xref: /openbmc/linux/fs/xfs/xfs_inode.c (revision 64c70b1c)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 
52 
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
56 
57 /*
58  * Used in xfs_itruncate().  This is the maximum number of extents
59  * freed from a file in a single transaction.
60  */
61 #define	XFS_ITRUNC_MAX_EXTENTS	2
62 
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
67 
68 
69 #ifdef DEBUG
70 /*
71  * Make sure that the extents in the given memory buffer
72  * are valid.
73  */
74 STATIC void
75 xfs_validate_extents(
76 	xfs_ifork_t		*ifp,
77 	int			nrecs,
78 	int			disk,
79 	xfs_exntfmt_t		fmt)
80 {
81 	xfs_bmbt_rec_t		*ep;
82 	xfs_bmbt_irec_t		irec;
83 	xfs_bmbt_rec_t		rec;
84 	int			i;
85 
86 	for (i = 0; i < nrecs; i++) {
87 		ep = xfs_iext_get_ext(ifp, i);
88 		rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
89 		rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
90 		if (disk)
91 			xfs_bmbt_disk_get_all(&rec, &irec);
92 		else
93 			xfs_bmbt_get_all(&rec, &irec);
94 		if (fmt == XFS_EXTFMT_NOSTATE)
95 			ASSERT(irec.br_state == XFS_EXT_NORM);
96 	}
97 }
98 #else /* DEBUG */
99 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
100 #endif /* DEBUG */
101 
102 /*
103  * Check that none of the inode's in the buffer have a next
104  * unlinked field of 0.
105  */
106 #if defined(DEBUG)
107 void
108 xfs_inobp_check(
109 	xfs_mount_t	*mp,
110 	xfs_buf_t	*bp)
111 {
112 	int		i;
113 	int		j;
114 	xfs_dinode_t	*dip;
115 
116 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
117 
118 	for (i = 0; i < j; i++) {
119 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
120 					i * mp->m_sb.sb_inodesize);
121 		if (!dip->di_next_unlinked)  {
122 			xfs_fs_cmn_err(CE_ALERT, mp,
123 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
124 				bp);
125 			ASSERT(dip->di_next_unlinked);
126 		}
127 	}
128 }
129 #endif
130 
131 /*
132  * This routine is called to map an inode number within a file
133  * system to the buffer containing the on-disk version of the
134  * inode.  It returns a pointer to the buffer containing the
135  * on-disk inode in the bpp parameter, and in the dip parameter
136  * it returns a pointer to the on-disk inode within that buffer.
137  *
138  * If a non-zero error is returned, then the contents of bpp and
139  * dipp are undefined.
140  *
141  * Use xfs_imap() to determine the size and location of the
142  * buffer to read from disk.
143  */
144 STATIC int
145 xfs_inotobp(
146 	xfs_mount_t	*mp,
147 	xfs_trans_t	*tp,
148 	xfs_ino_t	ino,
149 	xfs_dinode_t	**dipp,
150 	xfs_buf_t	**bpp,
151 	int		*offset)
152 {
153 	int		di_ok;
154 	xfs_imap_t	imap;
155 	xfs_buf_t	*bp;
156 	int		error;
157 	xfs_dinode_t	*dip;
158 
159 	/*
160 	 * Call the space management code to find the location of the
161 	 * inode on disk.
162 	 */
163 	imap.im_blkno = 0;
164 	error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
165 	if (error != 0) {
166 		cmn_err(CE_WARN,
167 	"xfs_inotobp: xfs_imap()  returned an "
168 	"error %d on %s.  Returning error.", error, mp->m_fsname);
169 		return error;
170 	}
171 
172 	/*
173 	 * If the inode number maps to a block outside the bounds of the
174 	 * file system then return NULL rather than calling read_buf
175 	 * and panicing when we get an error from the driver.
176 	 */
177 	if ((imap.im_blkno + imap.im_len) >
178 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
179 		cmn_err(CE_WARN,
180 	"xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
181 	"of the file system %s.  Returning EINVAL.",
182 			(unsigned long long)imap.im_blkno,
183 			imap.im_len, mp->m_fsname);
184 		return XFS_ERROR(EINVAL);
185 	}
186 
187 	/*
188 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
189 	 * default to just a read_buf() call.
190 	 */
191 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
192 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
193 
194 	if (error) {
195 		cmn_err(CE_WARN,
196 	"xfs_inotobp: xfs_trans_read_buf()  returned an "
197 	"error %d on %s.  Returning error.", error, mp->m_fsname);
198 		return error;
199 	}
200 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
201 	di_ok =
202 		INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
203 		XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
204 	if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
205 			XFS_RANDOM_ITOBP_INOTOBP))) {
206 		XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
207 		xfs_trans_brelse(tp, bp);
208 		cmn_err(CE_WARN,
209 	"xfs_inotobp: XFS_TEST_ERROR()  returned an "
210 	"error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname);
211 		return XFS_ERROR(EFSCORRUPTED);
212 	}
213 
214 	xfs_inobp_check(mp, bp);
215 
216 	/*
217 	 * Set *dipp to point to the on-disk inode in the buffer.
218 	 */
219 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
220 	*bpp = bp;
221 	*offset = imap.im_boffset;
222 	return 0;
223 }
224 
225 
226 /*
227  * This routine is called to map an inode to the buffer containing
228  * the on-disk version of the inode.  It returns a pointer to the
229  * buffer containing the on-disk inode in the bpp parameter, and in
230  * the dip parameter it returns a pointer to the on-disk inode within
231  * that buffer.
232  *
233  * If a non-zero error is returned, then the contents of bpp and
234  * dipp are undefined.
235  *
236  * If the inode is new and has not yet been initialized, use xfs_imap()
237  * to determine the size and location of the buffer to read from disk.
238  * If the inode has already been mapped to its buffer and read in once,
239  * then use the mapping information stored in the inode rather than
240  * calling xfs_imap().  This allows us to avoid the overhead of looking
241  * at the inode btree for small block file systems (see xfs_dilocate()).
242  * We can tell whether the inode has been mapped in before by comparing
243  * its disk block address to 0.  Only uninitialized inodes will have
244  * 0 for the disk block address.
245  */
246 int
247 xfs_itobp(
248 	xfs_mount_t	*mp,
249 	xfs_trans_t	*tp,
250 	xfs_inode_t	*ip,
251 	xfs_dinode_t	**dipp,
252 	xfs_buf_t	**bpp,
253 	xfs_daddr_t	bno,
254 	uint		imap_flags)
255 {
256 	xfs_imap_t	imap;
257 	xfs_buf_t	*bp;
258 	int		error;
259 	int		i;
260 	int		ni;
261 
262 	if (ip->i_blkno == (xfs_daddr_t)0) {
263 		/*
264 		 * Call the space management code to find the location of the
265 		 * inode on disk.
266 		 */
267 		imap.im_blkno = bno;
268 		if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
269 					XFS_IMAP_LOOKUP | imap_flags)))
270 			return error;
271 
272 		/*
273 		 * If the inode number maps to a block outside the bounds
274 		 * of the file system then return NULL rather than calling
275 		 * read_buf and panicing when we get an error from the
276 		 * driver.
277 		 */
278 		if ((imap.im_blkno + imap.im_len) >
279 		    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
280 #ifdef DEBUG
281 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
282 					"(imap.im_blkno (0x%llx) "
283 					"+ imap.im_len (0x%llx)) > "
284 					" XFS_FSB_TO_BB(mp, "
285 					"mp->m_sb.sb_dblocks) (0x%llx)",
286 					(unsigned long long) imap.im_blkno,
287 					(unsigned long long) imap.im_len,
288 					XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
289 #endif /* DEBUG */
290 			return XFS_ERROR(EINVAL);
291 		}
292 
293 		/*
294 		 * Fill in the fields in the inode that will be used to
295 		 * map the inode to its buffer from now on.
296 		 */
297 		ip->i_blkno = imap.im_blkno;
298 		ip->i_len = imap.im_len;
299 		ip->i_boffset = imap.im_boffset;
300 	} else {
301 		/*
302 		 * We've already mapped the inode once, so just use the
303 		 * mapping that we saved the first time.
304 		 */
305 		imap.im_blkno = ip->i_blkno;
306 		imap.im_len = ip->i_len;
307 		imap.im_boffset = ip->i_boffset;
308 	}
309 	ASSERT(bno == 0 || bno == imap.im_blkno);
310 
311 	/*
312 	 * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will
313 	 * default to just a read_buf() call.
314 	 */
315 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
316 				   (int)imap.im_len, XFS_BUF_LOCK, &bp);
317 	if (error) {
318 #ifdef DEBUG
319 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
320 				"xfs_trans_read_buf() returned error %d, "
321 				"imap.im_blkno 0x%llx, imap.im_len 0x%llx",
322 				error, (unsigned long long) imap.im_blkno,
323 				(unsigned long long) imap.im_len);
324 #endif /* DEBUG */
325 		return error;
326 	}
327 
328 	/*
329 	 * Validate the magic number and version of every inode in the buffer
330 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
331 	 * No validation is done here in userspace (xfs_repair).
332 	 */
333 #if !defined(__KERNEL__)
334 	ni = 0;
335 #elif defined(DEBUG)
336 	ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
337 #else	/* usual case */
338 	ni = 1;
339 #endif
340 
341 	for (i = 0; i < ni; i++) {
342 		int		di_ok;
343 		xfs_dinode_t	*dip;
344 
345 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
346 					(i << mp->m_sb.sb_inodelog));
347 		di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
348 			    XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
349 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
350 						XFS_ERRTAG_ITOBP_INOTOBP,
351 						XFS_RANDOM_ITOBP_INOTOBP))) {
352 			if (imap_flags & XFS_IMAP_BULKSTAT) {
353 				xfs_trans_brelse(tp, bp);
354 				return XFS_ERROR(EINVAL);
355 			}
356 #ifdef DEBUG
357 			cmn_err(CE_ALERT,
358 					"Device %s - bad inode magic/vsn "
359 					"daddr %lld #%d (magic=%x)",
360 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
361 				(unsigned long long)imap.im_blkno, i,
362 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
363 #endif
364 			XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
365 					     mp, dip);
366 			xfs_trans_brelse(tp, bp);
367 			return XFS_ERROR(EFSCORRUPTED);
368 		}
369 	}
370 
371 	xfs_inobp_check(mp, bp);
372 
373 	/*
374 	 * Mark the buffer as an inode buffer now that it looks good
375 	 */
376 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
377 
378 	/*
379 	 * Set *dipp to point to the on-disk inode in the buffer.
380 	 */
381 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 	*bpp = bp;
383 	return 0;
384 }
385 
386 /*
387  * Move inode type and inode format specific information from the
388  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
389  * this means set if_rdev to the proper value.  For files, directories,
390  * and symlinks this means to bring in the in-line data or extent
391  * pointers.  For a file in B-tree format, only the root is immediately
392  * brought in-core.  The rest will be in-lined in if_extents when it
393  * is first referenced (see xfs_iread_extents()).
394  */
395 STATIC int
396 xfs_iformat(
397 	xfs_inode_t		*ip,
398 	xfs_dinode_t		*dip)
399 {
400 	xfs_attr_shortform_t	*atp;
401 	int			size;
402 	int			error;
403 	xfs_fsize_t             di_size;
404 	ip->i_df.if_ext_max =
405 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
406 	error = 0;
407 
408 	if (unlikely(
409 	    INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
410 		INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
411 	    INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
412 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
414 			(unsigned long long)ip->i_ino,
415 			(int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
416 			    + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
417 			(unsigned long long)
418 			INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
419 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
420 				     ip->i_mount, dip);
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 
424 	if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
425 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
426 			"corrupt dinode %Lu, forkoff = 0x%x.",
427 			(unsigned long long)ip->i_ino,
428 			(int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
429 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
430 				     ip->i_mount, dip);
431 		return XFS_ERROR(EFSCORRUPTED);
432 	}
433 
434 	switch (ip->i_d.di_mode & S_IFMT) {
435 	case S_IFIFO:
436 	case S_IFCHR:
437 	case S_IFBLK:
438 	case S_IFSOCK:
439 		if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
440 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
441 					      ip->i_mount, dip);
442 			return XFS_ERROR(EFSCORRUPTED);
443 		}
444 		ip->i_d.di_size = 0;
445 		ip->i_size = 0;
446 		ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
447 		break;
448 
449 	case S_IFREG:
450 	case S_IFLNK:
451 	case S_IFDIR:
452 		switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
453 		case XFS_DINODE_FMT_LOCAL:
454 			/*
455 			 * no local regular files yet
456 			 */
457 			if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
458 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
459 					"corrupt inode %Lu "
460 					"(local format for regular file).",
461 					(unsigned long long) ip->i_ino);
462 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
463 						     XFS_ERRLEVEL_LOW,
464 						     ip->i_mount, dip);
465 				return XFS_ERROR(EFSCORRUPTED);
466 			}
467 
468 			di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
469 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
470 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
471 					"corrupt inode %Lu "
472 					"(bad size %Ld for local inode).",
473 					(unsigned long long) ip->i_ino,
474 					(long long) di_size);
475 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
476 						     XFS_ERRLEVEL_LOW,
477 						     ip->i_mount, dip);
478 				return XFS_ERROR(EFSCORRUPTED);
479 			}
480 
481 			size = (int)di_size;
482 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
483 			break;
484 		case XFS_DINODE_FMT_EXTENTS:
485 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
486 			break;
487 		case XFS_DINODE_FMT_BTREE:
488 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
489 			break;
490 		default:
491 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
492 					 ip->i_mount);
493 			return XFS_ERROR(EFSCORRUPTED);
494 		}
495 		break;
496 
497 	default:
498 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
499 		return XFS_ERROR(EFSCORRUPTED);
500 	}
501 	if (error) {
502 		return error;
503 	}
504 	if (!XFS_DFORK_Q(dip))
505 		return 0;
506 	ASSERT(ip->i_afp == NULL);
507 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
508 	ip->i_afp->if_ext_max =
509 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
510 	switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
511 	case XFS_DINODE_FMT_LOCAL:
512 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
513 		size = be16_to_cpu(atp->hdr.totsize);
514 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
515 		break;
516 	case XFS_DINODE_FMT_EXTENTS:
517 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
518 		break;
519 	case XFS_DINODE_FMT_BTREE:
520 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
521 		break;
522 	default:
523 		error = XFS_ERROR(EFSCORRUPTED);
524 		break;
525 	}
526 	if (error) {
527 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
528 		ip->i_afp = NULL;
529 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
530 	}
531 	return error;
532 }
533 
534 /*
535  * The file is in-lined in the on-disk inode.
536  * If it fits into if_inline_data, then copy
537  * it there, otherwise allocate a buffer for it
538  * and copy the data there.  Either way, set
539  * if_data to point at the data.
540  * If we allocate a buffer for the data, make
541  * sure that its size is a multiple of 4 and
542  * record the real size in i_real_bytes.
543  */
544 STATIC int
545 xfs_iformat_local(
546 	xfs_inode_t	*ip,
547 	xfs_dinode_t	*dip,
548 	int		whichfork,
549 	int		size)
550 {
551 	xfs_ifork_t	*ifp;
552 	int		real_size;
553 
554 	/*
555 	 * If the size is unreasonable, then something
556 	 * is wrong and we just bail out rather than crash in
557 	 * kmem_alloc() or memcpy() below.
558 	 */
559 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
560 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
561 			"corrupt inode %Lu "
562 			"(bad size %d for local fork, size = %d).",
563 			(unsigned long long) ip->i_ino, size,
564 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
565 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
566 				     ip->i_mount, dip);
567 		return XFS_ERROR(EFSCORRUPTED);
568 	}
569 	ifp = XFS_IFORK_PTR(ip, whichfork);
570 	real_size = 0;
571 	if (size == 0)
572 		ifp->if_u1.if_data = NULL;
573 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
574 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
575 	else {
576 		real_size = roundup(size, 4);
577 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
578 	}
579 	ifp->if_bytes = size;
580 	ifp->if_real_bytes = real_size;
581 	if (size)
582 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
583 	ifp->if_flags &= ~XFS_IFEXTENTS;
584 	ifp->if_flags |= XFS_IFINLINE;
585 	return 0;
586 }
587 
588 /*
589  * The file consists of a set of extents all
590  * of which fit into the on-disk inode.
591  * If there are few enough extents to fit into
592  * the if_inline_ext, then copy them there.
593  * Otherwise allocate a buffer for them and copy
594  * them into it.  Either way, set if_extents
595  * to point at the extents.
596  */
597 STATIC int
598 xfs_iformat_extents(
599 	xfs_inode_t	*ip,
600 	xfs_dinode_t	*dip,
601 	int		whichfork)
602 {
603 	xfs_bmbt_rec_t	*ep, *dp;
604 	xfs_ifork_t	*ifp;
605 	int		nex;
606 	int		size;
607 	int		i;
608 
609 	ifp = XFS_IFORK_PTR(ip, whichfork);
610 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
611 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
612 
613 	/*
614 	 * If the number of extents is unreasonable, then something
615 	 * is wrong and we just bail out rather than crash in
616 	 * kmem_alloc() or memcpy() below.
617 	 */
618 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
619 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
620 			"corrupt inode %Lu ((a)extents = %d).",
621 			(unsigned long long) ip->i_ino, nex);
622 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
623 				     ip->i_mount, dip);
624 		return XFS_ERROR(EFSCORRUPTED);
625 	}
626 
627 	ifp->if_real_bytes = 0;
628 	if (nex == 0)
629 		ifp->if_u1.if_extents = NULL;
630 	else if (nex <= XFS_INLINE_EXTS)
631 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
632 	else
633 		xfs_iext_add(ifp, 0, nex);
634 
635 	ifp->if_bytes = size;
636 	if (size) {
637 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
638 		xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
639 		for (i = 0; i < nex; i++, dp++) {
640 			ep = xfs_iext_get_ext(ifp, i);
641 			ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
642 								ARCH_CONVERT);
643 			ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
644 								ARCH_CONVERT);
645 		}
646 		xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
647 			whichfork);
648 		if (whichfork != XFS_DATA_FORK ||
649 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
650 				if (unlikely(xfs_check_nostate_extents(
651 				    ifp, 0, nex))) {
652 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
653 							 XFS_ERRLEVEL_LOW,
654 							 ip->i_mount);
655 					return XFS_ERROR(EFSCORRUPTED);
656 				}
657 	}
658 	ifp->if_flags |= XFS_IFEXTENTS;
659 	return 0;
660 }
661 
662 /*
663  * The file has too many extents to fit into
664  * the inode, so they are in B-tree format.
665  * Allocate a buffer for the root of the B-tree
666  * and copy the root into it.  The i_extents
667  * field will remain NULL until all of the
668  * extents are read in (when they are needed).
669  */
670 STATIC int
671 xfs_iformat_btree(
672 	xfs_inode_t		*ip,
673 	xfs_dinode_t		*dip,
674 	int			whichfork)
675 {
676 	xfs_bmdr_block_t	*dfp;
677 	xfs_ifork_t		*ifp;
678 	/* REFERENCED */
679 	int			nrecs;
680 	int			size;
681 
682 	ifp = XFS_IFORK_PTR(ip, whichfork);
683 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
684 	size = XFS_BMAP_BROOT_SPACE(dfp);
685 	nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
686 
687 	/*
688 	 * blow out if -- fork has less extents than can fit in
689 	 * fork (fork shouldn't be a btree format), root btree
690 	 * block has more records than can fit into the fork,
691 	 * or the number of extents is greater than the number of
692 	 * blocks.
