1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_inum.h" 27 #include "xfs_sb.h" 28 #include "xfs_ag.h" 29 #include "xfs_mount.h" 30 #include "xfs_inode.h" 31 #include "xfs_da_format.h" 32 #include "xfs_da_btree.h" 33 #include "xfs_dir2.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_attr.h" 36 #include "xfs_trans_space.h" 37 #include "xfs_trans.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_inode_item.h" 40 #include "xfs_ialloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_bmap_util.h" 43 #include "xfs_error.h" 44 #include "xfs_quota.h" 45 #include "xfs_filestream.h" 46 #include "xfs_cksum.h" 47 #include "xfs_trace.h" 48 #include "xfs_icache.h" 49 #include "xfs_symlink.h" 50 #include "xfs_trans_priv.h" 51 #include "xfs_log.h" 52 #include "xfs_bmap_btree.h" 53 54 kmem_zone_t *xfs_inode_zone; 55 56 /* 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents 58 * freed from a file in a single transaction. 59 */ 60 #define XFS_ITRUNC_MAX_EXTENTS 2 61 62 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 63 64 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 65 66 /* 67 * helper function to extract extent size hint from inode 68 */ 69 xfs_extlen_t 70 xfs_get_extsz_hint( 71 struct xfs_inode *ip) 72 { 73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 74 return ip->i_d.di_extsize; 75 if (XFS_IS_REALTIME_INODE(ip)) 76 return ip->i_mount->m_sb.sb_rextsize; 77 return 0; 78 } 79 80 /* 81 * These two are wrapper routines around the xfs_ilock() routine used to 82 * centralize some grungy code. They are used in places that wish to lock the 83 * inode solely for reading the extents. The reason these places can't just 84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 85 * bringing in of the extents from disk for a file in b-tree format. If the 86 * inode is in b-tree format, then we need to lock the inode exclusively until 87 * the extents are read in. Locking it exclusively all the time would limit 88 * our parallelism unnecessarily, though. What we do instead is check to see 89 * if the extents have been read in yet, and only lock the inode exclusively 90 * if they have not. 91 * 92 * The functions return a value which should be given to the corresponding 93 * xfs_iunlock() call. 94 */ 95 uint 96 xfs_ilock_data_map_shared( 97 struct xfs_inode *ip) 98 { 99 uint lock_mode = XFS_ILOCK_SHARED; 100 101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 103 lock_mode = XFS_ILOCK_EXCL; 104 xfs_ilock(ip, lock_mode); 105 return lock_mode; 106 } 107 108 uint 109 xfs_ilock_attr_map_shared( 110 struct xfs_inode *ip) 111 { 112 uint lock_mode = XFS_ILOCK_SHARED; 113 114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 116 lock_mode = XFS_ILOCK_EXCL; 117 xfs_ilock(ip, lock_mode); 118 return lock_mode; 119 } 120 121 /* 122 * The xfs inode contains 2 locks: a multi-reader lock called the 123 * i_iolock and a multi-reader lock called the i_lock. This routine 124 * allows either or both of the locks to be obtained. 125 * 126 * The 2 locks should always be ordered so that the IO lock is 127 * obtained first in order to prevent deadlock. 128 * 129 * ip -- the inode being locked 130 * lock_flags -- this parameter indicates the inode's locks 131 * to be locked. It can be: 132 * XFS_IOLOCK_SHARED, 133 * XFS_IOLOCK_EXCL, 134 * XFS_ILOCK_SHARED, 135 * XFS_ILOCK_EXCL, 136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, 137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, 138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, 139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL 140 */ 141 void 142 xfs_ilock( 143 xfs_inode_t *ip, 144 uint lock_flags) 145 { 146 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 147 148 /* 149 * You can't set both SHARED and EXCL for the same lock, 150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 152 */ 153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 158 159 if (lock_flags & XFS_IOLOCK_EXCL) 160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 161 else if (lock_flags & XFS_IOLOCK_SHARED) 162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 163 164 if (lock_flags & XFS_ILOCK_EXCL) 165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 166 else if (lock_flags & XFS_ILOCK_SHARED) 167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 168 } 169 170 /* 171 * This is just like xfs_ilock(), except that the caller 172 * is guaranteed not to sleep. It returns 1 if it gets 173 * the requested locks and 0 otherwise. If the IO lock is 174 * obtained but the inode lock cannot be, then the IO lock 175 * is dropped before returning. 176 * 177 * ip -- the inode being locked 178 * lock_flags -- this parameter indicates the inode's locks to be 179 * to be locked. See the comment for xfs_ilock() for a list 180 * of valid values. 181 */ 182 int 183 xfs_ilock_nowait( 184 xfs_inode_t *ip, 185 uint lock_flags) 186 { 187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 188 189 /* 190 * You can't set both SHARED and EXCL for the same lock, 191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 193 */ 194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 199 200 if (lock_flags & XFS_IOLOCK_EXCL) { 201 if (!mrtryupdate(&ip->i_iolock)) 202 goto out; 203 } else if (lock_flags & XFS_IOLOCK_SHARED) { 204 if (!mrtryaccess(&ip->i_iolock)) 205 goto out; 206 } 207 if (lock_flags & XFS_ILOCK_EXCL) { 208 if (!mrtryupdate(&ip->i_lock)) 209 goto out_undo_iolock; 210 } else if (lock_flags & XFS_ILOCK_SHARED) { 211 if (!mrtryaccess(&ip->i_lock)) 212 goto out_undo_iolock; 213 } 214 return 1; 215 216 out_undo_iolock: 217 if (lock_flags & XFS_IOLOCK_EXCL) 218 mrunlock_excl(&ip->i_iolock); 219 else if (lock_flags & XFS_IOLOCK_SHARED) 220 mrunlock_shared(&ip->i_iolock); 221 out: 222 return 0; 223 } 224 225 /* 226 * xfs_iunlock() is used to drop the inode locks acquired with 227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 229 * that we know which locks to drop. 230 * 231 * ip -- the inode being unlocked 232 * lock_flags -- this parameter indicates the inode's locks to be 233 * to be unlocked. See the comment for xfs_ilock() for a list 234 * of valid values for this parameter. 235 * 236 */ 237 void 238 xfs_iunlock( 239 xfs_inode_t *ip, 240 uint lock_flags) 241 { 242 /* 243 * You can't set both SHARED and EXCL for the same lock, 244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 246 */ 247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 252 ASSERT(lock_flags != 0); 253 254 if (lock_flags & XFS_IOLOCK_EXCL) 255 mrunlock_excl(&ip->i_iolock); 256 else if (lock_flags & XFS_IOLOCK_SHARED) 257 mrunlock_shared(&ip->i_iolock); 258 259 if (lock_flags & XFS_ILOCK_EXCL) 260 mrunlock_excl(&ip->i_lock); 261 else if (lock_flags & XFS_ILOCK_SHARED) 262 mrunlock_shared(&ip->i_lock); 263 264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 265 } 266 267 /* 268 * give up write locks. the i/o lock cannot be held nested 269 * if it is being demoted. 270 */ 271 void 272 xfs_ilock_demote( 273 xfs_inode_t *ip, 274 uint lock_flags) 275 { 276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); 277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 278 279 if (lock_flags & XFS_ILOCK_EXCL) 280 mrdemote(&ip->i_lock); 281 if (lock_flags & XFS_IOLOCK_EXCL) 282 mrdemote(&ip->i_iolock); 283 284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 285 } 286 287 #if defined(DEBUG) || defined(XFS_WARN) 288 int 289 xfs_isilocked( 290 xfs_inode_t *ip, 291 uint lock_flags) 292 { 293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 294 if (!(lock_flags & XFS_ILOCK_SHARED)) 295 return !!ip->i_lock.mr_writer; 296 return rwsem_is_locked(&ip->i_lock.mr_lock); 297 } 298 299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 300 if (!(lock_flags & XFS_IOLOCK_SHARED)) 301 return !!ip->i_iolock.mr_writer; 302 return rwsem_is_locked(&ip->i_iolock.mr_lock); 303 } 304 305 ASSERT(0); 306 return 0; 307 } 308 #endif 309 310 #ifdef DEBUG 311 int xfs_locked_n; 312 int xfs_small_retries; 313 int xfs_middle_retries; 314 int xfs_lots_retries; 315 int xfs_lock_delays; 316 #endif 317 318 /* 319 * Bump the subclass so xfs_lock_inodes() acquires each lock with 320 * a different value 321 */ 322 static inline int 323 xfs_lock_inumorder(int lock_mode, int subclass) 324 { 325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 329 330 return lock_mode; 331 } 332 333 /* 334 * The following routine will lock n inodes in exclusive mode. 335 * We assume the caller calls us with the inodes in i_ino order. 336 * 337 * We need to detect deadlock where an inode that we lock 338 * is in the AIL and we start waiting for another inode that is locked 339 * by a thread in a long running transaction (such as truncate). This can 340 * result in deadlock since the long running trans might need to wait 341 * for the inode we just locked in order to push the tail and free space 342 * in the log. 343 */ 344 void 345 xfs_lock_inodes( 346 xfs_inode_t **ips, 347 int inodes, 348 uint lock_mode) 349 { 350 int attempts = 0, i, j, try_lock; 351 xfs_log_item_t *lp; 352 353 ASSERT(ips && (inodes >= 2)); /* we need at least two */ 354 355 try_lock = 0; 356 i = 0; 357 358 again: 359 for (; i < inodes; i++) { 360 ASSERT(ips[i]); 361 362 if (i && (ips[i] == ips[i-1])) /* Already locked */ 363 continue; 364 365 /* 366 * If try_lock is not set yet, make sure all locked inodes 367 * are not in the AIL. 368 * If any are, set try_lock to be used later. 369 */ 370 371 if (!try_lock) { 372 for (j = (i - 1); j >= 0 && !try_lock; j--) { 373 lp = (xfs_log_item_t *)ips[j]->i_itemp; 374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 375 try_lock++; 376 } 377 } 378 } 379 380 /* 381 * If any of the previous locks we have locked is in the AIL, 382 * we must TRY to get the second and subsequent locks. If 383 * we can't get any, we must release all we have 384 * and try again. 385 */ 386 387 if (try_lock) { 388 /* try_lock must be 0 if i is 0. */ 389 /* 390 * try_lock means we have an inode locked 391 * that is in the AIL. 392 */ 393 ASSERT(i != 0); 394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) { 395 attempts++; 396 397 /* 398 * Unlock all previous guys and try again. 399 * xfs_iunlock will try to push the tail 400 * if the inode is in the AIL. 401 */ 402 403 for(j = i - 1; j >= 0; j--) { 404 405 /* 406 * Check to see if we've already 407 * unlocked this one. 408 * Not the first one going back, 409 * and the inode ptr is the same. 410 */ 411 if ((j != (i - 1)) && ips[j] == 412 ips[j+1]) 413 continue; 414 415 xfs_iunlock(ips[j], lock_mode); 416 } 417 418 if ((attempts % 5) == 0) { 419 delay(1); /* Don't just spin the CPU */ 420 #ifdef DEBUG 421 xfs_lock_delays++; 422 #endif 423 } 424 i = 0; 425 try_lock = 0; 426 goto again; 427 } 428 } else { 429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 430 } 431 } 432 433 #ifdef DEBUG 434 if (attempts) { 435 if (attempts < 5) xfs_small_retries++; 436 else if (attempts < 100) xfs_middle_retries++; 437 else xfs_lots_retries++; 438 } else { 439 xfs_locked_n++; 440 } 441 #endif 442 } 443 444 /* 445 * xfs_lock_two_inodes() can only be used to lock one type of lock 446 * at a time - the iolock or the ilock, but not both at once. If 447 * we lock both at once, lockdep will report false positives saying 448 * we have violated locking orders. 449 */ 450 void 451 xfs_lock_two_inodes( 452 xfs_inode_t *ip0, 453 xfs_inode_t *ip1, 454 uint lock_mode) 455 { 456 xfs_inode_t *temp; 457 int attempts = 0; 458 xfs_log_item_t *lp; 459 460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) 461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0); 462 ASSERT(ip0->i_ino != ip1->i_ino); 463 464 if (ip0->i_ino > ip1->i_ino) { 465 temp = ip0; 466 ip0 = ip1; 467 ip1 = temp; 468 } 469 470 again: 471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 472 473 /* 474 * If the first lock we have locked is in the AIL, we must TRY to get 475 * the second lock. If we can't get it, we must release the first one 476 * and try again. 