xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 65cf840f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53 #include "xfs_trace.h"
54 
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 
58 /*
59  * Used in xfs_itruncate().  This is the maximum number of extents
60  * freed from a file in a single transaction.
61  */
62 #define	XFS_ITRUNC_MAX_EXTENTS	2
63 
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	xfs_exntfmt_t		fmt)
79 {
80 	xfs_bmbt_irec_t		irec;
81 	xfs_bmbt_rec_host_t	rec;
82 	int			i;
83 
84 	for (i = 0; i < nrecs; i++) {
85 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 		rec.l0 = get_unaligned(&ep->l0);
87 		rec.l1 = get_unaligned(&ep->l1);
88 		xfs_bmbt_get_all(&rec, &irec);
89 		if (fmt == XFS_EXTFMT_NOSTATE)
90 			ASSERT(irec.br_state == XFS_EXT_NORM);
91 	}
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96 
97 /*
98  * Check that none of the inode's in the buffer have a next
99  * unlinked field of 0.
100  */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 	xfs_mount_t	*mp,
105 	xfs_buf_t	*bp)
106 {
107 	int		i;
108 	int		j;
109 	xfs_dinode_t	*dip;
110 
111 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112 
113 	for (i = 0; i < j; i++) {
114 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 					i * mp->m_sb.sb_inodesize);
116 		if (!dip->di_next_unlinked)  {
117 			xfs_fs_cmn_err(CE_ALERT, mp,
118 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
119 				bp);
120 			ASSERT(dip->di_next_unlinked);
121 		}
122 	}
123 }
124 #endif
125 
126 /*
127  * Find the buffer associated with the given inode map
128  * We do basic validation checks on the buffer once it has been
129  * retrieved from disk.
130  */
131 STATIC int
132 xfs_imap_to_bp(
133 	xfs_mount_t	*mp,
134 	xfs_trans_t	*tp,
135 	struct xfs_imap	*imap,
136 	xfs_buf_t	**bpp,
137 	uint		buf_flags,
138 	uint		iget_flags)
139 {
140 	int		error;
141 	int		i;
142 	int		ni;
143 	xfs_buf_t	*bp;
144 
145 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
146 				   (int)imap->im_len, buf_flags, &bp);
147 	if (error) {
148 		if (error != EAGAIN) {
149 			cmn_err(CE_WARN,
150 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 				"an error %d on %s.  Returning error.",
152 				error, mp->m_fsname);
153 		} else {
154 			ASSERT(buf_flags & XBF_TRYLOCK);
155 		}
156 		return error;
157 	}
158 
159 	/*
160 	 * Validate the magic number and version of every inode in the buffer
161 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
162 	 */
163 #ifdef DEBUG
164 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
165 #else	/* usual case */
166 	ni = 1;
167 #endif
168 
169 	for (i = 0; i < ni; i++) {
170 		int		di_ok;
171 		xfs_dinode_t	*dip;
172 
173 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
174 					(i << mp->m_sb.sb_inodelog));
175 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
176 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
177 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
178 						XFS_ERRTAG_ITOBP_INOTOBP,
179 						XFS_RANDOM_ITOBP_INOTOBP))) {
180 			if (iget_flags & XFS_IGET_BULKSTAT) {
181 				xfs_trans_brelse(tp, bp);
182 				return XFS_ERROR(EINVAL);
183 			}
184 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 						XFS_ERRLEVEL_HIGH, mp, dip);
186 #ifdef DEBUG
187 			cmn_err(CE_PANIC,
188 					"Device %s - bad inode magic/vsn "
189 					"daddr %lld #%d (magic=%x)",
190 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
191 				(unsigned long long)imap->im_blkno, i,
192 				be16_to_cpu(dip->di_magic));
193 #endif
194 			xfs_trans_brelse(tp, bp);
195 			return XFS_ERROR(EFSCORRUPTED);
196 		}
197 	}
198 
199 	xfs_inobp_check(mp, bp);
200 
201 	/*
202 	 * Mark the buffer as an inode buffer now that it looks good
203 	 */
204 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
205 
206 	*bpp = bp;
207 	return 0;
208 }
209 
210 /*
211  * This routine is called to map an inode number within a file
212  * system to the buffer containing the on-disk version of the
213  * inode.  It returns a pointer to the buffer containing the
214  * on-disk inode in the bpp parameter, and in the dip parameter
215  * it returns a pointer to the on-disk inode within that buffer.
216  *
217  * If a non-zero error is returned, then the contents of bpp and
218  * dipp are undefined.
219  *
220  * Use xfs_imap() to determine the size and location of the
221  * buffer to read from disk.
222  */
223 int
224 xfs_inotobp(
225 	xfs_mount_t	*mp,
226 	xfs_trans_t	*tp,
227 	xfs_ino_t	ino,
228 	xfs_dinode_t	**dipp,
229 	xfs_buf_t	**bpp,
230 	int		*offset,
231 	uint		imap_flags)
232 {
233 	struct xfs_imap	imap;
234 	xfs_buf_t	*bp;
235 	int		error;
236 
237 	imap.im_blkno = 0;
238 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
239 	if (error)
240 		return error;
241 
242 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
243 	if (error)
244 		return error;
245 
246 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 	*bpp = bp;
248 	*offset = imap.im_boffset;
249 	return 0;
250 }
251 
252 
253 /*
254  * This routine is called to map an inode to the buffer containing
255  * the on-disk version of the inode.  It returns a pointer to the
256  * buffer containing the on-disk inode in the bpp parameter, and in
257  * the dip parameter it returns a pointer to the on-disk inode within
258  * that buffer.
259  *
260  * If a non-zero error is returned, then the contents of bpp and
261  * dipp are undefined.
262  *
263  * The inode is expected to already been mapped to its buffer and read
264  * in once, thus we can use the mapping information stored in the inode
265  * rather than calling xfs_imap().  This allows us to avoid the overhead
266  * of looking at the inode btree for small block file systems
267  * (see xfs_imap()).
268  */
269 int
270 xfs_itobp(
271 	xfs_mount_t	*mp,
272 	xfs_trans_t	*tp,
273 	xfs_inode_t	*ip,
274 	xfs_dinode_t	**dipp,
275 	xfs_buf_t	**bpp,
276 	uint		buf_flags)
277 {
278 	xfs_buf_t	*bp;
279 	int		error;
280 
281 	ASSERT(ip->i_imap.im_blkno != 0);
282 
283 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
284 	if (error)
285 		return error;
286 
287 	if (!bp) {
288 		ASSERT(buf_flags & XBF_TRYLOCK);
289 		ASSERT(tp == NULL);
290 		*bpp = NULL;
291 		return EAGAIN;
292 	}
293 
294 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
295 	*bpp = bp;
296 	return 0;
297 }
298 
299 /*
300  * Move inode type and inode format specific information from the
301  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
302  * this means set if_rdev to the proper value.  For files, directories,
303  * and symlinks this means to bring in the in-line data or extent
304  * pointers.  For a file in B-tree format, only the root is immediately
305  * brought in-core.  The rest will be in-lined in if_extents when it
306  * is first referenced (see xfs_iread_extents()).
307  */
308 STATIC int
309 xfs_iformat(
310 	xfs_inode_t		*ip,
311 	xfs_dinode_t		*dip)
312 {
313 	xfs_attr_shortform_t	*atp;
314 	int			size;
315 	int			error;
316 	xfs_fsize_t             di_size;
317 	ip->i_df.if_ext_max =
318 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
319 	error = 0;
320 
321 	if (unlikely(be32_to_cpu(dip->di_nextents) +
322 		     be16_to_cpu(dip->di_anextents) >
323 		     be64_to_cpu(dip->di_nblocks))) {
324 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
325 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 			(unsigned long long)ip->i_ino,
327 			(int)(be32_to_cpu(dip->di_nextents) +
328 			      be16_to_cpu(dip->di_anextents)),
329 			(unsigned long long)
330 				be64_to_cpu(dip->di_nblocks));
331 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
332 				     ip->i_mount, dip);
333 		return XFS_ERROR(EFSCORRUPTED);
334 	}
335 
336 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
337 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
338 			"corrupt dinode %Lu, forkoff = 0x%x.",
339 			(unsigned long long)ip->i_ino,
340 			dip->di_forkoff);
341 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
342 				     ip->i_mount, dip);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 
346 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
347 		     !ip->i_mount->m_rtdev_targp)) {
348 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
349 			"corrupt dinode %Lu, has realtime flag set.",
350 			ip->i_ino);
351 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
353 		return XFS_ERROR(EFSCORRUPTED);
354 	}
355 
356 	switch (ip->i_d.di_mode & S_IFMT) {
357 	case S_IFIFO:
358 	case S_IFCHR:
359 	case S_IFBLK:
360 	case S_IFSOCK:
361 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
362 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
363 					      ip->i_mount, dip);
364 			return XFS_ERROR(EFSCORRUPTED);
365 		}
366 		ip->i_d.di_size = 0;
367 		ip->i_size = 0;
368 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
369 		break;
370 
371 	case S_IFREG:
372 	case S_IFLNK:
373 	case S_IFDIR:
374 		switch (dip->di_format) {
375 		case XFS_DINODE_FMT_LOCAL:
376 			/*
377 			 * no local regular files yet
378 			 */
379 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
380 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
381 					"corrupt inode %Lu "
382 					"(local format for regular file).",
383 					(unsigned long long) ip->i_ino);
384 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
385 						     XFS_ERRLEVEL_LOW,
386 						     ip->i_mount, dip);
387 				return XFS_ERROR(EFSCORRUPTED);
388 			}
389 
390 			di_size = be64_to_cpu(dip->di_size);
391 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
392 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
393 					"corrupt inode %Lu "
394 					"(bad size %Ld for local inode).",
395 					(unsigned long long) ip->i_ino,
396 					(long long) di_size);
397 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
398 						     XFS_ERRLEVEL_LOW,
399 						     ip->i_mount, dip);
400 				return XFS_ERROR(EFSCORRUPTED);
401 			}
402 
403 			size = (int)di_size;
404 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
405 			break;
406 		case XFS_DINODE_FMT_EXTENTS:
407 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
408 			break;
409 		case XFS_DINODE_FMT_BTREE:
410 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
411 			break;
412 		default:
413 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
414 					 ip->i_mount);
415 			return XFS_ERROR(EFSCORRUPTED);
416 		}
417 		break;
418 
419 	default:
420 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 	if (error) {
424 		return error;
425 	}
426 	if (!XFS_DFORK_Q(dip))
427 		return 0;
428 	ASSERT(ip->i_afp == NULL);
429 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
430 	ip->i_afp->if_ext_max =
431 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
432 	switch (dip->di_aformat) {
433 	case XFS_DINODE_FMT_LOCAL:
434 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
435 		size = be16_to_cpu(atp->hdr.totsize);
436 
437 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
438 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
439 				"corrupt inode %Lu "
440 				"(bad attr fork size %Ld).",
441 				(unsigned long long) ip->i_ino,
442 				(long long) size);
443 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
444 					     XFS_ERRLEVEL_LOW,
445 					     ip->i_mount, dip);
446 			return XFS_ERROR(EFSCORRUPTED);
447 		}
448 
449 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
450 		break;
451 	case XFS_DINODE_FMT_EXTENTS:
452 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
453 		break;
454 	case XFS_DINODE_FMT_BTREE:
455 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
456 		break;
457 	default:
458 		error = XFS_ERROR(EFSCORRUPTED);
459 		break;
460 	}
461 	if (error) {
462 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
463 		ip->i_afp = NULL;
464 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
465 	}
466 	return error;
467 }
468 
469 /*
470  * The file is in-lined in the on-disk inode.
471  * If it fits into if_inline_data, then copy
472  * it there, otherwise allocate a buffer for it
473  * and copy the data there.  Either way, set
474  * if_data to point at the data.
475  * If we allocate a buffer for the data, make
476  * sure that its size is a multiple of 4 and
477  * record the real size in i_real_bytes.
478  */
479 STATIC int
480 xfs_iformat_local(
481 	xfs_inode_t	*ip,
482 	xfs_dinode_t	*dip,
483 	int		whichfork,
484 	int		size)
485 {
486 	xfs_ifork_t	*ifp;
487 	int		real_size;
488 
489 	/*
490 	 * If the size is unreasonable, then something
491 	 * is wrong and we just bail out rather than crash in
492 	 * kmem_alloc() or memcpy() below.
493 	 */
494 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
495 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
496 			"corrupt inode %Lu "
497 			"(bad size %d for local fork, size = %d).",
498 			(unsigned long long) ip->i_ino, size,
499 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
500 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
501 				     ip->i_mount, dip);
502 		return XFS_ERROR(EFSCORRUPTED);
503 	}
504 	ifp = XFS_IFORK_PTR(ip, whichfork);
505 	real_size = 0;
506 	if (size == 0)
507 		ifp->if_u1.if_data = NULL;
508 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
509 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
510 	else {
511 		real_size = roundup(size, 4);
512 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
513 	}
514 	ifp->if_bytes = size;
515 	ifp->if_real_bytes = real_size;
516 	if (size)
517 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
518 	ifp->if_flags &= ~XFS_IFEXTENTS;
519 	ifp->if_flags |= XFS_IFINLINE;
520 	return 0;
521 }
522 
523 /*
524  * The file consists of a set of extents all
525  * of which fit into the on-disk inode.
526  * If there are few enough extents to fit into
527  * the if_inline_ext, then copy them there.
528  * Otherwise allocate a buffer for them and copy
529  * them into it.  Either way, set if_extents
530  * to point at the extents.
531  */
532 STATIC int
533 xfs_iformat_extents(
534 	xfs_inode_t	*ip,
535 	xfs_dinode_t	*dip,
536 	int		whichfork)
537 {
538 	xfs_bmbt_rec_t	*dp;
539 	xfs_ifork_t	*ifp;
540 	int		nex;
541 	int		size;
542 	int		i;
543 
544 	ifp = XFS_IFORK_PTR(ip, whichfork);
545 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
546 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
547 
548 	/*
549 	 * If the number of extents is unreasonable, then something
550 	 * is wrong and we just bail out rather than crash in
551 	 * kmem_alloc() or memcpy() below.
552 	 */
553 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 			"corrupt inode %Lu ((a)extents = %d).",
556 			(unsigned long long) ip->i_ino, nex);
557 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
558 				     ip->i_mount, dip);
559 		return XFS_ERROR(EFSCORRUPTED);
560 	}
561 
562 	ifp->if_real_bytes = 0;
563 	if (nex == 0)
564 		ifp->if_u1.if_extents = NULL;
565 	else if (nex <= XFS_INLINE_EXTS)
566 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
567 	else
568 		xfs_iext_add(ifp, 0, nex);
569 
570 	ifp->if_bytes = size;
571 	if (size) {
572 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
573 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
574 		for (i = 0; i < nex; i++, dp++) {
575 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
576 			ep->l0 = get_unaligned_be64(&dp->l0);
577 			ep->l1 = get_unaligned_be64(&dp->l1);
578 		}
579 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
580 		if (whichfork != XFS_DATA_FORK ||
581 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
582 				if (unlikely(xfs_check_nostate_extents(
583 				    ifp, 0, nex))) {
584 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
585 							 XFS_ERRLEVEL_LOW,
586 							 ip->i_mount);
587 					return XFS_ERROR(EFSCORRUPTED);
588 				}
589 	}
590 	ifp->if_flags |= XFS_IFEXTENTS;
591 	return 0;
592 }
593 
594 /*
595  * The file has too many extents to fit into
596  * the inode, so they are in B-tree format.
597  * Allocate a buffer for the root of the B-tree
598  * and copy the root into it.  The i_extents
599  * field will remain NULL until all of the
600  * extents are read in (when they are needed).
601  */
602 STATIC int
603 xfs_iformat_btree(
604 	xfs_inode_t		*ip,
605 	xfs_dinode_t		*dip,
606 	int			whichfork)
607 {
608 	xfs_bmdr_block_t	*dfp;
609 	xfs_ifork_t		*ifp;
610 	/* REFERENCED */
611 	int			nrecs;
612 	int			size;
613 
614 	ifp = XFS_IFORK_PTR(ip, whichfork);
615 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
616 	size = XFS_BMAP_BROOT_SPACE(dfp);
617 	nrecs = be16_to_cpu(dfp->bb_numrecs);
618 
619 	/*
620 	 * blow out if -- fork has less extents than can fit in
621 	 * fork (fork shouldn't be a btree format), root btree
622 	 * block has more records than can fit into the fork,
623 	 * or the number of extents is greater than the number of
624 	 * blocks.
