xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 65ee8aeb)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367  * value. This shouldn't be called for page fault locking, but we also need to
368  * ensure we don't overrun the number of lockdep subclasses for the iolock or
369  * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
370  */
371 static inline int
372 xfs_lock_inumorder(int lock_mode, int subclass)
373 {
374 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375 		ASSERT(subclass + XFS_LOCK_INUMORDER <
376 			(1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
377 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
378 	}
379 
380 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381 		ASSERT(subclass + XFS_LOCK_INUMORDER <
382 			(1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384 							XFS_MMAPLOCK_SHIFT;
385 	}
386 
387 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388 		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389 
390 	return lock_mode;
391 }
392 
393 /*
394  * The following routine will lock n inodes in exclusive mode.  We assume the
395  * caller calls us with the inodes in i_ino order.
396  *
397  * We need to detect deadlock where an inode that we lock is in the AIL and we
398  * start waiting for another inode that is locked by a thread in a long running
399  * transaction (such as truncate). This can result in deadlock since the long
400  * running trans might need to wait for the inode we just locked in order to
401  * push the tail and free space in the log.
402  */
403 void
404 xfs_lock_inodes(
405 	xfs_inode_t	**ips,
406 	int		inodes,
407 	uint		lock_mode)
408 {
409 	int		attempts = 0, i, j, try_lock;
410 	xfs_log_item_t	*lp;
411 
412 	/* currently supports between 2 and 5 inodes */
413 	ASSERT(ips && inodes >= 2 && inodes <= 5);
414 
415 	try_lock = 0;
416 	i = 0;
417 again:
418 	for (; i < inodes; i++) {
419 		ASSERT(ips[i]);
420 
421 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422 			continue;
423 
424 		/*
425 		 * If try_lock is not set yet, make sure all locked inodes are
426 		 * not in the AIL.  If any are, set try_lock to be used later.
427 		 */
428 		if (!try_lock) {
429 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
431 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
432 					try_lock++;
433 			}
434 		}
435 
436 		/*
437 		 * If any of the previous locks we have locked is in the AIL,
438 		 * we must TRY to get the second and subsequent locks. If
439 		 * we can't get any, we must release all we have
440 		 * and try again.
441 		 */
442 		if (!try_lock) {
443 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 			continue;
445 		}
446 
447 		/* try_lock means we have an inode locked that is in the AIL. */
448 		ASSERT(i != 0);
449 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 			continue;
451 
452 		/*
453 		 * Unlock all previous guys and try again.  xfs_iunlock will try
454 		 * to push the tail if the inode is in the AIL.
455 		 */
456 		attempts++;
457 		for (j = i - 1; j >= 0; j--) {
458 			/*
459 			 * Check to see if we've already unlocked this one.  Not
460 			 * the first one going back, and the inode ptr is the
461 			 * same.
462 			 */
463 			if (j != (i - 1) && ips[j] == ips[j + 1])
464 				continue;
465 
466 			xfs_iunlock(ips[j], lock_mode);
467 		}
468 
469 		if ((attempts % 5) == 0) {
470 			delay(1); /* Don't just spin the CPU */
471 #ifdef DEBUG
472 			xfs_lock_delays++;
473 #endif
474 		}
475 		i = 0;
476 		try_lock = 0;
477 		goto again;
478 	}
479 
480 #ifdef DEBUG
481 	if (attempts) {
482 		if (attempts < 5) xfs_small_retries++;
483 		else if (attempts < 100) xfs_middle_retries++;
484 		else xfs_lots_retries++;
485 	} else {
486 		xfs_locked_n++;
487 	}
488 #endif
489 }
490 
491 /*
492  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494  * lock more than one at a time, lockdep will report false positives saying we
495  * have violated locking orders.
496  */
497 void
498 xfs_lock_two_inodes(
499 	xfs_inode_t		*ip0,
500 	xfs_inode_t		*ip1,
501 	uint			lock_mode)
502 {
503 	xfs_inode_t		*temp;
504 	int			attempts = 0;
505 	xfs_log_item_t		*lp;
506 
507 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512 
513 	ASSERT(ip0->i_ino != ip1->i_ino);
514 
515 	if (ip0->i_ino > ip1->i_ino) {
516 		temp = ip0;
517 		ip0 = ip1;
518 		ip1 = temp;
519 	}
520 
521  again:
522 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523 
524 	/*
525 	 * If the first lock we have locked is in the AIL, we must TRY to get
526 	 * the second lock. If we can't get it, we must release the first one
527 	 * and try again.
528 	 */
529 	lp = (xfs_log_item_t *)ip0->i_itemp;
530 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532 			xfs_iunlock(ip0, lock_mode);
533 			if ((++attempts % 5) == 0)
534 				delay(1); /* Don't just spin the CPU */
535 			goto again;
536 		}
537 	} else {
538 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539 	}
540 }
541 
542 
543 void
544 __xfs_iflock(
545 	struct xfs_inode	*ip)
546 {
547 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549 
550 	do {
551 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552 		if (xfs_isiflocked(ip))
553 			io_schedule();
554 	} while (!xfs_iflock_nowait(ip));
555 
556 	finish_wait(wq, &wait.wait);
557 }
558 
559 STATIC uint
560 _xfs_dic2xflags(
561 	__uint16_t		di_flags)
562 {
563 	uint			flags = 0;
564 
565 	if (di_flags & XFS_DIFLAG_ANY) {
566 		if (di_flags & XFS_DIFLAG_REALTIME)
567 			flags |= XFS_XFLAG_REALTIME;
568 		if (di_flags & XFS_DIFLAG_PREALLOC)
569 			flags |= XFS_XFLAG_PREALLOC;
570 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
571 			flags |= XFS_XFLAG_IMMUTABLE;
572 		if (di_flags & XFS_DIFLAG_APPEND)
573 			flags |= XFS_XFLAG_APPEND;
574 		if (di_flags & XFS_DIFLAG_SYNC)
575 			flags |= XFS_XFLAG_SYNC;
576 		if (di_flags & XFS_DIFLAG_NOATIME)
577 			flags |= XFS_XFLAG_NOATIME;
578 		if (di_flags & XFS_DIFLAG_NODUMP)
579 			flags |= XFS_XFLAG_NODUMP;
580 		if (di_flags & XFS_DIFLAG_RTINHERIT)
581 			flags |= XFS_XFLAG_RTINHERIT;
582 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
583 			flags |= XFS_XFLAG_PROJINHERIT;
584 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585 			flags |= XFS_XFLAG_NOSYMLINKS;
586 		if (di_flags & XFS_DIFLAG_EXTSIZE)
587 			flags |= XFS_XFLAG_EXTSIZE;
588 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589 			flags |= XFS_XFLAG_EXTSZINHERIT;
590 		if (di_flags & XFS_DIFLAG_NODEFRAG)
591 			flags |= XFS_XFLAG_NODEFRAG;
592 		if (di_flags & XFS_DIFLAG_FILESTREAM)
593 			flags |= XFS_XFLAG_FILESTREAM;
594 	}
595 
596 	return flags;
597 }
598 
599 uint
600 xfs_ip2xflags(
601 	xfs_inode_t		*ip)
602 {
603 	xfs_icdinode_t		*dic = &ip->i_d;
604 
605 	return _xfs_dic2xflags(dic->di_flags) |
606 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
607 }
608 
609 uint
610 xfs_dic2xflags(
611 	xfs_dinode_t		*dip)
612 {
613 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
614 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
615 }
616 
617 /*
618  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619  * is allowed, otherwise it has to be an exact match. If a CI match is found,
620  * ci_name->name will point to a the actual name (caller must free) or
621  * will be set to NULL if an exact match is found.
622  */
623 int
624 xfs_lookup(
625 	xfs_inode_t		*dp,
626 	struct xfs_name		*name,
627 	xfs_inode_t		**ipp,
628 	struct xfs_name		*ci_name)
629 {
630 	xfs_ino_t		inum;
631 	int			error;
632 	uint			lock_mode;
633 
634 	trace_xfs_lookup(dp, name);
635 
636 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
637 		return -EIO;
638 
639 	lock_mode = xfs_ilock_data_map_shared(dp);
640 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641 	xfs_iunlock(dp, lock_mode);
642 
643 	if (error)
644 		goto out;
645 
646 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647 	if (error)
648 		goto out_free_name;
649 
650 	return 0;
651 
652 out_free_name:
653 	if (ci_name)
654 		kmem_free(ci_name->name);
655 out:
656 	*ipp = NULL;
657 	return error;
658 }
659 
660 /*
661  * Allocate an inode on disk and return a copy of its in-core version.
662  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
663  * appropriately within the inode.  The uid and gid for the inode are
664  * set according to the contents of the given cred structure.
665  *
666  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
667  * has a free inode available, call xfs_iget() to obtain the in-core
668  * version of the allocated inode.  Finally, fill in the inode and
669  * log its initial contents.  In this case, ialloc_context would be
670  * set to NULL.
671  *
672  * If xfs_dialloc() does not have an available inode, it will replenish
673  * its supply by doing an allocation. Since we can only do one
674  * allocation within a transaction without deadlocks, we must commit
675  * the current transaction before returning the inode itself.
676  * In this case, therefore, we will set ialloc_context and return.
677  * The caller should then commit the current transaction, start a new
678  * transaction, and call xfs_ialloc() again to actually get the inode.
679  *
680  * To ensure that some other process does not grab the inode that
681  * was allocated during the first call to xfs_ialloc(), this routine
682  * also returns the [locked] bp pointing to the head of the freelist
683  * as ialloc_context.  The caller should hold this buffer across
684  * the commit and pass it back into this routine on the second call.
685  *
686  * If we are allocating quota inodes, we do not have a parent inode
687  * to attach to or associate with (i.e. pip == NULL) because they
688  * are not linked into the directory structure - they are attached
689  * directly to the superblock - and so have no parent.
690  */
691 int
692 xfs_ialloc(
693 	xfs_trans_t	*tp,
694 	xfs_inode_t	*pip,
695 	umode_t		mode,
696 	xfs_nlink_t	nlink,
697 	xfs_dev_t	rdev,
698 	prid_t		prid,
699 	int		okalloc,
700 	xfs_buf_t	**ialloc_context,
701 	xfs_inode_t	**ipp)
702 {
703 	struct xfs_mount *mp = tp->t_mountp;
704 	xfs_ino_t	ino;
705 	xfs_inode_t	*ip;
706 	uint		flags;
707 	int		error;
708 	struct timespec	tv;
709 
710 	/*
711 	 * Call the space management code to pick
712 	 * the on-disk inode to be allocated.
713 	 */
714 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
715 			    ialloc_context, &ino);
716 	if (error)
717 		return error;
718 	if (*ialloc_context || ino == NULLFSINO) {
719 		*ipp = NULL;
720 		return 0;
721 	}
722 	ASSERT(*ialloc_context == NULL);
723 
724 	/*
725 	 * Get the in-core inode with the lock held exclusively.
726 	 * This is because we're setting fields here we need
727 	 * to prevent others from looking at until we're done.
728 	 */
729 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
730 			 XFS_ILOCK_EXCL, &ip);
731 	if (error)
732 		return error;
733 	ASSERT(ip != NULL);
734 
735 	/*
736 	 * We always convert v1 inodes to v2 now - we only support filesystems
737 	 * with >= v2 inode capability, so there is no reason for ever leaving
738 	 * an inode in v1 format.
739 	 */
740 	if (ip->i_d.di_version == 1)
741 		ip->i_d.di_version = 2;
742 
743 	ip->i_d.di_mode = mode;
744 	ip->i_d.di_onlink = 0;
745 	ip->i_d.di_nlink = nlink;
746 	ASSERT(ip->i_d.di_nlink == nlink);
747 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
749 	xfs_set_projid(ip, prid);
750 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751 
752 	if (pip && XFS_INHERIT_GID(pip)) {
753 		ip->i_d.di_gid = pip->i_d.di_gid;
754 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
755 			ip->i_d.di_mode |= S_ISGID;
756 		}
757 	}
758 
759 	/*
760 	 * If the group ID of the new file does not match the effective group
761 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762 	 * (and only if the irix_sgid_inherit compatibility variable is set).
763 	 */
764 	if ((irix_sgid_inherit) &&
765 	    (ip->i_d.di_mode & S_ISGID) &&
766 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
767 		ip->i_d.di_mode &= ~S_ISGID;
768 	}
769 
770 	ip->i_d.di_size = 0;
771 	ip->i_d.di_nextents = 0;
772 	ASSERT(ip->i_d.di_nblocks == 0);
773 
774 	tv = current_fs_time(mp->m_super);
775 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777 	ip->i_d.di_atime = ip->i_d.di_mtime;
778 	ip->i_d.di_ctime = ip->i_d.di_mtime;
779 
780 	/*
781 	 * di_gen will have been taken care of in xfs_iread.