477 */ 478 lp = (xfs_log_item_t *)ip0->i_itemp; 479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 481 xfs_iunlock(ip0, lock_mode); 482 if ((++attempts % 5) == 0) 483 delay(1); /* Don't just spin the CPU */ 484 goto again; 485 } 486 } else { 487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 488 } 489 } 490 491 492 void 493 __xfs_iflock( 494 struct xfs_inode *ip) 495 { 496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 498 499 do { 500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 501 if (xfs_isiflocked(ip)) 502 io_schedule(); 503 } while (!xfs_iflock_nowait(ip)); 504 505 finish_wait(wq, &wait.wait); 506 } 507 508 STATIC uint 509 _xfs_dic2xflags( 510 __uint16_t di_flags) 511 { 512 uint flags = 0; 513 514 if (di_flags & XFS_DIFLAG_ANY) { 515 if (di_flags & XFS_DIFLAG_REALTIME) 516 flags |= XFS_XFLAG_REALTIME; 517 if (di_flags & XFS_DIFLAG_PREALLOC) 518 flags |= XFS_XFLAG_PREALLOC; 519 if (di_flags & XFS_DIFLAG_IMMUTABLE) 520 flags |= XFS_XFLAG_IMMUTABLE; 521 if (di_flags & XFS_DIFLAG_APPEND) 522 flags |= XFS_XFLAG_APPEND; 523 if (di_flags & XFS_DIFLAG_SYNC) 524 flags |= XFS_XFLAG_SYNC; 525 if (di_flags & XFS_DIFLAG_NOATIME) 526 flags |= XFS_XFLAG_NOATIME; 527 if (di_flags & XFS_DIFLAG_NODUMP) 528 flags |= XFS_XFLAG_NODUMP; 529 if (di_flags & XFS_DIFLAG_RTINHERIT) 530 flags |= XFS_XFLAG_RTINHERIT; 531 if (di_flags & XFS_DIFLAG_PROJINHERIT) 532 flags |= XFS_XFLAG_PROJINHERIT; 533 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 534 flags |= XFS_XFLAG_NOSYMLINKS; 535 if (di_flags & XFS_DIFLAG_EXTSIZE) 536 flags |= XFS_XFLAG_EXTSIZE; 537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 538 flags |= XFS_XFLAG_EXTSZINHERIT; 539 if (di_flags & XFS_DIFLAG_NODEFRAG) 540 flags |= XFS_XFLAG_NODEFRAG; 541 if (di_flags & XFS_DIFLAG_FILESTREAM) 542 flags |= XFS_XFLAG_FILESTREAM; 543 } 544 545 return flags; 546 } 547 548 uint 549 xfs_ip2xflags( 550 xfs_inode_t *ip) 551 { 552 xfs_icdinode_t *dic = &ip->i_d; 553 554 return _xfs_dic2xflags(dic->di_flags) | 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 556 } 557 558 uint 559 xfs_dic2xflags( 560 xfs_dinode_t *dip) 561 { 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 564 } 565 566 /* 567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 568 * is allowed, otherwise it has to be an exact match. If a CI match is found, 569 * ci_name->name will point to a the actual name (caller must free) or 570 * will be set to NULL if an exact match is found. 571 */ 572 int 573 xfs_lookup( 574 xfs_inode_t *dp, 575 struct xfs_name *name, 576 xfs_inode_t **ipp, 577 struct xfs_name *ci_name) 578 { 579 xfs_ino_t inum; 580 int error; 581 uint lock_mode; 582 583 trace_xfs_lookup(dp, name); 584 585 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 586 return -EIO; 587 588 lock_mode = xfs_ilock_data_map_shared(dp); 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 590 xfs_iunlock(dp, lock_mode); 591 592 if (error) 593 goto out; 594 595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 596 if (error) 597 goto out_free_name; 598 599 return 0; 600 601 out_free_name: 602 if (ci_name) 603 kmem_free(ci_name->name); 604 out: 605 *ipp = NULL; 606 return error; 607 } 608 609 /* 610 * Allocate an inode on disk and return a copy of its in-core version. 611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 612 * appropriately within the inode. The uid and gid for the inode are 613 * set according to the contents of the given cred structure. 614 * 615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 616 * has a free inode available, call xfs_iget() to obtain the in-core 617 * version of the allocated inode. Finally, fill in the inode and 618 * log its initial contents. In this case, ialloc_context would be 619 * set to NULL. 620 * 621 * If xfs_dialloc() does not have an available inode, it will replenish 622 * its supply by doing an allocation. Since we can only do one 623 * allocation within a transaction without deadlocks, we must commit 624 * the current transaction before returning the inode itself. 625 * In this case, therefore, we will set ialloc_context and return. 626 * The caller should then commit the current transaction, start a new 627 * transaction, and call xfs_ialloc() again to actually get the inode. 628 * 629 * To ensure that some other process does not grab the inode that 630 * was allocated during the first call to xfs_ialloc(), this routine 631 * also returns the [locked] bp pointing to the head of the freelist 632 * as ialloc_context. The caller should hold this buffer across 633 * the commit and pass it back into this routine on the second call. 634 * 635 * If we are allocating quota inodes, we do not have a parent inode 636 * to attach to or associate with (i.e. pip == NULL) because they 637 * are not linked into the directory structure - they are attached 638 * directly to the superblock - and so have no parent. 639 */ 640 int 641 xfs_ialloc( 642 xfs_trans_t *tp, 643 xfs_inode_t *pip, 644 umode_t mode, 645 xfs_nlink_t nlink, 646 xfs_dev_t rdev, 647 prid_t prid, 648 int okalloc, 649 xfs_buf_t **ialloc_context, 650 xfs_inode_t **ipp) 651 { 652 struct xfs_mount *mp = tp->t_mountp; 653 xfs_ino_t ino; 654 xfs_inode_t *ip; 655 uint flags; 656 int error; 657 struct timespec tv; 658 659 /* 660 * Call the space management code to pick 661 * the on-disk inode to be allocated. 662 */ 663 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 664 ialloc_context, &ino); 665 if (error) 666 return error; 667 if (*ialloc_context || ino == NULLFSINO) { 668 *ipp = NULL; 669 return 0; 670 } 671 ASSERT(*ialloc_context == NULL); 672 673 /* 674 * Get the in-core inode with the lock held exclusively. 675 * This is because we're setting fields here we need 676 * to prevent others from looking at until we're done. 677 */ 678 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 679 XFS_ILOCK_EXCL, &ip); 680 if (error) 681 return error; 682 ASSERT(ip != NULL); 683 684 /* 685 * We always convert v1 inodes to v2 now - we only support filesystems 686 * with >= v2 inode capability, so there is no reason for ever leaving 687 * an inode in v1 format. 688 */ 689 if (ip->i_d.di_version == 1) 690 ip->i_d.di_version = 2; 691 692 ip->i_d.di_mode = mode; 693 ip->i_d.di_onlink = 0; 694 ip->i_d.di_nlink = nlink; 695 ASSERT(ip->i_d.di_nlink == nlink); 696 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 697 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 698 xfs_set_projid(ip, prid); 699 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 700 701 if (pip && XFS_INHERIT_GID(pip)) { 702 ip->i_d.di_gid = pip->i_d.di_gid; 703 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 704 ip->i_d.di_mode |= S_ISGID; 705 } 706 } 707 708 /* 709 * If the group ID of the new file does not match the effective group 710 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 711 * (and only if the irix_sgid_inherit compatibility variable is set). 712 */ 713 if ((irix_sgid_inherit) && 714 (ip->i_d.di_mode & S_ISGID) && 715 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 716 ip->i_d.di_mode &= ~S_ISGID; 717 } 718 719 ip->i_d.di_size = 0; 720 ip->i_d.di_nextents = 0; 721 ASSERT(ip->i_d.di_nblocks == 0); 722 723 tv = current_fs_time(mp->m_super); 724 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 725 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 726 ip->i_d.di_atime = ip->i_d.di_mtime; 727 ip->i_d.di_ctime = ip->i_d.di_mtime; 728 729 /* 730 * di_gen will have been taken care of in xfs_iread. 731 */ 732 ip->i_d.di_extsize = 0; 733 ip->i_d.di_dmevmask = 0; 734 ip->i_d.di_dmstate = 0; 735 ip->i_d.di_flags = 0; 736 737 if (ip->i_d.di_version == 3) { 738 ASSERT(ip->i_d.di_ino == ino); 739 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 740 ip->i_d.di_crc = 0; 741 ip->i_d.di_changecount = 1; 742 ip->i_d.di_lsn = 0; 743 ip->i_d.di_flags2 = 0; 744 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 745 ip->i_d.di_crtime = ip->i_d.di_mtime; 746 } 747 748 749 flags = XFS_ILOG_CORE; 750 switch (mode & S_IFMT) { 751 case S_IFIFO: 752 case S_IFCHR: 753 case S_IFBLK: 754 case S_IFSOCK: 755 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 756 ip->i_df.if_u2.if_rdev = rdev; 757 ip->i_df.if_flags = 0; 758 flags |= XFS_ILOG_DEV; 759 break; 760 case S_IFREG: 761 case S_IFDIR: 762 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 763 uint di_flags = 0; 764 765 if (S_ISDIR(mode)) { 766 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 767 di_flags |= XFS_DIFLAG_RTINHERIT; 768 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 769 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 770 ip->i_d.di_extsize = pip->i_d.di_extsize; 771 } 772 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 773 di_flags |= XFS_DIFLAG_PROJINHERIT; 774 } else if (S_ISREG(mode)) { 775 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 776 di_flags |= XFS_DIFLAG_REALTIME; 777 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 778 di_flags |= XFS_DIFLAG_EXTSIZE; 779 ip->i_d.di_extsize = pip->i_d.di_extsize; 780 } 781 } 782 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 783 xfs_inherit_noatime) 784 di_flags |= XFS_DIFLAG_NOATIME; 785 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 786 xfs_inherit_nodump) 787 di_flags |= XFS_DIFLAG_NODUMP; 788 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 789 xfs_inherit_sync) 790 di_flags |= XFS_DIFLAG_SYNC; 791 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 792 xfs_inherit_nosymlinks) 793 di_flags |= XFS_DIFLAG_NOSYMLINKS; 794 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 795 xfs_inherit_nodefrag) 796 di_flags |= XFS_DIFLAG_NODEFRAG; 797 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 798 di_flags |= XFS_DIFLAG_FILESTREAM; 799 ip->i_d.di_flags |= di_flags; 800 } 801 /* FALLTHROUGH */ 802 case S_IFLNK: 803 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 804 ip->i_df.if_flags = XFS_IFEXTENTS; 805 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 806 ip->i_df.if_u1.if_extents = NULL; 807 break; 808 default: 809 ASSERT(0); 810 } 811 /* 812 * Attribute fork settings for new inode. 813 */ 814 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 815 ip->i_d.di_anextents = 0; 816 817 /* 818 * Log the new values stuffed into the inode. 819 */ 820 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 821 xfs_trans_log_inode(tp, ip, flags); 822 823 /* now that we have an i_mode we can setup inode ops and unlock */ 824 xfs_setup_inode(ip); 825 826 *ipp = ip; 827 return 0; 828 } 829 830 /* 831 * Allocates a new inode from disk and return a pointer to the 832 * incore copy. This routine will internally commit the current 833 * transaction and allocate a new one if the Space Manager needed 834 * to do an allocation to replenish the inode free-list. 835 * 836 * This routine is designed to be called from xfs_create and 837 * xfs_create_dir. 838 * 839 */ 840 int 841 xfs_dir_ialloc( 842 xfs_trans_t **tpp, /* input: current transaction; 843 output: may be a new transaction. */ 844 xfs_inode_t *dp, /* directory within whose allocate 845 the inode. */ 846 umode_t mode, 847 xfs_nlink_t nlink, 848 xfs_dev_t rdev, 849 prid_t prid, /* project id */ 850 int okalloc, /* ok to allocate new space */ 851 xfs_inode_t **ipp, /* pointer to inode; it will be 852 locked. */ 853 int *committed) 854 855 { 856 xfs_trans_t *tp; 857 xfs_trans_t *ntp; 858 xfs_inode_t *ip; 859 xfs_buf_t *ialloc_context = NULL; 860 int code; 861 void *dqinfo; 862 uint tflags; 863 864 tp = *tpp; 865 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 866 867 /* 868 * xfs_ialloc will return a pointer to an incore inode if 869 * the Space Manager has an available inode on the free 870 * list. Otherwise, it will do an allocation and replenish 871 * the freelist. Since we can only do one allocation per 872 * transaction without deadlocks, we will need to commit the 873 * current transaction and start a new one. We will then 874 * need to call xfs_ialloc again to get the inode. 875 * 876 * If xfs_ialloc did an allocation to replenish the freelist, 877 * it returns the bp containing the head of the freelist as 878 * ialloc_context. We will hold a lock on it across the 879 * transaction commit so that no other process can steal 880 * the inode(s) that we've just allocated. 881 */ 882 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 883 &ialloc_context, &ip); 884 885 /* 886 * Return an error if we were unable to allocate a new inode. 887 * This should only happen if we run out of space on disk or 888 * encounter a disk error. 