1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include <linux/log2.h> 19 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_shared.h" 23 #include "xfs_format.h" 24 #include "xfs_log_format.h" 25 #include "xfs_trans_resv.h" 26 #include "xfs_sb.h" 27 #include "xfs_mount.h" 28 #include "xfs_inode.h" 29 #include "xfs_da_format.h" 30 #include "xfs_da_btree.h" 31 #include "xfs_dir2.h" 32 #include "xfs_attr_sf.h" 33 #include "xfs_attr.h" 34 #include "xfs_trans_space.h" 35 #include "xfs_trans.h" 36 #include "xfs_buf_item.h" 37 #include "xfs_inode_item.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_bmap_util.h" 41 #include "xfs_error.h" 42 #include "xfs_quota.h" 43 #include "xfs_filestream.h" 44 #include "xfs_cksum.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_symlink.h" 48 #include "xfs_trans_priv.h" 49 #include "xfs_log.h" 50 #include "xfs_bmap_btree.h" 51 52 kmem_zone_t *xfs_inode_zone; 53 54 /* 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents 56 * freed from a file in a single transaction. 57 */ 58 #define XFS_ITRUNC_MAX_EXTENTS 2 59 60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); 61 62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *); 63 64 /* 65 * helper function to extract extent size hint from inode 66 */ 67 xfs_extlen_t 68 xfs_get_extsz_hint( 69 struct xfs_inode *ip) 70 { 71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) 72 return ip->i_d.di_extsize; 73 if (XFS_IS_REALTIME_INODE(ip)) 74 return ip->i_mount->m_sb.sb_rextsize; 75 return 0; 76 } 77 78 /* 79 * These two are wrapper routines around the xfs_ilock() routine used to 80 * centralize some grungy code. They are used in places that wish to lock the 81 * inode solely for reading the extents. The reason these places can't just 82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to 83 * bringing in of the extents from disk for a file in b-tree format. If the 84 * inode is in b-tree format, then we need to lock the inode exclusively until 85 * the extents are read in. Locking it exclusively all the time would limit 86 * our parallelism unnecessarily, though. What we do instead is check to see 87 * if the extents have been read in yet, and only lock the inode exclusively 88 * if they have not. 89 * 90 * The functions return a value which should be given to the corresponding 91 * xfs_iunlock() call. 92 */ 93 uint 94 xfs_ilock_data_map_shared( 95 struct xfs_inode *ip) 96 { 97 uint lock_mode = XFS_ILOCK_SHARED; 98 99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && 100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) 101 lock_mode = XFS_ILOCK_EXCL; 102 xfs_ilock(ip, lock_mode); 103 return lock_mode; 104 } 105 106 uint 107 xfs_ilock_attr_map_shared( 108 struct xfs_inode *ip) 109 { 110 uint lock_mode = XFS_ILOCK_SHARED; 111 112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && 113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) 114 lock_mode = XFS_ILOCK_EXCL; 115 xfs_ilock(ip, lock_mode); 116 return lock_mode; 117 } 118 119 /* 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and 121 * the i_lock. This routine allows various combinations of the locks to be 122 * obtained. 123 * 124 * The 3 locks should always be ordered so that the IO lock is obtained first, 125 * the mmap lock second and the ilock last in order to prevent deadlock. 126 * 127 * Basic locking order: 128 * 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock 130 * 131 * mmap_sem locking order: 132 * 133 * i_iolock -> page lock -> mmap_sem 134 * mmap_sem -> i_mmap_lock -> page_lock 135 * 136 * The difference in mmap_sem locking order mean that we cannot hold the 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem 139 * in get_user_pages() to map the user pages into the kernel address space for 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because 141 * page faults already hold the mmap_sem. 142 * 143 * Hence to serialise fully against both syscall and mmap based IO, we need to 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both 145 * taken in places where we need to invalidate the page cache in a race 146 * free manner (e.g. truncate, hole punch and other extent manipulation 147 * functions). 148 */ 149 void 150 xfs_ilock( 151 xfs_inode_t *ip, 152 uint lock_flags) 153 { 154 trace_xfs_ilock(ip, lock_flags, _RET_IP_); 155 156 /* 157 * You can't set both SHARED and EXCL for the same lock, 158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 160 */ 161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 168 169 if (lock_flags & XFS_IOLOCK_EXCL) 170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 171 else if (lock_flags & XFS_IOLOCK_SHARED) 172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags)); 173 174 if (lock_flags & XFS_MMAPLOCK_EXCL) 175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 176 else if (lock_flags & XFS_MMAPLOCK_SHARED) 177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); 178 179 if (lock_flags & XFS_ILOCK_EXCL) 180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 181 else if (lock_flags & XFS_ILOCK_SHARED) 182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); 183 } 184 185 /* 186 * This is just like xfs_ilock(), except that the caller 187 * is guaranteed not to sleep. It returns 1 if it gets 188 * the requested locks and 0 otherwise. If the IO lock is 189 * obtained but the inode lock cannot be, then the IO lock 190 * is dropped before returning. 191 * 192 * ip -- the inode being locked 193 * lock_flags -- this parameter indicates the inode's locks to be 194 * to be locked. See the comment for xfs_ilock() for a list 195 * of valid values. 196 */ 197 int 198 xfs_ilock_nowait( 199 xfs_inode_t *ip, 200 uint lock_flags) 201 { 202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); 203 204 /* 205 * You can't set both SHARED and EXCL for the same lock, 206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 208 */ 209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 216 217 if (lock_flags & XFS_IOLOCK_EXCL) { 218 if (!mrtryupdate(&ip->i_iolock)) 219 goto out; 220 } else if (lock_flags & XFS_IOLOCK_SHARED) { 221 if (!mrtryaccess(&ip->i_iolock)) 222 goto out; 223 } 224 225 if (lock_flags & XFS_MMAPLOCK_EXCL) { 226 if (!mrtryupdate(&ip->i_mmaplock)) 227 goto out_undo_iolock; 228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) { 229 if (!mrtryaccess(&ip->i_mmaplock)) 230 goto out_undo_iolock; 231 } 232 233 if (lock_flags & XFS_ILOCK_EXCL) { 234 if (!mrtryupdate(&ip->i_lock)) 235 goto out_undo_mmaplock; 236 } else if (lock_flags & XFS_ILOCK_SHARED) { 237 if (!mrtryaccess(&ip->i_lock)) 238 goto out_undo_mmaplock; 239 } 240 return 1; 241 242 out_undo_mmaplock: 243 if (lock_flags & XFS_MMAPLOCK_EXCL) 244 mrunlock_excl(&ip->i_mmaplock); 245 else if (lock_flags & XFS_MMAPLOCK_SHARED) 246 mrunlock_shared(&ip->i_mmaplock); 247 out_undo_iolock: 248 if (lock_flags & XFS_IOLOCK_EXCL) 249 mrunlock_excl(&ip->i_iolock); 250 else if (lock_flags & XFS_IOLOCK_SHARED) 251 mrunlock_shared(&ip->i_iolock); 252 out: 253 return 0; 254 } 255 256 /* 257 * xfs_iunlock() is used to drop the inode locks acquired with 258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so 260 * that we know which locks to drop. 261 * 262 * ip -- the inode being unlocked 263 * lock_flags -- this parameter indicates the inode's locks to be 264 * to be unlocked. See the comment for xfs_ilock() for a list 265 * of valid values for this parameter. 266 * 267 */ 268 void 269 xfs_iunlock( 270 xfs_inode_t *ip, 271 uint lock_flags) 272 { 273 /* 274 * You can't set both SHARED and EXCL for the same lock, 275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, 276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags. 277 */ 278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != 279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); 280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != 281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); 282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != 283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0); 285 ASSERT(lock_flags != 0); 286 287 if (lock_flags & XFS_IOLOCK_EXCL) 288 mrunlock_excl(&ip->i_iolock); 289 else if (lock_flags & XFS_IOLOCK_SHARED) 290 mrunlock_shared(&ip->i_iolock); 291 292 if (lock_flags & XFS_MMAPLOCK_EXCL) 293 mrunlock_excl(&ip->i_mmaplock); 294 else if (lock_flags & XFS_MMAPLOCK_SHARED) 295 mrunlock_shared(&ip->i_mmaplock); 296 297 if (lock_flags & XFS_ILOCK_EXCL) 298 mrunlock_excl(&ip->i_lock); 299 else if (lock_flags & XFS_ILOCK_SHARED) 300 mrunlock_shared(&ip->i_lock); 301 302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_); 303 } 304 305 /* 306 * give up write locks. the i/o lock cannot be held nested 307 * if it is being demoted. 308 */ 309 void 310 xfs_ilock_demote( 311 xfs_inode_t *ip, 312 uint lock_flags) 313 { 314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); 315 ASSERT((lock_flags & 316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); 317 318 if (lock_flags & XFS_ILOCK_EXCL) 319 mrdemote(&ip->i_lock); 320 if (lock_flags & XFS_MMAPLOCK_EXCL) 321 mrdemote(&ip->i_mmaplock); 322 if (lock_flags & XFS_IOLOCK_EXCL) 323 mrdemote(&ip->i_iolock); 324 325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); 326 } 327 328 #if defined(DEBUG) || defined(XFS_WARN) 329 int 330 xfs_isilocked( 331 xfs_inode_t *ip, 332 uint lock_flags) 333 { 334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { 335 if (!(lock_flags & XFS_ILOCK_SHARED)) 336 return !!ip->i_lock.mr_writer; 337 return rwsem_is_locked(&ip->i_lock.mr_lock); 338 } 339 340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { 341 if (!(lock_flags & XFS_MMAPLOCK_SHARED)) 342 return !!ip->i_mmaplock.mr_writer; 343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock); 344 } 345 346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { 347 if (!(lock_flags & XFS_IOLOCK_SHARED)) 348 return !!ip->i_iolock.mr_writer; 349 return rwsem_is_locked(&ip->i_iolock.mr_lock); 350 } 351 352 ASSERT(0); 353 return 0; 354 } 355 #endif 356 357 #ifdef DEBUG 358 int xfs_locked_n; 359 int xfs_small_retries; 360 int xfs_middle_retries; 361 int xfs_lots_retries; 362 int xfs_lock_delays; 363 #endif 364 365 /* 366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different 367 * value. This shouldn't be called for page fault locking, but we also need to 368 * ensure we don't overrun the number of lockdep subclasses for the iolock or 369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations. 370 */ 371 static inline int 372 xfs_lock_inumorder(int lock_mode, int subclass) 373 { 374 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 375 ASSERT(subclass + XFS_LOCK_INUMORDER < 376 (1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT))); 377 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT; 378 } 379 380 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { 381 ASSERT(subclass + XFS_LOCK_INUMORDER < 382 (1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT))); 383 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << 384 XFS_MMAPLOCK_SHIFT; 385 } 386 387 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) 388 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT; 389 390 return lock_mode; 391 } 392 393 /* 394 * The following routine will lock n inodes in exclusive mode. We assume the 395 * caller calls us with the inodes in i_ino order. 396 * 397 * We need to detect deadlock where an inode that we lock is in the AIL and we 398 * start waiting for another inode that is locked by a thread in a long running 399 * transaction (such as truncate). This can result in deadlock since the long 400 * running trans might need to wait for the inode we just locked in order to 401 * push the tail and free space in the log. 402 */ 403 void 404 xfs_lock_inodes( 405 xfs_inode_t **ips, 406 int inodes, 407 uint lock_mode) 408 { 409 int attempts = 0, i, j, try_lock; 410 xfs_log_item_t *lp; 411 412 /* currently supports between 2 and 5 inodes */ 413 ASSERT(ips && inodes >= 2 && inodes <= 5); 414 415 try_lock = 0; 416 i = 0; 417 again: 418 for (; i < inodes; i++) { 419 ASSERT(ips[i]); 420 421 if (i && (ips[i] == ips[i - 1])) /* Already locked */ 422 continue; 423 424 /* 425 * If try_lock is not set yet, make sure all locked inodes are 426 * not in the AIL. If any are, set try_lock to be used later. 427 */ 428 if (!try_lock) { 429 for (j = (i - 1); j >= 0 && !try_lock; j--) { 430 lp = (xfs_log_item_t *)ips[j]->i_itemp; 431 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) 432 try_lock++; 433 } 434 } 435 436 /* 437 * If any of the previous locks we have locked is in the AIL, 438 * we must TRY to get the second and subsequent locks. If 439 * we can't get any, we must release all we have 440 * and try again. 441 */ 442 if (!try_lock) { 443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); 444 continue; 445 } 446 447 /* try_lock means we have an inode locked that is in the AIL. */ 448 ASSERT(i != 0); 449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) 450 continue; 451 452 /* 453 * Unlock all previous guys and try again. xfs_iunlock will try 454 * to push the tail if the inode is in the AIL. 455 */ 456 attempts++; 457 for (j = i - 1; j >= 0; j--) { 458 /* 459 * Check to see if we've already unlocked this one. Not 460 * the first one going back, and the inode ptr is the 461 * same. 462 */ 463 if (j != (i - 1) && ips[j] == ips[j + 1]) 464 continue; 465 466 xfs_iunlock(ips[j], lock_mode); 467 } 468 469 if ((attempts % 5) == 0) { 470 delay(1); /* Don't just spin the CPU */ 471 #ifdef DEBUG 472 xfs_lock_delays++; 473 #endif 474 } 475 i = 0; 476 try_lock = 0; 477 goto again; 478 } 479 480 #ifdef DEBUG 481 if (attempts) { 482 if (attempts < 5) xfs_small_retries++; 483 else if (attempts < 100) xfs_middle_retries++; 484 else xfs_lots_retries++; 485 } else { 486 xfs_locked_n++; 487 } 488 #endif 489 } 490 491 /* 492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - 493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we 494 * lock more than one at a time, lockdep will report false positives saying we 495 * have violated locking orders. 