693 	 */
694 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
695 	    || XFS_BMDR_SPACE_CALC(nrecs) >
696 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
697 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
698 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
699 			"corrupt inode %Lu (btree).",
700 			(unsigned long long) ip->i_ino);
701 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
702 				 ip->i_mount);
703 		return XFS_ERROR(EFSCORRUPTED);
704 	}
705 
706 	ifp->if_broot_bytes = size;
707 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
708 	ASSERT(ifp->if_broot != NULL);
709 	/*
710 	 * Copy and convert from the on-disk structure
711 	 * to the in-memory structure.
712 	 */
713 	xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
714 		ifp->if_broot, size);
715 	ifp->if_flags &= ~XFS_IFEXTENTS;
716 	ifp->if_flags |= XFS_IFBROOT;
717 
718 	return 0;
719 }
720 
721 /*
722  * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
723  * and native format
724  *
725  * buf  = on-disk representation
726  * dip  = native representation
727  * dir  = direction - +ve -> disk to native
728  *                    -ve -> native to disk
729  */
730 void
731 xfs_xlate_dinode_core(
732 	xfs_caddr_t		buf,
733 	xfs_dinode_core_t	*dip,
734 	int			dir)
735 {
736 	xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf;
737 	xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip;
738 	xfs_arch_t		arch = ARCH_CONVERT;
739 
740 	ASSERT(dir);
741 
742 	INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
743 	INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
744 	INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch);
745 	INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
746 	INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
747 	INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
748 	INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
749 	INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
750 	INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
751 
752 	if (dir > 0) {
753 		memcpy(mem_core->di_pad, buf_core->di_pad,
754 			sizeof(buf_core->di_pad));
755 	} else {
756 		memcpy(buf_core->di_pad, mem_core->di_pad,
757 			sizeof(buf_core->di_pad));
758 	}
759 
760 	INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
761 
762 	INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
763 			dir, arch);
764 	INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
765 			dir, arch);
766 	INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
767 			dir, arch);
768 	INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
769 			dir, arch);
770 	INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
771 			dir, arch);
772 	INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
773 			dir, arch);
774 	INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
775 	INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
776 	INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
777 	INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
778 	INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
779 	INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
780 	INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
781 	INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
782 	INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
783 	INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
784 	INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
785 }
786 
787 STATIC uint
788 _xfs_dic2xflags(
789 	__uint16_t		di_flags)
790 {
791 	uint			flags = 0;
792 
793 	if (di_flags & XFS_DIFLAG_ANY) {
794 		if (di_flags & XFS_DIFLAG_REALTIME)
795 			flags |= XFS_XFLAG_REALTIME;
796 		if (di_flags & XFS_DIFLAG_PREALLOC)
797 			flags |= XFS_XFLAG_PREALLOC;
798 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
799 			flags |= XFS_XFLAG_IMMUTABLE;
800 		if (di_flags & XFS_DIFLAG_APPEND)
801 			flags |= XFS_XFLAG_APPEND;
802 		if (di_flags & XFS_DIFLAG_SYNC)
803 			flags |= XFS_XFLAG_SYNC;
804 		if (di_flags & XFS_DIFLAG_NOATIME)
805 			flags |= XFS_XFLAG_NOATIME;
806 		if (di_flags & XFS_DIFLAG_NODUMP)
807 			flags |= XFS_XFLAG_NODUMP;
808 		if (di_flags & XFS_DIFLAG_RTINHERIT)
809 			flags |= XFS_XFLAG_RTINHERIT;
810 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
811 			flags |= XFS_XFLAG_PROJINHERIT;
812 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
813 			flags |= XFS_XFLAG_NOSYMLINKS;
814 		if (di_flags & XFS_DIFLAG_EXTSIZE)
815 			flags |= XFS_XFLAG_EXTSIZE;
816 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
817 			flags |= XFS_XFLAG_EXTSZINHERIT;
818 		if (di_flags & XFS_DIFLAG_NODEFRAG)
819 			flags |= XFS_XFLAG_NODEFRAG;
820 	}
821 
822 	return flags;
823 }
824 
825 uint
826 xfs_ip2xflags(
827 	xfs_inode_t		*ip)
828 {
829 	xfs_dinode_core_t	*dic = &ip->i_d;
830 
831 	return _xfs_dic2xflags(dic->di_flags) |
832 				(XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
833 }
834 
835 uint
836 xfs_dic2xflags(
837 	xfs_dinode_core_t	*dic)
838 {
839 	return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
840 				(XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 }
842 
843 /*
844  * Given a mount structure and an inode number, return a pointer
845  * to a newly allocated in-core inode corresponding to the given
846  * inode number.
847  *
848  * Initialize the inode's attributes and extent pointers if it
849  * already has them (it will not if the inode has no links).
850  */
851 int
852 xfs_iread(
853 	xfs_mount_t	*mp,
854 	xfs_trans_t	*tp,
855 	xfs_ino_t	ino,
856 	xfs_inode_t	**ipp,
857 	xfs_daddr_t	bno,
858 	uint		imap_flags)
859 {
860 	xfs_buf_t	*bp;
861 	xfs_dinode_t	*dip;
862 	xfs_inode_t	*ip;
863 	int		error;
864 
865 	ASSERT(xfs_inode_zone != NULL);
866 
867 	ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
868 	ip->i_ino = ino;
869 	ip->i_mount = mp;
870 	spin_lock_init(&ip->i_flags_lock);
871 
872 	/*
873 	 * Get pointer's to the on-disk inode and the buffer containing it.
874 	 * If the inode number refers to a block outside the file system
875 	 * then xfs_itobp() will return NULL.  In this case we should
876 	 * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will
877 	 * know that this is a new incore inode.
878 	 */
879 	error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
880 	if (error) {
881 		kmem_zone_free(xfs_inode_zone, ip);
882 		return error;
883 	}
884 
885 	/*
886 	 * Initialize inode's trace buffers.
887 	 * Do this before xfs_iformat in case it adds entries.
888 	 */
889 #ifdef XFS_BMAP_TRACE
890 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
891 #endif
892 #ifdef XFS_BMBT_TRACE
893 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
894 #endif
895 #ifdef XFS_RW_TRACE
896 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
897 #endif
898 #ifdef XFS_ILOCK_TRACE
899 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
900 #endif
901 #ifdef XFS_DIR2_TRACE
902 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
903 #endif
904 
905 	/*
906 	 * If we got something that isn't an inode it means someone
907 	 * (nfs or dmi) has a stale handle.
908 	 */
909 	if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
910 		kmem_zone_free(xfs_inode_zone, ip);
911 		xfs_trans_brelse(tp, bp);
912 #ifdef DEBUG
913 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 				"dip->di_core.di_magic (0x%x) != "
915 				"XFS_DINODE_MAGIC (0x%x)",
916 				INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
917 				XFS_DINODE_MAGIC);
918 #endif /* DEBUG */
919 		return XFS_ERROR(EINVAL);
920 	}
921 
922 	/*
923 	 * If the on-disk inode is already linked to a directory
924 	 * entry, copy all of the inode into the in-core inode.
925 	 * xfs_iformat() handles copying in the inode format
926 	 * specific information.
927 	 * Otherwise, just get the truly permanent information.
928 	 */
929 	if (dip->di_core.di_mode) {
930 		xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
931 		     &(ip->i_d), 1);
932 		error = xfs_iformat(ip, dip);
933 		if (error)  {
934 			kmem_zone_free(xfs_inode_zone, ip);
935 			xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 					"xfs_iformat() returned error %d",
939 					error);
940 #endif /* DEBUG */
941 			return error;
942 		}
943 	} else {
944 		ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
945 		ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
946 		ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
947 		ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
948 		/*
949 		 * Make sure to pull in the mode here as well in
950 		 * case the inode is released without being used.
951 		 * This ensures that xfs_inactive() will see that
952 		 * the inode is already free and not try to mess
953 		 * with the uninitialized part of it.
954 		 */
955 		ip->i_d.di_mode = 0;
956 		/*
957 		 * Initialize the per-fork minima and maxima for a new
958 		 * inode here.  xfs_iformat will do it for old inodes.
959 		 */
960 		ip->i_df.if_ext_max =
961 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 	}
963 
964 	INIT_LIST_HEAD(&ip->i_reclaim);
965 
966 	/*
967 	 * The inode format changed when we moved the link count and
968 	 * made it 32 bits long.  If this is an old format inode,
969 	 * convert it in memory to look like a new one.  If it gets
970 	 * flushed to disk we will convert back before flushing or
971 	 * logging it.  We zero out the new projid field and the old link
972 	 * count field.  We'll handle clearing the pad field (the remains
973 	 * of the old uuid field) when we actually convert the inode to
974 	 * the new format. We don't change the version number so that we
975 	 * can distinguish this from a real new format inode.
976 	 */
977 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 		ip->i_d.di_nlink = ip->i_d.di_onlink;
979 		ip->i_d.di_onlink = 0;
980 		ip->i_d.di_projid = 0;
981 	}
982 
983 	ip->i_delayed_blks = 0;
984 	ip->i_size = ip->i_d.di_size;
985 
986 	/*
987 	 * Mark the buffer containing the inode as something to keep
988 	 * around for a while.  This helps to keep recently accessed
989 	 * meta-data in-core longer.
990 	 */
991 	 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992 
993 	/*
994 	 * Use xfs_trans_brelse() to release the buffer containing the
995 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
997 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
998 	 * will only release the buffer if it is not dirty within the
999 	 * transaction.  It will be OK to release the buffer in this case,
1000 	 * because inodes on disk are never destroyed and we will be
1001 	 * locking the new in-core inode before putting it in the hash
1002 	 * table where other processes can find it.  Thus we don't have
1003 	 * to worry about the inode being changed just because we released
1004 	 * the buffer.
1005 	 */
1006 	xfs_trans_brelse(tp, bp);
1007 	*ipp = ip;
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Read in extents from a btree-format inode.
1013  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
1014  */
1015 int
1016 xfs_iread_extents(
1017 	xfs_trans_t	*tp,
1018 	xfs_inode_t	*ip,
1019 	int		whichfork)
1020 {
1021 	int		error;
1022 	xfs_ifork_t	*ifp;
1023 	xfs_extnum_t	nextents;
1024 	size_t		size;
1025 
1026 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 				 ip->i_mount);
1029 		return XFS_ERROR(EFSCORRUPTED);
1030 	}
1031 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 	size = nextents * sizeof(xfs_bmbt_rec_t);
1033 	ifp = XFS_IFORK_PTR(ip, whichfork);
1034 
1035 	/*
1036 	 * We know that the size is valid (it's checked in iformat_btree)
1037 	 */
1038 	ifp->if_lastex = NULLEXTNUM;
1039 	ifp->if_bytes = ifp->if_real_bytes = 0;
1040 	ifp->if_flags |= XFS_IFEXTENTS;
1041 	xfs_iext_add(ifp, 0, nextents);
1042 	error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 	if (error) {
1044 		xfs_iext_destroy(ifp);
1045 		ifp->if_flags &= ~XFS_IFEXTENTS;
1046 		return error;
1047 	}
1048 	xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Allocate an inode on disk and return a copy of its in-core version.
1054  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
1055  * appropriately within the inode.  The uid and gid for the inode are
1056  * set according to the contents of the given cred structure.
1057  *
1058  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059  * has a free inode available, call xfs_iget()
1060  * to obtain the in-core version of the allocated inode.  Finally,
1061  * fill in the inode and log its initial contents.  In this case,
1062  * ialloc_context would be set to NULL and call_again set to false.
1063  *
1064  * If xfs_dialloc() does not have an available inode,
1065  * it will replenish its supply by doing an allocation. Since we can
1066  * only do one allocation within a transaction without deadlocks, we
1067  * must commit the current transaction before returning the inode itself.
1068  * In this case, therefore, we will set call_again to true and return.
1069  * The caller should then commit the current transaction, start a new
1070  * transaction, and call xfs_ialloc() again to actually get the inode.
1071  *
1072  * To ensure that some other process does not grab the inode that
1073  * was allocated during the first call to xfs_ialloc(), this routine
1074  * also returns the [locked] bp pointing to the head of the freelist
1075  * as ialloc_context.  The caller should hold this buffer across
1076  * the commit and pass it back into this routine on the second call.
1077  */
1078 int
1079 xfs_ialloc(
1080 	xfs_trans_t	*tp,
1081 	xfs_inode_t	*pip,
1082 	mode_t		mode,
1083 	xfs_nlink_t	nlink,
1084 	xfs_dev_t	rdev,
1085 	cred_t		*cr,
1086 	xfs_prid_t	prid,
1087 	int		okalloc,
1088 	xfs_buf_t	**ialloc_context,
1089 	boolean_t	*call_again,
1090 	xfs_inode_t	**ipp)
1091 {
1092 	xfs_ino_t	ino;
1093 	xfs_inode_t	*ip;
1094 	bhv_vnode_t	*vp;
1095 	uint		flags;
1096 	int		error;
1097 
1098 	/*
1099 	 * Call the space management code to pick
1100 	 * the on-disk inode to be allocated.
1101 	 */
1102 	error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1103 			    ialloc_context, call_again, &ino);
1104 	if (error != 0) {
1105 		return error;
1106 	}
1107 	if (*call_again || ino == NULLFSINO) {
1108 		*ipp = NULL;
1109 		return 0;
1110 	}
1111 	ASSERT(*ialloc_context == NULL);
1112 
1113 	/*
1114 	 * Get the in-core inode with the lock held exclusively.
1115 	 * This is because we're setting fields here we need
1116 	 * to prevent others from looking at until we're done.
1117 	 */
1118 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
1119 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1120 	if (error != 0) {
1121 		return error;
1122 	}
1123 	ASSERT(ip != NULL);
1124 
1125 	vp = XFS_ITOV(ip);
1126 	ip->i_d.di_mode = (__uint16_t)mode;
1127 	ip->i_d.di_onlink = 0;
1128 	ip->i_d.di_nlink = nlink;
1129 	ASSERT(ip->i_d.di_nlink == nlink);
1130 	ip->i_d.di_uid = current_fsuid(cr);
1131 	ip->i_d.di_gid = current_fsgid(cr);
1132 	ip->i_d.di_projid = prid;
1133 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134 
1135 	/*
1136 	 * If the superblock version is up to where we support new format
1137 	 * inodes and this is currently an old format inode, then change
1138 	 * the inode version number now.  This way we only do the conversion
1139 	 * here rather than here and in the flush/logging code.
1140 	 */
1141 	if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1142 	    ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1143 		ip->i_d.di_version = XFS_DINODE_VERSION_2;
1144 		/*
1145 		 * We've already zeroed the old link count, the projid field,
1146 		 * and the pad field.
1147 		 */
1148 	}
1149 
1150 	/*
1151 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1152 	 */
1153 	if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1154 		xfs_bump_ino_vers2(tp, ip);
1155 
1156 	if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1157 		ip->i_d.di_gid = pip->i_d.di_gid;
1158 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1159 			ip->i_d.di_mode |= S_ISGID;
1160 		}
1161 	}
1162 
1163 	/*
1164 	 * If the group ID of the new file does not match the effective group
1165 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1166 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1167 	 */
1168 	if ((irix_sgid_inherit) &&
1169 	    (ip->i_d.di_mode & S_ISGID) &&
1170 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1171 		ip->i_d.di_mode &= ~S_ISGID;
1172 	}
1173 
1174 	ip->i_d.di_size = 0;
1175 	ip->i_size = 0;
1176 	ip->i_d.di_nextents = 0;
1177 	ASSERT(ip->i_d.di_nblocks == 0);
1178 	xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1179 	/*
1180 	 * di_gen will have been taken care of in xfs_iread.
1181 	 */
1182 	ip->i_d.di_extsize = 0;
1183 	ip->i_d.di_dmevmask = 0;
1184 	ip->i_d.di_dmstate = 0;
1185 	ip->i_d.di_flags = 0;
1186 	flags = XFS_ILOG_CORE;
1187 	switch (mode & S_IFMT) {
1188 	case S_IFIFO:
1189 	case S_IFCHR:
1190 	case S_IFBLK:
1191 	case S_IFSOCK:
1192 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1193 		ip->i_df.if_u2.if_rdev = rdev;
1194 		ip->i_df.if_flags = 0;
1195 		flags |= XFS_ILOG_DEV;
1196 		break;
1197 	case S_IFREG:
1198 	case S_IFDIR:
1199 		if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1200 			uint	di_flags = 0;
1201 
1202 			if ((mode & S_IFMT) == S_IFDIR) {
1203 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1204 					di_flags |= XFS_DIFLAG_RTINHERIT;
1205 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1206 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1207 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1208 				}
1209 			} else if ((mode & S_IFMT) == S_IFREG) {
1210 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1211 					di_flags |= XFS_DIFLAG_REALTIME;
1212 					ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1213 				}
1214 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1215 					di_flags |= XFS_DIFLAG_EXTSIZE;
1216 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1217 				}
1218 			}
1219 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1220 			    xfs_inherit_noatime)
1221 				di_flags |= XFS_DIFLAG_NOATIME;
1222 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1223 			    xfs_inherit_nodump)
1224 				di_flags |= XFS_DIFLAG_NODUMP;
1225 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1226 			    xfs_inherit_sync)
1227 				di_flags |= XFS_DIFLAG_SYNC;
1228 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1229 			    xfs_inherit_nosymlinks)
1230 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1231 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1232 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1233 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1234 			    xfs_inherit_nodefrag)
1235 				di_flags |= XFS_DIFLAG_NODEFRAG;
1236 			ip->i_d.di_flags |= di_flags;
1237 		}
1238 		/* FALLTHROUGH */
1239 	case S_IFLNK:
1240 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1241 		ip->i_df.if_flags = XFS_IFEXTENTS;
1242 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1243 		ip->i_df.if_u1.if_extents = NULL;
1244 		break;
1245 	default:
1246 		ASSERT(0);
1247 	}
1248 	/*
1249 	 * Attribute fork settings for new inode.
1250 	 */
1251 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1252 	ip->i_d.di_anextents = 0;
1253 
1254 	/*
1255 	 * Log the new values stuffed into the inode.
1256 	 */
1257 	xfs_trans_log_inode(tp, ip, flags);
1258 
1259 	/* now that we have an i_mode we can setup inode ops and unlock */
1260 	bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1261 
1262 	*ipp = ip;
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Check to make sure that there are no blocks allocated to the
1268  * file beyond the size of the file.  We don't check this for
1269  * files with fixed size extents or real time extents, but we
1270  * at least do it for regular files.
1271  */
1272 #ifdef DEBUG
1273 void
1274 xfs_isize_check(
1275 	xfs_mount_t	*mp,
1276 	xfs_inode_t	*ip,
1277 	xfs_fsize_t	isize)
1278 {
1279 	xfs_fileoff_t	map_first;
1280 	int		nimaps;
1281 	xfs_bmbt_irec_t	imaps[2];
1282 
1283 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1284 		return;
1285 
1286 	if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1287 		return;
1288 
1289 	nimaps = 2;
1290 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1291 	/*
1292 	 * The filesystem could be shutting down, so bmapi may return
1293 	 * an error.