889 */ 890 if (code) { 891 *ipp = NULL; 892 return code; 893 } 894 if (!ialloc_context && !ip) { 895 *ipp = NULL; 896 return -ENOSPC; 897 } 898 899 /* 900 * If the AGI buffer is non-NULL, then we were unable to get an 901 * inode in one operation. We need to commit the current 902 * transaction and call xfs_ialloc() again. It is guaranteed 903 * to succeed the second time. 904 */ 905 if (ialloc_context) { 906 struct xfs_trans_res tres; 907 908 /* 909 * Normally, xfs_trans_commit releases all the locks. 910 * We call bhold to hang on to the ialloc_context across 911 * the commit. Holding this buffer prevents any other 912 * processes from doing any allocations in this 913 * allocation group. 914 */ 915 xfs_trans_bhold(tp, ialloc_context); 916 /* 917 * Save the log reservation so we can use 918 * them in the next transaction. 919 */ 920 tres.tr_logres = xfs_trans_get_log_res(tp); 921 tres.tr_logcount = xfs_trans_get_log_count(tp); 922 923 /* 924 * We want the quota changes to be associated with the next 925 * transaction, NOT this one. So, detach the dqinfo from this 926 * and attach it to the next transaction. 927 */ 928 dqinfo = NULL; 929 tflags = 0; 930 if (tp->t_dqinfo) { 931 dqinfo = (void *)tp->t_dqinfo; 932 tp->t_dqinfo = NULL; 933 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 934 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 935 } 936 937 ntp = xfs_trans_dup(tp); 938 code = xfs_trans_commit(tp, 0); 939 tp = ntp; 940 if (committed != NULL) { 941 *committed = 1; 942 } 943 /* 944 * If we get an error during the commit processing, 945 * release the buffer that is still held and return 946 * to the caller. 947 */ 948 if (code) { 949 xfs_buf_relse(ialloc_context); 950 if (dqinfo) { 951 tp->t_dqinfo = dqinfo; 952 xfs_trans_free_dqinfo(tp); 953 } 954 *tpp = ntp; 955 *ipp = NULL; 956 return code; 957 } 958 959 /* 960 * transaction commit worked ok so we can drop the extra ticket 961 * reference that we gained in xfs_trans_dup() 962 */ 963 xfs_log_ticket_put(tp->t_ticket); 964 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 965 code = xfs_trans_reserve(tp, &tres, 0, 0); 966 967 /* 968 * Re-attach the quota info that we detached from prev trx. 969 */ 970 if (dqinfo) { 971 tp->t_dqinfo = dqinfo; 972 tp->t_flags |= tflags; 973 } 974 975 if (code) { 976 xfs_buf_relse(ialloc_context); 977 *tpp = ntp; 978 *ipp = NULL; 979 return code; 980 } 981 xfs_trans_bjoin(tp, ialloc_context); 982 983 /* 984 * Call ialloc again. Since we've locked out all 985 * other allocations in this allocation group, 986 * this call should always succeed. 987 */ 988 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 989 okalloc, &ialloc_context, &ip); 990 991 /* 992 * If we get an error at this point, return to the caller 993 * so that the current transaction can be aborted. 994 */ 995 if (code) { 996 *tpp = tp; 997 *ipp = NULL; 998 return code; 999 } 1000 ASSERT(!ialloc_context && ip); 1001 1002 } else { 1003 if (committed != NULL) 1004 *committed = 0; 1005 } 1006 1007 *ipp = ip; 1008 *tpp = tp; 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * Decrement the link count on an inode & log the change. 1015 * If this causes the link count to go to zero, initiate the 1016 * logging activity required to truncate a file. 1017 */ 1018 int /* error */ 1019 xfs_droplink( 1020 xfs_trans_t *tp, 1021 xfs_inode_t *ip) 1022 { 1023 int error; 1024 1025 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1026 1027 ASSERT (ip->i_d.di_nlink > 0); 1028 ip->i_d.di_nlink--; 1029 drop_nlink(VFS_I(ip)); 1030 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1031 1032 error = 0; 1033 if (ip->i_d.di_nlink == 0) { 1034 /* 1035 * We're dropping the last link to this file. 1036 * Move the on-disk inode to the AGI unlinked list. 1037 * From xfs_inactive() we will pull the inode from 1038 * the list and free it. 1039 */ 1040 error = xfs_iunlink(tp, ip); 1041 } 1042 return error; 1043 } 1044 1045 /* 1046 * Increment the link count on an inode & log the change. 1047 */ 1048 int 1049 xfs_bumplink( 1050 xfs_trans_t *tp, 1051 xfs_inode_t *ip) 1052 { 1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1054 1055 ASSERT(ip->i_d.di_version > 1); 1056 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1057 ip->i_d.di_nlink++; 1058 inc_nlink(VFS_I(ip)); 1059 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1060 return 0; 1061 } 1062 1063 int 1064 xfs_create( 1065 xfs_inode_t *dp, 1066 struct xfs_name *name, 1067 umode_t mode, 1068 xfs_dev_t rdev, 1069 xfs_inode_t **ipp) 1070 { 1071 int is_dir = S_ISDIR(mode); 1072 struct xfs_mount *mp = dp->i_mount; 1073 struct xfs_inode *ip = NULL; 1074 struct xfs_trans *tp = NULL; 1075 int error; 1076 xfs_bmap_free_t free_list; 1077 xfs_fsblock_t first_block; 1078 bool unlock_dp_on_error = false; 1079 uint cancel_flags; 1080 int committed; 1081 prid_t prid; 1082 struct xfs_dquot *udqp = NULL; 1083 struct xfs_dquot *gdqp = NULL; 1084 struct xfs_dquot *pdqp = NULL; 1085 struct xfs_trans_res tres; 1086 uint resblks; 1087 1088 trace_xfs_create(dp, name); 1089 1090 if (XFS_FORCED_SHUTDOWN(mp)) 1091 return -EIO; 1092 1093 prid = xfs_get_initial_prid(dp); 1094 1095 /* 1096 * Make sure that we have allocated dquot(s) on disk. 1097 */ 1098 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1099 xfs_kgid_to_gid(current_fsgid()), prid, 1100 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1101 &udqp, &gdqp, &pdqp); 1102 if (error) 1103 return error; 1104 1105 if (is_dir) { 1106 rdev = 0; 1107 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1108 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres; 1109 tres.tr_logcount = XFS_MKDIR_LOG_COUNT; 1110 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1111 } else { 1112 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1113 tres.tr_logres = M_RES(mp)->tr_create.tr_logres; 1114 tres.tr_logcount = XFS_CREATE_LOG_COUNT; 1115 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1116 } 1117 1118 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1119 1120 /* 1121 * Initially assume that the file does not exist and 1122 * reserve the resources for that case. If that is not 1123 * the case we'll drop the one we have and get a more 1124 * appropriate transaction later. 1125 */ 1126 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1127 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1128 if (error == -ENOSPC) { 1129 /* flush outstanding delalloc blocks and retry */ 1130 xfs_flush_inodes(mp); 1131 error = xfs_trans_reserve(tp, &tres, resblks, 0); 1132 } 1133 if (error == -ENOSPC) { 1134 /* No space at all so try a "no-allocation" reservation */ 1135 resblks = 0; 1136 error = xfs_trans_reserve(tp, &tres, 0, 0); 1137 } 1138 if (error) { 1139 cancel_flags = 0; 1140 goto out_trans_cancel; 1141 } 1142 1143 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1144 unlock_dp_on_error = true; 1145 1146 xfs_bmap_init(&free_list, &first_block); 1147 1148 /* 1149 * Reserve disk quota and the inode. 1150 */ 1151 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1152 pdqp, resblks, 1, 0); 1153 if (error) 1154 goto out_trans_cancel; 1155 1156 if (!resblks) { 1157 error = xfs_dir_canenter(tp, dp, name); 1158 if (error) 1159 goto out_trans_cancel; 1160 } 1161 1162 /* 1163 * A newly created regular or special file just has one directory 1164 * entry pointing to them, but a directory also the "." entry 1165 * pointing to itself. 1166 */ 1167 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1168 prid, resblks > 0, &ip, &committed); 1169 if (error) { 1170 if (error == -ENOSPC) 1171 goto out_trans_cancel; 1172 goto out_trans_abort; 1173 } 1174 1175 /* 1176 * Now we join the directory inode to the transaction. We do not do it 1177 * earlier because xfs_dir_ialloc might commit the previous transaction 1178 * (and release all the locks). An error from here on will result in 1179 * the transaction cancel unlocking dp so don't do it explicitly in the 1180 * error path. 1181 */ 1182 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1183 unlock_dp_on_error = false; 1184 1185 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1186 &first_block, &free_list, resblks ? 1187 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1188 if (error) { 1189 ASSERT(error != -ENOSPC); 1190 goto out_trans_abort; 1191 } 1192 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1193 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1194 1195 if (is_dir) { 1196 error = xfs_dir_init(tp, ip, dp); 1197 if (error) 1198 goto out_bmap_cancel; 1199 1200 error = xfs_bumplink(tp, dp); 1201 if (error) 1202 goto out_bmap_cancel; 1203 } 1204 1205 /* 1206 * If this is a synchronous mount, make sure that the 1207 * create transaction goes to disk before returning to 1208 * the user. 1209 */ 1210 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1211 xfs_trans_set_sync(tp); 1212 1213 /* 1214 * Attach the dquot(s) to the inodes and modify them incore. 1215 * These ids of the inode couldn't have changed since the new 1216 * inode has been locked ever since it was created. 1217 */ 1218 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1219 1220 error = xfs_bmap_finish(&tp, &free_list, &committed); 1221 if (error) 1222 goto out_bmap_cancel; 1223 1224 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1225 if (error) 1226 goto out_release_inode; 1227 1228 xfs_qm_dqrele(udqp); 1229 xfs_qm_dqrele(gdqp); 1230 xfs_qm_dqrele(pdqp); 1231 1232 *ipp = ip; 1233 return 0; 1234 1235 out_bmap_cancel: 1236 xfs_bmap_cancel(&free_list); 1237 out_trans_abort: 1238 cancel_flags |= XFS_TRANS_ABORT; 1239 out_trans_cancel: 1240 xfs_trans_cancel(tp, cancel_flags); 1241 out_release_inode: 1242 /* 1243 * Wait until after the current transaction is aborted to 1244 * release the inode. This prevents recursive transactions 1245 * and deadlocks from xfs_inactive. 1246 */ 1247 if (ip) 1248 IRELE(ip); 1249 1250 xfs_qm_dqrele(udqp); 1251 xfs_qm_dqrele(gdqp); 1252 xfs_qm_dqrele(pdqp); 1253 1254 if (unlock_dp_on_error) 1255 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1256 return error; 1257 } 1258 1259 int 1260 xfs_create_tmpfile( 1261 struct xfs_inode *dp, 1262 struct dentry *dentry, 1263 umode_t mode, 1264 struct xfs_inode **ipp) 1265 { 1266 struct xfs_mount *mp = dp->i_mount; 1267 struct xfs_inode *ip = NULL; 1268 struct xfs_trans *tp = NULL; 1269 int error; 1270 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1271 prid_t prid; 1272 struct xfs_dquot *udqp = NULL; 1273 struct xfs_dquot *gdqp = NULL; 1274 struct xfs_dquot *pdqp = NULL; 1275 struct xfs_trans_res *tres; 1276 uint resblks; 1277 1278 if (XFS_FORCED_SHUTDOWN(mp)) 1279 return -EIO; 1280 1281 prid = xfs_get_initial_prid(dp); 1282 1283 /* 1284 * Make sure that we have allocated dquot(s) on disk. 1285 */ 1286 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1287 xfs_kgid_to_gid(current_fsgid()), prid, 1288 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1289 &udqp, &gdqp, &pdqp); 1290 if (error) 1291 return error; 1292 1293 resblks = XFS_IALLOC_SPACE_RES(mp); 1294 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1295 1296 tres = &M_RES(mp)->tr_create_tmpfile; 1297 error = xfs_trans_reserve(tp, tres, resblks, 0); 1298 if (error == -ENOSPC) { 1299 /* No space at all so try a "no-allocation" reservation */ 1300 resblks = 0; 1301 error = xfs_trans_reserve(tp, tres, 0, 0); 1302 } 1303 if (error) { 1304 cancel_flags = 0; 1305 goto out_trans_cancel; 1306 } 1307 1308 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1309 pdqp, resblks, 1, 0); 1310 if (error) 1311 goto out_trans_cancel; 1312 1313 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1314 prid, resblks > 0, &ip, NULL); 1315 if (error) { 1316 if (error == -ENOSPC) 1317 goto out_trans_cancel; 1318 goto out_trans_abort; 1319 } 1320 1321 if (mp->m_flags & XFS_MOUNT_WSYNC) 1322 xfs_trans_set_sync(tp); 1323 1324 /* 1325 * Attach the dquot(s) to the inodes and modify them incore. 1326 * These ids of the inode couldn't have changed since the new 1327 * inode has been locked ever since it was created. 