496 */ 497 void 498 xfs_lock_two_inodes( 499 xfs_inode_t *ip0, 500 xfs_inode_t *ip1, 501 uint lock_mode) 502 { 503 xfs_inode_t *temp; 504 int attempts = 0; 505 xfs_log_item_t *lp; 506 507 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { 508 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))); 509 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 510 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) 511 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); 512 513 ASSERT(ip0->i_ino != ip1->i_ino); 514 515 if (ip0->i_ino > ip1->i_ino) { 516 temp = ip0; 517 ip0 = ip1; 518 ip1 = temp; 519 } 520 521 again: 522 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); 523 524 /* 525 * If the first lock we have locked is in the AIL, we must TRY to get 526 * the second lock. If we can't get it, we must release the first one 527 * and try again. 528 */ 529 lp = (xfs_log_item_t *)ip0->i_itemp; 530 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { 531 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { 532 xfs_iunlock(ip0, lock_mode); 533 if ((++attempts % 5) == 0) 534 delay(1); /* Don't just spin the CPU */ 535 goto again; 536 } 537 } else { 538 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); 539 } 540 } 541 542 543 void 544 __xfs_iflock( 545 struct xfs_inode *ip) 546 { 547 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); 548 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); 549 550 do { 551 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 552 if (xfs_isiflocked(ip)) 553 io_schedule(); 554 } while (!xfs_iflock_nowait(ip)); 555 556 finish_wait(wq, &wait.wait); 557 } 558 559 STATIC uint 560 _xfs_dic2xflags( 561 __uint16_t di_flags) 562 { 563 uint flags = 0; 564 565 if (di_flags & XFS_DIFLAG_ANY) { 566 if (di_flags & XFS_DIFLAG_REALTIME) 567 flags |= XFS_XFLAG_REALTIME; 568 if (di_flags & XFS_DIFLAG_PREALLOC) 569 flags |= XFS_XFLAG_PREALLOC; 570 if (di_flags & XFS_DIFLAG_IMMUTABLE) 571 flags |= XFS_XFLAG_IMMUTABLE; 572 if (di_flags & XFS_DIFLAG_APPEND) 573 flags |= XFS_XFLAG_APPEND; 574 if (di_flags & XFS_DIFLAG_SYNC) 575 flags |= XFS_XFLAG_SYNC; 576 if (di_flags & XFS_DIFLAG_NOATIME) 577 flags |= XFS_XFLAG_NOATIME; 578 if (di_flags & XFS_DIFLAG_NODUMP) 579 flags |= XFS_XFLAG_NODUMP; 580 if (di_flags & XFS_DIFLAG_RTINHERIT) 581 flags |= XFS_XFLAG_RTINHERIT; 582 if (di_flags & XFS_DIFLAG_PROJINHERIT) 583 flags |= XFS_XFLAG_PROJINHERIT; 584 if (di_flags & XFS_DIFLAG_NOSYMLINKS) 585 flags |= XFS_XFLAG_NOSYMLINKS; 586 if (di_flags & XFS_DIFLAG_EXTSIZE) 587 flags |= XFS_XFLAG_EXTSIZE; 588 if (di_flags & XFS_DIFLAG_EXTSZINHERIT) 589 flags |= XFS_XFLAG_EXTSZINHERIT; 590 if (di_flags & XFS_DIFLAG_NODEFRAG) 591 flags |= XFS_XFLAG_NODEFRAG; 592 if (di_flags & XFS_DIFLAG_FILESTREAM) 593 flags |= XFS_XFLAG_FILESTREAM; 594 } 595 596 return flags; 597 } 598 599 uint 600 xfs_ip2xflags( 601 xfs_inode_t *ip) 602 { 603 xfs_icdinode_t *dic = &ip->i_d; 604 605 return _xfs_dic2xflags(dic->di_flags) | 606 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0); 607 } 608 609 uint 610 xfs_dic2xflags( 611 xfs_dinode_t *dip) 612 { 613 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) | 614 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0); 615 } 616 617 /* 618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match 619 * is allowed, otherwise it has to be an exact match. If a CI match is found, 620 * ci_name->name will point to a the actual name (caller must free) or 621 * will be set to NULL if an exact match is found. 622 */ 623 int 624 xfs_lookup( 625 xfs_inode_t *dp, 626 struct xfs_name *name, 627 xfs_inode_t **ipp, 628 struct xfs_name *ci_name) 629 { 630 xfs_ino_t inum; 631 int error; 632 uint lock_mode; 633 634 trace_xfs_lookup(dp, name); 635 636 if (XFS_FORCED_SHUTDOWN(dp->i_mount)) 637 return -EIO; 638 639 lock_mode = xfs_ilock_data_map_shared(dp); 640 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); 641 xfs_iunlock(dp, lock_mode); 642 643 if (error) 644 goto out; 645 646 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); 647 if (error) 648 goto out_free_name; 649 650 return 0; 651 652 out_free_name: 653 if (ci_name) 654 kmem_free(ci_name->name); 655 out: 656 *ipp = NULL; 657 return error; 658 } 659 660 /* 661 * Allocate an inode on disk and return a copy of its in-core version. 662 * The in-core inode is locked exclusively. Set mode, nlink, and rdev 663 * appropriately within the inode. The uid and gid for the inode are 664 * set according to the contents of the given cred structure. 665 * 666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() 667 * has a free inode available, call xfs_iget() to obtain the in-core 668 * version of the allocated inode. Finally, fill in the inode and 669 * log its initial contents. In this case, ialloc_context would be 670 * set to NULL. 671 * 672 * If xfs_dialloc() does not have an available inode, it will replenish 673 * its supply by doing an allocation. Since we can only do one 674 * allocation within a transaction without deadlocks, we must commit 675 * the current transaction before returning the inode itself. 676 * In this case, therefore, we will set ialloc_context and return. 677 * The caller should then commit the current transaction, start a new 678 * transaction, and call xfs_ialloc() again to actually get the inode. 679 * 680 * To ensure that some other process does not grab the inode that 681 * was allocated during the first call to xfs_ialloc(), this routine 682 * also returns the [locked] bp pointing to the head of the freelist 683 * as ialloc_context. The caller should hold this buffer across 684 * the commit and pass it back into this routine on the second call. 685 * 686 * If we are allocating quota inodes, we do not have a parent inode 687 * to attach to or associate with (i.e. pip == NULL) because they 688 * are not linked into the directory structure - they are attached 689 * directly to the superblock - and so have no parent. 690 */ 691 int 692 xfs_ialloc( 693 xfs_trans_t *tp, 694 xfs_inode_t *pip, 695 umode_t mode, 696 xfs_nlink_t nlink, 697 xfs_dev_t rdev, 698 prid_t prid, 699 int okalloc, 700 xfs_buf_t **ialloc_context, 701 xfs_inode_t **ipp) 702 { 703 struct xfs_mount *mp = tp->t_mountp; 704 xfs_ino_t ino; 705 xfs_inode_t *ip; 706 uint flags; 707 int error; 708 struct timespec tv; 709 710 /* 711 * Call the space management code to pick 712 * the on-disk inode to be allocated. 713 */ 714 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, 715 ialloc_context, &ino); 716 if (error) 717 return error; 718 if (*ialloc_context || ino == NULLFSINO) { 719 *ipp = NULL; 720 return 0; 721 } 722 ASSERT(*ialloc_context == NULL); 723 724 /* 725 * Get the in-core inode with the lock held exclusively. 726 * This is because we're setting fields here we need 727 * to prevent others from looking at until we're done. 728 */ 729 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, 730 XFS_ILOCK_EXCL, &ip); 731 if (error) 732 return error; 733 ASSERT(ip != NULL); 734 735 /* 736 * We always convert v1 inodes to v2 now - we only support filesystems 737 * with >= v2 inode capability, so there is no reason for ever leaving 738 * an inode in v1 format. 739 */ 740 if (ip->i_d.di_version == 1) 741 ip->i_d.di_version = 2; 742 743 ip->i_d.di_mode = mode; 744 ip->i_d.di_onlink = 0; 745 ip->i_d.di_nlink = nlink; 746 ASSERT(ip->i_d.di_nlink == nlink); 747 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); 748 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); 749 xfs_set_projid(ip, prid); 750 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); 751 752 if (pip && XFS_INHERIT_GID(pip)) { 753 ip->i_d.di_gid = pip->i_d.di_gid; 754 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) { 755 ip->i_d.di_mode |= S_ISGID; 756 } 757 } 758 759 /* 760 * If the group ID of the new file does not match the effective group 761 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared 762 * (and only if the irix_sgid_inherit compatibility variable is set). 763 */ 764 if ((irix_sgid_inherit) && 765 (ip->i_d.di_mode & S_ISGID) && 766 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) { 767 ip->i_d.di_mode &= ~S_ISGID; 768 } 769 770 ip->i_d.di_size = 0; 771 ip->i_d.di_nextents = 0; 772 ASSERT(ip->i_d.di_nblocks == 0); 773 774 tv = current_fs_time(mp->m_super); 775 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; 776 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; 777 ip->i_d.di_atime = ip->i_d.di_mtime; 778 ip->i_d.di_ctime = ip->i_d.di_mtime; 779 780 /* 781 * di_gen will have been taken care of in xfs_iread. 782 */ 783 ip->i_d.di_extsize = 0; 784 ip->i_d.di_dmevmask = 0; 785 ip->i_d.di_dmstate = 0; 786 ip->i_d.di_flags = 0; 787 788 if (ip->i_d.di_version == 3) { 789 ASSERT(ip->i_d.di_ino == ino); 790 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid)); 791 ip->i_d.di_crc = 0; 792 ip->i_d.di_changecount = 1; 793 ip->i_d.di_lsn = 0; 794 ip->i_d.di_flags2 = 0; 795 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2)); 796 ip->i_d.di_crtime = ip->i_d.di_mtime; 797 } 798 799 800 flags = XFS_ILOG_CORE; 801 switch (mode & S_IFMT) { 802 case S_IFIFO: 803 case S_IFCHR: 804 case S_IFBLK: 805 case S_IFSOCK: 806 ip->i_d.di_format = XFS_DINODE_FMT_DEV; 807 ip->i_df.if_u2.if_rdev = rdev; 808 ip->i_df.if_flags = 0; 809 flags |= XFS_ILOG_DEV; 810 break; 811 case S_IFREG: 812 case S_IFDIR: 813 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { 814 uint di_flags = 0; 815 816 if (S_ISDIR(mode)) { 817 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 818 di_flags |= XFS_DIFLAG_RTINHERIT; 819 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 820 di_flags |= XFS_DIFLAG_EXTSZINHERIT; 821 ip->i_d.di_extsize = pip->i_d.di_extsize; 822 } 823 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) 824 di_flags |= XFS_DIFLAG_PROJINHERIT; 825 } else if (S_ISREG(mode)) { 826 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) 827 di_flags |= XFS_DIFLAG_REALTIME; 828 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { 829 di_flags |= XFS_DIFLAG_EXTSIZE; 830 ip->i_d.di_extsize = pip->i_d.di_extsize; 831 } 832 } 833 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && 834 xfs_inherit_noatime) 835 di_flags |= XFS_DIFLAG_NOATIME; 836 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && 837 xfs_inherit_nodump) 838 di_flags |= XFS_DIFLAG_NODUMP; 839 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && 840 xfs_inherit_sync) 841 di_flags |= XFS_DIFLAG_SYNC; 842 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && 843 xfs_inherit_nosymlinks) 844 di_flags |= XFS_DIFLAG_NOSYMLINKS; 845 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && 846 xfs_inherit_nodefrag) 847 di_flags |= XFS_DIFLAG_NODEFRAG; 848 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) 849 di_flags |= XFS_DIFLAG_FILESTREAM; 850 ip->i_d.di_flags |= di_flags; 851 } 852 /* FALLTHROUGH */ 853 case S_IFLNK: 854 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 855 ip->i_df.if_flags = XFS_IFEXTENTS; 856 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; 857 ip->i_df.if_u1.if_extents = NULL; 858 break; 859 default: 860 ASSERT(0); 861 } 862 /* 863 * Attribute fork settings for new inode. 864 */ 865 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 866 ip->i_d.di_anextents = 0; 867 868 /* 869 * Log the new values stuffed into the inode. 870 */ 871 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 872 xfs_trans_log_inode(tp, ip, flags); 873 874 /* now that we have an i_mode we can setup the inode structure */ 875 xfs_setup_inode(ip); 876 877 *ipp = ip; 878 return 0; 879 } 880 881 /* 882 * Allocates a new inode from disk and return a pointer to the 883 * incore copy. This routine will internally commit the current 884 * transaction and allocate a new one if the Space Manager needed 885 * to do an allocation to replenish the inode free-list. 886 * 887 * This routine is designed to be called from xfs_create and 888 * xfs_create_dir. 889 * 890 */ 891 int 892 xfs_dir_ialloc( 893 xfs_trans_t **tpp, /* input: current transaction; 894 output: may be a new transaction. */ 895 xfs_inode_t *dp, /* directory within whose allocate 896 the inode. */ 897 umode_t mode, 898 xfs_nlink_t nlink, 899 xfs_dev_t rdev, 900 prid_t prid, /* project id */ 901 int okalloc, /* ok to allocate new space */ 902 xfs_inode_t **ipp, /* pointer to inode; it will be 903 locked. */ 904 int *committed) 905 906 { 907 xfs_trans_t *tp; 908 xfs_trans_t *ntp; 909 xfs_inode_t *ip; 910 xfs_buf_t *ialloc_context = NULL; 911 int code; 912 void *dqinfo; 913 uint tflags; 914 915 tp = *tpp; 916 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 917 918 /* 919 * xfs_ialloc will return a pointer to an incore inode if 920 * the Space Manager has an available inode on the free 921 * list. Otherwise, it will do an allocation and replenish 922 * the freelist. Since we can only do one allocation per 923 * transaction without deadlocks, we will need to commit the 924 * current transaction and start a new one. We will then 925 * need to call xfs_ialloc again to get the inode. 