782 	 */
783 	ip->i_d.di_extsize = 0;
784 	ip->i_d.di_dmevmask = 0;
785 	ip->i_d.di_dmstate = 0;
786 	ip->i_d.di_flags = 0;
787 
788 	if (ip->i_d.di_version == 3) {
789 		ASSERT(ip->i_d.di_ino == ino);
790 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791 		ip->i_d.di_crc = 0;
792 		ip->i_d.di_changecount = 1;
793 		ip->i_d.di_lsn = 0;
794 		ip->i_d.di_flags2 = 0;
795 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796 		ip->i_d.di_crtime = ip->i_d.di_mtime;
797 	}
798 
799 
800 	flags = XFS_ILOG_CORE;
801 	switch (mode & S_IFMT) {
802 	case S_IFIFO:
803 	case S_IFCHR:
804 	case S_IFBLK:
805 	case S_IFSOCK:
806 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807 		ip->i_df.if_u2.if_rdev = rdev;
808 		ip->i_df.if_flags = 0;
809 		flags |= XFS_ILOG_DEV;
810 		break;
811 	case S_IFREG:
812 	case S_IFDIR:
813 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
814 			uint	di_flags = 0;
815 
816 			if (S_ISDIR(mode)) {
817 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818 					di_flags |= XFS_DIFLAG_RTINHERIT;
819 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821 					ip->i_d.di_extsize = pip->i_d.di_extsize;
822 				}
823 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824 					di_flags |= XFS_DIFLAG_PROJINHERIT;
825 			} else if (S_ISREG(mode)) {
826 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
827 					di_flags |= XFS_DIFLAG_REALTIME;
828 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829 					di_flags |= XFS_DIFLAG_EXTSIZE;
830 					ip->i_d.di_extsize = pip->i_d.di_extsize;
831 				}
832 			}
833 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834 			    xfs_inherit_noatime)
835 				di_flags |= XFS_DIFLAG_NOATIME;
836 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837 			    xfs_inherit_nodump)
838 				di_flags |= XFS_DIFLAG_NODUMP;
839 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840 			    xfs_inherit_sync)
841 				di_flags |= XFS_DIFLAG_SYNC;
842 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843 			    xfs_inherit_nosymlinks)
844 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
845 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846 			    xfs_inherit_nodefrag)
847 				di_flags |= XFS_DIFLAG_NODEFRAG;
848 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849 				di_flags |= XFS_DIFLAG_FILESTREAM;
850 			ip->i_d.di_flags |= di_flags;
851 		}
852 		/* FALLTHROUGH */
853 	case S_IFLNK:
854 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855 		ip->i_df.if_flags = XFS_IFEXTENTS;
856 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857 		ip->i_df.if_u1.if_extents = NULL;
858 		break;
859 	default:
860 		ASSERT(0);
861 	}
862 	/*
863 	 * Attribute fork settings for new inode.
864 	 */
865 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866 	ip->i_d.di_anextents = 0;
867 
868 	/*
869 	 * Log the new values stuffed into the inode.
870 	 */
871 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872 	xfs_trans_log_inode(tp, ip, flags);
873 
874 	/* now that we have an i_mode we can setup the inode structure */
875 	xfs_setup_inode(ip);
876 
877 	*ipp = ip;
878 	return 0;
879 }
880 
881 /*
882  * Allocates a new inode from disk and return a pointer to the
883  * incore copy. This routine will internally commit the current
884  * transaction and allocate a new one if the Space Manager needed
885  * to do an allocation to replenish the inode free-list.
886  *
887  * This routine is designed to be called from xfs_create and
888  * xfs_create_dir.
889  *
890  */
891 int
892 xfs_dir_ialloc(
893 	xfs_trans_t	**tpp,		/* input: current transaction;
894 					   output: may be a new transaction. */
895 	xfs_inode_t	*dp,		/* directory within whose allocate
896 					   the inode. */
897 	umode_t		mode,
898 	xfs_nlink_t	nlink,
899 	xfs_dev_t	rdev,
900 	prid_t		prid,		/* project id */
901 	int		okalloc,	/* ok to allocate new space */
902 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
903 					   locked. */
904 	int		*committed)
905 
906 {
907 	xfs_trans_t	*tp;
908 	xfs_trans_t	*ntp;
909 	xfs_inode_t	*ip;
910 	xfs_buf_t	*ialloc_context = NULL;
911 	int		code;
912 	void		*dqinfo;
913 	uint		tflags;
914 
915 	tp = *tpp;
916 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
917 
918 	/*
919 	 * xfs_ialloc will return a pointer to an incore inode if
920 	 * the Space Manager has an available inode on the free
921 	 * list. Otherwise, it will do an allocation and replenish
922 	 * the freelist.  Since we can only do one allocation per
923 	 * transaction without deadlocks, we will need to commit the
924 	 * current transaction and start a new one.  We will then
925 	 * need to call xfs_ialloc again to get the inode.
926 	 *
927 	 * If xfs_ialloc did an allocation to replenish the freelist,
928 	 * it returns the bp containing the head of the freelist as
929 	 * ialloc_context. We will hold a lock on it across the
930 	 * transaction commit so that no other process can steal
931 	 * the inode(s) that we've just allocated.
932 	 */
933 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
934 			  &ialloc_context, &ip);
935 
936 	/*
937 	 * Return an error if we were unable to allocate a new inode.
938 	 * This should only happen if we run out of space on disk or
939 	 * encounter a disk error.
940 	 */
941 	if (code) {
942 		*ipp = NULL;
943 		return code;
944 	}
945 	if (!ialloc_context && !ip) {
946 		*ipp = NULL;
947 		return -ENOSPC;
948 	}
949 
950 	/*
951 	 * If the AGI buffer is non-NULL, then we were unable to get an
952 	 * inode in one operation.  We need to commit the current
953 	 * transaction and call xfs_ialloc() again.  It is guaranteed
954 	 * to succeed the second time.
955 	 */
956 	if (ialloc_context) {
957 		struct xfs_trans_res tres;
958 
959 		/*
960 		 * Normally, xfs_trans_commit releases all the locks.
961 		 * We call bhold to hang on to the ialloc_context across
962 		 * the commit.  Holding this buffer prevents any other
963 		 * processes from doing any allocations in this
964 		 * allocation group.
965 		 */
966 		xfs_trans_bhold(tp, ialloc_context);
967 		/*
968 		 * Save the log reservation so we can use
969 		 * them in the next transaction.
970 		 */
971 		tres.tr_logres = xfs_trans_get_log_res(tp);
972 		tres.tr_logcount = xfs_trans_get_log_count(tp);
973 
974 		/*
975 		 * We want the quota changes to be associated with the next
976 		 * transaction, NOT this one. So, detach the dqinfo from this
977 		 * and attach it to the next transaction.
978 		 */
979 		dqinfo = NULL;
980 		tflags = 0;
981 		if (tp->t_dqinfo) {
982 			dqinfo = (void *)tp->t_dqinfo;
983 			tp->t_dqinfo = NULL;
984 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
985 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
986 		}
987 
988 		ntp = xfs_trans_dup(tp);
989 		code = xfs_trans_commit(tp, 0);
990 		tp = ntp;
991 		if (committed != NULL) {
992 			*committed = 1;
993 		}
994 		/*
995 		 * If we get an error during the commit processing,
996 		 * release the buffer that is still held and return
997 		 * to the caller.
998 		 */
999 		if (code) {
1000 			xfs_buf_relse(ialloc_context);
1001 			if (dqinfo) {
1002 				tp->t_dqinfo = dqinfo;
1003 				xfs_trans_free_dqinfo(tp);
1004 			}
1005 			*tpp = ntp;
1006 			*ipp = NULL;
1007 			return code;
1008 		}
1009 
1010 		/*
1011 		 * transaction commit worked ok so we can drop the extra ticket
1012 		 * reference that we gained in xfs_trans_dup()
1013 		 */
1014 		xfs_log_ticket_put(tp->t_ticket);
1015 		tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1016 		code = xfs_trans_reserve(tp, &tres, 0, 0);
1017 
1018 		/*
1019 		 * Re-attach the quota info that we detached from prev trx.
1020 		 */
1021 		if (dqinfo) {
1022 			tp->t_dqinfo = dqinfo;
1023 			tp->t_flags |= tflags;
1024 		}
1025 
1026 		if (code) {
1027 			xfs_buf_relse(ialloc_context);
1028 			*tpp = ntp;
1029 			*ipp = NULL;
1030 			return code;
1031 		}
1032 		xfs_trans_bjoin(tp, ialloc_context);
1033 
1034 		/*
1035 		 * Call ialloc again. Since we've locked out all
1036 		 * other allocations in this allocation group,
1037 		 * this call should always succeed.
1038 		 */
1039 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1040 				  okalloc, &ialloc_context, &ip);
1041 
1042 		/*
1043 		 * If we get an error at this point, return to the caller
1044 		 * so that the current transaction can be aborted.
1045 		 */
1046 		if (code) {
1047 			*tpp = tp;
1048 			*ipp = NULL;
1049 			return code;
1050 		}
1051 		ASSERT(!ialloc_context && ip);
1052 
1053 	} else {
1054 		if (committed != NULL)
1055 			*committed = 0;
1056 	}
1057 
1058 	*ipp = ip;
1059 	*tpp = tp;
1060 
1061 	return 0;
1062 }
1063 
1064 /*
1065  * Decrement the link count on an inode & log the change.
1066  * If this causes the link count to go to zero, initiate the
1067  * logging activity required to truncate a file.
1068  */
1069 int				/* error */
1070 xfs_droplink(
1071 	xfs_trans_t *tp,
1072 	xfs_inode_t *ip)
1073 {
1074 	int	error;
1075 
1076 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1077 
1078 	ASSERT (ip->i_d.di_nlink > 0);
1079 	ip->i_d.di_nlink--;
1080 	drop_nlink(VFS_I(ip));
1081 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1082 
1083 	error = 0;
1084 	if (ip->i_d.di_nlink == 0) {
1085 		/*
1086 		 * We're dropping the last link to this file.
1087 		 * Move the on-disk inode to the AGI unlinked list.
1088 		 * From xfs_inactive() we will pull the inode from
1089 		 * the list and free it.
1090 		 */
1091 		error = xfs_iunlink(tp, ip);
1092 	}
1093 	return error;
1094 }
1095 
1096 /*
1097  * Increment the link count on an inode & log the change.
1098  */
1099 int
1100 xfs_bumplink(
1101 	xfs_trans_t *tp,
1102 	xfs_inode_t *ip)
1103 {
1104 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1105 
1106 	ASSERT(ip->i_d.di_version > 1);
1107 	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1108 	ip->i_d.di_nlink++;
1109 	inc_nlink(VFS_I(ip));
1110 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1111 	return 0;
1112 }
1113 
1114 int
1115 xfs_create(
1116 	xfs_inode_t		*dp,
1117 	struct xfs_name		*name,
1118 	umode_t			mode,
1119 	xfs_dev_t		rdev,
1120 	xfs_inode_t		**ipp)
1121 {
1122 	int			is_dir = S_ISDIR(mode);
1123 	struct xfs_mount	*mp = dp->i_mount;
1124 	struct xfs_inode	*ip = NULL;
1125 	struct xfs_trans	*tp = NULL;
1126 	int			error;
1127 	xfs_bmap_free_t		free_list;
1128 	xfs_fsblock_t		first_block;
1129 	bool                    unlock_dp_on_error = false;
1130 	uint			cancel_flags;
1131 	int			committed;
1132 	prid_t			prid;
1133 	struct xfs_dquot	*udqp = NULL;
1134 	struct xfs_dquot	*gdqp = NULL;
1135 	struct xfs_dquot	*pdqp = NULL;
1136 	struct xfs_trans_res	*tres;
1137 	uint			resblks;
1138 
1139 	trace_xfs_create(dp, name);
1140 
1141 	if (XFS_FORCED_SHUTDOWN(mp))
1142 		return -EIO;
1143 
1144 	prid = xfs_get_initial_prid(dp);
1145 
1146 	/*
1147 	 * Make sure that we have allocated dquot(s) on disk.
1148 	 */
1149 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1150 					xfs_kgid_to_gid(current_fsgid()), prid,
1151 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1152 					&udqp, &gdqp, &pdqp);
1153 	if (error)
1154 		return error;
1155 
1156 	if (is_dir) {
1157 		rdev = 0;
1158 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1159 		tres = &M_RES(mp)->tr_mkdir;
1160 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1161 	} else {
1162 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1163 		tres = &M_RES(mp)->tr_create;
1164 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1165 	}
1166 
1167 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1168 
1169 	/*
1170 	 * Initially assume that the file does not exist and
1171 	 * reserve the resources for that case.  If that is not
1172 	 * the case we'll drop the one we have and get a more
1173 	 * appropriate transaction later.