625 	 */
626 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
627 	    || XFS_BMDR_SPACE_CALC(nrecs) >
628 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
629 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
630 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
631 			"corrupt inode %Lu (btree).",
632 			(unsigned long long) ip->i_ino);
633 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
634 				 ip->i_mount);
635 		return XFS_ERROR(EFSCORRUPTED);
636 	}
637 
638 	ifp->if_broot_bytes = size;
639 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
640 	ASSERT(ifp->if_broot != NULL);
641 	/*
642 	 * Copy and convert from the on-disk structure
643 	 * to the in-memory structure.
644 	 */
645 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
646 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
647 			 ifp->if_broot, size);
648 	ifp->if_flags &= ~XFS_IFEXTENTS;
649 	ifp->if_flags |= XFS_IFBROOT;
650 
651 	return 0;
652 }
653 
654 STATIC void
655 xfs_dinode_from_disk(
656 	xfs_icdinode_t		*to,
657 	xfs_dinode_t		*from)
658 {
659 	to->di_magic = be16_to_cpu(from->di_magic);
660 	to->di_mode = be16_to_cpu(from->di_mode);
661 	to->di_version = from ->di_version;
662 	to->di_format = from->di_format;
663 	to->di_onlink = be16_to_cpu(from->di_onlink);
664 	to->di_uid = be32_to_cpu(from->di_uid);
665 	to->di_gid = be32_to_cpu(from->di_gid);
666 	to->di_nlink = be32_to_cpu(from->di_nlink);
667 	to->di_projid = be16_to_cpu(from->di_projid);
668 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
669 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
670 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
671 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
672 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
673 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
674 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
675 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
676 	to->di_size = be64_to_cpu(from->di_size);
677 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
678 	to->di_extsize = be32_to_cpu(from->di_extsize);
679 	to->di_nextents = be32_to_cpu(from->di_nextents);
680 	to->di_anextents = be16_to_cpu(from->di_anextents);
681 	to->di_forkoff = from->di_forkoff;
682 	to->di_aformat	= from->di_aformat;
683 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
684 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
685 	to->di_flags	= be16_to_cpu(from->di_flags);
686 	to->di_gen	= be32_to_cpu(from->di_gen);
687 }
688 
689 void
690 xfs_dinode_to_disk(
691 	xfs_dinode_t		*to,
692 	xfs_icdinode_t		*from)
693 {
694 	to->di_magic = cpu_to_be16(from->di_magic);
695 	to->di_mode = cpu_to_be16(from->di_mode);
696 	to->di_version = from ->di_version;
697 	to->di_format = from->di_format;
698 	to->di_onlink = cpu_to_be16(from->di_onlink);
699 	to->di_uid = cpu_to_be32(from->di_uid);
700 	to->di_gid = cpu_to_be32(from->di_gid);
701 	to->di_nlink = cpu_to_be32(from->di_nlink);
702 	to->di_projid = cpu_to_be16(from->di_projid);
703 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
704 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
705 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
706 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
707 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
708 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
709 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
710 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
711 	to->di_size = cpu_to_be64(from->di_size);
712 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
713 	to->di_extsize = cpu_to_be32(from->di_extsize);
714 	to->di_nextents = cpu_to_be32(from->di_nextents);
715 	to->di_anextents = cpu_to_be16(from->di_anextents);
716 	to->di_forkoff = from->di_forkoff;
717 	to->di_aformat = from->di_aformat;
718 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
719 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
720 	to->di_flags = cpu_to_be16(from->di_flags);
721 	to->di_gen = cpu_to_be32(from->di_gen);
722 }
723 
724 STATIC uint
725 _xfs_dic2xflags(
726 	__uint16_t		di_flags)
727 {
728 	uint			flags = 0;
729 
730 	if (di_flags & XFS_DIFLAG_ANY) {
731 		if (di_flags & XFS_DIFLAG_REALTIME)
732 			flags |= XFS_XFLAG_REALTIME;
733 		if (di_flags & XFS_DIFLAG_PREALLOC)
734 			flags |= XFS_XFLAG_PREALLOC;
735 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
736 			flags |= XFS_XFLAG_IMMUTABLE;
737 		if (di_flags & XFS_DIFLAG_APPEND)
738 			flags |= XFS_XFLAG_APPEND;
739 		if (di_flags & XFS_DIFLAG_SYNC)
740 			flags |= XFS_XFLAG_SYNC;
741 		if (di_flags & XFS_DIFLAG_NOATIME)
742 			flags |= XFS_XFLAG_NOATIME;
743 		if (di_flags & XFS_DIFLAG_NODUMP)
744 			flags |= XFS_XFLAG_NODUMP;
745 		if (di_flags & XFS_DIFLAG_RTINHERIT)
746 			flags |= XFS_XFLAG_RTINHERIT;
747 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
748 			flags |= XFS_XFLAG_PROJINHERIT;
749 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
750 			flags |= XFS_XFLAG_NOSYMLINKS;
751 		if (di_flags & XFS_DIFLAG_EXTSIZE)
752 			flags |= XFS_XFLAG_EXTSIZE;
753 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
754 			flags |= XFS_XFLAG_EXTSZINHERIT;
755 		if (di_flags & XFS_DIFLAG_NODEFRAG)
756 			flags |= XFS_XFLAG_NODEFRAG;
757 		if (di_flags & XFS_DIFLAG_FILESTREAM)
758 			flags |= XFS_XFLAG_FILESTREAM;
759 	}
760 
761 	return flags;
762 }
763 
764 uint
765 xfs_ip2xflags(
766 	xfs_inode_t		*ip)
767 {
768 	xfs_icdinode_t		*dic = &ip->i_d;
769 
770 	return _xfs_dic2xflags(dic->di_flags) |
771 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
772 }
773 
774 uint
775 xfs_dic2xflags(
776 	xfs_dinode_t		*dip)
777 {
778 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
779 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
780 }
781 
782 /*
783  * Read the disk inode attributes into the in-core inode structure.
784  */
785 int
786 xfs_iread(
787 	xfs_mount_t	*mp,
788 	xfs_trans_t	*tp,
789 	xfs_inode_t	*ip,
790 	xfs_daddr_t	bno,
791 	uint		iget_flags)
792 {
793 	xfs_buf_t	*bp;
794 	xfs_dinode_t	*dip;
795 	int		error;
796 
797 	/*
798 	 * Fill in the location information in the in-core inode.
799 	 */
800 	ip->i_imap.im_blkno = bno;
801 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
802 	if (error)
803 		return error;
804 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
805 
806 	/*
807 	 * Get pointers to the on-disk inode and the buffer containing it.
808 	 */
809 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
810 			       XBF_LOCK, iget_flags);
811 	if (error)
812 		return error;
813 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
814 
815 	/*
816 	 * If we got something that isn't an inode it means someone
817 	 * (nfs or dmi) has a stale handle.
818 	 */
819 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
820 #ifdef DEBUG
821 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
822 				"dip->di_magic (0x%x) != "
823 				"XFS_DINODE_MAGIC (0x%x)",
824 				be16_to_cpu(dip->di_magic),
825 				XFS_DINODE_MAGIC);
826 #endif /* DEBUG */
827 		error = XFS_ERROR(EINVAL);
828 		goto out_brelse;
829 	}
830 
831 	/*
832 	 * If the on-disk inode is already linked to a directory
833 	 * entry, copy all of the inode into the in-core inode.
834 	 * xfs_iformat() handles copying in the inode format
835 	 * specific information.
836 	 * Otherwise, just get the truly permanent information.
837 	 */
838 	if (dip->di_mode) {
839 		xfs_dinode_from_disk(&ip->i_d, dip);
840 		error = xfs_iformat(ip, dip);
841 		if (error)  {
842 #ifdef DEBUG
843 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
844 					"xfs_iformat() returned error %d",
845 					error);
846 #endif /* DEBUG */
847 			goto out_brelse;
848 		}
849 	} else {
850 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
851 		ip->i_d.di_version = dip->di_version;
852 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
853 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
854 		/*
855 		 * Make sure to pull in the mode here as well in
856 		 * case the inode is released without being used.
857 		 * This ensures that xfs_inactive() will see that
858 		 * the inode is already free and not try to mess
859 		 * with the uninitialized part of it.
860 		 */
861 		ip->i_d.di_mode = 0;
862 		/*
863 		 * Initialize the per-fork minima and maxima for a new
864 		 * inode here.  xfs_iformat will do it for old inodes.
865 		 */
866 		ip->i_df.if_ext_max =
867 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
868 	}
869 
870 	/*
871 	 * The inode format changed when we moved the link count and
872 	 * made it 32 bits long.  If this is an old format inode,
873 	 * convert it in memory to look like a new one.  If it gets
874 	 * flushed to disk we will convert back before flushing or
875 	 * logging it.  We zero out the new projid field and the old link
876 	 * count field.  We'll handle clearing the pad field (the remains
877 	 * of the old uuid field) when we actually convert the inode to
878 	 * the new format. We don't change the version number so that we
879 	 * can distinguish this from a real new format inode.
880 	 */
881 	if (ip->i_d.di_version == 1) {
882 		ip->i_d.di_nlink = ip->i_d.di_onlink;
883 		ip->i_d.di_onlink = 0;
884 		ip->i_d.di_projid = 0;
885 	}
886 
887 	ip->i_delayed_blks = 0;
888 	ip->i_size = ip->i_d.di_size;
889 
890 	/*
891 	 * Mark the buffer containing the inode as something to keep
892 	 * around for a while.  This helps to keep recently accessed
893 	 * meta-data in-core longer.
894 	 */
895 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
896 
897 	/*
898 	 * Use xfs_trans_brelse() to release the buffer containing the
899 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
901 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
902 	 * will only release the buffer if it is not dirty within the
903 	 * transaction.  It will be OK to release the buffer in this case,
904 	 * because inodes on disk are never destroyed and we will be
905 	 * locking the new in-core inode before putting it in the hash
906 	 * table where other processes can find it.  Thus we don't have
907 	 * to worry about the inode being changed just because we released
908 	 * the buffer.
909 	 */
910  out_brelse:
911 	xfs_trans_brelse(tp, bp);
912 	return error;
913 }
914 
915 /*
916  * Read in extents from a btree-format inode.
917  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
918  */
919 int
920 xfs_iread_extents(
921 	xfs_trans_t	*tp,
922 	xfs_inode_t	*ip,
923 	int		whichfork)
924 {
925 	int		error;
926 	xfs_ifork_t	*ifp;
927 	xfs_extnum_t	nextents;
928 	size_t		size;
929 
930 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
931 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
932 				 ip->i_mount);
933 		return XFS_ERROR(EFSCORRUPTED);
934 	}
935 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
936 	size = nextents * sizeof(xfs_bmbt_rec_t);
937 	ifp = XFS_IFORK_PTR(ip, whichfork);
938 
939 	/*
940 	 * We know that the size is valid (it's checked in iformat_btree)
941 	 */
942 	ifp->if_lastex = NULLEXTNUM;
943 	ifp->if_bytes = ifp->if_real_bytes = 0;
944 	ifp->if_flags |= XFS_IFEXTENTS;
945 	xfs_iext_add(ifp, 0, nextents);
946 	error = xfs_bmap_read_extents(tp, ip, whichfork);
947 	if (error) {
948 		xfs_iext_destroy(ifp);
949 		ifp->if_flags &= ~XFS_IFEXTENTS;
950 		return error;
951 	}
952 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
953 	return 0;
954 }
955 
956 /*
957  * Allocate an inode on disk and return a copy of its in-core version.
958  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
959  * appropriately within the inode.  The uid and gid for the inode are
960  * set according to the contents of the given cred structure.
961  *
962  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963  * has a free inode available, call xfs_iget()
964  * to obtain the in-core version of the allocated inode.  Finally,
965  * fill in the inode and log its initial contents.  In this case,
966  * ialloc_context would be set to NULL and call_again set to false.
967  *
968  * If xfs_dialloc() does not have an available inode,
969  * it will replenish its supply by doing an allocation. Since we can
970  * only do one allocation within a transaction without deadlocks, we
971  * must commit the current transaction before returning the inode itself.
972  * In this case, therefore, we will set call_again to true and return.
973  * The caller should then commit the current transaction, start a new
974  * transaction, and call xfs_ialloc() again to actually get the inode.
975  *
976  * To ensure that some other process does not grab the inode that
977  * was allocated during the first call to xfs_ialloc(), this routine
978  * also returns the [locked] bp pointing to the head of the freelist
979  * as ialloc_context.  The caller should hold this buffer across
980  * the commit and pass it back into this routine on the second call.
981  *
982  * If we are allocating quota inodes, we do not have a parent inode
983  * to attach to or associate with (i.e. pip == NULL) because they
984  * are not linked into the directory structure - they are attached
985  * directly to the superblock - and so have no parent.
986  */
987 int
988 xfs_ialloc(
989 	xfs_trans_t	*tp,
990 	xfs_inode_t	*pip,
991 	mode_t		mode,
992 	xfs_nlink_t	nlink,
993 	xfs_dev_t	rdev,
994 	cred_t		*cr,
995 	xfs_prid_t	prid,
996 	int		okalloc,
997 	xfs_buf_t	**ialloc_context,
998 	boolean_t	*call_again,
999 	xfs_inode_t	**ipp)
1000 {
1001 	xfs_ino_t	ino;
1002 	xfs_inode_t	*ip;
1003 	uint		flags;
1004 	int		error;
1005 	timespec_t	tv;
1006 	int		filestreams = 0;
1007 
1008 	/*
1009 	 * Call the space management code to pick
1010 	 * the on-disk inode to be allocated.
1011 	 */
1012 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1013 			    ialloc_context, call_again, &ino);
1014 	if (error)
1015 		return error;
1016 	if (*call_again || ino == NULLFSINO) {
1017 		*ipp = NULL;
1018 		return 0;
1019 	}
1020 	ASSERT(*ialloc_context == NULL);
1021 
1022 	/*
1023 	 * Get the in-core inode with the lock held exclusively.
1024 	 * This is because we're setting fields here we need
1025 	 * to prevent others from looking at until we're done.
1026 	 */
1027 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1028 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1029 	if (error)
1030 		return error;
1031 	ASSERT(ip != NULL);
1032 
1033 	ip->i_d.di_mode = (__uint16_t)mode;
1034 	ip->i_d.di_onlink = 0;
1035 	ip->i_d.di_nlink = nlink;
1036 	ASSERT(ip->i_d.di_nlink == nlink);
1037 	ip->i_d.di_uid = current_fsuid();
1038 	ip->i_d.di_gid = current_fsgid();
1039 	ip->i_d.di_projid = prid;
1040 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1041 
1042 	/*
1043 	 * If the superblock version is up to where we support new format
1044 	 * inodes and this is currently an old format inode, then change
1045 	 * the inode version number now.  This way we only do the conversion
1046 	 * here rather than here and in the flush/logging code.
1047 	 */
1048 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1049 	    ip->i_d.di_version == 1) {
1050 		ip->i_d.di_version = 2;
1051 		/*
1052 		 * We've already zeroed the old link count, the projid field,
1053 		 * and the pad field.
1054 		 */
1055 	}
1056 
1057 	/*
1058 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1059 	 */
1060 	if ((prid != 0) && (ip->i_d.di_version == 1))
1061 		xfs_bump_ino_vers2(tp, ip);
1062 
1063 	if (pip && XFS_INHERIT_GID(pip)) {
1064 		ip->i_d.di_gid = pip->i_d.di_gid;
1065 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1066 			ip->i_d.di_mode |= S_ISGID;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If the group ID of the new file does not match the effective group
1072 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1074 	 */
1075 	if ((irix_sgid_inherit) &&
1076 	    (ip->i_d.di_mode & S_ISGID) &&
1077 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1078 		ip->i_d.di_mode &= ~S_ISGID;
1079 	}
1080 
1081 	ip->i_d.di_size = 0;
1082 	ip->i_size = 0;
1083 	ip->i_d.di_nextents = 0;
1084 	ASSERT(ip->i_d.di_nblocks == 0);
1085 
1086 	nanotime(&tv);
1087 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1088 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1089 	ip->i_d.di_atime = ip->i_d.di_mtime;
1090 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1091 
1092 	/*
1093 	 * di_gen will have been taken care of in xfs_iread.
1094 	 */
1095 	ip->i_d.di_extsize = 0;
1096 	ip->i_d.di_dmevmask = 0;
1097 	ip->i_d.di_dmstate = 0;
1098 	ip->i_d.di_flags = 0;
1099 	flags = XFS_ILOG_CORE;
1100 	switch (mode & S_IFMT) {
1101 	case S_IFIFO:
1102 	case S_IFCHR:
1103 	case S_IFBLK:
1104 	case S_IFSOCK:
1105 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1106 		ip->i_df.if_u2.if_rdev = rdev;
1107 		ip->i_df.if_flags = 0;
1108 		flags |= XFS_ILOG_DEV;
1109 		break;
1110 	case S_IFREG:
1111 		/*
1112 		 * we can't set up filestreams until after the VFS inode
1113 		 * is set up properly.