1294 	 */
1295 	if (xfs_bmapi(NULL, ip, map_first,
1296 			 (XFS_B_TO_FSB(mp,
1297 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1298 			  map_first),
1299 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1300 			 NULL, NULL))
1301 	    return;
1302 	ASSERT(nimaps == 1);
1303 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1304 }
1305 #endif	/* DEBUG */
1306 
1307 /*
1308  * Calculate the last possible buffered byte in a file.  This must
1309  * include data that was buffered beyond the EOF by the write code.
1310  * This also needs to deal with overflowing the xfs_fsize_t type
1311  * which can happen for sizes near the limit.
1312  *
1313  * We also need to take into account any blocks beyond the EOF.  It
1314  * may be the case that they were buffered by a write which failed.
1315  * In that case the pages will still be in memory, but the inode size
1316  * will never have been updated.
1317  */
1318 xfs_fsize_t
1319 xfs_file_last_byte(
1320 	xfs_inode_t	*ip)
1321 {
1322 	xfs_mount_t	*mp;
1323 	xfs_fsize_t	last_byte;
1324 	xfs_fileoff_t	last_block;
1325 	xfs_fileoff_t	size_last_block;
1326 	int		error;
1327 
1328 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1329 
1330 	mp = ip->i_mount;
1331 	/*
1332 	 * Only check for blocks beyond the EOF if the extents have
1333 	 * been read in.  This eliminates the need for the inode lock,
1334 	 * and it also saves us from looking when it really isn't
1335 	 * necessary.
1336 	 */
1337 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1338 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1339 			XFS_DATA_FORK);
1340 		if (error) {
1341 			last_block = 0;
1342 		}
1343 	} else {
1344 		last_block = 0;
1345 	}
1346 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1347 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1348 
1349 	last_byte = XFS_FSB_TO_B(mp, last_block);
1350 	if (last_byte < 0) {
1351 		return XFS_MAXIOFFSET(mp);
1352 	}
1353 	last_byte += (1 << mp->m_writeio_log);
1354 	if (last_byte < 0) {
1355 		return XFS_MAXIOFFSET(mp);
1356 	}
1357 	return last_byte;
1358 }
1359 
1360 #if defined(XFS_RW_TRACE)
1361 STATIC void
1362 xfs_itrunc_trace(
1363 	int		tag,
1364 	xfs_inode_t	*ip,
1365 	int		flag,
1366 	xfs_fsize_t	new_size,
1367 	xfs_off_t	toss_start,
1368 	xfs_off_t	toss_finish)
1369 {
1370 	if (ip->i_rwtrace == NULL) {
1371 		return;
1372 	}
1373 
1374 	ktrace_enter(ip->i_rwtrace,
1375 		     (void*)((long)tag),
1376 		     (void*)ip,
1377 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1378 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1379 		     (void*)((long)flag),
1380 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1381 		     (void*)(unsigned long)(new_size & 0xffffffff),
1382 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1383 		     (void*)(unsigned long)(toss_start & 0xffffffff),
1384 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1385 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
1386 		     (void*)(unsigned long)current_cpu(),
1387 		     (void*)(unsigned long)current_pid(),
1388 		     (void*)NULL,
1389 		     (void*)NULL,
1390 		     (void*)NULL);
1391 }
1392 #else
1393 #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1394 #endif
1395 
1396 /*
1397  * Start the truncation of the file to new_size.  The new size
1398  * must be smaller than the current size.  This routine will
1399  * clear the buffer and page caches of file data in the removed
1400  * range, and xfs_itruncate_finish() will remove the underlying
1401  * disk blocks.
1402  *
1403  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1404  * must NOT have the inode lock held at all.  This is because we're
1405  * calling into the buffer/page cache code and we can't hold the
1406  * inode lock when we do so.
1407  *
1408  * We need to wait for any direct I/Os in flight to complete before we
1409  * proceed with the truncate. This is needed to prevent the extents
1410  * being read or written by the direct I/Os from being removed while the
1411  * I/O is in flight as there is no other method of synchronising
1412  * direct I/O with the truncate operation.  Also, because we hold
1413  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1414  * started until the truncate completes and drops the lock. Essentially,
1415  * the vn_iowait() call forms an I/O barrier that provides strict ordering
1416  * between direct I/Os and the truncate operation.
1417  *
1418  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1419  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1420  * in the case that the caller is locking things out of order and
1421  * may not be able to call xfs_itruncate_finish() with the inode lock
1422  * held without dropping the I/O lock.  If the caller must drop the
1423  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1424  * must be called again with all the same restrictions as the initial
1425  * call.
1426  */
1427 int
1428 xfs_itruncate_start(
1429 	xfs_inode_t	*ip,
1430 	uint		flags,
1431 	xfs_fsize_t	new_size)
1432 {
1433 	xfs_fsize_t	last_byte;
1434 	xfs_off_t	toss_start;
1435 	xfs_mount_t	*mp;
1436 	bhv_vnode_t	*vp;
1437 	int		error = 0;
1438 
1439 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1440 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1441 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1442 	       (flags == XFS_ITRUNC_MAYBE));
1443 
1444 	mp = ip->i_mount;
1445 	vp = XFS_ITOV(ip);
1446 
1447 	vn_iowait(vp);  /* wait for the completion of any pending DIOs */
1448 
1449 	/*
1450 	 * Call toss_pages or flushinval_pages to get rid of pages
1451 	 * overlapping the region being removed.  We have to use
1452 	 * the less efficient flushinval_pages in the case that the
1453 	 * caller may not be able to finish the truncate without
1454 	 * dropping the inode's I/O lock.  Make sure
1455 	 * to catch any pages brought in by buffers overlapping
1456 	 * the EOF by searching out beyond the isize by our
1457 	 * block size. We round new_size up to a block boundary
1458 	 * so that we don't toss things on the same block as
1459 	 * new_size but before it.
1460 	 *
1461 	 * Before calling toss_page or flushinval_pages, make sure to
1462 	 * call remapf() over the same region if the file is mapped.
1463 	 * This frees up mapped file references to the pages in the
1464 	 * given range and for the flushinval_pages case it ensures
1465 	 * that we get the latest mapped changes flushed out.
1466 	 */
1467 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1468 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1469 	if (toss_start < 0) {
1470 		/*
1471 		 * The place to start tossing is beyond our maximum
1472 		 * file size, so there is no way that the data extended
1473 		 * out there.
1474 		 */
1475 		return 0;
1476 	}
1477 	last_byte = xfs_file_last_byte(ip);
1478 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1479 			 last_byte);
1480 	if (last_byte > toss_start) {
1481 		if (flags & XFS_ITRUNC_DEFINITE) {
1482 			bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1483 		} else {
1484 			error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1485 		}
1486 	}
1487 
1488 #ifdef DEBUG
1489 	if (new_size == 0) {
1490 		ASSERT(VN_CACHED(vp) == 0);
1491 	}
1492 #endif
1493 	return error;
1494 }
1495 
1496 /*
1497  * Shrink the file to the given new_size.  The new
1498  * size must be smaller than the current size.
1499  * This will free up the underlying blocks
1500  * in the removed range after a call to xfs_itruncate_start()
1501  * or xfs_atruncate_start().
1502  *
1503  * The transaction passed to this routine must have made
1504  * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1505  * This routine may commit the given transaction and
1506  * start new ones, so make sure everything involved in
1507  * the transaction is tidy before calling here.
1508  * Some transaction will be returned to the caller to be
1509  * committed.  The incoming transaction must already include
1510  * the inode, and both inode locks must be held exclusively.
1511  * The inode must also be "held" within the transaction.  On
1512  * return the inode will be "held" within the returned transaction.
1513  * This routine does NOT require any disk space to be reserved
1514  * for it within the transaction.
1515  *
1516  * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1517  * and it indicates the fork which is to be truncated.  For the
1518  * attribute fork we only support truncation to size 0.
1519  *
1520  * We use the sync parameter to indicate whether or not the first
1521  * transaction we perform might have to be synchronous.  For the attr fork,
1522  * it needs to be so if the unlink of the inode is not yet known to be
1523  * permanent in the log.  This keeps us from freeing and reusing the
1524  * blocks of the attribute fork before the unlink of the inode becomes
1525  * permanent.
1526  *
1527  * For the data fork, we normally have to run synchronously if we're
1528  * being called out of the inactive path or we're being called
1529  * out of the create path where we're truncating an existing file.
1530  * Either way, the truncate needs to be sync so blocks don't reappear
1531  * in the file with altered data in case of a crash.  wsync filesystems
1532  * can run the first case async because anything that shrinks the inode
1533  * has to run sync so by the time we're called here from inactive, the
1534  * inode size is permanently set to 0.
1535  *
1536  * Calls from the truncate path always need to be sync unless we're
1537  * in a wsync filesystem and the file has already been unlinked.
1538  *
1539  * The caller is responsible for correctly setting the sync parameter.
1540  * It gets too hard for us to guess here which path we're being called
1541  * out of just based on inode state.
1542  */
1543 int
1544 xfs_itruncate_finish(
1545 	xfs_trans_t	**tp,
1546 	xfs_inode_t	*ip,
1547 	xfs_fsize_t	new_size,
1548 	int		fork,
1549 	int		sync)
1550 {
1551 	xfs_fsblock_t	first_block;
1552 	xfs_fileoff_t	first_unmap_block;
1553 	xfs_fileoff_t	last_block;
1554 	xfs_filblks_t	unmap_len=0;
1555 	xfs_mount_t	*mp;
1556 	xfs_trans_t	*ntp;
1557 	int		done;
1558 	int		committed;
1559 	xfs_bmap_free_t	free_list;
1560 	int		error;
1561 
1562 	ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1563 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1564 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1565 	ASSERT(*tp != NULL);
1566 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1567 	ASSERT(ip->i_transp == *tp);
1568 	ASSERT(ip->i_itemp != NULL);
1569 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1570 
1571 
1572 	ntp = *tp;
1573 	mp = (ntp)->t_mountp;
1574 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1575 
1576 	/*
1577 	 * We only support truncating the entire attribute fork.
1578 	 */
1579 	if (fork == XFS_ATTR_FORK) {
1580 		new_size = 0LL;
1581 	}
1582 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1583 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1584 	/*
1585 	 * The first thing we do is set the size to new_size permanently
1586 	 * on disk.  This way we don't have to worry about anyone ever
1587 	 * being able to look at the data being freed even in the face
1588 	 * of a crash.  What we're getting around here is the case where
1589 	 * we free a block, it is allocated to another file, it is written
1590 	 * to, and then we crash.  If the new data gets written to the
1591 	 * file but the log buffers containing the free and reallocation
1592 	 * don't, then we'd end up with garbage in the blocks being freed.
1593 	 * As long as we make the new_size permanent before actually
1594 	 * freeing any blocks it doesn't matter if they get writtten to.
1595 	 *
1596 	 * The callers must signal into us whether or not the size
1597 	 * setting here must be synchronous.  There are a few cases
1598 	 * where it doesn't have to be synchronous.  Those cases
1599 	 * occur if the file is unlinked and we know the unlink is
1600 	 * permanent or if the blocks being truncated are guaranteed
1601 	 * to be beyond the inode eof (regardless of the link count)
1602 	 * and the eof value is permanent.  Both of these cases occur
1603 	 * only on wsync-mounted filesystems.  In those cases, we're
1604 	 * guaranteed that no user will ever see the data in the blocks
1605 	 * that are being truncated so the truncate can run async.
1606 	 * In the free beyond eof case, the file may wind up with
1607 	 * more blocks allocated to it than it needs if we crash
1608 	 * and that won't get fixed until the next time the file
1609 	 * is re-opened and closed but that's ok as that shouldn't
1610 	 * be too many blocks.
1611 	 *
1612 	 * However, we can't just make all wsync xactions run async
1613 	 * because there's one call out of the create path that needs
1614 	 * to run sync where it's truncating an existing file to size
1615 	 * 0 whose size is > 0.
1616 	 *
1617 	 * It's probably possible to come up with a test in this
1618 	 * routine that would correctly distinguish all the above
1619 	 * cases from the values of the function parameters and the
1620 	 * inode state but for sanity's sake, I've decided to let the
1621 	 * layers above just tell us.  It's simpler to correctly figure
1622 	 * out in the layer above exactly under what conditions we
1623 	 * can run async and I think it's easier for others read and
1624 	 * follow the logic in case something has to be changed.
1625 	 * cscope is your friend -- rcc.
1626 	 *
1627 	 * The attribute fork is much simpler.
1628 	 *
1629 	 * For the attribute fork we allow the caller to tell us whether
1630 	 * the unlink of the inode that led to this call is yet permanent
1631 	 * in the on disk log.  If it is not and we will be freeing extents
1632 	 * in this inode then we make the first transaction synchronous
1633 	 * to make sure that the unlink is permanent by the time we free
1634 	 * the blocks.
1635 	 */
1636 	if (fork == XFS_DATA_FORK) {
1637 		if (ip->i_d.di_nextents > 0) {
1638 			/*
1639 			 * If we are not changing the file size then do
1640 			 * not update the on-disk file size - we may be
1641 			 * called from xfs_inactive_free_eofblocks().  If we
1642 			 * update the on-disk file size and then the system
1643 			 * crashes before the contents of the file are
1644 			 * flushed to disk then the files may be full of
1645 			 * holes (ie NULL files bug).
1646 			 */
1647 			if (ip->i_size != new_size) {
1648 				ip->i_d.di_size = new_size;
1649 				ip->i_size = new_size;
1650 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1651 			}
1652 		}
1653 	} else if (sync) {
1654 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1655 		if (ip->i_d.di_anextents > 0)
1656 			xfs_trans_set_sync(ntp);
1657 	}
1658 	ASSERT(fork == XFS_DATA_FORK ||
1659 		(fork == XFS_ATTR_FORK &&
1660 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1661 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1662 
1663 	/*
1664 	 * Since it is possible for space to become allocated beyond
1665 	 * the end of the file (in a crash where the space is allocated
1666 	 * but the inode size is not yet updated), simply remove any
1667 	 * blocks which show up between the new EOF and the maximum
1668 	 * possible file size.  If the first block to be removed is
1669 	 * beyond the maximum file size (ie it is the same as last_block),
1670 	 * then there is nothing to do.
1671 	 */
1672 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1673 	ASSERT(first_unmap_block <= last_block);
1674 	done = 0;
1675 	if (last_block == first_unmap_block) {
1676 		done = 1;
1677 	} else {
1678 		unmap_len = last_block - first_unmap_block + 1;
1679 	}
1680 	while (!done) {
1681 		/*
1682 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1683 		 * will tell us whether it freed the entire range or
1684 		 * not.  If this is a synchronous mount (wsync),
1685 		 * then we can tell bunmapi to keep all the
1686 		 * transactions asynchronous since the unlink
1687 		 * transaction that made this inode inactive has
1688 		 * already hit the disk.  There's no danger of
1689 		 * the freed blocks being reused, there being a
1690 		 * crash, and the reused blocks suddenly reappearing
1691 		 * in this file with garbage in them once recovery
1692 		 * runs.
1693 		 */
1694 		XFS_BMAP_INIT(&free_list, &first_block);
1695 		error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1696 				    first_unmap_block, unmap_len,
1697 				    XFS_BMAPI_AFLAG(fork) |
1698 				      (sync ? 0 : XFS_BMAPI_ASYNC),
1699 				    XFS_ITRUNC_MAX_EXTENTS,
1700 				    &first_block, &free_list,
1701 				    NULL, &done);
1702 		if (error) {
1703 			/*
1704 			 * If the bunmapi call encounters an error,
1705 			 * return to the caller where the transaction
1706 			 * can be properly aborted.  We just need to
1707 			 * make sure we're not holding any resources
1708 			 * that we were not when we came in.
1709 			 */
1710 			xfs_bmap_cancel(&free_list);
1711 			return error;
1712 		}
1713 
1714 		/*
1715 		 * Duplicate the transaction that has the permanent
1716 		 * reservation and commit the old transaction.
1717 		 */
1718 		error = xfs_bmap_finish(tp, &free_list, &committed);
1719 		ntp = *tp;
1720 		if (error) {
1721 			/*
1722 			 * If the bmap finish call encounters an error,
1723 			 * return to the caller where the transaction
1724 			 * can be properly aborted.  We just need to
1725 			 * make sure we're not holding any resources
1726 			 * that we were not when we came in.
1727 			 *
1728 			 * Aborting from this point might lose some
1729 			 * blocks in the file system, but oh well.
1730 			 */
1731 			xfs_bmap_cancel(&free_list);
1732 			if (committed) {
1733 				/*
1734 				 * If the passed in transaction committed
1735 				 * in xfs_bmap_finish(), then we want to
1736 				 * add the inode to this one before returning.
1737 				 * This keeps things simple for the higher
1738 				 * level code, because it always knows that
1739 				 * the inode is locked and held in the
1740 				 * transaction that returns to it whether
1741 				 * errors occur or not.  We don't mark the
1742 				 * inode dirty so that this transaction can
1743 				 * be easily aborted if possible.
1744 				 */
1745 				xfs_trans_ijoin(ntp, ip,
1746 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1747 				xfs_trans_ihold(ntp, ip);
1748 			}
1749 			return error;
1750 		}
1751 
1752 		if (committed) {
1753 			/*
1754 			 * The first xact was committed,
1755 			 * so add the inode to the new one.
1756 			 * Mark it dirty so it will be logged
1757 			 * and moved forward in the log as
1758 			 * part of every commit.
1759 			 */
1760 			xfs_trans_ijoin(ntp, ip,
1761 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1762 			xfs_trans_ihold(ntp, ip);
1763 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1764 		}
1765 		ntp = xfs_trans_dup(ntp);
1766 		(void) xfs_trans_commit(*tp, 0);
1767 		*tp = ntp;
1768 		error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1769 					  XFS_TRANS_PERM_LOG_RES,
1770 					  XFS_ITRUNCATE_LOG_COUNT);
1771 		/*
1772 		 * Add the inode being truncated to the next chained
1773 		 * transaction.
1774 		 */
1775 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1776 		xfs_trans_ihold(ntp, ip);
1777 		if (error)
1778 			return (error);
1779 	}
1780 	/*
1781 	 * Only update the size in the case of the data fork, but
1782 	 * always re-log the inode so that our permanent transaction
1783 	 * can keep on rolling it forward in the log.
1784 	 */
1785 	if (fork == XFS_DATA_FORK) {
1786 		xfs_isize_check(mp, ip, new_size);
1787 		/*
1788 		 * If we are not changing the file size then do
1789 		 * not update the on-disk file size - we may be
1790 		 * called from xfs_inactive_free_eofblocks().  If we
1791 		 * update the on-disk file size and then the system
1792 		 * crashes before the contents of the file are
1793 		 * flushed to disk then the files may be full of
1794 		 * holes (ie NULL files bug).
1795 		 */
1796 		if (ip->i_size != new_size) {
1797 			ip->i_d.di_size = new_size;
1798 			ip->i_size = new_size;
1799 		}
1800 	}
1801 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1802 	ASSERT((new_size != 0) ||
1803 	       (fork == XFS_ATTR_FORK) ||
1804 	       (ip->i_delayed_blks == 0));
1805 	ASSERT((new_size != 0) ||
1806 	       (fork == XFS_ATTR_FORK) ||
1807 	       (ip->i_d.di_nextents == 0));
1808 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1809 	return 0;
1810 }
1811 
1812 
1813 /*
1814  * xfs_igrow_start
1815  *
1816  * Do the first part of growing a file: zero any data in the last
1817  * block that is beyond the old EOF.  We need to do this before
1818  * the inode is joined to the transaction to modify the i_size.