1174 	 */
1175 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1176 	if (error == -ENOSPC) {
1177 		/* flush outstanding delalloc blocks and retry */
1178 		xfs_flush_inodes(mp);
1179 		error = xfs_trans_reserve(tp, tres, resblks, 0);
1180 	}
1181 	if (error == -ENOSPC) {
1182 		/* No space at all so try a "no-allocation" reservation */
1183 		resblks = 0;
1184 		error = xfs_trans_reserve(tp, tres, 0, 0);
1185 	}
1186 	if (error) {
1187 		cancel_flags = 0;
1188 		goto out_trans_cancel;
1189 	}
1190 
1191 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1192 	unlock_dp_on_error = true;
1193 
1194 	xfs_bmap_init(&free_list, &first_block);
1195 
1196 	/*
1197 	 * Reserve disk quota and the inode.
1198 	 */
1199 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 						pdqp, resblks, 1, 0);
1201 	if (error)
1202 		goto out_trans_cancel;
1203 
1204 	if (!resblks) {
1205 		error = xfs_dir_canenter(tp, dp, name);
1206 		if (error)
1207 			goto out_trans_cancel;
1208 	}
1209 
1210 	/*
1211 	 * A newly created regular or special file just has one directory
1212 	 * entry pointing to them, but a directory also the "." entry
1213 	 * pointing to itself.
1214 	 */
1215 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1216 			       prid, resblks > 0, &ip, &committed);
1217 	if (error) {
1218 		if (error == -ENOSPC)
1219 			goto out_trans_cancel;
1220 		goto out_trans_abort;
1221 	}
1222 
1223 	/*
1224 	 * Now we join the directory inode to the transaction.  We do not do it
1225 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1226 	 * (and release all the locks).  An error from here on will result in
1227 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1228 	 * error path.
1229 	 */
1230 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1231 	unlock_dp_on_error = false;
1232 
1233 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1234 					&first_block, &free_list, resblks ?
1235 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1236 	if (error) {
1237 		ASSERT(error != -ENOSPC);
1238 		goto out_trans_abort;
1239 	}
1240 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1241 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1242 
1243 	if (is_dir) {
1244 		error = xfs_dir_init(tp, ip, dp);
1245 		if (error)
1246 			goto out_bmap_cancel;
1247 
1248 		error = xfs_bumplink(tp, dp);
1249 		if (error)
1250 			goto out_bmap_cancel;
1251 	}
1252 
1253 	/*
1254 	 * If this is a synchronous mount, make sure that the
1255 	 * create transaction goes to disk before returning to
1256 	 * the user.
1257 	 */
1258 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1259 		xfs_trans_set_sync(tp);
1260 
1261 	/*
1262 	 * Attach the dquot(s) to the inodes and modify them incore.
1263 	 * These ids of the inode couldn't have changed since the new
1264 	 * inode has been locked ever since it was created.
1265 	 */
1266 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1267 
1268 	error = xfs_bmap_finish(&tp, &free_list, &committed);
1269 	if (error)
1270 		goto out_bmap_cancel;
1271 
1272 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1273 	if (error)
1274 		goto out_release_inode;
1275 
1276 	xfs_qm_dqrele(udqp);
1277 	xfs_qm_dqrele(gdqp);
1278 	xfs_qm_dqrele(pdqp);
1279 
1280 	*ipp = ip;
1281 	return 0;
1282 
1283  out_bmap_cancel:
1284 	xfs_bmap_cancel(&free_list);
1285  out_trans_abort:
1286 	cancel_flags |= XFS_TRANS_ABORT;
1287  out_trans_cancel:
1288 	xfs_trans_cancel(tp, cancel_flags);
1289  out_release_inode:
1290 	/*
1291 	 * Wait until after the current transaction is aborted to finish the
1292 	 * setup of the inode and release the inode.  This prevents recursive
1293 	 * transactions and deadlocks from xfs_inactive.
1294 	 */
1295 	if (ip) {
1296 		xfs_finish_inode_setup(ip);
1297 		IRELE(ip);
1298 	}
1299 
1300 	xfs_qm_dqrele(udqp);
1301 	xfs_qm_dqrele(gdqp);
1302 	xfs_qm_dqrele(pdqp);
1303 
1304 	if (unlock_dp_on_error)
1305 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1306 	return error;
1307 }
1308 
1309 int
1310 xfs_create_tmpfile(
1311 	struct xfs_inode	*dp,
1312 	struct dentry		*dentry,
1313 	umode_t			mode,
1314 	struct xfs_inode	**ipp)
1315 {
1316 	struct xfs_mount	*mp = dp->i_mount;
1317 	struct xfs_inode	*ip = NULL;
1318 	struct xfs_trans	*tp = NULL;
1319 	int			error;
1320 	uint			cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1321 	prid_t                  prid;
1322 	struct xfs_dquot	*udqp = NULL;
1323 	struct xfs_dquot	*gdqp = NULL;
1324 	struct xfs_dquot	*pdqp = NULL;
1325 	struct xfs_trans_res	*tres;
1326 	uint			resblks;
1327 
1328 	if (XFS_FORCED_SHUTDOWN(mp))
1329 		return -EIO;
1330 
1331 	prid = xfs_get_initial_prid(dp);
1332 
1333 	/*
1334 	 * Make sure that we have allocated dquot(s) on disk.
1335 	 */
1336 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1337 				xfs_kgid_to_gid(current_fsgid()), prid,
1338 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1339 				&udqp, &gdqp, &pdqp);
1340 	if (error)
1341 		return error;
1342 
1343 	resblks = XFS_IALLOC_SPACE_RES(mp);
1344 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1345 
1346 	tres = &M_RES(mp)->tr_create_tmpfile;
1347 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1348 	if (error == -ENOSPC) {
1349 		/* No space at all so try a "no-allocation" reservation */
1350 		resblks = 0;
1351 		error = xfs_trans_reserve(tp, tres, 0, 0);
1352 	}
1353 	if (error) {
1354 		cancel_flags = 0;
1355 		goto out_trans_cancel;
1356 	}
1357 
1358 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1359 						pdqp, resblks, 1, 0);
1360 	if (error)
1361 		goto out_trans_cancel;
1362 
1363 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1364 				prid, resblks > 0, &ip, NULL);
1365 	if (error) {
1366 		if (error == -ENOSPC)
1367 			goto out_trans_cancel;
1368 		goto out_trans_abort;
1369 	}
1370 
1371 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1372 		xfs_trans_set_sync(tp);
1373 
1374 	/*
1375 	 * Attach the dquot(s) to the inodes and modify them incore.
1376 	 * These ids of the inode couldn't have changed since the new
1377 	 * inode has been locked ever since it was created.
1378 	 */
1379 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1380 
1381 	ip->i_d.di_nlink--;
1382 	error = xfs_iunlink(tp, ip);
1383 	if (error)
1384 		goto out_trans_abort;
1385 
1386 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1387 	if (error)
1388 		goto out_release_inode;
1389 
1390 	xfs_qm_dqrele(udqp);
1391 	xfs_qm_dqrele(gdqp);
1392 	xfs_qm_dqrele(pdqp);
1393 
1394 	*ipp = ip;
1395 	return 0;
1396 
1397  out_trans_abort:
1398 	cancel_flags |= XFS_TRANS_ABORT;
1399  out_trans_cancel:
1400 	xfs_trans_cancel(tp, cancel_flags);
1401  out_release_inode:
1402 	/*
1403 	 * Wait until after the current transaction is aborted to finish the
1404 	 * setup of the inode and release the inode.  This prevents recursive
1405 	 * transactions and deadlocks from xfs_inactive.
1406 	 */
1407 	if (ip) {
1408 		xfs_finish_inode_setup(ip);
1409 		IRELE(ip);
1410 	}
1411 
1412 	xfs_qm_dqrele(udqp);
1413 	xfs_qm_dqrele(gdqp);
1414 	xfs_qm_dqrele(pdqp);
1415 
1416 	return error;
1417 }
1418 
1419 int
1420 xfs_link(
1421 	xfs_inode_t		*tdp,
1422 	xfs_inode_t		*sip,
1423 	struct xfs_name		*target_name)
1424 {
1425 	xfs_mount_t		*mp = tdp->i_mount;
1426 	xfs_trans_t		*tp;
1427 	int			error;
1428 	xfs_bmap_free_t         free_list;
1429 	xfs_fsblock_t           first_block;
1430 	int			cancel_flags;
1431 	int			committed;
1432 	int			resblks;
1433 
1434 	trace_xfs_link(tdp, target_name);
1435 
1436 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1437 
1438 	if (XFS_FORCED_SHUTDOWN(mp))
1439 		return -EIO;
1440 
1441 	error = xfs_qm_dqattach(sip, 0);
1442 	if (error)
1443 		goto std_return;
1444 
1445 	error = xfs_qm_dqattach(tdp, 0);
1446 	if (error)
1447 		goto std_return;
1448 
1449 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1450 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1451 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1452 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1453 	if (error == -ENOSPC) {
1454 		resblks = 0;
1455 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1456 	}
1457 	if (error) {
1458 		cancel_flags = 0;
1459 		goto error_return;
1460 	}
1461 
1462 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1463 
1464 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1465 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1466 
1467 	/*
1468 	 * If we are using project inheritance, we only allow hard link
1469 	 * creation in our tree when the project IDs are the same; else
1470 	 * the tree quota mechanism could be circumvented.
1471 	 */
1472 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1473 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1474 		error = -EXDEV;
1475 		goto error_return;
1476 	}
1477 
1478 	if (!resblks) {
1479 		error = xfs_dir_canenter(tp, tdp, target_name);
1480 		if (error)
1481 			goto error_return;
1482 	}
1483 
1484 	xfs_bmap_init(&free_list, &first_block);
1485 
1486 	if (sip->i_d.di_nlink == 0) {
1487 		error = xfs_iunlink_remove(tp, sip);
1488 		if (error)
1489 			goto abort_return;
1490 	}
1491 
1492 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1493 					&first_block, &free_list, resblks);
1494 	if (error)
1495 		goto abort_return;
1496 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1497 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1498 
1499 	error = xfs_bumplink(tp, sip);
1500 	if (error)
1501 		goto abort_return;
1502 
1503 	/*
1504 	 * If this is a synchronous mount, make sure that the
1505 	 * link transaction goes to disk before returning to
1506 	 * the user.
1507 	 */
1508 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1509 		xfs_trans_set_sync(tp);
1510 	}
1511 
1512 	error = xfs_bmap_finish (&tp, &free_list, &committed);
1513 	if (error) {
1514 		xfs_bmap_cancel(&free_list);
1515 		goto abort_return;
1516 	}
1517 
1518 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1519 
1520  abort_return:
1521 	cancel_flags |= XFS_TRANS_ABORT;
1522  error_return:
1523 	xfs_trans_cancel(tp, cancel_flags);
1524  std_return:
1525 	return error;
1526 }
1527 
1528 /*
1529  * Free up the underlying blocks past new_size.  The new size must be smaller
1530  * than the current size.  This routine can be used both for the attribute and
1531  * data fork, and does not modify the inode size, which is left to the caller.
1532  *
1533  * The transaction passed to this routine must have made a permanent log
1534  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1535  * given transaction and start new ones, so make sure everything involved in
1536  * the transaction is tidy before calling here.  Some transaction will be
1537  * returned to the caller to be committed.  The incoming transaction must
1538  * already include the inode, and both inode locks must be held exclusively.
1539  * The inode must also be "held" within the transaction.  On return the inode
1540  * will be "held" within the returned transaction.  This routine does NOT
1541  * require any disk space to be reserved for it within the transaction.
1542  *
1543  * If we get an error, we must return with the inode locked and linked into the
1544  * current transaction. This keeps things simple for the higher level code,
1545  * because it always knows that the inode is locked and held in the transaction
1546  * that returns to it whether errors occur or not.  We don't mark the inode
1547  * dirty on error so that transactions can be easily aborted if possible.
1548  */
1549 int
1550 xfs_itruncate_extents(
1551 	struct xfs_trans	**tpp,
1552 	struct xfs_inode	*ip,
1553 	int			whichfork,
1554 	xfs_fsize_t		new_size)
1555 {
1556 	struct xfs_mount	*mp = ip->i_mount;
1557 	struct xfs_trans	*tp = *tpp;
1558 	struct xfs_trans	*ntp;
1559 	xfs_bmap_free_t		free_list;
1560 	xfs_fsblock_t		first_block;
1561 	xfs_fileoff_t		first_unmap_block;
1562 	xfs_fileoff_t		last_block;
1563 	xfs_filblks_t		unmap_len;
1564 	int			committed;
1565 	int			error = 0;
1566 	int			done = 0;
1567 
1568 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1569 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1570 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1571 	ASSERT(new_size <= XFS_ISIZE(ip));
1572 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1573 	ASSERT(ip->i_itemp != NULL);
1574 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1575 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1576 
1577 	trace_xfs_itruncate_extents_start(ip, new_size);
1578 
1579 	/*
1580 	 * Since it is possible for space to become allocated beyond
1581 	 * the end of the file (in a crash where the space is allocated
1582 	 * but the inode size is not yet updated), simply remove any
1583 	 * blocks which show up between the new EOF and the maximum
1584 	 * possible file size.  If the first block to be removed is
1585 	 * beyond the maximum file size (ie it is the same as last_block),
1586 	 * then there is nothing to do.