1114 		 */
1115 		if (pip && xfs_inode_is_filestream(pip))
1116 			filestreams = 1;
1117 		/* fall through */
1118 	case S_IFDIR:
1119 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1120 			uint	di_flags = 0;
1121 
1122 			if ((mode & S_IFMT) == S_IFDIR) {
1123 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1124 					di_flags |= XFS_DIFLAG_RTINHERIT;
1125 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1126 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1127 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 				}
1129 			} else if ((mode & S_IFMT) == S_IFREG) {
1130 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1131 					di_flags |= XFS_DIFLAG_REALTIME;
1132 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1133 					di_flags |= XFS_DIFLAG_EXTSIZE;
1134 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1135 				}
1136 			}
1137 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1138 			    xfs_inherit_noatime)
1139 				di_flags |= XFS_DIFLAG_NOATIME;
1140 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1141 			    xfs_inherit_nodump)
1142 				di_flags |= XFS_DIFLAG_NODUMP;
1143 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1144 			    xfs_inherit_sync)
1145 				di_flags |= XFS_DIFLAG_SYNC;
1146 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1147 			    xfs_inherit_nosymlinks)
1148 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1149 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1150 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1151 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1152 			    xfs_inherit_nodefrag)
1153 				di_flags |= XFS_DIFLAG_NODEFRAG;
1154 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1155 				di_flags |= XFS_DIFLAG_FILESTREAM;
1156 			ip->i_d.di_flags |= di_flags;
1157 		}
1158 		/* FALLTHROUGH */
1159 	case S_IFLNK:
1160 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1161 		ip->i_df.if_flags = XFS_IFEXTENTS;
1162 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1163 		ip->i_df.if_u1.if_extents = NULL;
1164 		break;
1165 	default:
1166 		ASSERT(0);
1167 	}
1168 	/*
1169 	 * Attribute fork settings for new inode.
1170 	 */
1171 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1172 	ip->i_d.di_anextents = 0;
1173 
1174 	/*
1175 	 * Log the new values stuffed into the inode.
1176 	 */
1177 	xfs_trans_log_inode(tp, ip, flags);
1178 
1179 	/* now that we have an i_mode we can setup inode ops and unlock */
1180 	xfs_setup_inode(ip);
1181 
1182 	/* now we have set up the vfs inode we can associate the filestream */
1183 	if (filestreams) {
1184 		error = xfs_filestream_associate(pip, ip);
1185 		if (error < 0)
1186 			return -error;
1187 		if (!error)
1188 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1189 	}
1190 
1191 	*ipp = ip;
1192 	return 0;
1193 }
1194 
1195 /*
1196  * Check to make sure that there are no blocks allocated to the
1197  * file beyond the size of the file.  We don't check this for
1198  * files with fixed size extents or real time extents, but we
1199  * at least do it for regular files.
1200  */
1201 #ifdef DEBUG
1202 void
1203 xfs_isize_check(
1204 	xfs_mount_t	*mp,
1205 	xfs_inode_t	*ip,
1206 	xfs_fsize_t	isize)
1207 {
1208 	xfs_fileoff_t	map_first;
1209 	int		nimaps;
1210 	xfs_bmbt_irec_t	imaps[2];
1211 
1212 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1213 		return;
1214 
1215 	if (XFS_IS_REALTIME_INODE(ip))
1216 		return;
1217 
1218 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1219 		return;
1220 
1221 	nimaps = 2;
1222 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1223 	/*
1224 	 * The filesystem could be shutting down, so bmapi may return
1225 	 * an error.
1226 	 */
1227 	if (xfs_bmapi(NULL, ip, map_first,
1228 			 (XFS_B_TO_FSB(mp,
1229 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1230 			  map_first),
1231 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1232 			 NULL, NULL))
1233 	    return;
1234 	ASSERT(nimaps == 1);
1235 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1236 }
1237 #endif	/* DEBUG */
1238 
1239 /*
1240  * Calculate the last possible buffered byte in a file.  This must
1241  * include data that was buffered beyond the EOF by the write code.
1242  * This also needs to deal with overflowing the xfs_fsize_t type
1243  * which can happen for sizes near the limit.
1244  *
1245  * We also need to take into account any blocks beyond the EOF.  It
1246  * may be the case that they were buffered by a write which failed.
1247  * In that case the pages will still be in memory, but the inode size
1248  * will never have been updated.
1249  */
1250 STATIC xfs_fsize_t
1251 xfs_file_last_byte(
1252 	xfs_inode_t	*ip)
1253 {
1254 	xfs_mount_t	*mp;
1255 	xfs_fsize_t	last_byte;
1256 	xfs_fileoff_t	last_block;
1257 	xfs_fileoff_t	size_last_block;
1258 	int		error;
1259 
1260 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1261 
1262 	mp = ip->i_mount;
1263 	/*
1264 	 * Only check for blocks beyond the EOF if the extents have
1265 	 * been read in.  This eliminates the need for the inode lock,
1266 	 * and it also saves us from looking when it really isn't
1267 	 * necessary.
1268 	 */
1269 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1270 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1271 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1272 			XFS_DATA_FORK);
1273 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1274 		if (error) {
1275 			last_block = 0;
1276 		}
1277 	} else {
1278 		last_block = 0;
1279 	}
1280 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1281 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1282 
1283 	last_byte = XFS_FSB_TO_B(mp, last_block);
1284 	if (last_byte < 0) {
1285 		return XFS_MAXIOFFSET(mp);
1286 	}
1287 	last_byte += (1 << mp->m_writeio_log);
1288 	if (last_byte < 0) {
1289 		return XFS_MAXIOFFSET(mp);
1290 	}
1291 	return last_byte;
1292 }
1293 
1294 /*
1295  * Start the truncation of the file to new_size.  The new size
1296  * must be smaller than the current size.  This routine will
1297  * clear the buffer and page caches of file data in the removed
1298  * range, and xfs_itruncate_finish() will remove the underlying
1299  * disk blocks.
1300  *
1301  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1302  * must NOT have the inode lock held at all.  This is because we're
1303  * calling into the buffer/page cache code and we can't hold the
1304  * inode lock when we do so.
1305  *
1306  * We need to wait for any direct I/Os in flight to complete before we
1307  * proceed with the truncate. This is needed to prevent the extents
1308  * being read or written by the direct I/Os from being removed while the
1309  * I/O is in flight as there is no other method of synchronising
1310  * direct I/O with the truncate operation.  Also, because we hold
1311  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1312  * started until the truncate completes and drops the lock. Essentially,
1313  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1314  * ordering between direct I/Os and the truncate operation.
1315  *
1316  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1317  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1318  * in the case that the caller is locking things out of order and
1319  * may not be able to call xfs_itruncate_finish() with the inode lock
1320  * held without dropping the I/O lock.  If the caller must drop the
1321  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1322  * must be called again with all the same restrictions as the initial
1323  * call.
1324  */
1325 int
1326 xfs_itruncate_start(
1327 	xfs_inode_t	*ip,
1328 	uint		flags,
1329 	xfs_fsize_t	new_size)
1330 {
1331 	xfs_fsize_t	last_byte;
1332 	xfs_off_t	toss_start;
1333 	xfs_mount_t	*mp;
1334 	int		error = 0;
1335 
1336 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1337 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1338 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1339 	       (flags == XFS_ITRUNC_MAYBE));
1340 
1341 	mp = ip->i_mount;
1342 
1343 	/* wait for the completion of any pending DIOs */
1344 	if (new_size == 0 || new_size < ip->i_size)
1345 		xfs_ioend_wait(ip);
1346 
1347 	/*
1348 	 * Call toss_pages or flushinval_pages to get rid of pages
1349 	 * overlapping the region being removed.  We have to use
1350 	 * the less efficient flushinval_pages in the case that the
1351 	 * caller may not be able to finish the truncate without
1352 	 * dropping the inode's I/O lock.  Make sure
1353 	 * to catch any pages brought in by buffers overlapping
1354 	 * the EOF by searching out beyond the isize by our
1355 	 * block size. We round new_size up to a block boundary
1356 	 * so that we don't toss things on the same block as
1357 	 * new_size but before it.
1358 	 *
1359 	 * Before calling toss_page or flushinval_pages, make sure to
1360 	 * call remapf() over the same region if the file is mapped.
1361 	 * This frees up mapped file references to the pages in the
1362 	 * given range and for the flushinval_pages case it ensures
1363 	 * that we get the latest mapped changes flushed out.
1364 	 */
1365 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1366 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1367 	if (toss_start < 0) {
1368 		/*
1369 		 * The place to start tossing is beyond our maximum
1370 		 * file size, so there is no way that the data extended
1371 		 * out there.
1372 		 */
1373 		return 0;
1374 	}
1375 	last_byte = xfs_file_last_byte(ip);
1376 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1377 	if (last_byte > toss_start) {
1378 		if (flags & XFS_ITRUNC_DEFINITE) {
1379 			xfs_tosspages(ip, toss_start,
1380 					-1, FI_REMAPF_LOCKED);
1381 		} else {
1382 			error = xfs_flushinval_pages(ip, toss_start,
1383 					-1, FI_REMAPF_LOCKED);
1384 		}
1385 	}
1386 
1387 #ifdef DEBUG
1388 	if (new_size == 0) {
1389 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1390 	}
1391 #endif
1392 	return error;
1393 }
1394 
1395 /*
1396  * Shrink the file to the given new_size.  The new size must be smaller than
1397  * the current size.  This will free up the underlying blocks in the removed
1398  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1399  *
1400  * The transaction passed to this routine must have made a permanent log
1401  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1402  * given transaction and start new ones, so make sure everything involved in
1403  * the transaction is tidy before calling here.  Some transaction will be
1404  * returned to the caller to be committed.  The incoming transaction must
1405  * already include the inode, and both inode locks must be held exclusively.
1406  * The inode must also be "held" within the transaction.  On return the inode
1407  * will be "held" within the returned transaction.  This routine does NOT
1408  * require any disk space to be reserved for it within the transaction.
1409  *
1410  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1411  * indicates the fork which is to be truncated.  For the attribute fork we only
1412  * support truncation to size 0.
1413  *
1414  * We use the sync parameter to indicate whether or not the first transaction
1415  * we perform might have to be synchronous.  For the attr fork, it needs to be
1416  * so if the unlink of the inode is not yet known to be permanent in the log.
1417  * This keeps us from freeing and reusing the blocks of the attribute fork
1418  * before the unlink of the inode becomes permanent.
1419  *
1420  * For the data fork, we normally have to run synchronously if we're being
1421  * called out of the inactive path or we're being called out of the create path
1422  * where we're truncating an existing file.  Either way, the truncate needs to
1423  * be sync so blocks don't reappear in the file with altered data in case of a
1424  * crash.  wsync filesystems can run the first case async because anything that
1425  * shrinks the inode has to run sync so by the time we're called here from
1426  * inactive, the inode size is permanently set to 0.
1427  *
1428  * Calls from the truncate path always need to be sync unless we're in a wsync
1429  * filesystem and the file has already been unlinked.
1430  *
1431  * The caller is responsible for correctly setting the sync parameter.  It gets
1432  * too hard for us to guess here which path we're being called out of just
1433  * based on inode state.
1434  *
1435  * If we get an error, we must return with the inode locked and linked into the
1436  * current transaction. This keeps things simple for the higher level code,
1437  * because it always knows that the inode is locked and held in the transaction
1438  * that returns to it whether errors occur or not.  We don't mark the inode
1439  * dirty on error so that transactions can be easily aborted if possible.
1440  */
1441 int
1442 xfs_itruncate_finish(
1443 	xfs_trans_t	**tp,
1444 	xfs_inode_t	*ip,
1445 	xfs_fsize_t	new_size,
1446 	int		fork,
1447 	int		sync)
1448 {
1449 	xfs_fsblock_t	first_block;
1450 	xfs_fileoff_t	first_unmap_block;
1451 	xfs_fileoff_t	last_block;
1452 	xfs_filblks_t	unmap_len=0;
1453 	xfs_mount_t	*mp;
1454 	xfs_trans_t	*ntp;
1455 	int		done;
1456 	int		committed;
1457 	xfs_bmap_free_t	free_list;
1458 	int		error;
1459 
1460 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1461 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1462 	ASSERT(*tp != NULL);
1463 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1464 	ASSERT(ip->i_transp == *tp);
1465 	ASSERT(ip->i_itemp != NULL);
1466 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1467 
1468 
1469 	ntp = *tp;
1470 	mp = (ntp)->t_mountp;
1471 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1472 
1473 	/*
1474 	 * We only support truncating the entire attribute fork.
1475 	 */
1476 	if (fork == XFS_ATTR_FORK) {
1477 		new_size = 0LL;
1478 	}
1479 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1480 	trace_xfs_itruncate_finish_start(ip, new_size);
1481 
1482 	/*
1483 	 * The first thing we do is set the size to new_size permanently
1484 	 * on disk.  This way we don't have to worry about anyone ever
1485 	 * being able to look at the data being freed even in the face
1486 	 * of a crash.  What we're getting around here is the case where
1487 	 * we free a block, it is allocated to another file, it is written
1488 	 * to, and then we crash.  If the new data gets written to the
1489 	 * file but the log buffers containing the free and reallocation
1490 	 * don't, then we'd end up with garbage in the blocks being freed.
1491 	 * As long as we make the new_size permanent before actually
1492 	 * freeing any blocks it doesn't matter if they get writtten to.
1493 	 *
1494 	 * The callers must signal into us whether or not the size
1495 	 * setting here must be synchronous.  There are a few cases
1496 	 * where it doesn't have to be synchronous.  Those cases
1497 	 * occur if the file is unlinked and we know the unlink is
1498 	 * permanent or if the blocks being truncated are guaranteed
1499 	 * to be beyond the inode eof (regardless of the link count)
1500 	 * and the eof value is permanent.  Both of these cases occur
1501 	 * only on wsync-mounted filesystems.  In those cases, we're
1502 	 * guaranteed that no user will ever see the data in the blocks
1503 	 * that are being truncated so the truncate can run async.
1504 	 * In the free beyond eof case, the file may wind up with
1505 	 * more blocks allocated to it than it needs if we crash
1506 	 * and that won't get fixed until the next time the file
1507 	 * is re-opened and closed but that's ok as that shouldn't
1508 	 * be too many blocks.
1509 	 *
1510 	 * However, we can't just make all wsync xactions run async
1511 	 * because there's one call out of the create path that needs
1512 	 * to run sync where it's truncating an existing file to size
1513 	 * 0 whose size is > 0.
1514 	 *
1515 	 * It's probably possible to come up with a test in this
1516 	 * routine that would correctly distinguish all the above
1517 	 * cases from the values of the function parameters and the
1518 	 * inode state but for sanity's sake, I've decided to let the
1519 	 * layers above just tell us.  It's simpler to correctly figure
1520 	 * out in the layer above exactly under what conditions we
1521 	 * can run async and I think it's easier for others read and
1522 	 * follow the logic in case something has to be changed.
1523 	 * cscope is your friend -- rcc.
1524 	 *
1525 	 * The attribute fork is much simpler.
1526 	 *
1527 	 * For the attribute fork we allow the caller to tell us whether
1528 	 * the unlink of the inode that led to this call is yet permanent
1529 	 * in the on disk log.  If it is not and we will be freeing extents
1530 	 * in this inode then we make the first transaction synchronous
1531 	 * to make sure that the unlink is permanent by the time we free
1532 	 * the blocks.
1533 	 */
1534 	if (fork == XFS_DATA_FORK) {
1535 		if (ip->i_d.di_nextents > 0) {
1536 			/*
1537 			 * If we are not changing the file size then do
1538 			 * not update the on-disk file size - we may be
1539 			 * called from xfs_inactive_free_eofblocks().  If we
1540 			 * update the on-disk file size and then the system
1541 			 * crashes before the contents of the file are
1542 			 * flushed to disk then the files may be full of
1543 			 * holes (ie NULL files bug).
1544 			 */
1545 			if (ip->i_size != new_size) {
1546 				ip->i_d.di_size = new_size;
1547 				ip->i_size = new_size;
1548 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1549 			}
1550 		}
1551 	} else if (sync) {
1552 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1553 		if (ip->i_d.di_anextents > 0)
1554 			xfs_trans_set_sync(ntp);
1555 	}
1556 	ASSERT(fork == XFS_DATA_FORK ||
1557 		(fork == XFS_ATTR_FORK &&
1558 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1559 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1560 
1561 	/*
1562 	 * Since it is possible for space to become allocated beyond
1563 	 * the end of the file (in a crash where the space is allocated
1564 	 * but the inode size is not yet updated), simply remove any
1565 	 * blocks which show up between the new EOF and the maximum
1566 	 * possible file size.  If the first block to be removed is
1567 	 * beyond the maximum file size (ie it is the same as last_block),
1568 	 * then there is nothing to do.