926 * 927 * If xfs_ialloc did an allocation to replenish the freelist, 928 * it returns the bp containing the head of the freelist as 929 * ialloc_context. We will hold a lock on it across the 930 * transaction commit so that no other process can steal 931 * the inode(s) that we've just allocated. 932 */ 933 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, 934 &ialloc_context, &ip); 935 936 /* 937 * Return an error if we were unable to allocate a new inode. 938 * This should only happen if we run out of space on disk or 939 * encounter a disk error. 940 */ 941 if (code) { 942 *ipp = NULL; 943 return code; 944 } 945 if (!ialloc_context && !ip) { 946 *ipp = NULL; 947 return -ENOSPC; 948 } 949 950 /* 951 * If the AGI buffer is non-NULL, then we were unable to get an 952 * inode in one operation. We need to commit the current 953 * transaction and call xfs_ialloc() again. It is guaranteed 954 * to succeed the second time. 955 */ 956 if (ialloc_context) { 957 struct xfs_trans_res tres; 958 959 /* 960 * Normally, xfs_trans_commit releases all the locks. 961 * We call bhold to hang on to the ialloc_context across 962 * the commit. Holding this buffer prevents any other 963 * processes from doing any allocations in this 964 * allocation group. 965 */ 966 xfs_trans_bhold(tp, ialloc_context); 967 /* 968 * Save the log reservation so we can use 969 * them in the next transaction. 970 */ 971 tres.tr_logres = xfs_trans_get_log_res(tp); 972 tres.tr_logcount = xfs_trans_get_log_count(tp); 973 974 /* 975 * We want the quota changes to be associated with the next 976 * transaction, NOT this one. So, detach the dqinfo from this 977 * and attach it to the next transaction. 978 */ 979 dqinfo = NULL; 980 tflags = 0; 981 if (tp->t_dqinfo) { 982 dqinfo = (void *)tp->t_dqinfo; 983 tp->t_dqinfo = NULL; 984 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; 985 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); 986 } 987 988 ntp = xfs_trans_dup(tp); 989 code = xfs_trans_commit(tp, 0); 990 tp = ntp; 991 if (committed != NULL) { 992 *committed = 1; 993 } 994 /* 995 * If we get an error during the commit processing, 996 * release the buffer that is still held and return 997 * to the caller. 998 */ 999 if (code) { 1000 xfs_buf_relse(ialloc_context); 1001 if (dqinfo) { 1002 tp->t_dqinfo = dqinfo; 1003 xfs_trans_free_dqinfo(tp); 1004 } 1005 *tpp = ntp; 1006 *ipp = NULL; 1007 return code; 1008 } 1009 1010 /* 1011 * transaction commit worked ok so we can drop the extra ticket 1012 * reference that we gained in xfs_trans_dup() 1013 */ 1014 xfs_log_ticket_put(tp->t_ticket); 1015 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES; 1016 code = xfs_trans_reserve(tp, &tres, 0, 0); 1017 1018 /* 1019 * Re-attach the quota info that we detached from prev trx. 1020 */ 1021 if (dqinfo) { 1022 tp->t_dqinfo = dqinfo; 1023 tp->t_flags |= tflags; 1024 } 1025 1026 if (code) { 1027 xfs_buf_relse(ialloc_context); 1028 *tpp = ntp; 1029 *ipp = NULL; 1030 return code; 1031 } 1032 xfs_trans_bjoin(tp, ialloc_context); 1033 1034 /* 1035 * Call ialloc again. Since we've locked out all 1036 * other allocations in this allocation group, 1037 * this call should always succeed. 1038 */ 1039 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, 1040 okalloc, &ialloc_context, &ip); 1041 1042 /* 1043 * If we get an error at this point, return to the caller 1044 * so that the current transaction can be aborted. 1045 */ 1046 if (code) { 1047 *tpp = tp; 1048 *ipp = NULL; 1049 return code; 1050 } 1051 ASSERT(!ialloc_context && ip); 1052 1053 } else { 1054 if (committed != NULL) 1055 *committed = 0; 1056 } 1057 1058 *ipp = ip; 1059 *tpp = tp; 1060 1061 return 0; 1062 } 1063 1064 /* 1065 * Decrement the link count on an inode & log the change. 1066 * If this causes the link count to go to zero, initiate the 1067 * logging activity required to truncate a file. 1068 */ 1069 int /* error */ 1070 xfs_droplink( 1071 xfs_trans_t *tp, 1072 xfs_inode_t *ip) 1073 { 1074 int error; 1075 1076 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1077 1078 ASSERT (ip->i_d.di_nlink > 0); 1079 ip->i_d.di_nlink--; 1080 drop_nlink(VFS_I(ip)); 1081 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1082 1083 error = 0; 1084 if (ip->i_d.di_nlink == 0) { 1085 /* 1086 * We're dropping the last link to this file. 1087 * Move the on-disk inode to the AGI unlinked list. 1088 * From xfs_inactive() we will pull the inode from 1089 * the list and free it. 1090 */ 1091 error = xfs_iunlink(tp, ip); 1092 } 1093 return error; 1094 } 1095 1096 /* 1097 * Increment the link count on an inode & log the change. 1098 */ 1099 int 1100 xfs_bumplink( 1101 xfs_trans_t *tp, 1102 xfs_inode_t *ip) 1103 { 1104 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); 1105 1106 ASSERT(ip->i_d.di_version > 1); 1107 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE)); 1108 ip->i_d.di_nlink++; 1109 inc_nlink(VFS_I(ip)); 1110 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1111 return 0; 1112 } 1113 1114 int 1115 xfs_create( 1116 xfs_inode_t *dp, 1117 struct xfs_name *name, 1118 umode_t mode, 1119 xfs_dev_t rdev, 1120 xfs_inode_t **ipp) 1121 { 1122 int is_dir = S_ISDIR(mode); 1123 struct xfs_mount *mp = dp->i_mount; 1124 struct xfs_inode *ip = NULL; 1125 struct xfs_trans *tp = NULL; 1126 int error; 1127 xfs_bmap_free_t free_list; 1128 xfs_fsblock_t first_block; 1129 bool unlock_dp_on_error = false; 1130 uint cancel_flags; 1131 int committed; 1132 prid_t prid; 1133 struct xfs_dquot *udqp = NULL; 1134 struct xfs_dquot *gdqp = NULL; 1135 struct xfs_dquot *pdqp = NULL; 1136 struct xfs_trans_res *tres; 1137 uint resblks; 1138 1139 trace_xfs_create(dp, name); 1140 1141 if (XFS_FORCED_SHUTDOWN(mp)) 1142 return -EIO; 1143 1144 prid = xfs_get_initial_prid(dp); 1145 1146 /* 1147 * Make sure that we have allocated dquot(s) on disk. 1148 */ 1149 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1150 xfs_kgid_to_gid(current_fsgid()), prid, 1151 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1152 &udqp, &gdqp, &pdqp); 1153 if (error) 1154 return error; 1155 1156 if (is_dir) { 1157 rdev = 0; 1158 resblks = XFS_MKDIR_SPACE_RES(mp, name->len); 1159 tres = &M_RES(mp)->tr_mkdir; 1160 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR); 1161 } else { 1162 resblks = XFS_CREATE_SPACE_RES(mp, name->len); 1163 tres = &M_RES(mp)->tr_create; 1164 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE); 1165 } 1166 1167 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1168 1169 /* 1170 * Initially assume that the file does not exist and 1171 * reserve the resources for that case. If that is not 1172 * the case we'll drop the one we have and get a more 1173 * appropriate transaction later. 1174 */ 1175 error = xfs_trans_reserve(tp, tres, resblks, 0); 1176 if (error == -ENOSPC) { 1177 /* flush outstanding delalloc blocks and retry */ 1178 xfs_flush_inodes(mp); 1179 error = xfs_trans_reserve(tp, tres, resblks, 0); 1180 } 1181 if (error == -ENOSPC) { 1182 /* No space at all so try a "no-allocation" reservation */ 1183 resblks = 0; 1184 error = xfs_trans_reserve(tp, tres, 0, 0); 1185 } 1186 if (error) { 1187 cancel_flags = 0; 1188 goto out_trans_cancel; 1189 } 1190 1191 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); 1192 unlock_dp_on_error = true; 1193 1194 xfs_bmap_init(&free_list, &first_block); 1195 1196 /* 1197 * Reserve disk quota and the inode. 1198 */ 1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1200 pdqp, resblks, 1, 0); 1201 if (error) 1202 goto out_trans_cancel; 1203 1204 if (!resblks) { 1205 error = xfs_dir_canenter(tp, dp, name); 1206 if (error) 1207 goto out_trans_cancel; 1208 } 1209 1210 /* 1211 * A newly created regular or special file just has one directory 1212 * entry pointing to them, but a directory also the "." entry 1213 * pointing to itself. 1214 */ 1215 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, 1216 prid, resblks > 0, &ip, &committed); 1217 if (error) { 1218 if (error == -ENOSPC) 1219 goto out_trans_cancel; 1220 goto out_trans_abort; 1221 } 1222 1223 /* 1224 * Now we join the directory inode to the transaction. We do not do it 1225 * earlier because xfs_dir_ialloc might commit the previous transaction 1226 * (and release all the locks). An error from here on will result in 1227 * the transaction cancel unlocking dp so don't do it explicitly in the 1228 * error path. 1229 */ 1230 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 1231 unlock_dp_on_error = false; 1232 1233 error = xfs_dir_createname(tp, dp, name, ip->i_ino, 1234 &first_block, &free_list, resblks ? 1235 resblks - XFS_IALLOC_SPACE_RES(mp) : 0); 1236 if (error) { 1237 ASSERT(error != -ENOSPC); 1238 goto out_trans_abort; 1239 } 1240 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1241 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 1242 1243 if (is_dir) { 1244 error = xfs_dir_init(tp, ip, dp); 1245 if (error) 1246 goto out_bmap_cancel; 1247 1248 error = xfs_bumplink(tp, dp); 1249 if (error) 1250 goto out_bmap_cancel; 1251 } 1252 1253 /* 1254 * If this is a synchronous mount, make sure that the 1255 * create transaction goes to disk before returning to 1256 * the user. 1257 */ 1258 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 1259 xfs_trans_set_sync(tp); 1260 1261 /* 1262 * Attach the dquot(s) to the inodes and modify them incore. 1263 * These ids of the inode couldn't have changed since the new 1264 * inode has been locked ever since it was created. 1265 */ 1266 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1267 1268 error = xfs_bmap_finish(&tp, &free_list, &committed); 1269 if (error) 1270 goto out_bmap_cancel; 1271 1272 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1273 if (error) 1274 goto out_release_inode; 1275 1276 xfs_qm_dqrele(udqp); 1277 xfs_qm_dqrele(gdqp); 1278 xfs_qm_dqrele(pdqp); 1279 1280 *ipp = ip; 1281 return 0; 1282 1283 out_bmap_cancel: 1284 xfs_bmap_cancel(&free_list); 1285 out_trans_abort: 1286 cancel_flags |= XFS_TRANS_ABORT; 1287 out_trans_cancel: 1288 xfs_trans_cancel(tp, cancel_flags); 1289 out_release_inode: 1290 /* 1291 * Wait until after the current transaction is aborted to finish the 1292 * setup of the inode and release the inode. This prevents recursive 1293 * transactions and deadlocks from xfs_inactive. 1294 */ 1295 if (ip) { 1296 xfs_finish_inode_setup(ip); 1297 IRELE(ip); 1298 } 1299 1300 xfs_qm_dqrele(udqp); 1301 xfs_qm_dqrele(gdqp); 1302 xfs_qm_dqrele(pdqp); 1303 1304 if (unlock_dp_on_error) 1305 xfs_iunlock(dp, XFS_ILOCK_EXCL); 1306 return error; 1307 } 1308 1309 int 1310 xfs_create_tmpfile( 1311 struct xfs_inode *dp, 1312 struct dentry *dentry, 1313 umode_t mode, 1314 struct xfs_inode **ipp) 1315 { 1316 struct xfs_mount *mp = dp->i_mount; 1317 struct xfs_inode *ip = NULL; 1318 struct xfs_trans *tp = NULL; 1319 int error; 1320 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1321 prid_t prid; 1322 struct xfs_dquot *udqp = NULL; 1323 struct xfs_dquot *gdqp = NULL; 1324 struct xfs_dquot *pdqp = NULL; 1325 struct xfs_trans_res *tres; 1326 uint resblks; 1327 1328 if (XFS_FORCED_SHUTDOWN(mp)) 1329 return -EIO; 1330 1331 prid = xfs_get_initial_prid(dp); 1332 1333 /* 1334 * Make sure that we have allocated dquot(s) on disk. 1335 */ 1336 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), 1337 xfs_kgid_to_gid(current_fsgid()), prid, 1338 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, 1339 &udqp, &gdqp, &pdqp); 1340 if (error) 1341 return error; 1342 1343 resblks = XFS_IALLOC_SPACE_RES(mp); 1344 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE); 1345 1346 tres = &M_RES(mp)->tr_create_tmpfile; 1347 error = xfs_trans_reserve(tp, tres, resblks, 0); 1348 if (error == -ENOSPC) { 1349 /* No space at all so try a "no-allocation" reservation */ 1350 resblks = 0; 1351 error = xfs_trans_reserve(tp, tres, 0, 0); 1352 } 1353 if (error) { 1354 cancel_flags = 0; 1355 goto out_trans_cancel; 1356 } 1357 1358 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, 1359 pdqp, resblks, 1, 0); 1360 if (error) 1361 goto out_trans_cancel; 1362 1363 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, 1364 prid, resblks > 0, &ip, NULL); 1365 if (error) { 1366 if (error == -ENOSPC) 1367 goto out_trans_cancel; 1368 goto out_trans_abort; 1369 } 1370 1371 if (mp->m_flags & XFS_MOUNT_WSYNC) 1372 xfs_trans_set_sync(tp); 1373 1374 /* 1375 * Attach the dquot(s) to the inodes and modify them incore. 1376 * These ids of the inode couldn't have changed since the new 1377 * inode has been locked ever since it was created. 1378 */ 1379 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); 1380 1381 ip->i_d.di_nlink--; 1382 error = xfs_iunlink(tp, ip); 1383 if (error) 1384 goto out_trans_abort; 1385 1386 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1387 if (error) 1388 goto out_release_inode; 1389 1390 xfs_qm_dqrele(udqp); 1391 xfs_qm_dqrele(gdqp); 1392 xfs_qm_dqrele(pdqp); 1393 1394 *ipp = ip; 1395 return 0; 1396 1397 out_trans_abort: 1398 cancel_flags |= XFS_TRANS_ABORT; 1399 out_trans_cancel: 1400 xfs_trans_cancel(tp, cancel_flags); 1401 out_release_inode: 1402 /* 1403 * Wait until after the current transaction is aborted to finish the 1404 * setup of the inode and release the inode. This prevents recursive 1405 * transactions and deadlocks from xfs_inactive. 