs_perag	*pag)
1941 {
1942 	return rhashtable_init(&pag->pagi_unlinked_hash,
1943 			&xfs_iunlink_hash_params);
1944 }
1945 
1946 /* Free the in-core predecessor structures. */
1947 static void
1948 xfs_iunlink_free_item(
1949 	void			*ptr,
1950 	void			*arg)
1951 {
1952 	struct xfs_iunlink	*iu = ptr;
1953 	bool			*freed_anything = arg;
1954 
1955 	*freed_anything = true;
1956 	kmem_free(iu);
1957 }
1958 
1959 void
1960 xfs_iunlink_destroy(
1961 	struct xfs_perag	*pag)
1962 {
1963 	bool			freed_anything = false;
1964 
1965 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1966 			xfs_iunlink_free_item, &freed_anything);
1967 
1968 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1969 }
1970 
1971 /*
1972  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1973  * is responsible for validating the old value.
1974  */
1975 STATIC int
1976 xfs_iunlink_update_bucket(
1977 	struct xfs_trans	*tp,
1978 	xfs_agnumber_t		agno,
1979 	struct xfs_buf		*agibp,
1980 	unsigned int		bucket_index,
1981 	xfs_agino_t		new_agino)
1982 {
1983 	struct xfs_agi		*agi = agibp->b_addr;
1984 	xfs_agino_t		old_value;
1985 	int			offset;
1986 
1987 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
1988 
1989 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1990 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
1991 			old_value, new_agino);
1992 
1993 	/*
1994 	 * We should never find the head of the list already set to the value
1995 	 * passed in because either we're adding or removing ourselves from the
1996 	 * head of the list.
1997 	 */
1998 	if (old_value == new_agino) {
1999 		xfs_buf_mark_corrupt(agibp);
2000 		return -EFSCORRUPTED;
2001 	}
2002 
2003 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2004 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2005 			(sizeof(xfs_agino_t) * bucket_index);
2006 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2007 	return 0;
2008 }
2009 
2010 /* Set an on-disk inode's next_unlinked pointer. */
2011 STATIC void
2012 xfs_iunlink_update_dinode(
2013 	struct xfs_trans	*tp,
2014 	xfs_agnumber_t		agno,
2015 	xfs_agino_t		agino,
2016 	struct xfs_buf		*ibp,
2017 	struct xfs_dinode	*dip,
2018 	struct xfs_imap		*imap,
2019 	xfs_agino_t		next_agino)
2020 {
2021 	struct xfs_mount	*mp = tp->t_mountp;
2022 	int			offset;
2023 
2024 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2025 
2026 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2027 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2028 
2029 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2030 	offset = imap->im_boffset +
2031 			offsetof(struct xfs_dinode, di_next_unlinked);
2032 
2033 	/* need to recalc the inode CRC if appropriate */
2034 	xfs_dinode_calc_crc(mp, dip);
2035 	xfs_trans_inode_buf(tp, ibp);
2036 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2037 }
2038 
2039 /* Set an in-core inode's unlinked pointer and return the old value. */
2040 STATIC int
2041 xfs_iunlink_update_inode(
2042 	struct xfs_trans	*tp,
2043 	struct xfs_inode	*ip,
2044 	xfs_agnumber_t		agno,
2045 	xfs_agino_t		next_agino,
2046 	xfs_agino_t		*old_next_agino)
2047 {
2048 	struct xfs_mount	*mp = tp->t_mountp;
2049 	struct xfs_dinode	*dip;
2050 	struct xfs_buf		*ibp;
2051 	xfs_agino_t		old_value;
2052 	int			error;
2053 
2054 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2055 
2056 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2057 	if (error)
2058 		return error;
2059 
2060 	/* Make sure the old pointer isn't garbage. */
2061 	old_value = be32_to_cpu(dip->di_next_unlinked);
2062 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2063 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2064 				sizeof(*dip), __this_address);
2065 		error = -EFSCORRUPTED;
2066 		goto out;
2067 	}
2068 
2069 	/*
2070 	 * Since we're updating a linked list, we should never find that the
2071 	 * current pointer is the same as the new value, unless we're
2072 	 * terminating the list.
2073 	 */
2074 	*old_next_agino = old_value;
2075 	if (old_value == next_agino) {
2076 		if (next_agino != NULLAGINO) {
2077 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2078 					dip, sizeof(*dip), __this_address);
2079 			error = -EFSCORRUPTED;
2080 		}
2081 		goto out;
2082 	}
2083 
2084 	/* Ok, update the new pointer. */
2085 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2086 			ibp, dip, &ip->i_imap, next_agino);
2087 	return 0;
2088 out:
2089 	xfs_trans_brelse(tp, ibp);
2090 	return error;
2091 }
2092 
2093 /*
2094  * This is called when the inode's link count has gone to 0 or we are creating
2095  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2096  *
2097  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2098  * list when the inode is freed.
2099  */
2100 STATIC int
2101 xfs_iunlink(
2102 	struct xfs_trans	*tp,
2103 	struct xfs_inode	*ip)
2104 {
2105 	struct xfs_mount	*mp = tp->t_mountp;
2106 	struct xfs_agi		*agi;
2107 	struct xfs_buf		*agibp;
2108 	xfs_agino_t		next_agino;
2109 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2110 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2111 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2112 	int			error;
2113 
2114 	ASSERT(VFS_I(ip)->i_nlink == 0);
2115 	ASSERT(VFS_I(ip)->i_mode != 0);
2116 	trace_xfs_iunlink(ip);
2117 
2118 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2119 	error = xfs_read_agi(mp, tp, agno, &agibp);
2120 	if (error)
2121 		return error;
2122 	agi = agibp->b_addr;
2123 
2124 	/*
2125 	 * Get the index into the agi hash table for the list this inode will
2126 	 * go on.  Make sure the pointer isn't garbage and that this inode
2127 	 * isn't already on the list.
2128 	 */
2129 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2130 	if (next_agino == agino ||
2131 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2132 		xfs_buf_mark_corrupt(agibp);
2133 		return -EFSCORRUPTED;
2134 	}
2135 
2136 	if (next_agino != NULLAGINO) {
2137 		xfs_agino_t		old_agino;
2138 
2139 		/*
2140 		 * There is already another inode in the bucket, so point this
2141 		 * inode to the current head of the list.
2142 		 */
2143 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2144 				&old_agino);
2145 		if (error)
2146 			return error;
2147 		ASSERT(old_agino == NULLAGINO);
2148 
2149 		/*
2150 		 * agino has been unlinked, add a backref from the next inode
2151 		 * back to agino.