1587 	 */
1588 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1589 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1590 	if (first_unmap_block == last_block)
1591 		return 0;
1592 
1593 	ASSERT(first_unmap_block < last_block);
1594 	unmap_len = last_block - first_unmap_block + 1;
1595 	while (!done) {
1596 		xfs_bmap_init(&free_list, &first_block);
1597 		error = xfs_bunmapi(tp, ip,
1598 				    first_unmap_block, unmap_len,
1599 				    xfs_bmapi_aflag(whichfork),
1600 				    XFS_ITRUNC_MAX_EXTENTS,
1601 				    &first_block, &free_list,
1602 				    &done);
1603 		if (error)
1604 			goto out_bmap_cancel;
1605 
1606 		/*
1607 		 * Duplicate the transaction that has the permanent
1608 		 * reservation and commit the old transaction.
1609 		 */
1610 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1611 		if (committed)
1612 			xfs_trans_ijoin(tp, ip, 0);
1613 		if (error)
1614 			goto out_bmap_cancel;
1615 
1616 		if (committed) {
1617 			/*
1618 			 * Mark the inode dirty so it will be logged and
1619 			 * moved forward in the log as part of every commit.
1620 			 */
1621 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1622 		}
1623 
1624 		ntp = xfs_trans_dup(tp);
1625 		error = xfs_trans_commit(tp, 0);
1626 		tp = ntp;
1627 
1628 		xfs_trans_ijoin(tp, ip, 0);
1629 
1630 		if (error)
1631 			goto out;
1632 
1633 		/*
1634 		 * Transaction commit worked ok so we can drop the extra ticket
1635 		 * reference that we gained in xfs_trans_dup()
1636 		 */
1637 		xfs_log_ticket_put(tp->t_ticket);
1638 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1639 		if (error)
1640 			goto out;
1641 	}
1642 
1643 	/*
1644 	 * Always re-log the inode so that our permanent transaction can keep
1645 	 * on rolling it forward in the log.
1646 	 */
1647 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1648 
1649 	trace_xfs_itruncate_extents_end(ip, new_size);
1650 
1651 out:
1652 	*tpp = tp;
1653 	return error;
1654 out_bmap_cancel:
1655 	/*
1656 	 * If the bunmapi call encounters an error, return to the caller where
1657 	 * the transaction can be properly aborted.  We just need to make sure
1658 	 * we're not holding any resources that we were not when we came in.
1659 	 */
1660 	xfs_bmap_cancel(&free_list);
1661 	goto out;
1662 }
1663 
1664 int
1665 xfs_release(
1666 	xfs_inode_t	*ip)
1667 {
1668 	xfs_mount_t	*mp = ip->i_mount;
1669 	int		error;
1670 
1671 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1672 		return 0;
1673 
1674 	/* If this is a read-only mount, don't do this (would generate I/O) */
1675 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1676 		return 0;
1677 
1678 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1679 		int truncated;
1680 
1681 		/*
1682 		 * If we previously truncated this file and removed old data
1683 		 * in the process, we want to initiate "early" writeout on
1684 		 * the last close.  This is an attempt to combat the notorious
1685 		 * NULL files problem which is particularly noticeable from a
1686 		 * truncate down, buffered (re-)write (delalloc), followed by
1687 		 * a crash.  What we are effectively doing here is
1688 		 * significantly reducing the time window where we'd otherwise
1689 		 * be exposed to that problem.
1690 		 */
1691 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1692 		if (truncated) {
1693 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1694 			if (ip->i_delayed_blks > 0) {
1695 				error = filemap_flush(VFS_I(ip)->i_mapping);
1696 				if (error)
1697 					return error;
1698 			}
1699 		}
1700 	}
1701 
1702 	if (ip->i_d.di_nlink == 0)
1703 		return 0;
1704 
1705 	if (xfs_can_free_eofblocks(ip, false)) {
1706 
1707 		/*
1708 		 * If we can't get the iolock just skip truncating the blocks
1709 		 * past EOF because we could deadlock with the mmap_sem
1710 		 * otherwise.  We'll get another chance to drop them once the
1711 		 * last reference to the inode is dropped, so we'll never leak
1712 		 * blocks permanently.
1713 		 *
1714 		 * Further, check if the inode is being opened, written and
1715 		 * closed frequently and we have delayed allocation blocks
1716 		 * outstanding (e.g. streaming writes from the NFS server),
1717 		 * truncating the blocks past EOF will cause fragmentation to
1718 		 * occur.
1719 		 *
1720 		 * In this case don't do the truncation, either, but we have to
1721 		 * be careful how we detect this case. Blocks beyond EOF show
1722 		 * up as i_delayed_blks even when the inode is clean, so we
1723 		 * need to truncate them away first before checking for a dirty
1724 		 * release. Hence on the first dirty close we will still remove
1725 		 * the speculative allocation, but after that we will leave it
1726 		 * in place.
1727 		 */
1728 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1729 			return 0;
1730 
1731 		error = xfs_free_eofblocks(mp, ip, true);
1732 		if (error && error != -EAGAIN)
1733 			return error;
1734 
1735 		/* delalloc blocks after truncation means it really is dirty */
1736 		if (ip->i_delayed_blks)
1737 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1738 	}
1739 	return 0;
1740 }
1741 
1742 /*
1743  * xfs_inactive_truncate
1744  *
1745  * Called to perform a truncate when an inode becomes unlinked.
1746  */
1747 STATIC int
1748 xfs_inactive_truncate(
1749 	struct xfs_inode *ip)
1750 {
1751 	struct xfs_mount	*mp = ip->i_mount;
1752 	struct xfs_trans	*tp;
1753 	int			error;
1754 
1755 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1756 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1757 	if (error) {
1758 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1759 		xfs_trans_cancel(tp, 0);
1760 		return error;
1761 	}
1762 
1763 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1764 	xfs_trans_ijoin(tp, ip, 0);
1765 
1766 	/*
1767 	 * Log the inode size first to prevent stale data exposure in the event
1768 	 * of a system crash before the truncate completes. See the related
1769 	 * comment in xfs_setattr_size() for details.
1770 	 */
1771 	ip->i_d.di_size = 0;
1772 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1773 
1774 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1775 	if (error)
1776 		goto error_trans_cancel;
1777 
1778 	ASSERT(ip->i_d.di_nextents == 0);
1779 
1780 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1781 	if (error)
1782 		goto error_unlock;
1783 
1784 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785 	return 0;
1786 
1787 error_trans_cancel:
1788 	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1789 error_unlock:
1790 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1791 	return error;
1792 }
1793 
1794 /*
1795  * xfs_inactive_ifree()
1796  *
1797  * Perform the inode free when an inode is unlinked.
1798  */
1799 STATIC int
1800 xfs_inactive_ifree(
1801 	struct xfs_inode *ip)
1802 {
1803 	xfs_bmap_free_t		free_list;
1804 	xfs_fsblock_t		first_block;
1805 	int			committed;
1806 	struct xfs_mount	*mp = ip->i_mount;
1807 	struct xfs_trans	*tp;
1808 	int			error;
1809 
1810 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1811 
1812 	/*
1813 	 * The ifree transaction might need to allocate blocks for record
1814 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1815 	 * allow ifree to dip into the reserved block pool if necessary.
1816 	 *
1817 	 * Freeing large sets of inodes generally means freeing inode chunks,
1818 	 * directory and file data blocks, so this should be relatively safe.
1819 	 * Only under severe circumstances should it be possible to free enough
1820 	 * inodes to exhaust the reserve block pool via finobt expansion while
1821 	 * at the same time not creating free space in the filesystem.
1822 	 *
1823 	 * Send a warning if the reservation does happen to fail, as the inode
1824 	 * now remains allocated and sits on the unlinked list until the fs is
1825 	 * repaired.
1826 	 */
1827 	tp->t_flags |= XFS_TRANS_RESERVE;
1828 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1829 				  XFS_IFREE_SPACE_RES(mp), 0);
1830 	if (error) {
1831 		if (error == -ENOSPC) {
1832 			xfs_warn_ratelimited(mp,
1833 			"Failed to remove inode(s) from unlinked list. "
1834 			"Please free space, unmount and run xfs_repair.");
1835 		} else {
1836 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1837 		}
1838 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1839 		return error;
1840 	}
1841 
1842 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1843 	xfs_trans_ijoin(tp, ip, 0);
1844 
1845 	xfs_bmap_init(&free_list, &first_block);
1846 	error = xfs_ifree(tp, ip, &free_list);
1847 	if (error) {
1848 		/*
1849 		 * If we fail to free the inode, shut down.  The cancel
1850 		 * might do that, we need to make sure.  Otherwise the
1851 		 * inode might be lost for a long time or forever.
1852 		 */
1853 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1854 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1855 				__func__, error);
1856 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1857 		}
1858 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1859 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1860 		return error;
1861 	}
1862 
1863 	/*
1864 	 * Credit the quota account(s). The inode is gone.
1865 	 */
1866 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1867 
1868 	/*
1869 	 * Just ignore errors at this point.  There is nothing we can
1870 	 * do except to try to keep going. Make sure it's not a silent
1871 	 * error.
1872 	 */
1873 	error = xfs_bmap_finish(&tp,  &free_list, &committed);
1874 	if (error)
1875 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1876 			__func__, error);
1877 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1878 	if (error)
1879 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1880 			__func__, error);
1881 
1882 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1883 	return 0;
1884 }
1885 
1886 /*
1887  * xfs_inactive
1888  *
1889  * This is called when the vnode reference count for the vnode
1890  * goes to zero.  If the file has been unlinked, then it must
1891  * now be truncated.  Also, we clear all of the read-ahead state
1892  * kept for the inode here since the file is now closed.
1893  */
1894 void
1895 xfs_inactive(
1896 	xfs_inode_t	*ip)
1897 {
1898 	struct xfs_mount	*mp;
1899 	int			error;
1900 	int			truncate = 0;
1901 
1902 	/*
1903 	 * If the inode is already free, then there can be nothing
1904 	 * to clean up here.
1905 	 */
1906 	if (ip->i_d.di_mode == 0) {
1907 		ASSERT(ip->i_df.if_real_bytes == 0);
1908 		ASSERT(ip->i_df.if_broot_bytes == 0);
1909 		return;
1910 	}
1911 
1912 	mp = ip->i_mount;
1913 
1914 	/* If this is a read-only mount, don't do this (would generate I/O) */
1915 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1916 		return;
1917 
1918 	if (ip->i_d.di_nlink != 0) {
1919 		/*
1920 		 * force is true because we are evicting an inode from the
1921 		 * cache. Post-eof blocks must be freed, lest we end up with
1922 		 * broken free space accounting.
1923 		 */
1924 		if (xfs_can_free_eofblocks(ip, true))
1925 			xfs_free_eofblocks(mp, ip, false);
1926 
1927 		return;
1928 	}
1929 
1930 	if (S_ISREG(ip->i_d.di_mode) &&
1931 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1932 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1933 		truncate = 1;
1934 
1935 	error = xfs_qm_dqattach(ip, 0);
1936 	if (error)
1937 		return;
1938 
1939 	if (S_ISLNK(ip->i_d.di_mode))
1940 		error = xfs_inactive_symlink(ip);
1941 	else if (truncate)
1942 		error = xfs_inactive_truncate(ip);
1943 	if (error)
1944 		return;
1945 
1946 	/*
1947 	 * If there are attributes associated with the file then blow them away
1948 	 * now.  The code calls a routine that recursively deconstructs the
1949 	 * attribute fork. If also blows away the in-core attribute fork.
1950 	 */
1951 	if (XFS_IFORK_Q(ip)) {
1952 		error = xfs_attr_inactive(ip);
1953 		if (error)
1954 			return;
1955 	}
1956 
1957 	ASSERT(!ip->i_afp);
1958 	ASSERT(ip->i_d.di_anextents == 0);
1959 	ASSERT(ip->i_d.di_forkoff == 0);
1960 
1961 	/*
1962 	 * Free the inode.
1963 	 */
1964 	error = xfs_inactive_ifree(ip);
1965 	if (error)
1966 		return;
1967 
1968 	/*
1969 	 * Release the dquots held by inode, if any.
1970 	 */
1971 	xfs_qm_dqdetach(ip);
1972 }
1973 
1974 /*
1975  * This is called when the inode's link count goes to 0.
1976  * We place the on-disk inode on a list in the AGI.  It
1977  * will be pulled from this list when the inode is freed.
1978  */
1979 int
1980 xfs_iunlink(
1981 	xfs_trans_t	*tp,
1982 	xfs_inode_t	*ip)
1983 {
1984 	xfs_mount_t	*mp;
1985 	xfs_agi_t	*agi;
1986 	xfs_dinode_t	*dip;
1987 	xfs_buf_t	*agibp;
1988 	xfs_buf_t	*ibp;
1989 	xfs_agino_t	agino;
1990 	short		bucket_index;
1991 	int		offset;
1992 	int		error;
1993 
1994 	ASSERT(ip->i_d.di_nlink == 0);
1995 	ASSERT(ip->i_d.di_mode != 0);
1996 
1997 	mp = tp->t_mountp;
1998 
1999 	/*
2000 	 * Get the agi buffer first.  It ensures lock ordering
2001 	 * on the list.