1406 */ 1407 if (ip) { 1408 xfs_finish_inode_setup(ip); 1409 IRELE(ip); 1410 } 1411 1412 xfs_qm_dqrele(udqp); 1413 xfs_qm_dqrele(gdqp); 1414 xfs_qm_dqrele(pdqp); 1415 1416 return error; 1417 } 1418 1419 int 1420 xfs_link( 1421 xfs_inode_t *tdp, 1422 xfs_inode_t *sip, 1423 struct xfs_name *target_name) 1424 { 1425 xfs_mount_t *mp = tdp->i_mount; 1426 xfs_trans_t *tp; 1427 int error; 1428 xfs_bmap_free_t free_list; 1429 xfs_fsblock_t first_block; 1430 int cancel_flags; 1431 int committed; 1432 int resblks; 1433 1434 trace_xfs_link(tdp, target_name); 1435 1436 ASSERT(!S_ISDIR(sip->i_d.di_mode)); 1437 1438 if (XFS_FORCED_SHUTDOWN(mp)) 1439 return -EIO; 1440 1441 error = xfs_qm_dqattach(sip, 0); 1442 if (error) 1443 goto std_return; 1444 1445 error = xfs_qm_dqattach(tdp, 0); 1446 if (error) 1447 goto std_return; 1448 1449 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK); 1450 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 1451 resblks = XFS_LINK_SPACE_RES(mp, target_name->len); 1452 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0); 1453 if (error == -ENOSPC) { 1454 resblks = 0; 1455 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0); 1456 } 1457 if (error) { 1458 cancel_flags = 0; 1459 goto error_return; 1460 } 1461 1462 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); 1463 1464 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); 1465 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); 1466 1467 /* 1468 * If we are using project inheritance, we only allow hard link 1469 * creation in our tree when the project IDs are the same; else 1470 * the tree quota mechanism could be circumvented. 1471 */ 1472 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 1473 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { 1474 error = -EXDEV; 1475 goto error_return; 1476 } 1477 1478 if (!resblks) { 1479 error = xfs_dir_canenter(tp, tdp, target_name); 1480 if (error) 1481 goto error_return; 1482 } 1483 1484 xfs_bmap_init(&free_list, &first_block); 1485 1486 if (sip->i_d.di_nlink == 0) { 1487 error = xfs_iunlink_remove(tp, sip); 1488 if (error) 1489 goto abort_return; 1490 } 1491 1492 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, 1493 &first_block, &free_list, resblks); 1494 if (error) 1495 goto abort_return; 1496 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 1497 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); 1498 1499 error = xfs_bumplink(tp, sip); 1500 if (error) 1501 goto abort_return; 1502 1503 /* 1504 * If this is a synchronous mount, make sure that the 1505 * link transaction goes to disk before returning to 1506 * the user. 1507 */ 1508 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) { 1509 xfs_trans_set_sync(tp); 1510 } 1511 1512 error = xfs_bmap_finish (&tp, &free_list, &committed); 1513 if (error) { 1514 xfs_bmap_cancel(&free_list); 1515 goto abort_return; 1516 } 1517 1518 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1519 1520 abort_return: 1521 cancel_flags |= XFS_TRANS_ABORT; 1522 error_return: 1523 xfs_trans_cancel(tp, cancel_flags); 1524 std_return: 1525 return error; 1526 } 1527 1528 /* 1529 * Free up the underlying blocks past new_size. The new size must be smaller 1530 * than the current size. This routine can be used both for the attribute and 1531 * data fork, and does not modify the inode size, which is left to the caller. 1532 * 1533 * The transaction passed to this routine must have made a permanent log 1534 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the 1535 * given transaction and start new ones, so make sure everything involved in 1536 * the transaction is tidy before calling here. Some transaction will be 1537 * returned to the caller to be committed. The incoming transaction must 1538 * already include the inode, and both inode locks must be held exclusively. 1539 * The inode must also be "held" within the transaction. On return the inode 1540 * will be "held" within the returned transaction. This routine does NOT 1541 * require any disk space to be reserved for it within the transaction. 1542 * 1543 * If we get an error, we must return with the inode locked and linked into the 1544 * current transaction. This keeps things simple for the higher level code, 1545 * because it always knows that the inode is locked and held in the transaction 1546 * that returns to it whether errors occur or not. We don't mark the inode 1547 * dirty on error so that transactions can be easily aborted if possible. 1548 */ 1549 int 1550 xfs_itruncate_extents( 1551 struct xfs_trans **tpp, 1552 struct xfs_inode *ip, 1553 int whichfork, 1554 xfs_fsize_t new_size) 1555 { 1556 struct xfs_mount *mp = ip->i_mount; 1557 struct xfs_trans *tp = *tpp; 1558 struct xfs_trans *ntp; 1559 xfs_bmap_free_t free_list; 1560 xfs_fsblock_t first_block; 1561 xfs_fileoff_t first_unmap_block; 1562 xfs_fileoff_t last_block; 1563 xfs_filblks_t unmap_len; 1564 int committed; 1565 int error = 0; 1566 int done = 0; 1567 1568 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 1569 ASSERT(!atomic_read(&VFS_I(ip)->i_count) || 1570 xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1571 ASSERT(new_size <= XFS_ISIZE(ip)); 1572 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); 1573 ASSERT(ip->i_itemp != NULL); 1574 ASSERT(ip->i_itemp->ili_lock_flags == 0); 1575 ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); 1576 1577 trace_xfs_itruncate_extents_start(ip, new_size); 1578 1579 /* 1580 * Since it is possible for space to become allocated beyond 1581 * the end of the file (in a crash where the space is allocated 1582 * but the inode size is not yet updated), simply remove any 1583 * blocks which show up between the new EOF and the maximum 1584 * possible file size. If the first block to be removed is 1585 * beyond the maximum file size (ie it is the same as last_block), 1586 * then there is nothing to do. 1587 */ 1588 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); 1589 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 1590 if (first_unmap_block == last_block) 1591 return 0; 1592 1593 ASSERT(first_unmap_block < last_block); 1594 unmap_len = last_block - first_unmap_block + 1; 1595 while (!done) { 1596 xfs_bmap_init(&free_list, &first_block); 1597 error = xfs_bunmapi(tp, ip, 1598 first_unmap_block, unmap_len, 1599 xfs_bmapi_aflag(whichfork), 1600 XFS_ITRUNC_MAX_EXTENTS, 1601 &first_block, &free_list, 1602 &done); 1603 if (error) 1604 goto out_bmap_cancel; 1605 1606 /* 1607 * Duplicate the transaction that has the permanent 1608 * reservation and commit the old transaction. 1609 */ 1610 error = xfs_bmap_finish(&tp, &free_list, &committed); 1611 if (committed) 1612 xfs_trans_ijoin(tp, ip, 0); 1613 if (error) 1614 goto out_bmap_cancel; 1615 1616 if (committed) { 1617 /* 1618 * Mark the inode dirty so it will be logged and 1619 * moved forward in the log as part of every commit. 1620 */ 1621 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1622 } 1623 1624 ntp = xfs_trans_dup(tp); 1625 error = xfs_trans_commit(tp, 0); 1626 tp = ntp; 1627 1628 xfs_trans_ijoin(tp, ip, 0); 1629 1630 if (error) 1631 goto out; 1632 1633 /* 1634 * Transaction commit worked ok so we can drop the extra ticket 1635 * reference that we gained in xfs_trans_dup() 1636 */ 1637 xfs_log_ticket_put(tp->t_ticket); 1638 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1639 if (error) 1640 goto out; 1641 } 1642 1643 /* 1644 * Always re-log the inode so that our permanent transaction can keep 1645 * on rolling it forward in the log. 1646 */ 1647 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1648 1649 trace_xfs_itruncate_extents_end(ip, new_size); 1650 1651 out: 1652 *tpp = tp; 1653 return error; 1654 out_bmap_cancel: 1655 /* 1656 * If the bunmapi call encounters an error, return to the caller where 1657 * the transaction can be properly aborted. We just need to make sure 1658 * we're not holding any resources that we were not when we came in. 1659 */ 1660 xfs_bmap_cancel(&free_list); 1661 goto out; 1662 } 1663 1664 int 1665 xfs_release( 1666 xfs_inode_t *ip) 1667 { 1668 xfs_mount_t *mp = ip->i_mount; 1669 int error; 1670 1671 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0)) 1672 return 0; 1673 1674 /* If this is a read-only mount, don't do this (would generate I/O) */ 1675 if (mp->m_flags & XFS_MOUNT_RDONLY) 1676 return 0; 1677 1678 if (!XFS_FORCED_SHUTDOWN(mp)) { 1679 int truncated; 1680 1681 /* 1682 * If we previously truncated this file and removed old data 1683 * in the process, we want to initiate "early" writeout on 1684 * the last close. This is an attempt to combat the notorious 1685 * NULL files problem which is particularly noticeable from a 1686 * truncate down, buffered (re-)write (delalloc), followed by 1687 * a crash. What we are effectively doing here is 1688 * significantly reducing the time window where we'd otherwise 1689 * be exposed to that problem. 1690 */ 1691 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); 1692 if (truncated) { 1693 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); 1694 if (ip->i_delayed_blks > 0) { 1695 error = filemap_flush(VFS_I(ip)->i_mapping); 1696 if (error) 1697 return error; 1698 } 1699 } 1700 } 1701 1702 if (ip->i_d.di_nlink == 0) 1703 return 0; 1704 1705 if (xfs_can_free_eofblocks(ip, false)) { 1706 1707 /* 1708 * If we can't get the iolock just skip truncating the blocks 1709 * past EOF because we could deadlock with the mmap_sem 1710 * otherwise. We'll get another chance to drop them once the 1711 * last reference to the inode is dropped, so we'll never leak 1712 * blocks permanently. 1713 * 1714 * Further, check if the inode is being opened, written and 1715 * closed frequently and we have delayed allocation blocks 1716 * outstanding (e.g. streaming writes from the NFS server), 1717 * truncating the blocks past EOF will cause fragmentation to 1718 * occur. 1719 * 1720 * In this case don't do the truncation, either, but we have to 1721 * be careful how we detect this case. Blocks beyond EOF show 1722 * up as i_delayed_blks even when the inode is clean, so we 1723 * need to truncate them away first before checking for a dirty 1724 * release. Hence on the first dirty close we will still remove 1725 * the speculative allocation, but after that we will leave it 1726 * in place. 1727 */ 1728 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) 1729 return 0; 1730 1731 error = xfs_free_eofblocks(mp, ip, true); 1732 if (error && error != -EAGAIN) 1733 return error; 1734 1735 /* delalloc blocks after truncation means it really is dirty */ 1736 if (ip->i_delayed_blks) 1737 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); 1738 } 1739 return 0; 1740 } 1741 1742 /* 1743 * xfs_inactive_truncate 1744 * 1745 * Called to perform a truncate when an inode becomes unlinked. 1746 */ 1747 STATIC int 1748 xfs_inactive_truncate( 1749 struct xfs_inode *ip) 1750 { 1751 struct xfs_mount *mp = ip->i_mount; 1752 struct xfs_trans *tp; 1753 int error; 1754 1755 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1756 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); 1757 if (error) { 1758 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1759 xfs_trans_cancel(tp, 0); 1760 return error; 1761 } 1762 1763 xfs_ilock(ip, XFS_ILOCK_EXCL); 1764 xfs_trans_ijoin(tp, ip, 0); 1765 1766 /* 1767 * Log the inode size first to prevent stale data exposure in the event 1768 * of a system crash before the truncate completes. See the related 1769 * comment in xfs_setattr_size() for details. 1770 */ 1771 ip->i_d.di_size = 0; 1772 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1773 1774 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); 1775 if (error) 1776 goto error_trans_cancel; 1777 1778 ASSERT(ip->i_d.di_nextents == 0); 1779 1780 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1781 if (error) 1782 goto error_unlock; 1783 1784 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1785 return 0; 1786 1787 error_trans_cancel: 1788 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT); 1789 error_unlock: 1790 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1791 return error; 1792 } 1793 1794 /* 1795 * xfs_inactive_ifree() 1796 * 1797 * Perform the inode free when an inode is unlinked. 1798 */ 1799 STATIC int 1800 xfs_inactive_ifree( 1801 struct xfs_inode *ip) 1802 { 1803 xfs_bmap_free_t free_list; 1804 xfs_fsblock_t first_block; 1805 int committed; 1806 struct xfs_mount *mp = ip->i_mount; 1807 struct xfs_trans *tp; 1808 int error; 1809 1810 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE); 1811 1812 /* 1813 * The ifree transaction might need to allocate blocks for record 1814 * insertion to the finobt. We don't want to fail here at ENOSPC, so 1815 * allow ifree to dip into the reserved block pool if necessary. 1816 * 1817 * Freeing large sets of inodes generally means freeing inode chunks, 1818 * directory and file data blocks, so this should be relatively safe. 1819 * Only under severe circumstances should it be possible to free enough 1820 * inodes to exhaust the reserve block pool via finobt expansion while 1821 * at the same time not creating free space in the filesystem. 1822 * 1823 * Send a warning if the reservation does happen to fail, as the inode 1824 * now remains allocated and sits on the unlinked list until the fs is 1825 * repaired. 1826 */ 1827 tp->t_flags |= XFS_TRANS_RESERVE; 1828 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 1829 XFS_IFREE_SPACE_RES(mp), 0); 1830 if (error) { 1831 if (error == -ENOSPC) { 1832 xfs_warn_ratelimited(mp, 1833 "Failed to remove inode(s) from unlinked list. " 1834 "Please free space, unmount and run xfs_repair."); 1835 } else { 1836 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 1837 } 1838 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES); 1839 return error; 1840 } 1841 1842 xfs_ilock(ip, XFS_ILOCK_EXCL); 1843 xfs_trans_ijoin(tp, ip, 0); 1844 1845 xfs_bmap_init(&free_list, &first_block); 1846 error = xfs_ifree(tp, ip, &free_list); 1847 if (error) { 1848 /* 1849 * If we fail to free the inode, shut down. The cancel 1850 * might do that, we need to make sure. Otherwise the 1851 * inode might be lost for a long time or forever. 