1569 	 */
1570 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1571 	ASSERT(first_unmap_block <= last_block);
1572 	done = 0;
1573 	if (last_block == first_unmap_block) {
1574 		done = 1;
1575 	} else {
1576 		unmap_len = last_block - first_unmap_block + 1;
1577 	}
1578 	while (!done) {
1579 		/*
1580 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1581 		 * will tell us whether it freed the entire range or
1582 		 * not.  If this is a synchronous mount (wsync),
1583 		 * then we can tell bunmapi to keep all the
1584 		 * transactions asynchronous since the unlink
1585 		 * transaction that made this inode inactive has
1586 		 * already hit the disk.  There's no danger of
1587 		 * the freed blocks being reused, there being a
1588 		 * crash, and the reused blocks suddenly reappearing
1589 		 * in this file with garbage in them once recovery
1590 		 * runs.
1591 		 */
1592 		xfs_bmap_init(&free_list, &first_block);
1593 		error = xfs_bunmapi(ntp, ip,
1594 				    first_unmap_block, unmap_len,
1595 				    xfs_bmapi_aflag(fork) |
1596 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1597 				    XFS_ITRUNC_MAX_EXTENTS,
1598 				    &first_block, &free_list,
1599 				    NULL, &done);
1600 		if (error) {
1601 			/*
1602 			 * If the bunmapi call encounters an error,
1603 			 * return to the caller where the transaction
1604 			 * can be properly aborted.  We just need to
1605 			 * make sure we're not holding any resources
1606 			 * that we were not when we came in.
1607 			 */
1608 			xfs_bmap_cancel(&free_list);
1609 			return error;
1610 		}
1611 
1612 		/*
1613 		 * Duplicate the transaction that has the permanent
1614 		 * reservation and commit the old transaction.
1615 		 */
1616 		error = xfs_bmap_finish(tp, &free_list, &committed);
1617 		ntp = *tp;
1618 		if (committed) {
1619 			/* link the inode into the next xact in the chain */
1620 			xfs_trans_ijoin(ntp, ip,
1621 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1622 			xfs_trans_ihold(ntp, ip);
1623 		}
1624 
1625 		if (error) {
1626 			/*
1627 			 * If the bmap finish call encounters an error, return
1628 			 * to the caller where the transaction can be properly
1629 			 * aborted.  We just need to make sure we're not
1630 			 * holding any resources that we were not when we came
1631 			 * in.
1632 			 *
1633 			 * Aborting from this point might lose some blocks in
1634 			 * the file system, but oh well.
1635 			 */
1636 			xfs_bmap_cancel(&free_list);
1637 			return error;
1638 		}
1639 
1640 		if (committed) {
1641 			/*
1642 			 * Mark the inode dirty so it will be logged and
1643 			 * moved forward in the log as part of every commit.
1644 			 */
1645 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1646 		}
1647 
1648 		ntp = xfs_trans_dup(ntp);
1649 		error = xfs_trans_commit(*tp, 0);
1650 		*tp = ntp;
1651 
1652 		/* link the inode into the next transaction in the chain */
1653 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1654 		xfs_trans_ihold(ntp, ip);
1655 
1656 		if (error)
1657 			return error;
1658 		/*
1659 		 * transaction commit worked ok so we can drop the extra ticket
1660 		 * reference that we gained in xfs_trans_dup()
1661 		 */
1662 		xfs_log_ticket_put(ntp->t_ticket);
1663 		error = xfs_trans_reserve(ntp, 0,
1664 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1665 					XFS_TRANS_PERM_LOG_RES,
1666 					XFS_ITRUNCATE_LOG_COUNT);
1667 		if (error)
1668 			return error;
1669 	}
1670 	/*
1671 	 * Only update the size in the case of the data fork, but
1672 	 * always re-log the inode so that our permanent transaction
1673 	 * can keep on rolling it forward in the log.
1674 	 */
1675 	if (fork == XFS_DATA_FORK) {
1676 		xfs_isize_check(mp, ip, new_size);
1677 		/*
1678 		 * If we are not changing the file size then do
1679 		 * not update the on-disk file size - we may be
1680 		 * called from xfs_inactive_free_eofblocks().  If we
1681 		 * update the on-disk file size and then the system
1682 		 * crashes before the contents of the file are
1683 		 * flushed to disk then the files may be full of
1684 		 * holes (ie NULL files bug).
1685 		 */
1686 		if (ip->i_size != new_size) {
1687 			ip->i_d.di_size = new_size;
1688 			ip->i_size = new_size;
1689 		}
1690 	}
1691 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1692 	ASSERT((new_size != 0) ||
1693 	       (fork == XFS_ATTR_FORK) ||
1694 	       (ip->i_delayed_blks == 0));
1695 	ASSERT((new_size != 0) ||
1696 	       (fork == XFS_ATTR_FORK) ||
1697 	       (ip->i_d.di_nextents == 0));
1698 	trace_xfs_itruncate_finish_end(ip, new_size);
1699 	return 0;
1700 }
1701 
1702 /*
1703  * This is called when the inode's link count goes to 0.
1704  * We place the on-disk inode on a list in the AGI.  It
1705  * will be pulled from this list when the inode is freed.
1706  */
1707 int
1708 xfs_iunlink(
1709 	xfs_trans_t	*tp,
1710 	xfs_inode_t	*ip)
1711 {
1712 	xfs_mount_t	*mp;
1713 	xfs_agi_t	*agi;
1714 	xfs_dinode_t	*dip;
1715 	xfs_buf_t	*agibp;
1716 	xfs_buf_t	*ibp;
1717 	xfs_agino_t	agino;
1718 	short		bucket_index;
1719 	int		offset;
1720 	int		error;
1721 
1722 	ASSERT(ip->i_d.di_nlink == 0);
1723 	ASSERT(ip->i_d.di_mode != 0);
1724 	ASSERT(ip->i_transp == tp);
1725 
1726 	mp = tp->t_mountp;
1727 
1728 	/*
1729 	 * Get the agi buffer first.  It ensures lock ordering
1730 	 * on the list.
1731 	 */
1732 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1733 	if (error)
1734 		return error;
1735 	agi = XFS_BUF_TO_AGI(agibp);
1736 
1737 	/*
1738 	 * Get the index into the agi hash table for the
1739 	 * list this inode will go on.
1740 	 */
1741 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1742 	ASSERT(agino != 0);
1743 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1744 	ASSERT(agi->agi_unlinked[bucket_index]);
1745 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1746 
1747 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1748 		/*
1749 		 * There is already another inode in the bucket we need
1750 		 * to add ourselves to.  Add us at the front of the list.
1751 		 * Here we put the head pointer into our next pointer,
1752 		 * and then we fall through to point the head at us.
1753 		 */
1754 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1755 		if (error)
1756 			return error;
1757 
1758 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1759 		/* both on-disk, don't endian flip twice */
1760 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1761 		offset = ip->i_imap.im_boffset +
1762 			offsetof(xfs_dinode_t, di_next_unlinked);
1763 		xfs_trans_inode_buf(tp, ibp);
1764 		xfs_trans_log_buf(tp, ibp, offset,
1765 				  (offset + sizeof(xfs_agino_t) - 1));
1766 		xfs_inobp_check(mp, ibp);
1767 	}
1768 
1769 	/*
1770 	 * Point the bucket head pointer at the inode being inserted.
1771 	 */
1772 	ASSERT(agino != 0);
1773 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1774 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1775 		(sizeof(xfs_agino_t) * bucket_index);
1776 	xfs_trans_log_buf(tp, agibp, offset,
1777 			  (offset + sizeof(xfs_agino_t) - 1));
1778 	return 0;
1779 }
1780 
1781 /*
1782  * Pull the on-disk inode from the AGI unlinked list.
1783  */
1784 STATIC int
1785 xfs_iunlink_remove(
1786 	xfs_trans_t	*tp,
1787 	xfs_inode_t	*ip)
1788 {
1789 	xfs_ino_t	next_ino;
1790 	xfs_mount_t	*mp;
1791 	xfs_agi_t	*agi;
1792 	xfs_dinode_t	*dip;
1793 	xfs_buf_t	*agibp;
1794 	xfs_buf_t	*ibp;
1795 	xfs_agnumber_t	agno;
1796 	xfs_agino_t	agino;
1797 	xfs_agino_t	next_agino;
1798 	xfs_buf_t	*last_ibp;
1799 	xfs_dinode_t	*last_dip = NULL;
1800 	short		bucket_index;
1801 	int		offset, last_offset = 0;
1802 	int		error;
1803 
1804 	mp = tp->t_mountp;
1805 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1806 
1807 	/*
1808 	 * Get the agi buffer first.  It ensures lock ordering
1809 	 * on the list.
1810 	 */
1811 	error = xfs_read_agi(mp, tp, agno, &agibp);
1812 	if (error)
1813 		return error;
1814 
1815 	agi = XFS_BUF_TO_AGI(agibp);
1816 
1817 	/*
1818 	 * Get the index into the agi hash table for the
1819 	 * list this inode will go on.
1820 	 */
1821 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1822 	ASSERT(agino != 0);
1823 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1824 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1825 	ASSERT(agi->agi_unlinked[bucket_index]);
1826 
1827 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1828 		/*
1829 		 * We're at the head of the list.  Get the inode's
1830 		 * on-disk buffer to see if there is anyone after us
1831 		 * on the list.  Only modify our next pointer if it
1832 		 * is not already NULLAGINO.  This saves us the overhead
1833 		 * of dealing with the buffer when there is no need to
1834 		 * change it.
1835 		 */
1836 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1837 		if (error) {
1838 			cmn_err(CE_WARN,
1839 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1840 				error, mp->m_fsname);
1841 			return error;
1842 		}
1843 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1844 		ASSERT(next_agino != 0);
1845 		if (next_agino != NULLAGINO) {
1846 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1847 			offset = ip->i_imap.im_boffset +
1848 				offsetof(xfs_dinode_t, di_next_unlinked);
1849 			xfs_trans_inode_buf(tp, ibp);
1850 			xfs_trans_log_buf(tp, ibp, offset,
1851 					  (offset + sizeof(xfs_agino_t) - 1));
1852 			xfs_inobp_check(mp, ibp);
1853 		} else {
1854 			xfs_trans_brelse(tp, ibp);
1855 		}
1856 		/*
1857 		 * Point the bucket head pointer at the next inode.
1858 		 */
1859 		ASSERT(next_agino != 0);
1860 		ASSERT(next_agino != agino);
1861 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1862 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1863 			(sizeof(xfs_agino_t) * bucket_index);
1864 		xfs_trans_log_buf(tp, agibp, offset,
1865 				  (offset + sizeof(xfs_agino_t) - 1));
1866 	} else {
1867 		/*
1868 		 * We need to search the list for the inode being freed.
1869 		 */
1870 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1871 		last_ibp = NULL;
1872 		while (next_agino != agino) {
1873 			/*
1874 			 * If the last inode wasn't the one pointing to
1875 			 * us, then release its buffer since we're not
1876 			 * going to do anything with it.
1877 			 */
1878 			if (last_ibp != NULL) {
1879 				xfs_trans_brelse(tp, last_ibp);
1880 			}
1881 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1882 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1883 					    &last_ibp, &last_offset, 0);
1884 			if (error) {
1885 				cmn_err(CE_WARN,
1886 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
1887 					error, mp->m_fsname);
1888 				return error;
1889 			}
1890 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1891 			ASSERT(next_agino != NULLAGINO);
1892 			ASSERT(next_agino != 0);
1893 		}
1894 		/*
1895 		 * Now last_ibp points to the buffer previous to us on
1896 		 * the unlinked list.  Pull us from the list.
1897 		 */
1898 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1899 		if (error) {
1900 			cmn_err(CE_WARN,
1901 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
1902 				error, mp->m_fsname);
1903 			return error;
1904 		}
1905 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1906 		ASSERT(next_agino != 0);
1907 		ASSERT(next_agino != agino);
1908 		if (next_agino != NULLAGINO) {
1909 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1910 			offset = ip->i_imap.im_boffset +
1911 				offsetof(xfs_dinode_t, di_next_unlinked);
1912 			xfs_trans_inode_buf(tp, ibp);
1913 			xfs_trans_log_buf(tp, ibp, offset,
1914 					  (offset + sizeof(xfs_agino_t) - 1));
1915 			xfs_inobp_check(mp, ibp);
1916 		} else {
1917 			xfs_trans_brelse(tp, ibp);
1918 		}
1919 		/*
1920 		 * Point the previous inode on the list to the next inode.
1921 		 */
1922 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1923 		ASSERT(next_agino != 0);
1924 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1925 		xfs_trans_inode_buf(tp, last_ibp);
1926 		xfs_trans_log_buf(tp, last_ibp, offset,
1927 				  (offset + sizeof(xfs_agino_t) - 1));
1928 		xfs_inobp_check(mp, last_ibp);
1929 	}
1930 	return 0;
1931 }
1932 
1933 STATIC void
1934 xfs_ifree_cluster(
1935 	xfs_inode_t	*free_ip,
1936 	xfs_trans_t	*tp,
1937 	xfs_ino_t	inum)
1938 {
1939 	xfs_mount_t		*mp = free_ip->i_mount;
1940 	int			blks_per_cluster;
1941 	int			nbufs;
1942 	int			ninodes;
1943 	int			i, j;
1944 	xfs_daddr_t		blkno;
1945 	xfs_buf_t		*bp;
1946 	xfs_inode_t		*ip;
1947 	xfs_inode_log_item_t	*iip;
1948 	xfs_log_item_t		*lip;
1949 	struct xfs_perag	*pag;
1950 
1951 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1952 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1953 		blks_per_cluster = 1;
1954 		ninodes = mp->m_sb.sb_inopblock;
1955 		nbufs = XFS_IALLOC_BLOCKS(mp);
1956 	} else {
1957 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1958 					mp->m_sb.sb_blocksize;
1959 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1960 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1961 	}
1962 
1963 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1964 		int	found = 0;
1965 
1966 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1967 					 XFS_INO_TO_AGBNO(mp, inum));
1968 
1969 		/*
1970 		 * We obtain and lock the backing buffer first in the process
1971 		 * here, as we have to ensure that any dirty inode that we
1972 		 * can't get the flush lock on is attached to the buffer.
1973 		 * If we scan the in-memory inodes first, then buffer IO can
1974 		 * complete before we get a lock on it, and hence we may fail
1975 		 * to mark all the active inodes on the buffer stale.
1976 		 */
1977 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1978 					mp->m_bsize * blks_per_cluster,
1979 					XBF_LOCK);
1980 
1981 		/*
1982 		 * Walk the inodes already attached to the buffer and mark them
1983 		 * stale. These will all have the flush locks held, so an
1984 		 * in-memory inode walk can't lock them.
1985 		 */
1986 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1987 		while (lip) {
1988 			if (lip->li_type == XFS_LI_INODE) {
1989 				iip = (xfs_inode_log_item_t *)lip;
1990 				ASSERT(iip->ili_logged == 1);
1991 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
1992 				xfs_trans_ail_copy_lsn(mp->m_ail,
1993 							&iip->ili_flush_lsn,
1994 							&iip->ili_item.li_lsn);
1995 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1996 				found++;
1997 			}
1998 			lip = lip->li_bio_list;
1999 		}
2000 
2001 		/*
2002 		 * For each inode in memory attempt to add it to the inode
2003 		 * buffer and set it up for being staled on buffer IO
2004 		 * completion.  This is safe as we've locked out tail pushing
2005 		 * and flushing by locking the buffer.
2006 		 *
2007 		 * We have already marked every inode that was part of a
2008 		 * transaction stale above, which means there is no point in
2009 		 * even trying to lock them.