2002 	 */
2003 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2004 	if (error)
2005 		return error;
2006 	agi = XFS_BUF_TO_AGI(agibp);
2007 
2008 	/*
2009 	 * Get the index into the agi hash table for the
2010 	 * list this inode will go on.
2011 	 */
2012 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2013 	ASSERT(agino != 0);
2014 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2015 	ASSERT(agi->agi_unlinked[bucket_index]);
2016 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2017 
2018 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2019 		/*
2020 		 * There is already another inode in the bucket we need
2021 		 * to add ourselves to.  Add us at the front of the list.
2022 		 * Here we put the head pointer into our next pointer,
2023 		 * and then we fall through to point the head at us.
2024 		 */
2025 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2026 				       0, 0);
2027 		if (error)
2028 			return error;
2029 
2030 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2031 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2032 		offset = ip->i_imap.im_boffset +
2033 			offsetof(xfs_dinode_t, di_next_unlinked);
2034 
2035 		/* need to recalc the inode CRC if appropriate */
2036 		xfs_dinode_calc_crc(mp, dip);
2037 
2038 		xfs_trans_inode_buf(tp, ibp);
2039 		xfs_trans_log_buf(tp, ibp, offset,
2040 				  (offset + sizeof(xfs_agino_t) - 1));
2041 		xfs_inobp_check(mp, ibp);
2042 	}
2043 
2044 	/*
2045 	 * Point the bucket head pointer at the inode being inserted.
2046 	 */
2047 	ASSERT(agino != 0);
2048 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2049 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2050 		(sizeof(xfs_agino_t) * bucket_index);
2051 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2052 	xfs_trans_log_buf(tp, agibp, offset,
2053 			  (offset + sizeof(xfs_agino_t) - 1));
2054 	return 0;
2055 }
2056 
2057 /*
2058  * Pull the on-disk inode from the AGI unlinked list.
2059  */
2060 STATIC int
2061 xfs_iunlink_remove(
2062 	xfs_trans_t	*tp,
2063 	xfs_inode_t	*ip)
2064 {
2065 	xfs_ino_t	next_ino;
2066 	xfs_mount_t	*mp;
2067 	xfs_agi_t	*agi;
2068 	xfs_dinode_t	*dip;
2069 	xfs_buf_t	*agibp;
2070 	xfs_buf_t	*ibp;
2071 	xfs_agnumber_t	agno;
2072 	xfs_agino_t	agino;
2073 	xfs_agino_t	next_agino;
2074 	xfs_buf_t	*last_ibp;
2075 	xfs_dinode_t	*last_dip = NULL;
2076 	short		bucket_index;
2077 	int		offset, last_offset = 0;
2078 	int		error;
2079 
2080 	mp = tp->t_mountp;
2081 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2082 
2083 	/*
2084 	 * Get the agi buffer first.  It ensures lock ordering
2085 	 * on the list.
2086 	 */
2087 	error = xfs_read_agi(mp, tp, agno, &agibp);
2088 	if (error)
2089 		return error;
2090 
2091 	agi = XFS_BUF_TO_AGI(agibp);
2092 
2093 	/*
2094 	 * Get the index into the agi hash table for the
2095 	 * list this inode will go on.
2096 	 */
2097 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2098 	ASSERT(agino != 0);
2099 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2100 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2101 	ASSERT(agi->agi_unlinked[bucket_index]);
2102 
2103 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2104 		/*
2105 		 * We're at the head of the list.  Get the inode's on-disk
2106 		 * buffer to see if there is anyone after us on the list.
2107 		 * Only modify our next pointer if it is not already NULLAGINO.
2108 		 * This saves us the overhead of dealing with the buffer when
2109 		 * there is no need to change it.
2110 		 */
2111 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2112 				       0, 0);
2113 		if (error) {
2114 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2115 				__func__, error);
2116 			return error;
2117 		}
2118 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2119 		ASSERT(next_agino != 0);
2120 		if (next_agino != NULLAGINO) {
2121 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2122 			offset = ip->i_imap.im_boffset +
2123 				offsetof(xfs_dinode_t, di_next_unlinked);
2124 
2125 			/* need to recalc the inode CRC if appropriate */
2126 			xfs_dinode_calc_crc(mp, dip);
2127 
2128 			xfs_trans_inode_buf(tp, ibp);
2129 			xfs_trans_log_buf(tp, ibp, offset,
2130 					  (offset + sizeof(xfs_agino_t) - 1));
2131 			xfs_inobp_check(mp, ibp);
2132 		} else {
2133 			xfs_trans_brelse(tp, ibp);
2134 		}
2135 		/*
2136 		 * Point the bucket head pointer at the next inode.
2137 		 */
2138 		ASSERT(next_agino != 0);
2139 		ASSERT(next_agino != agino);
2140 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2141 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2142 			(sizeof(xfs_agino_t) * bucket_index);
2143 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2144 		xfs_trans_log_buf(tp, agibp, offset,
2145 				  (offset + sizeof(xfs_agino_t) - 1));
2146 	} else {
2147 		/*
2148 		 * We need to search the list for the inode being freed.
2149 		 */
2150 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2151 		last_ibp = NULL;
2152 		while (next_agino != agino) {
2153 			struct xfs_imap	imap;
2154 
2155 			if (last_ibp)
2156 				xfs_trans_brelse(tp, last_ibp);
2157 
2158 			imap.im_blkno = 0;
2159 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2160 
2161 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2162 			if (error) {
2163 				xfs_warn(mp,
2164 	"%s: xfs_imap returned error %d.",
2165 					 __func__, error);
2166 				return error;
2167 			}
2168 
2169 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2170 					       &last_ibp, 0, 0);
2171 			if (error) {
2172 				xfs_warn(mp,
2173 	"%s: xfs_imap_to_bp returned error %d.",
2174 					__func__, error);
2175 				return error;
2176 			}
2177 
2178 			last_offset = imap.im_boffset;
2179 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2180 			ASSERT(next_agino != NULLAGINO);
2181 			ASSERT(next_agino != 0);
2182 		}
2183 
2184 		/*
2185 		 * Now last_ibp points to the buffer previous to us on the
2186 		 * unlinked list.  Pull us from the list.
2187 		 */
2188 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2189 				       0, 0);
2190 		if (error) {
2191 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2192 				__func__, error);
2193 			return error;
2194 		}
2195 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2196 		ASSERT(next_agino != 0);
2197 		ASSERT(next_agino != agino);
2198 		if (next_agino != NULLAGINO) {
2199 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2200 			offset = ip->i_imap.im_boffset +
2201 				offsetof(xfs_dinode_t, di_next_unlinked);
2202 
2203 			/* need to recalc the inode CRC if appropriate */
2204 			xfs_dinode_calc_crc(mp, dip);
2205 
2206 			xfs_trans_inode_buf(tp, ibp);
2207 			xfs_trans_log_buf(tp, ibp, offset,
2208 					  (offset + sizeof(xfs_agino_t) - 1));
2209 			xfs_inobp_check(mp, ibp);
2210 		} else {
2211 			xfs_trans_brelse(tp, ibp);
2212 		}
2213 		/*
2214 		 * Point the previous inode on the list to the next inode.
2215 		 */
2216 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2217 		ASSERT(next_agino != 0);
2218 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2219 
2220 		/* need to recalc the inode CRC if appropriate */
2221 		xfs_dinode_calc_crc(mp, last_dip);
2222 
2223 		xfs_trans_inode_buf(tp, last_ibp);
2224 		xfs_trans_log_buf(tp, last_ibp, offset,
2225 				  (offset + sizeof(xfs_agino_t) - 1));
2226 		xfs_inobp_check(mp, last_ibp);
2227 	}
2228 	return 0;
2229 }
2230 
2231 /*
2232  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2233  * inodes that are in memory - they all must be marked stale and attached to
2234  * the cluster buffer.
2235  */
2236 STATIC int
2237 xfs_ifree_cluster(
2238 	xfs_inode_t	*free_ip,
2239 	xfs_trans_t	*tp,
2240 	xfs_ino_t	inum)
2241 {
2242 	xfs_mount_t		*mp = free_ip->i_mount;
2243 	int			blks_per_cluster;
2244 	int			inodes_per_cluster;
2245 	int			nbufs;
2246 	int			i, j;
2247 	xfs_daddr_t		blkno;
2248 	xfs_buf_t		*bp;
2249 	xfs_inode_t		*ip;
2250 	xfs_inode_log_item_t	*iip;
2251 	xfs_log_item_t		*lip;
2252 	struct xfs_perag	*pag;
2253 
2254 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2255 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2256 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2257 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2258 
2259 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2260 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2261 					 XFS_INO_TO_AGBNO(mp, inum));
2262 
2263 		/*
2264 		 * We obtain and lock the backing buffer first in the process
2265 		 * here, as we have to ensure that any dirty inode that we
2266 		 * can't get the flush lock on is attached to the buffer.
2267 		 * If we scan the in-memory inodes first, then buffer IO can
2268 		 * complete before we get a lock on it, and hence we may fail
2269 		 * to mark all the active inodes on the buffer stale.
2270 		 */
2271 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2272 					mp->m_bsize * blks_per_cluster,
2273 					XBF_UNMAPPED);
2274 
2275 		if (!bp)
2276 			return -ENOMEM;
2277 
2278 		/*
2279 		 * This buffer may not have been correctly initialised as we
2280 		 * didn't read it from disk. That's not important because we are
2281 		 * only using to mark the buffer as stale in the log, and to
2282 		 * attach stale cached inodes on it. That means it will never be
2283 		 * dispatched for IO. If it is, we want to know about it, and we
2284 		 * want it to fail. We can acheive this by adding a write
2285 		 * verifier to the buffer.
2286 		 */
2287 		 bp->b_ops = &xfs_inode_buf_ops;
2288 
2289 		/*
2290 		 * Walk the inodes already attached to the buffer and mark them
2291 		 * stale. These will all have the flush locks held, so an
2292 		 * in-memory inode walk can't lock them. By marking them all
2293 		 * stale first, we will not attempt to lock them in the loop
2294 		 * below as the XFS_ISTALE flag will be set.
2295 		 */
2296 		lip = bp->b_fspriv;
2297 		while (lip) {
2298 			if (lip->li_type == XFS_LI_INODE) {
2299 				iip = (xfs_inode_log_item_t *)lip;
2300 				ASSERT(iip->ili_logged == 1);
2301 				lip->li_cb = xfs_istale_done;
2302 				xfs_trans_ail_copy_lsn(mp->m_ail,
2303 							&iip->ili_flush_lsn,
2304 							&iip->ili_item.li_lsn);
2305 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2306 			}
2307 			lip = lip->li_bio_list;
2308 		}
2309 
2310 
2311 		/*
2312 		 * For each inode in memory attempt to add it to the inode
2313 		 * buffer and set it up for being staled on buffer IO
2314 		 * completion.  This is safe as we've locked out tail pushing
2315 		 * and flushing by locking the buffer.
2316 		 *
2317 		 * We have already marked every inode that was part of a
2318 		 * transaction stale above, which means there is no point in
2319 		 * even trying to lock them.
2320 		 */
2321 		for (i = 0; i < inodes_per_cluster; i++) {
2322 retry:
2323 			rcu_read_lock();
2324 			ip = radix_tree_lookup(&pag->pag_ici_root,
2325 					XFS_INO_TO_AGINO(mp, (inum + i)));
2326 
2327 			/* Inode not in memory, nothing to do */
2328 			if (!ip) {
2329 				rcu_read_unlock();
2330 				continue;
2331 			}
2332 
2333 			/*
2334 			 * because this is an RCU protected lookup, we could
2335 			 * find a recently freed or even reallocated inode
2336 			 * during the lookup. We need to check under the
2337 			 * i_flags_lock for a valid inode here. Skip it if it
2338 			 * is not valid, the wrong inode or stale.
2339 			 */
2340 			spin_lock(&ip->i_flags_lock);
2341 			if (ip->i_ino != inum + i ||
2342 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2343 				spin_unlock(&ip->i_flags_lock);
2344 				rcu_read_unlock();
2345 				continue;
2346 			}
2347 			spin_unlock(&ip->i_flags_lock);
2348 
2349 			/*
2350 			 * Don't try to lock/unlock the current inode, but we
2351 			 * _cannot_ skip the other inodes that we did not find
2352 			 * in the list attached to the buffer and are not
2353 			 * already marked stale. If we can't lock it, back off
2354 			 * and retry.
2355 			 */
2356 			if (ip != free_ip &&
2357 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2358 				rcu_read_unlock();
2359 				delay(1);
2360 				goto retry;
2361 			}
2362 			rcu_read_unlock();
2363 
2364 			xfs_iflock(ip);
2365 			xfs_iflags_set(ip, XFS_ISTALE);
2366 
2367 			/*
2368 			 * we don't need to attach clean inodes or those only
2369 			 * with unlogged changes (which we throw away, anyway).