1328 */ 1329 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1330 1331 ip->i_d.di_nlink--; 1332 error = xfs_iunlink(tp, ip); 1333 if (error) 1334 goto out_trans_abort; 1335 1336 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1337 if (error) 1338 goto out_release_inode; 1339 1340 xfs_qm_dqrele(udqp); 1341 xfs_qm_dqrele(gdqp); 1342 xfs_qm_dqrele(pdqp); 1343 1344 *ipp = ip; 1345 return 0; 1346 1347 out_trans_abort: 1348 cancel_flags |= XFS_TRANS_ABORT; 1349 out_trans_cancel: 1350 xfs_trans_cancel(tp, cancel_flags); 1351 out_release_inode: 1352 /* 1353 * Wait until after the current transaction is aborted to 1354 * release the inode. This prevents recursive transactions 1355 * and deadlocks from xfs_inactive. 1356 */ 1357 if (ip) 1358 IRELE(ip); 1359 1360 xfs_qm_dqrele(udqp); 1361 xfs_qm_dqrele(gdqp); 1362 xfs_qm_dqrele(pdqp); 1363 1364 return error; 1365 } 1366 1367 int 1368 xfs_link( 1369 xfs_inode_t *tdp, 1370 xfs_inode_t *sip, 1371 struct xfs_name *target_name) 1372 { 1373 xfs_mount_t *mp = tdp->i_mount; 1374 xfs_trans_t *tp; 1375 int error; 1376 xfs_bmap_free_t free_list; 1377 xfs_fsblock_t first_block; 1378 int cancel_flags; 1379 int committed; 1380 int resblks; 1381 1382 trace_xfs_link(tdp, target_name); 1383 1384 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1385 1386 if (XFS_FORCED_SHUTDOWN(mp)) 1387 return -EIO; 1388 1389 error = xfs_qm_dqattach(sip, 0); 1390 if (error) 1391 goto std_return; 1392 1393 error = xfs_qm_dqattach(tdp, 0); 1394 if (error) 1395 goto std_return; 1396 1397 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1398 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1399 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1400 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1401 if (error == -ENOSPC) { 1402 resblks = 0; 1403 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1404 } 1405 if (error) { 1406 cancel_flags = 0; 1407 goto error_return; 1408 } 1409 1410 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1411 1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1414 1415 /* 1416 * If we are using project inheritance, we only allow hard link 1417 * creation in our tree when the project IDs are the same; else 1418 * the tree quota mechanism could be circumvented. 1419 */ 1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1422 error = -EXDEV; 1423 goto error_return; 1424 } 1425 1426 if (!resblks) { 1427 error = xfs_dir_canenter(tp, tdp, target_name); 1428 if (error) 1429 goto error_return; 1430 } 1431 1432 xfs_bmap_init(&free_list, &first_block); 1433 1434 if (sip->i_d.di_nlink == 0) { 1435 error = xfs_iunlink_remove(tp, sip); 1436 if (error) 1437 goto abort_return; 1438 } 1439 1440 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1441 &first_block, &free_list, resblks); 1442 if (error) 1443 goto abort_return; 1444 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1445 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1446 1447 error = xfs_bumplink(tp, sip); 1448 if (error) 1449 goto abort_return; 1450 1451 /* 1452 * If this is a synchronous mount, make sure that the 1453 * link transaction goes to disk before returning to 1454 * the user. 1455 */ 1456 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1457 xfs_trans_set_sync(tp); 1458 } 1459 1460 error = xfs_bmap_finish (&tp, &free_list, &committed); 1461 if (error) { 1462 xfs_bmap_cancel(&free_list); 1463 goto abort_return; 1464 } 1465 1466 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1467 1468 abort_return: 1469 cancel_flags |= XFS_TRANS_ABORT; 1470 error_return: 1471 xfs_trans_cancel(tp, cancel_flags); 1472 std_return: 1473 return error; 1474 } 1475 1476 /* 1477 * Free up the underlying blocks past new_size. The new size must be smaller 1478 * than the current size. This routine can be used both for the attribute and 1479 * data fork, and does not modify the inode size, which is left to the caller. 1480 * 1481 * The transaction passed to this routine must have made a permanent log 1482 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1483 * given transaction and start new ones, so make sure everything involved in 1484 * the transaction is tidy before calling here. Some transaction will be 1485 * returned to the caller to be committed. The incoming transaction must 1486 * already include the inode, and both inode locks must be held exclusively. 1487 * The inode must also be "held" within the transaction. On return the inode 1488 * will be "held" within the returned transaction. This routine does NOT 1489 * require any disk space to be reserved for it within the transaction. 1490 * 1491 * If we get an error, we must return with the inode locked and linked into the 1492 * current transaction. This keeps things simple for the higher level code, 1493 * because it always knows that the inode is locked and held in the transaction 1494 * that returns to it whether errors occur or not. We don't mark the inode 1495 * dirty on error so that transactions can be easily aborted if possible. 1496 */ 1497 int 1498 xfs_itruncate_extents( 1499 struct xfs_trans **tpp, 1500 struct xfs_inode *ip, 1501 int whichfork, 1502 xfs_fsize_t new_size) 1503 { 1504 struct xfs_mount *mp = ip->i_mount; 1505 struct xfs_trans *tp = *tpp; 1506 struct xfs_trans *ntp; 1507 xfs_bmap_free_t free_list; 1508 xfs_fsblock_t first_block; 1509 xfs_fileoff_t first_unmap_block; 1510 xfs_fileoff_t last_block; 1511 xfs_filblks_t unmap_len; 1512 int committed; 1513 int error = 0; 1514 int done = 0; 1515 1516 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1517 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1518 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1519 ASSERT(new_size <= XFS_ISIZE(ip)); 1520 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1521 ASSERT(ip->i_itemp != NULL); 1522 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1523 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1524 1525 trace_xfs_itruncate_extents_start(ip, new_size); 1526 1527 /* 1528 * Since it is possible for space to become allocated beyond 1529 * the end of the file (in a crash where the space is allocated 1530 * but the inode size is not yet updated), simply remove any 1531 * blocks which show up between the new EOF and the maximum 1532 * possible file size. If the first block to be removed is 1533 * beyond the maximum file size (ie it is the same as last_block), 1534 * then there is nothing to do. 1535 */ 1536 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1537 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1538 if (first_unmap_block == last_block) 1539 return 0; 1540 1541 ASSERT(first_unmap_block < last_block); 1542 unmap_len = last_block - first_unmap_block + 1; 1543 while (!done) { 1544 xfs_bmap_init(&free_list, &first_block); 1545 error = xfs_bunmapi(tp, ip, 1546 first_unmap_block, unmap_len, 1547 xfs_bmapi_aflag(whichfork), 1548 XFS_ITRUNC_MAX_EXTENTS, 1549 &first_block, &free_list, 1550 &done); 1551 if (error) 1552 goto out_bmap_cancel; 1553 1554 /* 1555 * Duplicate the transaction that has the permanent 1556 * reservation and commit the old transaction. 1557 */ 1558 error = xfs_bmap_finish(&tp, &free_list, &committed); 1559 if (committed) 1560 xfs_trans_ijoin(tp, ip, 0); 1561 if (error) 1562 goto out_bmap_cancel; 1563 1564 if (committed) { 1565 /* 1566 * Mark the inode dirty so it will be logged and 1567 * moved forward in the log as part of every commit. 1568 */ 1569 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1570 } 1571 1572 ntp = xfs_trans_dup(tp); 1573 error = xfs_trans_commit(tp, 0); 1574 tp = ntp; 1575 1576 xfs_trans_ijoin(tp, ip, 0); 1577 1578 if (error) 1579 goto out; 1580 1581 /* 1582 * Transaction commit worked ok so we can drop the extra ticket 1583 * reference that we gained in xfs_trans_dup() 1584 */ 1585 xfs_log_ticket_put(tp->t_ticket); 1586 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1587 if (error) 1588 goto out; 1589 } 1590 1591 /* 1592 * Always re-log the inode so that our permanent transaction can keep 1593 * on rolling it forward in the log. 1594 */ 1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1596 1597 trace_xfs_itruncate_extents_end(ip, new_size); 1598 1599 out: 1600 *tpp = tp; 1601 return error; 1602 out_bmap_cancel: 1603 /* 1604 * If the bunmapi call encounters an error, return to the caller where 1605 * the transaction can be properly aborted. We just need to make sure 1606 * we're not holding any resources that we were not when we came in. 1607 */ 1608 xfs_bmap_cancel(&free_list); 1609 goto out; 1610 } 1611 1612 int 1613 xfs_release( 1614 xfs_inode_t *ip) 1615 { 1616 xfs_mount_t *mp = ip->i_mount; 1617 int error; 1618 1619 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1620 return 0; 1621 1622 /* If this is a read-only mount, don't do this (would generate I/O) */ 1623 if (mp->m_flags & XFS_MOUNT_RDONLY) 1624 return 0; 1625 1626 if (!XFS_FORCED_SHUTDOWN(mp)) { 1627 int truncated; 1628 1629 /* 1630 * If we previously truncated this file and removed old data 1631 * in the process, we want to initiate "early" writeout on 1632 * the last close. This is an attempt to combat the notorious 1633 * NULL files problem which is particularly noticeable from a 1634 * truncate down, buffered (re-)write (delalloc), followed by 1635 * a crash. What we are effectively doing here is 1636 * significantly reducing the time window where we'd otherwise 1637 * be exposed to that problem. 1638 */ 1639 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1640 if (truncated) { 1641 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1642 if (ip->i_delayed_blks > 0) { 1643 error = filemap_flush(VFS_I(ip)->i_mapping); 1644 if (error) 1645 return error; 1646 } 1647 } 1648 } 1649 1650 if (ip->i_d.di_nlink == 0) 1651 return 0; 1652 1653 if (xfs_can_free_eofblocks(ip, false)) { 1654 1655 /* 1656 * If we can't get the iolock just skip truncating the blocks 1657 * past EOF because we could deadlock with the mmap_sem 1658 * otherwise. We'll get another chance to drop them once the 1659 * last reference to the inode is dropped, so we'll never leak 1660 * blocks permanently. 1661 * 1662 * Further, check if the inode is being opened, written and 1663 * closed frequently and we have delayed allocation blocks 1664 * outstanding (e.g. streaming writes from the NFS server), 1665 * truncating the blocks past EOF will cause fragmentation to 1666 * occur. 1667 * 1668 * In this case don't do the truncation, either, but we have to 1669 * be careful how we detect this case. Blocks beyond EOF show 1670 * up as i_delayed_blks even when the inode is clean, so we 1671 * need to truncate them away first before checking for a dirty 1672 * release. Hence on the first dirty close we will still remove 1673 * the speculative allocation, but after that we will leave it 1674 * in place. 1675 */ 1676 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1677 return 0; 1678 1679 error = xfs_free_eofblocks(mp, ip, true); 1680 if (error && error != -EAGAIN) 1681 return error; 1682 1683 /* delalloc blocks after truncation means it really is dirty */ 1684 if (ip->i_delayed_blks) 1685 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1686 } 1687 return 0; 1688 } 1689 1690 /* 1691 * xfs_inactive_truncate 1692 * 1693 * Called to perform a truncate when an inode becomes unlinked. 1694 */ 1695 STATIC int 1696 xfs_inactive_truncate( 1697 struct xfs_inode *ip) 1698 { 1699 struct xfs_mount *mp = ip->i_mount; 1700 struct xfs_trans *tp; 1701 int error; 1702 1703 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1704 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1705 if (error) { 1706 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1707 xfs_trans_cancel(tp, 0); 1708 return error; 1709 } 1710 1711 xfs_ilock(ip, XFS_ILOCK_EXCL); 1712 xfs_trans_ijoin(tp, ip, 0); 1713 1714 /* 1715 * Log the inode size first to prevent stale data exposure in the event 1716 * of a system crash before the truncate completes. See the related 1717 * comment in xfs_setattr_size() for details. 1718 */ 1719 ip->i_d.di_size = 0; 1720 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1721 1722 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1723 if (error) 1724 goto error_trans_cancel; 1725 1726 ASSERT(ip->i_d.di_nextents == 0); 1727 1728 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1729 if (error) 1730 goto error_unlock; 1731 1732 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1733 return 0; 1734 1735 error_trans_cancel: 1736 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1737 error_unlock: 1738 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1739 return error; 1740 } 1741 1742 /* 1743 * xfs_inactive_ifree() 1744 * 1745 * Perform the inode free when an inode is unlinked. 