2152 		 */
2153 		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2154 		if (error)
2155 			return error;
2156 	}
2157 
2158 	/* Point the head of the list to point to this inode. */
2159 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2160 }
2161 
2162 /* Return the imap, dinode pointer, and buffer for an inode. */
2163 STATIC int
2164 xfs_iunlink_map_ino(
2165 	struct xfs_trans	*tp,
2166 	xfs_agnumber_t		agno,
2167 	xfs_agino_t		agino,
2168 	struct xfs_imap		*imap,
2169 	struct xfs_dinode	**dipp,
2170 	struct xfs_buf		**bpp)
2171 {
2172 	struct xfs_mount	*mp = tp->t_mountp;
2173 	int			error;
2174 
2175 	imap->im_blkno = 0;
2176 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177 	if (error) {
2178 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179 				__func__, error);
2180 		return error;
2181 	}
2182 
2183 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2184 	if (error) {
2185 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186 				__func__, error);
2187 		return error;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 /*
2194  * Walk the unlinked chain from @head_agino until we find the inode that
2195  * points to @target_agino.  Return the inode number, map, dinode pointer,
2196  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2197  *
2198  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2199  * @agino, @imap, @dipp, and @bpp are all output parameters.
2200  *
2201  * Do not call this function if @target_agino is the head of the list.
2202  */
2203 STATIC int
2204 xfs_iunlink_map_prev(
2205 	struct xfs_trans	*tp,
2206 	xfs_agnumber_t		agno,
2207 	xfs_agino_t		head_agino,
2208 	xfs_agino_t		target_agino,
2209 	xfs_agino_t		*agino,
2210 	struct xfs_imap		*imap,
2211 	struct xfs_dinode	**dipp,
2212 	struct xfs_buf		**bpp,
2213 	struct xfs_perag	*pag)
2214 {
2215 	struct xfs_mount	*mp = tp->t_mountp;
2216 	xfs_agino_t		next_agino;
2217 	int			error;
2218 
2219 	ASSERT(head_agino != target_agino);
2220 	*bpp = NULL;
2221 
2222 	/* See if our backref cache can find it faster. */
2223 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224 	if (*agino != NULLAGINO) {
2225 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2226 		if (error)
2227 			return error;
2228 
2229 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2230 			return 0;
2231 
2232 		/*
2233 		 * If we get here the cache contents were corrupt, so drop the
2234 		 * buffer and fall back to walking the bucket list.
2235 		 */
2236 		xfs_trans_brelse(tp, *bpp);
2237 		*bpp = NULL;
2238 		WARN_ON_ONCE(1);
2239 	}
2240 
2241 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2242 
2243 	/* Otherwise, walk the entire bucket until we find it. */
2244 	next_agino = head_agino;
2245 	while (next_agino != target_agino) {
2246 		xfs_agino_t	unlinked_agino;
2247 
2248 		if (*bpp)
2249 			xfs_trans_brelse(tp, *bpp);
2250 
2251 		*agino = next_agino;
2252 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2253 				bpp);
2254 		if (error)
2255 			return error;
2256 
2257 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2258 		/*
2259 		 * Make sure this pointer is valid and isn't an obvious
2260 		 * infinite loop.
2261 		 */
2262 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2263 		    next_agino == unlinked_agino) {
2264 			XFS_CORRUPTION_ERROR(__func__,
2265 					XFS_ERRLEVEL_LOW, mp,
2266 					*dipp, sizeof(**dipp));
2267 			error = -EFSCORRUPTED;
2268 			return error;
2269 		}
2270 		next_agino = unlinked_agino;
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Pull the on-disk inode from the AGI unlinked list.
2278  */
2279 STATIC int
2280 xfs_iunlink_remove(
2281 	struct xfs_trans	*tp,
2282 	struct xfs_inode	*ip)
2283 {
2284 	struct xfs_mount	*mp = tp->t_mountp;
2285 	struct xfs_agi		*agi;
2286 	struct xfs_buf		*agibp;
2287 	struct xfs_buf		*last_ibp;
2288 	struct xfs_dinode	*last_dip = NULL;
2289 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2290 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2291 	xfs_agino_t		next_agino;
2292 	xfs_agino_t		head_agino;
2293 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2294 	int			error;
2295 
2296 	trace_xfs_iunlink_remove(ip);
2297 
2298 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2299 	error = xfs_read_agi(mp, tp, agno, &agibp);
2300 	if (error)
2301 		return error;
2302 	agi = agibp->b_addr;
2303 
2304 	/*
2305 	 * Get the index into the agi hash table for the list this inode will
2306 	 * go on.  Make sure the head pointer isn't garbage.
2307 	 */
2308 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2309 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2310 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2311 				agi, sizeof(*agi));
2312 		return -EFSCORRUPTED;
2313 	}
2314 
2315 	/*
2316 	 * Set our inode's next_unlinked pointer to NULL and then return
2317 	 * the old pointer value so that we can update whatever was previous
2318 	 * to us in the list to point to whatever was next in the list.
2319 	 */
2320 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2321 	if (error)
2322 		return error;
2323 
2324 	/*
2325 	 * If there was a backref pointing from the next inode back to this
2326 	 * one, remove it because we've removed this inode from the list.
2327 	 *
2328 	 * Later, if this inode was in the middle of the list we'll update
2329 	 * this inode's backref to point from the next inode.
2330 	 */
2331 	if (next_agino != NULLAGINO) {
2332 		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2333 				NULLAGINO);
2334 		if (error)
2335 			return error;
2336 	}
2337 
2338 	if (head_agino != agino) {
2339 		struct xfs_imap	imap;
2340 		xfs_agino_t	prev_agino;
2341 
2342 		/* We need to search the list for the inode being freed. */
2343 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2344 				&prev_agino, &imap, &last_dip, &last_ibp,
2345 				agibp->b_pag);
2346 		if (error)
2347 			return error;
2348 
2349 		/* Point the previous inode on the list to the next inode. */
2350 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2351 				last_dip, &imap, next_agino);
2352 
2353 		/*
2354 		 * Now we deal with the backref for this inode.  If this inode
2355 		 * pointed at a real inode, change the backref that pointed to
2356 		 * us to point to our old next.  If this inode was the end of
2357 		 * the list, delete the backref that pointed to us.  Note that
2358 		 * change_backref takes care of deleting the backref if
2359 		 * next_agino is NULLAGINO.
2360 		 */
2361 		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2362 				next_agino);
2363 	}
2364 
2365 	/* Point the head of the list to the next unlinked inode. */
2366 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2367 			next_agino);
2368 }
2369 
2370 /*
2371  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2372  * mark it stale. We should only find clean inodes in this lookup that aren't
2373  * already stale.
2374  */
2375 static void
2376 xfs_ifree_mark_inode_stale(
2377 	struct xfs_buf		*bp,
2378 	struct xfs_inode	*free_ip,
2379 	xfs_ino_t		inum)
2380 {
2381 	struct xfs_mount	*mp = bp->b_mount;
2382 	struct xfs_perag	*pag = bp->b_pag;
2383 	struct xfs_inode_log_item *iip;
2384 	struct xfs_inode	*ip;
2385 
2386 retry:
2387 	rcu_read_lock();
2388 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2389 
2390 	/* Inode not in memory, nothing to do */
2391 	if (!ip) {
2392 		rcu_read_unlock();
2393 		return;
2394 	}
2395 
2396 	/*
2397 	 * because this is an RCU protected lookup, we could find a recently
2398 	 * freed or even reallocated inode during the lookup. We need to check
2399 	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2400 	 * valid, the wrong inode or stale.