1819  * That way we can drop the inode lock and call into the buffer
1820  * cache to get the buffer mapping the EOF.
1821  */
1822 int
1823 xfs_igrow_start(
1824 	xfs_inode_t	*ip,
1825 	xfs_fsize_t	new_size,
1826 	cred_t		*credp)
1827 {
1828 	int		error;
1829 
1830 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1831 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1832 	ASSERT(new_size > ip->i_size);
1833 
1834 	/*
1835 	 * Zero any pages that may have been created by
1836 	 * xfs_write_file() beyond the end of the file
1837 	 * and any blocks between the old and new file sizes.
1838 	 */
1839 	error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1840 			     ip->i_size);
1841 	return error;
1842 }
1843 
1844 /*
1845  * xfs_igrow_finish
1846  *
1847  * This routine is called to extend the size of a file.
1848  * The inode must have both the iolock and the ilock locked
1849  * for update and it must be a part of the current transaction.
1850  * The xfs_igrow_start() function must have been called previously.
1851  * If the change_flag is not zero, the inode change timestamp will
1852  * be updated.
1853  */
1854 void
1855 xfs_igrow_finish(
1856 	xfs_trans_t	*tp,
1857 	xfs_inode_t	*ip,
1858 	xfs_fsize_t	new_size,
1859 	int		change_flag)
1860 {
1861 	ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1862 	ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1863 	ASSERT(ip->i_transp == tp);
1864 	ASSERT(new_size > ip->i_size);
1865 
1866 	/*
1867 	 * Update the file size.  Update the inode change timestamp
1868 	 * if change_flag set.
1869 	 */
1870 	ip->i_d.di_size = new_size;
1871 	ip->i_size = new_size;
1872 	if (change_flag)
1873 		xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1874 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1875 
1876 }
1877 
1878 
1879 /*
1880  * This is called when the inode's link count goes to 0.
1881  * We place the on-disk inode on a list in the AGI.  It
1882  * will be pulled from this list when the inode is freed.
1883  */
1884 int
1885 xfs_iunlink(
1886 	xfs_trans_t	*tp,
1887 	xfs_inode_t	*ip)
1888 {
1889 	xfs_mount_t	*mp;
1890 	xfs_agi_t	*agi;
1891 	xfs_dinode_t	*dip;
1892 	xfs_buf_t	*agibp;
1893 	xfs_buf_t	*ibp;
1894 	xfs_agnumber_t	agno;
1895 	xfs_daddr_t	agdaddr;
1896 	xfs_agino_t	agino;
1897 	short		bucket_index;
1898 	int		offset;
1899 	int		error;
1900 	int		agi_ok;
1901 
1902 	ASSERT(ip->i_d.di_nlink == 0);
1903 	ASSERT(ip->i_d.di_mode != 0);
1904 	ASSERT(ip->i_transp == tp);
1905 
1906 	mp = tp->t_mountp;
1907 
1908 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1909 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1910 
1911 	/*
1912 	 * Get the agi buffer first.  It ensures lock ordering
1913 	 * on the list.
1914 	 */
1915 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1916 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1917 	if (error) {
1918 		return error;
1919 	}
1920 	/*
1921 	 * Validate the magic number of the agi block.
1922 	 */
1923 	agi = XFS_BUF_TO_AGI(agibp);
1924 	agi_ok =
1925 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1926 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1927 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1928 			XFS_RANDOM_IUNLINK))) {
1929 		XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1930 		xfs_trans_brelse(tp, agibp);
1931 		return XFS_ERROR(EFSCORRUPTED);
1932 	}
1933 	/*
1934 	 * Get the index into the agi hash table for the
1935 	 * list this inode will go on.
1936 	 */
1937 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1938 	ASSERT(agino != 0);
1939 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1940 	ASSERT(agi->agi_unlinked[bucket_index]);
1941 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1942 
1943 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1944 		/*
1945 		 * There is already another inode in the bucket we need
1946 		 * to add ourselves to.  Add us at the front of the list.
1947 		 * Here we put the head pointer into our next pointer,
1948 		 * and then we fall through to point the head at us.
1949 		 */
1950 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1951 		if (error) {
1952 			return error;
1953 		}
1954 		ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1955 		ASSERT(dip->di_next_unlinked);
1956 		/* both on-disk, don't endian flip twice */
1957 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1958 		offset = ip->i_boffset +
1959 			offsetof(xfs_dinode_t, di_next_unlinked);
1960 		xfs_trans_inode_buf(tp, ibp);
1961 		xfs_trans_log_buf(tp, ibp, offset,
1962 				  (offset + sizeof(xfs_agino_t) - 1));
1963 		xfs_inobp_check(mp, ibp);
1964 	}
1965 
1966 	/*
1967 	 * Point the bucket head pointer at the inode being inserted.
1968 	 */
1969 	ASSERT(agino != 0);
1970 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1971 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1972 		(sizeof(xfs_agino_t) * bucket_index);
1973 	xfs_trans_log_buf(tp, agibp, offset,
1974 			  (offset + sizeof(xfs_agino_t) - 1));
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Pull the on-disk inode from the AGI unlinked list.
1980  */
1981 STATIC int
1982 xfs_iunlink_remove(
1983 	xfs_trans_t	*tp,
1984 	xfs_inode_t	*ip)
1985 {
1986 	xfs_ino_t	next_ino;
1987 	xfs_mount_t	*mp;
1988 	xfs_agi_t	*agi;
1989 	xfs_dinode_t	*dip;
1990 	xfs_buf_t	*agibp;
1991 	xfs_buf_t	*ibp;
1992 	xfs_agnumber_t	agno;
1993 	xfs_daddr_t	agdaddr;
1994 	xfs_agino_t	agino;
1995 	xfs_agino_t	next_agino;
1996 	xfs_buf_t	*last_ibp;
1997 	xfs_dinode_t	*last_dip = NULL;
1998 	short		bucket_index;
1999 	int		offset, last_offset = 0;
2000 	int		error;
2001 	int		agi_ok;
2002 
2003 	/*
2004 	 * First pull the on-disk inode from the AGI unlinked list.
2005 	 */
2006 	mp = tp->t_mountp;
2007 
2008 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2009 	agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2010 
2011 	/*
2012 	 * Get the agi buffer first.  It ensures lock ordering
2013 	 * on the list.
2014 	 */
2015 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2016 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2017 	if (error) {
2018 		cmn_err(CE_WARN,
2019 			"xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.",
2020 			error, mp->m_fsname);
2021 		return error;
2022 	}
2023 	/*
2024 	 * Validate the magic number of the agi block.
2025 	 */
2026 	agi = XFS_BUF_TO_AGI(agibp);
2027 	agi_ok =
2028 		be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2029 		XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2030 	if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2031 			XFS_RANDOM_IUNLINK_REMOVE))) {
2032 		XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2033 				     mp, agi);
2034 		xfs_trans_brelse(tp, agibp);
2035 		cmn_err(CE_WARN,
2036 			"xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.",
2037 			 mp->m_fsname);
2038 		return XFS_ERROR(EFSCORRUPTED);
2039 	}
2040 	/*
2041 	 * Get the index into the agi hash table for the
2042 	 * list this inode will go on.
2043 	 */
2044 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2045 	ASSERT(agino != 0);
2046 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2047 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2048 	ASSERT(agi->agi_unlinked[bucket_index]);
2049 
2050 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2051 		/*
2052 		 * We're at the head of the list.  Get the inode's
2053 		 * on-disk buffer to see if there is anyone after us
2054 		 * on the list.  Only modify our next pointer if it
2055 		 * is not already NULLAGINO.  This saves us the overhead
2056 		 * of dealing with the buffer when there is no need to
2057 		 * change it.
2058 		 */
2059 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2060 		if (error) {
2061 			cmn_err(CE_WARN,
2062 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2063 				error, mp->m_fsname);
2064 			return error;
2065 		}
2066 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2067 		ASSERT(next_agino != 0);
2068 		if (next_agino != NULLAGINO) {
2069 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2070 			offset = ip->i_boffset +
2071 				offsetof(xfs_dinode_t, di_next_unlinked);
2072 			xfs_trans_inode_buf(tp, ibp);
2073 			xfs_trans_log_buf(tp, ibp, offset,
2074 					  (offset + sizeof(xfs_agino_t) - 1));
2075 			xfs_inobp_check(mp, ibp);
2076 		} else {
2077 			xfs_trans_brelse(tp, ibp);
2078 		}
2079 		/*
2080 		 * Point the bucket head pointer at the next inode.
2081 		 */
2082 		ASSERT(next_agino != 0);
2083 		ASSERT(next_agino != agino);
2084 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2085 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2086 			(sizeof(xfs_agino_t) * bucket_index);
2087 		xfs_trans_log_buf(tp, agibp, offset,
2088 				  (offset + sizeof(xfs_agino_t) - 1));
2089 	} else {
2090 		/*
2091 		 * We need to search the list for the inode being freed.
2092 		 */
2093 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2094 		last_ibp = NULL;
2095 		while (next_agino != agino) {
2096 			/*
2097 			 * If the last inode wasn't the one pointing to
2098 			 * us, then release its buffer since we're not
2099 			 * going to do anything with it.
2100 			 */
2101 			if (last_ibp != NULL) {
2102 				xfs_trans_brelse(tp, last_ibp);
2103 			}
2104 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2105 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2106 					    &last_ibp, &last_offset);
2107 			if (error) {
2108 				cmn_err(CE_WARN,
2109 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
2110 					error, mp->m_fsname);
2111 				return error;
2112 			}
2113 			next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2114 			ASSERT(next_agino != NULLAGINO);
2115 			ASSERT(next_agino != 0);
2116 		}
2117 		/*
2118 		 * Now last_ibp points to the buffer previous to us on
2119 		 * the unlinked list.  Pull us from the list.
2120 		 */
2121 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2122 		if (error) {
2123 			cmn_err(CE_WARN,
2124 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
2125 				error, mp->m_fsname);
2126 			return error;
2127 		}
2128 		next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2129 		ASSERT(next_agino != 0);
2130 		ASSERT(next_agino != agino);
2131 		if (next_agino != NULLAGINO) {
2132 			INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2133 			offset = ip->i_boffset +
2134 				offsetof(xfs_dinode_t, di_next_unlinked);
2135 			xfs_trans_inode_buf(tp, ibp);
2136 			xfs_trans_log_buf(tp, ibp, offset,
2137 					  (offset + sizeof(xfs_agino_t) - 1));
2138 			xfs_inobp_check(mp, ibp);
2139 		} else {
2140 			xfs_trans_brelse(tp, ibp);
2141 		}
2142 		/*
2143 		 * Point the previous inode on the list to the next inode.
2144 		 */
2145 		INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2146 		ASSERT(next_agino != 0);
2147 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2148 		xfs_trans_inode_buf(tp, last_ibp);
2149 		xfs_trans_log_buf(tp, last_ibp, offset,
2150 				  (offset + sizeof(xfs_agino_t) - 1));
2151 		xfs_inobp_check(mp, last_ibp);
2152 	}
2153 	return 0;
2154 }
2155 
2156 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2157 {
2158 	return (((ip->i_itemp == NULL) ||
2159 		!(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2160 		(ip->i_update_core == 0));
2161 }
2162 
2163 STATIC void
2164 xfs_ifree_cluster(
2165 	xfs_inode_t	*free_ip,
2166 	xfs_trans_t	*tp,
2167 	xfs_ino_t	inum)
2168 {
2169 	xfs_mount_t		*mp = free_ip->i_mount;
2170 	int			blks_per_cluster;
2171 	int			nbufs;
2172 	int			ninodes;
2173 	int			i, j, found, pre_flushed;
2174 	xfs_daddr_t		blkno;
2175 	xfs_buf_t		*bp;
2176 	xfs_ihash_t		*ih;
2177 	xfs_inode_t		*ip, **ip_found;
2178 	xfs_inode_log_item_t	*iip;
2179 	xfs_log_item_t		*lip;
2180 	SPLDECL(s);
2181 
2182 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2183 		blks_per_cluster = 1;
2184 		ninodes = mp->m_sb.sb_inopblock;
2185 		nbufs = XFS_IALLOC_BLOCKS(mp);
2186 	} else {
2187 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2188 					mp->m_sb.sb_blocksize;
2189 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2190 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2191 	}
2192 
2193 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2194 
2195 	for (j = 0; j < nbufs; j++, inum += ninodes) {
2196 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2197 					 XFS_INO_TO_AGBNO(mp, inum));
2198 
2199 
2200 		/*
2201 		 * Look for each inode in memory and attempt to lock it,
2202 		 * we can be racing with flush and tail pushing here.
2203 		 * any inode we get the locks on, add to an array of
2204 		 * inode items to process later.
2205 		 *
2206 		 * The get the buffer lock, we could beat a flush
2207 		 * or tail pushing thread to the lock here, in which
2208 		 * case they will go looking for the inode buffer
2209 		 * and fail, we need some other form of interlock
2210 		 * here.
2211 		 */
2212 		found = 0;
2213 		for (i = 0; i < ninodes; i++) {
2214 			ih = XFS_IHASH(mp, inum + i);
2215 			read_lock(&ih->ih_lock);
2216 			for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2217 				if (ip->i_ino == inum + i)
2218 					break;
2219 			}
2220 
2221 			/* Inode not in memory or we found it already,
2222 			 * nothing to do
2223 			 */
2224 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2225 				read_unlock(&ih->ih_lock);
2226 				continue;
2227 			}
2228 
2229 			if (xfs_inode_clean(ip)) {
2230 				read_unlock(&ih->ih_lock);
2231 				continue;
2232 			}
2233 
2234 			/* If we can get the locks then add it to the
2235 			 * list, otherwise by the time we get the bp lock
2236 			 * below it will already be attached to the
2237 			 * inode buffer.
2238 			 */
2239 
2240 			/* This inode will already be locked - by us, lets
2241 			 * keep it that way.
2242 			 */
2243 
2244 			if (ip == free_ip) {
2245 				if (xfs_iflock_nowait(ip)) {
2246 					xfs_iflags_set(ip, XFS_ISTALE);
2247 					if (xfs_inode_clean(ip)) {
2248 						xfs_ifunlock(ip);
2249 					} else {
2250 						ip_found[found++] = ip;
2251 					}
2252 				}
2253 				read_unlock(&ih->ih_lock);
2254 				continue;
2255 			}
2256 
2257 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2258 				if (xfs_iflock_nowait(ip)) {
2259 					xfs_iflags_set(ip, XFS_ISTALE);
2260 
2261 					if (xfs_inode_clean(ip)) {
2262 						xfs_ifunlock(ip);
2263 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
2264 					} else {
2265 						ip_found[found++] = ip;
2266 					}
2267 				} else {
2268 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2269 				}
2270 			}
2271 
2272 			read_unlock(&ih->ih_lock);
2273 		}
2274 
2275 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2276 					mp->m_bsize * blks_per_cluster,
2277 					XFS_BUF_LOCK);
2278 
2279 		pre_flushed = 0;
2280 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2281 		while (lip) {
2282 			if (lip->li_type == XFS_LI_INODE) {
2283 				iip = (xfs_inode_log_item_t *)lip;
2284 				ASSERT(iip->ili_logged == 1);
2285 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2286 				AIL_LOCK(mp,s);
2287 				iip->ili_flush_lsn = iip->ili_item.li_lsn;
2288 				AIL_UNLOCK(mp, s);
2289 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2290 				pre_flushed++;
2291 			}
2292 			lip = lip->li_bio_list;
2293 		}
2294 
2295 		for (i = 0; i < found; i++) {
2296 			ip = ip_found[i];
2297 			iip = ip->i_itemp;
2298 
2299 			if (!iip) {
2300 				ip->i_update_core = 0;
2301 				xfs_ifunlock(ip);
2302 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2303 				continue;
2304 			}
2305 
2306 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2307 			iip->ili_format.ilf_fields = 0;
2308 			iip->ili_logged = 1;
2309 			AIL_LOCK(mp,s);
2310 			iip->ili_flush_lsn = iip->ili_item.li_lsn;
2311 			AIL_UNLOCK(mp, s);
2312 
2313 			xfs_buf_attach_iodone(bp,
2314 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
2315 				xfs_istale_done, (xfs_log_item_t *)iip);
2316 			if (ip != free_ip) {
2317 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2318 			}
2319 		}
2320 
2321 		if (found || pre_flushed)
2322 			xfs_trans_stale_inode_buf(tp, bp);
2323 		xfs_trans_binval(tp, bp);
2324 	}
2325 
2326 	kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2327 }
2328 
2329 /*
2330  * This is called to return an inode to the inode free list.
2331  * The inode should already be truncated to 0 length and have
2332  * no pages associated with it.  This routine also assumes that
2333  * the inode is already a part of the transaction.
2334  *
2335  * The on-disk copy of the inode will have been added to the list
2336  * of unlinked inodes in the AGI. We need to remove the inode from
2337  * that list atomically with respect to freeing it here.
2338  */
2339 int
2340 xfs_ifree(
2341 	xfs_trans_t	*tp,
2342 	xfs_inode_t	*ip,
2343 	xfs_bmap_free_t	*flist)
2344 {
2345 	int			error;
2346 	int			delete;
2347 	xfs_ino_t		first_ino;
2348 
2349 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2350 	ASSERT(ip->i_transp == tp);
2351 	ASSERT(ip->i_d.di_nlink == 0);
2352 	ASSERT(ip->i_d.di_nextents == 0);
2353 	ASSERT(ip->i_d.di_anextents == 0);
2354 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2355 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2356 	ASSERT(ip->i_d.di_nblocks == 0);
2357 
2358 	/*
2359 	 * Pull the on-disk inode from the AGI unlinked list.
2360 	 */
2361 	error = xfs_iunlink_remove(tp, ip);
2362 	if (error != 0) {
2363 		return error;
2364 	}
2365 
2366 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2367 	if (error != 0) {
2368 		return error;
2369 	}
2370 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2371 	ip->i_d.di_flags = 0;
2372 	ip->i_d.di_dmevmask = 0;
2373 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2374 	ip->i_df.if_ext_max =
2375 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2376 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2377 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2378 	/*
2379 	 * Bump the generation count so no one will be confused
2380 	 * by reincarnations of this inode.
2381 	 */
2382 	ip->i_d.di_gen++;
2383 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2384 
2385 	if (delete) {
2386 		xfs_ifree_cluster(ip, tp, first_ino);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 /*
2393  * Reallocate the space for if_broot based on the number of records
2394  * being added or deleted as indicated in rec_diff.  Move the records
2395  * and pointers in if_broot to fit the new size.  When shrinking this
2396  * will eliminate holes between the records and pointers created by
2397  * the caller.  When growing this will create holes to be filled in
2398  * by the caller.
2399  *
2400  * The caller must not request to add more records than would fit in
2401  * the on-disk inode root.  If the if_broot is currently NULL, then
2402  * if we adding records one will be allocated.  The caller must also
2403  * not request that the number of records go below zero, although
2404  * it can go to zero.