2010 		 */
2011 		for (i = 0; i < ninodes; i++) {
2012 			read_lock(&pag->pag_ici_lock);
2013 			ip = radix_tree_lookup(&pag->pag_ici_root,
2014 					XFS_INO_TO_AGINO(mp, (inum + i)));
2015 
2016 			/* Inode not in memory or stale, nothing to do */
2017 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2018 				read_unlock(&pag->pag_ici_lock);
2019 				continue;
2020 			}
2021 
2022 			/* don't try to lock/unlock the current inode */
2023 			if (ip != free_ip &&
2024 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2025 				read_unlock(&pag->pag_ici_lock);
2026 				continue;
2027 			}
2028 			read_unlock(&pag->pag_ici_lock);
2029 
2030 			if (!xfs_iflock_nowait(ip)) {
2031 				if (ip != free_ip)
2032 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2033 				continue;
2034 			}
2035 
2036 			xfs_iflags_set(ip, XFS_ISTALE);
2037 			if (xfs_inode_clean(ip)) {
2038 				ASSERT(ip != free_ip);
2039 				xfs_ifunlock(ip);
2040 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2041 				continue;
2042 			}
2043 
2044 			iip = ip->i_itemp;
2045 			if (!iip) {
2046 				/* inode with unlogged changes only */
2047 				ASSERT(ip != free_ip);
2048 				ip->i_update_core = 0;
2049 				xfs_ifunlock(ip);
2050 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2051 				continue;
2052 			}
2053 			found++;
2054 
2055 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2056 			iip->ili_format.ilf_fields = 0;
2057 			iip->ili_logged = 1;
2058 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2059 						&iip->ili_item.li_lsn);
2060 
2061 			xfs_buf_attach_iodone(bp,
2062 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2063 				xfs_istale_done, (xfs_log_item_t *)iip);
2064 
2065 			if (ip != free_ip)
2066 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2067 		}
2068 
2069 		if (found)
2070 			xfs_trans_stale_inode_buf(tp, bp);
2071 		xfs_trans_binval(tp, bp);
2072 	}
2073 
2074 	xfs_perag_put(pag);
2075 }
2076 
2077 /*
2078  * This is called to return an inode to the inode free list.
2079  * The inode should already be truncated to 0 length and have
2080  * no pages associated with it.  This routine also assumes that
2081  * the inode is already a part of the transaction.
2082  *
2083  * The on-disk copy of the inode will have been added to the list
2084  * of unlinked inodes in the AGI. We need to remove the inode from
2085  * that list atomically with respect to freeing it here.
2086  */
2087 int
2088 xfs_ifree(
2089 	xfs_trans_t	*tp,
2090 	xfs_inode_t	*ip,
2091 	xfs_bmap_free_t	*flist)
2092 {
2093 	int			error;
2094 	int			delete;
2095 	xfs_ino_t		first_ino;
2096 	xfs_dinode_t    	*dip;
2097 	xfs_buf_t       	*ibp;
2098 
2099 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2100 	ASSERT(ip->i_transp == tp);
2101 	ASSERT(ip->i_d.di_nlink == 0);
2102 	ASSERT(ip->i_d.di_nextents == 0);
2103 	ASSERT(ip->i_d.di_anextents == 0);
2104 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2105 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2106 	ASSERT(ip->i_d.di_nblocks == 0);
2107 
2108 	/*
2109 	 * Pull the on-disk inode from the AGI unlinked list.
2110 	 */
2111 	error = xfs_iunlink_remove(tp, ip);
2112 	if (error != 0) {
2113 		return error;
2114 	}
2115 
2116 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2117 	if (error != 0) {
2118 		return error;
2119 	}
2120 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2121 	ip->i_d.di_flags = 0;
2122 	ip->i_d.di_dmevmask = 0;
2123 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2124 	ip->i_df.if_ext_max =
2125 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2126 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2127 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2128 	/*
2129 	 * Bump the generation count so no one will be confused
2130 	 * by reincarnations of this inode.
2131 	 */
2132 	ip->i_d.di_gen++;
2133 
2134 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2135 
2136 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2137 	if (error)
2138 		return error;
2139 
2140         /*
2141 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2142 	* from picking up this inode when it is reclaimed (its incore state
2143 	* initialzed but not flushed to disk yet). The in-core di_mode is
2144 	* already cleared  and a corresponding transaction logged.
2145 	* The hack here just synchronizes the in-core to on-disk
2146 	* di_mode value in advance before the actual inode sync to disk.
2147 	* This is OK because the inode is already unlinked and would never
2148 	* change its di_mode again for this inode generation.
2149 	* This is a temporary hack that would require a proper fix
2150 	* in the future.
2151 	*/
2152 	dip->di_mode = 0;
2153 
2154 	if (delete) {
2155 		xfs_ifree_cluster(ip, tp, first_ino);
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 /*
2162  * Reallocate the space for if_broot based on the number of records
2163  * being added or deleted as indicated in rec_diff.  Move the records
2164  * and pointers in if_broot to fit the new size.  When shrinking this
2165  * will eliminate holes between the records and pointers created by
2166  * the caller.  When growing this will create holes to be filled in
2167  * by the caller.
2168  *
2169  * The caller must not request to add more records than would fit in
2170  * the on-disk inode root.  If the if_broot is currently NULL, then
2171  * if we adding records one will be allocated.  The caller must also
2172  * not request that the number of records go below zero, although
2173  * it can go to zero.
2174  *
2175  * ip -- the inode whose if_broot area is changing
2176  * ext_diff -- the change in the number of records, positive or negative,
2177  *	 requested for the if_broot array.
2178  */
2179 void
2180 xfs_iroot_realloc(
2181 	xfs_inode_t		*ip,
2182 	int			rec_diff,
2183 	int			whichfork)
2184 {
2185 	struct xfs_mount	*mp = ip->i_mount;
2186 	int			cur_max;
2187 	xfs_ifork_t		*ifp;
2188 	struct xfs_btree_block	*new_broot;
2189 	int			new_max;
2190 	size_t			new_size;
2191 	char			*np;
2192 	char			*op;
2193 
2194 	/*
2195 	 * Handle the degenerate case quietly.
2196 	 */
2197 	if (rec_diff == 0) {
2198 		return;
2199 	}
2200 
2201 	ifp = XFS_IFORK_PTR(ip, whichfork);
2202 	if (rec_diff > 0) {
2203 		/*
2204 		 * If there wasn't any memory allocated before, just
2205 		 * allocate it now and get out.
2206 		 */
2207 		if (ifp->if_broot_bytes == 0) {
2208 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2209 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2210 			ifp->if_broot_bytes = (int)new_size;
2211 			return;
2212 		}
2213 
2214 		/*
2215 		 * If there is already an existing if_broot, then we need
2216 		 * to realloc() it and shift the pointers to their new
2217 		 * location.  The records don't change location because
2218 		 * they are kept butted up against the btree block header.
2219 		 */
2220 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2221 		new_max = cur_max + rec_diff;
2222 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2223 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2224 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2225 				KM_SLEEP);
2226 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2227 						     ifp->if_broot_bytes);
2228 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2229 						     (int)new_size);
2230 		ifp->if_broot_bytes = (int)new_size;
2231 		ASSERT(ifp->if_broot_bytes <=
2232 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2233 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2234 		return;
2235 	}
2236 
2237 	/*
2238 	 * rec_diff is less than 0.  In this case, we are shrinking the
2239 	 * if_broot buffer.  It must already exist.  If we go to zero
2240 	 * records, just get rid of the root and clear the status bit.
2241 	 */
2242 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2243 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2244 	new_max = cur_max + rec_diff;
2245 	ASSERT(new_max >= 0);
2246 	if (new_max > 0)
2247 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2248 	else
2249 		new_size = 0;
2250 	if (new_size > 0) {
2251 		new_broot = kmem_alloc(new_size, KM_SLEEP);
2252 		/*
2253 		 * First copy over the btree block header.
2254 		 */
2255 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2256 	} else {
2257 		new_broot = NULL;
2258 		ifp->if_flags &= ~XFS_IFBROOT;
2259 	}
2260 
2261 	/*
2262 	 * Only copy the records and pointers if there are any.
2263 	 */
2264 	if (new_max > 0) {
2265 		/*
2266 		 * First copy the records.
2267 		 */
2268 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2269 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2270 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2271 
2272 		/*
2273 		 * Then copy the pointers.
2274 		 */
2275 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2276 						     ifp->if_broot_bytes);
2277 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2278 						     (int)new_size);
2279 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2280 	}
2281 	kmem_free(ifp->if_broot);
2282 	ifp->if_broot = new_broot;
2283 	ifp->if_broot_bytes = (int)new_size;
2284 	ASSERT(ifp->if_broot_bytes <=
2285 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2286 	return;
2287 }
2288 
2289 
2290 /*
2291  * This is called when the amount of space needed for if_data
2292  * is increased or decreased.  The change in size is indicated by
2293  * the number of bytes that need to be added or deleted in the
2294  * byte_diff parameter.
2295  *
2296  * If the amount of space needed has decreased below the size of the
2297  * inline buffer, then switch to using the inline buffer.  Otherwise,
2298  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2299  * to what is needed.
2300  *
2301  * ip -- the inode whose if_data area is changing
2302  * byte_diff -- the change in the number of bytes, positive or negative,
2303  *	 requested for the if_data array.
2304  */
2305 void
2306 xfs_idata_realloc(
2307 	xfs_inode_t	*ip,
2308 	int		byte_diff,
2309 	int		whichfork)
2310 {
2311 	xfs_ifork_t	*ifp;
2312 	int		new_size;
2313 	int		real_size;
2314 
2315 	if (byte_diff == 0) {
2316 		return;
2317 	}
2318 
2319 	ifp = XFS_IFORK_PTR(ip, whichfork);
2320 	new_size = (int)ifp->if_bytes + byte_diff;
2321 	ASSERT(new_size >= 0);
2322 
2323 	if (new_size == 0) {
2324 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2325 			kmem_free(ifp->if_u1.if_data);
2326 		}
2327 		ifp->if_u1.if_data = NULL;
2328 		real_size = 0;
2329 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2330 		/*
2331 		 * If the valid extents/data can fit in if_inline_ext/data,
2332 		 * copy them from the malloc'd vector and free it.
2333 		 */
2334 		if (ifp->if_u1.if_data == NULL) {
2335 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2336 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2337 			ASSERT(ifp->if_real_bytes != 0);
2338 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2339 			      new_size);
2340 			kmem_free(ifp->if_u1.if_data);
2341 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2342 		}
2343 		real_size = 0;
2344 	} else {
2345 		/*
2346 		 * Stuck with malloc/realloc.
2347 		 * For inline data, the underlying buffer must be
2348 		 * a multiple of 4 bytes in size so that it can be
2349 		 * logged and stay on word boundaries.  We enforce
2350 		 * that here.
2351 		 */
2352 		real_size = roundup(new_size, 4);
2353 		if (ifp->if_u1.if_data == NULL) {
2354 			ASSERT(ifp->if_real_bytes == 0);
2355 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2356 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2357 			/*
2358 			 * Only do the realloc if the underlying size
2359 			 * is really changing.
2360 			 */
2361 			if (ifp->if_real_bytes != real_size) {
2362 				ifp->if_u1.if_data =
2363 					kmem_realloc(ifp->if_u1.if_data,
2364 							real_size,
2365 							ifp->if_real_bytes,
2366 							KM_SLEEP);
2367 			}
2368 		} else {
2369 			ASSERT(ifp->if_real_bytes == 0);
2370 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2371 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2372 				ifp->if_bytes);
2373 		}
2374 	}
2375 	ifp->if_real_bytes = real_size;
2376 	ifp->if_bytes = new_size;
2377 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2378 }
2379 
2380 void
2381 xfs_idestroy_fork(
2382 	xfs_inode_t	*ip,
2383 	int		whichfork)
2384 {
2385 	xfs_ifork_t	*ifp;
2386 
2387 	ifp = XFS_IFORK_PTR(ip, whichfork);
2388 	if (ifp->if_broot != NULL) {
2389 		kmem_free(ifp->if_broot);
2390 		ifp->if_broot = NULL;
2391 	}
2392 
2393 	/*
2394 	 * If the format is local, then we can't have an extents
2395 	 * array so just look for an inline data array.  If we're
2396 	 * not local then we may or may not have an extents list,
2397 	 * so check and free it up if we do.
2398 	 */
2399 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2400 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2401 		    (ifp->if_u1.if_data != NULL)) {
2402 			ASSERT(ifp->if_real_bytes != 0);
2403 			kmem_free(ifp->if_u1.if_data);
2404 			ifp->if_u1.if_data = NULL;
2405 			ifp->if_real_bytes = 0;
2406 		}
2407 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2408 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2409 		    ((ifp->if_u1.if_extents != NULL) &&
2410 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2411 		ASSERT(ifp->if_real_bytes != 0);
2412 		xfs_iext_destroy(ifp);
2413 	}
2414 	ASSERT(ifp->if_u1.if_extents == NULL ||
2415 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2416 	ASSERT(ifp->if_real_bytes == 0);
2417 	if (whichfork == XFS_ATTR_FORK) {
2418 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2419 		ip->i_afp = NULL;
2420 	}
2421 }
2422 
2423 /*
2424  * This is called to unpin an inode.  The caller must have the inode locked
2425  * in at least shared mode so that the buffer cannot be subsequently pinned
2426  * once someone is waiting for it to be unpinned.
2427  */
2428 static void
2429 xfs_iunpin_nowait(
2430 	struct xfs_inode	*ip)
2431 {
2432 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2433 
2434 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2435 
2436 	/* Give the log a push to start the unpinning I/O */
2437 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2438 
2439 }
2440 
2441 void
2442 xfs_iunpin_wait(
2443 	struct xfs_inode	*ip)
2444 {
2445 	if (xfs_ipincount(ip)) {
2446 		xfs_iunpin_nowait(ip);
2447 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2448 	}
2449 }
2450 
2451 /*
2452  * xfs_iextents_copy()
2453  *
2454  * This is called to copy the REAL extents (as opposed to the delayed
2455  * allocation extents) from the inode into the given buffer.  It
2456  * returns the number of bytes copied into the buffer.
2457  *
2458  * If there are no delayed allocation extents, then we can just
2459  * memcpy() the extents into the buffer.  Otherwise, we need to
2460  * examine each extent in turn and skip those which are delayed.
2461  */
2462 int
2463 xfs_iextents_copy(
2464 	xfs_inode_t		*ip,
2465 	xfs_bmbt_rec_t		*dp,
2466 	int			whichfork)
2467 {
2468 	int			copied;
2469 	int			i;
2470 	xfs_ifork_t		*ifp;
2471 	int			nrecs;
2472 	xfs_fsblock_t		start_block;
2473 
2474 	ifp = XFS_IFORK_PTR(ip, whichfork);
2475 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2476 	ASSERT(ifp->if_bytes > 0);
2477 
2478 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2479 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2480 	ASSERT(nrecs > 0);
2481 
2482 	/*
2483 	 * There are some delayed allocation extents in the
2484 	 * inode, so copy the extents one at a time and skip
2485 	 * the delayed ones.  There must be at least one
2486 	 * non-delayed extent.
2487 	 */
2488 	copied = 0;
2489 	for (i = 0; i < nrecs; i++) {
2490 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2491 		start_block = xfs_bmbt_get_startblock(ep);
2492 		if (isnullstartblock(start_block)) {
2493 			/*
2494 			 * It's a delayed allocation extent, so skip it.
2495 			 */
2496 			continue;
2497 		}
2498 
2499 		/* Translate to on disk format */
2500 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2501 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2502 		dp++;
2503 		copied++;
2504 	}
2505 	ASSERT(copied != 0);
2506 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2507 
2508 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2509 }
2510 
2511 /*
2512  * Each of the following cases stores data into the same region
2513  * of the on-disk inode, so only one of them can be valid at
2514  * any given time. While it is possible to have conflicting formats
2515  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2516  * in EXTENTS format, this can only happen when the fork has
2517  * changed formats after being modified but before being flushed.
2518  * In these cases, the format always takes precedence, because the
2519  * format indicates the current state of the fork.
2520  */
2521 /*ARGSUSED*/
2522 STATIC void
2523 xfs_iflush_fork(
2524 	xfs_inode_t		*ip,
2525 	xfs_dinode_t		*dip,
2526 	xfs_inode_log_item_t	*iip,
2527 	int			whichfork,
2528 	xfs_buf_t		*bp)
2529 {
2530 	char			*cp;
2531 	xfs_ifork_t		*ifp;
2532 	xfs_mount_t		*mp;
2533 #ifdef XFS_TRANS_DEBUG
2534 	int			first;
2535 #endif
2536 	static const short	brootflag[2] =
2537 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2538 	static const short	dataflag[2] =
2539 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2540 	static const short	extflag[2] =
2541 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2542 
2543 	if (!iip)
2544 		return;
2545 	ifp = XFS_IFORK_PTR(ip, whichfork);
2546 	/*
2547 	 * This can happen if we gave up in iformat in an error path,
2548 	 * for the attribute fork.