2401 	 */
2402 	spin_lock(&ip->i_flags_lock);
2403 	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2404 		goto out_iflags_unlock;
2405 
2406 	/*
2407 	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2408 	 * other inodes that we did not find in the list attached to the buffer
2409 	 * and are not already marked stale. If we can't lock it, back off and
2410 	 * retry.
2411 	 */
2412 	if (ip != free_ip) {
2413 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2414 			spin_unlock(&ip->i_flags_lock);
2415 			rcu_read_unlock();
2416 			delay(1);
2417 			goto retry;
2418 		}
2419 	}
2420 	ip->i_flags |= XFS_ISTALE;
2421 
2422 	/*
2423 	 * If the inode is flushing, it is already attached to the buffer.  All
2424 	 * we needed to do here is mark the inode stale so buffer IO completion
2425 	 * will remove it from the AIL.
2426 	 */
2427 	iip = ip->i_itemp;
2428 	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2429 		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2430 		ASSERT(iip->ili_last_fields);
2431 		goto out_iunlock;
2432 	}
2433 
2434 	/*
2435 	 * Inodes not attached to the buffer can be released immediately.
2436 	 * Everything else has to go through xfs_iflush_abort() on journal
2437 	 * commit as the flock synchronises removal of the inode from the
2438 	 * cluster buffer against inode reclaim.
2439 	 */
2440 	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2441 		goto out_iunlock;
2442 
2443 	__xfs_iflags_set(ip, XFS_IFLUSHING);
2444 	spin_unlock(&ip->i_flags_lock);
2445 	rcu_read_unlock();
2446 
2447 	/* we have a dirty inode in memory that has not yet been flushed. */
2448 	spin_lock(&iip->ili_lock);
2449 	iip->ili_last_fields = iip->ili_fields;
2450 	iip->ili_fields = 0;
2451 	iip->ili_fsync_fields = 0;
2452 	spin_unlock(&iip->ili_lock);
2453 	ASSERT(iip->ili_last_fields);
2454 
2455 	if (ip != free_ip)
2456 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2457 	return;
2458 
2459 out_iunlock:
2460 	if (ip != free_ip)
2461 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2462 out_iflags_unlock:
2463 	spin_unlock(&ip->i_flags_lock);
2464 	rcu_read_unlock();
2465 }
2466 
2467 /*
2468  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2469  * inodes that are in memory - they all must be marked stale and attached to
2470  * the cluster buffer.
2471  */
2472 STATIC int
2473 xfs_ifree_cluster(
2474 	struct xfs_inode	*free_ip,
2475 	struct xfs_trans	*tp,
2476 	struct xfs_icluster	*xic)
2477 {
2478 	struct xfs_mount	*mp = free_ip->i_mount;
2479 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2480 	struct xfs_buf		*bp;
2481 	xfs_daddr_t		blkno;
2482 	xfs_ino_t		inum = xic->first_ino;
2483 	int			nbufs;
2484 	int			i, j;
2485 	int			ioffset;
2486 	int			error;
2487 
2488 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2489 
2490 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2491 		/*
2492 		 * The allocation bitmap tells us which inodes of the chunk were
2493 		 * physically allocated. Skip the cluster if an inode falls into
2494 		 * a sparse region.
2495 		 */
2496 		ioffset = inum - xic->first_ino;
2497 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2498 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2499 			continue;
2500 		}
2501 
2502 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2503 					 XFS_INO_TO_AGBNO(mp, inum));
2504 
2505 		/*
2506 		 * We obtain and lock the backing buffer first in the process
2507 		 * here to ensure dirty inodes attached to the buffer remain in
2508 		 * the flushing state while we mark them stale.
2509 		 *
2510 		 * If we scan the in-memory inodes first, then buffer IO can
2511 		 * complete before we get a lock on it, and hence we may fail
2512 		 * to mark all the active inodes on the buffer stale.
2513 		 */
2514 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2515 				mp->m_bsize * igeo->blocks_per_cluster,
2516 				XBF_UNMAPPED, &bp);
2517 		if (error)
2518 			return error;
2519 
2520 		/*
2521 		 * This buffer may not have been correctly initialised as we
2522 		 * didn't read it from disk. That's not important because we are
2523 		 * only using to mark the buffer as stale in the log, and to
2524 		 * attach stale cached inodes on it. That means it will never be
2525 		 * dispatched for IO. If it is, we want to know about it, and we
2526 		 * want it to fail. We can acheive this by adding a write
2527 		 * verifier to the buffer.
2528 		 */
2529 		bp->b_ops = &xfs_inode_buf_ops;
2530 
2531 		/*
2532 		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2533 		 * too. This requires lookups, and will skip inodes that we've
2534 		 * already marked XFS_ISTALE.
2535 		 */
2536 		for (i = 0; i < igeo->inodes_per_cluster; i++)
2537 			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
2538 
2539 		xfs_trans_stale_inode_buf(tp, bp);
2540 		xfs_trans_binval(tp, bp);
2541 	}
2542 	return 0;
2543 }
2544 
2545 /*
2546  * This is called to return an inode to the inode free list.
2547  * The inode should already be truncated to 0 length and have
2548  * no pages associated with it.  This routine also assumes that
2549  * the inode is already a part of the transaction.
2550  *
2551  * The on-disk copy of the inode will have been added to the list
2552  * of unlinked inodes in the AGI. We need to remove the inode from
2553  * that list atomically with respect to freeing it here.
2554  */
2555 int
2556 xfs_ifree(
2557 	struct xfs_trans	*tp,
2558 	struct xfs_inode	*ip)
2559 {
2560 	int			error;
2561 	struct xfs_icluster	xic = { 0 };
2562 	struct xfs_inode_log_item *iip = ip->i_itemp;
2563 
2564 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2565 	ASSERT(VFS_I(ip)->i_nlink == 0);
2566 	ASSERT(ip->i_df.if_nextents == 0);
2567 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2568 	ASSERT(ip->i_d.di_nblocks == 0);
2569 
2570 	/*
2571 	 * Pull the on-disk inode from the AGI unlinked list.
2572 	 */
2573 	error = xfs_iunlink_remove(tp, ip);
2574 	if (error)
2575 		return error;
2576 
2577 	error = xfs_difree(tp, ip->i_ino, &xic);
2578 	if (error)
2579 		return error;
2580 
2581 	/*
2582 	 * Free any local-format data sitting around before we reset the
2583 	 * data fork to extents format.  Note that the attr fork data has
2584 	 * already been freed by xfs_attr_inactive.
2585 	 */
2586 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2587 		kmem_free(ip->i_df.if_u1.if_data);
2588 		ip->i_df.if_u1.if_data = NULL;
2589 		ip->i_df.if_bytes = 0;
2590 	}
2591 
2592 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2593 	ip->i_d.di_flags = 0;
2594 	ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
2595 	ip->i_d.di_dmevmask = 0;
2596 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2597 	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2598 
2599 	/* Don't attempt to replay owner changes for a deleted inode */
2600 	spin_lock(&iip->ili_lock);
2601 	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2602 	spin_unlock(&iip->ili_lock);
2603 
2604 	/*
2605 	 * Bump the generation count so no one will be confused
2606 	 * by reincarnations of this inode.