1852 */ 1853 if (!XFS_FORCED_SHUTDOWN(mp)) { 1854 xfs_notice(mp, "%s: xfs_ifree returned error %d", 1855 __func__, error); 1856 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1857 } 1858 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 1859 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1860 return error; 1861 } 1862 1863 /* 1864 * Credit the quota account(s). The inode is gone. 1865 */ 1866 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); 1867 1868 /* 1869 * Just ignore errors at this point. There is nothing we can 1870 * do except to try to keep going. Make sure it's not a silent 1871 * error. 1872 */ 1873 error = xfs_bmap_finish(&tp, &free_list, &committed); 1874 if (error) 1875 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d", 1876 __func__, error); 1877 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 1878 if (error) 1879 xfs_notice(mp, "%s: xfs_trans_commit returned error %d", 1880 __func__, error); 1881 1882 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1883 return 0; 1884 } 1885 1886 /* 1887 * xfs_inactive 1888 * 1889 * This is called when the vnode reference count for the vnode 1890 * goes to zero. If the file has been unlinked, then it must 1891 * now be truncated. Also, we clear all of the read-ahead state 1892 * kept for the inode here since the file is now closed. 1893 */ 1894 void 1895 xfs_inactive( 1896 xfs_inode_t *ip) 1897 { 1898 struct xfs_mount *mp; 1899 int error; 1900 int truncate = 0; 1901 1902 /* 1903 * If the inode is already free, then there can be nothing 1904 * to clean up here. 1905 */ 1906 if (ip->i_d.di_mode == 0) { 1907 ASSERT(ip->i_df.if_real_bytes == 0); 1908 ASSERT(ip->i_df.if_broot_bytes == 0); 1909 return; 1910 } 1911 1912 mp = ip->i_mount; 1913 1914 /* If this is a read-only mount, don't do this (would generate I/O) */ 1915 if (mp->m_flags & XFS_MOUNT_RDONLY) 1916 return; 1917 1918 if (ip->i_d.di_nlink != 0) { 1919 /* 1920 * force is true because we are evicting an inode from the 1921 * cache. Post-eof blocks must be freed, lest we end up with 1922 * broken free space accounting. 1923 */ 1924 if (xfs_can_free_eofblocks(ip, true)) 1925 xfs_free_eofblocks(mp, ip, false); 1926 1927 return; 1928 } 1929 1930 if (S_ISREG(ip->i_d.di_mode) && 1931 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || 1932 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) 1933 truncate = 1; 1934 1935 error = xfs_qm_dqattach(ip, 0); 1936 if (error) 1937 return; 1938 1939 if (S_ISLNK(ip->i_d.di_mode)) 1940 error = xfs_inactive_symlink(ip); 1941 else if (truncate) 1942 error = xfs_inactive_truncate(ip); 1943 if (error) 1944 return; 1945 1946 /* 1947 * If there are attributes associated with the file then blow them away 1948 * now. The code calls a routine that recursively deconstructs the 1949 * attribute fork. If also blows away the in-core attribute fork. 1950 */ 1951 if (XFS_IFORK_Q(ip)) { 1952 error = xfs_attr_inactive(ip); 1953 if (error) 1954 return; 1955 } 1956 1957 ASSERT(!ip->i_afp); 1958 ASSERT(ip->i_d.di_anextents == 0); 1959 ASSERT(ip->i_d.di_forkoff == 0); 1960 1961 /* 1962 * Free the inode. 1963 */ 1964 error = xfs_inactive_ifree(ip); 1965 if (error) 1966 return; 1967 1968 /* 1969 * Release the dquots held by inode, if any. 1970 */ 1971 xfs_qm_dqdetach(ip); 1972 } 1973 1974 /* 1975 * This is called when the inode's link count goes to 0. 1976 * We place the on-disk inode on a list in the AGI. It 1977 * will be pulled from this list when the inode is freed. 1978 */ 1979 int 1980 xfs_iunlink( 1981 xfs_trans_t *tp, 1982 xfs_inode_t *ip) 1983 { 1984 xfs_mount_t *mp; 1985 xfs_agi_t *agi; 1986 xfs_dinode_t *dip; 1987 xfs_buf_t *agibp; 1988 xfs_buf_t *ibp; 1989 xfs_agino_t agino; 1990 short bucket_index; 1991 int offset; 1992 int error; 1993 1994 ASSERT(ip->i_d.di_nlink == 0); 1995 ASSERT(ip->i_d.di_mode != 0); 1996 1997 mp = tp->t_mountp; 1998 1999 /* 2000 * Get the agi buffer first. It ensures lock ordering 2001 * on the list. 2002 */ 2003 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); 2004 if (error) 2005 return error; 2006 agi = XFS_BUF_TO_AGI(agibp); 2007 2008 /* 2009 * Get the index into the agi hash table for the 2010 * list this inode will go on. 2011 */ 2012 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2013 ASSERT(agino != 0); 2014 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2015 ASSERT(agi->agi_unlinked[bucket_index]); 2016 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); 2017 2018 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { 2019 /* 2020 * There is already another inode in the bucket we need 2021 * to add ourselves to. Add us at the front of the list. 2022 * Here we put the head pointer into our next pointer, 2023 * and then we fall through to point the head at us. 2024 */ 2025 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2026 0, 0); 2027 if (error) 2028 return error; 2029 2030 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); 2031 dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; 2032 offset = ip->i_imap.im_boffset + 2033 offsetof(xfs_dinode_t, di_next_unlinked); 2034 2035 /* need to recalc the inode CRC if appropriate */ 2036 xfs_dinode_calc_crc(mp, dip); 2037 2038 xfs_trans_inode_buf(tp, ibp); 2039 xfs_trans_log_buf(tp, ibp, offset, 2040 (offset + sizeof(xfs_agino_t) - 1)); 2041 xfs_inobp_check(mp, ibp); 2042 } 2043 2044 /* 2045 * Point the bucket head pointer at the inode being inserted. 2046 */ 2047 ASSERT(agino != 0); 2048 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); 2049 offset = offsetof(xfs_agi_t, agi_unlinked) + 2050 (sizeof(xfs_agino_t) * bucket_index); 2051 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2052 xfs_trans_log_buf(tp, agibp, offset, 2053 (offset + sizeof(xfs_agino_t) - 1)); 2054 return 0; 2055 } 2056 2057 /* 2058 * Pull the on-disk inode from the AGI unlinked list. 2059 */ 2060 STATIC int 2061 xfs_iunlink_remove( 2062 xfs_trans_t *tp, 2063 xfs_inode_t *ip) 2064 { 2065 xfs_ino_t next_ino; 2066 xfs_mount_t *mp; 2067 xfs_agi_t *agi; 2068 xfs_dinode_t *dip; 2069 xfs_buf_t *agibp; 2070 xfs_buf_t *ibp; 2071 xfs_agnumber_t agno; 2072 xfs_agino_t agino; 2073 xfs_agino_t next_agino; 2074 xfs_buf_t *last_ibp; 2075 xfs_dinode_t *last_dip = NULL; 2076 short bucket_index; 2077 int offset, last_offset = 0; 2078 int error; 2079 2080 mp = tp->t_mountp; 2081 agno = XFS_INO_TO_AGNO(mp, ip->i_ino); 2082 2083 /* 2084 * Get the agi buffer first. It ensures lock ordering 2085 * on the list. 2086 */ 2087 error = xfs_read_agi(mp, tp, agno, &agibp); 2088 if (error) 2089 return error; 2090 2091 agi = XFS_BUF_TO_AGI(agibp); 2092 2093 /* 2094 * Get the index into the agi hash table for the 2095 * list this inode will go on. 2096 */ 2097 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 2098 ASSERT(agino != 0); 2099 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; 2100 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); 2101 ASSERT(agi->agi_unlinked[bucket_index]); 2102 2103 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { 2104 /* 2105 * We're at the head of the list. Get the inode's on-disk 2106 * buffer to see if there is anyone after us on the list. 2107 * Only modify our next pointer if it is not already NULLAGINO. 2108 * This saves us the overhead of dealing with the buffer when 2109 * there is no need to change it. 2110 */ 2111 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2112 0, 0); 2113 if (error) { 2114 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", 2115 __func__, error); 2116 return error; 2117 } 2118 next_agino = be32_to_cpu(dip->di_next_unlinked); 2119 ASSERT(next_agino != 0); 2120 if (next_agino != NULLAGINO) { 2121 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2122 offset = ip->i_imap.im_boffset + 2123 offsetof(xfs_dinode_t, di_next_unlinked); 2124 2125 /* need to recalc the inode CRC if appropriate */ 2126 xfs_dinode_calc_crc(mp, dip); 2127 2128 xfs_trans_inode_buf(tp, ibp); 2129 xfs_trans_log_buf(tp, ibp, offset, 2130 (offset + sizeof(xfs_agino_t) - 1)); 2131 xfs_inobp_check(mp, ibp); 2132 } else { 2133 xfs_trans_brelse(tp, ibp); 2134 } 2135 /* 2136 * Point the bucket head pointer at the next inode. 2137 */ 2138 ASSERT(next_agino != 0); 2139 ASSERT(next_agino != agino); 2140 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); 2141 offset = offsetof(xfs_agi_t, agi_unlinked) + 2142 (sizeof(xfs_agino_t) * bucket_index); 2143 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF); 2144 xfs_trans_log_buf(tp, agibp, offset, 2145 (offset + sizeof(xfs_agino_t) - 1)); 2146 } else { 2147 /* 2148 * We need to search the list for the inode being freed. 2149 */ 2150 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); 2151 last_ibp = NULL; 2152 while (next_agino != agino) { 2153 struct xfs_imap imap; 2154 2155 if (last_ibp) 2156 xfs_trans_brelse(tp, last_ibp); 2157 2158 imap.im_blkno = 0; 2159 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); 2160 2161 error = xfs_imap(mp, tp, next_ino, &imap, 0); 2162 if (error) { 2163 xfs_warn(mp, 2164 "%s: xfs_imap returned error %d.", 2165 __func__, error); 2166 return error; 2167 } 2168 2169 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, 2170 &last_ibp, 0, 0); 2171 if (error) { 2172 xfs_warn(mp, 2173 "%s: xfs_imap_to_bp returned error %d.", 2174 __func__, error); 2175 return error; 2176 } 2177 2178 last_offset = imap.im_boffset; 2179 next_agino = be32_to_cpu(last_dip->di_next_unlinked); 2180 ASSERT(next_agino != NULLAGINO); 2181 ASSERT(next_agino != 0); 2182 } 2183 2184 /* 2185 * Now last_ibp points to the buffer previous to us on the 2186 * unlinked list. Pull us from the list. 2187 */ 2188 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 2189 0, 0); 2190 if (error) { 2191 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", 2192 __func__, error); 2193 return error; 2194 } 2195 next_agino = be32_to_cpu(dip->di_next_unlinked); 2196 ASSERT(next_agino != 0); 2197 ASSERT(next_agino != agino); 2198 if (next_agino != NULLAGINO) { 2199 dip->di_next_unlinked = cpu_to_be32(NULLAGINO); 2200 offset = ip->i_imap.im_boffset + 2201 offsetof(xfs_dinode_t, di_next_unlinked); 2202 2203 /* need to recalc the inode CRC if appropriate */ 2204 xfs_dinode_calc_crc(mp, dip); 2205 2206 xfs_trans_inode_buf(tp, ibp); 2207 xfs_trans_log_buf(tp, ibp, offset, 2208 (offset + sizeof(xfs_agino_t) - 1)); 2209 xfs_inobp_check(mp, ibp); 2210 } else { 2211 xfs_trans_brelse(tp, ibp); 2212 } 2213 /* 2214 * Point the previous inode on the list to the next inode. 2215 */ 2216 last_dip->di_next_unlinked = cpu_to_be32(next_agino); 2217 ASSERT(next_agino != 0); 2218 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); 2219 2220 /* need to recalc the inode CRC if appropriate */ 2221 xfs_dinode_calc_crc(mp, last_dip); 2222 2223 xfs_trans_inode_buf(tp, last_ibp); 2224 xfs_trans_log_buf(tp, last_ibp, offset, 2225 (offset + sizeof(xfs_agino_t) - 1)); 2226 xfs_inobp_check(mp, last_ibp); 2227 } 2228 return 0; 2229 } 2230 2231 /* 2232 * A big issue when freeing the inode cluster is that we _cannot_ skip any 2233 * inodes that are in memory - they all must be marked stale and attached to 2234 * the cluster buffer. 2235 */ 2236 STATIC int 2237 xfs_ifree_cluster( 2238 xfs_inode_t *free_ip, 2239 xfs_trans_t *tp, 2240 xfs_ino_t inum) 2241 { 2242 xfs_mount_t *mp = free_ip->i_mount; 2243 int blks_per_cluster; 2244 int inodes_per_cluster; 2245 int nbufs; 2246 int i, j; 2247 xfs_daddr_t blkno; 2248 xfs_buf_t *bp; 2249 xfs_inode_t *ip; 2250 xfs_inode_log_item_t *iip; 2251 xfs_log_item_t *lip; 2252 struct xfs_perag *pag; 2253 2254 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); 2255 blks_per_cluster = xfs_icluster_size_fsb(mp); 2256 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; 2257 nbufs = mp->m_ialloc_blks / blks_per_cluster; 2258 2259 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { 2260 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), 2261 XFS_INO_TO_AGBNO(mp, inum)); 2262 2263 /* 2264 * We obtain and lock the backing buffer first in the process 2265 * here, as we have to ensure that any dirty inode that we 2266 * can't get the flush lock on is attached to the buffer. 2267 * If we scan the in-memory inodes first, then buffer IO can 2268 * complete before we get a lock on it, and hence we may fail 2269 * to mark all the active inodes on the buffer stale. 2270 */ 2271 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 2272 mp->m_bsize * blks_per_cluster, 2273 XBF_UNMAPPED); 2274 2275 if (!bp) 2276 return -ENOMEM; 2277 2278 /* 2279 * This buffer may not have been correctly initialised as we 2280 * didn't read it from disk. That's not important because we are 2281 * only using to mark the buffer as stale in the log, and to 2282 * attach stale cached inodes on it. That means it will never be 2283 * dispatched for IO. If it is, we want to know about it, and we 2284 * want it to fail. We can acheive this by adding a write 2285 * verifier to the buffer. 