2370 			 */
2371 			iip = ip->i_itemp;
2372 			if (!iip || xfs_inode_clean(ip)) {
2373 				ASSERT(ip != free_ip);
2374 				xfs_ifunlock(ip);
2375 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2376 				continue;
2377 			}
2378 
2379 			iip->ili_last_fields = iip->ili_fields;
2380 			iip->ili_fields = 0;
2381 			iip->ili_logged = 1;
2382 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2383 						&iip->ili_item.li_lsn);
2384 
2385 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2386 						  &iip->ili_item);
2387 
2388 			if (ip != free_ip)
2389 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2390 		}
2391 
2392 		xfs_trans_stale_inode_buf(tp, bp);
2393 		xfs_trans_binval(tp, bp);
2394 	}
2395 
2396 	xfs_perag_put(pag);
2397 	return 0;
2398 }
2399 
2400 /*
2401  * This is called to return an inode to the inode free list.
2402  * The inode should already be truncated to 0 length and have
2403  * no pages associated with it.  This routine also assumes that
2404  * the inode is already a part of the transaction.
2405  *
2406  * The on-disk copy of the inode will have been added to the list
2407  * of unlinked inodes in the AGI. We need to remove the inode from
2408  * that list atomically with respect to freeing it here.
2409  */
2410 int
2411 xfs_ifree(
2412 	xfs_trans_t	*tp,
2413 	xfs_inode_t	*ip,
2414 	xfs_bmap_free_t	*flist)
2415 {
2416 	int			error;
2417 	int			delete;
2418 	xfs_ino_t		first_ino;
2419 
2420 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2421 	ASSERT(ip->i_d.di_nlink == 0);
2422 	ASSERT(ip->i_d.di_nextents == 0);
2423 	ASSERT(ip->i_d.di_anextents == 0);
2424 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2425 	ASSERT(ip->i_d.di_nblocks == 0);
2426 
2427 	/*
2428 	 * Pull the on-disk inode from the AGI unlinked list.
2429 	 */
2430 	error = xfs_iunlink_remove(tp, ip);
2431 	if (error)
2432 		return error;
2433 
2434 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2435 	if (error)
2436 		return error;
2437 
2438 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2439 	ip->i_d.di_flags = 0;
2440 	ip->i_d.di_dmevmask = 0;
2441 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2442 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2443 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2444 	/*
2445 	 * Bump the generation count so no one will be confused
2446 	 * by reincarnations of this inode.
2447 	 */
2448 	ip->i_d.di_gen++;
2449 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2450 
2451 	if (delete)
2452 		error = xfs_ifree_cluster(ip, tp, first_ino);
2453 
2454 	return error;
2455 }
2456 
2457 /*
2458  * This is called to unpin an inode.  The caller must have the inode locked
2459  * in at least shared mode so that the buffer cannot be subsequently pinned
2460  * once someone is waiting for it to be unpinned.
2461  */
2462 static void
2463 xfs_iunpin(
2464 	struct xfs_inode	*ip)
2465 {
2466 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2467 
2468 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2469 
2470 	/* Give the log a push to start the unpinning I/O */
2471 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2472 
2473 }
2474 
2475 static void
2476 __xfs_iunpin_wait(
2477 	struct xfs_inode	*ip)
2478 {
2479 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2480 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2481 
2482 	xfs_iunpin(ip);
2483 
2484 	do {
2485 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2486 		if (xfs_ipincount(ip))
2487 			io_schedule();
2488 	} while (xfs_ipincount(ip));
2489 	finish_wait(wq, &wait.wait);
2490 }
2491 
2492 void
2493 xfs_iunpin_wait(
2494 	struct xfs_inode	*ip)
2495 {
2496 	if (xfs_ipincount(ip))
2497 		__xfs_iunpin_wait(ip);
2498 }
2499 
2500 /*
2501  * Removing an inode from the namespace involves removing the directory entry
2502  * and dropping the link count on the inode. Removing the directory entry can
2503  * result in locking an AGF (directory blocks were freed) and removing a link
2504  * count can result in placing the inode on an unlinked list which results in
2505  * locking an AGI.
2506  *
2507  * The big problem here is that we have an ordering constraint on AGF and AGI
2508  * locking - inode allocation locks the AGI, then can allocate a new extent for
2509  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2510  * removes the inode from the unlinked list, requiring that we lock the AGI
2511  * first, and then freeing the inode can result in an inode chunk being freed
2512  * and hence freeing disk space requiring that we lock an AGF.
2513  *
2514  * Hence the ordering that is imposed by other parts of the code is AGI before
2515  * AGF. This means we cannot remove the directory entry before we drop the inode
2516  * reference count and put it on the unlinked list as this results in a lock
2517  * order of AGF then AGI, and this can deadlock against inode allocation and
2518  * freeing. Therefore we must drop the link counts before we remove the
2519  * directory entry.
2520  *
2521  * This is still safe from a transactional point of view - it is not until we
2522  * get to xfs_bmap_finish() that we have the possibility of multiple
2523  * transactions in this operation. Hence as long as we remove the directory
2524  * entry and drop the link count in the first transaction of the remove
2525  * operation, there are no transactional constraints on the ordering here.
2526  */
2527 int
2528 xfs_remove(
2529 	xfs_inode_t             *dp,
2530 	struct xfs_name		*name,
2531 	xfs_inode_t		*ip)
2532 {
2533 	xfs_mount_t		*mp = dp->i_mount;
2534 	xfs_trans_t             *tp = NULL;
2535 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2536 	int                     error = 0;
2537 	xfs_bmap_free_t         free_list;
2538 	xfs_fsblock_t           first_block;
2539 	int			cancel_flags;
2540 	int			committed;
2541 	uint			resblks;
2542 
2543 	trace_xfs_remove(dp, name);
2544 
2545 	if (XFS_FORCED_SHUTDOWN(mp))
2546 		return -EIO;
2547 
2548 	error = xfs_qm_dqattach(dp, 0);
2549 	if (error)
2550 		goto std_return;
2551 
2552 	error = xfs_qm_dqattach(ip, 0);
2553 	if (error)
2554 		goto std_return;
2555 
2556 	if (is_dir)
2557 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2558 	else
2559 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2560 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2561 
2562 	/*
2563 	 * We try to get the real space reservation first,
2564 	 * allowing for directory btree deletion(s) implying
2565 	 * possible bmap insert(s).  If we can't get the space
2566 	 * reservation then we use 0 instead, and avoid the bmap
2567 	 * btree insert(s) in the directory code by, if the bmap
2568 	 * insert tries to happen, instead trimming the LAST
2569 	 * block from the directory.
2570 	 */
2571 	resblks = XFS_REMOVE_SPACE_RES(mp);
2572 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2573 	if (error == -ENOSPC) {
2574 		resblks = 0;
2575 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2576 	}
2577 	if (error) {
2578 		ASSERT(error != -ENOSPC);
2579 		cancel_flags = 0;
2580 		goto out_trans_cancel;
2581 	}
2582 
2583 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2584 
2585 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2586 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2587 
2588 	/*
2589 	 * If we're removing a directory perform some additional validation.
2590 	 */
2591 	cancel_flags |= XFS_TRANS_ABORT;
2592 	if (is_dir) {
2593 		ASSERT(ip->i_d.di_nlink >= 2);
2594 		if (ip->i_d.di_nlink != 2) {
2595 			error = -ENOTEMPTY;
2596 			goto out_trans_cancel;
2597 		}
2598 		if (!xfs_dir_isempty(ip)) {
2599 			error = -ENOTEMPTY;
2600 			goto out_trans_cancel;
2601 		}
2602 
2603 		/* Drop the link from ip's "..".  */
2604 		error = xfs_droplink(tp, dp);
2605 		if (error)
2606 			goto out_trans_cancel;
2607 
2608 		/* Drop the "." link from ip to self.  */
2609 		error = xfs_droplink(tp, ip);
2610 		if (error)
2611 			goto out_trans_cancel;
2612 	} else {
2613 		/*
2614 		 * When removing a non-directory we need to log the parent
2615 		 * inode here.  For a directory this is done implicitly
2616 		 * by the xfs_droplink call for the ".." entry.
2617 		 */
2618 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2619 	}
2620 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2621 
2622 	/* Drop the link from dp to ip. */
2623 	error = xfs_droplink(tp, ip);
2624 	if (error)
2625 		goto out_trans_cancel;
2626 
2627 	xfs_bmap_init(&free_list, &first_block);
2628 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2629 					&first_block, &free_list, resblks);
2630 	if (error) {
2631 		ASSERT(error != -ENOENT);
2632 		goto out_bmap_cancel;
2633 	}
2634 
2635 	/*
2636 	 * If this is a synchronous mount, make sure that the
2637 	 * remove transaction goes to disk before returning to
2638 	 * the user.
2639 	 */
2640 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2641 		xfs_trans_set_sync(tp);
2642 
2643 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2644 	if (error)
2645 		goto out_bmap_cancel;
2646 
2647 	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2648 	if (error)
2649 		goto std_return;
2650 
2651 	if (is_dir && xfs_inode_is_filestream(ip))
2652 		xfs_filestream_deassociate(ip);
2653 
2654 	return 0;
2655 
2656  out_bmap_cancel:
2657 	xfs_bmap_cancel(&free_list);
2658  out_trans_cancel:
2659 	xfs_trans_cancel(tp, cancel_flags);
2660  std_return:
2661 	return error;
2662 }
2663 
2664 /*
2665  * Enter all inodes for a rename transaction into a sorted array.
2666  */
2667 #define __XFS_SORT_INODES	5
2668 STATIC void
2669 xfs_sort_for_rename(
2670 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2671 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2672 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2673 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2674 	struct xfs_inode	*wip,	/* in: whiteout inode */
2675 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2676 	int			*num_inodes)  /* in/out: inodes in array */
2677 {
2678 	int			i, j;
2679 
2680 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2681 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2682 
2683 	/*
2684 	 * i_tab contains a list of pointers to inodes.  We initialize
2685 	 * the table here & we'll sort it.  We will then use it to
2686 	 * order the acquisition of the inode locks.
2687 	 *
2688 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2689 	 */
2690 	i = 0;
2691 	i_tab[i++] = dp1;
2692 	i_tab[i++] = dp2;
2693 	i_tab[i++] = ip1;
2694 	if (ip2)
2695 		i_tab[i++] = ip2;
2696 	if (wip)
2697 		i_tab[i++] = wip;
2698 	*num_inodes = i;
2699 
2700 	/*
2701 	 * Sort the elements via bubble sort.  (Remember, there are at
2702 	 * most 5 elements to sort, so this is adequate.)
2703 	 */
2704 	for (i = 0; i < *num_inodes; i++) {
2705 		for (j = 1; j < *num_inodes; j++) {
2706 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2707 				struct xfs_inode *temp = i_tab[j];
2708 				i_tab[j] = i_tab[j-1];
2709 				i_tab[j-1] = temp;
2710 			}
2711 		}
2712 	}
2713 }
2714 
2715 static int
2716 xfs_finish_rename(
2717 	struct xfs_trans	*tp,
2718 	struct xfs_bmap_free	*free_list)
2719 {
2720 	int			committed = 0;
2721 	int			error;
2722 
2723 	/*
2724 	 * If this is a synchronous mount, make sure that the rename transaction
2725 	 * goes to disk before returning to the user.
2726 	 */
2727 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2728 		xfs_trans_set_sync(tp);
2729 
2730 	error = xfs_bmap_finish(&tp, free_list, &committed);
2731 	if (error) {
2732 		xfs_bmap_cancel(free_list);
2733 		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2734 		return error;
2735 	}
2736 
2737 	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2738 }
2739 
2740 /*
2741  * xfs_cross_rename()
2742  *
2743  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2744  */
2745 STATIC int
2746 xfs_cross_rename(
2747 	struct xfs_trans	*tp,
2748 	struct xfs_inode	*dp1,
2749 	struct xfs_name		*name1,
2750 	struct xfs_inode	*ip1,
2751 	struct xfs_inode	*dp2,
2752 	struct xfs_name		*name2,
2753 	struct xfs_inode	*ip2,
2754 	struct xfs_bmap_free	*free_list,
2755 	xfs_fsblock_t		*first_block,
2756 	int			spaceres)
2757 {
2758 	int		error = 0;
2759 	int		ip1_flags = 0;
2760 	int		ip2_flags = 0;
2761 	int		dp2_flags = 0;
2762 
2763 	/* Swap inode number for dirent in first parent */
2764 	error = xfs_dir_replace(tp, dp1, name1,
2765 				ip2->i_ino,
2766 				first_block, free_list, spaceres);
2767 	if (error)
2768 		goto out_trans_abort;
2769 
2770 	/* Swap inode number for dirent in second parent */
2771 	error = xfs_dir_replace(tp, dp2, name2,
2772 				ip1->i_ino,
2773 				first_block, free_list, spaceres);
2774 	if (error)
2775 		goto out_trans_abort;
2776 
2777 	/*
2778 	 * If we're renaming one or more directories across different parents,
2779 	 * update the respective ".." entries (and link counts) to match the new
2780 	 * parents.