2607 	 */
2608 	VFS_I(ip)->i_generation++;
2609 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2610 
2611 	if (xic.deleted)
2612 		error = xfs_ifree_cluster(ip, tp, &xic);
2613 
2614 	return error;
2615 }
2616 
2617 /*
2618  * This is called to unpin an inode.  The caller must have the inode locked
2619  * in at least shared mode so that the buffer cannot be subsequently pinned
2620  * once someone is waiting for it to be unpinned.
2621  */
2622 static void
2623 xfs_iunpin(
2624 	struct xfs_inode	*ip)
2625 {
2626 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2627 
2628 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2629 
2630 	/* Give the log a push to start the unpinning I/O */
2631 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2632 
2633 }
2634 
2635 static void
2636 __xfs_iunpin_wait(
2637 	struct xfs_inode	*ip)
2638 {
2639 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2640 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2641 
2642 	xfs_iunpin(ip);
2643 
2644 	do {
2645 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2646 		if (xfs_ipincount(ip))
2647 			io_schedule();
2648 	} while (xfs_ipincount(ip));
2649 	finish_wait(wq, &wait.wq_entry);
2650 }
2651 
2652 void
2653 xfs_iunpin_wait(
2654 	struct xfs_inode	*ip)
2655 {
2656 	if (xfs_ipincount(ip))
2657 		__xfs_iunpin_wait(ip);
2658 }
2659 
2660 /*
2661  * Removing an inode from the namespace involves removing the directory entry
2662  * and dropping the link count on the inode. Removing the directory entry can
2663  * result in locking an AGF (directory blocks were freed) and removing a link
2664  * count can result in placing the inode on an unlinked list which results in
2665  * locking an AGI.
2666  *
2667  * The big problem here is that we have an ordering constraint on AGF and AGI
2668  * locking - inode allocation locks the AGI, then can allocate a new extent for
2669  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2670  * removes the inode from the unlinked list, requiring that we lock the AGI
2671  * first, and then freeing the inode can result in an inode chunk being freed
2672  * and hence freeing disk space requiring that we lock an AGF.
2673  *
2674  * Hence the ordering that is imposed by other parts of the code is AGI before
2675  * AGF. This means we cannot remove the directory entry before we drop the inode
2676  * reference count and put it on the unlinked list as this results in a lock
2677  * order of AGF then AGI, and this can deadlock against inode allocation and
2678  * freeing. Therefore we must drop the link counts before we remove the
2679  * directory entry.
2680  *
2681  * This is still safe from a transactional point of view - it is not until we
2682  * get to xfs_defer_finish() that we have the possibility of multiple
2683  * transactions in this operation. Hence as long as we remove the directory
2684  * entry and drop the link count in the first transaction of the remove
2685  * operation, there are no transactional constraints on the ordering here.
2686  */
2687 int
2688 xfs_remove(
2689 	xfs_inode_t             *dp,
2690 	struct xfs_name		*name,
2691 	xfs_inode_t		*ip)
2692 {
2693 	xfs_mount_t		*mp = dp->i_mount;
2694 	xfs_trans_t             *tp = NULL;
2695 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2696 	int                     error = 0;
2697 	uint			resblks;
2698 
2699 	trace_xfs_remove(dp, name);
2700 
2701 	if (XFS_FORCED_SHUTDOWN(mp))
2702 		return -EIO;
2703 
2704 	error = xfs_qm_dqattach(dp);
2705 	if (error)
2706 		goto std_return;
2707 
2708 	error = xfs_qm_dqattach(ip);
2709 	if (error)
2710 		goto std_return;
2711 
2712 	/*
2713 	 * We try to get the real space reservation first,
2714 	 * allowing for directory btree deletion(s) implying
2715 	 * possible bmap insert(s).  If we can't get the space
2716 	 * reservation then we use 0 instead, and avoid the bmap
2717 	 * btree insert(s) in the directory code by, if the bmap
2718 	 * insert tries to happen, instead trimming the LAST
2719 	 * block from the directory.
2720 	 */
2721 	resblks = XFS_REMOVE_SPACE_RES(mp);
2722 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2723 	if (error == -ENOSPC) {
2724 		resblks = 0;
2725 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2726 				&tp);
2727 	}
2728 	if (error) {
2729 		ASSERT(error != -ENOSPC);
2730 		goto std_return;
2731 	}
2732 
2733 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2734 
2735 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2736 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2737 
2738 	/*
2739 	 * If we're removing a directory perform some additional validation.
2740 	 */
2741 	if (is_dir) {
2742 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2743 		if (VFS_I(ip)->i_nlink != 2) {
2744 			error = -ENOTEMPTY;
2745 			goto out_trans_cancel;
2746 		}
2747 		if (!xfs_dir_isempty(ip)) {
2748 			error = -ENOTEMPTY;
2749 			goto out_trans_cancel;
2750 		}
2751 
2752 		/* Drop the link from ip's "..".  */
2753 		error = xfs_droplink(tp, dp);
2754 		if (error)
2755 			goto out_trans_cancel;
2756 
2757 		/* Drop the "." link from ip to self.  */
2758 		error = xfs_droplink(tp, ip);
2759 		if (error)
2760 			goto out_trans_cancel;
2761 	} else {
2762 		/*
2763 		 * When removing a non-directory we need to log the parent
2764 		 * inode here.  For a directory this is done implicitly
2765 		 * by the xfs_droplink call for the ".." entry.
2766 		 */
2767 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2768 	}
2769 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2770 
2771 	/* Drop the link from dp to ip. */
2772 	error = xfs_droplink(tp, ip);
2773 	if (error)
2774 		goto out_trans_cancel;
2775 
2776 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2777 	if (error) {
2778 		ASSERT(error != -ENOENT);
2779 		goto out_trans_cancel;
2780 	}
2781 
2782 	/*
2783 	 * If this is a synchronous mount, make sure that the
2784 	 * remove transaction goes to disk before returning to
2785 	 * the user.
2786 	 */
2787 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2788 		xfs_trans_set_sync(tp);
2789 
2790 	error = xfs_trans_commit(tp);
2791 	if (error)
2792 		goto std_return;
2793 
2794 	if (is_dir && xfs_inode_is_filestream(ip))
2795 		xfs_filestream_deassociate(ip);
2796 
2797 	return 0;
2798 
2799  out_trans_cancel:
2800 	xfs_trans_cancel(tp);
2801  std_return:
2802 	return error;
2803 }
2804 
2805 /*
2806  * Enter all inodes for a rename transaction into a sorted array.
2807  */
2808 #define __XFS_SORT_INODES	5
2809 STATIC void
2810 xfs_sort_for_rename(
2811 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2812 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2813 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2814 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2815 	struct xfs_inode	*wip,	/* in: whiteout inode */
2816 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2817 	int			*num_inodes)  /* in/out: inodes in array */
2818 {
2819 	int			i, j;
2820 
2821 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2822 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2823 
2824 	/*
2825 	 * i_tab contains a list of pointers to inodes.  We initialize
2826 	 * the table here & we'll sort it.  We will then use it to
2827 	 * order the acquisition of the inode locks.