2405  *
2406  * ip -- the inode whose if_broot area is changing
2407  * ext_diff -- the change in the number of records, positive or negative,
2408  *	 requested for the if_broot array.
2409  */
2410 void
2411 xfs_iroot_realloc(
2412 	xfs_inode_t		*ip,
2413 	int			rec_diff,
2414 	int			whichfork)
2415 {
2416 	int			cur_max;
2417 	xfs_ifork_t		*ifp;
2418 	xfs_bmbt_block_t	*new_broot;
2419 	int			new_max;
2420 	size_t			new_size;
2421 	char			*np;
2422 	char			*op;
2423 
2424 	/*
2425 	 * Handle the degenerate case quietly.
2426 	 */
2427 	if (rec_diff == 0) {
2428 		return;
2429 	}
2430 
2431 	ifp = XFS_IFORK_PTR(ip, whichfork);
2432 	if (rec_diff > 0) {
2433 		/*
2434 		 * If there wasn't any memory allocated before, just
2435 		 * allocate it now and get out.
2436 		 */
2437 		if (ifp->if_broot_bytes == 0) {
2438 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2439 			ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2440 								     KM_SLEEP);
2441 			ifp->if_broot_bytes = (int)new_size;
2442 			return;
2443 		}
2444 
2445 		/*
2446 		 * If there is already an existing if_broot, then we need
2447 		 * to realloc() it and shift the pointers to their new
2448 		 * location.  The records don't change location because
2449 		 * they are kept butted up against the btree block header.
2450 		 */
2451 		cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2452 		new_max = cur_max + rec_diff;
2453 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2454 		ifp->if_broot = (xfs_bmbt_block_t *)
2455 		  kmem_realloc(ifp->if_broot,
2456 				new_size,
2457 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2458 				KM_SLEEP);
2459 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2460 						      ifp->if_broot_bytes);
2461 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2462 						      (int)new_size);
2463 		ifp->if_broot_bytes = (int)new_size;
2464 		ASSERT(ifp->if_broot_bytes <=
2465 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2466 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2467 		return;
2468 	}
2469 
2470 	/*
2471 	 * rec_diff is less than 0.  In this case, we are shrinking the
2472 	 * if_broot buffer.  It must already exist.  If we go to zero
2473 	 * records, just get rid of the root and clear the status bit.
2474 	 */
2475 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2476 	cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2477 	new_max = cur_max + rec_diff;
2478 	ASSERT(new_max >= 0);
2479 	if (new_max > 0)
2480 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2481 	else
2482 		new_size = 0;
2483 	if (new_size > 0) {
2484 		new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2485 		/*
2486 		 * First copy over the btree block header.
2487 		 */
2488 		memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2489 	} else {
2490 		new_broot = NULL;
2491 		ifp->if_flags &= ~XFS_IFBROOT;
2492 	}
2493 
2494 	/*
2495 	 * Only copy the records and pointers if there are any.
2496 	 */
2497 	if (new_max > 0) {
2498 		/*
2499 		 * First copy the records.
2500 		 */
2501 		op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2502 						     ifp->if_broot_bytes);
2503 		np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2504 						     (int)new_size);
2505 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2506 
2507 		/*
2508 		 * Then copy the pointers.
2509 		 */
2510 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2511 						     ifp->if_broot_bytes);
2512 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2513 						     (int)new_size);
2514 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2515 	}
2516 	kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2517 	ifp->if_broot = new_broot;
2518 	ifp->if_broot_bytes = (int)new_size;
2519 	ASSERT(ifp->if_broot_bytes <=
2520 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2521 	return;
2522 }
2523 
2524 
2525 /*
2526  * This is called when the amount of space needed for if_data
2527  * is increased or decreased.  The change in size is indicated by
2528  * the number of bytes that need to be added or deleted in the
2529  * byte_diff parameter.
2530  *
2531  * If the amount of space needed has decreased below the size of the
2532  * inline buffer, then switch to using the inline buffer.  Otherwise,
2533  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2534  * to what is needed.
2535  *
2536  * ip -- the inode whose if_data area is changing
2537  * byte_diff -- the change in the number of bytes, positive or negative,
2538  *	 requested for the if_data array.
2539  */
2540 void
2541 xfs_idata_realloc(
2542 	xfs_inode_t	*ip,
2543 	int		byte_diff,
2544 	int		whichfork)
2545 {
2546 	xfs_ifork_t	*ifp;
2547 	int		new_size;
2548 	int		real_size;
2549 
2550 	if (byte_diff == 0) {
2551 		return;
2552 	}
2553 
2554 	ifp = XFS_IFORK_PTR(ip, whichfork);
2555 	new_size = (int)ifp->if_bytes + byte_diff;
2556 	ASSERT(new_size >= 0);
2557 
2558 	if (new_size == 0) {
2559 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2560 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2561 		}
2562 		ifp->if_u1.if_data = NULL;
2563 		real_size = 0;
2564 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2565 		/*
2566 		 * If the valid extents/data can fit in if_inline_ext/data,
2567 		 * copy them from the malloc'd vector and free it.
2568 		 */
2569 		if (ifp->if_u1.if_data == NULL) {
2570 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2571 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2572 			ASSERT(ifp->if_real_bytes != 0);
2573 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2574 			      new_size);
2575 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2576 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2577 		}
2578 		real_size = 0;
2579 	} else {
2580 		/*
2581 		 * Stuck with malloc/realloc.
2582 		 * For inline data, the underlying buffer must be
2583 		 * a multiple of 4 bytes in size so that it can be
2584 		 * logged and stay on word boundaries.  We enforce
2585 		 * that here.
2586 		 */
2587 		real_size = roundup(new_size, 4);
2588 		if (ifp->if_u1.if_data == NULL) {
2589 			ASSERT(ifp->if_real_bytes == 0);
2590 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2591 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2592 			/*
2593 			 * Only do the realloc if the underlying size
2594 			 * is really changing.
2595 			 */
2596 			if (ifp->if_real_bytes != real_size) {
2597 				ifp->if_u1.if_data =
2598 					kmem_realloc(ifp->if_u1.if_data,
2599 							real_size,
2600 							ifp->if_real_bytes,
2601 							KM_SLEEP);
2602 			}
2603 		} else {
2604 			ASSERT(ifp->if_real_bytes == 0);
2605 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2606 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2607 				ifp->if_bytes);
2608 		}
2609 	}
2610 	ifp->if_real_bytes = real_size;
2611 	ifp->if_bytes = new_size;
2612 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2613 }
2614 
2615 
2616 
2617 
2618 /*
2619  * Map inode to disk block and offset.
2620  *
2621  * mp -- the mount point structure for the current file system
2622  * tp -- the current transaction
2623  * ino -- the inode number of the inode to be located
2624  * imap -- this structure is filled in with the information necessary
2625  *	 to retrieve the given inode from disk
2626  * flags -- flags to pass to xfs_dilocate indicating whether or not
2627  *	 lookups in the inode btree were OK or not
2628  */
2629 int
2630 xfs_imap(
2631 	xfs_mount_t	*mp,
2632 	xfs_trans_t	*tp,
2633 	xfs_ino_t	ino,
2634 	xfs_imap_t	*imap,
2635 	uint		flags)
2636 {
2637 	xfs_fsblock_t	fsbno;
2638 	int		len;
2639 	int		off;
2640 	int		error;
2641 
2642 	fsbno = imap->im_blkno ?
2643 		XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2644 	error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2645 	if (error != 0) {
2646 		return error;
2647 	}
2648 	imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2649 	imap->im_len = XFS_FSB_TO_BB(mp, len);
2650 	imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2651 	imap->im_ioffset = (ushort)off;
2652 	imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2653 	return 0;
2654 }
2655 
2656 void
2657 xfs_idestroy_fork(
2658 	xfs_inode_t	*ip,
2659 	int		whichfork)
2660 {
2661 	xfs_ifork_t	*ifp;
2662 
2663 	ifp = XFS_IFORK_PTR(ip, whichfork);
2664 	if (ifp->if_broot != NULL) {
2665 		kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2666 		ifp->if_broot = NULL;
2667 	}
2668 
2669 	/*
2670 	 * If the format is local, then we can't have an extents
2671 	 * array so just look for an inline data array.  If we're
2672 	 * not local then we may or may not have an extents list,
2673 	 * so check and free it up if we do.
2674 	 */
2675 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2676 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2677 		    (ifp->if_u1.if_data != NULL)) {
2678 			ASSERT(ifp->if_real_bytes != 0);
2679 			kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2680 			ifp->if_u1.if_data = NULL;
2681 			ifp->if_real_bytes = 0;
2682 		}
2683 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2684 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2685 		    ((ifp->if_u1.if_extents != NULL) &&
2686 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2687 		ASSERT(ifp->if_real_bytes != 0);
2688 		xfs_iext_destroy(ifp);
2689 	}
2690 	ASSERT(ifp->if_u1.if_extents == NULL ||
2691 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2692 	ASSERT(ifp->if_real_bytes == 0);
2693 	if (whichfork == XFS_ATTR_FORK) {
2694 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2695 		ip->i_afp = NULL;
2696 	}
2697 }
2698 
2699 /*
2700  * This is called free all the memory associated with an inode.
2701  * It must free the inode itself and any buffers allocated for
2702  * if_extents/if_data and if_broot.  It must also free the lock
2703  * associated with the inode.
2704  */
2705 void
2706 xfs_idestroy(
2707 	xfs_inode_t	*ip)
2708 {
2709 
2710 	switch (ip->i_d.di_mode & S_IFMT) {
2711 	case S_IFREG:
2712 	case S_IFDIR:
2713 	case S_IFLNK:
2714 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
2715 		break;
2716 	}
2717 	if (ip->i_afp)
2718 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2719 	mrfree(&ip->i_lock);
2720 	mrfree(&ip->i_iolock);
2721 	freesema(&ip->i_flock);
2722 #ifdef XFS_BMAP_TRACE
2723 	ktrace_free(ip->i_xtrace);
2724 #endif
2725 #ifdef XFS_BMBT_TRACE
2726 	ktrace_free(ip->i_btrace);
2727 #endif
2728 #ifdef XFS_RW_TRACE
2729 	ktrace_free(ip->i_rwtrace);
2730 #endif
2731 #ifdef XFS_ILOCK_TRACE
2732 	ktrace_free(ip->i_lock_trace);
2733 #endif
2734 #ifdef XFS_DIR2_TRACE
2735 	ktrace_free(ip->i_dir_trace);
2736 #endif
2737 	if (ip->i_itemp) {
2738 		/*
2739 		 * Only if we are shutting down the fs will we see an
2740 		 * inode still in the AIL. If it is there, we should remove
2741 		 * it to prevent a use-after-free from occurring.
2742 		 */
2743 		xfs_mount_t	*mp = ip->i_mount;
2744 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
2745 		int		s;
2746 
2747 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2748 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
2749 		if (lip->li_flags & XFS_LI_IN_AIL) {
2750 			AIL_LOCK(mp, s);
2751 			if (lip->li_flags & XFS_LI_IN_AIL)
2752 				xfs_trans_delete_ail(mp, lip, s);
2753 			else
2754 				AIL_UNLOCK(mp, s);
2755 		}
2756 		xfs_inode_item_destroy(ip);
2757 	}
2758 	kmem_zone_free(xfs_inode_zone, ip);
2759 }
2760 
2761 
2762 /*
2763  * Increment the pin count of the given buffer.
2764  * This value is protected by ipinlock spinlock in the mount structure.
2765  */
2766 void
2767 xfs_ipin(
2768 	xfs_inode_t	*ip)
2769 {
2770 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2771 
2772 	atomic_inc(&ip->i_pincount);
2773 }
2774 
2775 /*
2776  * Decrement the pin count of the given inode, and wake up
2777  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
2778  * inode must have been previously pinned with a call to xfs_ipin().
2779  */
2780 void
2781 xfs_iunpin(
2782 	xfs_inode_t	*ip)
2783 {
2784 	ASSERT(atomic_read(&ip->i_pincount) > 0);
2785 
2786 	if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2787 
2788 		/*
2789 		 * If the inode is currently being reclaimed, the link between
2790 		 * the bhv_vnode and the xfs_inode will be broken after the
2791 		 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2792 		 * set, then we can move forward and mark the linux inode dirty
2793 		 * knowing that it is still valid as it won't freed until after
2794 		 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2795 		 * i_flags_lock is used to synchronise the setting of the
2796 		 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2797 		 * can execute atomically w.r.t to reclaim by holding this lock
2798 		 * here.
2799 		 *
2800 		 * However, we still need to issue the unpin wakeup call as the
2801 		 * inode reclaim may be blocked waiting for the inode to become
2802 		 * unpinned.
2803 		 */
2804 
2805 		if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2806 			bhv_vnode_t	*vp = XFS_ITOV_NULL(ip);
2807 			struct inode *inode = NULL;
2808 
2809 			BUG_ON(vp == NULL);
2810 			inode = vn_to_inode(vp);
2811 			BUG_ON(inode->i_state & I_CLEAR);
2812 
2813 			/* make sync come back and flush this inode */
2814 			if (!(inode->i_state & (I_NEW|I_FREEING)))
2815 				mark_inode_dirty_sync(inode);
2816 		}
2817 		spin_unlock(&ip->i_flags_lock);
2818 		wake_up(&ip->i_ipin_wait);
2819 	}
2820 }
2821 
2822 /*
2823  * This is called to wait for the given inode to be unpinned.
2824  * It will sleep until this happens.  The caller must have the
2825  * inode locked in at least shared mode so that the buffer cannot
2826  * be subsequently pinned once someone is waiting for it to be
2827  * unpinned.
2828  */
2829 STATIC void
2830 xfs_iunpin_wait(
2831 	xfs_inode_t	*ip)
2832 {
2833 	xfs_inode_log_item_t	*iip;
2834 	xfs_lsn_t	lsn;
2835 
2836 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2837 
2838 	if (atomic_read(&ip->i_pincount) == 0) {
2839 		return;
2840 	}
2841 
2842 	iip = ip->i_itemp;
2843 	if (iip && iip->ili_last_lsn) {
2844 		lsn = iip->ili_last_lsn;
2845 	} else {
2846 		lsn = (xfs_lsn_t)0;
2847 	}
2848 
2849 	/*
2850 	 * Give the log a push so we don't wait here too long.
2851 	 */
2852 	xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2853 
2854 	wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2855 }
2856 
2857 
2858 /*
2859  * xfs_iextents_copy()
2860  *
2861  * This is called to copy the REAL extents (as opposed to the delayed
2862  * allocation extents) from the inode into the given buffer.  It
2863  * returns the number of bytes copied into the buffer.
2864  *
2865  * If there are no delayed allocation extents, then we can just
2866  * memcpy() the extents into the buffer.  Otherwise, we need to
2867  * examine each extent in turn and skip those which are delayed.
2868  */
2869 int
2870 xfs_iextents_copy(
2871 	xfs_inode_t		*ip,
2872 	xfs_bmbt_rec_t		*buffer,
2873 	int			whichfork)
2874 {
2875 	int			copied;
2876 	xfs_bmbt_rec_t		*dest_ep;
2877 	xfs_bmbt_rec_t		*ep;
2878 #ifdef XFS_BMAP_TRACE
2879 	static char		fname[] = "xfs_iextents_copy";
2880 #endif
2881 	int			i;
2882 	xfs_ifork_t		*ifp;
2883 	int			nrecs;
2884 	xfs_fsblock_t		start_block;
2885 
2886 	ifp = XFS_IFORK_PTR(ip, whichfork);
2887 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2888 	ASSERT(ifp->if_bytes > 0);
2889 
2890 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2891 	xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2892 	ASSERT(nrecs > 0);
2893 
2894 	/*
2895 	 * There are some delayed allocation extents in the
2896 	 * inode, so copy the extents one at a time and skip
2897 	 * the delayed ones.  There must be at least one
2898 	 * non-delayed extent.
2899 	 */
2900 	dest_ep = buffer;
2901 	copied = 0;
2902 	for (i = 0; i < nrecs; i++) {
2903 		ep = xfs_iext_get_ext(ifp, i);
2904 		start_block = xfs_bmbt_get_startblock(ep);
2905 		if (ISNULLSTARTBLOCK(start_block)) {
2906 			/*
2907 			 * It's a delayed allocation extent, so skip it.
2908 			 */
2909 			continue;
2910 		}
2911 
2912 		/* Translate to on disk format */
2913 		put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2914 			      (__uint64_t*)&dest_ep->l0);
2915 		put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2916 			      (__uint64_t*)&dest_ep->l1);
2917 		dest_ep++;
2918 		copied++;
2919 	}
2920 	ASSERT(copied != 0);
2921 	xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2922 
2923 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2924 }
2925 
2926 /*
2927  * Each of the following cases stores data into the same region
2928  * of the on-disk inode, so only one of them can be valid at
2929  * any given time. While it is possible to have conflicting formats
2930  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2931  * in EXTENTS format, this can only happen when the fork has
2932  * changed formats after being modified but before being flushed.
2933  * In these cases, the format always takes precedence, because the
2934  * format indicates the current state of the fork.
2935  */
2936 /*ARGSUSED*/
2937 STATIC int
2938 xfs_iflush_fork(
2939 	xfs_inode_t		*ip,
2940 	xfs_dinode_t		*dip,
2941 	xfs_inode_log_item_t	*iip,
2942 	int			whichfork,
2943 	xfs_buf_t		*bp)
2944 {
2945 	char			*cp;
2946 	xfs_ifork_t		*ifp;
2947 	xfs_mount_t		*mp;
2948 #ifdef XFS_TRANS_DEBUG
2949 	int			first;
2950 #endif
2951 	static const short	brootflag[2] =
2952 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2953 	static const short	dataflag[2] =
2954 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2955 	static const short	extflag[2] =
2956 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2957 
2958 	if (iip == NULL)
2959 		return 0;
2960 	ifp = XFS_IFORK_PTR(ip, whichfork);
2961 	/*
2962 	 * This can happen if we gave up in iformat in an error path,
2963 	 * for the attribute fork.
2964 	 */
2965 	if (ifp == NULL) {
2966 		ASSERT(whichfork == XFS_ATTR_FORK);
2967 		return 0;
2968 	}
2969 	cp = XFS_DFORK_PTR(dip, whichfork);
2970 	mp = ip->i_mount;
2971 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2972 	case XFS_DINODE_FMT_LOCAL:
2973 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2974 		    (ifp->if_bytes > 0)) {
2975 			ASSERT(ifp->if_u1.if_data != NULL);
2976 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2977 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2978 		}
2979 		break;
2980 
2981 	case XFS_DINODE_FMT_EXTENTS:
2982 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2983 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2984 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2985 			(ifp->if_bytes == 0));
2986 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2987 			(ifp->if_bytes > 0));
2988 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2989 		    (ifp->if_bytes > 0)) {
2990 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2991 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2992 				whichfork);
2993 		}
2994 		break;
2995 
2996 	case XFS_DINODE_FMT_BTREE:
2997 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2998 		    (ifp->if_broot_bytes > 0)) {
2999 			ASSERT(ifp->if_broot != NULL);
3000 			ASSERT(ifp->if_broot_bytes <=
3001 			       (XFS_IFORK_SIZE(ip, whichfork) +
3002 				XFS_BROOT_SIZE_ADJ));
3003 			xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3004 				(xfs_bmdr_block_t *)cp,
3005 				XFS_DFORK_SIZE(dip, mp, whichfork));
3006 		}
3007 		break;
3008 
3009 	case XFS_DINODE_FMT_DEV:
3010 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3011 			ASSERT(whichfork == XFS_DATA_FORK);
3012 			INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3013 		}
3014 		break;
3015 
3016 	case XFS_DINODE_FMT_UUID:
3017 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3018 			ASSERT(whichfork == XFS_DATA_FORK);
3019 			memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3020 				sizeof(uuid_t));
3021 		}
3022 		break;
3023 
3024 	default:
3025 		ASSERT(0);
3026 		break;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 /*
3033  * xfs_iflush() will write a modified inode's changes out to the
3034  * inode's on disk home.  The caller must have the inode lock held
3035  * in at least shared mode and the inode flush semaphore must be
3036  * held as well.  The inode lock will still be held upon return from
3037  * the call and the caller is free to unlock it.