1746 */ 1747 STATIC int 1748 xfs_inactive_ifree( 1749 struct xfs_inode *ip) 1750 { 1751 xfs_bmap_free_t free_list; 1752 xfs_fsblock_t first_block; 1753 int committed; 1754 struct xfs_mount *mp = ip->i_mount; 1755 struct xfs_trans *tp; 1756 int error; 1757 1758 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1759 1760 /* 1761 * The ifree transaction might need to allocate blocks for record 1762 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1763 * allow ifree to dip into the reserved block pool if necessary. 1764 * 1765 * Freeing large sets of inodes generally means freeing inode chunks, 1766 * directory and file data blocks, so this should be relatively safe. 1767 * Only under severe circumstances should it be possible to free enough 1768 * inodes to exhaust the reserve block pool via finobt expansion while 1769 * at the same time not creating free space in the filesystem. 1770 * 1771 * Send a warning if the reservation does happen to fail, as the inode 1772 * now remains allocated and sits on the unlinked list until the fs is 1773 * repaired. 1774 */ 1775 tp->t_flags |= XFS_TRANS_RESERVE; 1776 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1777 XFS_IFREE_SPACE_RES(mp), 0); 1778 if (error) { 1779 if (error == -ENOSPC) { 1780 xfs_warn_ratelimited(mp, 1781 "Failed to remove inode(s) from unlinked list. " 1782 "Please free space, unmount and run xfs_repair."); 1783 } else { 1784 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1785 } 1786 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1787 return error; 1788 } 1789 1790 xfs_ilock(ip, XFS_ILOCK_EXCL); 1791 xfs_trans_ijoin(tp, ip, 0); 1792 1793 xfs_bmap_init(&free_list, &first_block); 1794 error = xfs_ifree(tp, ip, &free_list); 1795 if (error) { 1796 /* 1797 * If we fail to free the inode, shut down. The cancel 1798 * might do that, we need to make sure. Otherwise the 1799 * inode might be lost for a long time or forever. 1800 */ 1801 if (!XFS_FORCED_SHUTDOWN(mp)) { 1802 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1803 __func__, error); 1804 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1805 } 1806 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1807 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1808 return error; 1809 } 1810 1811 /* 1812 * Credit the quota account(s). The inode is gone. 1813 */ 1814 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1815 1816 /* 1817 * Just ignore errors at this point. There is nothing we can 1818 * do except to try to keep going. Make sure it's not a silent 1819 * error. 1820 */ 1821 error = xfs_bmap_finish(&tp, &free_list, &committed); 1822 if (error) 1823 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1824 __func__, error); 1825 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1826 if (error) 1827 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1828 __func__, error); 1829 1830 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1831 return 0; 1832 } 1833 1834 /* 1835 * xfs_inactive 1836 * 1837 * This is called when the vnode reference count for the vnode 1838 * goes to zero. If the file has been unlinked, then it must 1839 * now be truncated. Also, we clear all of the read-ahead state 1840 * kept for the inode here since the file is now closed. 1841 */ 1842 void 1843 xfs_inactive( 1844 xfs_inode_t *ip) 1845 { 1846 struct xfs_mount *mp; 1847 int error; 1848 int truncate = 0; 1849 1850 /* 1851 * If the inode is already free, then there can be nothing 1852 * to clean up here. 1853 */ 1854 if (ip->i_d.di_mode == 0) { 1855 ASSERT(ip->i_df.if_real_bytes == 0); 1856 ASSERT(ip->i_df.if_broot_bytes == 0); 1857 return; 1858 } 1859 1860 mp = ip->i_mount; 1861 1862 /* If this is a read-only mount, don't do this (would generate I/O) */ 1863 if (mp->m_flags & XFS_MOUNT_RDONLY) 1864 return; 1865 1866 if (ip->i_d.di_nlink != 0) { 1867 /* 1868 * force is true because we are evicting an inode from the 1869 * cache. Post-eof blocks must be freed, lest we end up with 1870 * broken free space accounting. 1871 */ 1872 if (xfs_can_free_eofblocks(ip, true)) 1873 xfs_free_eofblocks(mp, ip, false); 1874 1875 return; 1876 } 1877 1878 if (S_ISREG(ip->i_d.di_mode) && 1879 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1880 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1881 truncate = 1; 1882 1883 error = xfs_qm_dqattach(ip, 0); 1884 if (error) 1885 return; 1886 1887 if (S_ISLNK(ip->i_d.di_mode)) 1888 error = xfs_inactive_symlink(ip); 1889 else if (truncate) 1890 error = xfs_inactive_truncate(ip); 1891 if (error) 1892 return; 1893 1894 /* 1895 * If there are attributes associated with the file then blow them away 1896 * now. The code calls a routine that recursively deconstructs the 1897 * attribute fork. We need to just commit the current transaction 1898 * because we can't use it for xfs_attr_inactive(). 1899 */ 1900 if (ip->i_d.di_anextents > 0) { 1901 ASSERT(ip->i_d.di_forkoff != 0); 1902 1903 error = xfs_attr_inactive(ip); 1904 if (error) 1905 return; 1906 } 1907 1908 if (ip->i_afp) 1909 xfs_idestroy_fork(ip, XFS_ATTR_FORK); 1910 1911 ASSERT(ip->i_d.di_anextents == 0); 1912 1913 /* 1914 * Free the inode. 1915 */ 1916 error = xfs_inactive_ifree(ip); 1917 if (error) 1918 return; 1919 1920 /* 1921 * Release the dquots held by inode, if any. 1922 */ 1923 xfs_qm_dqdetach(ip); 1924 } 1925 1926 /* 1927 * This is called when the inode's link count goes to 0. 1928 * We place the on-disk inode on a list in the AGI. It 1929 * will be pulled from this list when the inode is freed. 1930 */ 1931 int 1932 xfs_iunlink( 1933 xfs_trans_t *tp, 1934 xfs_inode_t *ip) 1935 { 1936 xfs_mount_t *mp; 1937 xfs_agi_t *agi; 1938 xfs_dinode_t *dip; 1939 xfs_buf_t *agibp; 1940 xfs_buf_t *ibp; 1941 xfs_agino_t agino; 1942 short bucket_index; 1943 int offset; 1944 int error; 1945 1946 ASSERT(ip->i_d.di_nlink == 0); 1947 ASSERT(ip->i_d.di_mode != 0); 1948 1949 mp = tp->t_mountp; 1950 1951 /* 1952 * Get the agi buffer first. It ensures lock ordering 1953 * on the list. 1954 */ 1955 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 1956 if (error) 1957 return error; 1958 agi = XFS_BUF_TO_AGI(agibp); 1959 1960 /* 1961 * Get the index into the agi hash table for the 1962 * list this inode will go on. 1963 */ 1964 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1965 ASSERT(agino != 0); 1966 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 1967 ASSERT(agi->agi_unlinked[bucket_index]); 1968 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 1969 1970 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 1971 /* 1972 * There is already another inode in the bucket we need 1973 * to add ourselves to. Add us at the front of the list. 1974 * Here we put the head pointer into our next pointer, 1975 * and then we fall through to point the head at us. 1976 */ 1977 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 1978 0, 0); 1979 if (error) 1980 return error; 1981 1982 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 1983 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 1984 offset = ip->i_imap.im_boffset + 1985 offsetof(xfs_dinode_t, di_next_unlinked); 1986 1987 /* need to recalc the inode CRC if appropriate */ 1988 xfs_dinode_calc_crc(mp, dip); 1989 1990 xfs_trans_inode_buf(tp, ibp); 1991 xfs_trans_log_buf(tp, ibp, offset, 1992 (offset + sizeof(xfs_agino_t) - 1)); 1993 xfs_inobp_check(mp, ibp); 1994 } 1995 1996 /* 1997 * Point the bucket head pointer at the inode being inserted. 1998 */ 1999 ASSERT(agino != 0); 2000 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2001 offset = offsetof(xfs_agi_t, agi_unlinked) + 2002 (sizeof(xfs_agino_t) * bucket_index); 2003 xfs_trans_log_buf(tp, agibp, offset, 2004 (offset + sizeof(xfs_agino_t) - 1)); 2005 return 0; 2006 } 2007 2008 /* 2009 * Pull the on-disk inode from the AGI unlinked list. 2010 */ 2011 STATIC int 2012 xfs_iunlink_remove( 2013 xfs_trans_t *tp, 2014 xfs_inode_t *ip) 2015 { 2016 xfs_ino_t next_ino; 2017 xfs_mount_t *mp; 2018 xfs_agi_t *agi; 2019 xfs_dinode_t *dip; 2020 xfs_buf_t *agibp; 2021 xfs_buf_t *ibp; 2022 xfs_agnumber_t agno; 2023 xfs_agino_t agino; 2024 xfs_agino_t next_agino; 2025 xfs_buf_t *last_ibp; 2026 xfs_dinode_t *last_dip = NULL; 2027 short bucket_index; 2028 int offset, last_offset = 0; 2029 int error; 2030 2031 mp = tp->t_mountp; 2032 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2033 2034 /* 2035 * Get the agi buffer first. It ensures lock ordering 2036 * on the list. 2037 */ 2038 error = xfs_read_agi(mp, tp, agno, &agibp); 2039 if (error) 2040 return error; 2041 2042 agi = XFS_BUF_TO_AGI(agibp); 2043 2044 /* 2045 * Get the index into the agi hash table for the 2046 * list this inode will go on. 2047 */ 2048 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2049 ASSERT(agino != 0); 2050 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2051 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2052 ASSERT(agi->agi_unlinked[bucket_index]); 2053 2054 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2055 /* 2056 * We're at the head of the list. Get the inode's on-disk 2057 * buffer to see if there is anyone after us on the list. 2058 * Only modify our next pointer if it is not already NULLAGINO. 2059 * This saves us the overhead of dealing with the buffer when 2060 * there is no need to change it. 2061 */ 2062 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2063 0, 0); 2064 if (error) { 2065 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2066 __func__, error); 2067 return error; 2068 } 2069 next_agino = be32_to_cpu(dip->di_next_unlinked); 2070 ASSERT(next_agino != 0); 2071 if (next_agino != NULLAGINO) { 2072 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2073 offset = ip->i_imap.im_boffset + 2074 offsetof(xfs_dinode_t, di_next_unlinked); 2075 2076 /* need to recalc the inode CRC if appropriate */ 2077 xfs_dinode_calc_crc(mp, dip); 2078 2079 xfs_trans_inode_buf(tp, ibp); 2080 xfs_trans_log_buf(tp, ibp, offset, 2081 (offset + sizeof(xfs_agino_t) - 1)); 2082 xfs_inobp_check(mp, ibp); 2083 } else { 2084 xfs_trans_brelse(tp, ibp); 2085 } 2086 /* 2087 * Point the bucket head pointer at the next inode. 2088 */ 2089 ASSERT(next_agino != 0); 2090 ASSERT(next_agino != agino); 2091 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2092 offset = offsetof(xfs_agi_t, agi_unlinked) + 2093 (sizeof(xfs_agino_t) * bucket_index); 2094 xfs_trans_log_buf(tp, agibp, offset, 2095 (offset + sizeof(xfs_agino_t) - 1)); 2096 } else { 2097 /* 2098 * We need to search the list for the inode being freed. 2099 */ 2100 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2101 last_ibp = NULL; 2102 while (next_agino != agino) { 2103 struct xfs_imap imap; 2104 2105 if (last_ibp) 2106 xfs_trans_brelse(tp, last_ibp); 2107 2108 imap.im_blkno = 0; 2109 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2110 2111 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2112 if (error) { 2113 xfs_warn(mp, 2114 "%s: xfs_imap returned error %d.", 2115 __func__, error); 2116 return error; 2117 } 2118 2119 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2120 &last_ibp, 0, 0); 2121 if (error) { 2122 xfs_warn(mp, 2123 "%s: xfs_imap_to_bp returned error %d.", 2124 __func__, error); 2125 return error; 2126 } 2127 2128 last_offset = imap.im_boffset; 2129 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2130 ASSERT(next_agino != NULLAGINO); 2131 ASSERT(next_agino != 0); 2132 } 2133 2134 /* 2135 * Now last_ibp points to the buffer previous to us on the 2136 * unlinked list. Pull us from the list. 2137 */ 2138 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2139 0, 0); 2140 if (error) { 2141 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2142 __func__, error); 2143 return error; 2144 } 2145 next_agino = be32_to_cpu(dip->di_next_unlinked); 2146 ASSERT(next_agino != 0); 2147 ASSERT(next_agino != agino); 2148 if (next_agino != NULLAGINO) { 2149 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2150 offset = ip->i_imap.im_boffset + 2151 offsetof(xfs_dinode_t, di_next_unlinked); 2152 2153 /* need to recalc the inode CRC if appropriate */ 2154 xfs_dinode_calc_crc(mp, dip); 2155 2156 xfs_trans_inode_buf(tp, ibp); 2157 xfs_trans_log_buf(tp, ibp, offset, 2158 (offset + sizeof(xfs_agino_t) - 1)); 2159 xfs_inobp_check(mp, ibp); 2160 } else { 2161 xfs_trans_brelse(tp, ibp); 2162 } 2163 /* 2164 * Point the previous inode on the list to the next inode. 