2286 */ 2287 bp->b_ops = &xfs_inode_buf_ops; 2288 2289 /* 2290 * Walk the inodes already attached to the buffer and mark them 2291 * stale. These will all have the flush locks held, so an 2292 * in-memory inode walk can't lock them. By marking them all 2293 * stale first, we will not attempt to lock them in the loop 2294 * below as the XFS_ISTALE flag will be set. 2295 */ 2296 lip = bp->b_fspriv; 2297 while (lip) { 2298 if (lip->li_type == XFS_LI_INODE) { 2299 iip = (xfs_inode_log_item_t *)lip; 2300 ASSERT(iip->ili_logged == 1); 2301 lip->li_cb = xfs_istale_done; 2302 xfs_trans_ail_copy_lsn(mp->m_ail, 2303 &iip->ili_flush_lsn, 2304 &iip->ili_item.li_lsn); 2305 xfs_iflags_set(iip->ili_inode, XFS_ISTALE); 2306 } 2307 lip = lip->li_bio_list; 2308 } 2309 2310 2311 /* 2312 * For each inode in memory attempt to add it to the inode 2313 * buffer and set it up for being staled on buffer IO 2314 * completion. This is safe as we've locked out tail pushing 2315 * and flushing by locking the buffer. 2316 * 2317 * We have already marked every inode that was part of a 2318 * transaction stale above, which means there is no point in 2319 * even trying to lock them. 2320 */ 2321 for (i = 0; i < inodes_per_cluster; i++) { 2322 retry: 2323 rcu_read_lock(); 2324 ip = radix_tree_lookup(&pag->pag_ici_root, 2325 XFS_INO_TO_AGINO(mp, (inum + i))); 2326 2327 /* Inode not in memory, nothing to do */ 2328 if (!ip) { 2329 rcu_read_unlock(); 2330 continue; 2331 } 2332 2333 /* 2334 * because this is an RCU protected lookup, we could 2335 * find a recently freed or even reallocated inode 2336 * during the lookup. We need to check under the 2337 * i_flags_lock for a valid inode here. Skip it if it 2338 * is not valid, the wrong inode or stale. 2339 */ 2340 spin_lock(&ip->i_flags_lock); 2341 if (ip->i_ino != inum + i || 2342 __xfs_iflags_test(ip, XFS_ISTALE)) { 2343 spin_unlock(&ip->i_flags_lock); 2344 rcu_read_unlock(); 2345 continue; 2346 } 2347 spin_unlock(&ip->i_flags_lock); 2348 2349 /* 2350 * Don't try to lock/unlock the current inode, but we 2351 * _cannot_ skip the other inodes that we did not find 2352 * in the list attached to the buffer and are not 2353 * already marked stale. If we can't lock it, back off 2354 * and retry. 2355 */ 2356 if (ip != free_ip && 2357 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { 2358 rcu_read_unlock(); 2359 delay(1); 2360 goto retry; 2361 } 2362 rcu_read_unlock(); 2363 2364 xfs_iflock(ip); 2365 xfs_iflags_set(ip, XFS_ISTALE); 2366 2367 /* 2368 * we don't need to attach clean inodes or those only 2369 * with unlogged changes (which we throw away, anyway). 2370 */ 2371 iip = ip->i_itemp; 2372 if (!iip || xfs_inode_clean(ip)) { 2373 ASSERT(ip != free_ip); 2374 xfs_ifunlock(ip); 2375 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2376 continue; 2377 } 2378 2379 iip->ili_last_fields = iip->ili_fields; 2380 iip->ili_fields = 0; 2381 iip->ili_logged = 1; 2382 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 2383 &iip->ili_item.li_lsn); 2384 2385 xfs_buf_attach_iodone(bp, xfs_istale_done, 2386 &iip->ili_item); 2387 2388 if (ip != free_ip) 2389 xfs_iunlock(ip, XFS_ILOCK_EXCL); 2390 } 2391 2392 xfs_trans_stale_inode_buf(tp, bp); 2393 xfs_trans_binval(tp, bp); 2394 } 2395 2396 xfs_perag_put(pag); 2397 return 0; 2398 } 2399 2400 /* 2401 * This is called to return an inode to the inode free list. 2402 * The inode should already be truncated to 0 length and have 2403 * no pages associated with it. This routine also assumes that 2404 * the inode is already a part of the transaction. 2405 * 2406 * The on-disk copy of the inode will have been added to the list 2407 * of unlinked inodes in the AGI. We need to remove the inode from 2408 * that list atomically with respect to freeing it here. 2409 */ 2410 int 2411 xfs_ifree( 2412 xfs_trans_t *tp, 2413 xfs_inode_t *ip, 2414 xfs_bmap_free_t *flist) 2415 { 2416 int error; 2417 int delete; 2418 xfs_ino_t first_ino; 2419 2420 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 2421 ASSERT(ip->i_d.di_nlink == 0); 2422 ASSERT(ip->i_d.di_nextents == 0); 2423 ASSERT(ip->i_d.di_anextents == 0); 2424 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode)); 2425 ASSERT(ip->i_d.di_nblocks == 0); 2426 2427 /* 2428 * Pull the on-disk inode from the AGI unlinked list. 2429 */ 2430 error = xfs_iunlink_remove(tp, ip); 2431 if (error) 2432 return error; 2433 2434 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); 2435 if (error) 2436 return error; 2437 2438 ip->i_d.di_mode = 0; /* mark incore inode as free */ 2439 ip->i_d.di_flags = 0; 2440 ip->i_d.di_dmevmask = 0; 2441 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ 2442 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; 2443 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; 2444 /* 2445 * Bump the generation count so no one will be confused 2446 * by reincarnations of this inode. 2447 */ 2448 ip->i_d.di_gen++; 2449 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 2450 2451 if (delete) 2452 error = xfs_ifree_cluster(ip, tp, first_ino); 2453 2454 return error; 2455 } 2456 2457 /* 2458 * This is called to unpin an inode. The caller must have the inode locked 2459 * in at least shared mode so that the buffer cannot be subsequently pinned 2460 * once someone is waiting for it to be unpinned. 2461 */ 2462 static void 2463 xfs_iunpin( 2464 struct xfs_inode *ip) 2465 { 2466 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 2467 2468 trace_xfs_inode_unpin_nowait(ip, _RET_IP_); 2469 2470 /* Give the log a push to start the unpinning I/O */ 2471 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); 2472 2473 } 2474 2475 static void 2476 __xfs_iunpin_wait( 2477 struct xfs_inode *ip) 2478 { 2479 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); 2480 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); 2481 2482 xfs_iunpin(ip); 2483 2484 do { 2485 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2486 if (xfs_ipincount(ip)) 2487 io_schedule(); 2488 } while (xfs_ipincount(ip)); 2489 finish_wait(wq, &wait.wait); 2490 } 2491 2492 void 2493 xfs_iunpin_wait( 2494 struct xfs_inode *ip) 2495 { 2496 if (xfs_ipincount(ip)) 2497 __xfs_iunpin_wait(ip); 2498 } 2499 2500 /* 2501 * Removing an inode from the namespace involves removing the directory entry 2502 * and dropping the link count on the inode. Removing the directory entry can 2503 * result in locking an AGF (directory blocks were freed) and removing a link 2504 * count can result in placing the inode on an unlinked list which results in 2505 * locking an AGI. 2506 * 2507 * The big problem here is that we have an ordering constraint on AGF and AGI 2508 * locking - inode allocation locks the AGI, then can allocate a new extent for 2509 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode 2510 * removes the inode from the unlinked list, requiring that we lock the AGI 2511 * first, and then freeing the inode can result in an inode chunk being freed 2512 * and hence freeing disk space requiring that we lock an AGF. 2513 * 2514 * Hence the ordering that is imposed by other parts of the code is AGI before 2515 * AGF. This means we cannot remove the directory entry before we drop the inode 2516 * reference count and put it on the unlinked list as this results in a lock 2517 * order of AGF then AGI, and this can deadlock against inode allocation and 2518 * freeing. Therefore we must drop the link counts before we remove the 2519 * directory entry. 2520 * 2521 * This is still safe from a transactional point of view - it is not until we 2522 * get to xfs_bmap_finish() that we have the possibility of multiple 2523 * transactions in this operation. Hence as long as we remove the directory 2524 * entry and drop the link count in the first transaction of the remove 2525 * operation, there are no transactional constraints on the ordering here. 2526 */ 2527 int 2528 xfs_remove( 2529 xfs_inode_t *dp, 2530 struct xfs_name *name, 2531 xfs_inode_t *ip) 2532 { 2533 xfs_mount_t *mp = dp->i_mount; 2534 xfs_trans_t *tp = NULL; 2535 int is_dir = S_ISDIR(ip->i_d.di_mode); 2536 int error = 0; 2537 xfs_bmap_free_t free_list; 2538 xfs_fsblock_t first_block; 2539 int cancel_flags; 2540 int committed; 2541 uint resblks; 2542 2543 trace_xfs_remove(dp, name); 2544 2545 if (XFS_FORCED_SHUTDOWN(mp)) 2546 return -EIO; 2547 2548 error = xfs_qm_dqattach(dp, 0); 2549 if (error) 2550 goto std_return; 2551 2552 error = xfs_qm_dqattach(ip, 0); 2553 if (error) 2554 goto std_return; 2555 2556 if (is_dir) 2557 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR); 2558 else 2559 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE); 2560 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2561 2562 /* 2563 * We try to get the real space reservation first, 2564 * allowing for directory btree deletion(s) implying 2565 * possible bmap insert(s). If we can't get the space 2566 * reservation then we use 0 instead, and avoid the bmap 2567 * btree insert(s) in the directory code by, if the bmap 2568 * insert tries to happen, instead trimming the LAST 2569 * block from the directory. 2570 */ 2571 resblks = XFS_REMOVE_SPACE_RES(mp); 2572 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0); 2573 if (error == -ENOSPC) { 2574 resblks = 0; 2575 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0); 2576 } 2577 if (error) { 2578 ASSERT(error != -ENOSPC); 2579 cancel_flags = 0; 2580 goto out_trans_cancel; 2581 } 2582 2583 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); 2584 2585 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); 2586 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 2587 2588 /* 2589 * If we're removing a directory perform some additional validation. 2590 */ 2591 cancel_flags |= XFS_TRANS_ABORT; 2592 if (is_dir) { 2593 ASSERT(ip->i_d.di_nlink >= 2); 2594 if (ip->i_d.di_nlink != 2) { 2595 error = -ENOTEMPTY; 2596 goto out_trans_cancel; 2597 } 2598 if (!xfs_dir_isempty(ip)) { 2599 error = -ENOTEMPTY; 2600 goto out_trans_cancel; 2601 } 2602 2603 /* Drop the link from ip's "..". */ 2604 error = xfs_droplink(tp, dp); 2605 if (error) 2606 goto out_trans_cancel; 2607 2608 /* Drop the "." link from ip to self. */ 2609 error = xfs_droplink(tp, ip); 2610 if (error) 2611 goto out_trans_cancel; 2612 } else { 2613 /* 2614 * When removing a non-directory we need to log the parent 2615 * inode here. For a directory this is done implicitly 2616 * by the xfs_droplink call for the ".." entry. 2617 */ 2618 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); 2619 } 2620 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2621 2622 /* Drop the link from dp to ip. */ 2623 error = xfs_droplink(tp, ip); 2624 if (error) 2625 goto out_trans_cancel; 2626 2627 xfs_bmap_init(&free_list, &first_block); 2628 error = xfs_dir_removename(tp, dp, name, ip->i_ino, 2629 &first_block, &free_list, resblks); 2630 if (error) { 2631 ASSERT(error != -ENOENT); 2632 goto out_bmap_cancel; 2633 } 2634 2635 /* 2636 * If this is a synchronous mount, make sure that the 2637 * remove transaction goes to disk before returning to 2638 * the user. 2639 */ 2640 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2641 xfs_trans_set_sync(tp); 2642 2643 error = xfs_bmap_finish(&tp, &free_list, &committed); 2644 if (error) 2645 goto out_bmap_cancel; 2646 2647 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2648 if (error) 2649 goto std_return; 2650 2651 if (is_dir && xfs_inode_is_filestream(ip)) 2652 xfs_filestream_deassociate(ip); 2653 2654 return 0; 2655 2656 out_bmap_cancel: 2657 xfs_bmap_cancel(&free_list); 2658 out_trans_cancel: 2659 xfs_trans_cancel(tp, cancel_flags); 2660 std_return: 2661 return error; 2662 } 2663 2664 /* 2665 * Enter all inodes for a rename transaction into a sorted array. 2666 */ 2667 #define __XFS_SORT_INODES 5 2668 STATIC void 2669 xfs_sort_for_rename( 2670 struct xfs_inode *dp1, /* in: old (source) directory inode */ 2671 struct xfs_inode *dp2, /* in: new (target) directory inode */ 2672 struct xfs_inode *ip1, /* in: inode of old entry */ 2673 struct xfs_inode *ip2, /* in: inode of new entry */ 2674 struct xfs_inode *wip, /* in: whiteout inode */ 2675 struct xfs_inode **i_tab,/* out: sorted array of inodes */ 2676 int *num_inodes) /* in/out: inodes in array */ 2677 { 2678 int i, j; 2679 2680 ASSERT(*num_inodes == __XFS_SORT_INODES); 2681 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); 2682 2683 /* 2684 * i_tab contains a list of pointers to inodes. We initialize 2685 * the table here & we'll sort it. We will then use it to 2686 * order the acquisition of the inode locks. 2687 * 2688 * Note that the table may contain duplicates. e.g., dp1 == dp2. 2689 */ 2690 i = 0; 2691 i_tab[i++] = dp1; 2692 i_tab[i++] = dp2; 2693 i_tab[i++] = ip1; 2694 if (ip2) 2695 i_tab[i++] = ip2; 2696 if (wip) 2697 i_tab[i++] = wip; 2698 *num_inodes = i; 2699 2700 /* 2701 * Sort the elements via bubble sort. (Remember, there are at 2702 * most 5 elements to sort, so this is adequate.) 2703 */ 2704 for (i = 0; i < *num_inodes; i++) { 2705 for (j = 1; j < *num_inodes; j++) { 2706 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { 2707 struct xfs_inode *temp = i_tab[j]; 2708 i_tab[j] = i_tab[j-1]; 2709 i_tab[j-1] = temp; 2710 } 2711 } 2712 } 2713 } 2714 2715 static int 2716 xfs_finish_rename( 2717 struct xfs_trans *tp, 2718 struct xfs_bmap_free *free_list) 2719 { 2720 int committed = 0; 2721 int error; 2722 2723 /* 2724 * If this is a synchronous mount, make sure that the rename transaction 2725 * goes to disk before returning to the user. 2726 */ 2727 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) 2728 xfs_trans_set_sync(tp); 2729 2730 error = xfs_bmap_finish(&tp, free_list, &committed); 2731 if (error) { 2732 xfs_bmap_cancel(free_list); 2733 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 2734 return error; 2735 } 2736 2737 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES); 2738 } 2739 2740 /* 2741 * xfs_cross_rename() 2742 * 2743 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall 2744 */ 2745 STATIC int 2746 xfs_cross_rename( 2747 struct xfs_trans *tp, 2748 struct xfs_inode *dp1, 2749 struct xfs_name *name1, 2750 struct xfs_inode *ip1, 2751 struct xfs_inode *dp2, 2752 struct xfs_name *name2, 2753 struct xfs_inode *ip2, 2754 struct xfs_bmap_free *free_list, 2755 xfs_fsblock_t *first_block, 2756 int spaceres) 2757 { 2758 int error = 0; 2759 int ip1_flags = 0; 2760 int ip2_flags = 0; 2761 int dp2_flags = 0; 2762 2763 /* Swap inode number for dirent in first parent */ 2764 error = xfs_dir_replace(tp, dp1, name1, 2765 ip2->i_ino, 2766 first_block, free_list, spaceres); 2767 if (error) 2768 goto out_trans_abort; 2769 2770 /* Swap inode number for dirent in second parent */ 2771 error = xfs_dir_replace(tp, dp2, name2, 2772 ip1->i_ino, 2773 first_block, free_list, spaceres); 2774 if (error) 2775 goto out_trans_abort; 2776 2777 /* 2778 * If we're renaming one or more directories across different parents, 2779 * update the respective ".." entries (and link counts) to match the new 2780 * parents. 