3038  * The inode flush lock will be unlocked when the inode reaches the disk.
3039  * The flags indicate how the inode's buffer should be written out.
3040  */
3041 int
3042 xfs_iflush(
3043 	xfs_inode_t		*ip,
3044 	uint			flags)
3045 {
3046 	xfs_inode_log_item_t	*iip;
3047 	xfs_buf_t		*bp;
3048 	xfs_dinode_t		*dip;
3049 	xfs_mount_t		*mp;
3050 	int			error;
3051 	/* REFERENCED */
3052 	xfs_chash_t		*ch;
3053 	xfs_inode_t		*iq;
3054 	int			clcount;	/* count of inodes clustered */
3055 	int			bufwasdelwri;
3056 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3057 	SPLDECL(s);
3058 
3059 	XFS_STATS_INC(xs_iflush_count);
3060 
3061 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3062 	ASSERT(issemalocked(&(ip->i_flock)));
3063 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3064 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3065 
3066 	iip = ip->i_itemp;
3067 	mp = ip->i_mount;
3068 
3069 	/*
3070 	 * If the inode isn't dirty, then just release the inode
3071 	 * flush lock and do nothing.
3072 	 */
3073 	if ((ip->i_update_core == 0) &&
3074 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3075 		ASSERT((iip != NULL) ?
3076 			 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3077 		xfs_ifunlock(ip);
3078 		return 0;
3079 	}
3080 
3081 	/*
3082 	 * We can't flush the inode until it is unpinned, so
3083 	 * wait for it.  We know noone new can pin it, because
3084 	 * we are holding the inode lock shared and you need
3085 	 * to hold it exclusively to pin the inode.
3086 	 */
3087 	xfs_iunpin_wait(ip);
3088 
3089 	/*
3090 	 * This may have been unpinned because the filesystem is shutting
3091 	 * down forcibly. If that's the case we must not write this inode
3092 	 * to disk, because the log record didn't make it to disk!
3093 	 */
3094 	if (XFS_FORCED_SHUTDOWN(mp)) {
3095 		ip->i_update_core = 0;
3096 		if (iip)
3097 			iip->ili_format.ilf_fields = 0;
3098 		xfs_ifunlock(ip);
3099 		return XFS_ERROR(EIO);
3100 	}
3101 
3102 	/*
3103 	 * Get the buffer containing the on-disk inode.
3104 	 */
3105 	error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3106 	if (error) {
3107 		xfs_ifunlock(ip);
3108 		return error;
3109 	}
3110 
3111 	/*
3112 	 * Decide how buffer will be flushed out.  This is done before
3113 	 * the call to xfs_iflush_int because this field is zeroed by it.
3114 	 */
3115 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3116 		/*
3117 		 * Flush out the inode buffer according to the directions
3118 		 * of the caller.  In the cases where the caller has given
3119 		 * us a choice choose the non-delwri case.  This is because
3120 		 * the inode is in the AIL and we need to get it out soon.
3121 		 */
3122 		switch (flags) {
3123 		case XFS_IFLUSH_SYNC:
3124 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3125 			flags = 0;
3126 			break;
3127 		case XFS_IFLUSH_ASYNC:
3128 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3129 			flags = INT_ASYNC;
3130 			break;
3131 		case XFS_IFLUSH_DELWRI:
3132 			flags = INT_DELWRI;
3133 			break;
3134 		default:
3135 			ASSERT(0);
3136 			flags = 0;
3137 			break;
3138 		}
3139 	} else {
3140 		switch (flags) {
3141 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 		case XFS_IFLUSH_DELWRI:
3144 			flags = INT_DELWRI;
3145 			break;
3146 		case XFS_IFLUSH_ASYNC:
3147 			flags = INT_ASYNC;
3148 			break;
3149 		case XFS_IFLUSH_SYNC:
3150 			flags = 0;
3151 			break;
3152 		default:
3153 			ASSERT(0);
3154 			flags = 0;
3155 			break;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * First flush out the inode that xfs_iflush was called with.
3161 	 */
3162 	error = xfs_iflush_int(ip, bp);
3163 	if (error) {
3164 		goto corrupt_out;
3165 	}
3166 
3167 	/*
3168 	 * inode clustering:
3169 	 * see if other inodes can be gathered into this write
3170 	 */
3171 
3172 	ip->i_chash->chl_buf = bp;
3173 
3174 	ch = XFS_CHASH(mp, ip->i_blkno);
3175 	s = mutex_spinlock(&ch->ch_lock);
3176 
3177 	clcount = 0;
3178 	for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3179 		/*
3180 		 * Do an un-protected check to see if the inode is dirty and
3181 		 * is a candidate for flushing.  These checks will be repeated
3182 		 * later after the appropriate locks are acquired.
3183 		 */
3184 		iip = iq->i_itemp;
3185 		if ((iq->i_update_core == 0) &&
3186 		    ((iip == NULL) ||
3187 		     !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3188 		      xfs_ipincount(iq) == 0) {
3189 			continue;
3190 		}
3191 
3192 		/*
3193 		 * Try to get locks.  If any are unavailable,
3194 		 * then this inode cannot be flushed and is skipped.
3195 		 */
3196 
3197 		/* get inode locks (just i_lock) */
3198 		if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3199 			/* get inode flush lock */
3200 			if (xfs_iflock_nowait(iq)) {
3201 				/* check if pinned */
3202 				if (xfs_ipincount(iq) == 0) {
3203 					/* arriving here means that
3204 					 * this inode can be flushed.
3205 					 * first re-check that it's
3206 					 * dirty
3207 					 */
3208 					iip = iq->i_itemp;
3209 					if ((iq->i_update_core != 0)||
3210 					    ((iip != NULL) &&
3211 					     (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3212 						clcount++;
3213 						error = xfs_iflush_int(iq, bp);
3214 						if (error) {
3215 							xfs_iunlock(iq,
3216 								    XFS_ILOCK_SHARED);
3217 							goto cluster_corrupt_out;
3218 						}
3219 					} else {
3220 						xfs_ifunlock(iq);
3221 					}
3222 				} else {
3223 					xfs_ifunlock(iq);
3224 				}
3225 			}
3226 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3227 		}
3228 	}
3229 	mutex_spinunlock(&ch->ch_lock, s);
3230 
3231 	if (clcount) {
3232 		XFS_STATS_INC(xs_icluster_flushcnt);
3233 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3234 	}
3235 
3236 	/*
3237 	 * If the buffer is pinned then push on the log so we won't
3238 	 * get stuck waiting in the write for too long.
3239 	 */
3240 	if (XFS_BUF_ISPINNED(bp)){
3241 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3242 	}
3243 
3244 	if (flags & INT_DELWRI) {
3245 		xfs_bdwrite(mp, bp);
3246 	} else if (flags & INT_ASYNC) {
3247 		xfs_bawrite(mp, bp);
3248 	} else {
3249 		error = xfs_bwrite(mp, bp);
3250 	}
3251 	return error;
3252 
3253 corrupt_out:
3254 	xfs_buf_relse(bp);
3255 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3256 	xfs_iflush_abort(ip);
3257 	/*
3258 	 * Unlocks the flush lock
3259 	 */
3260 	return XFS_ERROR(EFSCORRUPTED);
3261 
3262 cluster_corrupt_out:
3263 	/* Corruption detected in the clustering loop.  Invalidate the
3264 	 * inode buffer and shut down the filesystem.
3265 	 */
3266 	mutex_spinunlock(&ch->ch_lock, s);
3267 
3268 	/*
3269 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
3270 	 * brelse can handle it with no problems.  If not, shut down the
3271 	 * filesystem before releasing the buffer.
3272 	 */
3273 	if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3274 		xfs_buf_relse(bp);
3275 	}
3276 
3277 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3278 
3279 	if(!bufwasdelwri)  {
3280 		/*
3281 		 * Just like incore_relse: if we have b_iodone functions,
3282 		 * mark the buffer as an error and call them.  Otherwise
3283 		 * mark it as stale and brelse.
3284 		 */
3285 		if (XFS_BUF_IODONE_FUNC(bp)) {
3286 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3287 			XFS_BUF_UNDONE(bp);
3288 			XFS_BUF_STALE(bp);
3289 			XFS_BUF_SHUT(bp);
3290 			XFS_BUF_ERROR(bp,EIO);
3291 			xfs_biodone(bp);
3292 		} else {
3293 			XFS_BUF_STALE(bp);
3294 			xfs_buf_relse(bp);
3295 		}
3296 	}
3297 
3298 	xfs_iflush_abort(iq);
3299 	/*
3300 	 * Unlocks the flush lock
3301 	 */
3302 	return XFS_ERROR(EFSCORRUPTED);
3303 }
3304 
3305 
3306 STATIC int
3307 xfs_iflush_int(
3308 	xfs_inode_t		*ip,
3309 	xfs_buf_t		*bp)
3310 {
3311 	xfs_inode_log_item_t	*iip;
3312 	xfs_dinode_t		*dip;
3313 	xfs_mount_t		*mp;
3314 #ifdef XFS_TRANS_DEBUG
3315 	int			first;
3316 #endif
3317 	SPLDECL(s);
3318 
3319 	ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3320 	ASSERT(issemalocked(&(ip->i_flock)));
3321 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3322 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
3323 
3324 	iip = ip->i_itemp;
3325 	mp = ip->i_mount;
3326 
3327 
3328 	/*
3329 	 * If the inode isn't dirty, then just release the inode
3330 	 * flush lock and do nothing.
3331 	 */
3332 	if ((ip->i_update_core == 0) &&
3333 	    ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3334 		xfs_ifunlock(ip);
3335 		return 0;
3336 	}
3337 
3338 	/* set *dip = inode's place in the buffer */
3339 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3340 
3341 	/*
3342 	 * Clear i_update_core before copying out the data.
3343 	 * This is for coordination with our timestamp updates
3344 	 * that don't hold the inode lock. They will always
3345 	 * update the timestamps BEFORE setting i_update_core,
3346 	 * so if we clear i_update_core after they set it we
3347 	 * are guaranteed to see their updates to the timestamps.
3348 	 * I believe that this depends on strongly ordered memory
3349 	 * semantics, but we have that.  We use the SYNCHRONIZE
3350 	 * macro to make sure that the compiler does not reorder
3351 	 * the i_update_core access below the data copy below.
3352 	 */
3353 	ip->i_update_core = 0;
3354 	SYNCHRONIZE();
3355 
3356 	/*
3357 	 * Make sure to get the latest atime from the Linux inode.
3358 	 */
3359 	xfs_synchronize_atime(ip);
3360 
3361 	if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3362 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3363 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3365 			ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3366 		goto corrupt_out;
3367 	}
3368 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3369 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3370 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3372 			ip->i_ino, ip, ip->i_d.di_magic);
3373 		goto corrupt_out;
3374 	}
3375 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3376 		if (XFS_TEST_ERROR(
3377 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3378 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3379 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3380 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3382 				ip->i_ino, ip);
3383 			goto corrupt_out;
3384 		}
3385 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3386 		if (XFS_TEST_ERROR(
3387 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3388 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3389 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3390 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3391 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3392 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3393 				ip->i_ino, ip);
3394 			goto corrupt_out;
3395 		}
3396 	}
3397 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3398 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3399 				XFS_RANDOM_IFLUSH_5)) {
3400 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3401 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3402 			ip->i_ino,
3403 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3404 			ip->i_d.di_nblocks,
3405 			ip);
3406 		goto corrupt_out;
3407 	}
3408 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3409 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3410 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3411 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3412 			ip->i_ino, ip->i_d.di_forkoff, ip);
3413 		goto corrupt_out;
3414 	}
3415 	/*
3416 	 * bump the flush iteration count, used to detect flushes which
3417 	 * postdate a log record during recovery.
3418 	 */
3419 
3420 	ip->i_d.di_flushiter++;
3421 
3422 	/*
3423 	 * Copy the dirty parts of the inode into the on-disk
3424 	 * inode.  We always copy out the core of the inode,
3425 	 * because if the inode is dirty at all the core must
3426 	 * be.
3427 	 */
3428 	xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3429 
3430 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3431 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3432 		ip->i_d.di_flushiter = 0;
3433 
3434 	/*
3435 	 * If this is really an old format inode and the superblock version
3436 	 * has not been updated to support only new format inodes, then
3437 	 * convert back to the old inode format.  If the superblock version
3438 	 * has been updated, then make the conversion permanent.
3439 	 */
3440 	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3441 	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3442 	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3443 		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3444 			/*
3445 			 * Convert it back.
3446 			 */
3447 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3448 			INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3449 		} else {
3450 			/*
3451 			 * The superblock version has already been bumped,
3452 			 * so just make the conversion to the new inode
3453 			 * format permanent.
3454 			 */
3455 			ip->i_d.di_version = XFS_DINODE_VERSION_2;
3456 			INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3457 			ip->i_d.di_onlink = 0;
3458 			dip->di_core.di_onlink = 0;
3459 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3460 			memset(&(dip->di_core.di_pad[0]), 0,
3461 			      sizeof(dip->di_core.di_pad));
3462 			ASSERT(ip->i_d.di_projid == 0);
3463 		}
3464 	}
3465 
3466 	if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3467 		goto corrupt_out;
3468 	}
3469 
3470 	if (XFS_IFORK_Q(ip)) {
3471 		/*
3472 		 * The only error from xfs_iflush_fork is on the data fork.
3473 		 */
3474 		(void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3475 	}
3476 	xfs_inobp_check(mp, bp);
3477 
3478 	/*
3479 	 * We've recorded everything logged in the inode, so we'd
3480 	 * like to clear the ilf_fields bits so we don't log and
3481 	 * flush things unnecessarily.  However, we can't stop
3482 	 * logging all this information until the data we've copied
3483 	 * into the disk buffer is written to disk.  If we did we might
3484 	 * overwrite the copy of the inode in the log with all the
3485 	 * data after re-logging only part of it, and in the face of
3486 	 * a crash we wouldn't have all the data we need to recover.
3487 	 *
3488 	 * What we do is move the bits to the ili_last_fields field.
3489 	 * When logging the inode, these bits are moved back to the
3490 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3491 	 * clear ili_last_fields, since we know that the information
3492 	 * those bits represent is permanently on disk.  As long as
3493 	 * the flush completes before the inode is logged again, then
3494 	 * both ilf_fields and ili_last_fields will be cleared.
3495 	 *
3496 	 * We can play with the ilf_fields bits here, because the inode
3497 	 * lock must be held exclusively in order to set bits there
3498 	 * and the flush lock protects the ili_last_fields bits.
3499 	 * Set ili_logged so the flush done
3500 	 * routine can tell whether or not to look in the AIL.
3501 	 * Also, store the current LSN of the inode so that we can tell
3502 	 * whether the item has moved in the AIL from xfs_iflush_done().
3503 	 * In order to read the lsn we need the AIL lock, because
3504 	 * it is a 64 bit value that cannot be read atomically.
3505 	 */
3506 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3507 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3508 		iip->ili_format.ilf_fields = 0;
3509 		iip->ili_logged = 1;
3510 
3511 		ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */
3512 		AIL_LOCK(mp,s);
3513 		iip->ili_flush_lsn = iip->ili_item.li_lsn;
3514 		AIL_UNLOCK(mp, s);
3515 
3516 		/*
3517 		 * Attach the function xfs_iflush_done to the inode's
3518 		 * buffer.  This will remove the inode from the AIL
3519 		 * and unlock the inode's flush lock when the inode is
3520 		 * completely written to disk.
3521 		 */
3522 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3523 				      xfs_iflush_done, (xfs_log_item_t *)iip);
3524 
3525 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3526 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3527 	} else {
3528 		/*
3529 		 * We're flushing an inode which is not in the AIL and has
3530 		 * not been logged but has i_update_core set.  For this
3531 		 * case we can use a B_DELWRI flush and immediately drop
3532 		 * the inode flush lock because we can avoid the whole
3533 		 * AIL state thing.  It's OK to drop the flush lock now,
3534 		 * because we've already locked the buffer and to do anything
3535 		 * you really need both.
3536 		 */
3537 		if (iip != NULL) {
3538 			ASSERT(iip->ili_logged == 0);
3539 			ASSERT(iip->ili_last_fields == 0);
3540 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3541 		}
3542 		xfs_ifunlock(ip);
3543 	}
3544 
3545 	return 0;
3546 
3547 corrupt_out:
3548 	return XFS_ERROR(EFSCORRUPTED);
3549 }
3550 
3551 
3552 /*
3553  * Flush all inactive inodes in mp.
3554  */
3555 void
3556 xfs_iflush_all(
3557 	xfs_mount_t	*mp)
3558 {
3559 	xfs_inode_t	*ip;
3560 	bhv_vnode_t	*vp;
3561 
3562  again:
3563 	XFS_MOUNT_ILOCK(mp);
3564 	ip = mp->m_inodes;
3565 	if (ip == NULL)
3566 		goto out;
3567 
3568 	do {
3569 		/* Make sure we skip markers inserted by sync */
3570 		if (ip->i_mount == NULL) {
3571 			ip = ip->i_mnext;
3572 			continue;
3573 		}
3574 
3575 		vp = XFS_ITOV_NULL(ip);
3576 		if (!vp) {
3577 			XFS_MOUNT_IUNLOCK(mp);
3578 			xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3579 			goto again;
3580 		}
3581 
3582 		ASSERT(vn_count(vp) == 0);
3583 
3584 		ip = ip->i_mnext;
3585 	} while (ip != mp->m_inodes);
3586  out:
3587 	XFS_MOUNT_IUNLOCK(mp);
3588 }
3589 
3590 /*
3591  * xfs_iaccess: check accessibility of inode for mode.
3592  */
3593 int
3594 xfs_iaccess(
3595 	xfs_inode_t	*ip,
3596 	mode_t		mode,
3597 	cred_t		*cr)
3598 {
3599 	int		error;
3600 	mode_t		orgmode = mode;
3601 	struct inode	*inode = vn_to_inode(XFS_ITOV(ip));
3602 
3603 	if (mode & S_IWUSR) {
3604 		umode_t		imode = inode->i_mode;
3605 
3606 		if (IS_RDONLY(inode) &&
3607 		    (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3608 			return XFS_ERROR(EROFS);
3609 
3610 		if (IS_IMMUTABLE(inode))
3611 			return XFS_ERROR(EACCES);
3612 	}
3613 
3614 	/*
3615 	 * If there's an Access Control List it's used instead of
3616 	 * the mode bits.