2781 	 */
2782 	if (dp1 != dp2) {
2783 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2784 
2785 		if (S_ISDIR(ip2->i_d.di_mode)) {
2786 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2787 						dp1->i_ino, first_block,
2788 						free_list, spaceres);
2789 			if (error)
2790 				goto out_trans_abort;
2791 
2792 			/* transfer ip2 ".." reference to dp1 */
2793 			if (!S_ISDIR(ip1->i_d.di_mode)) {
2794 				error = xfs_droplink(tp, dp2);
2795 				if (error)
2796 					goto out_trans_abort;
2797 				error = xfs_bumplink(tp, dp1);
2798 				if (error)
2799 					goto out_trans_abort;
2800 			}
2801 
2802 			/*
2803 			 * Although ip1 isn't changed here, userspace needs
2804 			 * to be warned about the change, so that applications
2805 			 * relying on it (like backup ones), will properly
2806 			 * notify the change
2807 			 */
2808 			ip1_flags |= XFS_ICHGTIME_CHG;
2809 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2810 		}
2811 
2812 		if (S_ISDIR(ip1->i_d.di_mode)) {
2813 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2814 						dp2->i_ino, first_block,
2815 						free_list, spaceres);
2816 			if (error)
2817 				goto out_trans_abort;
2818 
2819 			/* transfer ip1 ".." reference to dp2 */
2820 			if (!S_ISDIR(ip2->i_d.di_mode)) {
2821 				error = xfs_droplink(tp, dp1);
2822 				if (error)
2823 					goto out_trans_abort;
2824 				error = xfs_bumplink(tp, dp2);
2825 				if (error)
2826 					goto out_trans_abort;
2827 			}
2828 
2829 			/*
2830 			 * Although ip2 isn't changed here, userspace needs
2831 			 * to be warned about the change, so that applications
2832 			 * relying on it (like backup ones), will properly
2833 			 * notify the change
2834 			 */
2835 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2836 			ip2_flags |= XFS_ICHGTIME_CHG;
2837 		}
2838 	}
2839 
2840 	if (ip1_flags) {
2841 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2842 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2843 	}
2844 	if (ip2_flags) {
2845 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2846 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2847 	}
2848 	if (dp2_flags) {
2849 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2850 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2851 	}
2852 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2853 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2854 	return xfs_finish_rename(tp, free_list);
2855 
2856 out_trans_abort:
2857 	xfs_bmap_cancel(free_list);
2858 	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2859 	return error;
2860 }
2861 
2862 /*
2863  * xfs_rename_alloc_whiteout()
2864  *
2865  * Return a referenced, unlinked, unlocked inode that that can be used as a
2866  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2867  * crash between allocating the inode and linking it into the rename transaction
2868  * recovery will free the inode and we won't leak it.
2869  */
2870 static int
2871 xfs_rename_alloc_whiteout(
2872 	struct xfs_inode	*dp,
2873 	struct xfs_inode	**wip)
2874 {
2875 	struct xfs_inode	*tmpfile;
2876 	int			error;
2877 
2878 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2879 	if (error)
2880 		return error;
2881 
2882 	/*
2883 	 * Prepare the tmpfile inode as if it were created through the VFS.
2884 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2885 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2886 	 * and flag it as linkable.
2887 	 */
2888 	drop_nlink(VFS_I(tmpfile));
2889 	xfs_finish_inode_setup(tmpfile);
2890 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2891 
2892 	*wip = tmpfile;
2893 	return 0;
2894 }
2895 
2896 /*
2897  * xfs_rename
2898  */
2899 int
2900 xfs_rename(
2901 	struct xfs_inode	*src_dp,
2902 	struct xfs_name		*src_name,
2903 	struct xfs_inode	*src_ip,
2904 	struct xfs_inode	*target_dp,
2905 	struct xfs_name		*target_name,
2906 	struct xfs_inode	*target_ip,
2907 	unsigned int		flags)
2908 {
2909 	struct xfs_mount	*mp = src_dp->i_mount;
2910 	struct xfs_trans	*tp;
2911 	struct xfs_bmap_free	free_list;
2912 	xfs_fsblock_t		first_block;
2913 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2914 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2915 	int			num_inodes = __XFS_SORT_INODES;
2916 	bool			new_parent = (src_dp != target_dp);
2917 	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2918 	int			cancel_flags = 0;
2919 	int			spaceres;
2920 	int			error;
2921 
2922 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2923 
2924 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2925 		return -EINVAL;
2926 
2927 	/*
2928 	 * If we are doing a whiteout operation, allocate the whiteout inode
2929 	 * we will be placing at the target and ensure the type is set
2930 	 * appropriately.
2931 	 */
2932 	if (flags & RENAME_WHITEOUT) {
2933 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2934 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2935 		if (error)
2936 			return error;
2937 
2938 		/* setup target dirent info as whiteout */
2939 		src_name->type = XFS_DIR3_FT_CHRDEV;
2940 	}
2941 
2942 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2943 				inodes, &num_inodes);
2944 
2945 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2946 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2947 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2948 	if (error == -ENOSPC) {
2949 		spaceres = 0;
2950 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2951 	}
2952 	if (error)
2953 		goto out_trans_cancel;
2954 	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2955 
2956 	/*
2957 	 * Attach the dquots to the inodes
2958 	 */
2959 	error = xfs_qm_vop_rename_dqattach(inodes);
2960 	if (error)
2961 		goto out_trans_cancel;
2962 
2963 	/*
2964 	 * Lock all the participating inodes. Depending upon whether
2965 	 * the target_name exists in the target directory, and
2966 	 * whether the target directory is the same as the source
2967 	 * directory, we can lock from 2 to 4 inodes.
2968 	 */
2969 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2970 
2971 	/*
2972 	 * Join all the inodes to the transaction. From this point on,
2973 	 * we can rely on either trans_commit or trans_cancel to unlock
2974 	 * them.
2975 	 */
2976 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2977 	if (new_parent)
2978 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2979 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2980 	if (target_ip)
2981 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2982 	if (wip)
2983 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2984 
2985 	/*
2986 	 * If we are using project inheritance, we only allow renames
2987 	 * into our tree when the project IDs are the same; else the
2988 	 * tree quota mechanism would be circumvented.
2989 	 */
2990 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2991 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2992 		error = -EXDEV;
2993 		goto out_trans_cancel;
2994 	}
2995 
2996 	xfs_bmap_init(&free_list, &first_block);
2997 
2998 	/* RENAME_EXCHANGE is unique from here on. */
2999 	if (flags & RENAME_EXCHANGE)
3000 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3001 					target_dp, target_name, target_ip,
3002 					&free_list, &first_block, spaceres);
3003 
3004 	/*
3005 	 * Set up the target.
3006 	 */
3007 	if (target_ip == NULL) {
3008 		/*
3009 		 * If there's no space reservation, check the entry will
3010 		 * fit before actually inserting it.
3011 		 */
3012 		if (!spaceres) {
3013 			error = xfs_dir_canenter(tp, target_dp, target_name);
3014 			if (error)
3015 				goto out_trans_cancel;
3016 		}
3017 		/*
3018 		 * If target does not exist and the rename crosses
3019 		 * directories, adjust the target directory link count
3020 		 * to account for the ".." reference from the new entry.
3021 		 */
3022 		error = xfs_dir_createname(tp, target_dp, target_name,
3023 						src_ip->i_ino, &first_block,
3024 						&free_list, spaceres);
3025 		if (error == -ENOSPC)
3026 			goto out_bmap_cancel;
3027 		if (error)
3028 			goto out_trans_abort;
3029 
3030 		xfs_trans_ichgtime(tp, target_dp,
3031 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3032 
3033 		if (new_parent && src_is_directory) {
3034 			error = xfs_bumplink(tp, target_dp);
3035 			if (error)
3036 				goto out_trans_abort;
3037 		}
3038 	} else { /* target_ip != NULL */
3039 		/*
3040 		 * If target exists and it's a directory, check that both
3041 		 * target and source are directories and that target can be
3042 		 * destroyed, or that neither is a directory.
3043 		 */
3044 		if (S_ISDIR(target_ip->i_d.di_mode)) {
3045 			/*
3046 			 * Make sure target dir is empty.
3047 			 */
3048 			if (!(xfs_dir_isempty(target_ip)) ||
3049 			    (target_ip->i_d.di_nlink > 2)) {
3050 				error = -EEXIST;
3051 				goto out_trans_cancel;
3052 			}
3053 		}
3054 
3055 		/*
3056 		 * Link the source inode under the target name.
3057 		 * If the source inode is a directory and we are moving
3058 		 * it across directories, its ".." entry will be
3059 		 * inconsistent until we replace that down below.
3060 		 *
3061 		 * In case there is already an entry with the same
3062 		 * name at the destination directory, remove it first.
3063 		 */
3064 		error = xfs_dir_replace(tp, target_dp, target_name,
3065 					src_ip->i_ino,
3066 					&first_block, &free_list, spaceres);
3067 		if (error)
3068 			goto out_trans_abort;
3069 
3070 		xfs_trans_ichgtime(tp, target_dp,
3071 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3072 
3073 		/*
3074 		 * Decrement the link count on the target since the target
3075 		 * dir no longer points to it.
3076 		 */
3077 		error = xfs_droplink(tp, target_ip);
3078 		if (error)
3079 			goto out_trans_abort;
3080 
3081 		if (src_is_directory) {
3082 			/*
3083 			 * Drop the link from the old "." entry.
3084 			 */
3085 			error = xfs_droplink(tp, target_ip);
3086 			if (error)
3087 				goto out_trans_abort;
3088 		}
3089 	} /* target_ip != NULL */
3090 
3091 	/*
3092 	 * Remove the source.
3093 	 */
3094 	if (new_parent && src_is_directory) {
3095 		/*
3096 		 * Rewrite the ".." entry to point to the new
3097 		 * directory.
3098 		 */
3099 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3100 					target_dp->i_ino,
3101 					&first_block, &free_list, spaceres);
3102 		ASSERT(error != -EEXIST);
3103 		if (error)
3104 			goto out_trans_abort;
3105 	}
3106 
3107 	/*
3108 	 * We always want to hit the ctime on the source inode.
3109 	 *
3110 	 * This isn't strictly required by the standards since the source
3111 	 * inode isn't really being changed, but old unix file systems did
3112 	 * it and some incremental backup programs won't work without it.
3113 	 */
3114 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3115 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3116 
3117 	/*
3118 	 * Adjust the link count on src_dp.  This is necessary when
3119 	 * renaming a directory, either within one parent when
3120 	 * the target existed, or across two parent directories.
3121 	 */
3122 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3123 
3124 		/*
3125 		 * Decrement link count on src_directory since the
3126 		 * entry that's moved no longer points to it.
3127 		 */
3128 		error = xfs_droplink(tp, src_dp);
3129 		if (error)
3130 			goto out_trans_abort;
3131 	}
3132 
3133 	/*
3134 	 * For whiteouts, we only need to update the source dirent with the
3135 	 * inode number of the whiteout inode rather than removing it
3136 	 * altogether.
3137 	 */
3138 	if (wip) {
3139 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3140 					&first_block, &free_list, spaceres);
3141 	} else
3142 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3143 					   &first_block, &free_list, spaceres);
3144 	if (error)
3145 		goto out_trans_abort;
3146 
3147 	/*
3148 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3149 	 * This means that failures all the way up to this point leave the inode
3150 	 * on the unlinked list and so cleanup is a simple matter of dropping
3151 	 * the remaining reference to it. If we fail here after bumping the link
3152 	 * count, we're shutting down the filesystem so we'll never see the
3153 	 * intermediate state on disk.
3154 	 */
3155 	if (wip) {
3156 		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3157 		error = xfs_bumplink(tp, wip);
3158 		if (error)
3159 			goto out_trans_abort;
3160 		error = xfs_iunlink_remove(tp, wip);
3161 		if (error)
3162 			goto out_trans_abort;
3163 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3164 
3165 		/*
3166 		 * Now we have a real link, clear the "I'm a tmpfile" state
3167 		 * flag from the inode so it doesn't accidentally get misused in
3168 		 * future.