2781 */ 2782 if (dp1 != dp2) { 2783 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2784 2785 if (S_ISDIR(ip2->i_d.di_mode)) { 2786 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, 2787 dp1->i_ino, first_block, 2788 free_list, spaceres); 2789 if (error) 2790 goto out_trans_abort; 2791 2792 /* transfer ip2 ".." reference to dp1 */ 2793 if (!S_ISDIR(ip1->i_d.di_mode)) { 2794 error = xfs_droplink(tp, dp2); 2795 if (error) 2796 goto out_trans_abort; 2797 error = xfs_bumplink(tp, dp1); 2798 if (error) 2799 goto out_trans_abort; 2800 } 2801 2802 /* 2803 * Although ip1 isn't changed here, userspace needs 2804 * to be warned about the change, so that applications 2805 * relying on it (like backup ones), will properly 2806 * notify the change 2807 */ 2808 ip1_flags |= XFS_ICHGTIME_CHG; 2809 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2810 } 2811 2812 if (S_ISDIR(ip1->i_d.di_mode)) { 2813 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, 2814 dp2->i_ino, first_block, 2815 free_list, spaceres); 2816 if (error) 2817 goto out_trans_abort; 2818 2819 /* transfer ip1 ".." reference to dp2 */ 2820 if (!S_ISDIR(ip2->i_d.di_mode)) { 2821 error = xfs_droplink(tp, dp1); 2822 if (error) 2823 goto out_trans_abort; 2824 error = xfs_bumplink(tp, dp2); 2825 if (error) 2826 goto out_trans_abort; 2827 } 2828 2829 /* 2830 * Although ip2 isn't changed here, userspace needs 2831 * to be warned about the change, so that applications 2832 * relying on it (like backup ones), will properly 2833 * notify the change 2834 */ 2835 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; 2836 ip2_flags |= XFS_ICHGTIME_CHG; 2837 } 2838 } 2839 2840 if (ip1_flags) { 2841 xfs_trans_ichgtime(tp, ip1, ip1_flags); 2842 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); 2843 } 2844 if (ip2_flags) { 2845 xfs_trans_ichgtime(tp, ip2, ip2_flags); 2846 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); 2847 } 2848 if (dp2_flags) { 2849 xfs_trans_ichgtime(tp, dp2, dp2_flags); 2850 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); 2851 } 2852 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 2853 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); 2854 return xfs_finish_rename(tp, free_list); 2855 2856 out_trans_abort: 2857 xfs_bmap_cancel(free_list); 2858 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT); 2859 return error; 2860 } 2861 2862 /* 2863 * xfs_rename_alloc_whiteout() 2864 * 2865 * Return a referenced, unlinked, unlocked inode that that can be used as a 2866 * whiteout in a rename transaction. We use a tmpfile inode here so that if we 2867 * crash between allocating the inode and linking it into the rename transaction 2868 * recovery will free the inode and we won't leak it. 2869 */ 2870 static int 2871 xfs_rename_alloc_whiteout( 2872 struct xfs_inode *dp, 2873 struct xfs_inode **wip) 2874 { 2875 struct xfs_inode *tmpfile; 2876 int error; 2877 2878 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); 2879 if (error) 2880 return error; 2881 2882 /* 2883 * Prepare the tmpfile inode as if it were created through the VFS. 2884 * Otherwise, the link increment paths will complain about nlink 0->1. 2885 * Drop the link count as done by d_tmpfile(), complete the inode setup 2886 * and flag it as linkable. 2887 */ 2888 drop_nlink(VFS_I(tmpfile)); 2889 xfs_finish_inode_setup(tmpfile); 2890 VFS_I(tmpfile)->i_state |= I_LINKABLE; 2891 2892 *wip = tmpfile; 2893 return 0; 2894 } 2895 2896 /* 2897 * xfs_rename 2898 */ 2899 int 2900 xfs_rename( 2901 struct xfs_inode *src_dp, 2902 struct xfs_name *src_name, 2903 struct xfs_inode *src_ip, 2904 struct xfs_inode *target_dp, 2905 struct xfs_name *target_name, 2906 struct xfs_inode *target_ip, 2907 unsigned int flags) 2908 { 2909 struct xfs_mount *mp = src_dp->i_mount; 2910 struct xfs_trans *tp; 2911 struct xfs_bmap_free free_list; 2912 xfs_fsblock_t first_block; 2913 struct xfs_inode *wip = NULL; /* whiteout inode */ 2914 struct xfs_inode *inodes[__XFS_SORT_INODES]; 2915 int num_inodes = __XFS_SORT_INODES; 2916 bool new_parent = (src_dp != target_dp); 2917 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode); 2918 int cancel_flags = 0; 2919 int spaceres; 2920 int error; 2921 2922 trace_xfs_rename(src_dp, target_dp, src_name, target_name); 2923 2924 if ((flags & RENAME_EXCHANGE) && !target_ip) 2925 return -EINVAL; 2926 2927 /* 2928 * If we are doing a whiteout operation, allocate the whiteout inode 2929 * we will be placing at the target and ensure the type is set 2930 * appropriately. 2931 */ 2932 if (flags & RENAME_WHITEOUT) { 2933 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); 2934 error = xfs_rename_alloc_whiteout(target_dp, &wip); 2935 if (error) 2936 return error; 2937 2938 /* setup target dirent info as whiteout */ 2939 src_name->type = XFS_DIR3_FT_CHRDEV; 2940 } 2941 2942 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, 2943 inodes, &num_inodes); 2944 2945 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME); 2946 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); 2947 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0); 2948 if (error == -ENOSPC) { 2949 spaceres = 0; 2950 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0); 2951 } 2952 if (error) 2953 goto out_trans_cancel; 2954 cancel_flags = XFS_TRANS_RELEASE_LOG_RES; 2955 2956 /* 2957 * Attach the dquots to the inodes 2958 */ 2959 error = xfs_qm_vop_rename_dqattach(inodes); 2960 if (error) 2961 goto out_trans_cancel; 2962 2963 /* 2964 * Lock all the participating inodes. Depending upon whether 2965 * the target_name exists in the target directory, and 2966 * whether the target directory is the same as the source 2967 * directory, we can lock from 2 to 4 inodes. 2968 */ 2969 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); 2970 2971 /* 2972 * Join all the inodes to the transaction. From this point on, 2973 * we can rely on either trans_commit or trans_cancel to unlock 2974 * them. 2975 */ 2976 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); 2977 if (new_parent) 2978 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); 2979 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); 2980 if (target_ip) 2981 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); 2982 if (wip) 2983 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); 2984 2985 /* 2986 * If we are using project inheritance, we only allow renames 2987 * into our tree when the project IDs are the same; else the 2988 * tree quota mechanism would be circumvented. 2989 */ 2990 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && 2991 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { 2992 error = -EXDEV; 2993 goto out_trans_cancel; 2994 } 2995 2996 xfs_bmap_init(&free_list, &first_block); 2997 2998 /* RENAME_EXCHANGE is unique from here on. */ 2999 if (flags & RENAME_EXCHANGE) 3000 return xfs_cross_rename(tp, src_dp, src_name, src_ip, 3001 target_dp, target_name, target_ip, 3002 &free_list, &first_block, spaceres); 3003 3004 /* 3005 * Set up the target. 3006 */ 3007 if (target_ip == NULL) { 3008 /* 3009 * If there's no space reservation, check the entry will 3010 * fit before actually inserting it. 3011 */ 3012 if (!spaceres) { 3013 error = xfs_dir_canenter(tp, target_dp, target_name); 3014 if (error) 3015 goto out_trans_cancel; 3016 } 3017 /* 3018 * If target does not exist and the rename crosses 3019 * directories, adjust the target directory link count 3020 * to account for the ".." reference from the new entry. 3021 */ 3022 error = xfs_dir_createname(tp, target_dp, target_name, 3023 src_ip->i_ino, &first_block, 3024 &free_list, spaceres); 3025 if (error == -ENOSPC) 3026 goto out_bmap_cancel; 3027 if (error) 3028 goto out_trans_abort; 3029 3030 xfs_trans_ichgtime(tp, target_dp, 3031 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3032 3033 if (new_parent && src_is_directory) { 3034 error = xfs_bumplink(tp, target_dp); 3035 if (error) 3036 goto out_trans_abort; 3037 } 3038 } else { /* target_ip != NULL */ 3039 /* 3040 * If target exists and it's a directory, check that both 3041 * target and source are directories and that target can be 3042 * destroyed, or that neither is a directory. 3043 */ 3044 if (S_ISDIR(target_ip->i_d.di_mode)) { 3045 /* 3046 * Make sure target dir is empty. 3047 */ 3048 if (!(xfs_dir_isempty(target_ip)) || 3049 (target_ip->i_d.di_nlink > 2)) { 3050 error = -EEXIST; 3051 goto out_trans_cancel; 3052 } 3053 } 3054 3055 /* 3056 * Link the source inode under the target name. 3057 * If the source inode is a directory and we are moving 3058 * it across directories, its ".." entry will be 3059 * inconsistent until we replace that down below. 3060 * 3061 * In case there is already an entry with the same 3062 * name at the destination directory, remove it first. 3063 */ 3064 error = xfs_dir_replace(tp, target_dp, target_name, 3065 src_ip->i_ino, 3066 &first_block, &free_list, spaceres); 3067 if (error) 3068 goto out_trans_abort; 3069 3070 xfs_trans_ichgtime(tp, target_dp, 3071 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3072 3073 /* 3074 * Decrement the link count on the target since the target 3075 * dir no longer points to it. 3076 */ 3077 error = xfs_droplink(tp, target_ip); 3078 if (error) 3079 goto out_trans_abort; 3080 3081 if (src_is_directory) { 3082 /* 3083 * Drop the link from the old "." entry. 3084 */ 3085 error = xfs_droplink(tp, target_ip); 3086 if (error) 3087 goto out_trans_abort; 3088 } 3089 } /* target_ip != NULL */ 3090 3091 /* 3092 * Remove the source. 3093 */ 3094 if (new_parent && src_is_directory) { 3095 /* 3096 * Rewrite the ".." entry to point to the new 3097 * directory. 3098 */ 3099 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, 3100 target_dp->i_ino, 3101 &first_block, &free_list, spaceres); 3102 ASSERT(error != -EEXIST); 3103 if (error) 3104 goto out_trans_abort; 3105 } 3106 3107 /* 3108 * We always want to hit the ctime on the source inode. 3109 * 3110 * This isn't strictly required by the standards since the source 3111 * inode isn't really being changed, but old unix file systems did 3112 * it and some incremental backup programs won't work without it. 3113 */ 3114 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); 3115 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); 3116 3117 /* 3118 * Adjust the link count on src_dp. This is necessary when 3119 * renaming a directory, either within one parent when 3120 * the target existed, or across two parent directories. 3121 */ 3122 if (src_is_directory && (new_parent || target_ip != NULL)) { 3123 3124 /* 3125 * Decrement link count on src_directory since the 3126 * entry that's moved no longer points to it. 3127 */ 3128 error = xfs_droplink(tp, src_dp); 3129 if (error) 3130 goto out_trans_abort; 3131 } 3132 3133 /* 3134 * For whiteouts, we only need to update the source dirent with the 3135 * inode number of the whiteout inode rather than removing it 3136 * altogether. 3137 */ 3138 if (wip) { 3139 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, 3140 &first_block, &free_list, spaceres); 3141 } else 3142 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, 3143 &first_block, &free_list, spaceres); 3144 if (error) 3145 goto out_trans_abort; 3146 3147 /* 3148 * For whiteouts, we need to bump the link count on the whiteout inode. 3149 * This means that failures all the way up to this point leave the inode 3150 * on the unlinked list and so cleanup is a simple matter of dropping 3151 * the remaining reference to it. If we fail here after bumping the link 3152 * count, we're shutting down the filesystem so we'll never see the 3153 * intermediate state on disk. 3154 */ 3155 if (wip) { 3156 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0); 3157 error = xfs_bumplink(tp, wip); 3158 if (error) 3159 goto out_trans_abort; 3160 error = xfs_iunlink_remove(tp, wip); 3161 if (error) 3162 goto out_trans_abort; 3163 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); 3164 3165 /* 3166 * Now we have a real link, clear the "I'm a tmpfile" state 3167 * flag from the inode so it doesn't accidentally get misused in 3168 * future. 