3617 	 */
3618 	if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3619 		return error ? XFS_ERROR(error) : 0;
3620 
3621 	if (current_fsuid(cr) != ip->i_d.di_uid) {
3622 		mode >>= 3;
3623 		if (!in_group_p((gid_t)ip->i_d.di_gid))
3624 			mode >>= 3;
3625 	}
3626 
3627 	/*
3628 	 * If the DACs are ok we don't need any capability check.
3629 	 */
3630 	if ((ip->i_d.di_mode & mode) == mode)
3631 		return 0;
3632 	/*
3633 	 * Read/write DACs are always overridable.
3634 	 * Executable DACs are overridable if at least one exec bit is set.
3635 	 */
3636 	if (!(orgmode & S_IXUSR) ||
3637 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3638 		if (capable_cred(cr, CAP_DAC_OVERRIDE))
3639 			return 0;
3640 
3641 	if ((orgmode == S_IRUSR) ||
3642 	    (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3643 		if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3644 			return 0;
3645 #ifdef	NOISE
3646 		cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3647 #endif	/* NOISE */
3648 		return XFS_ERROR(EACCES);
3649 	}
3650 	return XFS_ERROR(EACCES);
3651 }
3652 
3653 /*
3654  * xfs_iroundup: round up argument to next power of two
3655  */
3656 uint
3657 xfs_iroundup(
3658 	uint	v)
3659 {
3660 	int i;
3661 	uint m;
3662 
3663 	if ((v & (v - 1)) == 0)
3664 		return v;
3665 	ASSERT((v & 0x80000000) == 0);
3666 	if ((v & (v + 1)) == 0)
3667 		return v + 1;
3668 	for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3669 		if (v & m)
3670 			continue;
3671 		v |= m;
3672 		if ((v & (v + 1)) == 0)
3673 			return v + 1;
3674 	}
3675 	ASSERT(0);
3676 	return( 0 );
3677 }
3678 
3679 #ifdef XFS_ILOCK_TRACE
3680 ktrace_t	*xfs_ilock_trace_buf;
3681 
3682 void
3683 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3684 {
3685 	ktrace_enter(ip->i_lock_trace,
3686 		     (void *)ip,
3687 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3688 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3689 		     (void *)ra,		/* caller of ilock */
3690 		     (void *)(unsigned long)current_cpu(),
3691 		     (void *)(unsigned long)current_pid(),
3692 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3693 }
3694 #endif
3695 
3696 /*
3697  * Return a pointer to the extent record at file index idx.
3698  */
3699 xfs_bmbt_rec_t *
3700 xfs_iext_get_ext(
3701 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3702 	xfs_extnum_t	idx)		/* index of target extent */
3703 {
3704 	ASSERT(idx >= 0);
3705 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3706 		return ifp->if_u1.if_ext_irec->er_extbuf;
3707 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3708 		xfs_ext_irec_t	*erp;		/* irec pointer */
3709 		int		erp_idx = 0;	/* irec index */
3710 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3711 
3712 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3713 		return &erp->er_extbuf[page_idx];
3714 	} else if (ifp->if_bytes) {
3715 		return &ifp->if_u1.if_extents[idx];
3716 	} else {
3717 		return NULL;
3718 	}
3719 }
3720 
3721 /*
3722  * Insert new item(s) into the extent records for incore inode
3723  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3724  */
3725 void
3726 xfs_iext_insert(
3727 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3728 	xfs_extnum_t	idx,		/* starting index of new items */
3729 	xfs_extnum_t	count,		/* number of inserted items */
3730 	xfs_bmbt_irec_t	*new)		/* items to insert */
3731 {
3732 	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
3733 	xfs_extnum_t	i;		/* extent record index */
3734 
3735 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3736 	xfs_iext_add(ifp, idx, count);
3737 	for (i = idx; i < idx + count; i++, new++) {
3738 		ep = xfs_iext_get_ext(ifp, i);
3739 		xfs_bmbt_set_all(ep, new);
3740 	}
3741 }
3742 
3743 /*
3744  * This is called when the amount of space required for incore file
3745  * extents needs to be increased. The ext_diff parameter stores the
3746  * number of new extents being added and the idx parameter contains
3747  * the extent index where the new extents will be added. If the new
3748  * extents are being appended, then we just need to (re)allocate and
3749  * initialize the space. Otherwise, if the new extents are being
3750  * inserted into the middle of the existing entries, a bit more work
3751  * is required to make room for the new extents to be inserted. The
3752  * caller is responsible for filling in the new extent entries upon
3753  * return.
3754  */
3755 void
3756 xfs_iext_add(
3757 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3758 	xfs_extnum_t	idx,		/* index to begin adding exts */
3759 	int		ext_diff)	/* number of extents to add */
3760 {
3761 	int		byte_diff;	/* new bytes being added */
3762 	int		new_size;	/* size of extents after adding */
3763 	xfs_extnum_t	nextents;	/* number of extents in file */
3764 
3765 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3766 	ASSERT((idx >= 0) && (idx <= nextents));
3767 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3768 	new_size = ifp->if_bytes + byte_diff;
3769 	/*
3770 	 * If the new number of extents (nextents + ext_diff)
3771 	 * fits inside the inode, then continue to use the inline
3772 	 * extent buffer.
3773 	 */
3774 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3775 		if (idx < nextents) {
3776 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3777 				&ifp->if_u2.if_inline_ext[idx],
3778 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3779 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3780 		}
3781 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3782 		ifp->if_real_bytes = 0;
3783 		ifp->if_lastex = nextents + ext_diff;
3784 	}
3785 	/*
3786 	 * Otherwise use a linear (direct) extent list.
3787 	 * If the extents are currently inside the inode,
3788 	 * xfs_iext_realloc_direct will switch us from
3789 	 * inline to direct extent allocation mode.
3790 	 */
3791 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3792 		xfs_iext_realloc_direct(ifp, new_size);
3793 		if (idx < nextents) {
3794 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3795 				&ifp->if_u1.if_extents[idx],
3796 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3797 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3798 		}
3799 	}
3800 	/* Indirection array */
3801 	else {
3802 		xfs_ext_irec_t	*erp;
3803 		int		erp_idx = 0;
3804 		int		page_idx = idx;
3805 
3806 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3807 		if (ifp->if_flags & XFS_IFEXTIREC) {
3808 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3809 		} else {
3810 			xfs_iext_irec_init(ifp);
3811 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3812 			erp = ifp->if_u1.if_ext_irec;
3813 		}
3814 		/* Extents fit in target extent page */
3815 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3816 			if (page_idx < erp->er_extcount) {
3817 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3818 					&erp->er_extbuf[page_idx],
3819 					(erp->er_extcount - page_idx) *
3820 					sizeof(xfs_bmbt_rec_t));
3821 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3822 			}
3823 			erp->er_extcount += ext_diff;
3824 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3825 		}
3826 		/* Insert a new extent page */
3827 		else if (erp) {
3828 			xfs_iext_add_indirect_multi(ifp,
3829 				erp_idx, page_idx, ext_diff);
3830 		}
3831 		/*
3832 		 * If extent(s) are being appended to the last page in
3833 		 * the indirection array and the new extent(s) don't fit
3834 		 * in the page, then erp is NULL and erp_idx is set to
3835 		 * the next index needed in the indirection array.
3836 		 */
3837 		else {
3838 			int	count = ext_diff;
3839 
3840 			while (count) {
3841 				erp = xfs_iext_irec_new(ifp, erp_idx);
3842 				erp->er_extcount = count;
3843 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3844 				if (count) {
3845 					erp_idx++;
3846 				}
3847 			}
3848 		}
3849 	}
3850 	ifp->if_bytes = new_size;
3851 }
3852 
3853 /*
3854  * This is called when incore extents are being added to the indirection
3855  * array and the new extents do not fit in the target extent list. The
3856  * erp_idx parameter contains the irec index for the target extent list
3857  * in the indirection array, and the idx parameter contains the extent
3858  * index within the list. The number of extents being added is stored
3859  * in the count parameter.
3860  *
3861  *    |-------|   |-------|
3862  *    |       |   |       |    idx - number of extents before idx
3863  *    |  idx  |   | count |
3864  *    |       |   |       |    count - number of extents being inserted at idx
3865  *    |-------|   |-------|
3866  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3867  *    |-------|   |-------|
3868  */
3869 void
3870 xfs_iext_add_indirect_multi(
3871 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3872 	int		erp_idx,		/* target extent irec index */
3873 	xfs_extnum_t	idx,			/* index within target list */
3874 	int		count)			/* new extents being added */
3875 {
3876 	int		byte_diff;		/* new bytes being added */
3877 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3878 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3879 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3880 	xfs_extnum_t	nex2;			/* extents after idx + count */
3881 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3882 	int		nlists;			/* number of irec's (lists) */
3883 
3884 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3885 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3886 	nex2 = erp->er_extcount - idx;
3887 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3888 
3889 	/*
3890 	 * Save second part of target extent list
3891 	 * (all extents past */
3892 	if (nex2) {
3893 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3894 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3895 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3896 		erp->er_extcount -= nex2;
3897 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3898 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3899 	}
3900 
3901 	/*
3902 	 * Add the new extents to the end of the target
3903 	 * list, then allocate new irec record(s) and
3904 	 * extent buffer(s) as needed to store the rest
3905 	 * of the new extents.
3906 	 */
3907 	ext_cnt = count;
3908 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3909 	if (ext_diff) {
3910 		erp->er_extcount += ext_diff;
3911 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3912 		ext_cnt -= ext_diff;
3913 	}
3914 	while (ext_cnt) {
3915 		erp_idx++;
3916 		erp = xfs_iext_irec_new(ifp, erp_idx);
3917 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3918 		erp->er_extcount = ext_diff;
3919 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3920 		ext_cnt -= ext_diff;
3921 	}
3922 
3923 	/* Add nex2 extents back to indirection array */
3924 	if (nex2) {
3925 		xfs_extnum_t	ext_avail;
3926 		int		i;
3927 
3928 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3929 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3930 		i = 0;
3931 		/*
3932 		 * If nex2 extents fit in the current page, append
3933 		 * nex2_ep after the new extents.
3934 		 */
3935 		if (nex2 <= ext_avail) {
3936 			i = erp->er_extcount;
3937 		}
3938 		/*
3939 		 * Otherwise, check if space is available in the
3940 		 * next page.
3941 		 */
3942 		else if ((erp_idx < nlists - 1) &&
3943 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3944 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3945 			erp_idx++;
3946 			erp++;
3947 			/* Create a hole for nex2 extents */
3948 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3949 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3950 		}
3951 		/*
3952 		 * Final choice, create a new extent page for
3953 		 * nex2 extents.
3954 		 */
3955 		else {
3956 			erp_idx++;
3957 			erp = xfs_iext_irec_new(ifp, erp_idx);
3958 		}
3959 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3960 		kmem_free(nex2_ep, byte_diff);
3961 		erp->er_extcount += nex2;
3962 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3963 	}
3964 }
3965 
3966 /*
3967  * This is called when the amount of space required for incore file
3968  * extents needs to be decreased. The ext_diff parameter stores the
3969  * number of extents to be removed and the idx parameter contains
3970  * the extent index where the extents will be removed from.
3971  *
3972  * If the amount of space needed has decreased below the linear
3973  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3974  * extent array.  Otherwise, use kmem_realloc() to adjust the
3975  * size to what is needed.
3976  */
3977 void
3978 xfs_iext_remove(
3979 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3980 	xfs_extnum_t	idx,		/* index to begin removing exts */
3981 	int		ext_diff)	/* number of extents to remove */
3982 {
3983 	xfs_extnum_t	nextents;	/* number of extents in file */
3984 	int		new_size;	/* size of extents after removal */
3985 
3986 	ASSERT(ext_diff > 0);
3987 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3988 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3989 
3990 	if (new_size == 0) {
3991 		xfs_iext_destroy(ifp);
3992 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3993 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3994 	} else if (ifp->if_real_bytes) {
3995 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3996 	} else {
3997 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3998 	}
3999 	ifp->if_bytes = new_size;
4000 }
4001 
4002 /*
4003  * This removes ext_diff extents from the inline buffer, beginning
4004  * at extent index idx.
4005  */
4006 void
4007 xfs_iext_remove_inline(
4008 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4009 	xfs_extnum_t	idx,		/* index to begin removing exts */
4010 	int		ext_diff)	/* number of extents to remove */
4011 {
4012 	int		nextents;	/* number of extents in file */
4013 
4014 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4015 	ASSERT(idx < XFS_INLINE_EXTS);
4016 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4017 	ASSERT(((nextents - ext_diff) > 0) &&
4018 		(nextents - ext_diff) < XFS_INLINE_EXTS);
4019 
4020 	if (idx + ext_diff < nextents) {
4021 		memmove(&ifp->if_u2.if_inline_ext[idx],
4022 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
4023 			(nextents - (idx + ext_diff)) *
4024 			 sizeof(xfs_bmbt_rec_t));
4025 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4026 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
4027 	} else {
4028 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
4029 			ext_diff * sizeof(xfs_bmbt_rec_t));
4030 	}
4031 }
4032 
4033 /*
4034  * This removes ext_diff extents from a linear (direct) extent list,
4035  * beginning at extent index idx. If the extents are being removed
4036  * from the end of the list (ie. truncate) then we just need to re-
4037  * allocate the list to remove the extra space. Otherwise, if the
4038  * extents are being removed from the middle of the existing extent
4039  * entries, then we first need to move the extent records beginning
4040  * at idx + ext_diff up in the list to overwrite the records being
4041  * removed, then remove the extra space via kmem_realloc.
4042  */
4043 void
4044 xfs_iext_remove_direct(
4045 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4046 	xfs_extnum_t	idx,		/* index to begin removing exts */
4047 	int		ext_diff)	/* number of extents to remove */
4048 {
4049 	xfs_extnum_t	nextents;	/* number of extents in file */
4050 	int		new_size;	/* size of extents after removal */
4051 
4052 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4053 	new_size = ifp->if_bytes -
4054 		(ext_diff * sizeof(xfs_bmbt_rec_t));
4055 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4056 
4057 	if (new_size == 0) {
4058 		xfs_iext_destroy(ifp);
4059 		return;
4060 	}
4061 	/* Move extents up in the list (if needed) */
4062 	if (idx + ext_diff < nextents) {
4063 		memmove(&ifp->if_u1.if_extents[idx],
4064 			&ifp->if_u1.if_extents[idx + ext_diff],
4065 			(nextents - (idx + ext_diff)) *
4066 			 sizeof(xfs_bmbt_rec_t));
4067 	}
4068 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4069 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
4070 	/*
4071 	 * Reallocate the direct extent list. If the extents
4072 	 * will fit inside the inode then xfs_iext_realloc_direct
4073 	 * will switch from direct to inline extent allocation
4074 	 * mode for us.
4075 	 */
4076 	xfs_iext_realloc_direct(ifp, new_size);
4077 	ifp->if_bytes = new_size;
4078 }
4079 
4080 /*
4081  * This is called when incore extents are being removed from the
4082  * indirection array and the extents being removed span multiple extent
4083  * buffers. The idx parameter contains the file extent index where we
4084  * want to begin removing extents, and the count parameter contains
4085  * how many extents need to be removed.
4086  *
4087  *    |-------|   |-------|
4088  *    | nex1  |   |       |    nex1 - number of extents before idx
4089  *    |-------|   | count |
4090  *    |       |   |       |    count - number of extents being removed at idx
4091  *    | count |   |-------|
4092  *    |       |   | nex2  |    nex2 - number of extents after idx + count
4093  *    |-------|   |-------|
4094  */
4095 void
4096 xfs_iext_remove_indirect(
4097 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4098 	xfs_extnum_t	idx,		/* index to begin removing extents */
4099 	int		count)		/* number of extents to remove */
4100 {
4101 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4102 	int		erp_idx = 0;	/* indirection array index */
4103 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
4104 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
4105 	xfs_extnum_t	nex1;		/* number of extents before idx */
4106 	xfs_extnum_t	nex2;		/* extents after idx + count */
4107 	int		nlists;		/* entries in indirection array */
4108 	int		page_idx = idx;	/* index in target extent list */
4109 
4110 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4111 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
4112 	ASSERT(erp != NULL);
4113 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4114 	nex1 = page_idx;
4115 	ext_cnt = count;
4116 	while (ext_cnt) {
4117 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4118 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4119 		/*
4120 		 * Check for deletion of entire list;
4121 		 * xfs_iext_irec_remove() updates extent offsets.
4122 		 */
4123 		if (ext_diff == erp->er_extcount) {
4124 			xfs_iext_irec_remove(ifp, erp_idx);
4125 			ext_cnt -= ext_diff;
4126 			nex1 = 0;
4127 			if (ext_cnt) {
4128 				ASSERT(erp_idx < ifp->if_real_bytes /
4129 					XFS_IEXT_BUFSZ);
4130 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4131 				nex1 = 0;
4132 				continue;
4133 			} else {
4134 				break;
4135 			}
4136 		}
4137 		/* Move extents up (if needed) */
4138 		if (nex2) {
4139 			memmove(&erp->er_extbuf[nex1],
4140 				&erp->er_extbuf[nex1 + ext_diff],
4141 				nex2 * sizeof(xfs_bmbt_rec_t));
4142 		}
4143 		/* Zero out rest of page */
4144 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4145 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4146 		/* Update remaining counters */
4147 		erp->er_extcount -= ext_diff;
4148 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4149 		ext_cnt -= ext_diff;
4150 		nex1 = 0;
4151 		erp_idx++;
4152 		erp++;
4153 	}
4154 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4155 	xfs_iext_irec_compact(ifp);
4156 }
4157 
4158 /*
4159  * Create, destroy, or resize a linear (direct) block of extents.
4160  */
4161 void
4162 xfs_iext_realloc_direct(
4163 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4164 	int		new_size)	/* new size of extents */
4165 {
4166 	int		rnew_size;	/* real new size of extents */
4167 
4168 	rnew_size = new_size;
4169 
4170 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4171 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4172 		 (new_size != ifp->if_real_bytes)));
4173 
4174 	/* Free extent records */
4175 	if (new_size == 0) {
4176 		xfs_iext_destroy(ifp);
4177 	}
4178 	/* Resize direct extent list and zero any new bytes */
4179 	else if (ifp->if_real_bytes) {
4180 		/* Check if extents will fit inside the inode */
4181 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4182 			xfs_iext_direct_to_inline(ifp, new_size /
4183 				(uint)sizeof(xfs_bmbt_rec_t));
4184 			ifp->if_bytes = new_size;
4185 			return;
4186 		}
4187 		if ((new_size & (new_size - 1)) != 0) {
4188 			rnew_size = xfs_iroundup(new_size);
4189 		}
4190 		if (rnew_size != ifp->if_real_bytes) {
4191 			ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4192 				kmem_realloc(ifp->if_u1.if_extents,
4193 						rnew_size,
4194 						ifp->if_real_bytes,
4195 						KM_SLEEP);
4196 		}
4197 		if (rnew_size > ifp->if_real_bytes) {
4198 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4199 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
4200 				rnew_size - ifp->if_real_bytes);
4201 		}
4202 	}
4203 	/*
4204 	 * Switch from the inline extent buffer to a direct
4205 	 * extent list. Be sure to include the inline extent
4206 	 * bytes in new_size.