2828 	 *
2829 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2830 	 */
2831 	i = 0;
2832 	i_tab[i++] = dp1;
2833 	i_tab[i++] = dp2;
2834 	i_tab[i++] = ip1;
2835 	if (ip2)
2836 		i_tab[i++] = ip2;
2837 	if (wip)
2838 		i_tab[i++] = wip;
2839 	*num_inodes = i;
2840 
2841 	/*
2842 	 * Sort the elements via bubble sort.  (Remember, there are at
2843 	 * most 5 elements to sort, so this is adequate.)
2844 	 */
2845 	for (i = 0; i < *num_inodes; i++) {
2846 		for (j = 1; j < *num_inodes; j++) {
2847 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2848 				struct xfs_inode *temp = i_tab[j];
2849 				i_tab[j] = i_tab[j-1];
2850 				i_tab[j-1] = temp;
2851 			}
2852 		}
2853 	}
2854 }
2855 
2856 static int
2857 xfs_finish_rename(
2858 	struct xfs_trans	*tp)
2859 {
2860 	/*
2861 	 * If this is a synchronous mount, make sure that the rename transaction
2862 	 * goes to disk before returning to the user.
2863 	 */
2864 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2865 		xfs_trans_set_sync(tp);
2866 
2867 	return xfs_trans_commit(tp);
2868 }
2869 
2870 /*
2871  * xfs_cross_rename()
2872  *
2873  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2874  */
2875 STATIC int
2876 xfs_cross_rename(
2877 	struct xfs_trans	*tp,
2878 	struct xfs_inode	*dp1,
2879 	struct xfs_name		*name1,
2880 	struct xfs_inode	*ip1,
2881 	struct xfs_inode	*dp2,
2882 	struct xfs_name		*name2,
2883 	struct xfs_inode	*ip2,
2884 	int			spaceres)
2885 {
2886 	int		error = 0;
2887 	int		ip1_flags = 0;
2888 	int		ip2_flags = 0;
2889 	int		dp2_flags = 0;
2890 
2891 	/* Swap inode number for dirent in first parent */
2892 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2893 	if (error)
2894 		goto out_trans_abort;
2895 
2896 	/* Swap inode number for dirent in second parent */
2897 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2898 	if (error)
2899 		goto out_trans_abort;
2900 
2901 	/*
2902 	 * If we're renaming one or more directories across different parents,
2903 	 * update the respective ".." entries (and link counts) to match the new
2904 	 * parents.
2905 	 */
2906 	if (dp1 != dp2) {
2907 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2908 
2909 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2910 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2911 						dp1->i_ino, spaceres);
2912 			if (error)
2913 				goto out_trans_abort;
2914 
2915 			/* transfer ip2 ".." reference to dp1 */
2916 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2917 				error = xfs_droplink(tp, dp2);
2918 				if (error)
2919 					goto out_trans_abort;
2920 				xfs_bumplink(tp, dp1);
2921 			}
2922 
2923 			/*
2924 			 * Although ip1 isn't changed here, userspace needs
2925 			 * to be warned about the change, so that applications
2926 			 * relying on it (like backup ones), will properly
2927 			 * notify the change
2928 			 */
2929 			ip1_flags |= XFS_ICHGTIME_CHG;
2930 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2931 		}
2932 
2933 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2934 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2935 						dp2->i_ino, spaceres);
2936 			if (error)
2937 				goto out_trans_abort;
2938 
2939 			/* transfer ip1 ".." reference to dp2 */
2940 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2941 				error = xfs_droplink(tp, dp1);
2942 				if (error)
2943 					goto out_trans_abort;
2944 				xfs_bumplink(tp, dp2);
2945 			}
2946 
2947 			/*
2948 			 * Although ip2 isn't changed here, userspace needs
2949 			 * to be warned about the change, so that applications
2950 			 * relying on it (like backup ones), will properly
2951 			 * notify the change
2952 			 */
2953 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2954 			ip2_flags |= XFS_ICHGTIME_CHG;
2955 		}
2956 	}
2957 
2958 	if (ip1_flags) {
2959 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2960 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2961 	}
2962 	if (ip2_flags) {
2963 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2964 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2965 	}
2966 	if (dp2_flags) {
2967 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2968 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2969 	}
2970 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2971 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2972 	return xfs_finish_rename(tp);
2973 
2974 out_trans_abort:
2975 	xfs_trans_cancel(tp);
2976 	return error;
2977 }
2978 
2979 /*
2980  * xfs_rename_alloc_whiteout()
2981  *
2982  * Return a referenced, unlinked, unlocked inode that can be used as a
2983  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2984  * crash between allocating the inode and linking it into the rename transaction
2985  * recovery will free the inode and we won't leak it.
2986  */
2987 static int
2988 xfs_rename_alloc_whiteout(
2989 	struct user_namespace	*mnt_userns,
2990 	struct xfs_inode	*dp,
2991 	struct xfs_inode	**wip)
2992 {
2993 	struct xfs_inode	*tmpfile;
2994 	int			error;
2995 
2996 	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2997 				   &tmpfile);
2998 	if (error)
2999 		return error;
3000 
3001 	/*
3002 	 * Prepare the tmpfile inode as if it were created through the VFS.
3003 	 * Complete the inode setup and flag it as linkable.  nlink is already
3004 	 * zero, so we can skip the drop_nlink.
3005 	 */
3006 	xfs_setup_iops(tmpfile);
3007 	xfs_finish_inode_setup(tmpfile);
3008 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3009 
3010 	*wip = tmpfile;
3011 	return 0;
3012 }
3013 
3014 /*
3015  * xfs_rename
3016  */
3017 int
3018 xfs_rename(
3019 	struct user_namespace	*mnt_userns,
3020 	struct xfs_inode	*src_dp,
3021 	struct xfs_name		*src_name,
3022 	struct xfs_inode	*src_ip,
3023 	struct xfs_inode	*target_dp,
3024 	struct xfs_name		*target_name,
3025 	struct xfs_inode	*target_ip,
3026 	unsigned int		flags)
3027 {
3028 	struct xfs_mount	*mp = src_dp->i_mount;
3029 	struct xfs_trans	*tp;
3030 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3031 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3032 	int			i;
3033 	int			num_inodes = __XFS_SORT_INODES;
3034 	bool			new_parent = (src_dp != target_dp);
3035 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3036 	int			spaceres;
3037 	int			error;
3038 
3039 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3040 
3041 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3042 		return -EINVAL;
3043 
3044 	/*
3045 	 * If we are doing a whiteout operation, allocate the whiteout inode
3046 	 * we will be placing at the target and ensure the type is set
3047 	 * appropriately.
3048 	 */
3049 	if (flags & RENAME_WHITEOUT) {
3050 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3051 		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3052 		if (error)
3053 			return error;
3054 
3055 		/* setup target dirent info as whiteout */
3056 		src_name->type = XFS_DIR3_FT_CHRDEV;
3057 	}
3058 
3059 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3060 				inodes, &num_inodes);
3061 
3062 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3063 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3064 	if (error == -ENOSPC) {
3065 		spaceres = 0;
3066 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3067 				&tp);
3068 	}
3069 	if (error)
3070 		goto out_release_wip;
3071 
3072 	/*
3073 	 * Attach the dquots to the inodes
3074 	 */
3075 	error = xfs_qm_vop_rename_dqattach(inodes);
3076 	if (error)
3077 		goto out_trans_cancel;
3078 
3079 	/*
3080 	 * Lock all the participating inodes. Depending upon whether
3081 	 * the target_name exists in the target directory, and
3082 	 * whether the target directory is the same as the source
3083 	 * directory, we can lock from 2 to 4 inodes.