3169 */ 3170 VFS_I(wip)->i_state &= ~I_LINKABLE; 3171 } 3172 3173 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 3174 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); 3175 if (new_parent) 3176 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); 3177 3178 error = xfs_finish_rename(tp, &free_list); 3179 if (wip) 3180 IRELE(wip); 3181 return error; 3182 3183 out_trans_abort: 3184 cancel_flags |= XFS_TRANS_ABORT; 3185 out_bmap_cancel: 3186 xfs_bmap_cancel(&free_list); 3187 out_trans_cancel: 3188 xfs_trans_cancel(tp, cancel_flags); 3189 if (wip) 3190 IRELE(wip); 3191 return error; 3192 } 3193 3194 STATIC int 3195 xfs_iflush_cluster( 3196 xfs_inode_t *ip, 3197 xfs_buf_t *bp) 3198 { 3199 xfs_mount_t *mp = ip->i_mount; 3200 struct xfs_perag *pag; 3201 unsigned long first_index, mask; 3202 unsigned long inodes_per_cluster; 3203 int ilist_size; 3204 xfs_inode_t **ilist; 3205 xfs_inode_t *iq; 3206 int nr_found; 3207 int clcount = 0; 3208 int bufwasdelwri; 3209 int i; 3210 3211 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); 3212 3213 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; 3214 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); 3215 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS); 3216 if (!ilist) 3217 goto out_put; 3218 3219 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); 3220 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; 3221 rcu_read_lock(); 3222 /* really need a gang lookup range call here */ 3223 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist, 3224 first_index, inodes_per_cluster); 3225 if (nr_found == 0) 3226 goto out_free; 3227 3228 for (i = 0; i < nr_found; i++) { 3229 iq = ilist[i]; 3230 if (iq == ip) 3231 continue; 3232 3233 /* 3234 * because this is an RCU protected lookup, we could find a 3235 * recently freed or even reallocated inode during the lookup. 3236 * We need to check under the i_flags_lock for a valid inode 3237 * here. Skip it if it is not valid or the wrong inode. 3238 */ 3239 spin_lock(&ip->i_flags_lock); 3240 if (!ip->i_ino || 3241 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) { 3242 spin_unlock(&ip->i_flags_lock); 3243 continue; 3244 } 3245 spin_unlock(&ip->i_flags_lock); 3246 3247 /* 3248 * Do an un-protected check to see if the inode is dirty and 3249 * is a candidate for flushing. These checks will be repeated 3250 * later after the appropriate locks are acquired. 3251 */ 3252 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0) 3253 continue; 3254 3255 /* 3256 * Try to get locks. If any are unavailable or it is pinned, 3257 * then this inode cannot be flushed and is skipped. 3258 */ 3259 3260 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) 3261 continue; 3262 if (!xfs_iflock_nowait(iq)) { 3263 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3264 continue; 3265 } 3266 if (xfs_ipincount(iq)) { 3267 xfs_ifunlock(iq); 3268 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3269 continue; 3270 } 3271 3272 /* 3273 * arriving here means that this inode can be flushed. First 3274 * re-check that it's dirty before flushing. 3275 */ 3276 if (!xfs_inode_clean(iq)) { 3277 int error; 3278 error = xfs_iflush_int(iq, bp); 3279 if (error) { 3280 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3281 goto cluster_corrupt_out; 3282 } 3283 clcount++; 3284 } else { 3285 xfs_ifunlock(iq); 3286 } 3287 xfs_iunlock(iq, XFS_ILOCK_SHARED); 3288 } 3289 3290 if (clcount) { 3291 XFS_STATS_INC(xs_icluster_flushcnt); 3292 XFS_STATS_ADD(xs_icluster_flushinode, clcount); 3293 } 3294 3295 out_free: 3296 rcu_read_unlock(); 3297 kmem_free(ilist); 3298 out_put: 3299 xfs_perag_put(pag); 3300 return 0; 3301 3302 3303 cluster_corrupt_out: 3304 /* 3305 * Corruption detected in the clustering loop. Invalidate the 3306 * inode buffer and shut down the filesystem. 3307 */ 3308 rcu_read_unlock(); 3309 /* 3310 * Clean up the buffer. If it was delwri, just release it -- 3311 * brelse can handle it with no problems. If not, shut down the 3312 * filesystem before releasing the buffer. 3313 */ 3314 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); 3315 if (bufwasdelwri) 3316 xfs_buf_relse(bp); 3317 3318 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3319 3320 if (!bufwasdelwri) { 3321 /* 3322 * Just like incore_relse: if we have b_iodone functions, 3323 * mark the buffer as an error and call them. Otherwise 3324 * mark it as stale and brelse. 3325 */ 3326 if (bp->b_iodone) { 3327 XFS_BUF_UNDONE(bp); 3328 xfs_buf_stale(bp); 3329 xfs_buf_ioerror(bp, -EIO); 3330 xfs_buf_ioend(bp); 3331 } else { 3332 xfs_buf_stale(bp); 3333 xfs_buf_relse(bp); 3334 } 3335 } 3336 3337 /* 3338 * Unlocks the flush lock 3339 */ 3340 xfs_iflush_abort(iq, false); 3341 kmem_free(ilist); 3342 xfs_perag_put(pag); 3343 return -EFSCORRUPTED; 3344 } 3345 3346 /* 3347 * Flush dirty inode metadata into the backing buffer. 3348 * 3349 * The caller must have the inode lock and the inode flush lock held. The 3350 * inode lock will still be held upon return to the caller, and the inode 3351 * flush lock will be released after the inode has reached the disk. 3352 * 3353 * The caller must write out the buffer returned in *bpp and release it. 3354 */ 3355 int 3356 xfs_iflush( 3357 struct xfs_inode *ip, 3358 struct xfs_buf **bpp) 3359 { 3360 struct xfs_mount *mp = ip->i_mount; 3361 struct xfs_buf *bp; 3362 struct xfs_dinode *dip; 3363 int error; 3364 3365 XFS_STATS_INC(xs_iflush_count); 3366 3367 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3368 ASSERT(xfs_isiflocked(ip)); 3369 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3370 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3371 3372 *bpp = NULL; 3373 3374 xfs_iunpin_wait(ip); 3375 3376 /* 3377 * For stale inodes we cannot rely on the backing buffer remaining 3378 * stale in cache for the remaining life of the stale inode and so 3379 * xfs_imap_to_bp() below may give us a buffer that no longer contains 3380 * inodes below. We have to check this after ensuring the inode is 3381 * unpinned so that it is safe to reclaim the stale inode after the 3382 * flush call. 3383 */ 3384 if (xfs_iflags_test(ip, XFS_ISTALE)) { 3385 xfs_ifunlock(ip); 3386 return 0; 3387 } 3388 3389 /* 3390 * This may have been unpinned because the filesystem is shutting 3391 * down forcibly. If that's the case we must not write this inode 3392 * to disk, because the log record didn't make it to disk. 3393 * 3394 * We also have to remove the log item from the AIL in this case, 3395 * as we wait for an empty AIL as part of the unmount process. 3396 */ 3397 if (XFS_FORCED_SHUTDOWN(mp)) { 3398 error = -EIO; 3399 goto abort_out; 3400 } 3401 3402 /* 3403 * Get the buffer containing the on-disk inode. 3404 */ 3405 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, 3406 0); 3407 if (error || !bp) { 3408 xfs_ifunlock(ip); 3409 return error; 3410 } 3411 3412 /* 3413 * First flush out the inode that xfs_iflush was called with. 3414 */ 3415 error = xfs_iflush_int(ip, bp); 3416 if (error) 3417 goto corrupt_out; 3418 3419 /* 3420 * If the buffer is pinned then push on the log now so we won't 3421 * get stuck waiting in the write for too long. 3422 */ 3423 if (xfs_buf_ispinned(bp)) 3424 xfs_log_force(mp, 0); 3425 3426 /* 3427 * inode clustering: 3428 * see if other inodes can be gathered into this write 3429 */ 3430 error = xfs_iflush_cluster(ip, bp); 3431 if (error) 3432 goto cluster_corrupt_out; 3433 3434 *bpp = bp; 3435 return 0; 3436 3437 corrupt_out: 3438 xfs_buf_relse(bp); 3439 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 3440 cluster_corrupt_out: 3441 error = -EFSCORRUPTED; 3442 abort_out: 3443 /* 3444 * Unlocks the flush lock 3445 */ 3446 xfs_iflush_abort(ip, false); 3447 return error; 3448 } 3449 3450 STATIC int 3451 xfs_iflush_int( 3452 struct xfs_inode *ip, 3453 struct xfs_buf *bp) 3454 { 3455 struct xfs_inode_log_item *iip = ip->i_itemp; 3456 struct xfs_dinode *dip; 3457 struct xfs_mount *mp = ip->i_mount; 3458 3459 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); 3460 ASSERT(xfs_isiflocked(ip)); 3461 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 3462 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); 3463 ASSERT(iip != NULL && iip->ili_fields != 0); 3464 ASSERT(ip->i_d.di_version > 1); 3465 3466 /* set *dip = inode's place in the buffer */ 3467 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset); 3468 3469 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), 3470 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { 3471 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3472 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", 3473 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); 3474 goto corrupt_out; 3475 } 3476 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, 3477 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { 3478 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3479 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x", 3480 __func__, ip->i_ino, ip, ip->i_d.di_magic); 3481 goto corrupt_out; 3482 } 3483 if (S_ISREG(ip->i_d.di_mode)) { 3484 if (XFS_TEST_ERROR( 3485 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3486 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), 3487 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { 3488 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3489 "%s: Bad regular inode %Lu, ptr 0x%p", 3490 __func__, ip->i_ino, ip); 3491 goto corrupt_out; 3492 } 3493 } else if (S_ISDIR(ip->i_d.di_mode)) { 3494 if (XFS_TEST_ERROR( 3495 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && 3496 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && 3497 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), 3498 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { 3499 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3500 "%s: Bad directory inode %Lu, ptr 0x%p", 3501 __func__, ip->i_ino, ip); 3502 goto corrupt_out; 3503 } 3504 } 3505 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > 3506 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, 3507 XFS_RANDOM_IFLUSH_5)) { 3508 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3509 "%s: detected corrupt incore inode %Lu, " 3510 "total extents = %d, nblocks = %Ld, ptr 0x%p", 3511 __func__, ip->i_ino, 3512 ip->i_d.di_nextents + ip->i_d.di_anextents, 3513 ip->i_d.di_nblocks, ip); 3514 goto corrupt_out; 3515 } 3516 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, 3517 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { 3518 xfs_alert_tag(mp, XFS_PTAG_IFLUSH, 3519 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", 3520 __func__, ip->i_ino, ip->i_d.di_forkoff, ip); 3521 goto corrupt_out; 3522 } 3523 3524 /* 3525 * Inode item log recovery for v2 inodes are dependent on the 3526 * di_flushiter count for correct sequencing. We bump the flush 3527 * iteration count so we can detect flushes which postdate a log record 3528 * during recovery. This is redundant as we now log every change and 3529 * hence this can't happen but we need to still do it to ensure 3530 * backwards compatibility with old kernels that predate logging all 3531 * inode changes. 3532 */ 3533 if (ip->i_d.di_version < 3) 3534 ip->i_d.di_flushiter++; 3535 3536 /* 3537 * Copy the dirty parts of the inode into the on-disk 3538 * inode. We always copy out the core of the inode, 3539 * because if the inode is dirty at all the core must 3540 * be. 3541 */ 3542 xfs_dinode_to_disk(dip, &ip->i_d); 3543 3544 /* Wrap, we never let the log put out DI_MAX_FLUSH */ 3545 if (ip->i_d.di_flushiter == DI_MAX_FLUSH) 3546 ip->i_d.di_flushiter = 0; 3547 3548 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); 3549 if (XFS_IFORK_Q(ip)) 3550 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); 3551 xfs_inobp_check(mp, bp); 3552 3553 /* 3554 * We've recorded everything logged in the inode, so we'd like to clear 3555 * the ili_fields bits so we don't log and flush things unnecessarily. 3556 * However, we can't stop logging all this information until the data 3557 * we've copied into the disk buffer is written to disk. If we did we 3558 * might overwrite the copy of the inode in the log with all the data 3559 * after re-logging only part of it, and in the face of a crash we 3560 * wouldn't have all the data we need to recover. 3561 * 3562 * What we do is move the bits to the ili_last_fields field. When 3563 * logging the inode, these bits are moved back to the ili_fields field. 3564 * In the xfs_iflush_done() routine we clear ili_last_fields, since we 3565 * know that the information those bits represent is permanently on 3566 * disk. As long as the flush completes before the inode is logged 3567 * again, then both ili_fields and ili_last_fields will be cleared. 3568 * 3569 * We can play with the ili_fields bits here, because the inode lock 3570 * must be held exclusively in order to set bits there and the flush 3571 * lock protects the ili_last_fields bits. Set ili_logged so the flush 3572 * done routine can tell whether or not to look in the AIL. Also, store 3573 * the current LSN of the inode so that we can tell whether the item has 3574 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we 3575 * need the AIL lock, because it is a 64 bit value that cannot be read 3576 * atomically. 3577 */ 3578 iip->ili_last_fields = iip->ili_fields; 3579 iip->ili_fields = 0; 3580 iip->ili_logged = 1; 3581 3582 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, 3583 &iip->ili_item.li_lsn); 3584 3585 /* 3586 * Attach the function xfs_iflush_done to the inode's 3587 * buffer. This will remove the inode from the AIL 3588 * and unlock the inode's flush lock when the inode is 3589 * completely written to disk. 3590 */ 3591 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); 3592 3593 /* update the lsn in the on disk inode if required */ 3594 if (ip->i_d.di_version == 3) 3595 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn); 3596 3597 /* generate the checksum. */ 3598 xfs_dinode_calc_crc(mp, dip); 3599 3600 ASSERT(bp->b_fspriv != NULL); 3601 ASSERT(bp->b_iodone != NULL); 3602 return 0; 3603 3604 corrupt_out: 3605 return -EFSCORRUPTED; 3606 } 3607