4207 	 */
4208 	else {
4209 		new_size += ifp->if_bytes;
4210 		if ((new_size & (new_size - 1)) != 0) {
4211 			rnew_size = xfs_iroundup(new_size);
4212 		}
4213 		xfs_iext_inline_to_direct(ifp, rnew_size);
4214 	}
4215 	ifp->if_real_bytes = rnew_size;
4216 	ifp->if_bytes = new_size;
4217 }
4218 
4219 /*
4220  * Switch from linear (direct) extent records to inline buffer.
4221  */
4222 void
4223 xfs_iext_direct_to_inline(
4224 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4225 	xfs_extnum_t	nextents)	/* number of extents in file */
4226 {
4227 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4228 	ASSERT(nextents <= XFS_INLINE_EXTS);
4229 	/*
4230 	 * The inline buffer was zeroed when we switched
4231 	 * from inline to direct extent allocation mode,
4232 	 * so we don't need to clear it here.
4233 	 */
4234 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4235 		nextents * sizeof(xfs_bmbt_rec_t));
4236 	kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4237 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4238 	ifp->if_real_bytes = 0;
4239 }
4240 
4241 /*
4242  * Switch from inline buffer to linear (direct) extent records.
4243  * new_size should already be rounded up to the next power of 2
4244  * by the caller (when appropriate), so use new_size as it is.
4245  * However, since new_size may be rounded up, we can't update
4246  * if_bytes here. It is the caller's responsibility to update
4247  * if_bytes upon return.
4248  */
4249 void
4250 xfs_iext_inline_to_direct(
4251 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4252 	int		new_size)	/* number of extents in file */
4253 {
4254 	ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4255 		kmem_alloc(new_size, KM_SLEEP);
4256 	memset(ifp->if_u1.if_extents, 0, new_size);
4257 	if (ifp->if_bytes) {
4258 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4259 			ifp->if_bytes);
4260 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4261 			sizeof(xfs_bmbt_rec_t));
4262 	}
4263 	ifp->if_real_bytes = new_size;
4264 }
4265 
4266 /*
4267  * Resize an extent indirection array to new_size bytes.
4268  */
4269 void
4270 xfs_iext_realloc_indirect(
4271 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4272 	int		new_size)	/* new indirection array size */
4273 {
4274 	int		nlists;		/* number of irec's (ex lists) */
4275 	int		size;		/* current indirection array size */
4276 
4277 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4278 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4279 	size = nlists * sizeof(xfs_ext_irec_t);
4280 	ASSERT(ifp->if_real_bytes);
4281 	ASSERT((new_size >= 0) && (new_size != size));
4282 	if (new_size == 0) {
4283 		xfs_iext_destroy(ifp);
4284 	} else {
4285 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4286 			kmem_realloc(ifp->if_u1.if_ext_irec,
4287 				new_size, size, KM_SLEEP);
4288 	}
4289 }
4290 
4291 /*
4292  * Switch from indirection array to linear (direct) extent allocations.
4293  */
4294 void
4295 xfs_iext_indirect_to_direct(
4296 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
4297 {
4298 	xfs_bmbt_rec_t	*ep;		/* extent record pointer */
4299 	xfs_extnum_t	nextents;	/* number of extents in file */
4300 	int		size;		/* size of file extents */
4301 
4302 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4303 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4304 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4305 	size = nextents * sizeof(xfs_bmbt_rec_t);
4306 
4307 	xfs_iext_irec_compact_full(ifp);
4308 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4309 
4310 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
4311 	kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4312 	ifp->if_flags &= ~XFS_IFEXTIREC;
4313 	ifp->if_u1.if_extents = ep;
4314 	ifp->if_bytes = size;
4315 	if (nextents < XFS_LINEAR_EXTS) {
4316 		xfs_iext_realloc_direct(ifp, size);
4317 	}
4318 }
4319 
4320 /*
4321  * Free incore file extents.
4322  */
4323 void
4324 xfs_iext_destroy(
4325 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4326 {
4327 	if (ifp->if_flags & XFS_IFEXTIREC) {
4328 		int	erp_idx;
4329 		int	nlists;
4330 
4331 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4332 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4333 			xfs_iext_irec_remove(ifp, erp_idx);
4334 		}
4335 		ifp->if_flags &= ~XFS_IFEXTIREC;
4336 	} else if (ifp->if_real_bytes) {
4337 		kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4338 	} else if (ifp->if_bytes) {
4339 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4340 			sizeof(xfs_bmbt_rec_t));
4341 	}
4342 	ifp->if_u1.if_extents = NULL;
4343 	ifp->if_real_bytes = 0;
4344 	ifp->if_bytes = 0;
4345 }
4346 
4347 /*
4348  * Return a pointer to the extent record for file system block bno.
4349  */
4350 xfs_bmbt_rec_t *			/* pointer to found extent record */
4351 xfs_iext_bno_to_ext(
4352 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4353 	xfs_fileoff_t	bno,		/* block number to search for */
4354 	xfs_extnum_t	*idxp)		/* index of target extent */
4355 {
4356 	xfs_bmbt_rec_t	*base;		/* pointer to first extent */
4357 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
4358 	xfs_bmbt_rec_t	*ep = NULL;	/* pointer to target extent */
4359 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4360 	int		high;		/* upper boundary in search */
4361 	xfs_extnum_t	idx = 0;	/* index of target extent */
4362 	int		low;		/* lower boundary in search */
4363 	xfs_extnum_t	nextents;	/* number of file extents */
4364 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
4365 
4366 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4367 	if (nextents == 0) {
4368 		*idxp = 0;
4369 		return NULL;
4370 	}
4371 	low = 0;
4372 	if (ifp->if_flags & XFS_IFEXTIREC) {
4373 		/* Find target extent list */
4374 		int	erp_idx = 0;
4375 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4376 		base = erp->er_extbuf;
4377 		high = erp->er_extcount - 1;
4378 	} else {
4379 		base = ifp->if_u1.if_extents;
4380 		high = nextents - 1;
4381 	}
4382 	/* Binary search extent records */
4383 	while (low <= high) {
4384 		idx = (low + high) >> 1;
4385 		ep = base + idx;
4386 		startoff = xfs_bmbt_get_startoff(ep);
4387 		blockcount = xfs_bmbt_get_blockcount(ep);
4388 		if (bno < startoff) {
4389 			high = idx - 1;
4390 		} else if (bno >= startoff + blockcount) {
4391 			low = idx + 1;
4392 		} else {
4393 			/* Convert back to file-based extent index */
4394 			if (ifp->if_flags & XFS_IFEXTIREC) {
4395 				idx += erp->er_extoff;
4396 			}
4397 			*idxp = idx;
4398 			return ep;
4399 		}
4400 	}
4401 	/* Convert back to file-based extent index */
4402 	if (ifp->if_flags & XFS_IFEXTIREC) {
4403 		idx += erp->er_extoff;
4404 	}
4405 	if (bno >= startoff + blockcount) {
4406 		if (++idx == nextents) {
4407 			ep = NULL;
4408 		} else {
4409 			ep = xfs_iext_get_ext(ifp, idx);
4410 		}
4411 	}
4412 	*idxp = idx;
4413 	return ep;
4414 }
4415 
4416 /*
4417  * Return a pointer to the indirection array entry containing the
4418  * extent record for filesystem block bno. Store the index of the
4419  * target irec in *erp_idxp.
4420  */
4421 xfs_ext_irec_t *			/* pointer to found extent record */
4422 xfs_iext_bno_to_irec(
4423 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4424 	xfs_fileoff_t	bno,		/* block number to search for */
4425 	int		*erp_idxp)	/* irec index of target ext list */
4426 {
4427 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
4428 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
4429 	int		erp_idx;	/* indirection array index */
4430 	int		nlists;		/* number of extent irec's (lists) */
4431 	int		high;		/* binary search upper limit */
4432 	int		low;		/* binary search lower limit */
4433 
4434 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4435 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4436 	erp_idx = 0;
4437 	low = 0;
4438 	high = nlists - 1;
4439 	while (low <= high) {
4440 		erp_idx = (low + high) >> 1;
4441 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4442 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4443 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4444 			high = erp_idx - 1;
4445 		} else if (erp_next && bno >=
4446 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4447 			low = erp_idx + 1;
4448 		} else {
4449 			break;
4450 		}
4451 	}
4452 	*erp_idxp = erp_idx;
4453 	return erp;
4454 }
4455 
4456 /*
4457  * Return a pointer to the indirection array entry containing the
4458  * extent record at file extent index *idxp. Store the index of the
4459  * target irec in *erp_idxp and store the page index of the target
4460  * extent record in *idxp.
4461  */
4462 xfs_ext_irec_t *
4463 xfs_iext_idx_to_irec(
4464 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4465 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
4466 	int		*erp_idxp,	/* pointer to target irec */
4467 	int		realloc)	/* new bytes were just added */
4468 {
4469 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
4470 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
4471 	int		erp_idx;	/* indirection array index */
4472 	int		nlists;		/* number of irec's (ex lists) */
4473 	int		high;		/* binary search upper limit */
4474 	int		low;		/* binary search lower limit */
4475 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
4476 
4477 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4478 	ASSERT(page_idx >= 0 && page_idx <=
4479 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4480 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4481 	erp_idx = 0;
4482 	low = 0;
4483 	high = nlists - 1;
4484 
4485 	/* Binary search extent irec's */
4486 	while (low <= high) {
4487 		erp_idx = (low + high) >> 1;
4488 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4489 		prev = erp_idx > 0 ? erp - 1 : NULL;
4490 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4491 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4492 			high = erp_idx - 1;
4493 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
4494 			   (page_idx == erp->er_extoff + erp->er_extcount &&
4495 			    !realloc)) {
4496 			low = erp_idx + 1;
4497 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
4498 			   erp->er_extcount == XFS_LINEAR_EXTS) {
4499 			ASSERT(realloc);
4500 			page_idx = 0;
4501 			erp_idx++;
4502 			erp = erp_idx < nlists ? erp + 1 : NULL;
4503 			break;
4504 		} else {
4505 			page_idx -= erp->er_extoff;
4506 			break;
4507 		}
4508 	}
4509 	*idxp = page_idx;
4510 	*erp_idxp = erp_idx;
4511 	return(erp);
4512 }
4513 
4514 /*
4515  * Allocate and initialize an indirection array once the space needed
4516  * for incore extents increases above XFS_IEXT_BUFSZ.
4517  */
4518 void
4519 xfs_iext_irec_init(
4520 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4521 {
4522 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4523 	xfs_extnum_t	nextents;	/* number of extents in file */
4524 
4525 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4526 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4527 	ASSERT(nextents <= XFS_LINEAR_EXTS);
4528 
4529 	erp = (xfs_ext_irec_t *)
4530 		kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4531 
4532 	if (nextents == 0) {
4533 		ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4534 			kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4535 	} else if (!ifp->if_real_bytes) {
4536 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4537 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4538 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4539 	}
4540 	erp->er_extbuf = ifp->if_u1.if_extents;
4541 	erp->er_extcount = nextents;
4542 	erp->er_extoff = 0;
4543 
4544 	ifp->if_flags |= XFS_IFEXTIREC;
4545 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4546 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4547 	ifp->if_u1.if_ext_irec = erp;
4548 
4549 	return;
4550 }
4551 
4552 /*
4553  * Allocate and initialize a new entry in the indirection array.
4554  */
4555 xfs_ext_irec_t *
4556 xfs_iext_irec_new(
4557 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4558 	int		erp_idx)	/* index for new irec */
4559 {
4560 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4561 	int		i;		/* loop counter */
4562 	int		nlists;		/* number of irec's (ex lists) */
4563 
4564 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4565 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4566 
4567 	/* Resize indirection array */
4568 	xfs_iext_realloc_indirect(ifp, ++nlists *
4569 				  sizeof(xfs_ext_irec_t));
4570 	/*
4571 	 * Move records down in the array so the
4572 	 * new page can use erp_idx.
4573 	 */
4574 	erp = ifp->if_u1.if_ext_irec;
4575 	for (i = nlists - 1; i > erp_idx; i--) {
4576 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4577 	}
4578 	ASSERT(i == erp_idx);
4579 
4580 	/* Initialize new extent record */
4581 	erp = ifp->if_u1.if_ext_irec;
4582 	erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4583 		kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4584 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4585 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4586 	erp[erp_idx].er_extcount = 0;
4587 	erp[erp_idx].er_extoff = erp_idx > 0 ?
4588 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4589 	return (&erp[erp_idx]);
4590 }
4591 
4592 /*
4593  * Remove a record from the indirection array.
4594  */
4595 void
4596 xfs_iext_irec_remove(
4597 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4598 	int		erp_idx)	/* irec index to remove */
4599 {
4600 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4601 	int		i;		/* loop counter */
4602 	int		nlists;		/* number of irec's (ex lists) */
4603 
4604 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4605 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4606 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4607 	if (erp->er_extbuf) {
4608 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4609 			-erp->er_extcount);
4610 		kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4611 	}
4612 	/* Compact extent records */
4613 	erp = ifp->if_u1.if_ext_irec;
4614 	for (i = erp_idx; i < nlists - 1; i++) {
4615 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4616 	}
4617 	/*
4618 	 * Manually free the last extent record from the indirection
4619 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4620 	 * of zero would result in a call to xfs_iext_destroy() which
4621 	 * would in turn call this function again, creating a nasty
4622 	 * infinite loop.
4623 	 */
4624 	if (--nlists) {
4625 		xfs_iext_realloc_indirect(ifp,
4626 			nlists * sizeof(xfs_ext_irec_t));
4627 	} else {
4628 		kmem_free(ifp->if_u1.if_ext_irec,
4629 			sizeof(xfs_ext_irec_t));
4630 	}
4631 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4632 }
4633 
4634 /*
4635  * This is called to clean up large amounts of unused memory allocated
4636  * by the indirection array.  Before compacting anything though, verify
4637  * that the indirection array is still needed and switch back to the
4638  * linear extent list (or even the inline buffer) if possible.  The
4639  * compaction policy is as follows:
4640  *
4641  *    Full Compaction: Extents fit into a single page (or inline buffer)
4642  *    Full Compaction: Extents occupy less than 10% of allocated space
4643  * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4644  *      No Compaction: Extents occupy at least 50% of allocated space
4645  */
4646 void
4647 xfs_iext_irec_compact(
4648 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4649 {
4650 	xfs_extnum_t	nextents;	/* number of extents in file */
4651 	int		nlists;		/* number of irec's (ex lists) */
4652 
4653 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4654 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4655 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4656 
4657 	if (nextents == 0) {
4658 		xfs_iext_destroy(ifp);
4659 	} else if (nextents <= XFS_INLINE_EXTS) {
4660 		xfs_iext_indirect_to_direct(ifp);
4661 		xfs_iext_direct_to_inline(ifp, nextents);
4662 	} else if (nextents <= XFS_LINEAR_EXTS) {
4663 		xfs_iext_indirect_to_direct(ifp);
4664 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4665 		xfs_iext_irec_compact_full(ifp);
4666 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4667 		xfs_iext_irec_compact_pages(ifp);
4668 	}
4669 }
4670 
4671 /*
4672  * Combine extents from neighboring extent pages.
4673  */
4674 void
4675 xfs_iext_irec_compact_pages(
4676 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4677 {
4678 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4679 	int		erp_idx = 0;	/* indirection array index */
4680 	int		nlists;		/* number of irec's (ex lists) */
4681 
4682 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4683 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4684 	while (erp_idx < nlists - 1) {
4685 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4686 		erp_next = erp + 1;
4687 		if (erp_next->er_extcount <=
4688 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4689 			memmove(&erp->er_extbuf[erp->er_extcount],
4690 				erp_next->er_extbuf, erp_next->er_extcount *
4691 				sizeof(xfs_bmbt_rec_t));
4692 			erp->er_extcount += erp_next->er_extcount;
4693 			/*
4694 			 * Free page before removing extent record
4695 			 * so er_extoffs don't get modified in
4696 			 * xfs_iext_irec_remove.
4697 			 */
4698 			kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4699 			erp_next->er_extbuf = NULL;
4700 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4701 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4702 		} else {
4703 			erp_idx++;
4704 		}
4705 	}
4706 }
4707 
4708 /*
4709  * Fully compact the extent records managed by the indirection array.
4710  */
4711 void
4712 xfs_iext_irec_compact_full(
4713 	xfs_ifork_t	*ifp)			/* inode fork pointer */
4714 {
4715 	xfs_bmbt_rec_t	*ep, *ep_next;		/* extent record pointers */
4716 	xfs_ext_irec_t	*erp, *erp_next;	/* extent irec pointers */
4717 	int		erp_idx = 0;		/* extent irec index */
4718 	int		ext_avail;		/* empty entries in ex list */
4719 	int		ext_diff;		/* number of exts to add */
4720 	int		nlists;			/* number of irec's (ex lists) */
4721 
4722 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4723 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4724 	erp = ifp->if_u1.if_ext_irec;
4725 	ep = &erp->er_extbuf[erp->er_extcount];
4726 	erp_next = erp + 1;
4727 	ep_next = erp_next->er_extbuf;
4728 	while (erp_idx < nlists - 1) {
4729 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4730 		ext_diff = MIN(ext_avail, erp_next->er_extcount);
4731 		memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4732 		erp->er_extcount += ext_diff;
4733 		erp_next->er_extcount -= ext_diff;
4734 		/* Remove next page */
4735 		if (erp_next->er_extcount == 0) {
4736 			/*
4737 			 * Free page before removing extent record
4738 			 * so er_extoffs don't get modified in
4739 			 * xfs_iext_irec_remove.
4740 			 */
4741 			kmem_free(erp_next->er_extbuf,
4742 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4743 			erp_next->er_extbuf = NULL;
4744 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4745 			erp = &ifp->if_u1.if_ext_irec[erp_idx];
4746 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4747 		/* Update next page */
4748 		} else {
4749 			/* Move rest of page up to become next new page */
4750 			memmove(erp_next->er_extbuf, ep_next,
4751 				erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4752 			ep_next = erp_next->er_extbuf;
4753 			memset(&ep_next[erp_next->er_extcount], 0,
4754 				(XFS_LINEAR_EXTS - erp_next->er_extcount) *
4755 				sizeof(xfs_bmbt_rec_t));
4756 		}
4757 		if (erp->er_extcount == XFS_LINEAR_EXTS) {
4758 			erp_idx++;
4759 			if (erp_idx < nlists)
4760 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
4761 			else
4762 				break;
4763 		}
4764 		ep = &erp->er_extbuf[erp->er_extcount];
4765 		erp_next = erp + 1;
4766 		ep_next = erp_next->er_extbuf;
4767 	}
4768 }
4769 
4770 /*
4771  * This is called to update the er_extoff field in the indirection
4772  * array when extents have been added or removed from one of the
4773  * extent lists. erp_idx contains the irec index to begin updating
4774  * at and ext_diff contains the number of extents that were added
4775  * or removed.
4776  */
4777 void
4778 xfs_iext_irec_update_extoffs(
4779 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4780 	int		erp_idx,	/* irec index to update */
4781 	int		ext_diff)	/* number of new extents */
4782 {
4783 	int		i;		/* loop counter */
4784 	int		nlists;		/* number of irec's (ex lists */
4785 
4786 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4787 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4788 	for (i = erp_idx; i < nlists; i++) {
4789 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4790 	}
4791 }
4792