2165 */ 2166 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2167 ASSERT(next_agino != 0); 2168 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2169 2170 /* need to recalc the inode CRC if appropriate */ 2171 xfs_dinode_calc_crc(mp, last_dip); 2172 2173 xfs_trans_inode_buf(tp, last_ibp); 2174 xfs_trans_log_buf(tp, last_ibp, offset, 2175 (offset + sizeof(xfs_agino_t) - 1)); 2176 xfs_inobp_check(mp, last_ibp); 2177 } 2178 return 0; 2179 } 2180 2181 /* 2182 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2183 * inodes that are in memory - they all must be marked stale and attached to 2184 * the cluster buffer. 2185 */ 2186 STATIC int 2187 xfs_ifree_cluster( 2188 xfs_inode_t *free_ip, 2189 xfs_trans_t *tp, 2190 xfs_ino_t inum) 2191 { 2192 xfs_mount_t *mp = free_ip->i_mount; 2193 int blks_per_cluster; 2194 int inodes_per_cluster; 2195 int nbufs; 2196 int i, j; 2197 xfs_daddr_t blkno; 2198 xfs_buf_t *bp; 2199 xfs_inode_t *ip; 2200 xfs_inode_log_item_t *iip; 2201 xfs_log_item_t *lip; 2202 struct xfs_perag *pag; 2203 2204 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2205 blks_per_cluster = xfs_icluster_size_fsb(mp); 2206 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2207 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2208 2209 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2211 XFS_INO_TO_AGBNO(mp, inum)); 2212 2213 /* 2214 * We obtain and lock the backing buffer first in the process 2215 * here, as we have to ensure that any dirty inode that we 2216 * can't get the flush lock on is attached to the buffer. 2217 * If we scan the in-memory inodes first, then buffer IO can 2218 * complete before we get a lock on it, and hence we may fail 2219 * to mark all the active inodes on the buffer stale. 2220 */ 2221 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2222 mp->m_bsize * blks_per_cluster, 2223 XBF_UNMAPPED); 2224 2225 if (!bp) 2226 return -ENOMEM; 2227 2228 /* 2229 * This buffer may not have been correctly initialised as we 2230 * didn't read it from disk. That's not important because we are 2231 * only using to mark the buffer as stale in the log, and to 2232 * attach stale cached inodes on it. That means it will never be 2233 * dispatched for IO. If it is, we want to know about it, and we 2234 * want it to fail. We can acheive this by adding a write 2235 * verifier to the buffer. 2236 */ 2237 bp->b_ops = &xfs_inode_buf_ops; 2238 2239 /* 2240 * Walk the inodes already attached to the buffer and mark them 2241 * stale. These will all have the flush locks held, so an 2242 * in-memory inode walk can't lock them. By marking them all 2243 * stale first, we will not attempt to lock them in the loop 2244 * below as the XFS_ISTALE flag will be set. 2245 */ 2246 lip = bp->b_fspriv; 2247 while (lip) { 2248 if (lip->li_type == XFS_LI_INODE) { 2249 iip = (xfs_inode_log_item_t *)lip; 2250 ASSERT(iip->ili_logged == 1); 2251 lip->li_cb = xfs_istale_done; 2252 xfs_trans_ail_copy_lsn(mp->m_ail, 2253 &iip->ili_flush_lsn, 2254 &iip->ili_item.li_lsn); 2255 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2256 } 2257 lip = lip->li_bio_list; 2258 } 2259 2260 2261 /* 2262 * For each inode in memory attempt to add it to the inode 2263 * buffer and set it up for being staled on buffer IO 2264 * completion. This is safe as we've locked out tail pushing 2265 * and flushing by locking the buffer. 2266 * 2267 * We have already marked every inode that was part of a 2268 * transaction stale above, which means there is no point in 2269 * even trying to lock them. 2270 */ 2271 for (i = 0; i < inodes_per_cluster; i++) { 2272 retry: 2273 rcu_read_lock(); 2274 ip = radix_tree_lookup(&pag->pag_ici_root, 2275 XFS_INO_TO_AGINO(mp, (inum + i))); 2276 2277 /* Inode not in memory, nothing to do */ 2278 if (!ip) { 2279 rcu_read_unlock(); 2280 continue; 2281 } 2282 2283 /* 2284 * because this is an RCU protected lookup, we could 2285 * find a recently freed or even reallocated inode 2286 * during the lookup. We need to check under the 2287 * i_flags_lock for a valid inode here. Skip it if it 2288 * is not valid, the wrong inode or stale. 2289 */ 2290 spin_lock(&ip->i_flags_lock); 2291 if (ip->i_ino != inum + i || 2292 __xfs_iflags_test(ip, XFS_ISTALE)) { 2293 spin_unlock(&ip->i_flags_lock); 2294 rcu_read_unlock(); 2295 continue; 2296 } 2297 spin_unlock(&ip->i_flags_lock); 2298 2299 /* 2300 * Don't try to lock/unlock the current inode, but we 2301 * _cannot_ skip the other inodes that we did not find 2302 * in the list attached to the buffer and are not 2303 * already marked stale. If we can't lock it, back off 2304 * and retry. 2305 */ 2306 if (ip != free_ip && 2307 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2308 rcu_read_unlock(); 2309 delay(1); 2310 goto retry; 2311 } 2312 rcu_read_unlock(); 2313 2314 xfs_iflock(ip); 2315 xfs_iflags_set(ip, XFS_ISTALE); 2316 2317 /* 2318 * we don't need to attach clean inodes or those only 2319 * with unlogged changes (which we throw away, anyway). 2320 */ 2321 iip = ip->i_itemp; 2322 if (!iip || xfs_inode_clean(ip)) { 2323 ASSERT(ip != free_ip); 2324 xfs_ifunlock(ip); 2325 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2326 continue; 2327 } 2328 2329 iip->ili_last_fields = iip->ili_fields; 2330 iip->ili_fields = 0; 2331 iip->ili_logged = 1; 2332 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2333 &iip->ili_item.li_lsn); 2334 2335 xfs_buf_attach_iodone(bp, xfs_istale_done, 2336 &iip->ili_item); 2337 2338 if (ip != free_ip) 2339 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2340 } 2341 2342 xfs_trans_stale_inode_buf(tp, bp); 2343 xfs_trans_binval(tp, bp); 2344 } 2345 2346 xfs_perag_put(pag); 2347 return 0; 2348 } 2349 2350 /* 2351 * This is called to return an inode to the inode free list. 2352 * The inode should already be truncated to 0 length and have 2353 * no pages associated with it. This routine also assumes that 2354 * the inode is already a part of the transaction. 2355 * 2356 * The on-disk copy of the inode will have been added to the list 2357 * of unlinked inodes in the AGI. We need to remove the inode from 2358 * that list atomically with respect to freeing it here. 2359 */ 2360 int 2361 xfs_ifree( 2362 xfs_trans_t *tp, 2363 xfs_inode_t *ip, 2364 xfs_bmap_free_t *flist) 2365 { 2366 int error; 2367 int delete; 2368 xfs_ino_t first_ino; 2369 2370 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2371 ASSERT(ip->i_d.di_nlink == 0); 2372 ASSERT(ip->i_d.di_nextents == 0); 2373 ASSERT(ip->i_d.di_anextents == 0); 2374 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2375 ASSERT(ip->i_d.di_nblocks == 0); 2376 2377 /* 2378 * Pull the on-disk inode from the AGI unlinked list. 2379 */ 2380 error = xfs_iunlink_remove(tp, ip); 2381 if (error) 2382 return error; 2383 2384 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2385 if (error) 2386 return error; 2387 2388 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2389 ip->i_d.di_flags = 0; 2390 ip->i_d.di_dmevmask = 0; 2391 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2392 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2393 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2394 /* 2395 * Bump the generation count so no one will be confused 2396 * by reincarnations of this inode. 2397 */ 2398 ip->i_d.di_gen++; 2399 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2400 2401 if (delete) 2402 error = xfs_ifree_cluster(ip, tp, first_ino); 2403 2404 return error; 2405 } 2406 2407 /* 2408 * This is called to unpin an inode. The caller must have the inode locked 2409 * in at least shared mode so that the buffer cannot be subsequently pinned 2410 * once someone is waiting for it to be unpinned. 2411 */ 2412 static void 2413 xfs_iunpin( 2414 struct xfs_inode *ip) 2415 { 2416 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2417 2418 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2419 2420 /* Give the log a push to start the unpinning I/O */ 2421 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2422 2423 } 2424 2425 static void 2426 __xfs_iunpin_wait( 2427 struct xfs_inode *ip) 2428 { 2429 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2430 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2431 2432 xfs_iunpin(ip); 2433 2434 do { 2435 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2436 if (xfs_ipincount(ip)) 2437 io_schedule(); 2438 } while (xfs_ipincount(ip)); 2439 finish_wait(wq, &wait.wait); 2440 } 2441 2442 void 2443 xfs_iunpin_wait( 2444 struct xfs_inode *ip) 2445 { 2446 if (xfs_ipincount(ip)) 2447 __xfs_iunpin_wait(ip); 2448 } 2449 2450 /* 2451 * Removing an inode from the namespace involves removing the directory entry 2452 * and dropping the link count on the inode. Removing the directory entry can 2453 * result in locking an AGF (directory blocks were freed) and removing a link 2454 * count can result in placing the inode on an unlinked list which results in 2455 * locking an AGI. 2456 * 2457 * The big problem here is that we have an ordering constraint on AGF and AGI 2458 * locking - inode allocation locks the AGI, then can allocate a new extent for 2459 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2460 * removes the inode from the unlinked list, requiring that we lock the AGI 2461 * first, and then freeing the inode can result in an inode chunk being freed 2462 * and hence freeing disk space requiring that we lock an AGF. 2463 * 2464 * Hence the ordering that is imposed by other parts of the code is AGI before 2465 * AGF. This means we cannot remove the directory entry before we drop the inode 2466 * reference count and put it on the unlinked list as this results in a lock 2467 * order of AGF then AGI, and this can deadlock against inode allocation and 2468 * freeing. Therefore we must drop the link counts before we remove the 2469 * directory entry. 2470 * 2471 * This is still safe from a transactional point of view - it is not until we 2472 * get to xfs_bmap_finish() that we have the possibility of multiple 2473 * transactions in this operation. Hence as long as we remove the directory 2474 * entry and drop the link count in the first transaction of the remove 2475 * operation, there are no transactional constraints on the ordering here. 2476 */ 2477 int 2478 xfs_remove( 2479 xfs_inode_t *dp, 2480 struct xfs_name *name, 2481 xfs_inode_t *ip) 2482 { 2483 xfs_mount_t *mp = dp->i_mount; 2484 xfs_trans_t *tp = NULL; 2485 int is_dir = S_ISDIR(ip->i_d.di_mode); 2486 int error = 0; 2487 xfs_bmap_free_t free_list; 2488 xfs_fsblock_t first_block; 2489 int cancel_flags; 2490 int committed; 2491 int link_zero; 2492 uint resblks; 2493 uint log_count; 2494 2495 trace_xfs_remove(dp, name); 2496 2497 if (XFS_FORCED_SHUTDOWN(mp)) 2498 return -EIO; 2499 2500 error = xfs_qm_dqattach(dp, 0); 2501 if (error) 2502 goto std_return; 2503 2504 error = xfs_qm_dqattach(ip, 0); 2505 if (error) 2506 goto std_return; 2507 2508 if (is_dir) { 2509 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2510 log_count = XFS_DEFAULT_LOG_COUNT; 2511 } else { 2512 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2513 log_count = XFS_REMOVE_LOG_COUNT; 2514 } 2515 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2516 2517 /* 2518 * We try to get the real space reservation first, 2519 * allowing for directory btree deletion(s) implying 2520 * possible bmap insert(s). If we can't get the space 2521 * reservation then we use 0 instead, and avoid the bmap 2522 * btree insert(s) in the directory code by, if the bmap 2523 * insert tries to happen, instead trimming the LAST 2524 * block from the directory. 2525 */ 2526 resblks = XFS_REMOVE_SPACE_RES(mp); 2527 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2528 if (error == -ENOSPC) { 2529 resblks = 0; 2530 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2531 } 2532 if (error) { 2533 ASSERT(error != -ENOSPC); 2534 cancel_flags = 0; 2535 goto out_trans_cancel; 2536 } 2537 2538 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2539 2540 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2541 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2542 2543 /* 2544 * If we're removing a directory perform some additional validation. 