3084 	 */
3085 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3086 
3087 	/*
3088 	 * Join all the inodes to the transaction. From this point on,
3089 	 * we can rely on either trans_commit or trans_cancel to unlock
3090 	 * them.
3091 	 */
3092 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3093 	if (new_parent)
3094 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3095 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3096 	if (target_ip)
3097 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3098 	if (wip)
3099 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3100 
3101 	/*
3102 	 * If we are using project inheritance, we only allow renames
3103 	 * into our tree when the project IDs are the same; else the
3104 	 * tree quota mechanism would be circumvented.
3105 	 */
3106 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3107 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3108 		error = -EXDEV;
3109 		goto out_trans_cancel;
3110 	}
3111 
3112 	/* RENAME_EXCHANGE is unique from here on. */
3113 	if (flags & RENAME_EXCHANGE)
3114 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3115 					target_dp, target_name, target_ip,
3116 					spaceres);
3117 
3118 	/*
3119 	 * Check for expected errors before we dirty the transaction
3120 	 * so we can return an error without a transaction abort.
3121 	 *
3122 	 * Extent count overflow check:
3123 	 *
3124 	 * From the perspective of src_dp, a rename operation is essentially a
3125 	 * directory entry remove operation. Hence the only place where we check
3126 	 * for extent count overflow for src_dp is in
3127 	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3128 	 * -ENOSPC when it detects a possible extent count overflow and in
3129 	 * response, the higher layers of directory handling code do the
3130 	 * following:
3131 	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3132 	 *    future remove operation removes them.
3133 	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3134 	 *    Leaf space and unmaps the last block.
3135 	 *
3136 	 * For target_dp, there are two cases depending on whether the
3137 	 * destination directory entry exists or not.
3138 	 *
3139 	 * When destination directory entry does not exist (i.e. target_ip ==
3140 	 * NULL), extent count overflow check is performed only when transaction
3141 	 * has a non-zero sized space reservation associated with it.  With a
3142 	 * zero-sized space reservation, XFS allows a rename operation to
3143 	 * continue only when the directory has sufficient free space in its
3144 	 * data/leaf/free space blocks to hold the new entry.
3145 	 *
3146 	 * When destination directory entry exists (i.e. target_ip != NULL), all
3147 	 * we need to do is change the inode number associated with the already
3148 	 * existing entry. Hence there is no need to perform an extent count
3149 	 * overflow check.
3150 	 */
3151 	if (target_ip == NULL) {
3152 		/*
3153 		 * If there's no space reservation, check the entry will
3154 		 * fit before actually inserting it.
3155 		 */
3156 		if (!spaceres) {
3157 			error = xfs_dir_canenter(tp, target_dp, target_name);
3158 			if (error)
3159 				goto out_trans_cancel;
3160 		} else {
3161 			error = xfs_iext_count_may_overflow(target_dp,
3162 					XFS_DATA_FORK,
3163 					XFS_IEXT_DIR_MANIP_CNT(mp));
3164 			if (error)
3165 				goto out_trans_cancel;
3166 		}
3167 	} else {
3168 		/*
3169 		 * If target exists and it's a directory, check that whether
3170 		 * it can be destroyed.
3171 		 */
3172 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3173 		    (!xfs_dir_isempty(target_ip) ||
3174 		     (VFS_I(target_ip)->i_nlink > 2))) {
3175 			error = -EEXIST;
3176 			goto out_trans_cancel;
3177 		}
3178 	}
3179 
3180 	/*
3181 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3182 	 * whiteout inode off the unlinked list and to handle dropping the
3183 	 * nlink of the target inode.  Per locking order rules, do this in
3184 	 * increasing AG order and before directory block allocation tries to
3185 	 * grab AGFs because we grab AGIs before AGFs.
3186 	 *
3187 	 * The (vfs) caller must ensure that if src is a directory then
3188 	 * target_ip is either null or an empty directory.
3189 	 */
3190 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3191 		if (inodes[i] == wip ||
3192 		    (inodes[i] == target_ip &&
3193 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3194 			struct xfs_buf	*bp;
3195 			xfs_agnumber_t	agno;
3196 
3197 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3198 			error = xfs_read_agi(mp, tp, agno, &bp);
3199 			if (error)
3200 				goto out_trans_cancel;
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * Directory entry creation below may acquire the AGF. Remove
3206 	 * the whiteout from the unlinked list first to preserve correct
3207 	 * AGI/AGF locking order. This dirties the transaction so failures
3208 	 * after this point will abort and log recovery will clean up the
3209 	 * mess.
3210 	 *
3211 	 * For whiteouts, we need to bump the link count on the whiteout
3212 	 * inode. After this point, we have a real link, clear the tmpfile
3213 	 * state flag from the inode so it doesn't accidentally get misused
3214 	 * in future.
3215 	 */
3216 	if (wip) {
3217 		ASSERT(VFS_I(wip)->i_nlink == 0);
3218 		error = xfs_iunlink_remove(tp, wip);
3219 		if (error)
3220 			goto out_trans_cancel;
3221 
3222 		xfs_bumplink(tp, wip);
3223 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3224 	}
3225 
3226 	/*
3227 	 * Set up the target.
3228 	 */
3229 	if (target_ip == NULL) {
3230 		/*
3231 		 * If target does not exist and the rename crosses
3232 		 * directories, adjust the target directory link count
3233 		 * to account for the ".." reference from the new entry.
3234 		 */
3235 		error = xfs_dir_createname(tp, target_dp, target_name,
3236 					   src_ip->i_ino, spaceres);
3237 		if (error)
3238 			goto out_trans_cancel;
3239 
3240 		xfs_trans_ichgtime(tp, target_dp,
3241 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3242 
3243 		if (new_parent && src_is_directory) {
3244 			xfs_bumplink(tp, target_dp);
3245 		}
3246 	} else { /* target_ip != NULL */
3247 		/*
3248 		 * Link the source inode under the target name.
3249 		 * If the source inode is a directory and we are moving
3250 		 * it across directories, its ".." entry will be
3251 		 * inconsistent until we replace that down below.
3252 		 *
3253 		 * In case there is already an entry with the same
3254 		 * name at the destination directory, remove it first.
3255 		 */
3256 		error = xfs_dir_replace(tp, target_dp, target_name,
3257 					src_ip->i_ino, spaceres);
3258 		if (error)
3259 			goto out_trans_cancel;
3260 
3261 		xfs_trans_ichgtime(tp, target_dp,
3262 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3263 
3264 		/*
3265 		 * Decrement the link count on the target since the target
3266 		 * dir no longer points to it.