2549 	 */
2550 	if (!ifp) {
2551 		ASSERT(whichfork == XFS_ATTR_FORK);
2552 		return;
2553 	}
2554 	cp = XFS_DFORK_PTR(dip, whichfork);
2555 	mp = ip->i_mount;
2556 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2557 	case XFS_DINODE_FMT_LOCAL:
2558 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2559 		    (ifp->if_bytes > 0)) {
2560 			ASSERT(ifp->if_u1.if_data != NULL);
2561 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2562 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2563 		}
2564 		break;
2565 
2566 	case XFS_DINODE_FMT_EXTENTS:
2567 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2568 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2569 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2570 			(ifp->if_bytes == 0));
2571 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2572 			(ifp->if_bytes > 0));
2573 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2574 		    (ifp->if_bytes > 0)) {
2575 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2576 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2577 				whichfork);
2578 		}
2579 		break;
2580 
2581 	case XFS_DINODE_FMT_BTREE:
2582 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2583 		    (ifp->if_broot_bytes > 0)) {
2584 			ASSERT(ifp->if_broot != NULL);
2585 			ASSERT(ifp->if_broot_bytes <=
2586 			       (XFS_IFORK_SIZE(ip, whichfork) +
2587 				XFS_BROOT_SIZE_ADJ));
2588 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2589 				(xfs_bmdr_block_t *)cp,
2590 				XFS_DFORK_SIZE(dip, mp, whichfork));
2591 		}
2592 		break;
2593 
2594 	case XFS_DINODE_FMT_DEV:
2595 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2596 			ASSERT(whichfork == XFS_DATA_FORK);
2597 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2598 		}
2599 		break;
2600 
2601 	case XFS_DINODE_FMT_UUID:
2602 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2603 			ASSERT(whichfork == XFS_DATA_FORK);
2604 			memcpy(XFS_DFORK_DPTR(dip),
2605 			       &ip->i_df.if_u2.if_uuid,
2606 			       sizeof(uuid_t));
2607 		}
2608 		break;
2609 
2610 	default:
2611 		ASSERT(0);
2612 		break;
2613 	}
2614 }
2615 
2616 STATIC int
2617 xfs_iflush_cluster(
2618 	xfs_inode_t	*ip,
2619 	xfs_buf_t	*bp)
2620 {
2621 	xfs_mount_t		*mp = ip->i_mount;
2622 	struct xfs_perag	*pag;
2623 	unsigned long		first_index, mask;
2624 	unsigned long		inodes_per_cluster;
2625 	int			ilist_size;
2626 	xfs_inode_t		**ilist;
2627 	xfs_inode_t		*iq;
2628 	int			nr_found;
2629 	int			clcount = 0;
2630 	int			bufwasdelwri;
2631 	int			i;
2632 
2633 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2634 
2635 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2636 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2637 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2638 	if (!ilist)
2639 		goto out_put;
2640 
2641 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2642 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2643 	read_lock(&pag->pag_ici_lock);
2644 	/* really need a gang lookup range call here */
2645 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2646 					first_index, inodes_per_cluster);
2647 	if (nr_found == 0)
2648 		goto out_free;
2649 
2650 	for (i = 0; i < nr_found; i++) {
2651 		iq = ilist[i];
2652 		if (iq == ip)
2653 			continue;
2654 		/* if the inode lies outside this cluster, we're done. */
2655 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2656 			break;
2657 		/*
2658 		 * Do an un-protected check to see if the inode is dirty and
2659 		 * is a candidate for flushing.  These checks will be repeated
2660 		 * later after the appropriate locks are acquired.
2661 		 */
2662 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2663 			continue;
2664 
2665 		/*
2666 		 * Try to get locks.  If any are unavailable or it is pinned,
2667 		 * then this inode cannot be flushed and is skipped.
2668 		 */
2669 
2670 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2671 			continue;
2672 		if (!xfs_iflock_nowait(iq)) {
2673 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2674 			continue;
2675 		}
2676 		if (xfs_ipincount(iq)) {
2677 			xfs_ifunlock(iq);
2678 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2679 			continue;
2680 		}
2681 
2682 		/*
2683 		 * arriving here means that this inode can be flushed.  First
2684 		 * re-check that it's dirty before flushing.
2685 		 */
2686 		if (!xfs_inode_clean(iq)) {
2687 			int	error;
2688 			error = xfs_iflush_int(iq, bp);
2689 			if (error) {
2690 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2691 				goto cluster_corrupt_out;
2692 			}
2693 			clcount++;
2694 		} else {
2695 			xfs_ifunlock(iq);
2696 		}
2697 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2698 	}
2699 
2700 	if (clcount) {
2701 		XFS_STATS_INC(xs_icluster_flushcnt);
2702 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2703 	}
2704 
2705 out_free:
2706 	read_unlock(&pag->pag_ici_lock);
2707 	kmem_free(ilist);
2708 out_put:
2709 	xfs_perag_put(pag);
2710 	return 0;
2711 
2712 
2713 cluster_corrupt_out:
2714 	/*
2715 	 * Corruption detected in the clustering loop.  Invalidate the
2716 	 * inode buffer and shut down the filesystem.
2717 	 */
2718 	read_unlock(&pag->pag_ici_lock);
2719 	/*
2720 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2721 	 * brelse can handle it with no problems.  If not, shut down the
2722 	 * filesystem before releasing the buffer.
2723 	 */
2724 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2725 	if (bufwasdelwri)
2726 		xfs_buf_relse(bp);
2727 
2728 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2729 
2730 	if (!bufwasdelwri) {
2731 		/*
2732 		 * Just like incore_relse: if we have b_iodone functions,
2733 		 * mark the buffer as an error and call them.  Otherwise
2734 		 * mark it as stale and brelse.
2735 		 */
2736 		if (XFS_BUF_IODONE_FUNC(bp)) {
2737 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2738 			XFS_BUF_UNDONE(bp);
2739 			XFS_BUF_STALE(bp);
2740 			XFS_BUF_ERROR(bp,EIO);
2741 			xfs_biodone(bp);
2742 		} else {
2743 			XFS_BUF_STALE(bp);
2744 			xfs_buf_relse(bp);
2745 		}
2746 	}
2747 
2748 	/*
2749 	 * Unlocks the flush lock
2750 	 */
2751 	xfs_iflush_abort(iq);
2752 	kmem_free(ilist);
2753 	xfs_perag_put(pag);
2754 	return XFS_ERROR(EFSCORRUPTED);
2755 }
2756 
2757 /*
2758  * xfs_iflush() will write a modified inode's changes out to the
2759  * inode's on disk home.  The caller must have the inode lock held
2760  * in at least shared mode and the inode flush completion must be
2761  * active as well.  The inode lock will still be held upon return from
2762  * the call and the caller is free to unlock it.
2763  * The inode flush will be completed when the inode reaches the disk.
2764  * The flags indicate how the inode's buffer should be written out.
2765  */
2766 int
2767 xfs_iflush(
2768 	xfs_inode_t		*ip,
2769 	uint			flags)
2770 {
2771 	xfs_inode_log_item_t	*iip;
2772 	xfs_buf_t		*bp;
2773 	xfs_dinode_t		*dip;
2774 	xfs_mount_t		*mp;
2775 	int			error;
2776 
2777 	XFS_STATS_INC(xs_iflush_count);
2778 
2779 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2780 	ASSERT(!completion_done(&ip->i_flush));
2781 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2782 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2783 
2784 	iip = ip->i_itemp;
2785 	mp = ip->i_mount;
2786 
2787 	/*
2788 	 * We can't flush the inode until it is unpinned, so wait for it if we
2789 	 * are allowed to block.  We know noone new can pin it, because we are
2790 	 * holding the inode lock shared and you need to hold it exclusively to
2791 	 * pin the inode.
2792 	 *
2793 	 * If we are not allowed to block, force the log out asynchronously so
2794 	 * that when we come back the inode will be unpinned. If other inodes
2795 	 * in the same cluster are dirty, they will probably write the inode
2796 	 * out for us if they occur after the log force completes.
2797 	 */
2798 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2799 		xfs_iunpin_nowait(ip);
2800 		xfs_ifunlock(ip);
2801 		return EAGAIN;
2802 	}
2803 	xfs_iunpin_wait(ip);
2804 
2805 	/*
2806 	 * For stale inodes we cannot rely on the backing buffer remaining
2807 	 * stale in cache for the remaining life of the stale inode and so
2808 	 * xfs_itobp() below may give us a buffer that no longer contains
2809 	 * inodes below. We have to check this after ensuring the inode is
2810 	 * unpinned so that it is safe to reclaim the stale inode after the
2811 	 * flush call.
2812 	 */
2813 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2814 		xfs_ifunlock(ip);
2815 		return 0;
2816 	}
2817 
2818 	/*
2819 	 * This may have been unpinned because the filesystem is shutting
2820 	 * down forcibly. If that's the case we must not write this inode
2821 	 * to disk, because the log record didn't make it to disk!
2822 	 */
2823 	if (XFS_FORCED_SHUTDOWN(mp)) {
2824 		ip->i_update_core = 0;
2825 		if (iip)
2826 			iip->ili_format.ilf_fields = 0;
2827 		xfs_ifunlock(ip);
2828 		return XFS_ERROR(EIO);
2829 	}
2830 
2831 	/*
2832 	 * Get the buffer containing the on-disk inode.
2833 	 */
2834 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2835 				(flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2836 	if (error || !bp) {
2837 		xfs_ifunlock(ip);
2838 		return error;
2839 	}
2840 
2841 	/*
2842 	 * First flush out the inode that xfs_iflush was called with.
2843 	 */
2844 	error = xfs_iflush_int(ip, bp);
2845 	if (error)
2846 		goto corrupt_out;
2847 
2848 	/*
2849 	 * If the buffer is pinned then push on the log now so we won't
2850 	 * get stuck waiting in the write for too long.
2851 	 */
2852 	if (XFS_BUF_ISPINNED(bp))
2853 		xfs_log_force(mp, 0);
2854 
2855 	/*
2856 	 * inode clustering:
2857 	 * see if other inodes can be gathered into this write
2858 	 */
2859 	error = xfs_iflush_cluster(ip, bp);
2860 	if (error)
2861 		goto cluster_corrupt_out;
2862 
2863 	if (flags & SYNC_WAIT)
2864 		error = xfs_bwrite(mp, bp);
2865 	else
2866 		xfs_bdwrite(mp, bp);
2867 	return error;
2868 
2869 corrupt_out:
2870 	xfs_buf_relse(bp);
2871 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2872 cluster_corrupt_out:
2873 	/*
2874 	 * Unlocks the flush lock
2875 	 */
2876 	xfs_iflush_abort(ip);
2877 	return XFS_ERROR(EFSCORRUPTED);
2878 }
2879 
2880 
2881 STATIC int
2882 xfs_iflush_int(
2883 	xfs_inode_t		*ip,
2884 	xfs_buf_t		*bp)
2885 {
2886 	xfs_inode_log_item_t	*iip;
2887 	xfs_dinode_t		*dip;
2888 	xfs_mount_t		*mp;
2889 #ifdef XFS_TRANS_DEBUG
2890 	int			first;
2891 #endif
2892 
2893 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2894 	ASSERT(!completion_done(&ip->i_flush));
2895 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2896 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2897 
2898 	iip = ip->i_itemp;
2899 	mp = ip->i_mount;
2900 
2901 	/* set *dip = inode's place in the buffer */
2902 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2903 
2904 	/*
2905 	 * Clear i_update_core before copying out the data.
2906 	 * This is for coordination with our timestamp updates
2907 	 * that don't hold the inode lock. They will always
2908 	 * update the timestamps BEFORE setting i_update_core,
2909 	 * so if we clear i_update_core after they set it we
2910 	 * are guaranteed to see their updates to the timestamps.
2911 	 * I believe that this depends on strongly ordered memory
2912 	 * semantics, but we have that.  We use the SYNCHRONIZE
2913 	 * macro to make sure that the compiler does not reorder
2914 	 * the i_update_core access below the data copy below.
2915 	 */
2916 	ip->i_update_core = 0;
2917 	SYNCHRONIZE();
2918 
2919 	/*
2920 	 * Make sure to get the latest timestamps from the Linux inode.
2921 	 */
2922 	xfs_synchronize_times(ip);
2923 
2924 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2925 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2926 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2927 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2928 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2929 		goto corrupt_out;
2930 	}
2931 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2932 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2933 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2934 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2935 			ip->i_ino, ip, ip->i_d.di_magic);
2936 		goto corrupt_out;
2937 	}
2938 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2939 		if (XFS_TEST_ERROR(
2940 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2941 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2942 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2943 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2944 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2945 				ip->i_ino, ip);
2946 			goto corrupt_out;
2947 		}
2948 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2949 		if (XFS_TEST_ERROR(
2950 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2951 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2952 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2953 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2954 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2955 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2956 				ip->i_ino, ip);
2957 			goto corrupt_out;
2958 		}
2959 	}
2960 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2961 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2962 				XFS_RANDOM_IFLUSH_5)) {
2963 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2964 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2965 			ip->i_ino,
2966 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2967 			ip->i_d.di_nblocks,
2968 			ip);
2969 		goto corrupt_out;
2970 	}
2971 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2972 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2973 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2974 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2975 			ip->i_ino, ip->i_d.di_forkoff, ip);
2976 		goto corrupt_out;
2977 	}
2978 	/*
2979 	 * bump the flush iteration count, used to detect flushes which
2980 	 * postdate a log record during recovery.
2981 	 */
2982 
2983 	ip->i_d.di_flushiter++;
2984 
2985 	/*
2986 	 * Copy the dirty parts of the inode into the on-disk
2987 	 * inode.  We always copy out the core of the inode,
2988 	 * because if the inode is dirty at all the core must
2989 	 * be.
2990 	 */
2991 	xfs_dinode_to_disk(dip, &ip->i_d);
2992 
2993 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2994 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2995 		ip->i_d.di_flushiter = 0;
2996 
2997 	/*
2998 	 * If this is really an old format inode and the superblock version
2999 	 * has not been updated to support only new format inodes, then
3000 	 * convert back to the old inode format.  If the superblock version
3001 	 * has been updated, then make the conversion permanent.
3002 	 */
3003 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3004 	if (ip->i_d.di_version == 1) {
3005 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3006 			/*
3007 			 * Convert it back.
3008 			 */
3009 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3010 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3011 		} else {
3012 			/*
3013 			 * The superblock version has already been bumped,
3014 			 * so just make the conversion to the new inode
3015 			 * format permanent.
3016 			 */
3017 			ip->i_d.di_version = 2;
3018 			dip->di_version = 2;
3019 			ip->i_d.di_onlink = 0;
3020 			dip->di_onlink = 0;
3021 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3022 			memset(&(dip->di_pad[0]), 0,
3023 			      sizeof(dip->di_pad));
3024 			ASSERT(ip->i_d.di_projid == 0);
3025 		}
3026 	}
3027 
3028 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3029 	if (XFS_IFORK_Q(ip))
3030 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3031 	xfs_inobp_check(mp, bp);
3032 
3033 	/*
3034 	 * We've recorded everything logged in the inode, so we'd
3035 	 * like to clear the ilf_fields bits so we don't log and
3036 	 * flush things unnecessarily.  However, we can't stop
3037 	 * logging all this information until the data we've copied
3038 	 * into the disk buffer is written to disk.  If we did we might
3039 	 * overwrite the copy of the inode in the log with all the
3040 	 * data after re-logging only part of it, and in the face of
3041 	 * a crash we wouldn't have all the data we need to recover.
3042 	 *
3043 	 * What we do is move the bits to the ili_last_fields field.
3044 	 * When logging the inode, these bits are moved back to the
3045 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3046 	 * clear ili_last_fields, since we know that the information
3047 	 * those bits represent is permanently on disk.  As long as
3048 	 * the flush completes before the inode is logged again, then
3049 	 * both ilf_fields and ili_last_fields will be cleared.
3050 	 *
3051 	 * We can play with the ilf_fields bits here, because the inode
3052 	 * lock must be held exclusively in order to set bits there
3053 	 * and the flush lock protects the ili_last_fields bits.
3054 	 * Set ili_logged so the flush done
3055 	 * routine can tell whether or not to look in the AIL.
3056 	 * Also, store the current LSN of the inode so that we can tell
3057 	 * whether the item has moved in the AIL from xfs_iflush_done().
3058 	 * In order to read the lsn we need the AIL lock, because
3059 	 * it is a 64 bit value that cannot be read atomically.
3060 	 */
3061 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3062 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3063 		iip->ili_format.ilf_fields = 0;
3064 		iip->ili_logged = 1;
3065 
3066 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3067 					&iip->ili_item.li_lsn);
3068 
3069 		/*
3070 		 * Attach the function xfs_iflush_done to the inode's
3071 		 * buffer.  This will remove the inode from the AIL
3072 		 * and unlock the inode's flush lock when the inode is
3073 		 * completely written to disk.
3074 		 */
3075 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3076 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3077 
3078 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3079 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3080 	} else {
3081 		/*
3082 		 * We're flushing an inode which is not in the AIL and has
3083 		 * not been logged but has i_update_core set.  For this
3084 		 * case we can use a B_DELWRI flush and immediately drop
3085 		 * the inode flush lock because we can avoid the whole
3086 		 * AIL state thing.  It's OK to drop the flush lock now,
3087 		 * because we've already locked the buffer and to do anything
3088 		 * you really need both.