3169 		 */
3170 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3171 	}
3172 
3173 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3174 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3175 	if (new_parent)
3176 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3177 
3178 	error = xfs_finish_rename(tp, &free_list);
3179 	if (wip)
3180 		IRELE(wip);
3181 	return error;
3182 
3183 out_trans_abort:
3184 	cancel_flags |= XFS_TRANS_ABORT;
3185 out_bmap_cancel:
3186 	xfs_bmap_cancel(&free_list);
3187 out_trans_cancel:
3188 	xfs_trans_cancel(tp, cancel_flags);
3189 	if (wip)
3190 		IRELE(wip);
3191 	return error;
3192 }
3193 
3194 STATIC int
3195 xfs_iflush_cluster(
3196 	xfs_inode_t	*ip,
3197 	xfs_buf_t	*bp)
3198 {
3199 	xfs_mount_t		*mp = ip->i_mount;
3200 	struct xfs_perag	*pag;
3201 	unsigned long		first_index, mask;
3202 	unsigned long		inodes_per_cluster;
3203 	int			ilist_size;
3204 	xfs_inode_t		**ilist;
3205 	xfs_inode_t		*iq;
3206 	int			nr_found;
3207 	int			clcount = 0;
3208 	int			bufwasdelwri;
3209 	int			i;
3210 
3211 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3212 
3213 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3214 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3215 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3216 	if (!ilist)
3217 		goto out_put;
3218 
3219 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3220 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3221 	rcu_read_lock();
3222 	/* really need a gang lookup range call here */
3223 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3224 					first_index, inodes_per_cluster);
3225 	if (nr_found == 0)
3226 		goto out_free;
3227 
3228 	for (i = 0; i < nr_found; i++) {
3229 		iq = ilist[i];
3230 		if (iq == ip)
3231 			continue;
3232 
3233 		/*
3234 		 * because this is an RCU protected lookup, we could find a
3235 		 * recently freed or even reallocated inode during the lookup.
3236 		 * We need to check under the i_flags_lock for a valid inode
3237 		 * here. Skip it if it is not valid or the wrong inode.
3238 		 */
3239 		spin_lock(&ip->i_flags_lock);
3240 		if (!ip->i_ino ||
3241 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3242 			spin_unlock(&ip->i_flags_lock);
3243 			continue;
3244 		}
3245 		spin_unlock(&ip->i_flags_lock);
3246 
3247 		/*
3248 		 * Do an un-protected check to see if the inode is dirty and
3249 		 * is a candidate for flushing.  These checks will be repeated
3250 		 * later after the appropriate locks are acquired.
3251 		 */
3252 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3253 			continue;
3254 
3255 		/*
3256 		 * Try to get locks.  If any are unavailable or it is pinned,
3257 		 * then this inode cannot be flushed and is skipped.
3258 		 */
3259 
3260 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3261 			continue;
3262 		if (!xfs_iflock_nowait(iq)) {
3263 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3264 			continue;
3265 		}
3266 		if (xfs_ipincount(iq)) {
3267 			xfs_ifunlock(iq);
3268 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3269 			continue;
3270 		}
3271 
3272 		/*
3273 		 * arriving here means that this inode can be flushed.  First
3274 		 * re-check that it's dirty before flushing.
3275 		 */
3276 		if (!xfs_inode_clean(iq)) {
3277 			int	error;
3278 			error = xfs_iflush_int(iq, bp);
3279 			if (error) {
3280 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3281 				goto cluster_corrupt_out;
3282 			}
3283 			clcount++;
3284 		} else {
3285 			xfs_ifunlock(iq);
3286 		}
3287 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3288 	}
3289 
3290 	if (clcount) {
3291 		XFS_STATS_INC(xs_icluster_flushcnt);
3292 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3293 	}
3294 
3295 out_free:
3296 	rcu_read_unlock();
3297 	kmem_free(ilist);
3298 out_put:
3299 	xfs_perag_put(pag);
3300 	return 0;
3301 
3302 
3303 cluster_corrupt_out:
3304 	/*
3305 	 * Corruption detected in the clustering loop.  Invalidate the
3306 	 * inode buffer and shut down the filesystem.
3307 	 */
3308 	rcu_read_unlock();
3309 	/*
3310 	 * Clean up the buffer.  If it was delwri, just release it --
3311 	 * brelse can handle it with no problems.  If not, shut down the
3312 	 * filesystem before releasing the buffer.
3313 	 */
3314 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3315 	if (bufwasdelwri)
3316 		xfs_buf_relse(bp);
3317 
3318 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3319 
3320 	if (!bufwasdelwri) {
3321 		/*
3322 		 * Just like incore_relse: if we have b_iodone functions,
3323 		 * mark the buffer as an error and call them.  Otherwise
3324 		 * mark it as stale and brelse.
3325 		 */
3326 		if (bp->b_iodone) {
3327 			XFS_BUF_UNDONE(bp);
3328 			xfs_buf_stale(bp);
3329 			xfs_buf_ioerror(bp, -EIO);
3330 			xfs_buf_ioend(bp);
3331 		} else {
3332 			xfs_buf_stale(bp);
3333 			xfs_buf_relse(bp);
3334 		}
3335 	}
3336 
3337 	/*
3338 	 * Unlocks the flush lock
3339 	 */
3340 	xfs_iflush_abort(iq, false);
3341 	kmem_free(ilist);
3342 	xfs_perag_put(pag);
3343 	return -EFSCORRUPTED;
3344 }
3345 
3346 /*
3347  * Flush dirty inode metadata into the backing buffer.
3348  *
3349  * The caller must have the inode lock and the inode flush lock held.  The
3350  * inode lock will still be held upon return to the caller, and the inode
3351  * flush lock will be released after the inode has reached the disk.
3352  *
3353  * The caller must write out the buffer returned in *bpp and release it.
3354  */
3355 int
3356 xfs_iflush(
3357 	struct xfs_inode	*ip,
3358 	struct xfs_buf		**bpp)
3359 {
3360 	struct xfs_mount	*mp = ip->i_mount;
3361 	struct xfs_buf		*bp;
3362 	struct xfs_dinode	*dip;
3363 	int			error;
3364 
3365 	XFS_STATS_INC(xs_iflush_count);
3366 
3367 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3368 	ASSERT(xfs_isiflocked(ip));
3369 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3370 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3371 
3372 	*bpp = NULL;
3373 
3374 	xfs_iunpin_wait(ip);
3375 
3376 	/*
3377 	 * For stale inodes we cannot rely on the backing buffer remaining
3378 	 * stale in cache for the remaining life of the stale inode and so
3379 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3380 	 * inodes below. We have to check this after ensuring the inode is
3381 	 * unpinned so that it is safe to reclaim the stale inode after the
3382 	 * flush call.
3383 	 */
3384 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3385 		xfs_ifunlock(ip);
3386 		return 0;
3387 	}
3388 
3389 	/*
3390 	 * This may have been unpinned because the filesystem is shutting
3391 	 * down forcibly. If that's the case we must not write this inode
3392 	 * to disk, because the log record didn't make it to disk.
3393 	 *
3394 	 * We also have to remove the log item from the AIL in this case,
3395 	 * as we wait for an empty AIL as part of the unmount process.
3396 	 */
3397 	if (XFS_FORCED_SHUTDOWN(mp)) {
3398 		error = -EIO;
3399 		goto abort_out;
3400 	}
3401 
3402 	/*
3403 	 * Get the buffer containing the on-disk inode.
3404 	 */
3405 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3406 			       0);
3407 	if (error || !bp) {
3408 		xfs_ifunlock(ip);
3409 		return error;
3410 	}
3411 
3412 	/*
3413 	 * First flush out the inode that xfs_iflush was called with.
3414 	 */
3415 	error = xfs_iflush_int(ip, bp);
3416 	if (error)
3417 		goto corrupt_out;
3418 
3419 	/*
3420 	 * If the buffer is pinned then push on the log now so we won't
3421 	 * get stuck waiting in the write for too long.
3422 	 */
3423 	if (xfs_buf_ispinned(bp))
3424 		xfs_log_force(mp, 0);
3425 
3426 	/*
3427 	 * inode clustering:
3428 	 * see if other inodes can be gathered into this write
3429 	 */
3430 	error = xfs_iflush_cluster(ip, bp);
3431 	if (error)
3432 		goto cluster_corrupt_out;
3433 
3434 	*bpp = bp;
3435 	return 0;
3436 
3437 corrupt_out:
3438 	xfs_buf_relse(bp);
3439 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3440 cluster_corrupt_out:
3441 	error = -EFSCORRUPTED;
3442 abort_out:
3443 	/*
3444 	 * Unlocks the flush lock
3445 	 */
3446 	xfs_iflush_abort(ip, false);
3447 	return error;
3448 }
3449 
3450 STATIC int
3451 xfs_iflush_int(
3452 	struct xfs_inode	*ip,
3453 	struct xfs_buf		*bp)
3454 {
3455 	struct xfs_inode_log_item *iip = ip->i_itemp;
3456 	struct xfs_dinode	*dip;
3457 	struct xfs_mount	*mp = ip->i_mount;
3458 
3459 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3460 	ASSERT(xfs_isiflocked(ip));
3461 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3462 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3463 	ASSERT(iip != NULL && iip->ili_fields != 0);
3464 	ASSERT(ip->i_d.di_version > 1);
3465 
3466 	/* set *dip = inode's place in the buffer */
3467 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3468 
3469 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3470 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3471 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3472 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3473 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3474 		goto corrupt_out;
3475 	}
3476 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3477 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3478 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3479 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3480 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3481 		goto corrupt_out;
3482 	}
3483 	if (S_ISREG(ip->i_d.di_mode)) {
3484 		if (XFS_TEST_ERROR(
3485 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3486 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3487 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3488 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3489 				"%s: Bad regular inode %Lu, ptr 0x%p",
3490 				__func__, ip->i_ino, ip);
3491 			goto corrupt_out;
3492 		}
3493 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3494 		if (XFS_TEST_ERROR(
3495 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3496 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3497 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3498 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3499 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3500 				"%s: Bad directory inode %Lu, ptr 0x%p",
3501 				__func__, ip->i_ino, ip);
3502 			goto corrupt_out;
3503 		}
3504 	}
3505 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3506 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3507 				XFS_RANDOM_IFLUSH_5)) {
3508 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3509 			"%s: detected corrupt incore inode %Lu, "
3510 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3511 			__func__, ip->i_ino,
3512 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3513 			ip->i_d.di_nblocks, ip);
3514 		goto corrupt_out;
3515 	}
3516 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3517 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3518 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3519 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3520 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3521 		goto corrupt_out;
3522 	}
3523 
3524 	/*
3525 	 * Inode item log recovery for v2 inodes are dependent on the
3526 	 * di_flushiter count for correct sequencing. We bump the flush
3527 	 * iteration count so we can detect flushes which postdate a log record
3528 	 * during recovery. This is redundant as we now log every change and
3529 	 * hence this can't happen but we need to still do it to ensure
3530 	 * backwards compatibility with old kernels that predate logging all
3531 	 * inode changes.
3532 	 */
3533 	if (ip->i_d.di_version < 3)
3534 		ip->i_d.di_flushiter++;
3535 
3536 	/*
3537 	 * Copy the dirty parts of the inode into the on-disk
3538 	 * inode.  We always copy out the core of the inode,
3539 	 * because if the inode is dirty at all the core must
3540 	 * be.
3541 	 */
3542 	xfs_dinode_to_disk(dip, &ip->i_d);
3543 
3544 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3545 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3546 		ip->i_d.di_flushiter = 0;
3547 
3548 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3549 	if (XFS_IFORK_Q(ip))
3550 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3551 	xfs_inobp_check(mp, bp);
3552 
3553 	/*
3554 	 * We've recorded everything logged in the inode, so we'd like to clear
3555 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3556 	 * However, we can't stop logging all this information until the data
3557 	 * we've copied into the disk buffer is written to disk.  If we did we
3558 	 * might overwrite the copy of the inode in the log with all the data
3559 	 * after re-logging only part of it, and in the face of a crash we
3560 	 * wouldn't have all the data we need to recover.
3561 	 *
3562 	 * What we do is move the bits to the ili_last_fields field.  When
3563 	 * logging the inode, these bits are moved back to the ili_fields field.
3564 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3565 	 * know that the information those bits represent is permanently on
3566 	 * disk.  As long as the flush completes before the inode is logged
3567 	 * again, then both ili_fields and ili_last_fields will be cleared.
3568 	 *
3569 	 * We can play with the ili_fields bits here, because the inode lock
3570 	 * must be held exclusively in order to set bits there and the flush
3571 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3572 	 * done routine can tell whether or not to look in the AIL.  Also, store
3573 	 * the current LSN of the inode so that we can tell whether the item has
3574 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3575 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3576 	 * atomically.
3577 	 */
3578 	iip->ili_last_fields = iip->ili_fields;
3579 	iip->ili_fields = 0;
3580 	iip->ili_logged = 1;
3581 
3582 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3583 				&iip->ili_item.li_lsn);
3584 
3585 	/*
3586 	 * Attach the function xfs_iflush_done to the inode's
3587 	 * buffer.  This will remove the inode from the AIL
3588 	 * and unlock the inode's flush lock when the inode is
3589 	 * completely written to disk.
3590 	 */
3591 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3592 
3593 	/* update the lsn in the on disk inode if required */
3594 	if (ip->i_d.di_version == 3)
3595 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3596 
3597 	/* generate the checksum. */
3598 	xfs_dinode_calc_crc(mp, dip);
3599 
3600 	ASSERT(bp->b_fspriv != NULL);
3601 	ASSERT(bp->b_iodone != NULL);
3602 	return 0;
3603 
3604 corrupt_out:
3605 	return -EFSCORRUPTED;
3606 }
3607