3267 		 */
3268 		error = xfs_droplink(tp, target_ip);
3269 		if (error)
3270 			goto out_trans_cancel;
3271 
3272 		if (src_is_directory) {
3273 			/*
3274 			 * Drop the link from the old "." entry.
3275 			 */
3276 			error = xfs_droplink(tp, target_ip);
3277 			if (error)
3278 				goto out_trans_cancel;
3279 		}
3280 	} /* target_ip != NULL */
3281 
3282 	/*
3283 	 * Remove the source.
3284 	 */
3285 	if (new_parent && src_is_directory) {
3286 		/*
3287 		 * Rewrite the ".." entry to point to the new
3288 		 * directory.
3289 		 */
3290 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3291 					target_dp->i_ino, spaceres);
3292 		ASSERT(error != -EEXIST);
3293 		if (error)
3294 			goto out_trans_cancel;
3295 	}
3296 
3297 	/*
3298 	 * We always want to hit the ctime on the source inode.
3299 	 *
3300 	 * This isn't strictly required by the standards since the source
3301 	 * inode isn't really being changed, but old unix file systems did
3302 	 * it and some incremental backup programs won't work without it.
3303 	 */
3304 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3305 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3306 
3307 	/*
3308 	 * Adjust the link count on src_dp.  This is necessary when
3309 	 * renaming a directory, either within one parent when
3310 	 * the target existed, or across two parent directories.
3311 	 */
3312 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3313 
3314 		/*
3315 		 * Decrement link count on src_directory since the
3316 		 * entry that's moved no longer points to it.
3317 		 */
3318 		error = xfs_droplink(tp, src_dp);
3319 		if (error)
3320 			goto out_trans_cancel;
3321 	}
3322 
3323 	/*
3324 	 * For whiteouts, we only need to update the source dirent with the
3325 	 * inode number of the whiteout inode rather than removing it
3326 	 * altogether.
3327 	 */
3328 	if (wip) {
3329 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3330 					spaceres);
3331 	} else {
3332 		/*
3333 		 * NOTE: We don't need to check for extent count overflow here
3334 		 * because the dir remove name code will leave the dir block in
3335 		 * place if the extent count would overflow.
3336 		 */
3337 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3338 					   spaceres);
3339 	}
3340 
3341 	if (error)
3342 		goto out_trans_cancel;
3343 
3344 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3345 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3346 	if (new_parent)
3347 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3348 
3349 	error = xfs_finish_rename(tp);
3350 	if (wip)
3351 		xfs_irele(wip);
3352 	return error;
3353 
3354 out_trans_cancel:
3355 	xfs_trans_cancel(tp);
3356 out_release_wip:
3357 	if (wip)
3358 		xfs_irele(wip);
3359 	return error;
3360 }
3361 
3362 static int
3363 xfs_iflush(
3364 	struct xfs_inode	*ip,
3365 	struct xfs_buf		*bp)
3366 {
3367 	struct xfs_inode_log_item *iip = ip->i_itemp;
3368 	struct xfs_dinode	*dip;
3369 	struct xfs_mount	*mp = ip->i_mount;
3370 	int			error;
3371 
3372 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3373 	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3374 	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3375 	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3376 	ASSERT(iip->ili_item.li_buf == bp);
3377 
3378 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3379 
3380 	/*
3381 	 * We don't flush the inode if any of the following checks fail, but we
3382 	 * do still update the log item and attach to the backing buffer as if
3383 	 * the flush happened. This is a formality to facilitate predictable
3384 	 * error handling as the caller will shutdown and fail the buffer.
3385 	 */
3386 	error = -EFSCORRUPTED;
3387 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3388 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3389 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3390 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3391 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3392 		goto flush_out;
3393 	}
3394 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3395 		if (XFS_TEST_ERROR(
3396 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3397 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3398 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3399 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3400 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3401 				__func__, ip->i_ino, ip);
3402 			goto flush_out;
3403 		}
3404 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3405 		if (XFS_TEST_ERROR(
3406 		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3407 		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3408 		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3409 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3410 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3411 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3412 				__func__, ip->i_ino, ip);
3413 			goto flush_out;
3414 		}
3415 	}
3416 	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3417 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3418 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3419 			"%s: detected corrupt incore inode %Lu, "
3420 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3421 			__func__, ip->i_ino,
3422 			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3423 			ip->i_d.di_nblocks, ip);
3424 		goto flush_out;
3425 	}
3426 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3427 				mp, XFS_ERRTAG_IFLUSH_6)) {
3428 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3429 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3430 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3431 		goto flush_out;
3432 	}
3433 
3434 	/*
3435 	 * Inode item log recovery for v2 inodes are dependent on the
3436 	 * di_flushiter count for correct sequencing. We bump the flush
3437 	 * iteration count so we can detect flushes which postdate a log record
3438 	 * during recovery. This is redundant as we now log every change and
3439 	 * hence this can't happen but we need to still do it to ensure
3440 	 * backwards compatibility with old kernels that predate logging all
3441 	 * inode changes.
3442 	 */
3443 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3444 		ip->i_d.di_flushiter++;
3445 
3446 	/*
3447 	 * If there are inline format data / attr forks attached to this inode,
3448 	 * make sure they are not corrupt.
3449 	 */
3450 	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3451 	    xfs_ifork_verify_local_data(ip))
3452 		goto flush_out;
3453 	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3454 	    xfs_ifork_verify_local_attr(ip))
3455 		goto flush_out;
3456 
3457 	/*
3458 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3459 	 * copy out the core of the inode, because if the inode is dirty at all
3460 	 * the core must be.
3461 	 */
3462 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3463 
3464 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3465 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3466 		ip->i_d.di_flushiter = 0;
3467 
3468 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3469 	if (XFS_IFORK_Q(ip))
3470 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3471 
3472 	/*
3473 	 * We've recorded everything logged in the inode, so we'd like to clear
3474 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3475 	 * However, we can't stop logging all this information until the data
3476 	 * we've copied into the disk buffer is written to disk.  If we did we
3477 	 * might overwrite the copy of the inode in the log with all the data
3478 	 * after re-logging only part of it, and in the face of a crash we
3479 	 * wouldn't have all the data we need to recover.
3480 	 *
3481 	 * What we do is move the bits to the ili_last_fields field.  When
3482 	 * logging the inode, these bits are moved back to the ili_fields field.
3483 	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3484 	 * we know that the information those bits represent is permanently on
3485 	 * disk.  As long as the flush completes before the inode is logged
3486 	 * again, then both ili_fields and ili_last_fields will be cleared.
3487 	 */
3488 	error = 0;
3489 flush_out:
3490 	spin_lock(&iip->ili_lock);
3491 	iip->ili_last_fields = iip->ili_fields;
3492 	iip->ili_fields = 0;
3493 	iip->ili_fsync_fields = 0;
3494 	spin_unlock(&iip->ili_lock);
3495 
3496 	/*
3497 	 * Store the current LSN of the inode so that we can tell whether the
3498 	 * item has moved in the AIL from xfs_buf_inode_iodone().
3499 	 */
3500 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3501 				&iip->ili_item.li_lsn);
3502 
3503 	/* generate the checksum. */
3504 	xfs_dinode_calc_crc(mp, dip);
3505 	return error;
3506 }
3507 
3508 /*
3509  * Non-blocking flush of dirty inode metadata into the backing buffer.