3089 		 */
3090 		if (iip != NULL) {
3091 			ASSERT(iip->ili_logged == 0);
3092 			ASSERT(iip->ili_last_fields == 0);
3093 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3094 		}
3095 		xfs_ifunlock(ip);
3096 	}
3097 
3098 	return 0;
3099 
3100 corrupt_out:
3101 	return XFS_ERROR(EFSCORRUPTED);
3102 }
3103 
3104 /*
3105  * Return a pointer to the extent record at file index idx.
3106  */
3107 xfs_bmbt_rec_host_t *
3108 xfs_iext_get_ext(
3109 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3110 	xfs_extnum_t	idx)		/* index of target extent */
3111 {
3112 	ASSERT(idx >= 0);
3113 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3114 		return ifp->if_u1.if_ext_irec->er_extbuf;
3115 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3116 		xfs_ext_irec_t	*erp;		/* irec pointer */
3117 		int		erp_idx = 0;	/* irec index */
3118 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3119 
3120 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3121 		return &erp->er_extbuf[page_idx];
3122 	} else if (ifp->if_bytes) {
3123 		return &ifp->if_u1.if_extents[idx];
3124 	} else {
3125 		return NULL;
3126 	}
3127 }
3128 
3129 /*
3130  * Insert new item(s) into the extent records for incore inode
3131  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3132  */
3133 void
3134 xfs_iext_insert(
3135 	xfs_inode_t	*ip,		/* incore inode pointer */
3136 	xfs_extnum_t	idx,		/* starting index of new items */
3137 	xfs_extnum_t	count,		/* number of inserted items */
3138 	xfs_bmbt_irec_t	*new,		/* items to insert */
3139 	int		state)		/* type of extent conversion */
3140 {
3141 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3142 	xfs_extnum_t	i;		/* extent record index */
3143 
3144 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3145 
3146 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3147 	xfs_iext_add(ifp, idx, count);
3148 	for (i = idx; i < idx + count; i++, new++)
3149 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3150 }
3151 
3152 /*
3153  * This is called when the amount of space required for incore file
3154  * extents needs to be increased. The ext_diff parameter stores the
3155  * number of new extents being added and the idx parameter contains
3156  * the extent index where the new extents will be added. If the new
3157  * extents are being appended, then we just need to (re)allocate and
3158  * initialize the space. Otherwise, if the new extents are being
3159  * inserted into the middle of the existing entries, a bit more work
3160  * is required to make room for the new extents to be inserted. The
3161  * caller is responsible for filling in the new extent entries upon
3162  * return.
3163  */
3164 void
3165 xfs_iext_add(
3166 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3167 	xfs_extnum_t	idx,		/* index to begin adding exts */
3168 	int		ext_diff)	/* number of extents to add */
3169 {
3170 	int		byte_diff;	/* new bytes being added */
3171 	int		new_size;	/* size of extents after adding */
3172 	xfs_extnum_t	nextents;	/* number of extents in file */
3173 
3174 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3175 	ASSERT((idx >= 0) && (idx <= nextents));
3176 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3177 	new_size = ifp->if_bytes + byte_diff;
3178 	/*
3179 	 * If the new number of extents (nextents + ext_diff)
3180 	 * fits inside the inode, then continue to use the inline
3181 	 * extent buffer.
3182 	 */
3183 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3184 		if (idx < nextents) {
3185 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3186 				&ifp->if_u2.if_inline_ext[idx],
3187 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3188 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3189 		}
3190 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3191 		ifp->if_real_bytes = 0;
3192 		ifp->if_lastex = nextents + ext_diff;
3193 	}
3194 	/*
3195 	 * Otherwise use a linear (direct) extent list.
3196 	 * If the extents are currently inside the inode,
3197 	 * xfs_iext_realloc_direct will switch us from
3198 	 * inline to direct extent allocation mode.
3199 	 */
3200 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3201 		xfs_iext_realloc_direct(ifp, new_size);
3202 		if (idx < nextents) {
3203 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3204 				&ifp->if_u1.if_extents[idx],
3205 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3206 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3207 		}
3208 	}
3209 	/* Indirection array */
3210 	else {
3211 		xfs_ext_irec_t	*erp;
3212 		int		erp_idx = 0;
3213 		int		page_idx = idx;
3214 
3215 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3216 		if (ifp->if_flags & XFS_IFEXTIREC) {
3217 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3218 		} else {
3219 			xfs_iext_irec_init(ifp);
3220 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3221 			erp = ifp->if_u1.if_ext_irec;
3222 		}
3223 		/* Extents fit in target extent page */
3224 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3225 			if (page_idx < erp->er_extcount) {
3226 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3227 					&erp->er_extbuf[page_idx],
3228 					(erp->er_extcount - page_idx) *
3229 					sizeof(xfs_bmbt_rec_t));
3230 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3231 			}
3232 			erp->er_extcount += ext_diff;
3233 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3234 		}
3235 		/* Insert a new extent page */
3236 		else if (erp) {
3237 			xfs_iext_add_indirect_multi(ifp,
3238 				erp_idx, page_idx, ext_diff);
3239 		}
3240 		/*
3241 		 * If extent(s) are being appended to the last page in
3242 		 * the indirection array and the new extent(s) don't fit
3243 		 * in the page, then erp is NULL and erp_idx is set to
3244 		 * the next index needed in the indirection array.
3245 		 */
3246 		else {
3247 			int	count = ext_diff;
3248 
3249 			while (count) {
3250 				erp = xfs_iext_irec_new(ifp, erp_idx);
3251 				erp->er_extcount = count;
3252 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3253 				if (count) {
3254 					erp_idx++;
3255 				}
3256 			}
3257 		}
3258 	}
3259 	ifp->if_bytes = new_size;
3260 }
3261 
3262 /*
3263  * This is called when incore extents are being added to the indirection
3264  * array and the new extents do not fit in the target extent list. The
3265  * erp_idx parameter contains the irec index for the target extent list
3266  * in the indirection array, and the idx parameter contains the extent
3267  * index within the list. The number of extents being added is stored
3268  * in the count parameter.
3269  *
3270  *    |-------|   |-------|
3271  *    |       |   |       |    idx - number of extents before idx
3272  *    |  idx  |   | count |
3273  *    |       |   |       |    count - number of extents being inserted at idx
3274  *    |-------|   |-------|
3275  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3276  *    |-------|   |-------|
3277  */
3278 void
3279 xfs_iext_add_indirect_multi(
3280 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3281 	int		erp_idx,		/* target extent irec index */
3282 	xfs_extnum_t	idx,			/* index within target list */
3283 	int		count)			/* new extents being added */
3284 {
3285 	int		byte_diff;		/* new bytes being added */
3286 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3287 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3288 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3289 	xfs_extnum_t	nex2;			/* extents after idx + count */
3290 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3291 	int		nlists;			/* number of irec's (lists) */
3292 
3293 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3294 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3295 	nex2 = erp->er_extcount - idx;
3296 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3297 
3298 	/*
3299 	 * Save second part of target extent list
3300 	 * (all extents past */
3301 	if (nex2) {
3302 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3303 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3304 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3305 		erp->er_extcount -= nex2;
3306 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3307 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3308 	}
3309 
3310 	/*
3311 	 * Add the new extents to the end of the target
3312 	 * list, then allocate new irec record(s) and
3313 	 * extent buffer(s) as needed to store the rest
3314 	 * of the new extents.
3315 	 */
3316 	ext_cnt = count;
3317 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3318 	if (ext_diff) {
3319 		erp->er_extcount += ext_diff;
3320 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3321 		ext_cnt -= ext_diff;
3322 	}
3323 	while (ext_cnt) {
3324 		erp_idx++;
3325 		erp = xfs_iext_irec_new(ifp, erp_idx);
3326 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3327 		erp->er_extcount = ext_diff;
3328 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3329 		ext_cnt -= ext_diff;
3330 	}
3331 
3332 	/* Add nex2 extents back to indirection array */
3333 	if (nex2) {
3334 		xfs_extnum_t	ext_avail;
3335 		int		i;
3336 
3337 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3338 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3339 		i = 0;
3340 		/*
3341 		 * If nex2 extents fit in the current page, append
3342 		 * nex2_ep after the new extents.
3343 		 */
3344 		if (nex2 <= ext_avail) {
3345 			i = erp->er_extcount;
3346 		}
3347 		/*
3348 		 * Otherwise, check if space is available in the
3349 		 * next page.
3350 		 */
3351 		else if ((erp_idx < nlists - 1) &&
3352 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3353 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3354 			erp_idx++;
3355 			erp++;
3356 			/* Create a hole for nex2 extents */
3357 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3358 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3359 		}
3360 		/*
3361 		 * Final choice, create a new extent page for
3362 		 * nex2 extents.
3363 		 */
3364 		else {
3365 			erp_idx++;
3366 			erp = xfs_iext_irec_new(ifp, erp_idx);
3367 		}
3368 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3369 		kmem_free(nex2_ep);
3370 		erp->er_extcount += nex2;
3371 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3372 	}
3373 }
3374 
3375 /*
3376  * This is called when the amount of space required for incore file
3377  * extents needs to be decreased. The ext_diff parameter stores the
3378  * number of extents to be removed and the idx parameter contains
3379  * the extent index where the extents will be removed from.
3380  *
3381  * If the amount of space needed has decreased below the linear
3382  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3383  * extent array.  Otherwise, use kmem_realloc() to adjust the
3384  * size to what is needed.
3385  */
3386 void
3387 xfs_iext_remove(
3388 	xfs_inode_t	*ip,		/* incore inode pointer */
3389 	xfs_extnum_t	idx,		/* index to begin removing exts */
3390 	int		ext_diff,	/* number of extents to remove */
3391 	int		state)		/* type of extent conversion */
3392 {
3393 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3394 	xfs_extnum_t	nextents;	/* number of extents in file */
3395 	int		new_size;	/* size of extents after removal */
3396 
3397 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3398 
3399 	ASSERT(ext_diff > 0);
3400 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3401 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3402 
3403 	if (new_size == 0) {
3404 		xfs_iext_destroy(ifp);
3405 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3406 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3407 	} else if (ifp->if_real_bytes) {
3408 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3409 	} else {
3410 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3411 	}
3412 	ifp->if_bytes = new_size;
3413 }
3414 
3415 /*
3416  * This removes ext_diff extents from the inline buffer, beginning
3417  * at extent index idx.
3418  */
3419 void
3420 xfs_iext_remove_inline(
3421 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3422 	xfs_extnum_t	idx,		/* index to begin removing exts */
3423 	int		ext_diff)	/* number of extents to remove */
3424 {
3425 	int		nextents;	/* number of extents in file */
3426 
3427 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3428 	ASSERT(idx < XFS_INLINE_EXTS);
3429 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3430 	ASSERT(((nextents - ext_diff) > 0) &&
3431 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3432 
3433 	if (idx + ext_diff < nextents) {
3434 		memmove(&ifp->if_u2.if_inline_ext[idx],
3435 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3436 			(nextents - (idx + ext_diff)) *
3437 			 sizeof(xfs_bmbt_rec_t));
3438 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3439 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3440 	} else {
3441 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3442 			ext_diff * sizeof(xfs_bmbt_rec_t));
3443 	}
3444 }
3445 
3446 /*
3447  * This removes ext_diff extents from a linear (direct) extent list,
3448  * beginning at extent index idx. If the extents are being removed
3449  * from the end of the list (ie. truncate) then we just need to re-
3450  * allocate the list to remove the extra space. Otherwise, if the
3451  * extents are being removed from the middle of the existing extent
3452  * entries, then we first need to move the extent records beginning
3453  * at idx + ext_diff up in the list to overwrite the records being
3454  * removed, then remove the extra space via kmem_realloc.
3455  */
3456 void
3457 xfs_iext_remove_direct(
3458 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3459 	xfs_extnum_t	idx,		/* index to begin removing exts */
3460 	int		ext_diff)	/* number of extents to remove */
3461 {
3462 	xfs_extnum_t	nextents;	/* number of extents in file */
3463 	int		new_size;	/* size of extents after removal */
3464 
3465 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3466 	new_size = ifp->if_bytes -
3467 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3468 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3469 
3470 	if (new_size == 0) {
3471 		xfs_iext_destroy(ifp);
3472 		return;
3473 	}
3474 	/* Move extents up in the list (if needed) */
3475 	if (idx + ext_diff < nextents) {
3476 		memmove(&ifp->if_u1.if_extents[idx],
3477 			&ifp->if_u1.if_extents[idx + ext_diff],
3478 			(nextents - (idx + ext_diff)) *
3479 			 sizeof(xfs_bmbt_rec_t));
3480 	}
3481 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3482 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3483 	/*
3484 	 * Reallocate the direct extent list. If the extents
3485 	 * will fit inside the inode then xfs_iext_realloc_direct
3486 	 * will switch from direct to inline extent allocation
3487 	 * mode for us.
3488 	 */
3489 	xfs_iext_realloc_direct(ifp, new_size);
3490 	ifp->if_bytes = new_size;
3491 }
3492 
3493 /*
3494  * This is called when incore extents are being removed from the
3495  * indirection array and the extents being removed span multiple extent
3496  * buffers. The idx parameter contains the file extent index where we
3497  * want to begin removing extents, and the count parameter contains
3498  * how many extents need to be removed.
3499  *
3500  *    |-------|   |-------|
3501  *    | nex1  |   |       |    nex1 - number of extents before idx
3502  *    |-------|   | count |
3503  *    |       |   |       |    count - number of extents being removed at idx
3504  *    | count |   |-------|
3505  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3506  *    |-------|   |-------|
3507  */
3508 void
3509 xfs_iext_remove_indirect(
3510 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3511 	xfs_extnum_t	idx,		/* index to begin removing extents */
3512 	int		count)		/* number of extents to remove */
3513 {
3514 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3515 	int		erp_idx = 0;	/* indirection array index */
3516 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3517 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3518 	xfs_extnum_t	nex1;		/* number of extents before idx */
3519 	xfs_extnum_t	nex2;		/* extents after idx + count */
3520 	int		nlists;		/* entries in indirection array */
3521 	int		page_idx = idx;	/* index in target extent list */
3522 
3523 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3524 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3525 	ASSERT(erp != NULL);
3526 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3527 	nex1 = page_idx;
3528 	ext_cnt = count;
3529 	while (ext_cnt) {
3530 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3531 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3532 		/*
3533 		 * Check for deletion of entire list;
3534 		 * xfs_iext_irec_remove() updates extent offsets.
3535 		 */
3536 		if (ext_diff == erp->er_extcount) {
3537 			xfs_iext_irec_remove(ifp, erp_idx);
3538 			ext_cnt -= ext_diff;
3539 			nex1 = 0;
3540 			if (ext_cnt) {
3541 				ASSERT(erp_idx < ifp->if_real_bytes /
3542 					XFS_IEXT_BUFSZ);
3543 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3544 				nex1 = 0;
3545 				continue;
3546 			} else {
3547 				break;
3548 			}
3549 		}
3550 		/* Move extents up (if needed) */
3551 		if (nex2) {
3552 			memmove(&erp->er_extbuf[nex1],
3553 				&erp->er_extbuf[nex1 + ext_diff],
3554 				nex2 * sizeof(xfs_bmbt_rec_t));
3555 		}
3556 		/* Zero out rest of page */
3557 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3558 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3559 		/* Update remaining counters */
3560 		erp->er_extcount -= ext_diff;
3561 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3562 		ext_cnt -= ext_diff;
3563 		nex1 = 0;
3564 		erp_idx++;
3565 		erp++;
3566 	}
3567 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3568 	xfs_iext_irec_compact(ifp);
3569 }
3570 
3571 /*
3572  * Create, destroy, or resize a linear (direct) block of extents.
3573  */
3574 void
3575 xfs_iext_realloc_direct(
3576 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3577 	int		new_size)	/* new size of extents */
3578 {
3579 	int		rnew_size;	/* real new size of extents */
3580 
3581 	rnew_size = new_size;
3582 
3583 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3584 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3585 		 (new_size != ifp->if_real_bytes)));
3586 
3587 	/* Free extent records */
3588 	if (new_size == 0) {
3589 		xfs_iext_destroy(ifp);
3590 	}
3591 	/* Resize direct extent list and zero any new bytes */
3592 	else if (ifp->if_real_bytes) {
3593 		/* Check if extents will fit inside the inode */
3594 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3595 			xfs_iext_direct_to_inline(ifp, new_size /
3596 				(uint)sizeof(xfs_bmbt_rec_t));
3597 			ifp->if_bytes = new_size;
3598 			return;
3599 		}
3600 		if (!is_power_of_2(new_size)){
3601 			rnew_size = roundup_pow_of_two(new_size);
3602 		}
3603 		if (rnew_size != ifp->if_real_bytes) {
3604 			ifp->if_u1.if_extents =
3605 				kmem_realloc(ifp->if_u1.if_extents,
3606 						rnew_size,
3607 						ifp->if_real_bytes, KM_NOFS);
3608 		}
3609 		if (rnew_size > ifp->if_real_bytes) {
3610 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3611 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3612 				rnew_size - ifp->if_real_bytes);
3613 		}
3614 	}
3615 	/*
3616 	 * Switch from the inline extent buffer to a direct
3617 	 * extent list. Be sure to include the inline extent
3618 	 * bytes in new_size.