2545 */ 2546 cancel_flags |= XFS_TRANS_ABORT; 2547 if (is_dir) { 2548 ASSERT(ip->i_d.di_nlink >= 2); 2549 if (ip->i_d.di_nlink != 2) { 2550 error = -ENOTEMPTY; 2551 goto out_trans_cancel; 2552 } 2553 if (!xfs_dir_isempty(ip)) { 2554 error = -ENOTEMPTY; 2555 goto out_trans_cancel; 2556 } 2557 2558 /* Drop the link from ip's "..". */ 2559 error = xfs_droplink(tp, dp); 2560 if (error) 2561 goto out_trans_cancel; 2562 2563 /* Drop the "." link from ip to self. */ 2564 error = xfs_droplink(tp, ip); 2565 if (error) 2566 goto out_trans_cancel; 2567 } else { 2568 /* 2569 * When removing a non-directory we need to log the parent 2570 * inode here. For a directory this is done implicitly 2571 * by the xfs_droplink call for the ".." entry. 2572 */ 2573 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2574 } 2575 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2576 2577 /* Drop the link from dp to ip. */ 2578 error = xfs_droplink(tp, ip); 2579 if (error) 2580 goto out_trans_cancel; 2581 2582 /* Determine if this is the last link while the inode is locked */ 2583 link_zero = (ip->i_d.di_nlink == 0); 2584 2585 xfs_bmap_init(&free_list, &first_block); 2586 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2587 &first_block, &free_list, resblks); 2588 if (error) { 2589 ASSERT(error != -ENOENT); 2590 goto out_bmap_cancel; 2591 } 2592 2593 /* 2594 * If this is a synchronous mount, make sure that the 2595 * remove transaction goes to disk before returning to 2596 * the user. 2597 */ 2598 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2599 xfs_trans_set_sync(tp); 2600 2601 error = xfs_bmap_finish(&tp, &free_list, &committed); 2602 if (error) 2603 goto out_bmap_cancel; 2604 2605 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2606 if (error) 2607 goto std_return; 2608 2609 if (is_dir && xfs_inode_is_filestream(ip)) 2610 xfs_filestream_deassociate(ip); 2611 2612 return 0; 2613 2614 out_bmap_cancel: 2615 xfs_bmap_cancel(&free_list); 2616 out_trans_cancel: 2617 xfs_trans_cancel(tp, cancel_flags); 2618 std_return: 2619 return error; 2620 } 2621 2622 /* 2623 * Enter all inodes for a rename transaction into a sorted array. 2624 */ 2625 STATIC void 2626 xfs_sort_for_rename( 2627 xfs_inode_t *dp1, /* in: old (source) directory inode */ 2628 xfs_inode_t *dp2, /* in: new (target) directory inode */ 2629 xfs_inode_t *ip1, /* in: inode of old entry */ 2630 xfs_inode_t *ip2, /* in: inode of new entry, if it 2631 already exists, NULL otherwise. */ 2632 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */ 2633 int *num_inodes) /* out: number of inodes in array */ 2634 { 2635 xfs_inode_t *temp; 2636 int i, j; 2637 2638 /* 2639 * i_tab contains a list of pointers to inodes. We initialize 2640 * the table here & we'll sort it. We will then use it to 2641 * order the acquisition of the inode locks. 2642 * 2643 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2644 */ 2645 i_tab[0] = dp1; 2646 i_tab[1] = dp2; 2647 i_tab[2] = ip1; 2648 if (ip2) { 2649 *num_inodes = 4; 2650 i_tab[3] = ip2; 2651 } else { 2652 *num_inodes = 3; 2653 i_tab[3] = NULL; 2654 } 2655 2656 /* 2657 * Sort the elements via bubble sort. (Remember, there are at 2658 * most 4 elements to sort, so this is adequate.) 2659 */ 2660 for (i = 0; i < *num_inodes; i++) { 2661 for (j = 1; j < *num_inodes; j++) { 2662 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2663 temp = i_tab[j]; 2664 i_tab[j] = i_tab[j-1]; 2665 i_tab[j-1] = temp; 2666 } 2667 } 2668 } 2669 } 2670 2671 /* 2672 * xfs_rename 2673 */ 2674 int 2675 xfs_rename( 2676 xfs_inode_t *src_dp, 2677 struct xfs_name *src_name, 2678 xfs_inode_t *src_ip, 2679 xfs_inode_t *target_dp, 2680 struct xfs_name *target_name, 2681 xfs_inode_t *target_ip) 2682 { 2683 xfs_trans_t *tp = NULL; 2684 xfs_mount_t *mp = src_dp->i_mount; 2685 int new_parent; /* moving to a new dir */ 2686 int src_is_directory; /* src_name is a directory */ 2687 int error; 2688 xfs_bmap_free_t free_list; 2689 xfs_fsblock_t first_block; 2690 int cancel_flags; 2691 int committed; 2692 xfs_inode_t *inodes[4]; 2693 int spaceres; 2694 int num_inodes; 2695 2696 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2697 2698 new_parent = (src_dp != target_dp); 2699 src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2700 2701 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, 2702 inodes, &num_inodes); 2703 2704 xfs_bmap_init(&free_list, &first_block); 2705 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2706 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2707 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2708 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2709 if (error == -ENOSPC) { 2710 spaceres = 0; 2711 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2712 } 2713 if (error) { 2714 xfs_trans_cancel(tp, 0); 2715 goto std_return; 2716 } 2717 2718 /* 2719 * Attach the dquots to the inodes 2720 */ 2721 error = xfs_qm_vop_rename_dqattach(inodes); 2722 if (error) { 2723 xfs_trans_cancel(tp, cancel_flags); 2724 goto std_return; 2725 } 2726 2727 /* 2728 * Lock all the participating inodes. Depending upon whether 2729 * the target_name exists in the target directory, and 2730 * whether the target directory is the same as the source 2731 * directory, we can lock from 2 to 4 inodes. 2732 */ 2733 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2734 2735 /* 2736 * Join all the inodes to the transaction. From this point on, 2737 * we can rely on either trans_commit or trans_cancel to unlock 2738 * them. 2739 */ 2740 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2741 if (new_parent) 2742 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2743 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2744 if (target_ip) 2745 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2746 2747 /* 2748 * If we are using project inheritance, we only allow renames 2749 * into our tree when the project IDs are the same; else the 2750 * tree quota mechanism would be circumvented. 2751 */ 2752 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2753 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2754 error = -EXDEV; 2755 goto error_return; 2756 } 2757 2758 /* 2759 * Set up the target. 2760 */ 2761 if (target_ip == NULL) { 2762 /* 2763 * If there's no space reservation, check the entry will 2764 * fit before actually inserting it. 2765 */ 2766 if (!spaceres) { 2767 error = xfs_dir_canenter(tp, target_dp, target_name); 2768 if (error) 2769 goto error_return; 2770 } 2771 /* 2772 * If target does not exist and the rename crosses 2773 * directories, adjust the target directory link count 2774 * to account for the ".." reference from the new entry. 2775 */ 2776 error = xfs_dir_createname(tp, target_dp, target_name, 2777 src_ip->i_ino, &first_block, 2778 &free_list, spaceres); 2779 if (error == -ENOSPC) 2780 goto error_return; 2781 if (error) 2782 goto abort_return; 2783 2784 xfs_trans_ichgtime(tp, target_dp, 2785 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2786 2787 if (new_parent && src_is_directory) { 2788 error = xfs_bumplink(tp, target_dp); 2789 if (error) 2790 goto abort_return; 2791 } 2792 } else { /* target_ip != NULL */ 2793 /* 2794 * If target exists and it's a directory, check that both 2795 * target and source are directories and that target can be 2796 * destroyed, or that neither is a directory. 2797 */ 2798 if (S_ISDIR(target_ip->i_d.di_mode)) { 2799 /* 2800 * Make sure target dir is empty. 2801 */ 2802 if (!(xfs_dir_isempty(target_ip)) || 2803 (target_ip->i_d.di_nlink > 2)) { 2804 error = -EEXIST; 2805 goto error_return; 2806 } 2807 } 2808 2809 /* 2810 * Link the source inode under the target name. 2811 * If the source inode is a directory and we are moving 2812 * it across directories, its ".." entry will be 2813 * inconsistent until we replace that down below. 2814 * 2815 * In case there is already an entry with the same 2816 * name at the destination directory, remove it first. 2817 */ 2818 error = xfs_dir_replace(tp, target_dp, target_name, 2819 src_ip->i_ino, 2820 &first_block, &free_list, spaceres); 2821 if (error) 2822 goto abort_return; 2823 2824 xfs_trans_ichgtime(tp, target_dp, 2825 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2826 2827 /* 2828 * Decrement the link count on the target since the target 2829 * dir no longer points to it. 2830 */ 2831 error = xfs_droplink(tp, target_ip); 2832 if (error) 2833 goto abort_return; 2834 2835 if (src_is_directory) { 2836 /* 2837 * Drop the link from the old "." entry. 2838 */ 2839 error = xfs_droplink(tp, target_ip); 2840 if (error) 2841 goto abort_return; 2842 } 2843 } /* target_ip != NULL */ 2844 2845 /* 2846 * Remove the source. 2847 */ 2848 if (new_parent && src_is_directory) { 2849 /* 2850 * Rewrite the ".." entry to point to the new 2851 * directory. 2852 */ 2853 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 2854 target_dp->i_ino, 2855 &first_block, &free_list, spaceres); 2856 ASSERT(error != -EEXIST); 2857 if (error) 2858 goto abort_return; 2859 } 2860 2861 /* 2862 * We always want to hit the ctime on the source inode. 2863 * 2864 * This isn't strictly required by the standards since the source 2865 * inode isn't really being changed, but old unix file systems did 2866 * it and some incremental backup programs won't work without it. 2867 */ 2868 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 2869 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 2870 2871 /* 2872 * Adjust the link count on src_dp. This is necessary when 2873 * renaming a directory, either within one parent when 2874 * the target existed, or across two parent directories. 2875 */ 2876 if (src_is_directory && (new_parent || target_ip != NULL)) { 2877 2878 /* 2879 * Decrement link count on src_directory since the 2880 * entry that's moved no longer points to it. 2881 */ 2882 error = xfs_droplink(tp, src_dp); 2883 if (error) 2884 goto abort_return; 2885 } 2886 2887 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 2888 &first_block, &free_list, spaceres); 2889 if (error) 2890 goto abort_return; 2891 2892 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2893 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 2894 if (new_parent) 2895 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 2896 2897 /* 2898 * If this is a synchronous mount, make sure that the 2899 * rename transaction goes to disk before returning to 2900 * the user. 2901 */ 2902 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 2903 xfs_trans_set_sync(tp); 2904 } 2905 2906 error = xfs_bmap_finish(&tp, &free_list, &committed); 2907 if (error) { 2908 xfs_bmap_cancel(&free_list); 2909 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES | 2910 XFS_TRANS_ABORT)); 2911 goto std_return; 2912 } 2913 2914 /* 2915 * trans_commit will unlock src_ip, target_ip & decrement 2916 * the vnode references. 2917 */ 2918 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2919 2920 abort_return: 2921 cancel_flags |= XFS_TRANS_ABORT; 2922 error_return: 2923 xfs_bmap_cancel(&free_list); 2924 xfs_trans_cancel(tp, cancel_flags); 2925 std_return: 2926 return error; 2927 } 2928 2929 STATIC int 2930 xfs_iflush_cluster( 2931 xfs_inode_t *ip, 2932 xfs_buf_t *bp) 2933 { 2934 xfs_mount_t *mp = ip->i_mount; 2935 struct xfs_perag *pag; 2936 unsigned long first_index, mask; 2937 unsigned long inodes_per_cluster; 2938 int ilist_size; 2939 xfs_inode_t **ilist; 2940 xfs_inode_t *iq; 2941 int nr_found; 2942 int clcount = 0; 2943 int bufwasdelwri; 2944 int i; 2945 2946 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 2947 2948 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 2949 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 2950 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 2951 if (!ilist) 2952 goto out_put; 2953 2954 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 2955 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 2956 rcu_read_lock(); 2957 /* really need a gang lookup range call here */ 2958 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 2959 first_index, inodes_per_cluster); 2960 if (nr_found == 0) 2961 goto out_free; 2962 2963 for (i = 0; i < nr_found; i++) { 2964 iq = ilist[i]; 2965 if (iq == ip) 2966 continue; 2967 2968 /* 2969 * because this is an RCU protected lookup, we could find a 2970 * recently freed or even reallocated inode during the lookup. 