3510  *
3511  * The caller must have a reference to the inode and hold the cluster buffer
3512  * locked. The function will walk across all the inodes on the cluster buffer it
3513  * can find and lock without blocking, and flush them to the cluster buffer.
3514  *
3515  * On successful flushing of at least one inode, the caller must write out the
3516  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3517  * the caller needs to release the buffer. On failure, the filesystem will be
3518  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3519  * will be returned.
3520  */
3521 int
3522 xfs_iflush_cluster(
3523 	struct xfs_buf		*bp)
3524 {
3525 	struct xfs_mount	*mp = bp->b_mount;
3526 	struct xfs_log_item	*lip, *n;
3527 	struct xfs_inode	*ip;
3528 	struct xfs_inode_log_item *iip;
3529 	int			clcount = 0;
3530 	int			error = 0;
3531 
3532 	/*
3533 	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3534 	 * can remove itself from the list.
3535 	 */
3536 	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3537 		iip = (struct xfs_inode_log_item *)lip;
3538 		ip = iip->ili_inode;
3539 
3540 		/*
3541 		 * Quick and dirty check to avoid locks if possible.
3542 		 */
3543 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3544 			continue;
3545 		if (xfs_ipincount(ip))
3546 			continue;
3547 
3548 		/*
3549 		 * The inode is still attached to the buffer, which means it is
3550 		 * dirty but reclaim might try to grab it. Check carefully for
3551 		 * that, and grab the ilock while still holding the i_flags_lock
3552 		 * to guarantee reclaim will not be able to reclaim this inode
3553 		 * once we drop the i_flags_lock.
3554 		 */
3555 		spin_lock(&ip->i_flags_lock);
3556 		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3557 		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3558 			spin_unlock(&ip->i_flags_lock);
3559 			continue;
3560 		}
3561 
3562 		/*
3563 		 * ILOCK will pin the inode against reclaim and prevent
3564 		 * concurrent transactions modifying the inode while we are
3565 		 * flushing the inode. If we get the lock, set the flushing
3566 		 * state before we drop the i_flags_lock.
3567 		 */
3568 		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3569 			spin_unlock(&ip->i_flags_lock);
3570 			continue;
3571 		}
3572 		__xfs_iflags_set(ip, XFS_IFLUSHING);
3573 		spin_unlock(&ip->i_flags_lock);
3574 
3575 		/*
3576 		 * Abort flushing this inode if we are shut down because the
3577 		 * inode may not currently be in the AIL. This can occur when
3578 		 * log I/O failure unpins the inode without inserting into the
3579 		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3580 		 * that otherwise looks like it should be flushed.
3581 		 */
3582 		if (XFS_FORCED_SHUTDOWN(mp)) {
3583 			xfs_iunpin_wait(ip);
3584 			xfs_iflush_abort(ip);
3585 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3586 			error = -EIO;
3587 			continue;
3588 		}
3589 
3590 		/* don't block waiting on a log force to unpin dirty inodes */
3591 		if (xfs_ipincount(ip)) {
3592 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3593 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3594 			continue;
3595 		}
3596 
3597 		if (!xfs_inode_clean(ip))
3598 			error = xfs_iflush(ip, bp);
3599 		else
3600 			xfs_iflags_clear(ip, XFS_IFLUSHING);
3601 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3602 		if (error)
3603 			break;
3604 		clcount++;
3605 	}
3606 
3607 	if (error) {
3608 		bp->b_flags |= XBF_ASYNC;
3609 		xfs_buf_ioend_fail(bp);
3610 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3611 		return error;
3612 	}
3613 
3614 	if (!clcount)
3615 		return -EAGAIN;
3616 
3617 	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3618 	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3619 	return 0;
3620 
3621 }
3622 
3623 /* Release an inode. */
3624 void
3625 xfs_irele(
3626 	struct xfs_inode	*ip)
3627 {
3628 	trace_xfs_irele(ip, _RET_IP_);
3629 	iput(VFS_I(ip));
3630 }
3631 
3632 /*
3633  * Ensure all commited transactions touching the inode are written to the log.
3634  */
3635 int
3636 xfs_log_force_inode(
3637 	struct xfs_inode	*ip)
3638 {
3639 	xfs_lsn_t		lsn = 0;
3640 
3641 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3642 	if (xfs_ipincount(ip))
3643 		lsn = ip->i_itemp->ili_last_lsn;
3644 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3645 
3646 	if (!lsn)
3647 		return 0;
3648 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3649 }
3650 
3651 /*
3652  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3653  * abide vfs locking order (lowest pointer value goes first) and breaking the
3654  * layout leases before proceeding.  The loop is needed because we cannot call
3655  * the blocking break_layout() with the iolocks held, and therefore have to
3656  * back out both locks.
3657  */
3658 static int
3659 xfs_iolock_two_inodes_and_break_layout(
3660 	struct inode		*src,
3661 	struct inode		*dest)
3662 {
3663 	int			error;
3664 
3665 	if (src > dest)
3666 		swap(src, dest);
3667 
3668 retry:
3669 	/* Wait to break both inodes' layouts before we start locking. */
3670 	error = break_layout(src, true);
3671 	if (error)
3672 		return error;
3673 	if (src != dest) {
3674 		error = break_layout(dest, true);
3675 		if (error)
3676 			return error;
3677 	}
3678 
3679 	/* Lock one inode and make sure nobody got in and leased it. */
3680 	inode_lock(src);
3681 	error = break_layout(src, false);
3682 	if (error) {
3683 		inode_unlock(src);
3684 		if (error == -EWOULDBLOCK)
3685 			goto retry;
3686 		return error;
3687 	}
3688 
3689 	if (src == dest)
3690 		return 0;
3691 
3692 	/* Lock the other inode and make sure nobody got in and leased it. */
3693 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3694 	error = break_layout(dest, false);
3695 	if (error) {
3696 		inode_unlock(src);
3697 		inode_unlock(dest);
3698 		if (error == -EWOULDBLOCK)
3699 			goto retry;
3700 		return error;
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 /*
3707  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3708  * mmap activity.
3709  */
3710 int
3711 xfs_ilock2_io_mmap(
3712 	struct xfs_inode	*ip1,
3713 	struct xfs_inode	*ip2)
3714 {
3715 	int			ret;
3716 
3717 	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3718 	if (ret)
3719 		return ret;
3720 	if (ip1 == ip2)
3721 		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3722 	else
3723 		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3724 				    ip2, XFS_MMAPLOCK_EXCL);
3725 	return 0;
3726 }
3727 
3728 /* Unlock both inodes to allow IO and mmap activity. */
3729 void
3730 xfs_iunlock2_io_mmap(
3731 	struct xfs_inode	*ip1,
3732 	struct xfs_inode	*ip2)
3733 {
3734 	bool			same_inode = (ip1 == ip2);
3735 
3736 	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3737 	if (!same_inode)
3738 		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3739 	inode_unlock(VFS_I(ip2));
3740 	if (!same_inode)
3741 		inode_unlock(VFS_I(ip1));
3742 }
3743