3619 	 */
3620 	else {
3621 		new_size += ifp->if_bytes;
3622 		if (!is_power_of_2(new_size)) {
3623 			rnew_size = roundup_pow_of_two(new_size);
3624 		}
3625 		xfs_iext_inline_to_direct(ifp, rnew_size);
3626 	}
3627 	ifp->if_real_bytes = rnew_size;
3628 	ifp->if_bytes = new_size;
3629 }
3630 
3631 /*
3632  * Switch from linear (direct) extent records to inline buffer.
3633  */
3634 void
3635 xfs_iext_direct_to_inline(
3636 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3637 	xfs_extnum_t	nextents)	/* number of extents in file */
3638 {
3639 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3640 	ASSERT(nextents <= XFS_INLINE_EXTS);
3641 	/*
3642 	 * The inline buffer was zeroed when we switched
3643 	 * from inline to direct extent allocation mode,
3644 	 * so we don't need to clear it here.
3645 	 */
3646 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3647 		nextents * sizeof(xfs_bmbt_rec_t));
3648 	kmem_free(ifp->if_u1.if_extents);
3649 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3650 	ifp->if_real_bytes = 0;
3651 }
3652 
3653 /*
3654  * Switch from inline buffer to linear (direct) extent records.
3655  * new_size should already be rounded up to the next power of 2
3656  * by the caller (when appropriate), so use new_size as it is.
3657  * However, since new_size may be rounded up, we can't update
3658  * if_bytes here. It is the caller's responsibility to update
3659  * if_bytes upon return.
3660  */
3661 void
3662 xfs_iext_inline_to_direct(
3663 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3664 	int		new_size)	/* number of extents in file */
3665 {
3666 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3667 	memset(ifp->if_u1.if_extents, 0, new_size);
3668 	if (ifp->if_bytes) {
3669 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3670 			ifp->if_bytes);
3671 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3672 			sizeof(xfs_bmbt_rec_t));
3673 	}
3674 	ifp->if_real_bytes = new_size;
3675 }
3676 
3677 /*
3678  * Resize an extent indirection array to new_size bytes.
3679  */
3680 STATIC void
3681 xfs_iext_realloc_indirect(
3682 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3683 	int		new_size)	/* new indirection array size */
3684 {
3685 	int		nlists;		/* number of irec's (ex lists) */
3686 	int		size;		/* current indirection array size */
3687 
3688 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3689 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3690 	size = nlists * sizeof(xfs_ext_irec_t);
3691 	ASSERT(ifp->if_real_bytes);
3692 	ASSERT((new_size >= 0) && (new_size != size));
3693 	if (new_size == 0) {
3694 		xfs_iext_destroy(ifp);
3695 	} else {
3696 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3697 			kmem_realloc(ifp->if_u1.if_ext_irec,
3698 				new_size, size, KM_NOFS);
3699 	}
3700 }
3701 
3702 /*
3703  * Switch from indirection array to linear (direct) extent allocations.
3704  */
3705 STATIC void
3706 xfs_iext_indirect_to_direct(
3707 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3708 {
3709 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3710 	xfs_extnum_t	nextents;	/* number of extents in file */
3711 	int		size;		/* size of file extents */
3712 
3713 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3714 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3715 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3716 	size = nextents * sizeof(xfs_bmbt_rec_t);
3717 
3718 	xfs_iext_irec_compact_pages(ifp);
3719 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3720 
3721 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3722 	kmem_free(ifp->if_u1.if_ext_irec);
3723 	ifp->if_flags &= ~XFS_IFEXTIREC;
3724 	ifp->if_u1.if_extents = ep;
3725 	ifp->if_bytes = size;
3726 	if (nextents < XFS_LINEAR_EXTS) {
3727 		xfs_iext_realloc_direct(ifp, size);
3728 	}
3729 }
3730 
3731 /*
3732  * Free incore file extents.
3733  */
3734 void
3735 xfs_iext_destroy(
3736 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3737 {
3738 	if (ifp->if_flags & XFS_IFEXTIREC) {
3739 		int	erp_idx;
3740 		int	nlists;
3741 
3742 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3743 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3744 			xfs_iext_irec_remove(ifp, erp_idx);
3745 		}
3746 		ifp->if_flags &= ~XFS_IFEXTIREC;
3747 	} else if (ifp->if_real_bytes) {
3748 		kmem_free(ifp->if_u1.if_extents);
3749 	} else if (ifp->if_bytes) {
3750 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3751 			sizeof(xfs_bmbt_rec_t));
3752 	}
3753 	ifp->if_u1.if_extents = NULL;
3754 	ifp->if_real_bytes = 0;
3755 	ifp->if_bytes = 0;
3756 }
3757 
3758 /*
3759  * Return a pointer to the extent record for file system block bno.
3760  */
3761 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3762 xfs_iext_bno_to_ext(
3763 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3764 	xfs_fileoff_t	bno,		/* block number to search for */
3765 	xfs_extnum_t	*idxp)		/* index of target extent */
3766 {
3767 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3768 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3769 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3770 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3771 	int		high;		/* upper boundary in search */
3772 	xfs_extnum_t	idx = 0;	/* index of target extent */
3773 	int		low;		/* lower boundary in search */
3774 	xfs_extnum_t	nextents;	/* number of file extents */
3775 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3776 
3777 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3778 	if (nextents == 0) {
3779 		*idxp = 0;
3780 		return NULL;
3781 	}
3782 	low = 0;
3783 	if (ifp->if_flags & XFS_IFEXTIREC) {
3784 		/* Find target extent list */
3785 		int	erp_idx = 0;
3786 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3787 		base = erp->er_extbuf;
3788 		high = erp->er_extcount - 1;
3789 	} else {
3790 		base = ifp->if_u1.if_extents;
3791 		high = nextents - 1;
3792 	}
3793 	/* Binary search extent records */
3794 	while (low <= high) {
3795 		idx = (low + high) >> 1;
3796 		ep = base + idx;
3797 		startoff = xfs_bmbt_get_startoff(ep);
3798 		blockcount = xfs_bmbt_get_blockcount(ep);
3799 		if (bno < startoff) {
3800 			high = idx - 1;
3801 		} else if (bno >= startoff + blockcount) {
3802 			low = idx + 1;
3803 		} else {
3804 			/* Convert back to file-based extent index */
3805 			if (ifp->if_flags & XFS_IFEXTIREC) {
3806 				idx += erp->er_extoff;
3807 			}
3808 			*idxp = idx;
3809 			return ep;
3810 		}
3811 	}
3812 	/* Convert back to file-based extent index */
3813 	if (ifp->if_flags & XFS_IFEXTIREC) {
3814 		idx += erp->er_extoff;
3815 	}
3816 	if (bno >= startoff + blockcount) {
3817 		if (++idx == nextents) {
3818 			ep = NULL;
3819 		} else {
3820 			ep = xfs_iext_get_ext(ifp, idx);
3821 		}
3822 	}
3823 	*idxp = idx;
3824 	return ep;
3825 }
3826 
3827 /*
3828  * Return a pointer to the indirection array entry containing the
3829  * extent record for filesystem block bno. Store the index of the
3830  * target irec in *erp_idxp.
3831  */
3832 xfs_ext_irec_t *			/* pointer to found extent record */
3833 xfs_iext_bno_to_irec(
3834 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3835 	xfs_fileoff_t	bno,		/* block number to search for */
3836 	int		*erp_idxp)	/* irec index of target ext list */
3837 {
3838 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3839 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3840 	int		erp_idx;	/* indirection array index */
3841 	int		nlists;		/* number of extent irec's (lists) */
3842 	int		high;		/* binary search upper limit */
3843 	int		low;		/* binary search lower limit */
3844 
3845 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3846 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3847 	erp_idx = 0;
3848 	low = 0;
3849 	high = nlists - 1;
3850 	while (low <= high) {
3851 		erp_idx = (low + high) >> 1;
3852 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3853 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3854 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3855 			high = erp_idx - 1;
3856 		} else if (erp_next && bno >=
3857 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3858 			low = erp_idx + 1;
3859 		} else {
3860 			break;
3861 		}
3862 	}
3863 	*erp_idxp = erp_idx;
3864 	return erp;
3865 }
3866 
3867 /*
3868  * Return a pointer to the indirection array entry containing the
3869  * extent record at file extent index *idxp. Store the index of the
3870  * target irec in *erp_idxp and store the page index of the target
3871  * extent record in *idxp.
3872  */
3873 xfs_ext_irec_t *
3874 xfs_iext_idx_to_irec(
3875 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3876 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3877 	int		*erp_idxp,	/* pointer to target irec */
3878 	int		realloc)	/* new bytes were just added */
3879 {
3880 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3881 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3882 	int		erp_idx;	/* indirection array index */
3883 	int		nlists;		/* number of irec's (ex lists) */
3884 	int		high;		/* binary search upper limit */
3885 	int		low;		/* binary search lower limit */
3886 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3887 
3888 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3889 	ASSERT(page_idx >= 0 && page_idx <=
3890 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3891 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3892 	erp_idx = 0;
3893 	low = 0;
3894 	high = nlists - 1;
3895 
3896 	/* Binary search extent irec's */
3897 	while (low <= high) {
3898 		erp_idx = (low + high) >> 1;
3899 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3900 		prev = erp_idx > 0 ? erp - 1 : NULL;
3901 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3902 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3903 			high = erp_idx - 1;
3904 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3905 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3906 			    !realloc)) {
3907 			low = erp_idx + 1;
3908 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3909 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3910 			ASSERT(realloc);
3911 			page_idx = 0;
3912 			erp_idx++;
3913 			erp = erp_idx < nlists ? erp + 1 : NULL;
3914 			break;
3915 		} else {
3916 			page_idx -= erp->er_extoff;
3917 			break;
3918 		}
3919 	}
3920 	*idxp = page_idx;
3921 	*erp_idxp = erp_idx;
3922 	return(erp);
3923 }
3924 
3925 /*
3926  * Allocate and initialize an indirection array once the space needed
3927  * for incore extents increases above XFS_IEXT_BUFSZ.
3928  */
3929 void
3930 xfs_iext_irec_init(
3931 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3932 {
3933 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3934 	xfs_extnum_t	nextents;	/* number of extents in file */
3935 
3936 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3937 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3938 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3939 
3940 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3941 
3942 	if (nextents == 0) {
3943 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3944 	} else if (!ifp->if_real_bytes) {
3945 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3946 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3947 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3948 	}
3949 	erp->er_extbuf = ifp->if_u1.if_extents;
3950 	erp->er_extcount = nextents;
3951 	erp->er_extoff = 0;
3952 
3953 	ifp->if_flags |= XFS_IFEXTIREC;
3954 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3955 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3956 	ifp->if_u1.if_ext_irec = erp;
3957 
3958 	return;
3959 }
3960 
3961 /*
3962  * Allocate and initialize a new entry in the indirection array.
3963  */
3964 xfs_ext_irec_t *
3965 xfs_iext_irec_new(
3966 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3967 	int		erp_idx)	/* index for new irec */
3968 {
3969 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3970 	int		i;		/* loop counter */
3971 	int		nlists;		/* number of irec's (ex lists) */
3972 
3973 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3974 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3975 
3976 	/* Resize indirection array */
3977 	xfs_iext_realloc_indirect(ifp, ++nlists *
3978 				  sizeof(xfs_ext_irec_t));
3979 	/*
3980 	 * Move records down in the array so the
3981 	 * new page can use erp_idx.
3982 	 */
3983 	erp = ifp->if_u1.if_ext_irec;
3984 	for (i = nlists - 1; i > erp_idx; i--) {
3985 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3986 	}
3987 	ASSERT(i == erp_idx);
3988 
3989 	/* Initialize new extent record */
3990 	erp = ifp->if_u1.if_ext_irec;
3991 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3992 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3993 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3994 	erp[erp_idx].er_extcount = 0;
3995 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3996 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3997 	return (&erp[erp_idx]);
3998 }
3999 
4000 /*
4001  * Remove a record from the indirection array.
4002  */
4003 void
4004 xfs_iext_irec_remove(
4005 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4006 	int		erp_idx)	/* irec index to remove */
4007 {
4008 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4009 	int		i;		/* loop counter */
4010 	int		nlists;		/* number of irec's (ex lists) */
4011 
4012 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4013 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4014 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4015 	if (erp->er_extbuf) {
4016 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4017 			-erp->er_extcount);
4018 		kmem_free(erp->er_extbuf);
4019 	}
4020 	/* Compact extent records */
4021 	erp = ifp->if_u1.if_ext_irec;
4022 	for (i = erp_idx; i < nlists - 1; i++) {
4023 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4024 	}
4025 	/*
4026 	 * Manually free the last extent record from the indirection
4027 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4028 	 * of zero would result in a call to xfs_iext_destroy() which
4029 	 * would in turn call this function again, creating a nasty
4030 	 * infinite loop.
4031 	 */
4032 	if (--nlists) {
4033 		xfs_iext_realloc_indirect(ifp,
4034 			nlists * sizeof(xfs_ext_irec_t));
4035 	} else {
4036 		kmem_free(ifp->if_u1.if_ext_irec);
4037 	}
4038 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4039 }
4040 
4041 /*
4042  * This is called to clean up large amounts of unused memory allocated
4043  * by the indirection array.  Before compacting anything though, verify
4044  * that the indirection array is still needed and switch back to the
4045  * linear extent list (or even the inline buffer) if possible.  The
4046  * compaction policy is as follows:
4047  *
4048  *    Full Compaction: Extents fit into a single page (or inline buffer)
4049  * Partial Compaction: Extents occupy less than 50% of allocated space
4050  *      No Compaction: Extents occupy at least 50% of allocated space
4051  */
4052 void
4053 xfs_iext_irec_compact(
4054 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4055 {
4056 	xfs_extnum_t	nextents;	/* number of extents in file */
4057 	int		nlists;		/* number of irec's (ex lists) */
4058 
4059 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4060 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4061 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4062 
4063 	if (nextents == 0) {
4064 		xfs_iext_destroy(ifp);
4065 	} else if (nextents <= XFS_INLINE_EXTS) {
4066 		xfs_iext_indirect_to_direct(ifp);
4067 		xfs_iext_direct_to_inline(ifp, nextents);
4068 	} else if (nextents <= XFS_LINEAR_EXTS) {
4069 		xfs_iext_indirect_to_direct(ifp);
4070 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4071 		xfs_iext_irec_compact_pages(ifp);
4072 	}
4073 }
4074 
4075 /*
4076  * Combine extents from neighboring extent pages.
4077  */
4078 void
4079 xfs_iext_irec_compact_pages(
4080 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4081 {
4082 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4083 	int		erp_idx = 0;	/* indirection array index */
4084 	int		nlists;		/* number of irec's (ex lists) */
4085 
4086 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4087 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4088 	while (erp_idx < nlists - 1) {
4089 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4090 		erp_next = erp + 1;
4091 		if (erp_next->er_extcount <=
4092 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4093 			memcpy(&erp->er_extbuf[erp->er_extcount],
4094 				erp_next->er_extbuf, erp_next->er_extcount *
4095 				sizeof(xfs_bmbt_rec_t));
4096 			erp->er_extcount += erp_next->er_extcount;
4097 			/*
4098 			 * Free page before removing extent record
4099 			 * so er_extoffs don't get modified in
4100 			 * xfs_iext_irec_remove.
4101 			 */
4102 			kmem_free(erp_next->er_extbuf);
4103 			erp_next->er_extbuf = NULL;
4104 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4105 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4106 		} else {
4107 			erp_idx++;
4108 		}
4109 	}
4110 }
4111 
4112 /*
4113  * This is called to update the er_extoff field in the indirection
4114  * array when extents have been added or removed from one of the
4115  * extent lists. erp_idx contains the irec index to begin updating
4116  * at and ext_diff contains the number of extents that were added
4117  * or removed.
4118  */
4119 void
4120 xfs_iext_irec_update_extoffs(
4121 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4122 	int		erp_idx,	/* irec index to update */
4123 	int		ext_diff)	/* number of new extents */
4124 {
4125 	int		i;		/* loop counter */
4126 	int		nlists;		/* number of irec's (ex lists */
4127 
4128 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4129 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4130 	for (i = erp_idx; i < nlists; i++) {
4131 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4132 	}
4133 }
4134