2971 * We need to check under the i_flags_lock for a valid inode 2972 * here. Skip it if it is not valid or the wrong inode. 2973 */ 2974 spin_lock(&ip->i_flags_lock); 2975 if (!ip->i_ino || 2976 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 2977 spin_unlock(&ip->i_flags_lock); 2978 continue; 2979 } 2980 spin_unlock(&ip->i_flags_lock); 2981 2982 /* 2983 * Do an un-protected check to see if the inode is dirty and 2984 * is a candidate for flushing. These checks will be repeated 2985 * later after the appropriate locks are acquired. 2986 */ 2987 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 2988 continue; 2989 2990 /* 2991 * Try to get locks. If any are unavailable or it is pinned, 2992 * then this inode cannot be flushed and is skipped. 2993 */ 2994 2995 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 2996 continue; 2997 if (!xfs_iflock_nowait(iq)) { 2998 xfs_iunlock(iq, XFS_ILOCK_SHARED); 2999 continue; 3000 } 3001 if (xfs_ipincount(iq)) { 3002 xfs_ifunlock(iq); 3003 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3004 continue; 3005 } 3006 3007 /* 3008 * arriving here means that this inode can be flushed. First 3009 * re-check that it's dirty before flushing. 3010 */ 3011 if (!xfs_inode_clean(iq)) { 3012 int error; 3013 error = xfs_iflush_int(iq, bp); 3014 if (error) { 3015 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3016 goto cluster_corrupt_out; 3017 } 3018 clcount++; 3019 } else { 3020 xfs_ifunlock(iq); 3021 } 3022 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3023 } 3024 3025 if (clcount) { 3026 XFS_STATS_INC(xs_icluster_flushcnt); 3027 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3028 } 3029 3030 out_free: 3031 rcu_read_unlock(); 3032 kmem_free(ilist); 3033 out_put: 3034 xfs_perag_put(pag); 3035 return 0; 3036 3037 3038 cluster_corrupt_out: 3039 /* 3040 * Corruption detected in the clustering loop. Invalidate the 3041 * inode buffer and shut down the filesystem. 3042 */ 3043 rcu_read_unlock(); 3044 /* 3045 * Clean up the buffer. If it was delwri, just release it -- 3046 * brelse can handle it with no problems. If not, shut down the 3047 * filesystem before releasing the buffer. 3048 */ 3049 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3050 if (bufwasdelwri) 3051 xfs_buf_relse(bp); 3052 3053 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3054 3055 if (!bufwasdelwri) { 3056 /* 3057 * Just like incore_relse: if we have b_iodone functions, 3058 * mark the buffer as an error and call them. Otherwise 3059 * mark it as stale and brelse. 3060 */ 3061 if (bp->b_iodone) { 3062 XFS_BUF_UNDONE(bp); 3063 xfs_buf_stale(bp); 3064 xfs_buf_ioerror(bp, -EIO); 3065 xfs_buf_ioend(bp); 3066 } else { 3067 xfs_buf_stale(bp); 3068 xfs_buf_relse(bp); 3069 } 3070 } 3071 3072 /* 3073 * Unlocks the flush lock 3074 */ 3075 xfs_iflush_abort(iq, false); 3076 kmem_free(ilist); 3077 xfs_perag_put(pag); 3078 return -EFSCORRUPTED; 3079 } 3080 3081 /* 3082 * Flush dirty inode metadata into the backing buffer. 3083 * 3084 * The caller must have the inode lock and the inode flush lock held. The 3085 * inode lock will still be held upon return to the caller, and the inode 3086 * flush lock will be released after the inode has reached the disk. 3087 * 3088 * The caller must write out the buffer returned in *bpp and release it. 3089 */ 3090 int 3091 xfs_iflush( 3092 struct xfs_inode *ip, 3093 struct xfs_buf **bpp) 3094 { 3095 struct xfs_mount *mp = ip->i_mount; 3096 struct xfs_buf *bp; 3097 struct xfs_dinode *dip; 3098 int error; 3099 3100 XFS_STATS_INC(xs_iflush_count); 3101 3102 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3103 ASSERT(xfs_isiflocked(ip)); 3104 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3105 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3106 3107 *bpp = NULL; 3108 3109 xfs_iunpin_wait(ip); 3110 3111 /* 3112 * For stale inodes we cannot rely on the backing buffer remaining 3113 * stale in cache for the remaining life of the stale inode and so 3114 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3115 * inodes below. We have to check this after ensuring the inode is 3116 * unpinned so that it is safe to reclaim the stale inode after the 3117 * flush call. 3118 */ 3119 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3120 xfs_ifunlock(ip); 3121 return 0; 3122 } 3123 3124 /* 3125 * This may have been unpinned because the filesystem is shutting 3126 * down forcibly. If that's the case we must not write this inode 3127 * to disk, because the log record didn't make it to disk. 3128 * 3129 * We also have to remove the log item from the AIL in this case, 3130 * as we wait for an empty AIL as part of the unmount process. 3131 */ 3132 if (XFS_FORCED_SHUTDOWN(mp)) { 3133 error = -EIO; 3134 goto abort_out; 3135 } 3136 3137 /* 3138 * Get the buffer containing the on-disk inode. 3139 */ 3140 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3141 0); 3142 if (error || !bp) { 3143 xfs_ifunlock(ip); 3144 return error; 3145 } 3146 3147 /* 3148 * First flush out the inode that xfs_iflush was called with. 3149 */ 3150 error = xfs_iflush_int(ip, bp); 3151 if (error) 3152 goto corrupt_out; 3153 3154 /* 3155 * If the buffer is pinned then push on the log now so we won't 3156 * get stuck waiting in the write for too long. 3157 */ 3158 if (xfs_buf_ispinned(bp)) 3159 xfs_log_force(mp, 0); 3160 3161 /* 3162 * inode clustering: 3163 * see if other inodes can be gathered into this write 3164 */ 3165 error = xfs_iflush_cluster(ip, bp); 3166 if (error) 3167 goto cluster_corrupt_out; 3168 3169 *bpp = bp; 3170 return 0; 3171 3172 corrupt_out: 3173 xfs_buf_relse(bp); 3174 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3175 cluster_corrupt_out: 3176 error = -EFSCORRUPTED; 3177 abort_out: 3178 /* 3179 * Unlocks the flush lock 3180 */ 3181 xfs_iflush_abort(ip, false); 3182 return error; 3183 } 3184 3185 STATIC int 3186 xfs_iflush_int( 3187 struct xfs_inode *ip, 3188 struct xfs_buf *bp) 3189 { 3190 struct xfs_inode_log_item *iip = ip->i_itemp; 3191 struct xfs_dinode *dip; 3192 struct xfs_mount *mp = ip->i_mount; 3193 3194 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3195 ASSERT(xfs_isiflocked(ip)); 3196 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3197 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3198 ASSERT(iip != NULL && iip->ili_fields != 0); 3199 ASSERT(ip->i_d.di_version > 1); 3200 3201 /* set *dip = inode's place in the buffer */ 3202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3203 3204 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3205 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3206 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3207 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3208 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3209 goto corrupt_out; 3210 } 3211 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3212 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3213 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3214 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3215 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3216 goto corrupt_out; 3217 } 3218 if (S_ISREG(ip->i_d.di_mode)) { 3219 if (XFS_TEST_ERROR( 3220 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3221 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3222 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3223 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3224 "%s: Bad regular inode %Lu, ptr 0x%p", 3225 __func__, ip->i_ino, ip); 3226 goto corrupt_out; 3227 } 3228 } else if (S_ISDIR(ip->i_d.di_mode)) { 3229 if (XFS_TEST_ERROR( 3230 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3231 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3232 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3233 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3234 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3235 "%s: Bad directory inode %Lu, ptr 0x%p", 3236 __func__, ip->i_ino, ip); 3237 goto corrupt_out; 3238 } 3239 } 3240 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3241 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3242 XFS_RANDOM_IFLUSH_5)) { 3243 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3244 "%s: detected corrupt incore inode %Lu, " 3245 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3246 __func__, ip->i_ino, 3247 ip->i_d.di_nextents + ip->i_d.di_anextents, 3248 ip->i_d.di_nblocks, ip); 3249 goto corrupt_out; 3250 } 3251 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3252 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3253 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3254 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3255 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3256 goto corrupt_out; 3257 } 3258 3259 /* 3260 * Inode item log recovery for v2 inodes are dependent on the 3261 * di_flushiter count for correct sequencing. We bump the flush 3262 * iteration count so we can detect flushes which postdate a log record 3263 * during recovery. This is redundant as we now log every change and 3264 * hence this can't happen but we need to still do it to ensure 3265 * backwards compatibility with old kernels that predate logging all 3266 * inode changes. 3267 */ 3268 if (ip->i_d.di_version < 3) 3269 ip->i_d.di_flushiter++; 3270 3271 /* 3272 * Copy the dirty parts of the inode into the on-disk 3273 * inode. We always copy out the core of the inode, 3274 * because if the inode is dirty at all the core must 3275 * be. 3276 */ 3277 xfs_dinode_to_disk(dip, &ip->i_d); 3278 3279 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3280 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3281 ip->i_d.di_flushiter = 0; 3282 3283 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3284 if (XFS_IFORK_Q(ip)) 3285 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3286 xfs_inobp_check(mp, bp); 3287 3288 /* 3289 * We've recorded everything logged in the inode, so we'd like to clear 3290 * the ili_fields bits so we don't log and flush things unnecessarily. 3291 * However, we can't stop logging all this information until the data 3292 * we've copied into the disk buffer is written to disk. If we did we 3293 * might overwrite the copy of the inode in the log with all the data 3294 * after re-logging only part of it, and in the face of a crash we 3295 * wouldn't have all the data we need to recover. 3296 * 3297 * What we do is move the bits to the ili_last_fields field. When 3298 * logging the inode, these bits are moved back to the ili_fields field. 3299 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3300 * know that the information those bits represent is permanently on 3301 * disk. As long as the flush completes before the inode is logged 3302 * again, then both ili_fields and ili_last_fields will be cleared. 3303 * 3304 * We can play with the ili_fields bits here, because the inode lock 3305 * must be held exclusively in order to set bits there and the flush 3306 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3307 * done routine can tell whether or not to look in the AIL. Also, store 3308 * the current LSN of the inode so that we can tell whether the item has 3309 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3310 * need the AIL lock, because it is a 64 bit value that cannot be read 3311 * atomically. 3312 */ 3313 iip->ili_last_fields = iip->ili_fields; 3314 iip->ili_fields = 0; 3315 iip->ili_logged = 1; 3316 3317 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3318 &iip->ili_item.li_lsn); 3319 3320 /* 3321 * Attach the function xfs_iflush_done to the inode's 3322 * buffer. This will remove the inode from the AIL 3323 * and unlock the inode's flush lock when the inode is 3324 * completely written to disk. 3325 */ 3326 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3327 3328 /* update the lsn in the on disk inode if required */ 3329 if (ip->i_d.di_version == 3) 3330 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3331 3332 /* generate the checksum. */ 3333 xfs_dinode_calc_crc(mp, dip); 3334 3335 ASSERT(bp->b_fspriv != NULL); 3336 ASSERT(bp->b_iodone != NULL); 3337 return 0; 3338 3339 corrupt_out: 3340 return -EFSCORRUPTED; 3341 } 3342